1
|
Wlaschek M, Maity P, Koroma AK, Geiger H, Singh K, Scharffetter-Kochanek K. Imbalanced redox dynamics induce fibroblast senescence leading to impaired stem cell pools and skin aging. Free Radic Biol Med 2025; 233:292-301. [PMID: 40154755 DOI: 10.1016/j.freeradbiomed.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Skin function depends on a meticulously regulated dynamic interaction of distinct skin compartments such as the epidermis and dermis. Adaptive responses at the molecular and cellular level are essential for these interactions - and if dysregulated - drive skin aging and other pathologies. After defining the role of redox homeodynamics in physiology and aging pathology, we focus on the redox distress-dependent aging of dermal fibroblasts including their progenitors. We here discuss the prime role of senescent fibroblasts in the control of their own endogenous niche and stem cell niches for epidermal stem cells, hair follicle stem cells, adipocyte precursors and muscle stem cells. We here review that redox imbalance induced reduction in Insulin-like Growth Factor-1 drives skin aging by the depletion of stem cell pools. This IGF-1 reduction is mediated via the redox-sensitive transcription factor JunB and also by the redox-dependent changes in sphingolipid-metabolism, among others. In addition, we will discuss the changes in the extracellular matrix of the skin affecting cellular senescence and the skin integrity and function in aging. The aim is a deeper understanding of the two main redox-dependent hubs such as JunB-induced depletion of IGF-1, and the sphingolipid-mediated remodeling of the cell membrane with its impact on IGF-1, fibroblast heterogeneity, function, senescence and plasticity in skin aging.
Collapse
Affiliation(s)
- Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Albert Kallon Koroma
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Aging Research Institute (arc), Ulm University, Ulm, Germany; Institute for Molecular Medicine and Stem Cell Aging, Ulm University, Ulm, Germany
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany; Aging Research Institute (arc), Ulm University, Ulm, Germany.
| |
Collapse
|
2
|
Rotimi DE, Ben-Goru GM, Evbuomwan IO, Elebiyo TC, Alorabi M, Farasani A, Batiha GES, Adeyemi OS. Zingiber officinale and Vernonia amygdalina Infusions Improve Redox Status in Rat Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9470178. [PMID: 36199544 PMCID: PMC9529415 DOI: 10.1155/2022/9470178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
The study investigated the effects of Zingiber officinale root and Vernonia amygdalina leaf on the brain redox status of Wistar rats. Twenty-four (24) rats weighing 160 ± 20 g were randomly assigned into four (4) groups, each with six (6) rats. Animals in Group 1 (control) were orally administered distilled water (1 mL), while the test groups were orally administered 5 mg/mL of either Z. officinale, V. amygdalina infusion, or a combination of both, respectively, for 7 days. The rats were sacrificed at the end of treatments and blood and tissue were harvested and prepared for biochemical assays. Results showed that administration of V. amygdalina and Z. officinale, as well as their coadministration, reduced the levels of malondialdehyde (MDA), nitric oxide (NO), acetylcholinesterase (AChE), and myeloperoxidase (MPO) in rat brain tissue compared with the control group. Conversely, coadministration of V. amygdalina and Z. officinale increased the levels of reduced glutathione (GSH) in rat brain tissue compared with the control group. However, the administration of the infusions singly, as well as the combination of both infusions, did not have any effect on the rat brain levels of glutathione peroxidase (GPx) and catalase (CAT) antioxidant enzymes compared to the control. Taken together, the findings indicate that the V. amygdalina and Z. officinale tea infusions have favorable antioxidant properties in the rat brain. The findings are confirmatory and contribute to deepening our understanding of the health-promoting effects of V. amygdalina and Z. officinale tea infusions.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Goodnews Mavoghenegbero Ben-Goru
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Ikponmwosa Owen Evbuomwan
- Department of Microbiology, Cellular Parasitology Unit, College of Pure and Applied Sciences, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Tobiloba Christiana Elebiyo
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdullah Farasani
- Department of Medical Laboratory Technology, Biomedical Research Unit, Medical Research Center, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi 989-6711, Sendai, Japan
| |
Collapse
|
3
|
Liu J, Shi L, Deng Y, Zou M, Cai B, Song Y, Wang Z, Wang L. Silk sericin-based materials for biomedical applications. Biomaterials 2022; 287:121638. [PMID: 35921729 DOI: 10.1016/j.biomaterials.2022.121638] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Silk sericin, a natural protein extracted from silkworm cocoons, has been extensively studied and utilized in the biomedical field because of its superior biological activities and controllable chemical-physical properties. Sericin is biocompatible and naturally cell adhesive, enabling cell attachment, proliferation, and differentiation in sericin-based materials. Moreover, its abundant functional groups from variable amino acids composition allow sericin to be chemically modified and cross-linked to form versatile constructs serving as alternative matrixes for biomedical applications. Recently, sericin has been constructed into various types of biomaterials for tissue engineering and regenerative medicine, including various bulk constructions (films, hydrogels, scaffolds, conduits, and devices) and micro-nano formulations. In this review, we systemically summarize the properties of silk sericin, introduce its different forms, and demonstrate their newly-developed as well as potential biomedical applications.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meizhen Zou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Iron-Palladium magnetic nanoparticles for decolorizing rhodamine B and scavenging reactive oxygen species. J Colloid Interface Sci 2021; 588:646-656. [PMID: 33267951 DOI: 10.1016/j.jcis.2020.11.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS Here, FePd magnetic nanoparticles (MNPs) are developed as artificial enzymes with high biocompatibility and reusability. EXPERIMENT The nanoparticles (NPs) are synthesized in an aqueous solvent by one-pot synthesis utilizing glutathione (GSH) and cysteine (Cys) as surfactants. FINDINGS The prepared hydrophilic FePd NPs are redispersible in water. Further, they exhibit catalytic activity for the degradation of rhodamine B (RhB), as well as for the inhibition of reactive oxygen species (ROS) production induced by H2O2, which are two- and seven-fold enhancements of their catalytic performances, respectively, compared with that of horseradish peroxidase. The computational simulation and electrochemical analysis indicate that the enhancement of the catalytic effect is due to the protection of the MNP surface by GSH and Cys. In vitro experiments reveal that FePd MNPs behave like a peroxidase and decrease the ROS in mammalian cells. The cytotoxicity assessment of FePd MNPs via exposures to different cell lines for over seven days indicates that they can maintain the cell viability of >90% for up to 20 μgmL-1 concentration. FePd MNPs with high saturation magnetization and biocompatibility can be utilized as recyclable peroxidase-mimicking nanozymes and biosensors in a variety of catalytic and biological applications.
Collapse
|
5
|
Tabarelli G, Dornelles L, Iglesias BA, Gonçalves DF, Terra Stefanello S, Soares FAA, Piccoli BC, D'Avila da Silva F, da Rocha JBT, Schultze E, Bonemann Bender C, Collares T, Kömmling Seixas F, Peterle MM, Braga AL, Rodrigues OED. Synthesis and Antitumoral Lung Carcinoma A549 and Antioxidant Activity Assays Of New Chiral β-Aryl-Chalcogenium Azide Compounds. ChemistrySelect 2017. [DOI: 10.1002/slct.201701107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Greice Tabarelli
- LabSelen-NanoBio - Departamento de Química; Universidade Federal de Santa Maria, RS - CEP; 97105-900 - Brazil
| | - Luciano Dornelles
- LabSelen-NanoBio - Departamento de Química; Universidade Federal de Santa Maria, RS - CEP; 97105-900 - Brazil
| | - Bernardo A. Iglesias
- Departamento de Química; Universidade Federal de Santa Maria, RS - CEP; 97105-900 - Brazil
| | - Débora Farina Gonçalves
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Sílvio Terra Stefanello
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Félix A. A. Soares
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Bruna Candia Piccoli
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Fernanda D'Avila da Silva
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - João B. T. da Rocha
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Eduarda Schultze
- Programa de Pós-Graduação em Biotecnologia (PPGB); Grupo de Pesquisa em Oncologia Celular e Molecular; Laboratório de Biotecnologia do Câncer; Biotecnologia/Centro de Desenvolvimento Tecnológico; Universidade Federal de Pelotas; Pelotas, RS Brazil
| | - Camila Bonemann Bender
- Programa de Pós-Graduação em Biotecnologia (PPGB); Grupo de Pesquisa em Oncologia Celular e Molecular; Laboratório de Biotecnologia do Câncer; Biotecnologia/Centro de Desenvolvimento Tecnológico; Universidade Federal de Pelotas; Pelotas, RS Brazil
| | - Tiago Collares
- Programa de Pós-Graduação em Biotecnologia (PPGB); Grupo de Pesquisa em Oncologia Celular e Molecular; Laboratório de Biotecnologia do Câncer; Biotecnologia/Centro de Desenvolvimento Tecnológico; Universidade Federal de Pelotas; Pelotas, RS Brazil
| | - Fabiana Kömmling Seixas
- Programa de Pós-Graduação em Biotecnologia (PPGB); Grupo de Pesquisa em Oncologia Celular e Molecular; Laboratório de Biotecnologia do Câncer; Biotecnologia/Centro de Desenvolvimento Tecnológico; Universidade Federal de Pelotas; Pelotas, RS Brazil
| | - Marcos M. Peterle
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis Brazil
| | - Antônio L. Braga
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis Brazil
| | - Oscar E. D. Rodrigues
- LabSelen-NanoBio - Departamento de Química; Universidade Federal de Santa Maria, RS - CEP; 97105-900 - Brazil
| |
Collapse
|
6
|
Manivannan C, Vijay Solomon R, Venuvanalingam P, Renganathan R. A Spectroscopic Approach with Theoretical Studies to Study the Interaction of 9-aminoacridine with Certain Phenols. Z PHYS CHEM 2016. [DOI: 10.1515/zpch-2015-0695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The influence of phenols upon the fluorescence quenching of 9-aminoacridine (9-AA) was examined in acetonitrile solution by employing steady state and time-resolved fluorescence measurements. On increasing the concentration of quencher molecules the absorption spectra of 9-AA change with significant bathochromic shift. The fluorescence intensity of 9-AA change in presence of quencher molecules were measured at various temperatures as a function of the quencher concentrations. The observed bimolecular quenching rate constant (kq) depends on the nature and electronic effect of substituent present in the quencher molecules. The bimolecular quenching rate constant (kq) decreases on increasing the oxidation potential of quencher molecules. To examine the quenching behavior, kq values were correlated with the free energy change (ΔG). To get forthcoming in the quenching process, fluorescence quenching experiments were carried out in different solvents of varying polarities. The observed result suggest the involvement of charge-transfer quenching mechanism. Lifetime measurements support static quenching. Further, the radical scavenging potential is calculated from density functional theory (DFT) calculations to address the quenching behavior of the quencher molecules. DFT result reveals that electronic features are important in tuning the quenching ability of the quencher molecules and found to agree with the obtained experiment result.
Collapse
Affiliation(s)
- Chandrakumar Manivannan
- Photocatalysis Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli – 24, India
| | - Rajadurai Vijay Solomon
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli – 24, India
| | - Ponnambalam Venuvanalingam
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli – 24, India
| | - Rajalingam Renganathan
- Photocatalysis Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli – 24, India , Phone: +91-431-2407053, Fax: +91-431-2407045
| |
Collapse
|
7
|
Bhowmick D, Mugesh G. Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics. Org Biomol Chem 2016; 13:10262-72. [PMID: 26372527 DOI: 10.1039/c5ob01665g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glutathione Peroxidase (GPx) is a key selenoenzyme that protects biomolecules from oxidative damage. Extensive research has been carried out to design and synthesize small organoselenium compounds as functional mimics of GPx. While the catalytic mechanism of the native enzyme itself is poorly understood, the synthetic mimics follow different catalytic pathways depending upon the structures and reactivities of various intermediates formed in the catalytic cycle. The steric as well as electronic environments around the selenium atom not only modulate the reactivity of these synthetic mimics towards peroxides and thiols, but also the catalytic mechanisms. The catalytic cycle of small GPx mimics is also dependent on the nature of peroxides and thiols used in the study. In this review, we discuss how the catalytic mechanism varies with the substituents attached to the selenium atom.
Collapse
Affiliation(s)
- Debasish Bhowmick
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.
| | | |
Collapse
|
8
|
Huang Y, Liu Z, Liu C, Ju E, Zhang Y, Ren J, Qu X. Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System. Angew Chem Int Ed Engl 2016; 55:6646-50. [DOI: 10.1002/anie.201600868] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Zhen Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Enguo Ju
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Yan Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| |
Collapse
|
9
|
Huang Y, Liu Z, Liu C, Ju E, Zhang Y, Ren J, Qu X. Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600868] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Zhen Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Enguo Ju
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Yan Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| |
Collapse
|
10
|
Bhowmick D, Srivastava S, D'Silva P, Mugesh G. Highly Efficient Glutathione Peroxidase and Peroxiredoxin Mimetics Protect Mammalian Cells against Oxidative Damage. Angew Chem Int Ed Engl 2015; 54:8449-53. [DOI: 10.1002/anie.201502430] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/29/2015] [Indexed: 12/15/2022]
|
11
|
Bhowmick D, Srivastava S, D'Silva P, Mugesh G. Highly Efficient Glutathione Peroxidase and Peroxiredoxin Mimetics Protect Mammalian Cells against Oxidative Damage. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Yin Y, Jiao S, Wang Y, Zhang R, Shi Z, Hu X. Construction of a Artificial Glutathione Peroxidase with Temperature-Dependent Activity Based on a Supramolecular Graft Copolymer. Chembiochem 2015; 16:670-6. [DOI: 10.1002/cbic.201402592] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Indexed: 11/08/2022]
|
13
|
Abstract
"Oxidative stress" as a concept in redox biology and medicine has been formulated in 1985; at the beginning of 2015, approx. 138,000 PubMed entries show for this term. This concept has its merits and its pitfalls. Among the merits is the notion, elicited by the combined two terms of (i) aerobic metabolism as a steady-state redox balance and (ii) the associated potential strains in the balance as denoted by the term, stress, evoking biological stress responses. Current research on molecular redox switches governing oxidative stress responses is in full bloom. The fundamental importance of linking redox shifts to phosphorylation/dephosphorylation signaling is being more fully appreciated, thanks to major advances in methodology. Among the pitfalls is the fact that the underlying molecular details are to be worked out in each particular case, which is bvious for a global concept, but which is sometimes overlooked. This can lead to indiscriminate use of the term, oxidative stress, without clear relation to redox chemistry. The major role in antioxidant defense is fulfilled by antioxidant enzymes, not by small-molecule antioxidant compounds. The field of oxidative stress research embraces chemistry, biochemistry, cell biology, physiology and pathophysiology, all the way to medicine and health and disease research.
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, and Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Düsseldorf, Building 22.03, University Street 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
14
|
Spiteller G, Afzal M. The action of peroxyl radicals, powerful deleterious reagents, explains why neither cholesterol nor saturated fatty acids cause atherogenesis and age-related diseases. Chemistry 2014; 20:14928-45. [PMID: 25318456 DOI: 10.1002/chem.201404383] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells respond to alterations in their membrane structure by activating hydrolytic enzymes. Thus, polyunsaturated fatty acids (PUFAs) are liberated. Free PUFAs react with molecular oxygen to give lipid hydroperoxide molecules (LOOHs). In case of severe cell injury, this physiological reaction switches to the generation of lipid peroxide radicals (LOO(·)). These radicals can attack nearly all biomolecules such as lipids, carbohydrates, proteins, nucleic acids and enzymes, impairing their biological functions. Identical cell responses are triggered by manipulation of food, for example, heating/grilling and particularly homogenization, representing cell injury. Cholesterol as well as diets rich in saturated fat have been postulated to accelerate the risk of atherosclerosis while food rich in unsaturated fatty acids has been claimed to lower this risk. However, the fact is that LOO(·) radicals generated from PUFAs can oxidize cholesterol to toxic cholesterol oxides, simulating a reduction in cholesterol level. In this review it is shown how active LOO(·) radicals interact with biomolecules at a speed transcending usual molecule-molecule reactions by several orders of magnitude. Here, it is explained how functional groups are fundamentally transformed by an attack of LOO(·) with an obliteration of essential biomolecules leading to pathological conditions. A serious reconsideration of the health and diet guidelines is required.
Collapse
Affiliation(s)
- Gerhard Spiteller
- University of Bayreuth, Universitätsstr. 30, 95445 Bayreuth (Germany).
| | | |
Collapse
|
15
|
Zhang Y, Yin Q, Yin L, Ma L, Tang L, Cheng J. Chain-shattering polymeric therapeutics with on-demand drug-release capability. Angew Chem Int Ed Engl 2013; 52:6435-9. [PMID: 23650111 PMCID: PMC3800742 DOI: 10.1002/anie.201300497] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 02/19/2013] [Indexed: 11/07/2022]
Abstract
Design of smart polymeric therapeutics We designed and synthesized trigger-responsive chain-shattering polymeric therapeutics (CSPTs) via condensation polymerization of a UV-or hydrogen peroxide-responsive domain and a bisfunctional drug as co-monomers. CSPTs have precisely controlled molecular composition and unique chain-shattering type of drug release mechanism. Drug release kinetics can be precisely controlled by means of the trigger treatment. Chemotherapeutic-containing CSPTs showed trigger-responsive in vitro and in vivo antitumor efficacy.
Collapse
Affiliation(s)
- Yanfeng Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL, 61801 (USA), Fax: (+1) 217-333-2736
| | - Qian Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL, 61801 (USA), Fax: (+1) 217-333-2736
| | - Lichen Yin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL, 61801 (USA), Fax: (+1) 217-333-2736
| | - Liang Ma
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL, 61801 (USA), Fax: (+1) 217-333-2736
| | - Li Tang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL, 61801 (USA), Fax: (+1) 217-333-2736
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 West Green Street, Urbana, IL, 61801 (USA), Fax: (+1) 217-333-2736
| |
Collapse
|
16
|
Zhang Y, Yin Q, Yin L, Ma L, Tang L, Cheng J. Chain-Shattering Polymeric Therapeutics with On-Demand Drug-Release Capability. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300497] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Bhowmick D, Mugesh G. Tertiary amine-based glutathione peroxidase mimics: some insights into the role of steric and electronic effects on antioxidant activity. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.09.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Hu X, Ma X, Tang P, Yuan Q. Improved β-carotene production by oxidative stress in Blakeslea trispora induced by liquid paraffin. Biotechnol Lett 2012. [PMID: 23187755 DOI: 10.1007/s10529-012-1102-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
When 3 % (v/v) liquid paraffin was added to the medium, β-carotene production increased from 397 to 715 mg l(-1) in mated cultures of Blakeslea trispora. Liquid paraffin also enhanced the oxygen concentration and induce high oxidative stress, as observed by the increase in activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). After 84 h of cultivation in the presence of liquid paraffin, the activities of SOD, CAT and POD in B. trispora increased 77, 52.5 and 76.6 %, respectively.
Collapse
Affiliation(s)
- Xianmei Hu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, P.O. Box 75, Beijing 100029, People's Republic of China.
| | | | | | | |
Collapse
|
19
|
Wölwer-Rieck U. The leaves of Stevia rebaudiana (Bertoni), their constituents and the analyses thereof: a review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:886-895. [PMID: 22250765 DOI: 10.1021/jf2044907] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The plant Stevia rebaudiana is well-known due to the sweet-tasting ent-kaurene diterpenoid glycosides. Stevioside and rebaudioside A are the most abundant and best analyzed, but more than 30 additional steviol glycosides have been described in the scientific literature to date. Most of them were detected in the last two years. This paper reviews these new compounds and provides an overview about novel trends in their determination, separation, analysis, detection, and quantification. The detection and analysis of further constituents such as nonglycosidic diterpenes, flavonoids, chlorogenic acids, vitamins, nutrients, and miscellaneous minor compounds in the leaves of Stevia rebaudiana are reviewed as well. A critical review of the antioxidant capacity of Stevia leaves and its analysis is also included. These different aspects are discussed in consideration of the scientific literature of the last 10 years.
Collapse
Affiliation(s)
- Ursula Wölwer-Rieck
- Department of Nutrition and Food Sciences, Food Chemistry/Bioanalytics, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| |
Collapse
|
20
|
Pandey KB, Rizvi SI. Biomarkers of oxidative stress in red blood cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 155:131-6. [PMID: 21804621 DOI: 10.5507/bp.2011.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Exposure to high concentrations of oxygen radicals, the lack of nucleus and mitochrondria, inability to synthesise new protein and degradation of detoxifying enzymes makes red blood cells (RBCs) uniquely vulnerable to oxidative stress. This review summarizes the changes in biochemical parameters that primarily contribute to alterations in red blood cells during oxidative stress. METHODS PubMed, Science Direct and Springer online databases and updates from the Indian Council of Medical Research (ICMR). RESULTS AND CONCLUSION As one of the first cells to be affected by changes in the redox status of the body, alterations in red blood cells are widely used in first step-diagnoses of a number of pathological conditions. The information presented in this review provides an update on biomarkers of redox balance in red blood cells. These biomarkers may be used for assessment of oxidative stress during human health and disease.
Collapse
|
21
|
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
22
|
Krauth-Siegel RL, Schirmer RH. Redoxprozesse bei Malaria und Trypanosomiasis als Ansatzpunkte für die Chemotherapie. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/nadc.19890371005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Adam S, Loertzer H, Fornara P, Brömme HJ. The carboxyproxyl-derived spin trap (CP-H) is an appropriate detector-compound for oxidative stress. ACTA ACUST UNITED AC 2010; 38:179-86. [PMID: 20179915 DOI: 10.1007/s00240-010-0256-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
Reperfusion of ischemic tissue disturbs the balance between reactive oxygen species (ROS) and the cellular antioxidative defense. This imbalance is known as oxidative stress. In this study the spin trap 3-carboxy-2,2,5,5-tetramethylpyrrolin-1-hydroxide (CP-H) with its ESR-detectable paramagnetic analogue 3-carboxy-2,2,5,5-tetramethylpyrrolin-1-oxyl (*CP) was analyzed in vitro and in vivo. In preliminary in vitro experiments we studied the interaction of CP-H with reactive compounds like hydroxyl radicals (*OH) and alkylperoxyl radicals (ROO*) which are formed during organ reperfusion or tissue reoxygenation. The increase in the peak intensity of the ESR signal of the *CP-radical was used as a measure for CP-H oxidation by the above-mentioned oxidizing radicals. It could be clearly shown that *OH as well as ROO* induce CP-H oxidation. The intensity of the ESR signal (*CP) depends on the concentration of the applied oxidant. In a further set of in vitro experiments we analyzed some factors influencing the stability of the generated *CP. Cellular reductants are able to interact with many radicals whereby their paramagnetic signal intensity decreases. We could show that glutathione (GSH) up to 5 mM does not influence *CP concentration. On the other hand, ascorbate at a concentration of 0.6 mM significantly reduces 55% of *CP within 60 min to the ESR-silent CP-H. At 1 mM ascorbate the *CP derived ESR signal is reduced within 60 min by 90%. Lower concentrations of ascorbate (0.1-0.3 mM) do not significantly decrease signal intensity within 1 h. Homogenization of ischemic rat kidney in the presence of an air-equilibrated buffer obviously induces the formation of oxidizing radicals which in turn are able to convert diamagnetic CP-H into paramagnetic *CP. The intensity of the formed *CP was analyzed in a 600 g supernatant with ESR spectroscopy at 25 degrees C. It could be demonstrated that at least 3.0 +/- 0.5 microM *CP is formed 15 min after starting tissue homogenization and reoxygenation. Subsequent measurements of the *CP concentration indicated that its signal intensity continuously decreases. After 75 min a residual *CP concentration of 0.7 +/- 0.3 microM was monitored. Removal of mitochondria from the homogenate by centrifugation at 6,000g decelerates the disappearance of *CP but does not block it completely. In summary it could be shown that the marker (CP-H) is able to indicate the formation of oxidizing radicals during reoxygenation of ischemic tissue. This method underestimates the amount of produced oxidizing radicals. One reason for this is the reduction of *CP by some cellular reductants. Other reasons will be discussed. We assume that the used method allows a nearly real-time determination of radical production during organ reoxygenation.
Collapse
Affiliation(s)
- S Adam
- Institut für Pathophysiologie der Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | | | | | | |
Collapse
|
24
|
Is Lipid Peroxidation of Polyunsaturated Acids the Only Source of Free Radicals That Induce Aging and Age-Related Diseases? Rejuvenation Res 2010; 13:91-103. [DOI: 10.1089/rej.2009.0934] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
25
|
El-Sharief AMS, Ketcham R, Ries M, Schaumann E, Adiwidjaja G. Imidazoline-4-thiones from cyanothioformamides and aldehyde imines: Formation, aromatization, and acetylation. J Heterocycl Chem 2010. [DOI: 10.1002/jhet.333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Bhabak K, Mugesh G. Synthesis and Structure-Activity Correlation Studies of Secondary- and Tertiary-Amine-Based Glutathione Peroxidase Mimics. Chemistry 2009; 15:9846-54. [DOI: 10.1002/chem.200900818] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Bhabak K, Mugesh G. Amide-Based Glutathione Peroxidase Mimics: Effect of Secondary and Tertiary Amide Substituents on Antioxidant Activity. Chem Asian J 2009; 4:974-983. [DOI: 10.1002/asia.200800483] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Li GX, Liu ZQ. Unusual antioxidant behavior of alpha- and gamma-terpinene in protecting methyl linoleate, DNA, and erythrocyte. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3943-3948. [PMID: 19326866 DOI: 10.1021/jf803358g] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The antioxidant effects of alpha-terpinene (alpha-TH) and gamma-terpinene (gamma-TH) on the oxidation of methyl linoleate (LH), DNA, and erythrocytes induced by 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) were investigated. The results from erythrocytes and DNA were treated by means of chemical kinetic equations. It was found that either alpha- or gamma-TH was able to scavenge approximately 0.4 radicals when they protected DNA. alpha-TH can trap approximately 0.7 radicals when protecting erythrocytes and can trap approximately 0.5 radicals when protecting LH. gamma-TH can trap approximately 1.2 radicals when protecting erythrocytes and LH. Therefore, the antioxidant effectiveness of gamma-TH was higher than alpha-TH. gamma-TH contained a nonconjugated diene, and the diene in alpha-TH was conjugated. The obtained results implied that the nonconjugated diene benefited for antioxidant capacity more than a conjugated diene. Moreover, the reactions of alpha- and gamma-TH with 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cation radical (ABTS(+) (*)) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) implicated that alpha- and gamma-TH were able to scavenge radicals directly. However, alpha- and gamma-TH promoted AAPH-induced hemolysis with a high concentration employed.
Collapse
Affiliation(s)
- Guo-Xiang Li
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | | |
Collapse
|
29
|
Sarma B, Mugesh G. Antioxidant Activity of the Anti-Inflammatory Compound Ebselen: A Reversible Cyclization Pathway via Selenenic and Seleninic Acid Intermediates. Chemistry 2008; 14:10603-14. [DOI: 10.1002/chem.200801258] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Philipp EER, Schmidt M, Gsottbauer C, Sänger AM, Abele D. Size- and age-dependent changes in adductor muscle swimming physiology of the scallop Aequipecten opercularis. ACTA ACUST UNITED AC 2008; 211:2492-501. [PMID: 18626084 DOI: 10.1242/jeb.015966] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The decline of cellular and especially mitochondrial functions with age is, among other causes, held responsible for a decrease in physiological fitness and exercise capacity during lifetime. We investigated size- and age-related changes in the physiology of exercising specimens of the short lived swimming scallop Aequipecten opercularis (maximum life span 8 to 10 years) from the Isle of Man, UK. A. opercularis swim mainly to avoid predators, and a decrease in swimming abilities would increase the risk of capture and lower the rates of survival. Bigger (older) individuals were found to have lower mitochondrial volume density and aerobic capacities (citrate synthase activity and adenylates) as well as less anaerobic capacity deduced from the amount of glycogen stored in muscle tissue. Changes in redox potential, tissue pH and the loss of glutathione in the swimming muscle during the exercise were more pronounced in young compared to older individuals. This indicates that older individuals can more effectively stabilize cellular homeostasis during repeated exercise than younger animals but with a possible fitness cost as the change in physiology with age and size might result in a changed escape response behaviour towards predators.
Collapse
Affiliation(s)
- Eva E R Philipp
- Alfred-Wegener-Institute for Polar and Marine Research, Department of Biosciences, 27570 Bremerhaven, Germany.
| | | | | | | | | |
Collapse
|
31
|
Bhabak K, Mugesh G. A Simple and Efficient Strategy To Enhance the Antioxidant Activities of Amino-Substituted Glutathione Peroxidase Mimics. Chemistry 2008; 14:8640-51. [DOI: 10.1002/chem.200800963] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Zou Y, Qian ZJ, Li Y, Kim MM, Lee SH, Kim SK. Antioxidant effects of phlorotannins isolated from Ishige okamurae in free radical mediated oxidative systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:7001-9. [PMID: 18616277 DOI: 10.1021/jf801133h] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Three phlorotannins, including phloroglucinol, diphlorethohydroxycarmalol, and 6,6'-bieckol, were isolated from Ishige okamurae by column chromatography. The structures of the phlorotannins were determined on the basis of spectroscopic analysis, including NMR and mass spectrometry (MS) techniques. Antioxidant effects of phlorotannins were measured by direct free radical scavenging activities using the electron spin resonance spectrometry (ESR) technique and cellular systems in vitro. The results indicated that diphlorethohydroxycarmalol and 6,6'-bieckol showed potential radical scavenging activities against the 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, alkyl, and superoxide radicals. Moreover, no cytotoxicities of the phlorotannins on human fetal lung fibroblasts cell line (MRC-5), mouse macrophages cell line (RAW264.7), and human leukemic cell line (HL-60) were observed. In addition, diphlorethohydroxycarmalol and 6,6'-bieckol significantly reduced the intracellular reactive oxygen species level assessed by 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay in RAW264.7 cells, and myeloperoxide (MPO) activity in HL-60 cells and radical-mediated oxidation of cell membrane proteins in RAW264.7 cells were dose-dependently inhibited in the presence of diphlorethohydroxycarmalol and 6,6'-bieckol. In conclusion, these results suggested that phlorotannins could be used as novel functional foodstuffs or antioxidants in the cosmetic and drug industries.
Collapse
Affiliation(s)
- Yanping Zou
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, South Korea
| | | | | | | | | | | |
Collapse
|
33
|
Lipid peroxidation-related 1,N2-propanodeoxyguanosine-DNA adducts induced by endogenously formed 4-hydroxy-2-nonenal in organs of female rats fed diets supplemented with sunflower, rapeseed, olive or coconut oil. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 654:101-7. [DOI: 10.1016/j.mrgentox.2008.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 01/21/2008] [Accepted: 04/23/2008] [Indexed: 11/20/2022]
|
34
|
Bardelang D, Charles L, Finet JP, Jicsinszky L, Karoui H, Marque SRA, Monnier V, Rockenbauer A, Rosas R, Tordo P. Alpha-phenyl-N-tert-butylnitrone-type derivatives bound to beta-cyclodextrins: syntheses, thermokinetics of self-inclusion and application to superoxide spin-trapping. Chemistry 2008; 13:9344-54. [PMID: 17729216 DOI: 10.1002/chem.200700369] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
alpha-Phenyl-N-tert-butylnitrone (PBN) derivatives bound to beta-cyclodextrin derivatives have been synthesized. Inclusion of the PBN group into the beta-cyclodextrin moiety is host- and temperature-dependent. In the case of the nitrone linked to permethylated cyclodextrin (Me3CD-PBN), the thermokinetic parameters are in favour of a slow chemical exchange between a tight and a loose complex. In contrast, 2,6-di-O-Me-beta-cyclodextrin-grafted PBN (Me2CD-PBN) exists either in a fast exchange or as a strongly self-associated complex. The covalent cyclodextrin-PBN compounds have been used to trap carbon and oxygen-centred free radicals. The self-associated forms of the beta-CD-spin-traps are compatible with effective spin-trapping, affording spin-adducts with enhanced EPR signal intensities relative to noncovalent CD-nitrone systems or the nitrone alone. This kind of cyclodextrin-bound nitrone is the first type of covalent supramolecular spin-trap and should open new possibilities for the study of biological free radicals in vivo.
Collapse
Affiliation(s)
- David Bardelang
- UMR 6517 CNRS et Aix-Marseille Université, Faculté de Saint-Jérôme, Case 521, Avenue Escadrille Normandie Niemen, 13397, Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nifantiev EE, Predvoditelev DA. Derivatives of trivalent phosphorus in the synthesis of glycerophosphatides and related phospholipids. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1994v063n01abeh000072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Duchstein HJ, Riederer S, Erbach C. Aktive Stickstoffspezies Ein neues Forschungsgebiet für die Pharmazeutische Chemie. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/pauz.19990280406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Bhabak KP, Mugesh G. Synthesis, Characterization, and Antioxidant Activity of Some Ebselen Analogues. Chemistry 2007; 13:4594-601. [PMID: 17299817 DOI: 10.1002/chem.200601584] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Simple synthetic routes for several analogues of the anti-inflammatory organoselenium drug, ebselen, are described. The compounds are characterized by (1)H, (13)C, and (77)Se NMR spectroscopy and mass spectral techniques and, in some cases, by single-crystal X-ray diffraction studies. The glutathione peroxidase (GPx)-like antioxidant activity has been studied by using H(2)O(2), tBuOOH, and Cum-OOH as substrates, and thiophenol (PhSH, 4-Me-C(6)H(4)SH) and glutathione (GSH) as cosubstrates. Density functional theory (DFT) calculations have been performed on these systems to understand the effects of various substituents on the (77)Se NMR chemical shifts; these results have been compared with the experimental data. The experimental and theoretical results suggest that the presence of a phenyl substituent on the nitrogen atom is important for the antioxidant activity of ebselen. While ebselen and its analogues are poor catalysts in aromatic thiol assays, these compounds exhibit high GPx activity when GSH is used as the cosubstrate. The poor catalytic activity of ebselen analogues in the presence of aromatic thiols such as PhSH and 4-Me-C(6)H(4)SH can be ascribed to the undesired thiol exchange reaction that takes place at the selenium center due to SeO nonbonding interactions. To understand the effects of different peroxides on the catalytic activities, we have determined the initial rates at various concentrations of GSH and peroxides. These data suggest that the nature of peroxide has little effect on the catalytic efficiencies, although the initial reaction rates observed with hydrogen peroxide were found to be higher than that with tBuOOH and Cum-OOH. In contrast to the effect of peroxides, the nature of thiols appears to have a dramatic effect on the catalytic activity of ebselen and its related derivatives.
Collapse
Affiliation(s)
- Krishna P Bhabak
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
38
|
Kayali HA, Tarhan L. A Comparative Study of the Metal Ion Uptake and Antioxidant Enzyme Activities ofFusarium equisetiandFusarium acuminatumas a Function of External Magnesium Concentration. Prep Biochem Biotechnol 2007; 35:217-30. [PMID: 16109634 DOI: 10.1081/pb-200065631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increase of Mg2+, from 1.3 to 3 microM, in growth medium of F. equiseti and F. acuminatum increased intracellular magnesium levels from 0.83 and 0.81 microM to 1.75 and 1.42 microM on the 12th day, respectively. Intracellular magnesium levels also elevated depending upon the number of incubation days. The maximum manganese levels of F. equiseti and F. acuminatum obtained in 1.6 microM Mg2+ culture medium were 0.67 and 1.23 microM, while maximum iron levels were determined to be 1.3 microM Mg2+ as 0.51 and 0.29 microM, respectively. The maximum intracellular iron and manganese levels were decreased significantly with increasing Mg2+ concentration in the culture medium and were increased depending upon the incubation period. However, intracellular zinc levels of these strains didn't change with Mg2+ concentration and incubation period. The maximum superoxide dismutase (MnSOD) activities of F. equiseti and F. acuminatum, related to increased intracellular manganese levels up to 1.6 microM Mg2+ in growth medium, were determined to be 78 and 110 IU/mg, respectively. CAT activity variations showed agreement with SOD activity and reached a maximum at 320 and 225 IU/mg under the same conditions. The minimum LPO levels of the Fusarium strains with the maximum MnSOD and CAT activities were determined as 1.2 and 0.9 nmol MDA/g., wet weight. The higher LPO level of F. equiseti grown at the same condition, in spite of 1.42-fold higher CAT activity due to the 1.41-fold lower SOD activity, as well as a 2.0-fold higher iron level, indicated increases in the generation of reactive oxygen species via the Fenton reaction.
Collapse
Affiliation(s)
- Hulya Ayar Kayali
- Department of Chemistry, Faculty of Education, University of Dokuz Eylül, Izmir, Turkey
| | | |
Collapse
|
39
|
Kayali HA, Tarhan L. The relationship between the levels of total sialic acid, lipid peroxidation and superoxide dismutase, catalase, glutathione peroxidase, ascorbate antioxidant in urea supplemented medium by Fusarium species. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
|
41
|
Eder E, Wacker M, Lutz U, Nair J, Fang X, Bartsch H, Beland FA, Schlatter J, Lutz WK. Oxidative stress related DNA adducts in the liver of female rats fed with sunflower-, rapeseed-, olive- or coconut oil supplemented diets. Chem Biol Interact 2006; 159:81-9. [PMID: 16256967 DOI: 10.1016/j.cbi.2005.09.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 09/09/2005] [Accepted: 09/14/2005] [Indexed: 11/26/2022]
Abstract
Both animal and epidemiological studies support an effect of fatty acid composition in the diet on cancer development, in particular on colon cancer. We investigated the modulating effect of supplementation of the diet of female F344 rats with sunflower-, rapeseed-, olive-, or coconut oil on the formation of the promutagenic, exocyclic DNA adducts in the liver, an organ where major metabolism of fatty acids takes place. 1,N(6)-ethenodeoxyadenosine (etheno-dA), 3,N(4)-ethenodeoxycytidine (etheno-dC) and 1,N(2)-propandodeoxyguanosine from 4-hydroxy-2-nonenal (HNE-dGp) were determined as markers for DNA-damage derived from lipid peroxidation products and markers for oxidative stress. 8-Oxo-deoxyguanosine (8-Oxo-dG) was also measured as direct oxidative stress marker. The body weight of the rats was not influenced by the four diets containing the different vegetable oils during the 4-week feeding period. Highest adduct levels of etheno-dC (430 +/- 181 adducts/10(9) parent bases), HNE-dGp (617 +/- 96 adducts/10(9) parent bases) and 8-Oxo-dG (37,400 +/- 12,200 adducts/10(9) parent bases) were seen in rats on sunflower oil diet (highest linoleic acid content). Highest adducts levels of etheno-dA (133 +/- 113 adducts/10(9) parent bases) were found in coconut oil diet (lowest content of linoleic acid). Weakly positive correlations between linoleic acid content in the four diet groups were only observed for levels of HNE-dGp and 8-Oxo-dG. Neither the diet based on olive oil (which contains mainly oleic acid) nor the diet based on rapeseed oil (containing alpha-linolenic acid) exerted any significant protective effect against oxidative DNA damage. Our results indicate that a high linoleic acid diet may contribute to oxidative stress in the liver of female rats leading to a marginal increase in oxidative DNA-damage.
Collapse
Affiliation(s)
- E Eder
- Department of Toxicology, University of Würzburg, 97078 Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Blattes E, Fleury MB, Largeron M. Simultaneously electrogenerated diene and dienophile: A unique access to novel polyfunctionalized 1,4-benzoxazine derivatives as neuroprotective agents. Electrochim Acta 2005. [DOI: 10.1016/j.electacta.2004.12.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Variations in metal uptake, antioxidant enzyme response and membrane lipid peroxidation level in Fusarium equiseti and F. acuminatum. Process Biochem 2005. [DOI: 10.1016/j.procbio.2004.06.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Kayali HA, Tarhan L. Functions of antioxidant enzyme activities on the membrane bound total sialic acid and lipid peroxidation level in F. equiseti and F. acuminatum. ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND IMMOBILIZATION BIOTECHNOLOGY 2005; 33:319-28. [PMID: 16152696 DOI: 10.1081/bio-200066630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The variations of membrane bound total sialic acid (TSA) and lipid peroxidation level dependent on the antioxidant enzyme activities such as Superoxide Dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GSH-Px) have been studied in yeast extract supplemented medium. The maximum SOD and CAT activities of F. equiseti tended to increase with raises of yeast extract concentration up to 25 g/L where they were determined to be 78.6 +/- 0.96 and 312.7 +/- 5.6 IU/mg. On the other hand, SOD and CAT activities in F. acuminatum significantly increased with the rise of yeast extract concentration up to 10 g/L (p < 0.01) and maximum activities were observed at this concentration as 36.3 +/- 0.54 and 115.3 +/- 2.19 IU/mg on the 12th day incubation. Other H2O2 scavenger enzyme, GSH-Px activities of F. equiseti and F. acuminatum were reached the maximum at 5 and 25g/L yeast extract and determined as 5.06 +/- 0.04 and 4.74 +/- 0.09 IU/mg, respectively. TSA level showed positive correlation with SOD and CAT activities while LPO levels variations negatively correlated. The results may indicate that these antioxidant enzymes also appeared to be involved in protecting membrane bound sialic acids as well as membrane lipid of the fungus from exogenous reactive oxygen species.
Collapse
Affiliation(s)
- Hulya Ayar Kayali
- University of Dokuz Eylul, Faculty of Education, Department of Chemistry, 35150 Buca, Izmir, Turkey
| | | |
Collapse
|
45
|
Oppenländer T, Pfoertner KH, Schönholzer P. Photooxygenation of 5-aryl-2,4-diaminopyrimidines leading to 4-amino-1,3,5-triazin-2-yl ketones and, in the presence of sodium borohydride, to 5,6-dihyro-4(3H)-pyrimidinones. Helv Chim Acta 2004. [DOI: 10.1002/hlca.19880710405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Kayali HA, Tarhan L. Influence of zinc and copper ions on metals transport, antioxidant system responses and membrane LPO levels of F. equiseti and F. acuminatum. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00250-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Ekanayake Mudiyanselage S, Hamburger M, Elsner P, Thiele JJ. Ultraviolet a induces generation of squalene monohydroperoxide isomers in human sebum and skin surface lipids in vitro and in vivo. J Invest Dermatol 2003; 120:915-22. [PMID: 12787115 DOI: 10.1046/j.1523-1747.2003.12233.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At the outermost surface of human skin, skin surface lipids are first-line targets of solar ultraviolet radiation. Therefore, we hypothesized that ultraviolet A and ultraviolet B irradiation induce photo-oxidation of skin surface lipids. To test this, sebum samples were collected from facial skin of 17 healthy volunteers, weighed, and immediately irradiated with either ultraviolet B or ultraviolet A. Squalene, the major sebum lipid, as well as photo-oxidation products were identified in sebum lipid extracts by high-performance liquid chromatography analysis. Upon ultraviolet A exposures squalene was depleted in a concentration-dependent manner, whereas an unidentified sebum lipid photo-oxidation product was detected. Using high-performance thin layer chromatography, high-performance liquid chromatography, atmospheric pressure chemical ionization mass spectrometry, and nuclear magnetic resonance, unidentified sebum lipid photo-oxidation product was identified as a mixture of squalene monohydroperoxide isomers. Squalene monohydroperoxide isomers purified from sebum were identical with squalene monohydroperoxide isomers synthesized by preparative photo-oxidation of squalene. Squalene monohydroperoxide isomers were formed even after small suberythematogenic doses of ultraviolet A (5 J per cm2). Whereas physiologic baseline levels of squalene monohydroperoxide isomers in human skin were only slightly above detection limits, squalene monohydroperoxide isomer levels were strongly increased by suberythematogenic doses of ultraviolet A both in vitro and in vivo. High-performance liquid chromatography results could be complemented by a straightforward thin layer chromatography method for rapid screening of lipid peroxide formation in human sebum/skin surface lipids. In conclusion, specific squalene monohydroperoxide isomers were identified as highly ultraviolet A sensitive skin surface lipid breakdown products that may serve as a marker for photo-oxidative stress in vitro and in vivo.
Collapse
Affiliation(s)
- Swarna Ekanayake Mudiyanselage
- Department of Dermatology and Institute of Pharmacy, Friedrich-Schiller-University, Erfurter Strasse 35, D-07740 Jena, Germany
| | | | | | | |
Collapse
|
48
|
Kreiner M, Harvey LM, McNeil B. Morphological and enzymatic responses of a recombinant Aspergillus niger to oxidative stressors in chemostat cultures. J Biotechnol 2003; 100:251-60. [PMID: 12443856 DOI: 10.1016/s0168-1656(02)00245-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Continuous chemostat cultures of a recombinant strain of Aspergillus niger (B1-D), engineered to produce the marker protein hen egg white lysozyme, were investigated with regard to their susceptibility to oxidative stress. The culture response to oxidative stress, produced either by addition of exogenous hydrogen peroxide (H(2)O(2)) or by high dissolved oxygen tension (DOT), was characterised in terms of the activities of two key defensive enzymes: catalase (CAT) and superoxide dismutase (SOD). Since the morphology is so critical in submerged fungal bioprocesses, the key morphological indices were analysed using a semi-automated image analysis system. Both oxidant stressors, H(2)O(2) and elevated DOT, increased both enzyme activities, however, the extent was different: exogenous H(2)O(2) led mainly to increased CAT activity, whereas gassing with O(2) enriched air, which resulted in a DOT of 165% of air saturation, increased both enzyme activities more than 2-fold compared with the control steady state culture. Addition of exogenous H(2)O(2) resulted in shorter hyphae compared with control steady state cultures. These findings indicate that it is unsound to use exogenous H(2)O(2) to simulate oxidative stress induced by elevated dissolved oxygen levels since the response to each might be quite different, both in terms of enzymatic (defensive) responses and in terms of culture morphology.
Collapse
Affiliation(s)
- Michaela Kreiner
- Strathclyde Fermentation Centre, Royal College Building, University of Strathclyde, 204 George Street, G1 1XW Glasgow, UK
| | | | | |
Collapse
|
49
|
Krnajski Z, Gilberger TW, Walter RD, Cowman AF, Müller S. Thioredoxin reductase is essential for the survival of Plasmodium falciparum erythrocytic stages. J Biol Chem 2002; 277:25970-5. [PMID: 12004069 DOI: 10.1074/jbc.m203539200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human malaria parasite Plasmodium falciparum poses an increasing threat to human health in the tropical regions of the world, and the validation and assessment of possible drug targets is required for the development of new antimalarials. It has been shown that the erythrocytic stages of the parasites, which are responsible for the pathology of the disease in humans, are under enhanced oxidative stress and are particularly vulnerable to exogenous challenges by reactive oxygen species. Therefore it is postulated that the disruption of the antioxidant and/or redox systems of the parasite is a feasible way to interfere with their development during erythrocytic schizogony. In order to test this suggestion thioredoxin reductase (TrxR), an enzyme heavily involved in maintenance of redox homeostasis and antioxidant defense, was knocked out in P. falciparum. It was impossible to generate parasites with a disrupted trxR gene suggesting that TrxR is essential for P. falciparum erythrocytic stages. Technical problems were excluded by transfecting a 3' replacement construct, which recombined correctly and transfectants did not show any phenotypic alterations. In order to prove that the trxR knockout was responsible for the lethal phenotype of the null mutants, a co-transfection with both the knockout construct and a construct containing the trxR coding region under the control of the calmodulin promoter was conducted. Despite the disruption of the trxR gene, parasites were viable. In a Southern blot analysis a complicated restriction pattern was obtained, but it was shown by pulse field gel electrophoresis and field inverse gel electrophoreses that only the trxR gene locus on chromosome 9 was targeted by the constructs. It was found that the co-transfected constructs form concatemeric structures prior to integration into the trxR gene locus, which is further supported by plasmid rescue followed by restriction analyses of the plasmids. Northern and Western blot analyses proved that the co-transfectants highly overexpress TrxR from the introduced gene. Our results demonstrate that TrxR is essential for the survival of the erythrocytic stages of P. falciparum.
Collapse
Affiliation(s)
- Zita Krnajski
- Bernhard Nocht Institute for Tropical Medicine, Department of Biochemical Parasitology, 20359 Hamburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Guo B, Yuan Y, Wu Y, Xie Q, Yao S. Assay and analysis for anti- and pro-oxidative effects of ascorbic acid on DNA with the bulk acoustic wave impedance technique. Anal Biochem 2002; 305:139-48. [PMID: 12054442 DOI: 10.1006/abio.2002.5602] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A bulk acoustic wave (BAW) impedance sensor has been applied for in situ monitoring of the whole process of DNA oxidative damage induced by the vitamin C (Vc)-Fe (III) system, based on its real-time responses to the density-viscosity change of the tested solution due to the damages occurring on the DNA molecules. The results showed that Vc exhibited two conflicting effects, i.e., pro-oxidation and anti-oxidation on the DNA at different Vc concentrations in the damage system, and the "threshold" concentration of Vc for these two effects was estimated to be about 100 micromol/L. The end-point frequency change of the sensor (Deltaf(m)) was found to be linearly related to the initial concentration of the soybean DNA (C(DNA)) in the range of 40-1000 microg/mL, and the exponential relationship between the frequency change (Deltaf(0)) vs damaging time suggested that the Fe (III)-mediated DNA damage by Vc could be described as a first-order kinetics reaction. The effects of variations in concentrations of Vc and Fe3+ on the DNA oxidative damage were discussed, and based on investigations for the enhancing influence of H2O2 and inhibiting influence of HO* scavengers on the DNA damage, the nature and physiological toxicity of the damage in biological system were also examined. In addition, UV-vis spectra and electrophoresis analysis were also used, and the experimental observations were in good agreement with the above results.
Collapse
Affiliation(s)
- Bin Guo
- Chemical Research Institute, Hunan Normal University, Changsha, 410081, People's Republic of China
| | | | | | | | | |
Collapse
|