1
|
Su H, Nakauchi S, Sumikawa K. Nicotine-mediated activation of α2 nAChR-expressing OLM cells in developing mouse brains disrupts OLM cell-mediated control of LTP in adolescence. Neurobiol Learn Mem 2022; 194:107674. [PMID: 36029955 PMCID: PMC9835838 DOI: 10.1016/j.nlm.2022.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 01/14/2023]
Abstract
Early postnatal nicotine exposure, a rodent model of smoking during pregnancy, affects hippocampal synaptic plasticity and memory. Here, we investigated the role of α2 nAChR-expressing OLM (α2-OLM) cells in LTP in unexposed and postnatal nicotine-exposed mice. We found that reduced α2 nAChR-dependent activation of OLM cells in α2 heterozygous knockout mice prevented LTP, whereas enhanced α2 nAChR-dependent activation of OLM cells in heterozygous knockin mice expressing hypersensitive α2 nAChRs facilitated LTP. Both optogenetic and chemogenetic activation of α2-OLM cells facilitated LTP as nicotine did. However, in postnatal nicotine-exposed mice, expressing chemogenetic hM3Dq receptors in α2-OLM cells, LTP was facilitated and both nicotinic and chemogenetic activation of α2-OLM cells prevented rather than facilitated LTP. These results demonstrate a critical role of α2-OLM cell activation in LTP as well as altered α2-OLM cell function in postnatal nicotine-exposed mice. To determine whether nicotine-mediated α2 nAChR activation in developing brains causes facilitated LTP and altered nicotinic modulation of LTP in adolescence, we used homozygous knockin mice expressing hypersensitive α2 nAChRs as a way to selectively activate α2-OLM cells. In the knockin mice, postnatal exposure to a low dose of nicotine, which had no effect on LTP in wild-type mice, is sufficient to cause facilitated LTP and altered nicotinic modulation of LTP as found in wild-type mice exposed to a higher dose of nicotine. Thus, the nicotine-mediated activation of α2 nAChRs on OLM cells in developing brains disrupts the α2-OLM cell-mediated control of LTP in adolescence that might be linked to impaired memory.
Collapse
Affiliation(s)
- Hailing Su
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Sakura Nakauchi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Katumi Sumikawa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA.
| |
Collapse
|
2
|
Sikic A, Frie JA, Khokhar JY, Murray JE. Sex Differences in the Behavioural Outcomes of Prenatal Nicotine and Tobacco Exposure. Front Neurosci 2022; 16:921429. [PMID: 35873826 PMCID: PMC9304689 DOI: 10.3389/fnins.2022.921429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
Smoking remains the leading cause of preventable death worldwide. A combination of biological and environmental risk factors make women especially vulnerable to nicotine addiction, making it harder for them to quit smoking. Smoking during pregnancy, therefore, is still a major health concern, with epidemiological data suggesting a role for gestational nicotine exposure in the development of several behavioural disorders. Given there are significant sex-specific behavioural outcomes related to smoking in adolescence and adulthood, it is probable that the behavioural outcomes following gestational nicotine or tobacco exposure are similarly sex-dependent. This is an especially relevant topic as the current landscape of nicotine use shifts toward vaping, a mode of high doses of nicotine delivery that is largely believed to be a safer alternative to cigarettes among the public as well as among pregnant women. Here we review existing clinical and preclinical findings regarding the sex-dependent behavioural outcomes of prenatal nicotine exposure. We also highlight the challenges within this literature, particularly those areas in which further research is necessary to improve consistency within, and between, clinical and preclinical findings.
Collapse
Affiliation(s)
- Anita Sikic
- Department of Psychology, University of Guelph, Guelph, ON, Canada
- Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Jude A. Frie
- Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jibran Y. Khokhar
- Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jennifer E. Murray
- Department of Psychology, University of Guelph, Guelph, ON, Canada
- Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
- *Correspondence: Jennifer E. Murray,
| |
Collapse
|
3
|
Hussain S, Breit KR, Thomas JD. The effects of prenatal nicotine and THC E-cigarette exposure on motor development in rats. Psychopharmacology (Berl) 2022; 239:1579-1591. [PMID: 35338387 DOI: 10.1007/s00213-022-06095-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/13/2022] [Indexed: 10/18/2022]
Abstract
RATIONALE In the USA, nicotine and cannabis are the most common licit and illicit drugs used among pregnant women. Importantly, nicotine and cannabis are now being combined for consumption via e-cigarettes, an increasingly popular delivery device. Both nicotine and tetrahydrocannabinol (THC), the primary psychoactive component of cannabis, cross the placenta barrier. However, the consequences of prenatal cannabis use are not well understood, and less is known about potential combination effects when consumed with nicotine, especially via e-cigarettes. OBJECTIVE The present study used a rodent model to examine how prenatal e-cigarette exposure to nicotine, THC, and the combination impacts motor development among offspring. METHODS Pregnant Sprague-Dawley rats were exposed to nicotine (36 mg/mL), THC (100 mg/mL), the combination, or vehicle via e-cigarette inhalation from gestational days (GD) 5-20. One sex pair per litter was tested on an early sensorimotor development task (postnatal days [PD] 12-20) and a parallel bar motor coordination task (PD 30-32). RESULTS Combined prenatal exposure to nicotine and THC delayed sensorimotor development, even though neither drug produced impairments on their own. In contrast, prenatal exposure to either nicotine or THC impaired motor coordination, whereas combined exposure exacerbated these effects, particularly among females. CONCLUSIONS These data illustrate that prenatal exposure to either nicotine or THC may alter motor development, and that the combination may produce more severe effects. These findings have important implications for pregnant women as we better understand the teratogenic effects of these drugs consumed via e-cigarettes.
Collapse
Affiliation(s)
- S Hussain
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, CA, San Diego, USA
| | - K R Breit
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, CA, San Diego, USA.,Department of Psychology, West Chester University of Pennsylvania, West Chester, PA, USA
| | - J D Thomas
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, CA, San Diego, USA.
| |
Collapse
|
4
|
Archie SR, Sharma S, Burks E, Abbruscato T. Biological determinants impact the neurovascular toxicity of nicotine and tobacco smoke: A pharmacokinetic and pharmacodynamics perspective. Neurotoxicology 2022; 89:140-160. [PMID: 35150755 PMCID: PMC8958572 DOI: 10.1016/j.neuro.2022.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/30/2022] [Accepted: 02/05/2022] [Indexed: 01/01/2023]
Abstract
Accumulating evidence suggests that the detrimental effect of nicotine and tobacco smoke on the central nervous system (CNS) is caused by the neurotoxic role of nicotine on blood-brain barrier (BBB) permeability, nicotinic acetylcholine receptor expression, and the dopaminergic system. The ultimate consequence of these nicotine associated neurotoxicities can lead to cerebrovascular dysfunction, altered behavioral outcomes (hyperactivity and cognitive dysfunction) as well as future drug abuse and addiction. The severity of these detrimental effects can be associated with several biological determinants. Sex and age are two important biological determinants which can affect the pharmacokinetics and pharmacodynamics of several systemically available substances, including nicotine. With regard to sex, the availability of gonadal hormone is impacted by the pregnancy status and menstrual cycle resulting in altered metabolism rate of nicotine. Additionally, the observed lower smoking cessation rate in females compared to males is a consequence of differential effects of sex on pharmacokinetics and pharmacodynamics of nicotine. Similarly, age-dependent alterations in the pharmacokinetics and pharmacodynamics of nicotine have also been observed. One such example is related to severe vulnerability of adolescence towards addiction and long-term behavioral changes which may continue through adulthood. Considering the possible neurotoxic effects of nicotine on the central nervous system and the deterministic role of sex as well as age on these neurotoxic effects of smoking, it has become important to consider sex and age to study nicotine induced neurotoxicity and development of treatment strategies for combating possible harmful effects of nicotine. In the future, understanding the role of sex and age on the neurotoxic actions of nicotine can facilitate the individualization and optimization of treatment(s) to mitigate nicotine induced neurotoxicity as well as smoking cessation therapy. Unfortunately, however, no such comprehensive study is available which has considered both the sex- and age-dependent neurotoxicity of nicotine, as of today. Hence, the overreaching goal of this review article is to analyze and summarize the impact of sex and age on pharmacokinetics and pharmacodynamics of nicotine and possible neurotoxic consequences associated with nicotine in order to emphasize the importance of including these biological factors for such studies.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Elizabeth Burks
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX, USA.
| |
Collapse
|
5
|
Polli FS, Kohlmeier KA. Prenatal nicotine alters development of the laterodorsal tegmentum: Possible role for attention-deficit/hyperactivity disorder and drug dependence. World J Psychiatry 2022; 12:212-235. [PMID: 35317337 PMCID: PMC8900586 DOI: 10.5498/wjp.v12.i2.212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/07/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
As we cycle between the states of wakefulness and sleep, a bilateral cholinergic nucleus in the pontine brain stem, the laterodorsal tegmentum (LDT), plays a critical role in controlling salience processing, attention, behavioral arousal, and electrophysiological signatures of the sub- and microstates of sleep. Disorders involving abnormal alterations in behavioral and motivated states, such as drug dependence, likely involve dysfunctions in LDT signaling. In addition, as the LDT exhibits connectivity with the thalamus and mesocortical circuits, as well as receives direct, excitatory input from the prefrontal cortex, a role for the LDT in cognitive symptoms characterizing attention-deficit/hyperactivity disorder (ADHD) including impulsivity, inflexibility, and dysfunctions of attention is suggested. Prenatal nicotine exposure (PNE) is associated with a higher risk for later life development of drug dependence and ADHD, suggesting alteration in development of brain regions involved in these behaviors. PNE has been shown to alter glutamate and cholinergic signaling within the LDT. As glutamate and acetylcholine are major excitatory mediators, these alterations would likely alter excitatory output to target regions in limbic motivational circuits and to thalamic and cortical networks mediating executive control. Further, PNE alters neuronal development and transmission within prefrontal cortex and limbic areas that send input to the LDT, which would compound effects of differential processing within the PNE LDT. When taken together, alterations in signaling in the LDT are likely to play a role in negative behavioral outcomes seen in PNE individuals, including a heightened risk of drug dependence and ADHD behaviors.
Collapse
Affiliation(s)
- Filip S Polli
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristi A Kohlmeier
- Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
6
|
Developmental nicotine exposure impairs memory and reduces acetylcholine levels in the hippocampus of mice. Brain Res Bull 2021; 176:1-7. [PMID: 34358612 DOI: 10.1016/j.brainresbull.2021.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 12/22/2022]
Abstract
Nicotine is a strong psychoactive and addictive compound found in tobacco. Use of nicotine in the form of smoking, vaping or other less common methods during pregnancy has been shown to be related to poor health conditions, including cognitive problems, in babies and children. However, mechanisms of such cognitive deficits are not fully understood. In this study we analyzed hippocampus dependent cognitive deficits using a mouse model of developmental nicotine exposure. Pregnant dams were exposed to nicotine and experiments were performed in one month old offspring. Our results show that nicotine exposure did not affect locomotor behavior in mice. Hippocampus dependent working memory and object location memory were diminished in nicotine exposed mice. Furthermore, acetylcholine levels in the hippocampus of nicotine exposed mice were reduced along with reduced activity of acetylcholinesterase enzyme. Analysis of transcripts for proteins that are known to regulate acetylcholine levels revealed a decline in mRNA levels of high affinity choline transporters in the hippocampus of nicotine exposed mice but those of vesicular acetylcholine transporter, choline acetyltransferase, and α7-nicotinic acetylcholine receptors were not altered. These results suggest that developmental nicotine exposure impairs hippocampus dependent memory forms and this effect is likely mediated by altered cholinergic function.
Collapse
|
7
|
Nakauchi S, Su H, Trang I, Sumikawa K. Long-term effects of early postnatal nicotine exposure on cholinergic function in the mouse hippocampal CA1 region. Neurobiol Learn Mem 2021; 181:107445. [PMID: 33895349 PMCID: PMC9836228 DOI: 10.1016/j.nlm.2021.107445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 01/14/2023]
Abstract
In rodent models of smoking during pregnancy, early postnatal nicotine exposure results in impaired hippocampus-dependent memory, but the underlying mechanism remains elusive. Given that hippocampal cholinergic systems modulate memory and rapid development of hippocampal cholinergic systems occurs during nicotine exposure, here we investigated its impacts on cholinergic function. Both nicotinic and muscarinic activation produce transient or long-lasting depression of excitatory synaptic transmission in the hippocampal CA1 region. We found that postnatal nicotine exposure impairs both the induction and nicotinic modulation of NMDAR-dependent long-term depression (LTD). Activation of muscarinic receptors decreases excitatory synaptic transmission and CA1 network activity in both wild-type and α2 knockout mice. These muscarinic effects are still observed in nicotine-exposed mice. M1 muscarinic receptor activity is required for mGluR-dependent LTD. Early postnatal nicotine exposure has no effect on mGluR-dependent LTD induction, suggesting that it has no effect on the function of m1 muscarinic receptors involved in this form of LTD. Our results demonstrate that early postnatal nicotine exposure has more pronounced effects on nicotinic function than muscarinic function in the hippocampal CA1 region. Thus, impaired hippocampus-dependent memory may arise from the developmental disruption of nicotinic cholinergic systems in the hippocampal CA1 region.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/growth & development
- CA1 Region, Hippocampal/metabolism
- Cigarette Smoking
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Female
- Lactation
- Long-Term Synaptic Depression/drug effects
- Long-Term Synaptic Depression/physiology
- Male
- Maternal Exposure
- Memory/drug effects
- Memory/physiology
- Mice
- Mice, Knockout
- Nicotine/pharmacology
- Nicotinic Agonists/pharmacology
- Receptor, Muscarinic M1/drug effects
- Receptor, Muscarinic M1/metabolism
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/metabolism
Collapse
Affiliation(s)
- Sakura Nakauchi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Hailing Su
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Ivan Trang
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Katumi Sumikawa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA.
| |
Collapse
|
8
|
Alzu'bi A, Middleham W, Shoaib M, Clowry GJ. Selective Expression of Nicotinic Receptor Sub-unit mRNA in Early Human Fetal Forebrain. Front Mol Neurosci 2020; 13:72. [PMID: 32670017 PMCID: PMC7326072 DOI: 10.3389/fnmol.2020.00072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence from animal and human studies indicate that exposure to nicotine during development, separated from the effects of smoking tobacco, can contribute to dysregulation of brain development including behavioral deficits. An RNAseq study of human fetal cerebral cortex demonstrated that 9 out of 16 genes for human nicotinic acetylcholine (ACh) receptor subunits are selectively expressed between 7.5 and 12 post-conceptional weeks (PCW). The most highly expressed subunit genes were CHNRA4 and CHNRB2, whose protein products combine to form the most ubiquitous functional receptor isoform expressed in the adult brain. They exhibited correlated expression in both RNAseq samples, and in tissue sections by in situ hybridization. Co-localization studies with other cortical markers suggest they are pre-dominantly expressed by post-mitotic glutamatergic neuron pre-cursors in both cortical plate and pre-subplate, rather than cortical progenitor cells or GABAergic interneuron pre-cursors. However, GABAergic interneuron progenitor cells in the ganglionic eminences do express these sub-units. CHNRA5 also showed moderate levels of expression and again favored post-mitotic neurons. Other subunits, e.g., CHRNA7, exhibited low but detectable levels of expression. CHRN genes found not to be expressed included genes for subunits usually considered muscle specific, e.g., CHNRA1, although some muscle specific gene expression was detected, for instance CHNRB1. Although there is little or no synthesis of acetylcholine by intrinsic cortical neurons, cholinergic fibers from basal forebrain innervate the cerebral cortex from 12 PCW at the latest. Acetylcholine may have a paracrine effect on radially migrating cortical neurons and GABAergic interneuron progenitors.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - William Middleham
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mohammed Shoaib
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gavin J Clowry
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Polli FS, Scharff MB, Ipsen TH, Aznar S, Kohlmeier KA, Andreasen JT. Prenatal nicotine exposure in mice induces sex-dependent anxiety-like behavior, cognitive deficits, hyperactivity, and changes in the expression of glutamate receptor associated-genes in the prefrontal cortex. Pharmacol Biochem Behav 2020; 195:172951. [PMID: 32439454 DOI: 10.1016/j.pbb.2020.172951] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Abstract
In rodents, prenatal nicotine exposure (PNE) has been associated with increased risk for development of cognitive and emotional disturbances, but the findings are somewhat conflicting. Lack of behavioral alterations following PNE could be due to the variety of methods available for nicotine delivery, exposure time and species used, with inbred strains being mostly employed. Such differences suggest the need to investigate the behavioral phenotype in each PNE model available if we are to find models with enhanced translational value. In this study, we assessed sex-dependent effects of PNE on ADHD-related behaviors and on the levels of mRNA coding for glutamate receptor subunits within the prefrontal cortex in the outbred NMRI mice exposed to nicotine via maternal drinking water during gestation. Cotinine levels were assessed in newborn pups. Behaviors related to anxiety, compulsivity, working memory, and locomotion were evaluated in both sexes of young adult offspring using the elevated zero maze, marble burying, spontaneous alternation behavior, and locomotor activity tests. Expression of mRNA coding for different glutamate receptors subunits within the prefrontal cortex (PFC) was measured using RT-qPCR. Cotinine levels in the serum of newborns confirmed fetal nicotine exposure. Both male and female offspring showed ADHD-like behaviors, such as deficit in the SAB test and hyperactivity. In addition, PNE male mice displayed anxiety- and compulsive-like behaviors, effects that were absent in female offspring. Finally, PNE reduced the mRNA expression of GluN1-, GluN2B-, and mGluR2-related genes within the PFC of male offspring, whereas it reduced the expression of mRNA coding for GluA2 subunit in female mice. PNE in NMRI mice induced sex-dependent behavioral changes, which parallels clinical findings following maternal cigarette smoke exposure. Alterations detected in PFC mRNA glutamate receptor proteins could contribute to the abnormal behavioral responses observed, but other signaling pathways or brain regions are likely involved in the behavioral susceptibility of PNE individuals.
Collapse
Affiliation(s)
- Filip S Polli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Malthe B Scharff
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Theis H Ipsen
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
10
|
Cellular and Molecular Changes in Hippocampal Glutamate Signaling and Alterations in Learning, Attention, and Impulsivity Following Prenatal Nicotine Exposure. Mol Neurobiol 2020; 57:2002-2020. [PMID: 31916029 DOI: 10.1007/s12035-019-01854-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Over 70 million European pregnant women are smokers during their child-bearing years. Consumption of tobacco-containing products during pregnancy is associated with several negative behavioral outcomes for the offspring, including a higher susceptibility for the development of attention-deficit/hyperactive disorder (ADHD). In efforts to minimize fetal exposure to tobacco smoke, many women around the world switch to nicotine replacement therapies (NRTs) during the gestational period; however, prenatal nicotine exposure (PNE) in any form has been associated with alterations in cognitive processes, including learning, memory, and attention. These processes are controlled by glutamatergic signaling of hippocampal pyramidal neurons within the CA1 region, suggesting actions of nicotine on glutamatergic transmission in this region if present prenatally. Accordingly, we aimed to investigate hippocampal glutamatergic function following PNE treatment in NMRI mice employing molecular, cellular electrophysiology, and pharmacological approaches, as well as to evaluate cognition in the rodent continuous performance task (rCPT), a recently developed mouse task allowing assessment of learning, attention, and impulsivity. PNE induced increases in the expression levels of mRNA coding for different glutamate receptors and subunits within the hippocampus. Functional alterations in AMPA and NMDA receptors on CA1 pyramidal neurons of PNE mice were suggestive of higher GluA2-lacking and lower GluN2A-containing receptors, respectively. Finally, PNE was associated with reduced learning, attention, and enhanced impulsivity in the rCPT. Alterations in glutamatergic functioning in CA1 neurons parallel changes seen in the spontaneously hypertensive rat ADHD model and likely contribute to the lower cognitive performance in the rCPT.
Collapse
|
11
|
Polli FS, Kohlmeier KA. Prenatal Nicotine Exposure in Rodents: Why Are There So Many Variations in Behavioral Outcomes? Nicotine Tob Res 2019; 22:1694-1710. [DOI: 10.1093/ntr/ntz196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/05/2019] [Indexed: 01/01/2023]
Abstract
Abstract
Introduction
The World Health Organization (WHO) reported that smoking cessation rates among women have stagnated in the past decade and estimates that hundreds of millions of women will be smokers in the next decade. Social, environmental, and biological conditions render women more susceptible to nicotine addiction, imposing additional challenges to quit smoking during gestation, which is likely why more than 8% of pregnancies in Europe are associated with smoking. In epidemiological investigations, individuals born from gestational exposure to smoking exhibit a higher risk of development of attention-deficit/hyperactive disorder (ADHD) and liability to drug dependence. Among other teratogenic compounds present in tobacco smoke, nicotine actions during neuronal development could contribute to the observed outcomes as nicotine misleads signaling among progenitor cells during brain development. Several experimental approaches have been developed to address the consequences of prenatal nicotine exposure (PNE) to the brain and behavior but, after four decades of studies, inconsistent data have been reported and the lack of consensus in the field has compromised the hypothesis that gestational nicotine exposure participates in cognitive and emotional behavioral deficits.
Aims
In this review, we discuss the most commonly used PNE models with focus on their advantages and disadvantages, their relative validity, and how the different technical approaches could play a role in the disparate outcomes.
Results
We propose methodological considerations, which could improve the translational significance of the PNE models.
Conclusions
Such alterations might be helpful in reconciling experimental findings, as well as leading to development of treatment targets for maladaptive behaviors in those prenatally exposed.
Implications
In this article, we have reviewed the advantages and disadvantages of different variables of the commonly used experimental models of PNE. We discuss how variations in the nicotine administration methods, the timing of nicotine exposure, nicotine doses, and species employed could contribute to the disparate findings in outcomes for PNE offspring, both in behavior and neuronal changes. In addition, recent findings suggest consideration of epigenetic effects extending across generations. Finally, we have suggested improvements in the available PNE models that could contribute to the enhancement of their validity, which could assist in the reconciliation of experimental findings.
Collapse
Affiliation(s)
- Filip Souza Polli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Evans DE, To CN, Ashare RL. The Role of Cognitive Control in the Self-Regulation and Reinforcement of Smoking Behavior. Nicotine Tob Res 2019; 21:747-754. [PMID: 29432572 PMCID: PMC6528155 DOI: 10.1093/ntr/nty029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/06/2018] [Indexed: 12/16/2022]
Abstract
Cognitive control (CC)-the ability to regulate attention and memory-plays an important role in a variety of health behaviors, including smoking behavior. In this theoretical review of the literature, we propose a CC and smoking behavior framework that includes (1) the positive influence of CC on the self-regulation of smoking, (2) nicotine-induced improvements in CC that may indirectly reinforce smoking (including withdrawal reversal effects), and (3) the long-term effects of smoking on the brain that may result in reduced CC. Integration of these literatures suggests that CC contributes to both self-regulation (ie, brake pedal) and nicotine-related reinforcement (ie, gas pedal) amid the catastrophic effects of long-term smoking, which may reduce self-regulatory control over smoking while also enhancing indirect reinforcement. Supportive evidence and limitations of this approach will be presented, as well as ideas for future research directions that may fully examine this multifaceted modeling of CC in relation to smoking behavior. IMPLICATIONS There is substantial evidence that CC contributes to self-regulation (ie, brake pedal) and reinforcement (ie, gas pedal) of smoking behavior as well as evidence that long-term smoking may cause reduced CC. The proposed model delineates how these opposing influences of CC may mask the unique contribution of self-regulation and reinforcement in maintaining smoking behavior. Targeting CC for treating nicotine dependence will require more nuanced approaches that consider the independent and combined effects of self-regulation and reinforcement to improve smoking cessation success rates.
Collapse
Affiliation(s)
- David E Evans
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL
- Department of Psychology, University of South Florida, Tampa, FL
| | - Chan N To
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rebecca L Ashare
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Genome-wide epigenetic signatures of childhood adversity in early life: Opportunities and challenges. J Dev Orig Health Dis 2019; 10:65-72. [PMID: 30744719 DOI: 10.1017/s2040174418000843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Maternal adversity and fetal glucocorticoid exposure has long-term effects on cardiovascular, metabolic and behavioral systems in offspring that can persist throughout the lifespan. These data, along with other environmental exposure data, implicate epigenetic modifications as potential mechanisms for long-term effects of maternal exposures on adverse health outcomes in offspring. Advances in microarray, sequencing and bioinformatic approaches have enabled recent studies to examine the genome-wide epigenetic response to maternal adversity. Studies of maternal exposures to xenobiotics such as arsenic and smoking have been performed at birth to examine fetal epigenomic signatures in cord blood relating to adult health outcomes. However, there have been no epigenomic studies examining these effects in animal models. On the other hand, to date, only a few studies of the effects of maternal psychosocial stress have been performed in human infants, and the majority of animal studies have examined epigenomic outcomes in adulthood. In terms of maternal exposure to excess glucocorticoids by synthetic glucocorticoid treatment, there has been no epigenetic study performed in humans and only a few studies undertaken in animal models. This review emphasizes the importance of examining biomarkers of exposure to adversity throughout development to identify individuals at risk and to target interventions. Thus, research performed at birth will be reviewed. In addition, potential subject characteristics associated with epigenetic modifications, technical considerations, the selection of target tissues and combining human studies with animal models will be discussed in relation to the design of experiments in this field of study.
Collapse
|
14
|
Alkadhi KA. Neuroprotective Effects of Nicotine on Hippocampal Long-Term Potentiation in Brain Disorders. J Pharmacol Exp Ther 2018; 366:498-508. [PMID: 29914875 DOI: 10.1124/jpet.118.247841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/23/2018] [Indexed: 08/30/2023] Open
Abstract
Long-term potentiation (LTP) is commonly considered the cellular correlate of learning and memory. In learning and memory impairments, LTP is invariably diminished in the hippocampus, the brain region responsible for memory formation. LTP is measured electrophysiologically in various areas of the hippocampus. Two mechanistically distinct phases of LTP have been identified: early phase LTP, related to short-term memory; and late-phase LTP, related to long-term memory. These two forms can be severely reduced in a variety of conditions but can be rescued by treatment with nicotine. This report reviews the literature on the beneficial effect of nicotine on LTP in conditions that compromise learning and memory.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Professor of Pharmacology, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
15
|
Naha N, Gandhi DN, Gautam AK, Prakash JR. Nicotine and cigarette smoke modulate Nrf2-BDNF-dopaminergic signal and neurobehavioral disorders in adult rat cerebral cortex . Hum Exp Toxicol 2018; 37:540-556. [PMID: 28641491 DOI: 10.1177/0960327117698543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nicotine and cigarette smoking (CS) are associated with addiction behavior, drug-seeking, and abuse. However, the mechanisms that mediate this association especially, the role of brain-derived neurotrophic factor (BDNF), dopamine (DA), and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling in the cerebral cortex, are not fully known. Therefore, we hypothesized that overexpression of BDNF and DA, and suppression of Nrf2 contribute to several pathological and behavioral alterations in adult cerebral cortex. Methodology/Principal Observations: We treated Wistar rats with different doses of oral nicotine and passive CS for 4-week (short-term) and 12-week (long-term) duration, where doses closely mimic the human smoking scenario. Our result showed dose-dependent association of anxiogenic and depressive behavior, and cognitive interference with neurodegeneration and DNA damage in the cerebral cortex upon exposure to nicotine/CS as compared to the control. Further, the results are linked to upregulation of oxidative stress, overexpression of BDNF, DA, and DA marker, tyrosine hydroxylase (TH), with concomitant downregulation of ascorbate and Nrf2 expression in the exposed cerebral cortex when compared with the control. CONCLUSION/SIGNIFICANCE Overall, our data strongly suggest that the intervention of DA and BDNF, and depletion of antioxidants are important factors during nicotine/CS-induced cerebral cortex pathological changes leading to neurobehavioral impairments, which could underpin the novel therapeutic approaches targeted at tobacco smoking/nicotine's neuropsychological disorders including cognition and drug addiction.
Collapse
Affiliation(s)
| | - D N Gandhi
- DN Gandhi: Former scientist & Head, NBT Div., ICMR-NIOH
| | | | | |
Collapse
|
16
|
Mojica C, Bai Y, Lotfipour S. Maternal nicotine exposure effects on adolescent learning and memory are abolished in alpha(α)2* nicotinic acetylcholine receptor-null mutant mice. Neuropharmacology 2018; 135:529-535. [PMID: 29677582 DOI: 10.1016/j.neuropharm.2018.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/13/2018] [Accepted: 04/09/2018] [Indexed: 11/17/2022]
Abstract
The objective of the current study is to test the hypothesis that the deletion of alpha(α)2* nicotinic acetylcholine receptors (nAChRs) (encoded by the Chrna2 gene) ablate maternal nicotine-induced learning and memory deficits in adolescent mice. We use a pre-exposure-dependent contextual fear conditioning behavioral paradigm that is highly hippocampus-dependent. Adolescent wild type and α2-null mutant offspring are exposed to vehicle or maternal nicotine exposure (200 μg/ml, expressed as base) in the drinking water throughout pregnancy until weaning. Adolescent male offspring mice are tested for alterations in growth and development characteristics as well as modifications in locomotion, anxiety, shock-reactivity and learning and memory. As expected, maternal nicotine exposure has no effects on pup number, weight gain and only modestly reduces fluid intake by 19%. Behaviorally, maternal nicotine exposure impedes extinction learning in adolescent wild type mice, a consequence that is abolished in α2-null mutant mice. The effects on learning and memory are not confounded by alternations in stereotypy, locomotion, anxiety or sensory shock reactivity. Overall, the findings highlight that the deletion of α2* nAChRs eliminate the effects of maternal nicotine exposure on learning and memory in adolescent mice.
Collapse
Affiliation(s)
- Celina Mojica
- University of California, Los Angeles, Department of Psychiatry, United States; University of California, Irvine, Graduate Division, United States
| | - Yu Bai
- University of California, Irvine, School of Biological Sciences, United States
| | - Shahrdad Lotfipour
- University of California, Los Angeles, Department of Psychiatry, United States; University of California, Irvine, Department of Emergency Medicine and Pharmacology, United States.
| |
Collapse
|
17
|
Xueyang D, Zhanqiang M, Chunhua M, Kun H. Fasudil, an inhibitor of Rho-associated coiled-coil kinase, improves cognitive impairments induced by smoke exposure. Oncotarget 2018; 7:78764-78772. [PMID: 27791202 PMCID: PMC5346675 DOI: 10.18632/oncotarget.12853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/14/2016] [Indexed: 02/05/2023] Open
Abstract
The current study was designed to investigate the pathological changes in brain induced by smoke exposure, and explore whether fasudil could alleviate these impairments. Adult C57BL/6 mice were exposed to tobacco smoking for four months, and fasudil was treated from the third months. To investigate lung injuries, the immunohistochemistry of lung tissue, immune cell infiltrations, cytokine productions in bronchoalveolar lavage (BAL) fluid, and seurm inflammatory cytokines were evaluated. To investigate cognitive impairments, Morris water maze test, hippocampal inflammatory cytokines and Rho associated signaling pathways were evaluated. Our findings showed fasudil administration inhibited the inflitration of inflammatory cells (macrophages, neutrophils, and lymphocytes), suppressed the production of inflammatory cytokines both in the BAL fluid, serum, and hippocampus. Further, fasudil significantly improved the spatial learning and memory impairments and reduced the elevation of hippocampal inflammatory cytokines induced by tobacco smoking. Of note, expressions of RhoA, ROCK1, ROCK2, caspase-3, caspase-9, bax and the phosphorylation of NF-κBp65 were increased accompanying the smoke exposure-induced cognitive impairments, which were significantly inhibited by fasudil treatment as indicted in western blot and immunohistochemistry analysis. Our results showed that fasudil exhibited protective effects on smoke exposure induced cognitive deficits which might involve with the regulation of Rho/ROCK/NF-κB pathways. Further studies are warranted before clinical application of fasudil.
Collapse
Affiliation(s)
- Deng Xueyang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ma Zhanqiang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ma Chunhua
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China.,Central Laboratory, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001, China
| | - Hao Kun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
18
|
Camellia sinensis Prevents Perinatal Nicotine-Induced Neurobehavioral Alterations, Tissue Injury, and Oxidative Stress in Male and Female Mice Newborns. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5985219. [PMID: 28588748 PMCID: PMC5447281 DOI: 10.1155/2017/5985219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022]
Abstract
Nicotine exposure during pregnancy induces oxidative stress and leads to behavioral alterations in early childhood and young adulthood. The current study aimed to investigate the possible protective effects of green tea (Camellia sinensis) against perinatal nicotine-induced behavioral alterations and oxidative stress in mice newborns. Pregnant mice received 50 mg/kg C. sinensis on gestational day 1 (PD1) to postnatal day 15 (D15) and were subcutaneously injected with 0.25 mg/kg nicotine from PD12 to D15. Nicotine-exposed newborns showed significant delay in eye opening and hair appearance and declined body weight at birth and at D21. Nicotine induced neuromotor alterations in both male and female newborns evidenced by the suppressed righting, rotating, and cliff avoidance reflexes. Nicotine-exposed newborns exhibited declined memory, learning, and equilibrium capabilities, as well as marked anxiety behavior. C. sinensis significantly improved the physical development, neuromotor maturation, and behavioral performance in nicotine-exposed male and female newborns. In addition, C. sinensis prevented nicotine-induced tissue injury and lipid peroxidation and enhanced antioxidant defenses in the cerebellum and medulla oblongata of male and female newborns. In conclusion, this study shows that C. sinensis confers protective effects against perinatal nicotine-induced neurobehavioral alterations, tissue injury, and oxidative stress in mice newborns.
Collapse
|
19
|
England LJ, Aagaard K, Bloch M, Conway K, Cosgrove K, Grana R, Gould TJ, Hatsukami D, Jensen F, Kandel D, Lanphear B, Leslie F, Pauly JR, Neiderhiser J, Rubinstein M, Slotkin TA, Spindel E, Stroud L, Wakschlag L. Developmental toxicity of nicotine: A transdisciplinary synthesis and implications for emerging tobacco products. Neurosci Biobehav Rev 2017; 72:176-189. [PMID: 27890689 PMCID: PMC5965681 DOI: 10.1016/j.neubiorev.2016.11.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 12/24/2022]
Abstract
While the health risks associated with adult cigarette smoking have been well described, effects of nicotine exposure during periods of developmental vulnerability are often overlooked. Using MEDLINE and PubMed literature searches, books, reports and expert opinion, a transdisciplinary group of scientists reviewed human and animal research on the health effects of exposure to nicotine during pregnancy and adolescence. A synthesis of this research supports that nicotine contributes critically to adverse effects of gestational tobacco exposure, including reduced pulmonary function, auditory processing defects, impaired infant cardiorespiratory function, and may contribute to cognitive and behavioral deficits in later life. Nicotine exposure during adolescence is associated with deficits in working memory, attention, and auditory processing, as well as increased impulsivity and anxiety. Finally, recent animal studies suggest that nicotine has a priming effect that increases addiction liability for other drugs. The evidence that nicotine adversely affects fetal and adolescent development is sufficient to warrant public health measures to protect pregnant women, children, and adolescents from nicotine exposure.
Collapse
Affiliation(s)
- Lucinda J England
- Office on Smoking and Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Kjersti Aagaard
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Michele Bloch
- Division of Cancer Control and Population Science, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Kevin Conway
- Division of Epidemiology, Services and Prevention Research, National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, USA
| | - Kelly Cosgrove
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Rachel Grana
- Division of Cancer Control and Population Science, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Pennsylvania State University, PA, USA
| | | | - Frances Jensen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise Kandel
- Department of Psychiatry and Mailman School of Public Health, Columbia University, New York State Psychiatric Institute, New York, NY, USA
| | | | - Frances Leslie
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA, USA
| | - James R Pauly
- College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Jenae Neiderhiser
- Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Mark Rubinstein
- Department of Pediatrics, School of Medicine, University of California, San Francisco, CA, USA
| | - Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Eliot Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Laura Stroud
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Lauren Wakschlag
- Department of Medical Social Sciences Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
20
|
Kleeman E, Nakauchi S, Su H, Dang R, Wood MA, Sumikawa K. Impaired function of α2-containing nicotinic acetylcholine receptors on oriens-lacunosum moleculare cells causes hippocampus-dependent memory impairments. Neurobiol Learn Mem 2016; 136:13-20. [PMID: 27660076 DOI: 10.1016/j.nlm.2016.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 01/22/2023]
Abstract
Children of mothers who smoked during pregnancy are at significantly greater risk for cognitive impairments including memory deficits, but the mechanisms underlying this effect remain to be understood. In rodent models of smoking during pregnancy, early postnatal nicotine exposure results in impaired long-term hippocampus-dependent memory, functional loss of α2-containing nicotinic acetylcholine receptors (α2∗ nAChRs) in oriens-lacunosum moleculare (OLM) cells, increased CA1 network excitation, and unexpected facilitation of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses. Here we demonstrate that α2 knockout mice show the same pattern of memory impairment as previously observed in wild-type mice exposed to early postnatal nicotine. However, α2 knockout mice and α2 knockout mice exposed to early postnatal nicotine did not share all of the anomalies in hippocampal function observed in wild-type mice treated with nicotine during development. Unlike nicotine-treated wild-type mice, α2 knockout mice and nicotine-exposed α2 knockout mice did not demonstrate increased CA1 network excitation following Schaffer collateral stimulation and facilitated LTP, indicating that the effects are likely adaptive changes caused by activation of α2∗ nAChRs during nicotine exposure and are unlikely related to the associated memory impairment. Thus, the functional loss of α2∗ nAChRs in OLM cells likely plays a critical role in mediating this developmental-nicotine-induced hippocampal memory deficit.
Collapse
Affiliation(s)
- Elise Kleeman
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697-4550, USA
| | - Sakura Nakauchi
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697-4550, USA
| | - Hailing Su
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697-4550, USA
| | - Richard Dang
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697-4550, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697-4550, USA
| | - Katumi Sumikawa
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697-4550, USA.
| |
Collapse
|
21
|
An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior. Nat Neurosci 2016; 19:905-14. [PMID: 27239938 PMCID: PMC4925298 DOI: 10.1038/nn.4315] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/03/2016] [Indexed: 11/24/2022]
Abstract
Developmental nicotine exposure causes persistent changes in cortical neuron morphology and in behavior. We used microarray screening to identify master transcriptional or epigenetic regulators mediating these effects of nicotine and discovered increases in Ash2l, a component of a histone methyltransferase complex. We therefore examined genome-wide changes in H3K4 tri-methylation, a mark induced by the Ash2l complex associated with increased gene transcription. A significant number of regulated promoter sites were involved in synapse maintenance. We found that Mef2c interacts with Ash2l and mediates changes in H3K4 tri-methylation. Knockdown of Ash2l or Mef2c abolishes nicotine-mediated alterations of dendritic complexity in vitro and in vivo, and attenuates nicotine-dependent changes in passive avoidance behavior. In contrast, overexpression mimics nicotine-mediated alterations of neuronal structure and passive avoidance behavior. These studies identify Ash2l as a novel target induced by nicotinic stimulation that couples developmental nicotine exposure to changes in brain epigenetic marks, neuronal structure and behavior.
Collapse
|
22
|
Urbano FJ, Bisagno V, González B, Celeste Rivero-Echeto M, Muñiz JA, Luster B, D'Onofrio S, Mahaffey S, Garcia-Rill E. Pedunculopontine arousal system physiology-Effects of psychostimulant abuse. ACTA ACUST UNITED AC 2015; 8:162-8. [PMID: 26779323 PMCID: PMC4688579 DOI: 10.1016/j.slsci.2015.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/25/2015] [Indexed: 01/26/2023]
Abstract
This review describes the interactions between the pedunculopontine nucleus (PPN), the ventral tegmental area (VTA), and the thalamocortical system. Experiments using modulators of cholinergic receptors in the PPN clarified its role on psychostimulant-induced locomotion. PPN activation was found to be involved in the animal’s voluntary search for psychostimulants. Every PPN neuron is known to generate gamma band oscillations. Voltage-gated calcium channels are key elements in the generation and maintenance of gamma band activity of PPN neurons. Calcium channels are also key elements mediating psychostimulant-induced alterations in the thalamic targets of PPN output. Thus, the PPN is a key substrate for maintaining arousal and REM sleep, but also in modulating psychostimulant self-administration.
Collapse
Affiliation(s)
- Francisco J Urbano
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Verónica Bisagno
- IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Argentina
| | - Betina González
- IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Argentina
| | | | - Javier A Muñiz
- IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Argentina
| | - Brennon Luster
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stasia D'Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
23
|
Chen K, Nakauchi S, Su H, Tanimoto S, Sumikawa K. Early postnatal nicotine exposure disrupts the α2* nicotinic acetylcholine receptor-mediated control of oriens-lacunosum moleculare cells during adolescence in rats. Neuropharmacology 2015; 101:57-67. [PMID: 26386153 DOI: 10.1016/j.neuropharm.2015.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/13/2015] [Accepted: 09/15/2015] [Indexed: 11/30/2022]
Abstract
Maternal cigarette smoking during pregnancy and maternal nicotine exposure in animal models are associated with cognitive impairments in offspring. However, the underlying mechanism remains unknown. Oriens-lacunosum moleculare (OLM) cells expressing α2* nicotinic acetylcholine receptors (nAChRs) are an important component of hippocampal circuitry, gating information flow and long-term potentiation (LTP) in the CA1 region. Here we investigated whether early postnatal nicotine exposure alters the normal role of α2*-nAChR-expressing OLM cells during adolescence in rats. We found that early postnatal nicotine exposure significantly decreased not only the number of α2-mRNA-expressing interneurons in the stratum oriens/alveus, but also α2*-nAChR-mediated responses in OLM cells. These effects of nicotine were prevented by co-administration with the nonselective nAChR antagonist mecamylamine, suggesting that nicotine-induced activation, but not desensitization, of nAChRs mediates the effects. α2*-nAChR-mediated depolarization of OLM cells normally triggers action potentials, causing an increase in spontaneous inhibitory postsynaptic currents in synaptically connected pyramidal cells. However, these α2*-nAChR-mediated effects were profoundly reduced after early postnatal nicotine exposure, suggesting altered control of CA1 circuits by α2*-nAChR-expressing OLM cells. Furthermore, these effects were associated with altered excitatory neural activity and LTP as well as the loss of normal α2*-nAChR-mediated control of excitatory neural activity and LTP. These findings suggest the altered function of α2*-nAChR-expressing OLM cells as an important target of further study for identifying the mechanisms underlying the cognitive impairment induced by maternal smoking during pregnancy.
Collapse
Affiliation(s)
- Kang Chen
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | - Sakura Nakauchi
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | - Hailing Su
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | - Saki Tanimoto
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | - Katumi Sumikawa
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA.
| |
Collapse
|
24
|
Duan JJ, Lozada AF, Gou CY, Xu J, Chen Y, Berg DK. Nicotine recruits glutamate receptors to postsynaptic sites. Mol Cell Neurosci 2015; 68:340-9. [PMID: 26365992 DOI: 10.1016/j.mcn.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/04/2015] [Accepted: 09/07/2015] [Indexed: 01/20/2023] Open
Abstract
Cholinergic neurons project throughout the nervous system and activate nicotinic receptors to modulate synaptic function in ways that shape higher order brain function. The acute effects of nicotinic signaling on long-term synaptic plasticity have been well-characterized. Less well understood is how chronic exposure to low levels of nicotine, such as those encountered by habitual smokers, can alter neural connections to promote addiction and other lasting behavioral effects. We show here that chronic exposure of hippocampal neurons in culture to low levels of nicotine recruits AMPA and NMDA receptors to the cell surface and sequesters them at postsynaptic sites. The receptors include GluA2-containing AMPA receptors, which are responsible for most of the excitatory postsynaptic current mediated by AMPA receptors on the neurons, and include NMDA receptors containing GluN1 and GluN2B subunits. Moreover, we find that the nicotine treatment also increases expression of the presynaptic component synapsin 1 and arranges it in puncta juxtaposed to the additional AMPA and NMDA receptor puncta, suggestive of increases in synaptic contacts. Consistent with increased synaptic input, we find that the nicotine treatment leads to an increase in the excitatory postsynaptic currents mediated by AMPA and NMDA receptors. Further, the increases skew the ratio of excitatory-to-inhibitory input that the cell receives, and this holds both for pyramidal neurons and inhibitory neurons in the hippocampal CA1 region. The GluN2B-containing NMDA receptor redistribution at synapses is associated with a significant increase in GluN2B phosphorylation at Tyr1472, a site known to prevent GluN2B endocytosis. These results suggest that chronic exposure to low levels of nicotine not only alters functional connections but also is likely to change excitability levels across networks. Further, it may increase the propensity for synaptic plasticity, given the increase in synaptic NMDA receptors.
Collapse
Affiliation(s)
- Jing-Jing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Neurobiology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, United States
| | - Adrian F Lozada
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, United States
| | - Chen-Yu Gou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Xu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuan Chen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Darwin K Berg
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, United States.
| |
Collapse
|
25
|
Ross EJ, Graham DL, Money KM, Stanwood GD. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology 2015; 40:61-87. [PMID: 24938210 PMCID: PMC4262892 DOI: 10.1038/npp.2014.147] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023]
Abstract
Most drugs of abuse easily cross the placenta and can affect fetal brain development. In utero exposures to drugs thus can have long-lasting implications for brain structure and function. These effects on the developing nervous system, before homeostatic regulatory mechanisms are properly calibrated, often differ from their effects on mature systems. In this review, we describe current knowledge on how alcohol, nicotine, cocaine, amphetamine, Ecstasy, and opiates (among other drugs) produce alterations in neurodevelopmental trajectory. We focus both on animal models and available clinical and imaging data from cross-sectional and longitudinal human studies. Early studies of fetal exposures focused on classic teratological methods that are insufficient for revealing more subtle effects that are nevertheless very behaviorally relevant. Modern mechanistic approaches have informed us greatly as to how to potentially ameliorate the induced deficits in brain formation and function, but conclude that better delineation of sensitive periods, dose-response relationships, and long-term longitudinal studies assessing future risk of offspring to exhibit learning disabilities, mental health disorders, and limited neural adaptations are crucial to limit the societal impact of these exposures.
Collapse
Affiliation(s)
- Emily J Ross
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Devon L Graham
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Kelli M Money
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
| | - Gregg D Stanwood
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
26
|
Nakauchi S, Malvaez M, Su H, Kleeman E, Dang R, Wood MA, Sumikawa K. Early postnatal nicotine exposure causes hippocampus-dependent memory impairments in adolescent mice: Association with altered nicotinic cholinergic modulation of LTP, but not impaired LTP. Neurobiol Learn Mem 2014; 118:178-88. [PMID: 25545599 DOI: 10.1016/j.nlm.2014.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/17/2022]
Abstract
Fetal nicotine exposure from smoking during pregnancy causes long-lasting cognitive impairments in offspring, yet little is known about the mechanisms that underlie this effect. Here we demonstrate that early postnatal exposure of mouse pups to nicotine via maternal milk impairs long-term, but not short-term, hippocampus-dependent memory during adolescence. At the Schaffer collateral (SC) pathway, the most widely studied synapses for a cellular correlate of hippocampus-dependent memory, the induction of N-methyl-D-aspartate receptor-dependent transient long-term potentiation (LTP) and protein synthesis-dependent long-lasting LTP are not diminished by nicotine exposure, but rather unexpectedly the threshold for LTP induction becomes lower after nicotine treatment. Using voltage sensitive dye to visualize hippocampal activity, we found that early postnatal nicotine exposure also results in enhanced CA1 depolarization and hyperpolarization after SC stimulation. Furthermore, we show that postnatal nicotine exposure induces pervasive changes to the nicotinic modulation of CA1 activity: activation of nicotinic receptors no longer increases CA1 network depolarization, acute nicotine inhibits rather than facilitates the induction of LTP at the SC pathway by recruiting an additional nicotinic receptor subtype, and acute nicotine no longer blocks LTP induction at the temporoammonic pathway. These findings reflect the pervasive impact of nicotine exposure during hippocampal development, and demonstrate an association of hippocampal memory impairments with altered nicotinic cholinergic modulation of LTP, but not impaired LTP. The implication of our results is that nicotinic cholinergic-dependent plasticity is required for long-term memory formation and that postnatal nicotine exposure disrupts this form of plasticity.
Collapse
Affiliation(s)
- Sakura Nakauchi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Melissa Malvaez
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Hailing Su
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Elise Kleeman
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Richard Dang
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA
| | - Katumi Sumikawa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697-4550, USA.
| |
Collapse
|
27
|
Neal RE, Chen J, Jagadapillai R, Jang H, Abomoelak B, Brock G, Greene RM, Pisano MM. Developmental cigarette smoke exposure: hippocampus proteome and metabolome profiles in low birth weight pups. Toxicology 2014; 317:40-9. [PMID: 24486158 PMCID: PMC4067966 DOI: 10.1016/j.tox.2014.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/03/2013] [Accepted: 01/17/2014] [Indexed: 12/19/2022]
Abstract
Exposure to cigarette smoke during development is linked to neurodevelopmental delays and cognitive impairment including impulsivity, attention deficit disorder, and lower IQ. However, brain region specific biomolecular alterations induced by developmental cigarette smoke exposure (CSE) remain largely unexplored. In the current molecular phenotyping study, a mouse model of 'active' developmental CSE (serum cotinine > 50 ng/mL) spanning pre-implantation through third trimester-equivalent brain development (gestational day (GD) 1 through postnatal day (PD) 21) was utilized. Hippocampus tissue collected at the time of cessation of exposure was processed for gel-based proteomic and non-targeted metabolomic profiling with partial least squares-discriminant analysis (PLS-DA) for selection of features of interest. Ingenuity pathway analysis was utilized to identify candidate molecular and metabolic pathways impacted within the hippocampus. CSE impacted glycolysis, oxidative phosphorylation, fatty acid metabolism, and neurodevelopment pathways within the developing hippocampus.
Collapse
Affiliation(s)
- Rachel E Neal
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA; Birth Defects Center, University of Louisville, Louisville, KY, USA.
| | - Jing Chen
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, USA
| | - Hyejeong Jang
- Department of Biostatistics and Bioinformatics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Bassam Abomoelak
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Guy Brock
- Department of Biostatistics and Bioinformatics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA; Birth Defects Center, University of Louisville, Louisville, KY, USA
| | - Robert M Greene
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, USA; Birth Defects Center, University of Louisville, Louisville, KY, USA
| | - M Michele Pisano
- Department of Molecular, Cellular, and Craniofacial Biology, ULSD, University of Louisville, Louisville, KY, USA; Birth Defects Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
28
|
Mychasiuk R, Muhammad A, Kolb B. Environmental enrichment alters structural plasticity of the adolescent brain but does not remediate the effects of prenatal nicotine exposure. Synapse 2014; 68:293-305. [PMID: 24616009 DOI: 10.1002/syn.21737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/15/2014] [Indexed: 12/20/2022]
Abstract
Exposure to both drugs of abuse and environmental enrichment (EE) are widely studied experiences that induce large changes in dendritic morphology and synaptic connectivity. As there is an abundance of literature using EE as a treatment strategy for drug addiction, we sought to determine whether EE could remediate the effects of prenatal nicotine (PN) exposure. Using Golgi-Cox staining, we examined eighteen neuroanatomical parameters in four brain regions [medial prefrontal cortex (mPFC), orbital frontal cortex (OFC), nucleus accumben, and Par1] of Long-Evans rats. EE in adolescence dramatically altered structural plasticity in the male and female brain, modifying 60% of parameters investigated. EE normalized three parameters (OFC spine density and dendritic branching and mPFC dendritic branching) in male offspring exposed to nicotine prenatally but did not remediate any measures in female offspring. PN exposure interfered with adolescent EE-induced changes in five neuroanatomical measurements (Par1 spine density and dendritic branching in both male and female offspring, and mPFC spine density in male offspring). And in four neuroanatomical parameters examined, PN exposure and EE combined to produce additive effects [OFC spine density in females and mPFC dendritic length (apical and basilar) and branching in males]. Despite demonstrated efficacy in reversing drug addiction, EE was not able to reverse many of the PN-induced changes in neuronal morphology, indicating that modifications in neural circuitry generated in the prenatal period may be more resistant to change than those generated in the adult brain.
Collapse
Affiliation(s)
- Richelle Mychasiuk
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | |
Collapse
|
29
|
Balsevich G, Poon A, Goldowitz D, Wilking JA. The effects of pre- and post-natal nicotine exposure and genetic background on the striatum and behavioral phenotypes in the mouse. Behav Brain Res 2014; 266:7-18. [PMID: 24607511 DOI: 10.1016/j.bbr.2014.02.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 02/07/2014] [Accepted: 02/25/2014] [Indexed: 02/03/2023]
Abstract
Maternal tobacco use increases the risk of complications in pregnancy and also the risk of adverse fetal outcomes. Studies have established nicotine as the principal component of tobacco smoke that leads to the majority of negative reproductive outcomes associated with maternal tobacco use. It appears the neuroteratogenicity of nicotine is mediated by complex gene-environment interactions. Genetic background contributes to individual differences in nicotine-related phenotypes. The aim of the current study was to investigate the interaction between pre- and post-natal nicotine exposure and genetic background on the histology of the striatum and behavioral measures using DBA/2J (D2) and C57BL/6J (B6) inbred mice. Alterations in neuronal cell populations, striatal brain volume, and behavior - open field (OF) activity, novel object recognition (NOR), elevated plus maze (EPM), and passive avoidance (PA) - were evaluated on post-natal day (PN) 24 and PN75. Histological data showed that pre- and post-natal nicotine exposure resulted in decreased striatal volume among preadolescent B6 and reduced neuronal number within the striatum of preadolescent B6 mice. Behavioral data showed that pre- and post-natal nicotine exposure promoted hyperactivity in D2 female mice and disrupted NOR and PA memory. Specifically, NOR deficits were significant amongst adult male mice whereas PA deficits were seen across genetic background and sex. These data suggest that nicotine treatment, genetic background, developmental stage, and sex effect striatal morphology can lead to neurobehavioral alterations.
Collapse
Affiliation(s)
- Georgia Balsevich
- Department of Neuroscience, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Centre for Molecular Medicine & Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4
| | - Anna Poon
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Centre for Molecular Medicine & Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4
| | - Dan Goldowitz
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Centre for Molecular Medicine & Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4
| | - Jennifer A Wilking
- Department of Medical Genetics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Centre for Molecular Medicine & Therapeutics, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4; Child and Family Research Institute, University of British Columbia, 950 W. 28th Ave, Vancouver, BC, Canada V5Z 4H4.
| |
Collapse
|
30
|
Ascorbic Acid ameliorates nicotine exposure induced impaired spatial memory performances in rats. W INDIAN MED J 2014; 63:318-24. [PMID: 25429474 DOI: 10.7727/wimj.2013.089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The long lasting behavioural and cognitive impairments in offspring prenatally exposed to nicotine have been confirmed in animal models. In the present study, we investigated the effect of ascorbic acid on prenatal nicotine exposure induced behavioral deficits in male offspring of rats. METHODS The pregnant Wistar dams were divided into four groups of six rats: control, vehicle control, nicotine and nicotine+ascorbic acid groups. The nicotine group received daily dose of subcutaneous injections of 0.96 mg/kg body weight (bw) nicotine free base throughout gestation. Pregnant dams in nicotine+ascorbic acid group were first given nicotine free base (0.96 mg/kg bw/day; subcutaneous route) followed by ascorbic acid (50 mg/kg bw/day, orally) daily throughout gestation. The cognitive function of male offspring of all the experimental groups was studied using Morris water maze test at postnatal day 40. RESULTS Prenatal nicotine exposure altered spatial learning and memory in male offspring. However, treatment with ascorbic acid ameliorated these changes in rats. CONCLUSION Ascorbic acid supplementation was found to be effective in preventing the prenatal nicotine exposure induced cognitive deficits in rat offspring to some extent.
Collapse
|
31
|
Alzoubi KH, Srivareerat M, Tran TT, Alkadhi KA. Role of α7- and α4β2-nAChRs in the neuroprotective effect of nicotine in stress-induced impairment of hippocampus-dependent memory. Int J Neuropsychopharmacol 2013; 16:1105-1113. [PMID: 23067572 DOI: 10.1017/s1461145712001046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have previously shown that nicotine prevents stress-induced memory impairment. In this study, we have investigated the role of α7- and α4β2-nicotinic acetylcholine receptors (nAChRs) in the protective effect of nicotine during chronic stress conditions. Chronic psychosocial stress was induced using a form of rat intruder model. During stress, specific antagonist for either α7-nAChRs [methyllycaconitine (MLA)] or α4β2-nAChRs [dihydro-β-erythroidine (DHβE)] was infused into the hippocampus using a 4-wk osmotic pump at a rate of 82 μg/side.d and 41 μg/side.d, respectively. Three weeks after the start of infusion, all rats were subjected to a series of cognitive tests in the radial arm water maze (RAWM) for six consecutive days or until the animal reached days to criterion (DTC) in the fourth acquisition trial and in all memory tests. DTC is defined as the number of days the animal takes to make no more than one error in three consecutive days. In the short-term memory test, MLA-infused stressed/nicotine-treated rats made similar errors to those of stress and significantly more errors compared to those of stress/nicotine, nicotine or control groups. This finding was supported by the DTC values for the short memory tests. Thus, MLA treatment blocked the neuroprotective effect of nicotine during chronic stress. In contrast, DHβE infusion did not affect the RAWM performance of stress/nicotine animals. These results strongly suggest the involvement of α7-nAChRs, but not α4β2-nAChRs, in the neuroprotective effect of chronic nicotine treatment during chronic stress conditions.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | |
Collapse
|
32
|
Mychasiuk R, Muhammad A, Carroll C, Kolb B. Does prenatal nicotine exposure alter the brain's response to nicotine in adolescence? A neuroanatomical analysis. Eur J Neurosci 2013; 38:2491-503. [DOI: 10.1111/ejn.12245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/21/2013] [Accepted: 04/03/2013] [Indexed: 11/30/2022]
Affiliation(s)
- R. Mychasiuk
- Canadian Centre for Behavioural Neurosciences; University of Lethbridge; Lethbridge; AB; Canada; T1K 3M4
| | - A. Muhammad
- Canadian Centre for Behavioural Neurosciences; University of Lethbridge; Lethbridge; AB; Canada; T1K 3M4
| | - C. Carroll
- Canadian Centre for Behavioural Neurosciences; University of Lethbridge; Lethbridge; AB; Canada; T1K 3M4
| | - B. Kolb
- Canadian Centre for Behavioural Neurosciences; University of Lethbridge; Lethbridge; AB; Canada; T1K 3M4
| |
Collapse
|
33
|
Mychasiuk R, Muhammad A, Gibb R, Kolb B. Long-term alterations to dendritic morphology and spine density associated with prenatal exposure to nicotine. Brain Res 2013; 1499:53-60. [DOI: 10.1016/j.brainres.2012.12.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/22/2012] [Accepted: 12/15/2012] [Indexed: 11/26/2022]
|
34
|
Amos-Kroohs RM, Williams MT, Braun AA, Graham DL, Webb CL, Birtles TS, Greene RM, Vorhees CV, Pisano MM. Neurobehavioral phenotype of C57BL/6J mice prenatally and neonatally exposed to cigarette smoke. Neurotoxicol Teratol 2013; 35:34-45. [PMID: 23314114 DOI: 10.1016/j.ntt.2013.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/18/2012] [Accepted: 01/02/2013] [Indexed: 12/26/2022]
Abstract
Although maternal cigarette smoking during pregnancy is a well-documented risk factor for a variety of adverse pregnancy outcomes, how prenatal cigarette smoke exposure affects postnatal neurobehavioral/cognitive development remains poorly defined. In order to investigate the cause of an altered behavioral phenotype, mice developmentally exposed to a paradigm of 'active' maternal cigarette smoke is needed. Accordingly, cigarette smoke exposed (CSE) and air-exposed C57BL/6J mice were treated for 6h per day in paired inhalation chambers throughout gestation and lactation and were tested for neurobehavioral effects while controlling for litter effects. CSE mice exhibited less than normal anxiety in the elevated zero maze, transient hypoactivity during a 1h locomotor activity test, had longer latencies on the last day of cued Morris water maze testing, impaired hidden platform learning in the Morris water maze during acquisition, reversal, and shift trials, and impaired retention for platform location on probe trials after reversal but not after acquisition or shift. CSE mice also showed a sexually dimorphic response in central zone locomotion to a methamphetamine challenge (males under-responded and females over-responded), and showed reduced anxiety in the light-dark test by spending more time on the light side. No differences on tests of marble burying, acoustic startle response with prepulse inhibition, Cincinnati water maze, matching-to-sample Morris water maze, conditioned fear, forced swim, or MK-801-induced locomotor activation were found. Collectively, the data indicate that developmental cigarette smoke exposure induces subnormal anxiety in a novel environment, impairs spatial learning and reference memory while sparing other behaviors (route-based learning, fear conditioning, and forced swim immobility). The findings add support to mounting evidence that developmental cigarette smoke exposure has long-term adverse effects on brain function.
Collapse
Affiliation(s)
- Robyn M Amos-Kroohs
- Department of Pediatrics, Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schneider T, Bizarro L, Asherson PJE, Stolerman IP. Hyperactivity, increased nicotine consumption and impaired performance in the five-choice serial reaction time task in adolescent rats prenatally exposed to nicotine. Psychopharmacology (Berl) 2012; 223:401-15. [PMID: 22562524 PMCID: PMC4765091 DOI: 10.1007/s00213-012-2728-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/17/2012] [Indexed: 01/15/2023]
Abstract
RATIONALE Prenatal exposure to nicotine has been linked to accelerated risk for different psychiatric disorders, including conduct disorder, attention deficit hyperactivity disorder (ADHD) and drug abuse. We examine a potential link between prenatal nicotine exposure, hyperactivity, anxiety, nicotine consumption, and cognitive performance in rats. METHODS Adolescent offspring of females exposed during pregnancy to 0.06 mg/ml nicotine solution as the only source of water and of a group of pair-fed females, used as a control for anorexic effects of nicotine, were evaluated in a battery of tests, including locomotor activity, the elevated plus maze, two-bottle free-choice nicotine solution consumption, the five-choice serial reaction time test (5-CSRTT) and a delay-discounting test. All tests were conducted between postnatal day (PND) 25 and PND 50. RESULTS Nicotine-exposed animals expressed hyperactivity, increased number of open arms entries in the elevated plus maze and increased numbers of anticipatory responses in the 5-CSRTT. Decreased aversion for nicotine solution in the free-choice test and decreased numbers of omission errors in the 5-CSRTT were observed both in nicotine-exposed and pair-fed offspring. Neither nicotine exposure nor pair-feeding had an effect on impulsive choice in a delay-discounting test. CONCLUSIONS Our study confirms deleterious effects of prenatal nicotine exposure on important aspects of behaviour and inhibitory control in adolescent rats and supports epidemiological findings that show increased levels of symptoms of ADHD and related disorders among those whose mothers smoked during their pregnancy. It also suggests a link between food restriction during pregnancy and addiction-related behaviours in offspring.
Collapse
Affiliation(s)
- T Schneider
- Section of Behavioural Pharmacology, Institute of Psychiatry P048, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| | | | | | | |
Collapse
|
36
|
Muhammad A, Mychasiuk R, Nakahashi A, Hossain SR, Gibb R, Kolb B. Prenatal nicotine exposure alters neuroanatomical organization of the developing brain. Synapse 2012; 66:950-4. [PMID: 22837140 DOI: 10.1002/syn.21589] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 11/05/2022]
Abstract
Although there has been considerable research conducted regarding the long-term effects of prenatal exposure to nicotine, there has been little examination of how this experience influences brain development. This study was designed to examine if there are morphological changes (dendritic branching, dendritic length, and spine density) in medial prefrontal cortex, orbital frontal cortex, parietal cortex, and nucleus accumbens associated with exposure to nicotine during gestation. Nicotine or saline was administered to pregnant Long Evans dams for the duration of pregnancy. Golgi-Cox techniques were used to examine neuroanatomy of offspring at postnatal day 21. The dendritic changes identified in rats exposed to nicotine prenatally resembled neuroanatomical changes that are identified in rats administered with nicotine in adulthood. Of the 18 anatomical parameters measured, 11 exhibited significant modification, with two parameters apical and basilar spine density in parietal cortex demonstrating sex-dependent modification. These early changes in anatomy and behavior have important implications for later plasticity and long-term well-being.
Collapse
Affiliation(s)
- Arif Muhammad
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | | | | | | | | | | |
Collapse
|
37
|
Santiago SE, Huffman KJ. Postnatal effects of prenatal nicotine exposure on body weight, brain size and cortical connectivity in mice. Neurosci Res 2012; 73:282-91. [DOI: 10.1016/j.neures.2012.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 04/13/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
38
|
Abbott LC, Winzer-Serhan UH. Smoking during pregnancy: lessons learned from epidemiological studies and experimental studies using animal models. Crit Rev Toxicol 2012; 42:279-303. [DOI: 10.3109/10408444.2012.658506] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Aleisa AM, Alzoubi KH, Alkadhi KA. Post-learning REM sleep deprivation impairs long-term memory: reversal by acute nicotine treatment. Neurosci Lett 2011; 499:28-31. [PMID: 21624432 DOI: 10.1016/j.neulet.2011.05.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/28/2011] [Accepted: 05/13/2011] [Indexed: 01/06/2023]
Abstract
Rapid eye movement sleep deprivation (REM-SD) is associated with spatial learning and memory impairment. During REM-SD, an increase in nicotine consumption among habitual smokers and initiation of tobacco use by non-smokers have been reported. We have shown recently that nicotine treatment prevented learning and memory impairments associated with REM-SD. We now report the interactive effects of post-learning REM-SD and/or nicotine. The animals were first trained on the radial arm water maze (RAWM) task, then they were REM-sleep deprived using the modified multiple platform paradigm for 24h. During REM-SD period, the rats were injected with saline or nicotine (1mg/kg s.c. every 12h: a total of 3 injections). The animals were tested for long-term memory in the RAWM at the end of the REM-SD period. The 24h post-learning REM-SD significantly impaired long-term memory. However, nicotine treatment reversed the post-learning REM-SD-induced impairment of long-term memory. On the other hand, post-learning treatment of normal rats with nicotine for 24h enhanced long-term memory. These results indicate that post-learning acute nicotine treatment prevented the deleterious effect of REM-SD on cognitive abilities.
Collapse
Affiliation(s)
- A M Aleisa
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
40
|
Schneider T, Ilott N, Brolese G, Bizarro L, Asherson PJE, Stolerman IP. Prenatal exposure to nicotine impairs performance of the 5-choice serial reaction time task in adult rats. Neuropsychopharmacology 2011; 36:1114-25. [PMID: 21289608 PMCID: PMC3077278 DOI: 10.1038/npp.2010.249] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 01/08/2023]
Abstract
Cigarette smoking is associated with a wide variety of adverse reproductive outcomes, including increased infant mortality and decreased birth weight. Prenatal exposure to tobacco smoke, of which nicotine is a major teratogenic component, has also been linked to the acceleration of the risk for different psychiatric disorders, including conduct disorder and attention deficit hyperactivity disorder (ADHD). Whether this increased risk is influenced by the direct effects of gestational nicotine exposure on the developing fetus remains uncertain. In this study we provide experimental evidence for the effects of prenatal nicotine exposure on measures of attention and impulsivity in adult male rats. Offspring of females exposed during pregnancy to 0.06 mg/ml nicotine solution as the only source of water (daily consumption: 69.6±1.4 ml/kg; nicotine blood level: 96.0±31.9 ng/ml) had lower birth weight and delayed sensorimotor development measured by negative geotaxis, righting reflex, and grip strength. In the 5-choice serial reaction time test, adult rats showed increased numbers of anticipatory responses and omissions errors, more variable response times, and lower accuracy with evidence of delayed learning of the task demands when the 1 s stimulus duration was introduced. In contrast, prenatal nicotine exposure had no effect on exploratory locomotion or delay-discounting test. Prenatal nicotine exposure increased expression of the D5 dopamine receptor gene in the striatum, but did not change expression of other dopamine-related genes (DRD4, DAT1, NR4A2, and TH) in either the striatum or the prefrontal cortex. These data suggest a direct effect of prenatal nicotine exposure on important aspects of attention, inhibitory control, or learning later in life.
Collapse
|
41
|
Wickström R. Effects of nicotine during pregnancy: human and experimental evidence. Curr Neuropharmacol 2010; 5:213-22. [PMID: 19305804 PMCID: PMC2656811 DOI: 10.2174/157015907781695955] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/06/2007] [Accepted: 02/07/2007] [Indexed: 11/22/2022] Open
Abstract
Prenatal exposure to tobacco smoke is a major risk factor for the newborn, increasing morbidity and even mortality in the neonatal period but also beyond. As nicotine addiction is the factor preventing many women from smoking cessation during pregnancy, nicotine replacement therapy (NRT) has been suggested as a better alternative for the fetus. However, the safety of NRT has not been well documented, and animal studies have in fact pointed to nicotine per se as being responsible for a multitude of these detrimental effects. Nicotine interacts with endogenous acetylcholine receptors in the brain and lung, and exposure during development interferes with normal neurotransmitter function, thus evoking neurodevelopmental abnormalities by disrupting the timing of neurotrophic actions. As exposure to pure nicotine is quite uncommon in pregnant women, very little human data exist aside from the vast literature on prenatal exposure to tobacco smoke. The current review discusses recent findings in humans on effects on the newborn of prenatal exposure to pure nicotine and non-smoke tobacco. It also reviews the neuropharmacological properties of nicotine during gestation and findings in animal experiments that offer explanations on a cellular level for the pathogenesis of such prenatal drug exposure. It is concluded that as findings indicate that functional nAChRs are present very early in neuronal development, and that activation at this stage leads to apoptosis and mitotic abnormalities, a total abstinence from all forms of nicotine should be advised to pregnant women for the entirety of gestation.
Collapse
Affiliation(s)
- R Wickström
- Neonatal Research Unit, Department of Women and Child Health, Karolinska Institutet, Sweden.
| |
Collapse
|
42
|
Aleisa AM, Helal G, Alhaider IA, Alzoubi KH, Srivareerat M, Tran TT, Al-Rejaie SS, Alkadhi KA. Acute nicotine treatment prevents REM sleep deprivation-induced learning and memory impairment in rat. Hippocampus 2010; 21:899-909. [PMID: 20865738 DOI: 10.1002/hipo.20806] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2010] [Indexed: 11/10/2022]
Abstract
Rapid eye movement (REM) sleep deprivation (SD) is implicated in impairment of spatial learning and memory and hippocampal long-term potentiation (LTP). An increase in nicotine consumption among habitual smokers and initiation of tobacco use by nonsmokers was observed during SD. Although nicotine treatment was reported to attenuate the impairment of learning and memory and LTP associated with several mental disorders, the effect of nicotine on SD-induced learning and memory impairment has not been studied. Modified multiple platform paradigm was used to induce SD for 24 or 48 h during which rats were injected with saline or nicotine (1 mg kg(-1) s.c.) twice a day. In the radial arm water maze (RAWM) task, 24- or 48-h SD significantly impaired learning and short-term memory. In addition, extracellular recordings from CA1 and dentate gyrus (DG) regions of the hippocampus in urethane anesthetized rats showed a significant impairment of LTP after 24- and 48-h SD. Treatment of normal rats with nicotine for 24 or 48 h did not enhance spatial learning and memory or affect magnitude of LTP in the CA1 and DG regions. However, concurrent, acute treatment of rats with nicotine significantly attenuated SD-induced impairment of learning and STM and prevented SD-induced impairment of LTP in the CA1 and DG regions. These results show that acute nicotine treatment prevented the deleterious effect of sleep loss on cognitive abilities and synaptic plasticity.
Collapse
Affiliation(s)
- A M Aleisa
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Late emerging effects of prenatal and early postnatal nicotine exposure on the cholinergic system and anxiety-like behavior. Neurotoxicol Teratol 2010; 32:336-45. [DOI: 10.1016/j.ntt.2009.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 12/23/2009] [Accepted: 12/25/2009] [Indexed: 01/05/2023]
|
44
|
Smith AM, Dwoskin LP, Pauly JR. Early exposure to nicotine during critical periods of brain development: Mechanisms and consequences. JOURNAL OF PEDIATRIC BIOCHEMISTRY 2010; 1:125-141. [PMID: 24904708 PMCID: PMC4042244 DOI: 10.3233/jpb-2010-0012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Tobacco use during pregnancy continues to be a major problem with more than 16% of pregnant women in the United States continuing to smoke during pregnancy. Tobacco smoke is known to contain more than 4,000 different chemicals, and while many of these compounds have the potential to interfere with proper neurodevelopment, there is direct evidence that nicotine, the major psychoactive substance present in tobacco, acts as a neuroteratogen. Nicotine activates, and subsequently desensitizes, neuronal nicotinic acetylcholine receptor subtypes (AChRs), which are expressed in the developing central nervous system (CNS) prior to the in-growth of cholinergic neurons. Nicotinic AChRs are present by the first trimester of development in both humans and rodents, and activation of these receptors by acetylcholine is thought to play a critical role in CNS development. The purpose of the current review is to provide an overview of the role that nicotinic AChRs play in the developing CNS and to describe the effects of nicotine exposure during early development on neuronal cell biology, nicotinic AChR expression and neurotransmitter system (e.g., dopamine, norepinephrine, serotonin) function. In particular, differences that occur as a result of the timing and duration of nicotine exposure will be discussed. Emphasis will be placed on preclinical studies examining particular periods of time which correspond to periods of prenatal development in humans (i.e., first, second and third trimesters). Finally, the effects of early nicotine exposure on neurobehavioral development as it pertains to specific disorders, i.e., attention deficit hyperactivity disorder (ADHD), depression and addiction, will be discussed.
Collapse
Affiliation(s)
- Andrew M. Smith
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0082, USA
| | - Linda P. Dwoskin
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0082, USA
| | - James R. Pauly
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0082, USA
| |
Collapse
|
45
|
Prenatal exposure to environmental tobacco smoke alters gene expression in the developing murine hippocampus. Reprod Toxicol 2009; 29:164-75. [PMID: 19969065 DOI: 10.1016/j.reprotox.2009.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/16/2009] [Accepted: 12/01/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Little is known about the effects of passive smoke exposures on the developing brain. OBJECTIVE The purpose of the current study was to identify changes in gene expression in the murine hippocampus as a consequence of in utero exposure to sidestream cigarette smoke (an experimental equivalent of environmental tobacco smoke (ETS)) at exposure levels that do not result in fetal growth inhibition. METHODS A whole body smoke inhalation exposure system was utilized to deliver ETS to pregnant C57BL/6J mice for 6 h/day from gestational days 6-17 (gd 6-17) [for microarray] or gd 6-18.5 [for fetal phenotyping]. RESULTS There were no significant effects of ETS exposure on fetal phenotype. However, 61 "expressed" genes in the gd 18.5 fetal hippocampus were differentially regulated (up- or down-regulated by 1.5-fold or greater) by maternal exposure to ETS. Of these 61 genes, 25 genes were upregulated while 36 genes were down-regulated. A systems biology approach, including computational methodologies, identified cellular response pathways, and biological themes, underlying altered fetal programming of the embryonic hippocampus by in utero cigarette smoke exposure. CONCLUSIONS Results from the present study suggest that even in the absence of effects on fetal growth, prenatal smoke exposure can alter gene expression during the "early" period of hippocampal growth and may result in abnormal hippocampal morphology, connectivity, and function.
Collapse
|
46
|
Froehlich TE, Lanphear BP, Auinger P, Hornung R, Epstein JN, Braun J, Kahn RS. Association of tobacco and lead exposures with attention-deficit/hyperactivity disorder. Pediatrics 2009; 124:e1054-63. [PMID: 19933729 PMCID: PMC2853804 DOI: 10.1542/peds.2009-0738] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The study objective was to determine the independent and joint associations of prenatal tobacco and childhood lead exposures with attention-deficit/hyperactivity disorder (ADHD), as defined by current diagnostic criteria, in a national sample of US children. METHODS Data are from the 2001-2004 National Health and Nutrition Examination Survey, a cross-sectional, nationally representative sample of the US population. Participants were 8 to 15 years of age (N = 2588). Prenatal tobacco exposure was measured by report of maternal cigarette use during pregnancy. Lead exposure was assessed by using current blood lead levels. The Diagnostic Interview Schedule for Children was used to ascertain the presence of ADHD in the past year, on the basis of Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, criteria. RESULTS A total of 8.7% (95% confidence interval [CI]: 7.3%-10.1%) of children met criteria for ADHD. Prenatal tobacco exposure (adjusted odds ratio [aOR]: 2.4 [95% CI: 1.5-3.7]) and higher current blood lead concentrations (aOR for third versus first tertile: 2.3 [95% CI: 1.5-3.8]) were independently associated with ADHD. Compared with children with neither exposure, children with both exposures (prenatal tobacco exposure and third-tertile lead levels) had an even greater risk of ADHD (aOR: 8.1 [95% CI: 3.5-18.7]) than would be expected if the independent risks were multiplied (tobacco-lead exposure interaction term, P < .001). CONCLUSIONS Prenatal tobacco and childhood lead exposures are associated with ADHD in US children, especially among those with both exposures. Reduction of these common toxicant exposures may be an important avenue for ADHD prevention.
Collapse
Affiliation(s)
- Tanya E. Froehlich
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bruce P. Lanphear
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio,Child and Family Research Institute, British Columbia Children’s Hospital and Simon Fraser University, Vancouver, Canada
| | - Peggy Auinger
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Richard Hornung
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jeffery N. Epstein
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joe Braun
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert S. Kahn
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
47
|
Abstract
Maternal smoking during pregnancy (MSDP) is a major public health concern with clearly established consequences to both mother and newborn (e.g., low birth weight, altered cardiorespiratory responses). MSDP has also been associated with higher rates of a variety of poor cognitive and behavioral outcomes in children, including attention deficit hyperactivity disorder (ADHD), conduct disorder, impaired learning and memory, and cognitive dysfunction. However, the evidence suggesting causal effects of MSDP for these outcomes is muddied in the existing literature due to the frequent inability to separate prenatal exposure effects from other confounding environmental and genetic factors. Carefully designed studies using genetically sensitive strategies can build on current evidence and begin to elucidate the likely complex factors contributing to associations between MSDP and child outcomes.
Collapse
Affiliation(s)
- Valerie S Knopik
- Department of Community Health, Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
48
|
Heath CJ, Picciotto MR. Nicotine-induced plasticity during development: modulation of the cholinergic system and long-term consequences for circuits involved in attention and sensory processing. Neuropharmacology 2008; 56 Suppl 1:254-62. [PMID: 18692078 DOI: 10.1016/j.neuropharm.2008.07.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 07/09/2008] [Indexed: 02/06/2023]
Abstract
Despite a great deal of progress, more than 10% of pregnant women in the USA smoke. Epidemiological studies have demonstrated correlations between developmental tobacco smoke exposure and sensory processing deficits, as well as a number of neuropsychiatric conditions, including attention deficit hyperactivity disorder. Significantly, data from animal models of developmental nicotine exposure have suggested that the nicotine in tobacco contributes significantly to the effects of developmental smoke exposure. Consequently, we hypothesize that nicotinic acetylcholine receptors (nAChRs) are important for setting and refining the strength of corticothalamic-thalamocortical loops during critical periods of development and that disruption of this process by developmental nicotine exposure can result in long-lasting dysregulation of sensory processing. The ability of nAChR activation to modulate synaptic plasticity is likely to underlie the effects of both endogenous cholinergic signaling and pharmacologically administered nicotine to alter cellular, physiological and behavioral processes during critical periods of development.
Collapse
Affiliation(s)
- Christopher J Heath
- Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| | | |
Collapse
|
49
|
Abstract
Preclinical studies, using primarily rodent models, have shown acetylcholine to have a critical role in brain maturation via activation of nicotinic acetylcholine receptors (nAChRs), a structurally diverse family of ligand-gated ion channels. nAChRs are widely expressed in fetal central nervous system, with transient upregulation in numerous brain regions during critical developmental periods. Activation of nAChRs can have varied developmental influences that are dependent on the pharmacologic properties and localization of the receptor. These include regulation of transmitter release, gene expression, neurite outgrowth, cell survival, and synapse formation and maturation. Aberrant exposure of fetal and neonatal brain to nicotine, through maternal smoking or nicotine replacement therapy (NRT), has been shown to have detrimental effects on cholinergic modulation of brain development. These include alterations in sexual differentiation of the brain, and in cell survival and synaptogenesis. Long-term alterations in the functional status and pharmacologic properties of nAChRs may also occur, which result in modifications of specific neural circuitry such as the brainstem cardiorespiratory network and sensory thalamocortical gating. Such alterations in brain structure and function may contribute to clinically characterized deficits that result from maternal smoking, such as sudden infant death syndrome and auditory-cognitive dysfunction. Although not the only constituent of tobacco smoke, there is now abundant evidence that nicotine is a neural teratogen. Thus, alternatives to NRT should be sought as tobacco cessation treatments in pregnant women.
Collapse
Affiliation(s)
- Jennifer B Dwyer
- Department of Pharmacology, University of California, Irvine, California 92697, USA.
| | | | | |
Collapse
|
50
|
Determining normal variability in a developmental neurotoxicity test: a report from the ILSI Research Foundation/Risk Science Institute expert working group on neurodevelopmental endpoints. Neurotoxicol Teratol 2008; 30:288-325. [PMID: 18280700 DOI: 10.1016/j.ntt.2007.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 11/09/2007] [Accepted: 12/21/2007] [Indexed: 11/21/2022]
Abstract
With the implementation of the Food Quality Protection Act in 1996, more detailed evaluations of possible health effects of pesticides on developing organisms have been required. As a result, considerable developmental neurotoxicity (DNT) data have been generated on a variety of endpoints, including developmental changes in motor activity, auditory startle habituation, and various learning and memory parameters. One issue in interpreting these data is the level of variability for the measures used in these studies: excessive variability can obscure treatment-related effects, or conversely, small but statistically significant changes could be viewed as treatment related, when they might in fact be within the normal range. To aid laboratories in designing useful DNT studies for regulatory consideration, an operational framework for evaluating observed variability in study data has been developed. Elements of the framework suggest how an investigator might approach characterization of variability in the dataset; identification of appropriate datasets for comparison; evaluation of similarities and differences in variability between these datasets, and of possible sources of the variability, including those related to test conduct and test design. A case study using auditory startle habituation data is then presented, employing the elements of this proposed approach.
Collapse
|