1
|
Magurova M, Bacova M, Papcunova S, Kiss Bimbova K, Kuruc T, Kisucka A, Ihnatova L, Kucharova K, Lukacova N, Galik J. Exploring synergistic effects: Atorvastatin and electrical stimulation in spinal cord injury therapy. IBRO Neurosci Rep 2025; 18:389-399. [PMID: 40124115 PMCID: PMC11927724 DOI: 10.1016/j.ibneur.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/23/2025] [Indexed: 03/25/2025] Open
Abstract
Spinal cord trauma represents a significant clinical challenge, and improving patient outcomes is a main priority for many scientific teams globally. Despite advances in the understanding its pathogenesis, the overall mechanisms occurring in the spinal cord after traumatic injury remain unclear. This study explores the possible synergistic effects of a regenerative therapy that combines electrical stimulation with the anti-inflammatory drug Atorvastatin (ATR) after spinal cord injury (SCI). SCI was induced at the T9 segment under isoflurane anesthesia and applying a compression force of 40 g for 15 minutes. An oscillating field stimulator (OFS) was implanted subcutaneously, delivering a weak electric current (50 µA) that changed polarity every 15 minutes for six weeks to promote axonal growth at the injury site. Female Wistar albino rats were divided into four groups: SCI with non-functional stimulator (SCI + nOFS), SCI with functional stimulator (SCI+OFS), and two groups that received ATR together with stimulator for 7 days after injury (SCI+OFS+ATR, SCI+nOFS+ATR). Behavioral tests (hot-plate test and BBB scale) showed improvement in sensory and motor performance in animals treated with the combination therapy. The protein levels of astrocytes (GFAP), neurofilaments (NF-L), newly sprouting axons (GAP-43), and oligodendrocytes (PLP -1, CNPase) were analysed by Western blot. The results showed increased neurofilaments, newly sprouting axons and oligodendrocytes in groups receiving both individual and combination therapies, with a decrease in their concentrations in the following order: SCI+OFS+ATR, SCI+nOFS+ATR, SCI+OFS, SCI+nOFS. In addition, astrocyte protein levels were lower in the SCI+OFS+ATR group compared with others. Histological analysis showed a significant reduction in white and gray matter after SCI, but less white and gray matter volume loss was found in the groups receiving therapies (SCI+OFS+ATR, SCI+nOFS+ATR, SCI+OFS). These results suggest that the combination of Atorvastatin with OFS stimulation promotes neural recovery after SCI, highlighting the potential of combination therapies in enhancing regenerative outcomes.
Collapse
Affiliation(s)
- Martina Magurova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Maria Bacova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Stefania Papcunova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Katarina Kiss Bimbova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Tomas Kuruc
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Alexandra Kisucka
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Lenka Ihnatova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Karolina Kucharova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Nadezda Lukacova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| | - Jan Galik
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Soltesovej 4-6, Kosice 040 01, Slovakia
| |
Collapse
|
2
|
Koppel CJ, De Henau CMS, Vreeken D, DeRuiter MC, Jongbloed MRM, van Gils JM. The Role of the Axonal Guidance Cue Semaphorin 3A in Innervation of the Postnatal Heart in Health and Disease. Can J Cardiol 2024:S0828-282X(24)01327-8. [PMID: 39746509 DOI: 10.1016/j.cjca.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
During cardiac development, the heart is innervated by the autonomous nervous system. After development, neurons of the autonomic nervous system have limited capacity for growth and regeneration. However, in recent decades, it has become clear that cardiac nerves can regenerate after cardiac damage. Excessive reinnervation, so-called sympathetic hyperinnervation, may render patients vulnerable to ventricular arrhythmias and heart failure. Several studies have investigated axonal guidance cues as mediators of cardiac innervation. Axonal guidance cues direct neuronal growth of the axon and play a significant role in the regeneration and remodelling of cardiac autonomic innervation after cardiac damage. This review focusses on the current literature regarding the axonal guidance cue group of semaphorins and their function in the healthy and diseased postnatal heart. In view of cardiac innervation, most studies have focussed on semaphorin 3A (SEMA3A), whereas less is known about the function of the other semaphorin classes. SEMA3A is a neuronal repellent and is associated with a decrease in the density of sympathetic neurons in the heart. Its decline in expression after myocardial infarction plays a role in the development of sympathetic hyperinnervation and the subsequent increased risk of ventricular arrhythmias. In congestive heart failure, the opposite occurs: an increase in SEMA3A expression underlies decreased nerve density that may also serve as a substrate for ventricular arrhythmias. Although the literature on their role in cardiac innervation is still relatively scarce, semaphorins, especially SEMA3A, seem worthwhile to consider when exploring options to modulate pathologic innervation patterns in cardiovascular disease.
Collapse
Affiliation(s)
- Claire J Koppel
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Charlotte M S De Henau
- Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Dianne Vreeken
- Department of Cardiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Marco C DeRuiter
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Janine M van Gils
- Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
3
|
Chen Y, Xu Z, Ma Y, Liu T, Tian X, Zhu Z, Zheng W, Wang Y, Zheng R, Xing J, Wang W, Sun F. Deep brain stimulation combined with morroniside promotes neural plasticity and motor functional recovery after ischemic stroke. Front Pharmacol 2024; 15:1457309. [PMID: 39697542 PMCID: PMC11652210 DOI: 10.3389/fphar.2024.1457309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Background and Objective Until now, there has been an unmet need for treatments promoting chronic-phase post-stroke functional recovery. We previously found that morroniside promoted endogenous neurogenesis in ischemic stroke, but its therapeutic window was limited to the first 48 h. Here, we aimed to explore whether deep brain stimulation (DBS) combined with morroniside could enhance neurogenesis in rats subjected to focal ischemic stroke and contributes to functional recovery. Methods Beginning 2 weeks after the endothelin-1-induced stroke, rats were administered DBS of lateral cerebellar nucleus consecutively for 14 days, followed by morroniside for 7 consecutive days post-stimulation. Behavioral tests were used for assessing motor function. Local field potentials were recorded to evaluate neuronal excitability. Nissl staining was used to assess infarct volume. Immunofluorescence staining and Western blotting were carried out to uncover the stroke recovery mechanisms of DBS combined with morroniside treatment. Results The results showed that this combined treatment improved behavioral outcomes, enhanced cortical local field potentials, and diminished infarct volumes at 35 days post-stroke. Moreover, it notably amplified neurogenic responses post-stroke, evidenced by the proliferation of BrdU/SOX2 and BrdU/DCX in the subventricular zone, and their subsequent differentiation into BrdU/NeuN and BrdU/VgulT1 in the ischemic penumbra. Moreover, the combined treatment also elevated the amount of BrdU/Olig2 and the level of axonal sprouting-related proteins in the perilesional cortex. Conclusion Our results demonstrated that the combined treatment extended the neurorestorative efficacy of morroniside, reduced infarct size, enhanced neuronal excitability and accelerated sensorimotor function recovery. This therapeutic approach may emerge as a potential clinical intervention for chronic ischemic stroke.
Collapse
Affiliation(s)
- Yanxi Chen
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zhidong Xu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yifu Ma
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Tingting Liu
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Xin Tian
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Zixin Zhu
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Wenrong Zheng
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yufeng Wang
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Ruifang Zheng
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Jianguo Xing
- Key Laboratory of Uighur Medicine of Xinjiang Uygur Autonomous Region, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Wen Wang
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| |
Collapse
|
4
|
Silvestri B, Mochi M, Mawrie D, de Turris V, Colantoni A, Borhy B, Medici M, Anderson EN, Garone MG, Zammerilla CP, Simula M, Ballarino M, Pandey UB, Rosa A. HuD impairs neuromuscular junctions and induces apoptosis in human iPSC and Drosophila ALS models. Nat Commun 2024; 15:9618. [PMID: 39511225 PMCID: PMC11544248 DOI: 10.1038/s41467-024-54004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
Defects at the neuromuscular junction (NMJ) are among the earliest hallmarks of amyotrophic lateral sclerosis (ALS). According to the "dying-back" hypothesis, NMJ disruption not only precedes but also triggers the subsequent degeneration of motoneurons in both sporadic (sALS) and familial (fALS) ALS. Using human induced pluripotent stem cells (iPSCs), we show that the RNA-binding protein HuD (ELAVL4) contributes to NMJ defects and apoptosis in FUS-ALS. HuD overexpression mimics the severe FUSP525L mutation, while its knockdown rescues the FUSP525L phenotypes. In Drosophila, neuronal overexpression of the HuD ortholog, elav, induces motor dysfunction, and its knockdown improves motor function in a FUS-ALS model. Finally, we report increased HuD levels upon oxidative stress in human motoneurons and in sALS patients with an oxidative stress signature. Based on these findings, we propose that HuD plays a role downstream of FUS mutations in fALS and in sALS related to oxidative stress.
Collapse
Affiliation(s)
- Beatrice Silvestri
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michela Mochi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Darilang Mawrie
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Valeria de Turris
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Beatrice Borhy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Margherita Medici
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Eric Nathaniel Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Maria Giovanna Garone
- Stem Cell Medicine Department, Murdoch Children's Research Institute, Parkville, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW Melbourne, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Christopher Patrick Zammerilla
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Marco Simula
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy.
| |
Collapse
|
5
|
Cossette ML, Stewart DT, Shafer ABA. Comparative Genomics of the World's Smallest Mammals Reveals Links to Echolocation, Metabolism, and Body Size Plasticity. Genome Biol Evol 2024; 16:evae225. [PMID: 39431406 PMCID: PMC11544316 DOI: 10.1093/gbe/evae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Originating 30 million years ago, shrews (Soricidae) have diversified into around 400 species worldwide. Shrews display a wide array of adaptations, with some species having developed distinctive traits such as echolocation, underwater diving, and venomous saliva. Accordingly, these tiny insectivores are ideal to study the genomic mechanisms of evolution and adaptation. We conducted a comparative genomic analysis of four shrew species and 16 other mammals to identify genomic variations unique to shrews. Using two existing shrew genomes and two de novo assemblies for the maritime (Sorex maritimensis) and smoky (Sorex fumeus) shrews, we identified mutations in conserved regions of the genomes, also known as accelerated regions, gene families that underwent significant expansion, and positively selected genes. Our analyses unveiled shrew-specific genomic variants in genes associated with the nervous, metabolic, and auditory systems, which can be linked to unique traits in shrews. Notably, genes suggested to be under convergent evolution in echolocating mammals exhibited accelerated regions in shrews, and pathways linked to putative body size plasticity were detected. These findings provide insight into the evolutionary mechanisms shaping shrew species, shedding light on their adaptation and divergence over time.
Collapse
Affiliation(s)
- Marie-Laurence Cossette
- Department of Environmental Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aaron B A Shafer
- Department of Environmental Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
- Department of Forensic Science, Trent University, Peterborough, ON, Canada
| |
Collapse
|
6
|
Park HJ, Nam MH, Park JH, Lee JM, Hong HS, Kim TW, Lee IH, Shin CH, Lee SH, Seo YK. Comparison of Malondialdehyde, Acetylcholinesterase, and Apoptosis-Related Markers in the Cortex and Hippocampus of Cognitively Dysfunctional Mice Induced by Scopolamine. Biomedicines 2024; 12:2475. [PMID: 39595042 PMCID: PMC11592181 DOI: 10.3390/biomedicines12112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Objectives: Until now, many researchers have conducted evaluations on hippocampi for analyses of cognitive dysfunction models using scopolamine. However, depending on the purposes of these analyses, there are differences in the experimental results for the hippocampi and cortexes. Therefore, this study intends to compare various analyses of cognitive dysfunction after scopolamine administration with each other in hippocampi and cortexes. Methods: Scopolamine was administered at three dosages in mice: 0.5, 1, and 3 mg/kg. And this study evaluates the differences in cognitive function and the expression of malondialdehyde (MDA), acetylcholinesterase (AChE), and brain-derived neurotrophic factor (BDNF) in mice's hippocampi and cortexes based on scopolamine dosages. Results: The Morris water maze test was conducted between 1 and 3 h after scopolamine injection to assess its duration. A significant decrease in behavioral ability was evaluated at 1 h, and we observed a similar recovery to the normal group at 3 h. And the Morris water maze escape latency showed differences depending on scopolamine concentration. While the escape waiting time in the control group and scop 0.5 administration group remained similar to that seen before administration, the administration of scop 1 and 3 increased it. In the experimental group administered scop 1 and 3, cerebral MDA levels in the cerebral cortex significantly increased. In the hippocampus, the MDA level in the scopolamine-administered groups slightly increased compared to the cortex. A Western blotting assay shows that Bax and Bcl-xl showed a tendency to increase or decrease depending on the concentration, but BDNF increased in scop 0.5, and scop 1 and 3 did not show a significant decrease compared to the control at the cerebral cortex. In the hippocampus, BDNF showed a concentration-dependent decrease in expression. Conclusions: This study's findings indicate that chemical analyses for MDA and AChE can be performed in the cerebral cortex, while the hippocampus is better suited for protein analysis of apoptosis and BDNF.
Collapse
Affiliation(s)
- Hee-Jung Park
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Myeong-Hyun Nam
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Ji-Hoon Park
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Ji-Min Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Hye-Sun Hong
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Tae-Woo Kim
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - In-Ho Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Chang-Ho Shin
- Department of AI Convergence Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
- AriBio Co., Ltd., Seongnam-si 13535, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Young-Kwon Seo
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
- Department of AI Convergence Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| |
Collapse
|
7
|
Sadeghi M, Azargoonjahromi A, Nasiri H, Yaghoobi A, Sadeghi M, Chavoshi SS, Baghaeikia S, Mahzari N, Valipour A, Razeghi Oskouei R, Shahkarami F, Amiri F, Mayeli M. Altered brain connectivity in mild cognitive impairment is linked to elevated tau and phosphorylated tau, but not to GAP-43 and Amyloid-β measurements: a resting-state fMRI study. Mol Brain 2024; 17:60. [PMID: 39215335 PMCID: PMC11363600 DOI: 10.1186/s13041-024-01136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Mild Cognitive Impairment (MCI) is a neurological condition characterized by a noticeable decline in cognitive abilities that falls between normal aging and dementia. Along with some biomarkers like GAP-43, Aβ, tau, and P-tau, brain activity and connectivity are ascribed to MCI; however, the link between brain connectivity changes and such biomarkers in MCI is still being investigated. This study explores the relationship between biomarkers like GAP-43, Aβ, tau, and P-tau, and brain connectivity. We enrolled 25 Participants with normal cognitive function and 23 patients with MCI. Levels of GAP-43, Aβ1-42, t-tau, and p-tau181p in the CSF were measured, and functional connectivity measures including ROI-to-voxel (RV) correlations and the DMN RV-ratio were extracted from the resting-state fMRI data. P-values below 0.05 were considered significant. The results showed that in CN individuals, higher connectivity within the both anterior default mode network (aDMN) and posterior DMN (pDMN) was associated with higher levels of the biomarker GAP-43. In contrast, MCI individuals showed significant negative correlations between DMN connectivity and levels of tau and P-tau. Notably, no significant correlations were found between Aβ levels and connectivity measures in either group. These findings suggest that elevated levels of GAP-43 indicate increased functional connectivity in aDMN and pDMN. Conversely, elevated levels of tau and p-tau can disrupt connectivity through various mechanisms. Thus, the accumulation of tau and p-tau can lead to impaired neuronal connectivity, contributing to cognitive decline.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- School of Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hamide Nasiri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arash Yaghoobi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadeghi
- Department of Nuclear Medicine, Children Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shilan Baghaeikia
- Faculty of the Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Nastaran Mahzari
- Department of Pharmacy, School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Arina Valipour
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Romina Razeghi Oskouei
- Department of clinical laboratory sciences, Qazvin University of medical sciences, Qazvin, Iran
| | - Farshad Shahkarami
- Department of Internal Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amiri
- Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Mayeli
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Senger JL, Power H, Moore AM. Electrical Stimulation: How It Works and How to Apply It. Hand Clin 2024; 40:409-420. [PMID: 38972685 DOI: 10.1016/j.hcl.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Electrical stimulation is emerging as a perioperative strategy to improve peripheral nerve regeneration and enhance functional recovery. Despite decades of research, new insights into the complex multifaceted mechanisms of electrical stimulation continue to emerge, providing greater understanding of the neurophysiology of nerve regeneration. In this study, we summarize what is known about how electrical stimulation modulates the molecular cascades and cellular responses innate to nerve injury and repair, and the consequential effects on axonal growth and plasticity. Further, we discuss how electrical stimulation is delivered in preclinical and clinical studies and identify knowledge gaps that may provide opportunities for optimization.
Collapse
Affiliation(s)
- Jenna-Lynn Senger
- Division of Plastic Surgery, University of British Columbia, Suite 1788, 1111 W Georgia Street, Vancouver, British Columbia, V6E 4M3, Canada
| | - Hollie Power
- Division of Plastic Surgery, Department of Surgery, University of Alberta, Suite 401, 316 Windermere Road NorthWest, Edmonton, Alberta T6W 2Z8, Canada
| | - Amy M Moore
- Department of Plastic and Reconstructive Surgery, The Ohio State University, 915 Olentangy River Road Suite 2100, Columbus, OH 43212, USA.
| |
Collapse
|
9
|
Hu Y, Sun Y, Yuan H, Liu J, Chen L, Liu D, Xu Y, Zhou X, Ding L, Zhang Z, Xiong L, Xue L, Wang T. Vof16-miR-185-5p-GAP43 network improves the outcomes following spinal cord injury via enhancing self-repair and promoting axonal growth. CNS Neurosci Ther 2024; 30:e14535. [PMID: 38168094 PMCID: PMC11017428 DOI: 10.1111/cns.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION Self-repair of spinal cord injury (SCI) has been found in humans and experimental animals with partial recovery of neurological functions. However, the regulatory mechanisms underlying the spontaneous locomotion recovery after SCI are elusive. AIMS This study was aimed at evaluating the pathological changes in injured spinal cord and exploring the possible mechanism related to the spontaneous recovery. RESULTS Immunofluorescence staining was performed to detect GAP43 expression in lesion site after spinal cord transection (SCT) in rats. Then RNA sequencing and gene ontology (GO) analysis were employed to predict lncRNA that correlates with GAP43. LncRNA smart-silencing was applied to verify the function of lncRNA vof16 in vitro, and knockout rats were used to evaluate its role in neurobehavioral functions after SCT. MicroRNA sequencing, target scan, and RNA22 prediction were performed to further explore the underlying regulatory mechanisms, and miR-185-5p stands out. A miR-185-5p site-regulated relationship with GAP43 and vof16 was determined by luciferase activity analysis. GAP43-silencing, miR-185-5p-mimic/inhibitor, and miR-185-5p knockout rats were also applied to elucidate their effects on spinal cord neurite growth and neurobehavioral function after SCT. We found that a time-dependent increase of GAP43 corresponded with the limited neurological recovery in rats with SCT. CRNA chip and GO analysis revealed lncRNA vof16 was the most functional in targeting GAP43 in SCT rats. Additionally, silencing vof16 suppressed neurite growth and attenuated the motor dysfunction in SCT rats. Luciferase reporter assay showed that miR-185-5p competitively bound the same regulatory region of vof16 and GAP43. CONCLUSIONS Our data indicated miR-185-5p could be a detrimental factor in SCT, and vof16 may function as a ceRNA by competitively binding miR-185-5p to modulate GAP43 in the process of self-recovery after SCT. Our study revealed a novel vof16-miR-185-5p-GAP43 regulatory network in neurological self-repair after SCT and may underlie the potential treatment target for SCI.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu DistrictWest China Airport Hospital of Sichuan UniversityChengduChina
| | - Yi‐Fei Sun
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Hao Yuan
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Jia Liu
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Li Chen
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Dong‐Hui Liu
- Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Yang Xu
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Xin‐Fu Zhou
- Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Li Ding
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Ze‐Tao Zhang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Liu‐Lin Xiong
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lu‐Lu Xue
- State Key Laboratory of BiotherapySichuan UniversityChengduSichuanChina
| | - Ting‐Hua Wang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
- State Key Laboratory of BiotherapySichuan UniversityChengduSichuanChina
| |
Collapse
|
10
|
Bekku Y, Zotter B, You C, Piehler J, Leonard WJ, Salzer JL. Glia trigger endocytic clearance of axonal proteins to promote rodent myelination. Dev Cell 2024; 59:627-644.e10. [PMID: 38309265 PMCID: PMC11089820 DOI: 10.1016/j.devcel.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/09/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024]
Abstract
Axons undergo striking changes in their content and distribution of cell adhesion molecules (CAMs) and ion channels during myelination that underlies the switch from continuous to saltatory conduction. These changes include the removal of a large cohort of uniformly distributed CAMs that mediate initial axon-Schwann cell interactions and their replacement by a subset of CAMs that mediate domain-specific interactions of myelinated fibers. Here, using rodent models, we examine the mechanisms and significance of this removal of axonal CAMs. We show that Schwann cells just prior to myelination locally activate clathrin-mediated endocytosis (CME) in axons, thereby driving clearance of a broad array of axonal CAMs. CAMs engineered to resist endocytosis are persistently expressed along the axon and delay both PNS and CNS myelination. Thus, glia non-autonomously activate CME in axons to downregulate axonal CAMs and presumptively axo-glial adhesion. This promotes the transition from ensheathment to myelination while simultaneously sculpting the formation of axonal domains.
Collapse
Affiliation(s)
- Yoko Bekku
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Brendan Zotter
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Changjiang You
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - James L Salzer
- Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
11
|
Silvestri B, Mochi M, Mawrie D, de Turris V, Colantoni A, Borhy B, Medici M, Anderson EN, Garone MG, Zammerilla CP, Pandey UB, Rosa A. HuD (ELAVL4) gain-of-function impairs neuromuscular junctions and induces apoptosis in in vitro and in vivo models of amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554258. [PMID: 38464028 PMCID: PMC10925158 DOI: 10.1101/2023.08.22.554258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Early defects at the neuromuscular junction (NMJ) are among the first hallmarks of the progressive neurodegenerative disease amyotrophic lateral sclerosis (ALS). According to the "dying back" hypothesis, disruption of the NMJ not only precedes, but is also a trigger for the subsequent degeneration of the motoneuron in both sporadic and familial ALS, including ALS caused by the severe FUS pathogenic variant P525L. However, the mechanisms linking genetic and environmental factors to NMJ defects remain elusive. By taking advantage of co-cultures of motoneurons and skeletal muscle derived from human induced pluripotent stem cells (iPSCs), we show that the neural RNA binding protein HuD (ELAVL4) may underlie NMJ defects and apoptosis in FUS-ALS. HuD overexpression in motoneurons phenocopies the severe FUSP525L mutation, while HuD knockdown in FUSP525L co-cultures produces phenotypic rescue. We validated these findings in vivo in a Drosophila FUS-ALS model. Neuronal-restricted overexpression of the HuD-related gene, elav, produces per se a motor phenotype, while neuronal-restricted elav knockdown significantly rescues motor dysfunction caused by FUS. Finally, we show that HuD levels increase upon oxidative stress in human motoneurons and in sporadic ALS patients with an oxidative stress signature. On these bases, we propose HuD as an important player downstream of FUS mutation in familial ALS, with potential implications for sporadic ALS related to oxidative stress.
Collapse
Affiliation(s)
- Beatrice Silvestri
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Michela Mochi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Darilang Mawrie
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, PA, USA
| | - Valeria de Turris
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Alessio Colantoni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Beatrice Borhy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Margherita Medici
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Eric Nathaniel Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, PA, USA
| | - Maria Giovanna Garone
- Department of Stem Cell Biology, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, Victoria, Australia
| | | | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, PA, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| |
Collapse
|
12
|
Jiang YY, Wei RY, Tang K, Wang Z, Tan NH. Ginsenoside Rg1 promotes neurite growth of retinal ganglion cells through cAMP/PKA/CREB pathways. J Ginseng Res 2024; 48:163-170. [PMID: 38465221 PMCID: PMC10920000 DOI: 10.1016/j.jgr.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Background Mechanisms of synaptic plasticity in retinal ganglion cells (RGCs) are complex and the current knowledge cannot explain. Growth and regeneration of dendrites together with synaptic formation are the most important parameters for evaluating the cellular protective effects of various molecules. The effect of ginsenoside Rg1 (Rg1) on the growth of retinal ganglion cell processes has been poorly understood. Therefore, we investigated the effect of ginsenoside Rg1 on the neurite growth of RGCs. Methods Expression of proteins and mRNA were detected by Western blot and qPCR. cAMP levels were determined by ELISA. In vivo effects of Rg1 on RGCs were evaluated by hematoxylin and eosin, and immunohistochemistry staining. Results This study found that Rg1 promoted the growth and synaptic plasticity of RGCs neurite by activating the cAMP/PKA/CREB pathways. Meanwhile, Rg1 upregulated the expression of GAP43, Rac1 and PAX6, which are closely related to the growth of neurons. Meantime, H89, an antagonist of PKA, could block this effect of Rg1. In addition, we preliminarily explored the effect of Rg1 on enhancing the glycolysis of RGCs, which could be one of the mechanisms for its neuroprotective effects. Conclusion Rg1 promoted neurite growth of RGCs through cAMP/PKA/CREB pathways. This study may lay a foundation for its clinical use of optic nerve diseases in the future.
Collapse
Affiliation(s)
| | | | - Kai Tang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhen Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ning-hua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Guzman SD, Abu-Mahfouz A, Davis CS, Ruiz LP, Macpherson PC, Brooks SV. Decoding muscle-resident Schwann cell dynamics during neuromuscular junction remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561193. [PMID: 38370853 PMCID: PMC10871306 DOI: 10.1101/2023.10.06.561193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Understanding neuromuscular junction (NMJ) repair mechanisms is essential for addressing degenerative neuromuscular conditions. Here, we focus on the role of muscle-resident Schwann cells in NMJ reinnervation. In young Sod1-/- mice, a model of progressive NMJ degeneration, we identified a clear NMJ 'regenerative window' that allowed us to define regulators of reinnervation and crossing Sod1-/- mice with S100GFP-tg mice permitted visualization and analysis of Schwann cells. High-resolution imaging and single-cell RNA sequencing provide a detailed analysis of Schwann cell number, morphology, and transcriptome revealing multiple subtypes, including a previously unrecognized terminal Schwann cell (tSC) population expressing a synapse promoting signature. We also discovered a novel SPP1-driven cellular interaction between myelin Schwann cells and tSCs and show that it promotes tSC proliferation and reinnervation following nerve injury in wild type mice. Our findings offer important insights into molecular regulators critical in NMJ reinnervation that are mediated through tSCs to maintain NMJ function.
Collapse
Affiliation(s)
- Steve D Guzman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ahmad Abu-Mahfouz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Carol S Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Lloyd P Ruiz
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter C Macpherson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Royer J, Larivière S, Rodriguez-Cruces R, Cabalo DG, Tavakol S, Auer H, Ngo A, Park BY, Paquola C, Smallwood J, Jefferies E, Caciagli L, Bernasconi A, Bernasconi N, Frauscher B, Bernhardt BC. Cortical microstructural gradients capture memory network reorganization in temporal lobe epilepsy. Brain 2023; 146:3923-3937. [PMID: 37082950 PMCID: PMC10473569 DOI: 10.1093/brain/awad125] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.
Collapse
Affiliation(s)
- Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hans Auer
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Bo-yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Data Science, Inha University, Incheon 22212, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 34126, Republic of Korea
| | - Casey Paquola
- Multiscale Neuroanatomy Lab, INM-1, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON, K7L 3N6, Canada
| | | | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, MA 19104, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
15
|
Rodríguez-Zapata M, Galán-Llario M, Cañeque-Rufo H, Sevillano J, Sánchez-Alonso MG, Zapico JM, Ferrer-Alcón M, Uribarri M, Pascual-Teresa BD, Ramos-Álvarez MDP, Herradón G, Pérez-García C, Gramage E. Implication of the PTN/RPTPβ/ζ Signaling Pathway in Acute Ethanol Neuroinflammation in Both Sexes: A Comparative Study with LPS. Biomedicines 2023; 11:biomedicines11051318. [PMID: 37238989 DOI: 10.3390/biomedicines11051318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/16/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Binge drinking during adolescence increases the risk of alcohol use disorder, possibly by involving alterations of neuroimmune responses. Pleiotrophin (PTN) is a cytokine that inhibits Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ. PTN and MY10, an RPTPβ/ζ pharmacological inhibitor, modulate ethanol behavioral and microglial responses in adult mice. Now, to study the contribution of endogenous PTN and the implication of its receptor RPTPβ/ζ in the neuroinflammatory response in the prefrontal cortex (PFC) after acute ethanol exposure in adolescence, we used MY10 (60 mg/kg) treatment and mice with transgenic PTN overexpression in the brain. Cytokine levels by X-MAP technology and gene expression of neuroinflammatory markers were determined 18 h after ethanol administration (6 g/kg) and compared with determinations performed 18 h after LPS administration (5 g/kg). Our data indicate that Ccl2, Il6, and Tnfa play important roles as mediators of PTN modulatory actions on the effects of ethanol in the adolescent PFC. The data suggest PTN and RPTPβ/ζ as targets to differentially modulate neuroinflammation in different contexts. In this regard, we identified for the first time important sex differences that affect the ability of the PTN/RPTPβ/ζ signaling pathway to modulate ethanol and LPS actions in the adolescent mouse brain.
Collapse
Affiliation(s)
- María Rodríguez-Zapata
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Milagros Galán-Llario
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Héctor Cañeque-Rufo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Julio Sevillano
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - María Gracia Sánchez-Alonso
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - José M Zapico
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Marcel Ferrer-Alcón
- BRAINco Biopharma, S.L., Bizkaia Technology Park, Zamudio, 48170 Vizcaya, Spain
| | - María Uribarri
- BRAINco Biopharma, S.L., Bizkaia Technology Park, Zamudio, 48170 Vizcaya, Spain
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - María Del Pilar Ramos-Álvarez
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
- Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Carmen Pérez-García
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
- Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
- Instituto de Estudios de las Adicciones, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| |
Collapse
|
16
|
Lee YJ, Jeong YJ, Kang EJ, Kang BS, Lee SH, Kim YJ, Kang SS, Suh SW, Ahn EH. GAP-43 closely interacts with BDNF in hippocampal neurons and is associated with Alzheimer's disease progression. Front Mol Neurosci 2023; 16:1150399. [PMID: 37143467 PMCID: PMC10152972 DOI: 10.3389/fnmol.2023.1150399] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/17/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Growth-associated protein 43 (GAP-43) is known as a neuronal plasticity protein because it is widely expressed at high levels in neuronal growth cones during axonal regeneration. GAP-43 expressed in mature adult neurons is functionally important for the neuronal communication of synapses in learning and memory. Brain-derived neurotrophic factor (BDNF) is closely related to neurodegeneration and synaptic plasticity during the aging process. However, the molecular mechanisms regulating neurodegeneration and synaptic plasticity underlying the pathogenesis and progression of Alzheimer's disease (AD) still remain incompletely understood. Methods Remarkably, the expressions of GAP-43 and BDNF perfectly match in various neurons in the Human Brain Atlas database. Moreover, GAP-43 and BDNF are highly expressed in a healthy adults' hippocampus brain region and are inversely correlated with the amyloid beta (Aβ), which is the pathological peptide of amyloid plaques found in the brains of patients with AD. Results These data led us to investigate the impact of the direct molecular interaction between GAP-43 and BDNF in hippocampal neuron fate. In this study, we show that GAP-43 and BDNF are inversely associated with pathological molecules for AD (Tau and Aβ). In addition, we define the three-dimensional protein structure for GAP-43 and BDNF, including the predictive direct binding sites via analysis using ClusPro 2.0, and demonstrate that the deprivation of GAP-43 and BDNF triggers hippocampal neuronal death and memory dysfunction, employing the GAP-43 or BDNF knock-down cellular models and 5XFAD mice. Conclusion These results show that GAP-43 and BDNF are direct binding partners in hippocampal neurons and that their molecular signaling might be potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Ye Ji Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Ye Ji Jeong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Eun Ji Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - You Jin Kim
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
- Sang Won Suh
| | - Eun Hee Ahn
- Department of Physiology, College of Medicine, Hallym University, Chuncheon-si, Gangwon-Do, Republic of Korea
- *Correspondence: Eun Hee Ahn
| |
Collapse
|
17
|
García G, Martínez-Magaña CJ, Oviedo N, Granados-Soto V, Murbartián J. Bestrophin-1 Participates in Neuropathic Pain Induced by Spinal Nerve Transection but not Spinal Nerve Ligation. THE JOURNAL OF PAIN 2022; 24:689-705. [PMID: 36521670 DOI: 10.1016/j.jpain.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Previous studies have reported that L5/L6 spinal nerve ligation (SNL), but not L5 spinal nerve transection (SNT), enhances anoctamin-1 in injured and uninjured dorsal root ganglia (DRG) of rats suggesting some differences in function of the type of nerve injury. The role of bestrophin-1 in these conditions is unknown. The aim of this study was to investigate the role of bestrophin-1 in rats subjected to L5 SNT and L5/L6 SNL. SNT up-regulated bestrophin-1 protein expression in injured L5 and uninjured L4 DRG at day 7, whereas it enhanced GAP43 mainly in injured, but also in uninjured DRG. In contrast, SNL enhanced GAP43 at day 1 and 7, while bestrophin-1 expression increased only at day 1 after nerve injury. Accordingly, intrathecal injection of the bestrophin-1 blocker CaCCinh-A01 (1-10 µg) reverted SNT- or SNL-induced tactile allodynia in a concentration-dependent manner. Intrathecal injection of CaCCinh-A01 (10 µg) prevented SNT-induced upregulation of bestrophin-1 and GAP43 at day 7. In contrast, CaCCinh-A01 did not affect SNL-induced up-regulation of GAP43 nor bestrophin-1. Bestrophin-1 was mainly expressed in small- and medium-size neurons in naïve rats, while SNT increased bestrophin-1 immunoreactivity in CGRP+, but not in IB4+ neuronal cells in DRG. Intrathecal injection of bestrophin-1 plasmid (pCMVBest) induced tactile allodynia and increased bestrophin-1 expression in DRG and spinal cord in naïve rats. CaCCinh-A01 reversed bestrophin-1 overexpression-induced tactile allodynia and restored bestrophin-1 expression. Our data suggest that bestrophin-1 plays a relevant role in neuropathic pain induced by SNT, but not by SNL. PERSPECTIVE: SNT, but not SNL, up-regulates bestrophin-1 and GAP43 protein expression in injured L5 and uninjured L4 DRG. SNT increases bestrophin-1 immunoreactivity in CGRP+ neurons in DRG. Bestrophin-1 overexpression induces allodynia. CaCCinh-A01 reduces allodynia and restores bestrophin-1 expression. Our data suggest bestrophin-1 is differentially regulated depending on the neuropathic pain model.
Collapse
Affiliation(s)
| | | | - Norma Oviedo
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional, La Raza, IMSS. Mexico City, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, Mexico City, Mexico.
| |
Collapse
|
18
|
Liu J, Zhang C, Wang J, Huang Y, Shen D, Hu Y, Chu H, Yu X, Zhang L, Ma H. A Class I HDAC Inhibitor BG45 Alleviates Cognitive Impairment through the CaMKII/ITPKA/Ca 2+ Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:1481. [PMID: 36558932 PMCID: PMC9786203 DOI: 10.3390/ph15121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) seriously endangers the health and life of elderly individuals worldwide. However, despite all scientific efforts, at the moment there are no effective clinical treatment options for AD. In this work, the effect of the class I histone deacetylase inhibitor (HDACI) BG45 on synapse-related proteins was investigated in primary neurons from APP/PS1 transgenic mice. The results showed that BG45 can upregulate the expression of synaptotagmin-1 (SYT-1) and neurofilament light chain (NF-L) in primary neurons. In vivo, the APPswe/PS1dE9 (APP/PS1) transgenic mice were treated with BG45 (30 mg/kg) daily for 12 days. Behavioral testing of BG45-treated APP/PS1 mice showed improvements in learning and memory. BG45 can alleviate damage to the dendritic spine and reduce the deposition of Aβ. Similar to the in vitro results, synapse-related proteins in the prefrontal cortex were increased after BG45 treatment. Proteomic analysis results highlighted the differences in the biological processes of energy metabolism and calmodulin regulation in APP/PS1 mice with or without BG45 treatment. Further verification demonstrated that the effect of BG45 on synapses and learning and memory may involve the CaMKII/ITPKA/Ca2+ pathway. These results suggest that class I HDACI BG45 might be a promising drug for the early clinical treatment of AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liyuan Zhang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Haiying Ma
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
19
|
Carroll L, Sandy-Hindmarch O, Baskozos G, Zhu GC, McCarthy J, Schmid A. Cutaneous expression of growth-associated protein 43 is not a compelling marker for human nerve regeneration in carpal tunnel syndrome. PLoS One 2022; 17:e0277133. [PMID: 36383568 PMCID: PMC9668135 DOI: 10.1371/journal.pone.0277133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Growth-associated protein 43 (GAP-43) has long been used as a marker for nerve regeneration following nerve injury, with numerous in vitro and animal studies showing its upregulation in regenerating neurons. In humans, expression of GAP-43 has predominantly been examined in skin biopsies from patients with peripheral neuropathies; with several studies showing a reduction in GAP-43 immunoreactive cutaneous nerve fibres. However, it remains elusive whether cutaneous GAP-43 is a valid marker for human nerve regeneration. Here, we present a cohort of 22 patients with electrodiagnostically confirmed carpal tunnel syndrome (CTS), used as a model system for focal nerve injury and neural regeneration after decompression surgery. We evaluate GAP-43 immunoreactivity and RNA expression levels in finger skin biopsies taken before and 6 months after surgery, relative to healthy controls. We further classify patients as 'regenerators' or 'non-regenerators' based on post-surgical epidermal re-innervation. We demonstrate that patients with CTS have lower GAP-43 positive intra-epidermal nerve fibre density (IENFD) before surgery than healthy controls. However, this difference disappears when normalising for total IENFD. Of note, we found surgery did not change GAP-43 expression in IENF, with no differences both in patients who were classified as regenerators and non-regenerators. We also did not identify pre-post surgical differences in cutaneous GAP-43 gene expression or associations with regeneration. These findings suggest cutaneous GAP-43 may not be a compelling marker for nerve regeneration in humans.
Collapse
Affiliation(s)
- Liam Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Oliver Sandy-Hindmarch
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Georgios Baskozos
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Guan Cheng Zhu
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Julia McCarthy
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Annina Schmid
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Qiang Q, Skudder-Hill L, Toyota T, Wei W, Adachi H. CSF GAP-43 as a biomarker of synaptic dysfunction is associated with tau pathology in Alzheimer's disease. Sci Rep 2022; 12:17392. [PMID: 36253408 PMCID: PMC9576773 DOI: 10.1038/s41598-022-20324-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/12/2022] [Indexed: 01/10/2023] Open
Abstract
To test whether cerebrospinal fluid (CSF) growth-associated protein 43 (GAP-43) concentration is elevated in Alzheimer's disease (AD) dementia and its associations with other hallmarks of AD, we examined the CSF GAP-43 measurements of 787 participants (245 cognitively normal (CN), 415 individuals with mild cognitive impairment (MCI) and 127 individuals with AD dementia) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. Associations were investigated between CSF GAP-43 and clinical diagnosis, Aβ/tau/neurodegeneration (AT(N)) status, CSF and blood biomarkers of AD, cognitive measurements and brain neuroimaging findings. CSF GAP-43 levels were increased in patients with AD dementia (mean, 6331.05 pg/ml) compared with the CN (mean, 5001.05 pg/ml) and MCI (mean, 5118.8 pg/ml) (P < 0.001) groups. CSF GAP-43 correlated with CSF phosphorylated tau 181(p-tau) (r = 0.768, P < 0.001), and had high diagnostic accuracy in differentiating tau positive status vs. tau negative status (area under the receiver operating characteristic curve, 0.8606). CSF GAP-43 was particularly elevated among individuals with tau positive status. High CSF GAP-43 was associated with longitudinal deterioration of cognitive scores and brain neuroimaging findings. CSF GAP-43 was associated with a clinical diagnosis of AD dementia and with an individual's tau status, cognitive measurements and findings from neuroimaging. This study implies that CSF GAP-43 as a biomarker of synaptic dysfunction could predict the disease progression of AD patients.
Collapse
Affiliation(s)
- Qiang Qiang
- grid.8547.e0000 0001 0125 2443Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, Shanghai, China ,grid.271052.30000 0004 0374 5913Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Loren Skudder-Hill
- grid.12527.330000 0001 0662 3178Yuquan Hospital, Tsinghua University School of Clinical Medicine, Beijing, China
| | - Tomoko Toyota
- grid.271052.30000 0004 0374 5913Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Wenshi Wei
- grid.8547.e0000 0001 0125 2443Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, Shanghai, China
| | - Hiroaki Adachi
- grid.271052.30000 0004 0374 5913Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| |
Collapse
|
21
|
Non-thermal plasma directly accelerates neuronal proliferation by stimulating axon formation. Sci Rep 2022; 12:15868. [PMID: 36151253 PMCID: PMC9508269 DOI: 10.1038/s41598-022-20063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Among the various methods, Non Thermal Plasma (NTP) has been recently introduced and is being studied to recover the damaged nerve. In the recent years, several studies have suggested that NTP accelerates nerve cell regeneration, but the mechanism remains unknown. This study evaluated the effect of NTP on neuronal proliferation in SH-SY5Y (Human neuroblastoma cells) cells differentiated by retinoic acid (RA) and investigated the mechanism by which NTP promotes cell proliferation. We analyzed the morphology of differentiated SH-SY5Y cells, and performed western blot analysis and reverse transcription polymerase chain reaction (RT-PCR). Immunofluorescence analysis was performed in an in vivo study by categorizing Wistar A rats into three groups: non-nerve damage (Non-ND), nerve damage (ND), and nerve damage + NTP treatment (ND + NTP). The cell morphology analysis revealed that the number of cells increased and axonal elongation progressed after NTP treatment. In addition, western blots indicated that tau expression increased significantly after NTP treatment. The RT-PCR results revealed that the expression of tau, wnt3a, and β-catenin increased after NTP treatment. The in vivo immunofluorescence assay showed that NTP increased the markers for tau and S100B while regulating the over-expression of MAP2 and GAP43. NTP treatment accelerated cell proliferation and regeneration of damaged neurons in differentiated SH-SY5Y cells. These results establish the fact of NTP as a noninvasive and effective treatment for nerve injury.
Collapse
|
22
|
Yan X, He W, Pan S. Amphetamine-induced neurite injury in PC12 cells through inhibiting GAP-43 pathway. Neurotoxicology 2022; 93:103-111. [PMID: 36150536 DOI: 10.1016/j.neuro.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
Amphetamine (AMPH) causes the degeneration of dopamine terminals in the central nervous system. The mechanisms for this damage are unclear. We found AMPH reduced level of GAP-43 in the striatum of rats that receives rich dopaminergic terminals. Using PC12 cells as dopaminergic neuronal models, we further found that AMPH inhibited GAP-43 and GAP-43 phosphorylation in PC12 cells. The reduced GAP-43 was correlated with neurite injury of PC12 cells. The PKCβ1, an upstream molecule of GAP-43, was also inhibited by AMPH. Phorbol 12-myristate 13-acetate (PMA) as a specific activator of PKC increased levels of PKCβ1 and GAP-43, and efficiently prevented neurite degeneration of PC12 cells induced by AMPH. On the other side, enzastuarin, an inhibitor of PKC, decreased levels of PKCβ1 and GAP-43, and caused neurite injury of PC12 cells. Together, our results suggest that AMPH induces neurite injury in PC12 cells through inhibiting PKCβ1/GAP-43 pathway.
Collapse
Affiliation(s)
- Xinyu Yan
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong Province, China; Department of Ultrasound, Yangxin People's Hospital, Yangxin, Hubei Province, China
| | - Wenji He
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong Province, China; Department of Anatomy, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Sanqiang Pan
- Department of Anatomy, Medical College of Jinan University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
23
|
Dan Q, Ma Z, Tan Y, Visar B, Chen L. AQP4 knockout promotes neurite outgrowth via upregulating GAP43 expression in infant rats with hypoxic-ischemic brain injury. IBRAIN 2022; 8:324-337. [PMID: 37786741 PMCID: PMC10528973 DOI: 10.1002/ibra.12062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/04/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (NHIE) induces severe cerebral damage and neurological dysfunction, with seldom effective therapy. Aquaporin-4 (AQP4) is involved in aggravating brain damage induced by NHIE. This study aimed to investigate the role of AQP4 underlying the pathogenesis of NHIE. Neonatal Sprague-Dawley rats were used to establish neonatal hypoxic-ischemic (HI) models, and the expression of AQP4 in the cortex, hippocampus, and lung tissues was detected by real-time quantitative polymerase chain reaction as well as Western blot. Primary cortical neurons were cultured for the oxygen-glucose deprivation (OGD) model, and siRNA was used to silence the expression of AQP4. Immunostaining of Tuj1 was performed to observe the axonal growth. CRISPER/Cas9 technology was used to knock out AQP4. The results demonstrated that AQP4 was upregulated in the cortex, hippocampus, and lung tissues in neonatal rats with HI and OGD neurons. Besides, silencing AQP4 promoted axonal growth of OGD neurons, and AQP4 knockout notably improved long-term neurobehavioral impairment. Furthermore, GAP43 was found closely correlated with AQP4 via GeneMANIA prediction. Significant downregulation of GAP43 was induced in OGD neurons, while AQP4 knockout markedly upregulated its expression in rats. This indicated that the depletion of AQP4 may enhance axonal regeneration and promote the long-term neurobehavioral recovery associated with the upregulation of GAP43 expression.
Collapse
Affiliation(s)
- Qi‐Qin Dan
- National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| | - Zheng Ma
- National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| | - Ya‐Xin Tan
- National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| | - Belegu Visar
- Center for Epigenetics and Induced Pluripotent Stem Cells, Kennedy Krieger InstituteJohns Hopkins UniversityBaltimoreUSA
| | - Li Chen
- National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
24
|
Neuroprotective and Regenerative Effects of Growth Hormone (GH) in the Embryonic Chicken Cerebral Pallium Exposed to Hypoxic-Ischemic (HI) Injury. Int J Mol Sci 2022; 23:ijms23169054. [PMID: 36012320 PMCID: PMC9409292 DOI: 10.3390/ijms23169054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023] Open
Abstract
Prenatal hypoxic−ischemic (HI) injury inflicts severe damage on the developing brain provoked by a pathophysiological response that leads to neural structural lesions, synaptic loss, and neuronal death, which may result in a high risk of permanent neurological deficits or even newborn decease. It is known that growth hormone (GH) can act as a neurotrophic factor inducing neuroprotection, neurite growth, and synaptogenesis after HI injury. In this study we used the chicken embryo to develop both in vitro and in vivo models of prenatal HI injury in the cerebral pallium, which is the equivalent of brain cortex in mammals, to examine whether GH exerts neuroprotective and regenerative effects in this tissue and the putative mechanisms involved in these actions. For the in vitro experiments, pallial cell cultures obtained from chick embryos were incubated under HI conditions (<5% O2, 1 g/L glucose) for 24 h and treated with 10 nM GH, and then collected for analysis. For the in vivo experiments, chicken embryos (ED14) were injected in ovo with GH (2.25 µg), exposed to hypoxia (12% O2) for 6 h, and later the pallial tissue was obtained to perform the studies. Results show that GH exerted a clear anti-apoptotic effect and promoted cell survival and proliferation in HI-injured pallial neurons, in both in vitro and in vivo models. Neuroprotective actions of GH were associated with the activation of ERK1/2 and Bcl-2 signaling pathways. Remarkably, GH protected mature neurons that were particularly harmed by HI injury, but was also capable of stimulating neural precursors. In addition, GH stimulated restorative processes such as the number and length of neurite outgrowth and branching in HI-injured pallial neurons, and these effects were blocked by a specific GH antibody, thus indicating a direct action of GH. Furthermore, it was found that the local expression of several synaptogenic markers (NRXN1, NRXN3, GAP-43, and NLG1) and neurotrophic factors (GH, BDNF, NT-3, IGF-1, and BMP4) were increased after GH treatment during HI damage. Together, these results provide novel evidence supporting that GH exerts protective and restorative effects in brain pallium during prenatal HI injury, and these actions could be the result of a joint effect between GH and endogenous neurotrophic factors. Also, they encourage further research on the potential role of GH as a therapeutic complement in HI encephalopathy treatments.
Collapse
|
25
|
Wang X, Liang J, Sun H. The Network of Tumor Microtubes: An Improperly Reactivated Neural Cell Network With Stemness Feature for Resistance and Recurrence in Gliomas. Front Oncol 2022; 12:921975. [PMID: 35847909 PMCID: PMC9277150 DOI: 10.3389/fonc.2022.921975] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are known as an incurable brain tumor for the poor prognosis and robust recurrence. In recent years, a cellular subpopulation with tumor microtubes (TMs) was identified in brain tumors, which may provide a new angle to explain the invasion, resistance, recurrence, and heterogeneity of gliomas. Recently, it was demonstrated that the cell subpopulation also expresses neural stem cell markers and shares a lot of features with both immature neurons and cancer stem cells and may be seen as an improperly reactivated neural cell network with a stemness feature at later time points of life. TMs may also provide a new angle to understand the resistance and recurrence mechanisms of glioma stem cells. In this review, we innovatively focus on the common features between TMs and sprouting axons in morphology, formation, and function. Additionally, we summarized the recent progress in the resistance and recurrence mechanisms of gliomas with TMs and explained the incurability and heterogeneity in gliomas with TMs. Moreover, we discussed the recently discovered overlap between cancer stem cells and TM-positive glioma cells, which may contribute to the understanding of resistant glioma cell subpopulation and the exploration of the new potential therapeutic target for gliomas.
Collapse
Affiliation(s)
- Xinyue Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhao Liang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Olguin SL, Patel P, Buchanan CN, Dell'Orco M, Gardiner AS, Cole R, Vaughn LS, Sundararajan A, Mudge J, Allan AM, Ortinski P, Brigman JL, Twiss JL, Perrone-Bizzozero NI. KHSRP loss increases neuronal growth and synaptic transmission and alters memory consolidation through RNA stabilization. Commun Biol 2022; 5:672. [PMID: 35798971 PMCID: PMC9262970 DOI: 10.1038/s42003-022-03594-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
The KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein linked to decay of mRNAs with AU-rich elements. KHSRP was previously shown to destabilize Gap43 mRNA and decrease neurite growth in cultured embryonic neurons. Here, we have tested functions of KHSRP in vivo. We find upregulation of 1460 mRNAs in neocortex of adult Khsrp-/- mice, of which 527 bind to KHSRP with high specificity. These KHSRP targets are involved in pathways for neuronal morphology, axon guidance, neurotransmission and long-term memory. Khsrp-/- mice show increased axon growth and dendritic spine density in vivo. Neuronal cultures from Khsrp-/- mice show increased axon and dendrite growth and elevated KHSRP-target mRNAs, including subcellularly localized mRNAs. Furthermore, neuron-specific knockout of Khsrp confirms these are from neuron-intrinsic roles of KHSRP. Consistent with this, neurons in the hippocampus and infralimbic cortex of Khsrp-/- mice show elevations in frequency of miniature excitatory postsynaptic currents. The Khsrp-/- mice have deficits in trace conditioning and attention set-shifting tasks compared Khsrp+/+ mice, indicating impaired prefrontal- and hippocampal-dependent memory consolidation with loss of KHSRP. Overall, these results indicate that deletion of KHSRP impairs neuronal development resulting in alterations in neuronal morphology and function by changing post-transcriptional control of neuronal gene expression.
Collapse
Affiliation(s)
- Sarah L Olguin
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Michela Dell'Orco
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Amy S Gardiner
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Robert Cole
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Lauren S Vaughn
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM, 87505, USA
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Pavel Ortinski
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
- Carolina Autism and Neurodevelopment Center, University of South Carolina, Columbia, SC, 29208, USA.
| | - Nora I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| |
Collapse
|
27
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. A neuromuscular perspective of sarcopenia pathogenesis: deciphering the signaling pathways involved. GeroScience 2022; 44:1199-1213. [PMID: 34981273 DOI: 10.1007/s11357-021-00510-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/18/2022] Open
Abstract
The escalation of life expectancy is accompanied by an increase in the prevalence of age-related conditions, such as sarcopenia. Sarcopenia, a muscle condition defined by low muscle strength, muscle quality or quantity, and physical performance, has a high prevalence among the elderly and is associated to increased mortality. The neuromuscular system has been emerging as a key contributor to sarcopenia pathogenesis. Indeed, the age-related degeneration of the neuromuscular junction (NMJ) function and structure may contribute to the loss of muscle strength and ultimately to the loss of muscle mass that characterize sarcopenia. The present mini-review discusses important signaling pathways involved in the function and maintenance of the NMJ, giving emphasis to the ones that might contribute to sarcopenia pathogenesis. Some conceivable biomarkers, such as C-terminal agrin fragment (CAF) and brain-derived neurotrophic factor (BDNF), and therapeutic targets, namely acetylcholine and calcitonin gene-related peptide (CGRP), can be retrieved, making way to future studies to validate their clinical use.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-Os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal.,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| |
Collapse
|
28
|
Zhang H, Lyu D, Jia J. The Trajectory of Cerebrospinal Fluid Growth-Associated Protein 43 in the Alzheimer's Disease Continuum: A Longitudinal Study. J Alzheimers Dis 2021; 85:1441-1452. [PMID: 34958042 DOI: 10.3233/jad-215456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Synaptic degeneration has been suggested as an early pathological event that strongly correlates with severity of dementia in Alzheimer's disease (AD). However, changes in longitudinal cerebrospinal fluid (CSF) growth-associated protein 43 (GAP-43) as a synaptic biomarker in the AD continuum remain unclear. OBJECTIVE To assess the trajectory of CSF GAP-43 with AD progression and its association with other AD hallmarks. METHODS CSF GAP-43 was analyzed in 788 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI), including 246 cognitively normal (CN) individuals, 415 individuals with mild cognitive impairment (MCI), and 127 with AD dementia based on cognitive assessments. The associations between a multimodal classification scheme with amyloid-β (Aβ), tau, and neurodegeneration, and changes in CSF GAP-43 over time were also analyzed. RESULTS CSF GAP-43 levels were increased at baseline in MCI and dementia patients, and increased significantly over time in the preclinical (Aβ-positive CN), prodromal (Aβ-positive MCI), and dementia (Aβ-positive dementia) stages of AD. Higher levels of CSF GAP-43 were also associated with higher CSF phosphorylated tau (p-tau) and total tau (t-tau), cerebral amyloid deposition and hypometabolism on positron emission tomography, the hippocampus and middle temporal atrophy, and cognitive performance deterioration at baseline and follow-up. Furthermore, CSF GAP-43 may assist in effectively predicting the probability of dementia onset at 2- or 4-year follow-up. CONCLUSION CSF GAP-43 can be used as a potential biomarker associated with synaptic degeneration in subjects with AD; it may also be useful for tracking the disease progression and for monitoring the effects of clinical trials.
Collapse
Affiliation(s)
- Heng Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Diyang Lyu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | | |
Collapse
|
29
|
Nakano A, Yang X, Kuboyama T, Inada Y, Tohda C. Intrathecal Infusion of Diosgenin during the Chronic Phase of Spinal Cord Injury Ameliorates Motor Function and Axonal Density. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Zhao H, Liu ZD, Zhang YB, Gao XY, Wang C, Liu Y, Wang XF. NEP1‑40 promotes myelin regeneration via upregulation of GAP‑43 and MAP‑2 expression after focal cerebral ischemia in rats. Mol Med Rep 2021; 24:844. [PMID: 34643252 PMCID: PMC8524407 DOI: 10.3892/mmr.2021.12484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 01/26/2023] Open
Abstract
Axon regeneration after lesions to the central nervous system (CNS) is largely limited by the presence of growth inhibitory molecules expressed in myelin. Nogo‑A is a principal inhibitor of neurite outgrowth, and blocking the activity of Nogo‑A can induce axonal sprouting and functional recovery. However, there are limited data on the expression of Nogo‑A after CNS lesions, and the mechanism underlying its influences on myelin growth remains unknown. The aim of the present study was to observe the time course of Nogo‑A after cerebral ischemia/reperfusion in rats using immunohistochemistry and western blot techniques, and to test the effect of its inhibitor Nogo extracellular peptide 1‑40 (NEP1‑40) on neural plasticity proteins, growth‑associated binding protein 43 (GAP‑43) and microtubule associated protein 2 (MAP‑2), as a possible mechanism underlying myelin suppression. A classic model of middle cerebral artery occlusion (MCAO) was established in Sprague‑Dawley rats, which were divided into three groups: i) MCAO model group; ii) MCAO + saline group; and iii) MCAO + NEP1‑40 group. Rats of each group were divided into five subgroups by time points as follows: days 1, 3, 7, 14 and 28. Animals that only received sham operation were used as controls. The Nogo‑A immunoreactivity was located primarily in the cytoplasm of oligodendrocytes. The number of Nogo‑A immunoreactive cells significantly increased from day 1 to day 3 after MCAO, nearly returning to the control level at day 7, increased again at day 14 and decreased at day 28. Myelin basic protein (MBP) immunoreactivity in the ipsilateral striatum gradually decreased from day 1 to day 28 after ischemia, indicating myelin loss appeared at early time points and continuously advanced during ischemia. Then, intracerebroventricular infusion of NEP1‑40, which is a Nogo‑66 receptor antagonist peptide, was administered at days 1, 3 and 14 after MCAO. It was observed that GAP‑43 considerably increased from day 1 to day 7 and then decreased to a baseline level at day 28 compared with the control. MAP‑2 expression across days 1‑28 significantly decreased after MCAO. Administration of NEP1‑40 attenuated the reduction of MBP, and upregulated GAP‑43 and MAP‑2 expression at the corresponding time points after MCAO compared with the MCAO + saline group. The present results indicated that NEP1‑40 ameliorated myelin damage and promoted regeneration by upregulating the expression of GAP‑43 and MAP‑2 related to neuronal and axonal plasticity, which may aid with the identification of a novel molecular mechanism of restriction in CNS regeneration mediated by Nogo‑A after ischemia in rats.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China,Correspondence to: Professor Hong Zhao, Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, 826 Xi Nan Road, Dalian, Liaoning 116033, P.R. China, E-mail:
| | - Zhen-Dong Liu
- Department of General Medicine, Central Hospital Affiliated to Shaoxing University, Shaoxing, Zhejiang 312000, P.R. China
| | - Yong-Bo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xiao-Yu Gao
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Cui Wang
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Xun-Fen Wang
- Department of Neurology, Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| |
Collapse
|
31
|
Garone MG, Birsa N, Rosito M, Salaris F, Mochi M, de Turris V, Nair RR, Cunningham TJ, Fisher EMC, Morlando M, Fratta P, Rosa A. ALS-related FUS mutations alter axon growth in motoneurons and affect HuD/ELAVL4 and FMRP activity. Commun Biol 2021; 4:1025. [PMID: 34471224 PMCID: PMC8410767 DOI: 10.1038/s42003-021-02538-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in the RNA-binding protein (RBP) FUS have been genetically associated with the motoneuron disease amyotrophic lateral sclerosis (ALS). Using both human induced pluripotent stem cells and mouse models, we found that FUS-ALS causative mutations affect the activity of two relevant RBPs with important roles in neuronal RNA metabolism: HuD/ELAVL4 and FMRP. Mechanistically, mutant FUS leads to upregulation of HuD protein levels through competition with FMRP for HuD mRNA 3'UTR binding. In turn, increased HuD levels overly stabilize the transcript levels of its targets, NRN1 and GAP43. As a consequence, mutant FUS motoneurons show increased axon branching and growth upon injury, which could be rescued by dampening NRN1 levels. Since similar phenotypes have been previously described in SOD1 and TDP-43 mutant models, increased axonal growth and branching might represent broad early events in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Maria Giovanna Garone
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Nicol Birsa
- UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Maria Rosito
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Federico Salaris
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Michela Mochi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Valeria de Turris
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | | | | | | | - Mariangela Morlando
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Perugia, Italy
| | - Pietro Fratta
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Alessandro Rosa
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy.
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
32
|
In Vitro and In Vivo Effects of Nobiletin on DRG Neurite Elongation and Axon Growth after Sciatic Nerve Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18178988. [PMID: 34501579 PMCID: PMC8431276 DOI: 10.3390/ijerph18178988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/15/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022]
Abstract
Sciatic nerve injury (SNI) leads to sensory and motor dysfunctions. Nobiletin is a major component of polymethoxylated flavonoid extracted from citrus fruits. The role of nobiletin on sciatic nerve regeneration is still unclear. Thus, the purpose of this study was to investigate whether nobiletin increases DRG neurite elongation and regeneration-related protein expression after SNI. Cytotoxicity of nobiletin was measured in a concentration–dependent manner using the MTT assay. For an in vitro primary cell culture, the sciatic nerve on the middle thigh was crushed by holding twice with forceps. Dorsal root ganglion (DRG) and Schwann cells were cultured 3 days after SNI and harvested 36 h later and 3 days later, respectively. In order to evaluate specific regeneration-related markers and axon growth in the injured sciatic nerve, we applied immunofluorescence staining and Western blot techniques. Nobiletin increased cell viability in human neuroblastoma cells and inhibited cytotoxicity induced by exposure to H2O2. Mean neurite length of DRG neurons was significantly increased in the nobiletin group at a dose of 50 and 100 μM compared to those at other concentrations. GAP-43, a specific marker for axonal regeneration, was enhanced in injury preconditioned Schwann cells with nobiletin treatment and nobiletin significantly upregulated it in injured sciatic nerve at only 3 days post crush (dpc). In addition, nobiletin dramatically facilitated axonal regrowth via activation of the BDNF-ERK1/2 and AKT pathways. These results should provide evidence to distinguish more accurately the biochemical mechanisms regarding nobiletin-activated sciatic nerve regeneration.
Collapse
|
33
|
Marufa SA, Hsieh TH, Liou JC, Chen HY, Peng CW. Neuromodulatory effects of repetitive transcranial magnetic stimulation on neural plasticity and motor functions in rats with an incomplete spinal cord injury: A preliminary study. PLoS One 2021; 16:e0252965. [PMID: 34086836 PMCID: PMC8177618 DOI: 10.1371/journal.pone.0252965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
We investigated the effects of intermittent theta-burst stimulation (iTBS) on locomotor function, motor plasticity, and axonal regeneration in an animal model of incomplete spinal cord injury (SCI). Aneurysm clips with different compression forces were applied extradurally around the spinal cord at T10. Motor plasticity was evaluated by examining the motor evoked potentials (MEPs). Long-term iTBS treatment was given at the post-SCI 5th week and continued for 2 weeks (5 consecutive days/week). Time-course changes in locomotor function and the axonal regeneration level were measured by the Basso Beattie Bresnahan (BBB) scale, and growth-associated protein (GAP)-43 expression was detected in brain and spinal cord tissues. iTBS-induced potentiation was reduced at post-1-week SCI lesion and had recovered by 4 weeks post-SCI lesion, except in the severe group. Multiple sessions of iTBS treatment enhanced the motor plasticity in all SCI rats. The locomotor function revealed no significant changes between pre- and post-iTBS treatment in SCI rats. The GAP-43 expression level in the spinal cord increased following 2 weeks of iTBS treatment compared to the sham-treatment group. This preclinical model may provide a translational platform to further investigate therapeutic mechanisms of transcranial magnetic stimulation and enhance the possibility of the potential use of TMS with the iTBS scheme for treating SCIs.
Collapse
Affiliation(s)
- Siti Ainun Marufa
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Physical Therapy Department, Faculty of Health Science, University of Muhammadiyah Malang, Indonesia
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jian-Chiun Liou
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Yung Chen
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Wei Peng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- School of Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
34
|
Okada M, Kawagoe Y, Sato Y, Nozumi M, Ishikawa Y, Tamada A, Yamazaki H, Sekino Y, Kanemura Y, Shinmyo Y, Kawasaki H, Kaneko N, Sawamoto K, Fujii Y, Igarashi M. Phosphorylation of GAP-43 T172 is a molecular marker of growing axons in a wide range of mammals including primates. Mol Brain 2021; 14:66. [PMID: 33832520 PMCID: PMC8034164 DOI: 10.1186/s13041-021-00755-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
GAP-43 is a vertebrate neuron-specific protein and that is strongly related to axon growth and regeneration; thus, this protein has been utilized as a classical molecular marker of these events and growth cones. Although GAP-43 was biochemically characterized more than a quarter century ago, how this protein is related to these events is still not clear. Recently, we identified many phosphorylation sites in the growth cone membrane proteins of rodent brains. Two phosphorylation sites of GAP-43, S96 and T172, were found within the top 10 hit sites among all proteins. S96 has already been characterized (Kawasaki et al., 2018), and here, phosphorylation of T172 was characterized. In vitro (cultured neurons) and in vivo, an antibody specific to phosphorylated T172 (pT172 antibody) specifically recognized cultured growth cones and growing axons in developing mouse neurons, respectively. Immunoblotting showed that pT172 antigens were more rapidly downregulated throughout development than those of pS96 antibody. From the primary structure, this phosphorylation site was predicted to be conserved in a wide range of animals including primates. In the developing marmoset brainstem and in differentiated neurons derived from human induced pluripotent stem cells, immunoreactivity with pT172 antibody revealed patterns similar to those in mice. pT172 antibody also labeled regenerating axons following sciatic nerve injury. Taken together, the T172 residue is widely conserved in a wide range of mammals including primates, and pT172 is a new candidate molecular marker for growing axons.
Collapse
Affiliation(s)
- Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan
- Medical and Dental Hospital, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan
- Departments of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Yosuke Kawagoe
- Departments of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Yuta Sato
- Departments of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, 951-8510, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Motohiro Nozumi
- Departments of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Yuya Ishikawa
- Departments of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, 951-8510, Japan
- Department of Orthopedic Surgery, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan
| | - Atsushi Tamada
- Departments of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, 951-8510, Japan
- Department of iPS Cell Applied Medicine, Faculty of Medicine, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuko Sekino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan
- Medical and Dental Hospital, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, Japan
| | - Michihiro Igarashi
- Departments of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Niigata, 951-8510, Japan.
| |
Collapse
|
35
|
Fuertes-Alvarez S, Izeta A. Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction. Aging Dis 2021; 12:494-514. [PMID: 33815879 PMCID: PMC7990373 DOI: 10.14336/ad.2020.0708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Action potential is transmitted to muscle fibers through specialized synaptic interfaces called neuromuscular junctions (NMJs). These structures are capped by terminal Schwann cells (tSCs), which play essential roles during formation and maintenance of the NMJ. tSCs are implicated in the correct communication between nerves and muscles, and in reinnervation upon injury. During aging, loss of muscle mass and strength (sarcopenia and dynapenia) are due, at least in part, to the progressive loss of contacts between muscle fibers and nerves. Despite the important role of tSCs in NMJ function, very little is known on their implication in the NMJ-aging process and in age-associated denervation. This review summarizes the current knowledge about the implication of tSCs in the age-associated degeneration of NMJs. We also speculate on the possible mechanisms underlying the observed phenotypes.
Collapse
Affiliation(s)
- Sandra Fuertes-Alvarez
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain
| | - Ander Izeta
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain.,2Tecnun-University of Navarra, School of Engineering, Department of Biomedical Engineering and Science, Paseo Mikeletegi, 48, San Sebastian 20009, Spain
| |
Collapse
|
36
|
Manganas LN, Durá I, Osenberg S, Semerci F, Tosun M, Mishra R, Parkitny L, Encinas JM, Maletic-Savatic M. BASP1 labels neural stem cells in the neurogenic niches of mammalian brain. Sci Rep 2021; 11:5546. [PMID: 33692421 PMCID: PMC7970918 DOI: 10.1038/s41598-021-85129-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/04/2021] [Indexed: 11/08/2022] Open
Abstract
The mechanisms responsible for determining neural stem cell fate are numerous and complex. To begin to identify the specific components involved in these processes, we generated several mouse neural stem cell (NSC) antibodies against cultured mouse embryonic neurospheres. Our immunohistochemical data showed that the NSC-6 antibody recognized NSCs in the developing and postnatal murine brains as well as in human brain organoids. Mass spectrometry revealed the identity of the NSC-6 epitope as brain abundant, membrane-attached signal protein 1 (BASP1), a signaling protein that plays a key role in neurite outgrowth and plasticity. Western blot analysis using the NSC-6 antibody demonstrated multiple BASP1 isoforms with varying degrees of expression and correlating with distinct developmental stages. Herein, we describe the expression of BASP1 in NSCs in the developing and postnatal mammalian brains and human brain organoids, and demonstrate that the NSC-6 antibody may be a useful marker of these cells.
Collapse
Affiliation(s)
- Louis N Manganas
- Department of Neurology, Stony Brook University Medical Center, Stony Brook, NY, USA.
- Department of Neurology, Stony Brook University Medical Center, Health Sciences Center T-12, room 020, Stony Brook, NY, 11794, USA.
| | - Irene Durá
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sivan Osenberg
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Fatih Semerci
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Mehmet Tosun
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Rachana Mishra
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Luke Parkitny
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Juan M Encinas
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- The Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mirjana Maletic-Savatic
- Department of Neurology, Stony Brook University Medical Center, Stony Brook, NY, USA.
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Departments of Pediatrics, Neurology, and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children Hospital, 1250 Moursund St., Rm 1250, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Uppal SK, Uhlendorf TL, Nuryyev RL, Saenz J, Shanmugam M, Ochoa J, Van Trigt W, Malone CS, St. Julian AP, Kopyov O, Kopyov A, Cohen RW. Human neural progenitor cells ameliorate NMDA-induced hippocampal degeneration and related functional deficits. AIMS MEDICAL SCIENCE 2021. [DOI: 10.3934/medsci.2021021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>It has been established that the CA3 region of the hippocampus is involved in consolidating short-term memory to long-term memory and aids in spatial navigation retention. Seizures and many neurologic diseases induce damage to that region of the hippocampus, resulting in deficits in memory consolidation and spatial navigation. Drug treatments have been proven to have limited effectiveness, but cell replacement therapy has demonstrated to be more promising. Celavie Biosciences have developed a multipotent, nontumorigenic human neural progenitor cell (hNPC) line shown to have the ability to migrate <italic>in situ</italic>, reducing structural and functional deficits in neurodegenerative animal models. Here, we examined whether transplanted hNPCs would reestablish the memories of Han-Wistar rats subjected to hippocampal excitotoxic lesioning. The rats were lesioned in the CA3c regions at 50 days bilaterally with the neurotoxin NMDA (1 µl containing 7.5 mg/ml; −3.5 mm AP; ±2.0 L and −2.5 V). At 54 days of age, live hNPCs (500000 cells in 5 µl cell suspension media), frozen-killed hNPCs (500000 cells/5 µl), HEK293T cells (500000 cells/5 µl) or vehicle (cell suspension media; 5 µl) were bilaterally implanted directly into the NMDA damaged area. The rats were tested two weeks later with three different memory tests: novel and place-object assays and the water-maze task. Results showed that rats receiving live hNPC implantation performed significantly better in the water maze task than control groups; yet, novel and place-object test results showed no significant differences among treatments. Histology confirmed the survival of implanted hNPCs after 28 days post-implantation as well as showing neuroprotective effects. This study showed that Celavie's hNPCs were able to survive and improve some but not all hippocampal functionality, emphasizing the promise for cell replacement therapeutics for neurodegenerative disorders.</p>
</abstract>
Collapse
|
38
|
Zhang C, Cui L, He W, Zhang X, Liu H. Dl-3-n-butylphthalide promotes neurite outgrowth of primary cortical neurons by Sonic Hedgehog signaling via upregulating Gap43. Exp Cell Res 2020; 398:112420. [PMID: 33296663 DOI: 10.1016/j.yexcr.2020.112420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Neurite outgrowth is the basis for wiring during the development of the nervous system. Dl-3-n-butylphthalide (NBP) has been recognized as a promising treatment to improve behavioral, neurological and cognitive outcomes in ischemic stroke. However, little is known about the effect and mechanism of NBP on the neurite outgrowth. In this study, we used different methods to investigate the potential effects of NBP on the neurite extension and plasticity of immature and mature primary cortical neurons and explored the underlying mechanisms. Our results demonstrated that in immature and mature cortical neurons, NBP promoted the neurite length and intersections, increased neuritic arborization, elevated numbers of neurite branch and terminal points and improved neurite complexity and plasticity of neuronal development processes. Besides, our data revealed that NBP promoted neurite extension and branching partly by activating Shh signaling pathway via increasing Gap43 expression both in immature and mature primary cortical neurons. The present study provided new insights into the contribution of NBP in neuronal plasticity and unveiled a novel pathway to induce Gap43 expression in primary cortical neurons.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Radiology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Lili Cui
- Department of Neurology, Second Hospital of Hebei Medical University; Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Weiliang He
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University; Shijiazhuang, Hebei, China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Huaijun Liu
- Department of Radiology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
39
|
Chung D, Shum A, Caraveo G. GAP-43 and BASP1 in Axon Regeneration: Implications for the Treatment of Neurodegenerative Diseases. Front Cell Dev Biol 2020; 8:567537. [PMID: 33015061 PMCID: PMC7494789 DOI: 10.3389/fcell.2020.567537] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/14/2020] [Indexed: 01/06/2023] Open
Abstract
Growth-associated protein-43 (GAP-43) and brain acid-soluble protein 1 (BASP1) regulate actin dynamics and presynaptic vesicle cycling at axon terminals, thereby facilitating axonal growth, regeneration, and plasticity. These functions highly depend on changes in GAP-43 and BASP1 expression levels and post-translational modifications such as phosphorylation. Interestingly, examinations of GAP-43 and BASP1 in neurodegenerative diseases reveal alterations in their expression and phosphorylation profiles. This review provides an overview of the structural properties, regulations, and functions of GAP-43 and BASP1, highlighting their involvement in neural injury response and regeneration. By discussing GAP-43 and BASP1 in the context of neurodegenerative diseases, we also explore the therapeutic potential of modulating their activities to compensate for neuron loss in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daayun Chung
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrew Shum
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gabriela Caraveo
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
40
|
Jeziorska M, Atkinson A, Kass-Iliyya L, Kobylecki C, Gosal D, Marshall A, Malik RA, Silverdale M. Small Fibre Neuropathy in Parkinson's Disease: Comparison of Skin Biopsies from the More Affected and Less Affected Sides. JOURNAL OF PARKINSONS DISEASE 2020; 9:761-765. [PMID: 31381529 PMCID: PMC6839493 DOI: 10.3233/jpd-191697] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We assessed small nerve fibre degeneration and regeneration in more and less affected sides in Parkinson’s disease (PD). Bilateral skin biopsies from 23 PD patients were immunostained for PGP9.5 for Intraepidermal Nerve Fibre Density (IENFD) and GAP-43 for mean axonal length (MAL), total epidermal (TNFL) and subepidermal nerve fibre length (SKTNFL). IENFD (p < 0.001) and SKTNFL (p < 0.001) were lower, whilst MAL (p < 0.001) and TNFL (p < 0.05) were higher in more affected versus less affected side. These results suggest increased small nerve fibre degeneration accompanied by enhanced nerve regeneration on the side more affected by PD and GAP-43 usefulness in skin biopsy assessment.
Collapse
Affiliation(s)
- Maria Jeziorska
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Andrew Atkinson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Lewis Kass-Iliyya
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Christopher Kobylecki
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Gosal
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Andrew Marshall
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Rayaz A Malik
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.,Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Monty Silverdale
- Department of Neurology, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
41
|
O'Hare Doig RL, Santhakumar S, Fehily B, Raja S, Solomon T, Bartlett CA, Fitzgerald M, Hodgetts SI. Acute Cellular and Functional Changes With a Combinatorial Treatment of Ion Channel Inhibitors Following Spinal Cord Injury. Front Mol Neurosci 2020; 13:85. [PMID: 32670018 PMCID: PMC7331598 DOI: 10.3389/fnmol.2020.00085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/24/2020] [Indexed: 01/12/2023] Open
Abstract
Reducing the extent of secondary degeneration following spinal cord injury (SCI) is necessary to preserve function, but treatment options have thus far been limited. A combination of the ion channel inhibitors Lomerizine (Lom), YM872 and oxATP, to inhibit voltage-gated Ca2+ channels, Ca2+ permeable AMPA receptors, and purinergic P2X7 receptors respectively, effectively limits secondary consequences of injury in in vitro and in vivo models of CNS injury. Here, we investigated the efficacy of these inhibitors in a clinically relevant model of SCI. Fischer (F344) rats were subjected to a moderate (150 kD) contusive SCI at thoracic level T10 and assessed at 2 weeks or 10 weeks post-injury. Lom was delivered orally twice daily and YM872 and oxATP were delivered via osmotic mini-pump implanted at the time of SCI until 2 weeks following injury. Open field locomotion analysis revealed that treatment with the three inhibitors in combination improved the rate of functional recovery of the hind limb (compared to controls) as early as 1-day post-injury, with beneficial effects persisting to 14 days post-injury, while all three inhibitors were present. At 2 weeks following combinatorial treatment, the functional improvement was associated with significantly decreased cyst size, increased immunoreactivity of β-III tubulin+ve axons, myelin basic protein, and reduced lipid peroxidation by-products, and increased CC1+ve oligodendrocytes and NG2+ve/PDGFα+ve oligodendrocyte progenitor cell densities, compared to vehicle-treated SCI animals. The combination of Lom, oxATP, and YM872 shows preclinical promise for control of secondary degeneration following SCI, and further investigation of long-term sustained treatment is warranted.
Collapse
Affiliation(s)
- Ryan L O'Hare Doig
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Neil Sachse Centre for Spinal Cord Research, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Adelaide Spinal Research Group, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sreya Santhakumar
- Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Brooke Fehily
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Sushmitha Raja
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Tanya Solomon
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Nedlands, WA, Australia
| | - Stuart I Hodgetts
- Experimental and Regenerative Neurosciences, School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| |
Collapse
|
42
|
Zhai X, Li J, Li L, Sun Y, Zhang X, Xue Y, Lv J, Gao Y, Li S, Yan W, Yin S, Xiao Z. L-lactate preconditioning promotes plasticity-related proteins expression and reduces neurological deficits by potentiating GPR81 signaling in rat traumatic brain injury model. Brain Res 2020; 1746:146945. [PMID: 32531223 DOI: 10.1016/j.brainres.2020.146945] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/16/2023]
Abstract
Currently, there is no efficacious pharmacological treatment for traumatic brain injury (TBI). Previous studies revealed that L-lactate preconditioning has shown rich neuroprotective effects against cerebral ischemia, and therefore has the potential to improve neurological outcomes after TBI. L-lactate played a neuroprotective role by activating GPR81 in diseases of the central nervous system (CNS) such as TBI and cerebral ischemia. In this study we investigated the effects of L-lactate preconditioning on TBI and explored the underlying mechanisms. In this study, the mNSS test revealed that L-lactate preconditioning alleviates the neurological deficit caused by TBI in rats. L-lactate preconditioning significantly increased the expression of GPR81, PSD95, GAP43, BDNF, and MCT2 24 h after TBI in the cortex and hippocampus compared with the sham group. Taken together, these data suggested that L-lactate preconditioning is an effective method with which to recover neurological function after TBI. This reveals the mechanism of L-lactate preconditioning on TBI and provides a potential therapeutic method for TBI in humans.
Collapse
Affiliation(s)
- Xiuli Zhai
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Jinying Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Ye Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Xiaonan Zhang
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Ying Xue
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Jiaxin Lv
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Ye Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Shouxin Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Wei Yan
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Shengming Yin
- Department of Physiology, Dalian Medical University, Dalian 116044, China.
| | - Zhaoyang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China.
| |
Collapse
|
43
|
Cdk5 Phosphorylation of STAT3 in Dorsal Root Ganglion Neurons Is Involved in Promoting Axonal Regeneration After Peripheral Nerve Injury. Int Neurourol J 2020; 24:S19-27. [PMID: 32482054 PMCID: PMC7285696 DOI: 10.5213/inj.2040158.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The goal of this study is to investigate the role of cyclin-dependent kinase 5 (Cdk5) in axonal regeneration in dorsal root ganglion (DRG) neurons after peripheral nerve injury. METHODS Crush injury was given on the sciatic nerve in rats. The DRG tissues were prepared 1, 3, and 7 days after injury and used for western blotting and immunofluorescence staining experiments. Primary DRG neurons were prepared and treated with Cdk5 inhibitor roscovitine or used for transfections with plasmid constructs. After immunofluorescence staining, neurite length of DRG neurons was analyzed and compared among experimental groups. In addition, roscovitine was injected into the DRG in vivo, and the sciatic nerve after injury was prepared and used for immunofluorescence staining to analyze axonal regeneration in nerve sections. RESULTS Levels of Cdk5 and p25 were increased in DRG neurons after sciatic nerve injury (SNI). Levels of S727-p-STAT3, but not Y705-p-STAT3, were increased in the DRG. Immunofluorescence staining revealed that Cdk5 and STAT3 proteins were mostly colocalized in DRG neurons and Y705-p-STAT3 signals were localized within the nucleus area of DRG neurons. A blockade of Cdk5 activity by roscovitine or by transfection with dominant negative Cdk5 (dn-Cdk5) and nonphosphorylatable forms of STAT3 (S727A or Y705F) resulted in significant reductions of the neurite outgrowth of cultured DRG neurons. In vivo administration of roscovitine into the DRG markedly attenuated distal elongation of regenerating axons in the sciatic nerve after injury. CONCLUSION Our study demonstrated that Cdk5 activity induced from DRG neurons after SNI increased phosphorylation of STAT3. The activation of Cdk5-STAT3 pathway may be involved in promoting axonal regeneration in the peripheral nerve after injury.
Collapse
|
44
|
Wang D, Chen Y, Liu M, Cao Q, Wang Q, Zhou S, Wang Y, Mao S, Gu X, Luo Z, Yu B. The long noncoding RNA Arrl1 inhibits neurite outgrowth by functioning as a competing endogenous RNA during neuronal regeneration in rats. J Biol Chem 2020; 295:8374-8386. [PMID: 32336677 DOI: 10.1074/jbc.ra119.011917] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/22/2020] [Indexed: 01/02/2023] Open
Abstract
The intrinsic regeneration ability of neurons is a pivotal factor in the repair of peripheral nerve injury. Therefore, identifying the key modulators of nerve regeneration may help improve axon regeneration and functional recovery after injury. Unlike for classical transcription factors and regeneration-associated genes, the function of long noncoding RNAs (lncRNAs) in the regulation of neuronal regeneration remains mostly unknown. In this study, we used RNA-Seq-based transcriptome profiling to analyze the expression patterns of lncRNAs and mRNAs in rat dorsal root ganglion (DRG) following sciatic nerve injury. Analyses using the lncRNA-mRNA co-expression network, gene ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway databases indicated that the lncRNA Arrl1 decreases neurite outgrowth after neuronal injury. shRNA-mediated Arrl1 silencing increased axon regeneration both in vitro and in vivo and improved functional recovery of the sciatic nerve. Moreover, inhibiting an identified target gene of Arrl1, cyclin-dependent kinase inhibitor 2B (Cdkn2b), markedly promoted neurite outgrowth of DRG neurons. We also found that Arrl1 acts as a competing endogenous RNA that sponges a Cdkn2b repressor, microRNA-761 (miR-761), and thereby up-regulates Cdkn2b expression during neuron regeneration. We conclude that the lncRNA Arrl1 affects the intrinsic regeneration of DRG neurons by derepressing Cdkn2b expression. Our findings indicate a role for an lncRNA-microRNA-kinase pathway in the regulation of axon regeneration and functional recovery following peripheral nerve injury in rats.
Collapse
Affiliation(s)
- Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yanping Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mingwen Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qianqian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qihui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuoshuo Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Zhenge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China .,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
45
|
Jawaid T, Kamal M, Azmi L, A. Alkhame O, M. Alsanad S. Neuroprotective Effect of Bambusa arundinaceae Leaves Extract on Learning and Memory Impairment in Mice: Impact on NR2B, NR1 and GAP Pathways. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.244.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Tunneling Nanotubes and Tumor Microtubes in Cancer. Cancers (Basel) 2020; 12:cancers12040857. [PMID: 32244839 PMCID: PMC7226329 DOI: 10.3390/cancers12040857] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Intercellular communication among cancer cells and their microenvironment is crucial to disease progression. The mechanisms by which communication occurs between distant cells in a tumor matrix remain poorly understood. In the last two decades, experimental evidence from different groups proved the existence of thin membranous tubes that interconnect cells, named tunneling nanotubes, tumor microtubes, cytonemes or membrane bridges. These highly dynamic membrane protrusions are conduits for direct cell-to-cell communication, particularly for intercellular signaling and transport of cellular cargo over long distances. Tunneling nanotubes and tumor microtubes may play an important role in the pathogenesis of cancer. They may contribute to the resistance of tumor cells against treatments such as surgery, radio- and chemotherapy. In this review, we present the current knowledge about the structure and function of tunneling nanotubes and tumor microtubes in cancer and discuss the therapeutic potential of membrane tubes in cancer treatment.
Collapse
|
47
|
Merino P, Diaz A, Torre ER, Yepes M. Urokinase-type plasminogen activator (uPA) regulates the expression and function of growth-associated protein 43 (GAP-43) in the synapse. J Biol Chem 2019; 295:619-630. [PMID: 31819012 DOI: 10.1074/jbc.ra119.010644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/19/2019] [Indexed: 11/06/2022] Open
Abstract
Growth-associated protein 43 (GAP-43) plays a central role in the formation of presynaptic terminals, synaptic plasticity, and axonal growth and regeneration. During development, GAP-43 is found in axonal extensions of most neurons. In contrast, in the mature brain, its expression is restricted to a few presynaptic terminals and scattered axonal growth cones. Urokinase-type plasminogen activator (uPA) is a serine proteinase that, upon binding to its receptor (uPAR), catalyzes the conversion of plasminogen into plasmin and activates signaling pathways that promote cell migration, proliferation, and survival. In the developing brain, uPA induces neuritogenesis and neuronal migration. In contrast, the expression and function of uPA in the mature brain are poorly understood. However, recent evidence reveals that different forms of injury induce release of uPA and expression of uPAR in neurons and that uPA/uPAR binding triggers axonal growth and synapse formation. Here we show that binding of uPA to uPAR induces not only the mobilization of GAP-43 from the axonal shaft to the presynaptic terminal but also its activation in the axonal bouton by PKC-induced calcium-dependent phosphorylation at Ser-41 (pGAP-43). We found that this effect requires open presynaptic N-methyl-d-aspartate receptors but not plasmin generation. Furthermore, our work reveals that, following its activation by uPA/uPAR binding, pGAP-43 colocalizes with presynaptic vesicles and triggers their mobilization to the synaptic release site. Together, these data reveal a novel role of uPA as an activator of the synaptic vesicle cycle in cerebral cortical neurons via its ability to induce presynaptic recruitment and activation of GAP-43.
Collapse
Affiliation(s)
- Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208
| | - Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208
| | - Enrique R Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia 30329-4208; Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322-0001; Department of Neurology, Veterans Affairs Medical Center, Atlanta, Georgia 30033-4004.
| |
Collapse
|
48
|
Restored presynaptic synaptophysin and cholinergic inputs contribute to the protective effects of physical running on spatial memory in aged mice. Neurobiol Dis 2019; 132:104586. [DOI: 10.1016/j.nbd.2019.104586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 01/16/2023] Open
|
49
|
Effect of chronic methylphenidate treatment on hippocampal neurovascular unit and memory performance in late adolescent rats. Eur Neuropsychopharmacol 2019; 29:195-210. [PMID: 30554860 DOI: 10.1016/j.euroneuro.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/13/2018] [Accepted: 12/01/2018] [Indexed: 12/21/2022]
Abstract
Methylphenidate (MPH) is the classic treatment for attention deficit hyperactivity disorder (ADHD) among children and adults. Despite its beneficial effects, non-medical use of MPH is nowadays a problem with high impact on society. Thus, our goal was to uncover the neurovascular and cognitive effects of MPH chronic use during a critical period of development in control conditions. For that, male Wistar Kyoto rats were treated with MPH (1.5 or 5 mg/kg/day at weekdays, per os) from P28 to P55. We concluded that the higher dose of MPH caused hippocampal blood-brain barrier (BBB) hyperpermeability by vesicular transport (transcytosis) concomitantly with the presence of peripheral immune cells in the brain parenchyma. These observations were confirmed by in vitro studies, in which the knockdown of caveolin-1 in human brain endothelial cells prevented the increased permeability and leukocytes transmigration triggered by MPH (100 µM, 24 h). Furthermore, MPH led to astrocytic atrophy and to a decrease in the levels of several synaptic proteins and impairment of AKT/CREB signaling, together with working memory deficit assessed in the Y-maze test. On the contrary, we verified that the lower dose of MPH (1.5 mg/kg/day) increased astrocytic processes and upregulated several neuronal proteins as well as signaling pathways involved in synaptic plasticity culminating in working memory improvement. In conclusion, the present study reveals that a lower dose of MPH in normal rats improves memory performance being associated with the modulation of astrocytic morphology and synaptic machinery. However, a higher dose of MPH leads to BBB dysfunction and memory impairment.
Collapse
|
50
|
Jung E, Alfonso J, Osswald M, Monyer H, Wick W, Winkler F. Emerging intersections between neuroscience and glioma biology. Nat Neurosci 2019; 22:1951-1960. [PMID: 31719671 DOI: 10.1038/s41593-019-0540-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022]
Abstract
The establishment of neuronal and glial networks in the brain depends on the activities of neural progenitors, which are influenced by cell-intrinsic mechanisms, interactions with the local microenvironment and long-range signaling. Progress in neuroscience has helped identify key factors in CNS development. In parallel, studies in recent years have increased our understanding of molecular and cellular factors in the development and growth of primary brain tumors. To thrive, glioma cells exploit pathways that are active in normal CNS progenitor cells, as well as in normal neurotransmitter signaling. Furthermore, tumor cells of incurable gliomas integrate into communicating multicellular networks, where they are interconnected through neurite-like cellular protrusions. In this Review, we discuss evidence that CNS development, organization and function share a number of common features with glioma progression and malignancy. These include mechanisms used by cells to proliferate and migrate, interact with their microenvironment and integrate into multicellular networks. The emerging intersections between the fields of neuroscience and neuro-oncology considered in this review point to new research directions and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Erik Jung
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Osswald
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Clinical Neurobiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany. .,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|