1
|
Duran M, Willis JR, Dalvi N, Fokakis Z, Virkus SA, Hardaway JA. Integration of Glucagon-Like Peptide 1 Receptor Actions Through the Central Amygdala. Endocrinology 2025; 166:bqaf019. [PMID: 39888375 PMCID: PMC11850305 DOI: 10.1210/endocr/bqaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/31/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Understanding the detailed mechanism of action of glucagon-like peptide 1 receptor (GLP-1R) agonists on distinct topographic and genetically defined brain circuits is critical for improving the efficacy and mitigating adverse side effects of these compounds. In this mini-review, we propose that the central nucleus of the amygdala (CeA) is a critical mediator of GLP-1R agonist-driven hypophagia. Here, we review the extant literature demonstrating CeA activation via GLP-1R agonists across multiple species and through multiple routes of administration. The precise role of GLP-1Rs within the CeA is unclear but the site-specific GLP-1Rs may mediate distinct behavioral and physiological hallmarks of GLP-1R agonists on food intake. Thus, we propose important novel directions and methods to test the role of the CeA in mediating GLP-1R actions.
Collapse
Affiliation(s)
- Miguel Duran
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer R Willis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nilay Dalvi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zoe Fokakis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sonja A Virkus
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J Andrew Hardaway
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Korkutata M, De Luca R, Fitzgerald B, Khanday MA, Arrigoni E, Scammell TE. Afferent Projections to the Calca/CGRP-Expressing Parabrachial Neurons in Mice. J Comp Neurol 2025; 533:e70018. [PMID: 39801453 PMCID: PMC11777123 DOI: 10.1002/cne.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PBCalca /CGRP neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood. We mapped the afferent projections to the lateral part of the PB in mice using conventional cholera toxin B subunit (CTb) retrograde tracing and then used conditional rabies virus retrograde tracing to map monosynaptic inputs specifically targeting the PBCalca /CGRP neurons. Using vesicular GABA (vGAT) and glutamate (vGLUT2) transporter reporter mice, we found that lateral PB neurons receive GABAergic afferents from regions such as the lateral part of the central nucleus of the amygdala, lateral dorsal subnucleus of the bed nucleus of the stria terminalis, substantia innominata, and ventrolateral periaqueductal gray. Additionally, they receive glutamatergic afferents from the infralimbic and insular cortex, paraventricular nucleus, parasubthalamic nucleus, trigeminal complex, medullary reticular nucleus, and nucleus of the solitary tract. Using anterograde tracing and confocal microscopy, we then identified close axonal appositions between these afferents and PBCalca /CGRP neurons. Finally, we used channelrhodopsin-assisted circuit mapping and found that GABAergic neurons of the central nucleus of the amygdala directly inhibit the PBCalca /CGRP neurons. These findings provide a comprehensive neuroanatomical framework for understanding the afferent projections regulating the PBCalca /CGRP neurons.
Collapse
Affiliation(s)
- Mustafa Korkutata
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Roberto De Luca
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Bridget Fitzgerald
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Mudasir A. Khanday
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Thomas E. Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Satao KS, Doshi GM. Anxiety and the brain: Neuropeptides as emerging factors. Pharmacol Biochem Behav 2024; 245:173878. [PMID: 39284499 DOI: 10.1016/j.pbb.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Anxiety disorders are characterized by intense feelings of worry and fear, which can significantly interfere with daily functioning. Current treatment options primarily include selective serotonin reuptake inhibitors, benzodiazepines, non-benzodiazepine anxiolytics, gabapentinoids, and beta-blockers. Neuropeptides have shown an important role in the regulation of complex behaviours, such as psychopathology and anxiety-related reactions. Neuropeptides have a great deal of promise to advance our understanding of and ability to help people with anxiety disorders. This review focuses on the expanding role of neuropeptides in anxiety management, particularly examining the impact of substance P, neuropeptide Y, corticotropin-releasing hormone, arginine-vasopressin, pituitary adenylate cyclase-activating polypeptide, and cholecystokinin. Furthermore, the paper discusses the neuropeptides that are becoming more and more recognized for their impact on anxiety-related reactions and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kiran S Satao
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
4
|
Korkutata M, De Luca R, Fitzgerald B, Arrigoni E, Scammell TE. Afferent projections to the Calca /CGRP-expressing parabrachial neurons in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593004. [PMID: 38766214 PMCID: PMC11100666 DOI: 10.1101/2024.05.07.593004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons which regulate responses to a variety of interoceptive and cutaneous sensory signals. The lateral PB subpopulation expressing the Calca gene which produces the neuropeptide calcitonin gene-related peptide (CGRP) relays signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet the afferents to these neurons are only partially understood. We mapped the afferent projections to the lateral part of the PB in mice using conventional cholera toxin B subunit (CTb) retrograde tracing, and then used conditional rabies virus retrograde tracing to map monosynaptic inputs specifically targeting the PB Calca /CGRP neurons. Using vesicular GABA (vGAT) and glutamate (vGLUT2) transporter reporter mice, we found that lateral PB neurons receive GABAergic afferents from regions such as the lateral part of the central nucleus of the amygdala, lateral dorsal subnucleus of the bed nucleus of the stria terminalis, substantia innominata, and the ventrolateral periaqueductal gray. Additionally, they receive glutamatergic afferents from the infralimbic and insular cortex, paraventricular nucleus, parasubthalamic nucleus, trigeminal complex, medullary reticular nucleus, and nucleus of the solitary tract. Using anterograde tracing and confocal microscopy, we then identified close axonal appositions between these afferents and PB Calca /CGRP neurons. Finally, we used channelrhodopsin-assisted circuit mapping to test whether some of these inputs directly synapse upon the PB Calca /CGRP neurons. These findings provide a comprehensive neuroanatomical framework for understanding the afferent projections regulating the PB Calca /CGRP neurons.
Collapse
|
5
|
Williford KM, Taylor A, Melchior JR, Yoon HJ, Sale E, Negasi MD, Adank DN, Brown JA, Bedenbaugh MN, Luchsinger JR, Centanni SW, Patel S, Calipari ES, Simerly RB, Winder DG. BNST PKCδ neurons are activated by specific aversive conditions to promote anxiety-like behavior. Neuropsychopharmacology 2023; 48:1031-1041. [PMID: 36941364 PMCID: PMC10209190 DOI: 10.1038/s41386-023-01569-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 03/22/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a critical mediator of stress responses and anxiety-like behaviors. Neurons expressing protein kinase C delta (BNSTPKCδ) are an abundant but understudied subpopulation implicated in inhibiting feeding, but which have conflicting reports about their role in anxiety-like behaviors. We have previously shown that expression of PKCδ is dynamically regulated by stress and that BNSTPKCδ cells are recruited during bouts of active stress coping. Here, we first show that in vivo activation of this population is mildly aversive. This aversion was insensitive to prior restraint stress exposure. Further investigation revealed that unlike other BNST subpopulations, BNSTPKCδ cells do not exhibit increased cfos expression following restraint stress. Ex vivo current clamp recordings also indicate they are resistant to firing. To elucidate their afferent control, we next used rabies tracing with whole-brain imaging and channelrhodopsin-assisted circuit mapping, finding that BNSTPKCδ cells receive abundant input from affective, arousal, and sensory regions including the basolateral amygdala (BLA) paraventricular thalamus (PVT) and central amygdala PKCδ-expressing cells (CeAPKCδ). Given these findings, we used in vivo optogenetics and fiber photometry to further examine BNSTPKCδ cells in the context of stress and anxiety-like behavior. We found that BNSTPKCδ cell activity is associated with increased anxiety-like behavior in the elevated plus maze, increases following footshock, and unlike other BNST subpopulations, does not desensitize to repeated stress exposure. Taken together, we propose a model in which BNSTPKCδ cells may serve as threat detectors, integrating exteroceptive and interoceptive information to inform stress coping behaviors.
Collapse
Affiliation(s)
- Kellie M Williford
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Anne Taylor
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - James R Melchior
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Hye Jean Yoon
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Eryn Sale
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Milen D Negasi
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Danielle N Adank
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Jordan A Brown
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Michelle N Bedenbaugh
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Joseph R Luchsinger
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Samuel W Centanni
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Sachin Patel
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Erin S Calipari
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Richard B Simerly
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Moscarello JM, Penzo MA. The central nucleus of the amygdala and the construction of defensive modes across the threat-imminence continuum. Nat Neurosci 2022; 25:999-1008. [PMID: 35915178 DOI: 10.1038/s41593-022-01130-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In nature, animals display defensive behaviors that reflect the spatiotemporal distance of threats. Laboratory-based paradigms that elicit specific defensive responses in rodents have provided valuable insight into the brain mechanisms that mediate the construction of defensive modes with varying degrees of threat imminence. In this Review, we discuss accumulating evidence that the central nucleus of the amygdala (CeA) plays a key role in this process. Specifically, we propose that the mutually inhibitory circuits of the CeA use a winner-takes-all strategy that supports transitioning across defensive modes and the execution of specific defensive behaviors to previously formed threat associations. Our proposal provides a conceptual framework in which seemingly divergent observations regarding CeA function can be interpreted and identifies various areas of priority for future research.
Collapse
Affiliation(s)
- Justin M Moscarello
- Department of Psychological & Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| | - Mario A Penzo
- Unit on the Neurobiology of Affective Memory, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Kreifeldt M, Herman MA, Sidhu H, Okhuarobo A, Macedo GC, Shahryari R, Gandhi PJ, Roberto M, Contet C. Central amygdala corticotropin-releasing factor neurons promote hyponeophagia but do not control alcohol drinking in mice. Mol Psychiatry 2022; 27:2502-2513. [PMID: 35264727 PMCID: PMC9149056 DOI: 10.1038/s41380-022-01496-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022]
Abstract
Corticotropin-releasing factor (CRF) signaling in the central nucleus of the amygdala (CeA) plays a critical role in rodent models of excessive alcohol drinking. However, the source of CRF acting in the CeA during alcohol withdrawal remains to be identified. In the present study, we hypothesized that CeA CRF interneurons may represent a behaviorally relevant source of CRF to the CeA increasing motivation for alcohol via negative reinforcement. We first observed that Crh mRNA expression in the anterior part of the mouse CeA correlates positively with alcohol intake in C57BL/6J males with a history of chronic binge drinking followed by abstinence and increases upon exposure to chronic intermittent ethanol (CIE) vapor inhalation. We then found that chemogenetic activation of CeA CRF neurons in Crh-IRES-Cre mouse brain slices increases gamma-aminobutyric acid (GABA) release in the medial CeA, in part via CRF1 receptor activation. While chemogenetic stimulation exacerbated novelty-induced feeding suppression (NSF) in alcohol-naïve mice, thereby mimicking the effect of withdrawal from CIE, it had no effect on voluntary alcohol consumption, following either acute or chronic manipulation. Furthermore, chemogenetic inhibition of CeA CRF neurons did not affect alcohol consumption or NSF in chronic alcohol drinkers exposed to air or CIE. Altogether, these findings indicate that CeA CRF neurons produce local release of GABA and CRF and promote hyponeophagia in naïve mice, but do not drive alcohol intake escalation or negative affect in CIE-withdrawn mice. The latter result contrasts with previous findings in rats and demonstrates species specificity of CRF circuit engagement in alcohol dependence.
Collapse
Affiliation(s)
- Max Kreifeldt
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Melissa A Herman
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
- Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Harpreet Sidhu
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Agbonlahor Okhuarobo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
- University of Benin, Faculty of Pharmacy, Department of Pharmacology & Toxicology, Benin City, Nigeria
| | - Giovana C Macedo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Roxana Shahryari
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Pauravi J Gandhi
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA.
| |
Collapse
|
8
|
Huang D, Grady FS, Peltekian L, Laing JJ, Geerling JC. Efferent projections of CGRP/Calca-expressing parabrachial neurons in mice. J Comp Neurol 2021; 529:2911-2957. [PMID: 33715169 DOI: 10.1002/cne.25136] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
The parabrachial nucleus (PB) is composed of glutamatergic neurons at the midbrain-hindbrain junction. These neurons form many subpopulations, one of which expresses Calca, which encodes the neuropeptide calcitonin gene-related peptide (CGRP). This Calca-expressing subpopulation has been implicated in a variety of homeostatic functions, but the overall distribution of Calca-expressing neurons in this region remains unclear. Also, while previous studies in rats and mice have identified output projections from CGRP-immunoreactive or Calca-expressing neurons, we lack a comprehensive understanding of their efferent projections. We began by identifying neurons with Calca mRNA and CGRP immunoreactivity in and around the PB, including populations in the locus coeruleus and motor trigeminal nucleus. Calca-expressing neurons in the PB prominently express the mu opioid receptor (Oprm1) and are distinct from neighboring neurons that express Foxp2 and Pdyn. Next, we used Cre-dependent anterograde tracing with synaptophysin-mCherry to map the efferent projections of these neurons. Calca-expressing PB neurons heavily target subregions of the amygdala, bed nucleus of the stria terminalis, basal forebrain, thalamic intralaminar and ventral posterior parvicellular nuclei, and hindbrain, in different patterns depending on the injection site location within the PB region. Retrograde axonal tracing revealed that the previously unreported hindbrain projections arise from a rostral-ventral subset of CGRP/Calca neurons. Finally, we show that these efferent projections of Calca-expressing neurons are distinct from those of neighboring PB neurons that express Pdyn. This information provides a detailed neuroanatomical framework for interpreting experimental work involving CGRP/Calca-expressing neurons and opioid action in the PB region.
Collapse
Affiliation(s)
- Dake Huang
- Department of Neurology, University of Iowa, Iowa, USA
| | | | | | | | | |
Collapse
|
9
|
Marvar PJ, Andero R, Hurlemann R, Lago TR, Zelikowsky M, Dabrowska J. Limbic Neuropeptidergic Modulators of Emotion and Their Therapeutic Potential for Anxiety and Post-Traumatic Stress Disorder. J Neurosci 2021; 41:901-910. [PMID: 33472824 PMCID: PMC7880296 DOI: 10.1523/jneurosci.1647-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by hypervigilance, increased reactivity to unpredictable versus predictable threat signals, deficits in fear extinction, and an inability to discriminate between threat and safety. First-line pharmacotherapies for psychiatric disorders have limited therapeutic efficacy in PTSD. However, recent studies have advanced our understanding of the roles of several limbic neuropeptides in the regulation of defensive behaviors and in the neural processes that are disrupted in PTSD. For example, preclinical studies have shown that blockers of tachykinin pathways, such as the Tac2 pathway, attenuate fear memory consolidation in mice and thus might have unique potential as early post-trauma interventions to prevent PTSD development. Targeting this pathway might also be beneficial in regulating other symptoms of PTSD, including trauma-induced aggressive behavior. In addition, preclinical and clinical studies have shown the important role of angiotensin receptors in fear extinction and the promise of using angiotensin II receptor blockade to reduce PTSD symptom severity. Additional preclinical studies have demonstrated that the oxytocin receptors foster accurate fear discrimination by facilitating fear responses to predictable versus unpredictable threats. Complementary human imaging studies demonstrate unique neural targets of intranasal oxytocin and compare its efficacy with well-established anxiolytic treatments. Finally, promising data from human subjects have demonstrated that a selective vasopressin 1A receptor antagonist reduces anxiety induced by unpredictable threats. This review highlights these novel promising targets for the treatment of unique core elements of PTSD pathophysiology.
Collapse
Affiliation(s)
- Paul J Marvar
- Department of Pharmacology & Physiology, Department of Psychiatry and Behavioral Sciences, George Washington Institute for Neuroscience, George Washington University, Washington, DC, 20037
| | - Raül Andero
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain, 08193. Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain, 28029. ICREA, Pg. Lluís Companys 23, Barcelona, Spain, 08010
| | - Rene Hurlemann
- Department of Psychiatry, School of Medicine & Health Sciences, and Research Center Neurosensory Science, University of Oldenburg, Oldenburg, 26129, Germany
| | - Tiffany R Lago
- Department of Psychiatry, Veterans Administration Boston Healthcare System, Boston, Massachusetts, 02130
| | - Moriel Zelikowsky
- Department of Neurobiology and Anatomy, University of Utah, School of Medicine, Salt Lake City, Utah, 84112
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, 60064
| |
Collapse
|
10
|
Kovner R, Souaiaia T, Fox AS, French DA, Goss CE, Roseboom PH, Oler JA, Riedel MK, Fekete EM, Fudge JL, Knowles JA, Kalin NH. Transcriptional Profiling of Primate Central Nucleus of the Amygdala Neurons to Understand the Molecular Underpinnings of Early-Life Anxious Temperament. Biol Psychiatry 2020; 88:638-648. [PMID: 32709417 PMCID: PMC7530008 DOI: 10.1016/j.biopsych.2020.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/22/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Children exhibiting extreme anxious temperament (AT) are at an increased risk for developing anxiety and depression. Our previous mechanistic and neuroimaging work in young rhesus monkeys linked the central nucleus of the amygdala to AT and its underlying neural circuit. METHODS Here, we used laser capture microscopy and RNA sequencing in 47 young rhesus monkeys to investigate AT's molecular underpinnings by focusing on neurons from the lateral division of the central nucleus of the amygdala (CeL). RNA sequencing identified numerous AT-related CeL transcripts, and we used immunofluorescence (n = 3) and tract-tracing (n = 2) methods in a different sample of monkeys to examine the expression, distribution, and projection pattern of neurons expressing one of these transcripts. RESULTS We found 555 AT-related transcripts, 14 of which were confirmed with high statistical confidence (false discovery rate < .10), including protein kinase C delta (PKCδ), a CeL microcircuit cell marker implicated in rodent threat processing. We characterized PKCδ neurons in the rhesus CeL, compared its distribution with that of the mouse, and demonstrated that a subset of these neurons project to the laterodorsal bed nucleus of the stria terminalis. CONCLUSIONS These findings demonstrate that CeL PKCδ is associated with primate anxiety, provides evidence of a CeL to laterodorsal bed nucleus of the stria terminalis circuit that may be relevant to understanding human anxiety, and points to specific molecules within this circuit that could serve as potential treatment targets for anxiety disorders.
Collapse
Affiliation(s)
- Rothem Kovner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin; HealthEmotions Research Institute, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Tade Souaiaia
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Andrew S Fox
- Department of Psychology, University of California, Davis, Davis, California; California National Primate Research Center, University of California, Davis, Davis, California
| | - Delores A French
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; HealthEmotions Research Institute, University of Wisconsin-Madison, Madison, Wisconsin
| | - Cooper E Goss
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Patrick H Roseboom
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin; HealthEmotions Research Institute, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jonathan A Oler
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; HealthEmotions Research Institute, University of Wisconsin-Madison, Madison, Wisconsin
| | - Marissa K Riedel
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; HealthEmotions Research Institute, University of Wisconsin-Madison, Madison, Wisconsin
| | - Eva M Fekete
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; HealthEmotions Research Institute, University of Wisconsin-Madison, Madison, Wisconsin
| | - Julie L Fudge
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York; Department of Neuroscience/Del Monte Institute for Brain Research, University of Rochester Medical Center, Rochester, New York
| | - James A Knowles
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin; HealthEmotions Research Institute, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
11
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
12
|
Iftikhar K, Siddiq A, Baig SG, Zehra S. Substance P: A neuropeptide involved in the psychopathology of anxiety disorders. Neuropeptides 2020; 79:101993. [PMID: 31735376 DOI: 10.1016/j.npep.2019.101993] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 11/19/2022]
Abstract
Substance P (SP) is the most widely distributed neuropeptide in central nervous system (CNS) where it participates in numerous physiological and pathophysiological processes including stress and anxiety related behaviors. In line with this notion, brain areas that are thought to be involved in anxiety regulation contains SP and its specific NK1 receptors. SP concentration in different brain regions alters with the exposure of stressful stimulus and affected NK1 receptor binding is observed. SP is released in response to a stressor, which produces anxiogenic effects via activation of hypothalamic-pituitary-adrenal (HPA) axis, resulting in the liberation of cortisol. Moreover, SP is also involved in the activation of the sympathetic nervous system via stimulation of locus coeruleus (LC). This sympathetic surge initiates cortisol discharge by activation of HPA axis, representing the indirect anxiogenic effect of SP. Besides the aforementioned regions, SP also has an impact on other brain regions known to be involved in stress and anxiety mechanisms, including amygdala, lateral septum (LS), periaqueductal gray (PAG), ventromedial nucleus of the hypothalamus (VMH), and bed nucleus of stria terminalis (BNST). Thus, SP acts as an important neuromodulator in various brain regions in stress and anxiety response. Consistent with the above statement, SP makes a robust link in the psychopathology of anxiety disorders. As SP concentration is found elevated in stressed conditions, several studies have reported that the pharmacological antagonism or genetic depletion of NK-1 receptors results in the anxiolytic response making them a suitable therapeutic target for the treatment of stress and anxiety related disorders.
Collapse
Affiliation(s)
- Kanwal Iftikhar
- Hussain Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan.
| | - Afshan Siddiq
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan
| | - Sadia Ghousia Baig
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan
| | - Sumbul Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
13
|
Ogawa S, Ramadasan PN, Anthonysamy R, Parhar IS. Sexual Dimorphic Distribution of Hypothalamic Tachykinin1 Cells and Their Innervations to GnRH Neurons in the Zebrafish. Front Endocrinol (Lausanne) 2020; 11:534343. [PMID: 33763023 PMCID: PMC7982876 DOI: 10.3389/fendo.2020.534343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/28/2020] [Indexed: 01/30/2023] Open
Abstract
Substance P (SP) and neurokinin A (NKA), encoded by TAC1/Tac1 gene are members of the tachykinin family, which exert their neuromodulatory roles in vertebrate reproduction. In mammals, SP and NKA have been shown to regulate gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion via kisspeptin neurons. On the other hand, the role of SP/NKA in the regulation of reproduction in non-mammalian vertebrates is not well known. In the present study, we first localized expression of tac1 mRNA in the brain of male and female zebrafish, Danio rerio. Next, using an antibody against zebrafish tachykinin1 (Tac1), we examined the neural association of SP/NKA neural processes with GnRH3 neurons, and with kisspeptin (kiss2) neurons, in the brains of male and female zebrafish. In situ hybridization showed an apparent male-dominant tac1 expression in the ventral telencephalic area, the anterior and posterior parts of the parvocellular preoptic nucleus, and the suprachiasmatic nucleus. On the other hand, there was female-dominant tac1 expression in the ventral periventricular hypothalamus. Confocal images of double-labeled zebrafish Tac1 and GnRH3 showed associations between Tac1-immunoreactive processes and GnRH3 neurons in the ventral telencephalic area. In contrast, there was no apparent proximity of Tac1 processes to kiss2 mRNA-expressing neurons in the hypothalamus. Lastly, to elucidate possible direct action of SP/NKA on GnRH3 or Kiss2 neurons, expression of SP/NKA receptor, tacr1a mRNA was examined in regions containing GnRH3 or Kiss2 neurons by in situ hybridization. Expression of tacr1a mRNA was seen in several brain regions including the olfactory bulb, preoptic area and hypothalamus, where GnRH3 and Kiss2 cells are present. These results suggest that unlike in mammals, Tac1 may be involved in male reproductive functions via direct action on GnRH3 neurons but independent of kisspeptin in the zebrafish.
Collapse
|
14
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
15
|
Koprdova R, Osacka J, Mach M, Kiss A. Acute Impact of Selected Pyridoindole Derivatives on Fos Expression in Different Structures of the Rat Brain. Cell Mol Neurobiol 2018; 38:171-180. [PMID: 28695319 PMCID: PMC11481956 DOI: 10.1007/s10571-017-0520-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023]
Abstract
The impacts of three pyridoindole derivatives (PDs), designated as PD144, PD143, and PD104, which have previously been shown to have antidepressant (PD144) and anxiolytic (PD143, PD104) properties, were investigated on the Fos expressions in 11 different rat brain areas, including the medial prefrontal cortex, striatum, septum, accumbens nucleus (shell, core), bed nucleus of the stria terminalis, hypothalamic paraventricular nucleus, central amygdala, locus coeruleus, dorsal raphe nucleus, and the solitary tract nucleus. Control rats received vehicle, while the other three groups the PDs in a dose of 25 mg/kg/b.w. The animals were transcardially perfused with a fixative 90 min after the treatments. Coronal sections of 40-µm thickness were processed for Fos-immunostaining by avidin-biotin-peroxidase complex and visualized by nickel-intensified diaminobenzidine complex. Fos-labeled sections were counterstained with neuropeptides including corticoliberine (CRH), oxytocin (OXY), vasopressin (AVP), and vasoactive intestinal polypeptide (VIP) and processed for immunofluorescence staining using Alexa Fluor 555 dye. In all the three groups of animals, the upregulation of PDs-induced Fos expression only in 2 of 11 brain areas was investigated, namely, in the hypothalamic paraventricular nucleus (PVN) and the central amygdaloid nucleus (CeA). The other brain structures studied were devoid of Fos expression. Counterstaining of the Fos-labeled CeA-containing sections with VIP antibody revealed that the Fos expression stimulated by the PDs was upregulated in all the CeA subdivisions (lateral, ventral, capsular), except the medial one. Dual immunoprocessings showed Fos/CRH-labeling in both the PVN and the amygdala and Fos/OXY in the PVN. No Fos/AVP colocalizations were seen in the PVN. The obtained data provide the first view on the intracerebral effects of three new PDs derivatives, which effects were restricted only to the PVN and CeA areas. The present data may help to improve our understanding of the impact of the selected PDs on the brain and to anticipate possible behavioral and neuroendocrine consequences.
Collapse
Affiliation(s)
- Romana Koprdova
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University Bratislava, BioMED, Mala Hora 4C, 036 01, Martin, Slovakia
| | - Jana Osacka
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovakia
| | - Alexander Kiss
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
16
|
Fadok JP, Krabbe S, Markovic M, Courtin J, Xu C, Massi L, Botta P, Bylund K, Müller C, Kovacevic A, Tovote P, Lüthi A. A competitive inhibitory circuit for selection of active and passive fear responses. Nature 2017; 542:96-100. [PMID: 28117439 DOI: 10.1038/nature21047] [Citation(s) in RCA: 303] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022]
Abstract
When faced with threat, the survival of an organism is contingent upon the selection of appropriate active or passive behavioural responses. Freezing is an evolutionarily conserved passive fear response that has been used extensively to study the neuronal mechanisms of fear and fear conditioning in rodents. However, rodents also exhibit active responses such as flight under natural conditions. The central amygdala (CEA) is a forebrain structure vital for the acquisition and expression of conditioned fear responses, and the role of specific neuronal sub-populations of the CEA in freezing behaviour is well-established. Whether the CEA is also involved in flight behaviour, and how neuronal circuits for active and passive fear behaviour interact within the CEA, are not yet understood. Here, using in vivo optogenetics and extracellular recordings of identified cell types in a behavioural model in which mice switch between conditioned freezing and flight, we show that active and passive fear responses are mediated by distinct and mutually inhibitory CEA neurons. Cells expressing corticotropin-releasing factor (CRF+) mediate conditioned flight, and activation of somatostatin-positive (SOM+) neurons initiates passive freezing behaviour. Moreover, we find that the balance between conditioned flight and freezing behaviour is regulated by means of local inhibitory connections between CRF+ and SOM+ neurons, indicating that the selection of appropriate behavioural responses to threat is based on competitive interactions between two defined populations of inhibitory neurons, a circuit motif allowing for rapid and flexible action selection.
Collapse
Affiliation(s)
- Jonathan P Fadok
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Sabine Krabbe
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Milica Markovic
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.,University of Basel, 4000 Basel, Switzerland
| | - Julien Courtin
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Chun Xu
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Lema Massi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Paolo Botta
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.,University of Basel, 4000 Basel, Switzerland
| | - Kristine Bylund
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Christian Müller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Aleksandar Kovacevic
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Philip Tovote
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.,University of Basel, 4000 Basel, Switzerland
| |
Collapse
|
17
|
Gafford GM, Ressler KJ. GABA and NMDA receptors in CRF neurons have opposing effects in fear acquisition and anxiety in central amygdala vs. bed nucleus of the stria terminalis. Horm Behav 2015; 76:136-42. [PMID: 25888455 PMCID: PMC4844457 DOI: 10.1016/j.yhbeh.2015.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/29/2015] [Accepted: 04/06/2015] [Indexed: 01/07/2023]
Abstract
This article is part of a Special Issue "SBN 2014". Beginning with Vale and Colleagues in 1981, corticotropin releasing factor (CRF) also called corticotropin releasing hormone (CRH) has repeatedly been identified as an important contributor to fear and anxiety behavior. These findings have proven useful to further our understanding of disorders that have significant fear-dysregulation, such as post-traumatic stress, as well as other stress- and anxiety-related disorders. Unfortunately, the data are not all in agreement. In particular the role of CRF in fear learning is controversial, with studies pointing to contradictory effects from CRF manipulation even within the same brain structure. Further, very few studies address the potentially promising role of CRF manipulation in fear extinction behavior. Here, we briefly review the role of CRF in anxiety, fear learning and extinction, focusing on recent cell-type and neurotransmitter-specific studies in the amygdala and bed nucleus of the stria terminalis (BNST) that may help to synthesize the available data on the role of CRF in fear and anxiety-related behaviors.
Collapse
Affiliation(s)
- Georgette M Gafford
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA; Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
18
|
Ayanwuyi LO, Stopponi S, Ubaldi M, Cippitelli A, Nasuti C, Damadzic R, Heilig M, Schank J, Cheng K, Rice KC, Ciccocioppo R. Neurokinin 1 receptor blockade in the medial amygdala attenuates alcohol drinking in rats with innate anxiety but not in Wistar rats. Br J Pharmacol 2015; 172:5136-46. [PMID: 26275374 DOI: 10.1111/bph.13280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/27/2015] [Accepted: 08/02/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Substance P and its preferred neurokinin receptor NK1 have been implicated in stress and anxiety and have been proposed as possible therapeutic targets for the treatment of anxiety/depression. Attention is also being focused on the role this neuropeptide system may play in drug addiction, because stress-related mechanisms promote drug abuse. EXPERIMENTAL APPROACH The effects of the rat-specific NK1 receptor antagonist, L822429, on alcohol intake and seeking behaviour was investigated in genetically selected Marchigian Sardinian alcohol preferring rats. These rats demonstrate an anxious phenotype and are highly sensitive to stress and stress-induced drinking. KEY RESULTS Systemic administration of L822429 significantly reduced operant alcohol self-administration in Marchigian Sardinian alcohol preferring rats, but did not reduce alcohol self-administration in stock Wistar rats. NK1 receptor antagonism also attenuated yohimbine-induced reinstatement of alcohol seeking at all doses tested but had no effect on cue-induced reinstatement of alcohol seeking. L822429 reduced operant alcohol self-administration when injected into the lateral cerebroventricles or the medial amygdala. L822429 injected into the medial amygdala also significantly reduced anxiety-like behaviour in the elevated plus maze test. No effects on alcohol intake were observed following injection of L822429 into the dorsal or the ventral hippocampus. Conclusions and Implications Our results suggest that NK1 receptor antagonists may be useful for the treatment of alcohol addiction associated with stress or comorbid anxiety disorders. The medial amygdala appears to be an important brain site of action of NK1 receptor antagonism.
Collapse
Affiliation(s)
- Lydia O Ayanwuyi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Serena Stopponi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Andrea Cippitelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Cinzia Nasuti
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| | - Ruslan Damadzic
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, 20892-1108, USA
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, 20892-1108, USA
| | - Jesse Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Kejun Cheng
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, 62032, Italy
| |
Collapse
|
19
|
Radial and tangential migration of telencephalic somatostatin neurons originated from the mouse diagonal area. Brain Struct Funct 2015; 221:3027-65. [PMID: 26189100 PMCID: PMC4920861 DOI: 10.1007/s00429-015-1086-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/07/2015] [Indexed: 01/11/2023]
Abstract
The telencephalic subpallium is the source of various GABAergic interneuron cohorts that invade the pallium via tangential migration. Based on genoarchitectonic studies, the subpallium has been subdivided into four major domains: striatum, pallidum, diagonal area and preoptic area (Puelles et al. 2013; Allen Developing Mouse Brain Atlas), and a larger set of molecularly distinct progenitor areas (Flames et al. 2007). Fate mapping, genetic lineage-tracing studies, and other approaches have suggested that each subpallial subdivision produces specific sorts of inhibitory interneurons, distinguished by differential peptidic content, which are distributed tangentially to pallial and subpallial target territories (e.g., olfactory bulb, isocortex, hippocampus, pallial and subpallial amygdala, striatum, pallidum, septum). In this report, we map descriptively the early differentiation and apparent migratory dispersion of mouse subpallial somatostatin-expressing (Sst) cells from E10.5 onward, comparing their topography with the expression patterns of the genes Dlx5, Gbx2, Lhx7-8, Nkx2.1, Nkx5.1 (Hmx3), and Shh, which variously label parts of the subpallium. Whereas some experimental results suggest that Sst cells are pallidal, our data reveal that many, if not most, telencephalic Sst cells derive from de diagonal area (Dg). Sst-positive cells initially only present at the embryonic Dg selectively populate radially the medial part of the bed nucleus striae terminalis (from paraseptal to amygdaloid regions) and part of the central amygdala; they also invade tangentially the striatum, while eschewing the globus pallidum and the preoptic area, and integrate within most cortical and nuclear pallial areas between E10.5 and E16.5.
Collapse
|
20
|
Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Struct Funct 2015; 221:2937-62. [PMID: 26169110 DOI: 10.1007/s00429-015-1081-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/04/2015] [Indexed: 12/13/2022]
Abstract
The amygdala and medial prefrontal cortex (mPFC) are highly interconnected telencephalic areas critical for cognitive processes, including associative learning and decision making. Both structures strongly innervate the lateral hypothalamus (LHA), an important component of the networks underlying the control of feeding and other motivated behaviors. The amygdala-prefrontal-lateral hypothalamic system is therefore well positioned to exert cognitive control over behavior. However, the organization of this system is not well defined, particularly the topography of specific circuitries between distinct cell groups within these complex, heterogeneous regions. This study used two retrograde tracers to map the connections from the amygdala (central and basolateral area nuclei) and mPFC to the LHA in detail, and to determine whether amygdalar pathways to the mPFC and to LHA originate from the same or different neurons. One tracer was placed into a distinct mPFC area (dorsal anterior cingulate, prelimbic, infralimbic, or rostromedial orbital), and the other into dorsal or ventral LHA. We report that the central nucleus and basolateral area of the amygdala send projections to distinct LHA regions, dorsal and ventral, respectively. The basolateral area, but not central nucleus, also sends substantial projections to the mPFC, topographically organized rostrocaudal to dorsoventral. The entire mPFC, in turn, projects to the LHA, providing a separate route for potential amygdalar influence following mPFC processing. Nearly all amygdalar projections to the mPFC and to the LHA originated from different neurons suggesting amygdala and amygdala-mPFC processing influence the LHA independently, and the balance of these parallel pathways ultimately controls motivated behaviors.
Collapse
|
21
|
Kingsbury MA, Jan N, Klatt JD, Goodson JL. Nesting behavior is associated with VIP expression and VIP-Fos colocalization in a network-wide manner. Horm Behav 2015; 69:68-81. [PMID: 25573700 PMCID: PMC4359656 DOI: 10.1016/j.yhbeh.2014.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 12/23/2014] [Accepted: 12/28/2014] [Indexed: 12/27/2022]
Abstract
Many species, including humans, engage in a series of behaviors that are preparatory to the arrival of offspring. Such "nesting behaviors" are of obvious importance, but relevant neuroendocrine mechanisms remain little studied. We here focus on the potential roles of vasoactive intestinal polypeptide (VIP) in the performance of appetitive and consummatory nesting behaviors in male and female zebra finches (Taeniopygia guttata). Using combined immunocytochemistry for Fos and in situ hybridization for VIP, we now show that many VIP cell groups show increased transcriptional activity in response to nest building in male and female zebra finches. Particularly strong data come from the preoptic area (medial preoptic area and medial preoptic nucleus), where VIP-Fos co-expression correlates positively with three different measures of nesting behavior, as does the number of VIP-expressing cells. Remarkably, we find that VIP mRNA and/or VIP-Fos co-expression is correlated with nesting behavior in virtually every brain area that we examined, including the medial amygdala (anterior and posterior), medial bed nucleus of the stria terminalis, medial preoptic area, medial preoptic nucleus, anterior hypothalamus, ventromedial hypothalamus, periaqueductal gray complex (central gray and nucleus intercollicularis), and ventral tegmental area. Near-significant effects are also obtained in the tuberoinfundibular hypothalamus. Although most correlations are positive, negative correlations are observed for the VIP cell group of the anterior hypothalamus, a population that selectively promotes aggression, and also the periaqueductal gray complex. These data demonstrate a network-wide relationship between peptide production and social behavior that is, to our knowledge, unparalleled by other peptidergic modulators.
Collapse
Affiliation(s)
- Marcy A Kingsbury
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Namratha Jan
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - James D Klatt
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - James L Goodson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
22
|
Merullo DP, Cordes MA, Stevenson SA, Riters LV. Neurotensin immunolabeling relates to sexually-motivated song and other social behaviors in male European starlings (Sturnus vulgaris). Behav Brain Res 2015; 282:133-43. [PMID: 25595421 DOI: 10.1016/j.bbr.2015.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/16/2014] [Accepted: 01/06/2015] [Indexed: 01/20/2023]
Abstract
The brain regions involved in vocal communication are well described for some species, including songbirds, but less is known about the neural mechanisms underlying motivational aspects of communication. Mesolimbic dopaminergic projections from the ventral tegmental area (VTA) are central to mediating motivated behaviors. In songbirds, VTA provides dopaminergic innervation to brain regions associated with motivation and social behavior that are also involved in sexually-motivated song production. Neurotensin (NT) is a neuropeptide that strongly modulates dopamine activity, co-localizes with dopamine in VTA, and is found in regions where dopaminergic cells project from VTA. Yet, little is known about how NT contributes to vocal communication or other motivated behaviors. We examined the relationships between sexually-motivated song produced by male European starlings (Sturnus vulgaris) and NT immunolabeling in brain regions involved in social behavior and motivation. Additionally, we observed relationships between NT labeling, non-vocal courtship behaviors (another measure of sexual motivation), and agonistic behavior to begin to understand NT's role in socially-motivated behaviors. NT labeling in VTA, lateral septum, and bed nucleus of the stria terminalis correlated with sexually-motivated singing and non-vocal courtship behaviors. NT labeling in VTA, lateral septum, medial preoptic nucleus, and periaqueductal gray was associated with agonistic behavior. This study is the first to suggest NT's involvement in song, and one of the few to implicate NT in social behaviors more generally. Additionally, our results are consistent with the idea that distinct patterns of neuropeptide activity in brain areas involved in social behavior and motivation underlie differentially motivated behaviors.
Collapse
Affiliation(s)
- Devin P Merullo
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| | - Melissa A Cordes
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Sharon A Stevenson
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Lauren V Riters
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
23
|
Bassi GS, de Carvalho MC, Brandão ML. Effects of substance P and Sar-Met-SP, a NK1 agonist, in distinct amygdaloid nuclei on anxiety-like behavior in rats. Neurosci Lett 2014; 569:121-5. [DOI: 10.1016/j.neulet.2014.03.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/07/2014] [Accepted: 03/27/2014] [Indexed: 11/27/2022]
|
24
|
Abstract
Anxiety is of paramount importance for animals, as it allows assessment of the environment while minimizing exposure to potential threats. Furthermore, anxiety disorders are highly prevalent. Consequently, the neural circuitry underlying anxiety has been a topic of great interest. In this mini review, we will discuss current views on anxiety circuits. We will focus on rodent anxiety paradigms, but we will also consider results from human neuroimaging and clinical studies. We briefly review studies demonstrating the central role that the amygdala and the bed nucleus of the stria terminals (BNST) play in modulating anxiety and present evidence showing how the bed nucleus uses different output pathways to influence specific features of anxiolysis. Lastly, we propose that several brain regions, such as the medial prefrontal cortex (mPFC) and the ventral hippocampus (vHPC), act in a coordinated fashion with the amygdala and BNST, forming a distributed network of interconnected structures that control anxiety both in rodents and humans.
Collapse
Affiliation(s)
- Avishek Adhikari
- Deisseroth Laboratory, CNC Program, Bioengineering Department, Stanford University Palo Alto, CA, USA
| |
Collapse
|
25
|
Kingsbury MA, Miller KM, Goodson JL. VPAC receptor signaling modulates grouping behavior and social responses to contextual novelty in a gregarious finch: a role for a putative prefrontal cortex homologue. Horm Behav 2013; 64:511-8. [PMID: 23899763 PMCID: PMC3864561 DOI: 10.1016/j.yhbeh.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/17/2013] [Accepted: 07/20/2013] [Indexed: 02/03/2023]
Abstract
In both mammals and birds, vasoactive intestinal polypeptide (VIP) neurons and fibers are present in virtually every brain area that is important for social behavior. VIP influences aggression in birds, social recognition in rodents, and prolactin secretion in both taxa, but other possible functions in social modulation remain little explored. VIP effects are mediated by VPAC receptors, which bind both VIP and pituitary adenylate cyclase activating peptide. Within the lateral septum and medial bed nucleus of the stria terminalis, VPAC receptors are found at higher densities in gregarious finch species relative to territorial species, suggesting that VPAC receptor activation promotes social contact and/or preference for larger groups. Here we here test this hypothesis in zebra finches (Taeniopygia guttata), and also examine the relevance of VPAC receptors to anxiety-like processes. Intraventricular infusions of the VPAC receptor antagonist, neurotensin6-11 mouseVIP7-28, strongly reduce social contact when animals are tested in a novel environment, and exert sex-specific effects on grouping behavior. Specifically, VPAC receptor antagonism reduces gregariousness in females but increases gregariousness in males. Interestingly, VPAC antagonism in the medial pallium (putative prefrontal cortex homologue) significantly reduces gregariousness in both sexes, suggesting site-specific effects of VIP signaling. However, VPAC antagonism does not modulate novel-familiar social preferences in a familiar environment or general anxiety-like behaviors. The current results suggest that endogenous activation of VPAC receptors promotes social contact under novel environmental conditions, a function that may be accentuated in gregarious species. Moreover, endogenous VIP modulates gregariousness in both males and females.
Collapse
Affiliation(s)
- Marcy A Kingsbury
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
26
|
Poulin JF, Bérubé P, Laforest S, Drolet G. Enkephalin knockdown in the central amygdala nucleus reduces unconditioned fear and anxiety. Eur J Neurosci 2013; 37:1357-67. [DOI: 10.1111/ejn.12134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/07/2012] [Accepted: 12/13/2012] [Indexed: 12/25/2022]
Affiliation(s)
- Jean-François Poulin
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval; Québec; QC; Canada
| | - Patrick Bérubé
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval; Québec; QC; Canada
| | - Sylvie Laforest
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval; Québec; QC; Canada
| | - Guy Drolet
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval; Québec; QC; Canada
| |
Collapse
|
27
|
Pituitary adenylate cyclase-activating polypeptide induces postsynaptically expressed potentiation in the intra-amygdala circuit. J Neurosci 2013; 32:14165-77. [PMID: 23055486 DOI: 10.1523/jneurosci.1402-12.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide expressed in the brain, where it may act as a neuromodulator or neurotransmitter contributing to different behavioral processes and stress responses. PACAP is highly expressed in the amygdala, a subcortical brain area involved in both innate and learned fear, suggesting a role for PACAP-mediated signaling in fear-related behaviors. It remains unknown, however, whether and how PACAP affects neuronal and synaptic functions in the amygdala. In this study, we focused on neurons in the lateral division of the central nucleus (CeL), where PACAP-positive presynaptic terminals were predominantly found within the amygdala. In our experiments on rat brain slices, exogenous application of PACAP did not affect either resting membrane potential or membrane excitability of CeL neurons. PACAP enhanced, however, excitatory synaptic transmission in projections from the basolateral nucleus (BLA) to the CeL, while inhibitory transmission in the same pathway was unaffected. PACAP-induced potentiation of glutamatergic synaptic responses persisted after the washout of PACAP and was blocked by the VPAC1 receptor antagonist, suggesting that VPAC1 receptors might mediate synaptic effects of PACAP in the CeL. Moreover, potentiation of synaptic transmission by PACAP was dependent on postsynaptic activation of protein kinase A and calcium/calmodulin-dependent protein kinase II, as well as synaptic targeting of GluR1 subunit-containing AMPA receptors. Thus, PACAP may upregulate excitatory neurotransmission in the BLA-CeL pathway postsynaptically, consistent with the known roles of PACAP in control of fear-related behaviors.
Collapse
|
28
|
Sreepathi H, Ferraguti F. Subpopulations of neurokinin 1 receptor-expressing neurons in the rat lateral amygdala display a differential pattern of innervation from distinct glutamatergic afferents. Neuroscience 2012; 203:59-77. [PMID: 22210508 PMCID: PMC3280357 DOI: 10.1016/j.neuroscience.2011.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/21/2011] [Accepted: 12/02/2011] [Indexed: 11/29/2022]
Abstract
Substance P by acting on its preferred receptor neurokinin 1 (NK1) in the amygdala appears to be critically involved in the modulation of fear and anxiety. The present study was undertaken to identify neurochemically specific subpopulations of neuron expressing NK1 receptors in the lateral amygdaloid nucleus (LA), a key site for regulating these behaviors. We also analyzed the sources of glutamatergic inputs to these neurons. Immunofluorescence analysis of the co-expression of NK1 with calcium binding proteins in LA revealed that ~35% of NK1-containing neurons co-expressed parvalbumin (PV), whereas no co-localization was detected in the basal amygdaloid nucleus. We also show that neurons expressing NK1 receptors in LA did not contain detectable levels of calcium/calmodulin kinase IIα, thus suggesting that NK1 receptors are expressed by interneurons. By using a dual immunoperoxidase/immunogold-silver procedure at the ultrastructural level, we found that in LA ~75% of glutamatergic synapses onto NK1-expressing neurons were labeled for the vesicular glutamate transporter 1 indicating that they most likely are of cortical, hippocampal, or intrinsic origin. The remaining ~25% were immunoreactive for the vesicular glutamate transporter 2 (VGluT2), and may then originate from subcortical areas. On the other hand, we could not detect VGluT2-containing inputs onto NK1/PV immunopositive neurons. Our data add to previous localization studies by describing an unexpected variation between LA and basal nucleus of the amygdala (BA) in the neurochemical phenotype of NK1-expressing neurons and reveal the relative source of glutamatergic inputs that may activate these neurons, which in turn regulate fear and anxiety responses.
Collapse
Key Words
- nk1 receptor
- amygdala
- interneuron
- glutamate
- parvalbumin
- ba, basal nucleus of the amygdala
- bla, basolateral complex of the amygdala
- bp, band pass
- camkiiα, calcium/calmodulin kinase iiα
- cb, calbindin-d28k
- cbp, calcium binding protein
- cr, calretinin
- dab, 3,3′-diaminobenzidine
- gad67, glutamate decarboxylase isoform of 67 kda
- hrp, horseradish peroxidase
- la, lateral nucleus of the amygdala
- li, like immunoreactivity
- ngs, normal goat serum
- nk1, neurokinin 1
- pbs, phosphate buffered saline
- pv, parvalbumin
- rt, room temperature
- sp, substance p
- tbs, tris-buffered saline
- tbs-t, 0.1% v/v triton x-100 in tbs
- vglut, vesicular glutamate transporter
Collapse
Affiliation(s)
| | - F. Ferraguti
- Department of Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria
| |
Collapse
|
29
|
Neurokinin-1 receptor deletion modulates behavioural and neurochemical alterations in an animal model of depression. Behav Brain Res 2011; 228:91-8. [PMID: 22155476 DOI: 10.1016/j.bbr.2011.11.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/21/2011] [Accepted: 11/26/2011] [Indexed: 12/28/2022]
Abstract
The substance P/NK1 receptor system plays an important role in the regulation of stress and emotional responding and as such had been implicated in the pathophysiology of anxiety and depression. The present study investigated whether alterations in the substance P/NK1 receptor system in brain areas which regulate emotional responding accompany the depressive behavioural phenotype observed in the olfactory bulbectomised (OB) mouse. The effect of NK1 receptor deletion on behavioural responding and monoamine levels in discrete brain regions of the OB model, were also examined. Substance P levels in the frontal cortex and NK1 receptor expression in the amygdala and hippocampus were enhanced following olfactory bulbectomy. Although NK1 receptor knockout (NK1-/-) mice did not exhibit altered behavioural responding in the open field test, noradrenaline levels were enhanced in the frontal cortex, amygdala and hippocampus, as were serotonin levels in the frontal cortex. Locomotor activity and exploratory behaviour were enhanced in wild type OB mice, indicative of a depressive-like phenotype, an effect attenuated in NK1-/- mice. Bulbectomy induced a decrease in noradrenaline and 5-HIAA in the frontal cortex and an increase in serotonin in the amygdala, effects attenuated in OB NK1-/- mice. The present studies indicate that alterations in substance P/NK1 receptor system underlie, at least in part, the behavioural and monoaminergic changes in this animal model of depression.
Collapse
|
30
|
Abstract
Previous findings suggest differences in the neuroanatomical substrates of short- (seconds) vs longer-duration (minutes) fear responses. We now report that phasic and sustained fear can also be differentiated pharmacologically, based on their response to several treatments that either are or are not clinically effective anxiolytics. For these experiments, short- or long-duration clicker stimuli were paired with footshock. Acoustic startle amplitude was later measured in the absence of the clicker, or within seconds (phasic fear) or minutes (sustained fear) of its onset. Before testing, rats received a single injection of vehicle, the benzodiazepine chlordiazepoxide, the 5HT(1A) agonist and dopamine D2 antagonist buspirone, the selective serotonin reuptake inhibitor fluoxetine, or a 3-week treatment with either vehicle or fluoxetine. Chlordiazepoxide blocked sustained, but not phasic startle increases. Acute buspirone, which is not anxiolytic in human beings, did not affect sustained startle increases, but did disrupt phasic increases. Chronic fluoxetine blocked sustained startle increases and unreliably reduced phasic increases; acute fluoxetine affected neither. The results indicate that phasic and sustained fear responses can be pharmacologically dissociated, further validating this distinction, and suggest that sustained startle increases may be especially useful as anxiety models and anxiolytic screens.
Collapse
|
31
|
Simmons DA, Yahr P. Distribution of catecholaminergic and peptidergic cells in the gerbil medial amygdala, caudal preoptic area and caudal bed nuclei of the stria terminalis with a focus on areas activated at ejaculation. J Chem Neuroanat 2010; 41:13-9. [PMID: 21087661 DOI: 10.1016/j.jchemneu.2010.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
The posterodorsal preoptic nucleus (PdPN), lateral part of the posterodorsal medial amygdala (MeApd) and medial part of the medial preoptic nucleus (MPNm) are activated at ejaculation in male gerbils as assessed by Fos expression. We sought to immunocytochemically visualize substance P (SP), cholecystokinin (CCK), oxytocin, vasopressin and tyrosine hydroxylase (TH), a catecholaminergic marker, in the mating-activated cells, but the need for colchicine precluded behavioral testing. Instead, we detailed distributions of cells containing these molecules in the medial amygdala, caudal preoptic area and caudal bed nuclei of the stria terminalis (BST) and quantified their densities in the PdPN, MPNm and lateral MeApd for comparison to densities previously assessed for mating-activated efferents from these sites. TH cells were as dense in the PdPN and lateral MeApd as activated efferents to the anteroventral periventricular nucleus. In the lateral MeApd, TH cells were grouped where cells activated at ejaculation are clustered and where CCK cells form a ball. Lateral MeApd CCK cells and PdPN SP cells were as dense as activated efferents to the principal BST. Oxytocinergic PdPN cells and SP cells in the MPNm were as dense as mating-activated efferents to the lateral MeApd. If some oxytocin cells in the PdPN project to the neurohypophysis, as in rats, they could be a source of the oxytocin secreted at ejaculation. Since gerbils are monogamous and biparental, it was also interesting that, unlike monogamous prairie voles, they had few TH cells in the MeApd or dorsal BST, resembling promiscuous rats, hamsters and meadow voles.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurobiology and Behavior, University of California, 2205 McGaugh Hall, Irvine, CA 92697-4550, USA
| | | |
Collapse
|
32
|
Walker DL, Miles LA, Davis M. Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1291-308. [PMID: 19595731 PMCID: PMC2783512 DOI: 10.1016/j.pnpbp.2009.06.022] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 01/09/2023]
Abstract
The medial division of the central nucleus of the amygdala (CeA(M)) and the lateral division of the bed nucleus of the stria terminalis (BNST(L)) are closely related. Both receive projections from the basolateral amygdala (BLA) and both project to brain areas that mediate fear-influenced behaviors. In contrast to CeA(M) however, initial attempts to implicate the BNST in conditioned fear responses were largely unsuccessful. More recent studies have shown that the BNST does participate in some types of anxiety and stress responses. Here, we review evidence suggesting that the CeA(M) and BNST(L) are functionally complementary, with CeA(M) mediating short- but not long-duration threat responses (i.e., phasic fear) and BNST(L) mediating long- but not short-duration responses (sustained fear or 'anxiety'). We also review findings implicating the stress-related peptide corticotropin-releasing factor (CRF) in sustained but not phasic threat responses, and attempt to integrate these findings into a neural circuit model which accounts for these and related observations.
Collapse
Affiliation(s)
- D. L. Walker
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA,Correspondence should be addressed to: David L. Walker, Emory University School of Medicine, 954 Gatewood Road NE, Yerkes Neurosci Bldg – Rm 5214, Atlanta, GA 30329, Ph: (404) 727-3587, Fax: (404) 727-8070,
| | | | - M. Davis
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA,The Center for Behavior Neurosci, Emory University, Atlanta, GA, USA
| |
Collapse
|
33
|
|
34
|
Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Lüthi A. Amygdala inhibitory circuits and the control of fear memory. Neuron 2009; 62:757-71. [PMID: 19555645 DOI: 10.1016/j.neuron.2009.05.026] [Citation(s) in RCA: 686] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 05/13/2009] [Accepted: 05/19/2009] [Indexed: 11/16/2022]
Abstract
Classical fear conditioning is a powerful behavioral paradigm that is widely used to study the neuronal substrates of learning and memory. Previous studies have clearly identified the amygdala as a key brain structure for acquisition and storage of fear memory traces. Whereas the majority of this work has focused on principal cells and glutamatergic transmission and its plasticity, recent studies have started to shed light on the intricate roles of local inhibitory circuits. Here, we review current understanding and emerging concepts of how local inhibitory circuits in the amygdala control the acquisition, expression, and extinction of conditioned fear at different levels.
Collapse
Affiliation(s)
- Ingrid Ehrlich
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Zhao Z, Yang Y, Walker DL, Davis M. Effects of substance P in the amygdala, ventromedial hypothalamus, and periaqueductal gray on fear-potentiated startle. Neuropsychopharmacology 2009; 34:331-40. [PMID: 18418359 PMCID: PMC3792658 DOI: 10.1038/npp.2008.55] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neural pathways through which substance P (SP) influences fear and anxiety are poorly understood. However, the amygdala, a brain area repeatedly implicated in fear and anxiety processes, is known to contain large numbers of SP-containing neurons and SP receptors. Several studies have implicated SP neurotransmission within the amygdala in anxiety processes. In the present study, we evaluated the effects of site-specific infusions of an SP receptor antagonist, GR 82334, on conditioned fear responses using the fear-potentiated startle paradigm. GR 82334 infusion into the basolateral (BLA) or the medial (MeA) nuclei of the amygdala, but not into the central nucleus of the amygdala (CeA), dose dependently reduced fear-potentiated startle. Similar effects were obtained with GR 82334 infusion into the ventromedial nucleus of the hypothalamus (VMH), to which the MeA projects, and into the rostral dorsolateral periaqueductal gray (PAG), to which the VMH projects, but not into the deep layers of the superior colliculus/deep mesencephalic nucleus (dSC/DpMe), an output of the CeA previously shown to be important for fear-potentiated startle. Consistent with previous findings, infusion of the AMPA receptor antagonist, NBQX, into the dSC/DpMe, but not into the PAG, did disrupt fear-potentiated startle. These findings suggest that multiple outputs from the amygdala play a critical role in fear-potentiated startle and that SP plays a critical, probably modulatory role, in the MeA to VMH to PAG to the startle pathway based on these and data from others.
Collapse
Affiliation(s)
- Zuowei Zhao
- Department of Psychiatry and Behavioral Sciences, School of Medicine and Emory University, 954 Gatewood Road, Neuroscience Building, Atlanta, GA 30329
| | - Yong Yang
- Department of Psychiatry and Behavioral Sciences, School of Medicine and Emory University, 954 Gatewood Road, Neuroscience Building, Atlanta, GA 30329
| | - David L. Walker
- Department of Psychiatry and Behavioral Sciences, School of Medicine and Emory University, 954 Gatewood Road, Neuroscience Building, Atlanta, GA 30329
- The Center for Behavior Neuroscience, Emory University, 954 Gatewood Road, Neuroscience Building, Atlanta, GA 30329
| | - Michael Davis
- Department of Psychiatry and Behavioral Sciences, School of Medicine and Emory University, 954 Gatewood Road, Neuroscience Building, Atlanta, GA 30329
- The Center for Behavior Neuroscience, Emory University, 954 Gatewood Road, Neuroscience Building, Atlanta, GA 30329
| |
Collapse
|
36
|
[Morphometric characteristics of neuropeptide Y immunoreactive neurons of human cortical amygdaloid nucleus]. MEDICINSKI PREGLED 2008; 61:235-41. [PMID: 19102068 DOI: 10.2298/mpns0806235m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Cortical amygdaloid nucleus belongs to the corticomedial part of the amygdaloid complex. In this nucleus there are neurons that produce neuropeptide Y. This peptide has important roles in sleeping, learning, memory, gastrointestinal regulation, anxiety, epilepsy, alcoholism and depression. MATERIAL AND METHODS We investigated morphometric characteristics (numbers of primary dendrites, longer and shorter diameters of cell bodies and maximal radius of dendritic arborization) of NPY immunoreactive neurons of human cortical amygdaloid nucleus on 6 male adult human brains, aged 46 to 77 years, by immunohistochemical avidin-biotin technique. RESULTS Our investigation has shown that in this nucleus there is a moderate number of NPY immunoreactive neurons. 67% of found neurons were nonpyramidal, while 33% were pyramidal. Among the nonpyramidal neurons the dominant groups were multipolar neurons (41%--of which 25% were multipolar irregular, and 16% multipolar oval). Among the pyramidal neurons the dominant groups were the neurons with triangular shape of cell body (21%). All found NPY immunoreactive neurons (pyramidal and nonpyramidal altogether) had intervals of values of numbers of primary dendrites 2 to 6, longer diameters of cell bodies 13 to 38 microm, shorter diameters of cell bodies 9 to 20 microm and maximal radius of dendritic arborization 50 to 340 em. More than a half of investigated neurons (57%) had 3 primary dendrites. DISCUSSION AND CONCLUSION The other researchers did not find such percentage of pyramidal immunoreactive neurons in this amygdaloid nucleus. If we compare our results with the results of the ather researchers we can conclude that all pyramidal NPY immunoreactive neurons found in this human amygdaloid nucleus belong to the class I of neurons, and that all nonpyramidal NPY immunoreactive neurons belong to the class II of neurons described by other researchers. We suppose that all found pyramidal neurons were projectional.
Collapse
|
37
|
Ebner K, Muigg P, Singewald G, Singewald N. Substance P in Stress and Anxiety. Ann N Y Acad Sci 2008; 1144:61-73. [DOI: 10.1196/annals.1418.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Abstract
The distribution and morphology of neurons containing somatostatin (SOM) was investigated in the amygdala (CA) of the pig. The SOM-immunoreactive (SOM-IR) cell bodies and fibres were present in all subdivisions of the porcine CA, however, their number and density varied depending on the nucleus studied. The highest density of SOM-positive somata was observed in the layer III of the cortical nuclei, in the anterior (magnocellular) part of the basomedial nucleus and in the caudal (large-celled) part of the lateral nucleus. Moderate to high numbers of SOM-IR cells were also observed in the medial and basolateral nuclei. Many labeled neurons were also consistently observed in the lateral part of the central nucleus. In the remaining CA regions, the density of SOM-positive cell bodies varied from moderate to low. In any CA region studied SOM-IR neurons formed heterogeneous population consisting of small, rounded or slightly elongated cell bodies, with a few poorly branched smooth dendrites. In general, morphological features of these cells clearly resembled the non-pyramidal Golgi type II interneurons. The routine double-labeling studies with antisera directed against SOM and neuropeptide Y (NPY) demonstrated that a large number of SOM-IR cell bodies and fibers in all studied CA areas contained simultaneously NPY. In contrast, co-localization of SOM and cholecystokinin (CCK) or SOM and vasoactive intestinal polypeptide (VIP) was never seen in cell bodies and fibres in any of nuclei studied. In conclusion, SOM-IR neurons of the porcine amygdala form large and heterogeneous subpopulation of, most probably, interneurons that often contain additionally NPY. On the other hand, CCK- and/or VIP-IR neurons belonged to another, discrete subpopulations of porcine CA neurons.
Collapse
|
39
|
Singewald N, Chicchi GG, Thurner CC, Tsao KL, Spetea M, Schmidhammer H, Sreepathi HK, Ferraguti F, Singewald GM, Ebner K. Modulation of basal and stress-induced amygdaloid substance P release by the potent and selective NK1 receptor antagonist L-822429. J Neurochem 2008; 106:2476-88. [PMID: 18673452 DOI: 10.1111/j.1471-4159.2008.05596.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has been shown that anxiety and stress responses are modulated by substance P (SP) released within the amygdala. However, there is an important gap in our knowledge concerning the mechanisms regulating extracellular SP in this brain region. To study a possible self-regulating role of SP, we used a selective neurokinin-1 (NK1) receptor antagonist to investigate whether blockade of NK1 receptors results in altered basal and/or stress-evoked SP release in the medial amygdala (MeA), a critical brain area for a functional involvement of SP transmission in enhanced anxiety responses induced by stressor exposure. In vitro binding and functional receptor assays revealed that L-822429 represents a potent and selective rat NK1 receptor antagonist. Intra-amygdaloid administration of L-822429 via inverse microdialysis enhanced basal, but attenuated swim stress-induced SP release, while the low-affinity enantiomer of L-822429 had no effect. Using light and electron microscopy, synaptic contacts between SP-containing fibres and dendrites expressing NK1 receptors was demonstrated in the medial amygdala. Our findings suggest self-regulatory capacity of SP-mediated neurotransmission that differs in the effect on basal and stress-induced release of SP. Under basal conditions endogenous SP can serve as a signal that tonically inhibits its own release via a NK1 receptor-mediated negative feedback action, while under stress conditions SP release is further facilitated by activation of NK1 receptors, likely leading to high local levels of SP and activation of receptors to which SP binds with lower affinity.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shigematsu N, Yamamoto K, Higuchi S, Fukuda T. An immunohistochemical study on a unique colocalization relationship between substance P and GABA in the central nucleus of amygdala. Brain Res 2008; 1198:55-67. [PMID: 18243164 DOI: 10.1016/j.brainres.2007.12.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/21/2007] [Accepted: 12/18/2007] [Indexed: 11/20/2022]
Abstract
Substance P (SP) is a neuropeptide contained in axon terminals. Various classical neurotransmitters coexist with SP in mammalian brains, but there has been no information on the colocalizing substances in the central nucleus of amygdala (CeA), where both SP and its specific receptor are highly concentrated. The present study aimed at determining the colocalizing neurotransmitter in SP terminals in CeA by multi-label immunohistochemistry combined with digitized quantitative analysis. Unexpectedly, most of SP-containing boutons did not show immunoreactivities for any of the transmitters or their marker proteins examined (GABA, glycine, glutamate, acetylcholine, serotonin, or dopamine). Electron microscopy demonstrated small clear vesicles in addition to dense core vesicles within SP-positive terminals that formed symmetrical synapses, indicating the presence of some classical neurotransmitter, most likely GABA. Therefore tissues were fixed by zinc-aldehyde to enhance immunoreactivity for a low level of glutamic acid decarboxylase (GAD), the GABA synthetic enzyme. This led to weak but consistent labeling for GAD in the majority of SP-positive boutons in CeA. By contrast, definite GAD-immunoreactivity was confirmed in SP-containing boutons in the substantia nigra pars reticulata even in specimens treated with a conventional fixative, indicating that negligible GAD labeling in CeA is not ascribed to methodological problems such as interference by the presence of SP but actually reflects low GAD content. These data suggest a unique mode of synaptic transmission at amygdalar SP-containing terminals where slowly-acting SP is concentrated but both GABA and its synthetic enzyme are maintained at low levels, possibly underlying long-lasting responses in emotions.
Collapse
Affiliation(s)
- Naoki Shigematsu
- Clinical Pharmacokinetics, Division of Clinical Pharmacy, Department of Medico-Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
41
|
Moreno N, González A. Development of the vomeronasal amygdala in anuran amphibians: hodological, neurochemical, and gene expression characterization. J Comp Neurol 2007; 503:815-31. [PMID: 17570503 DOI: 10.1002/cne.21422] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The organization of the amygdaloid complex in amphibians possesses major features shared with amniotes. Basic subdivisions have been identified and tentatively compared with their counterparts in other tetrapods. However, problems appeared when trying to find homologies for the amphibian vomeronasal amygdala, the medial amygdala (MeA), because of its embryological origin and, therefore, its evolutionary significance could not be established. Thus, in the present study the main characteristics of the MeA in anurans were studied during development by means of tract-tracing, immunohistochemical, and gene expression techniques. The connectivity of the MeA, mainly related to the accessory olfactory bulb and the hypothalamus, and the localization of neurochemical markers such as substance P, somatostatin, and GABA strongly support its homology with the medial amygdala (subpallial) of mammals. In addition, analysis of the expression patterns of the LIM-homeodomain genes x-Lhx5/7/9 in the developing MeA, together with the immunohistochemistry for GABA and the transcription factor NKX2.1, evidence its resemblance to the subpallial component of the vomeronasal amygdala of mammals in terms of embryological origin and, most likely, the presence of migrated cells from other territories. No evidence was found for pallial-derived territories in the vomeronasal amygdala of anurans that could be comparable to the cortical portions that exist in amniotes, suggesting that these cortical components have emerged in the anamnio-amniotic transition in the evolution of tetrapods.
Collapse
Affiliation(s)
- Nerea Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | |
Collapse
|
42
|
Puskas L, Puskas N, Malobabić S, Krivokuća D, Stanković G, Radonjić V. [Characteristics of galanin and vasoactive intestinal peptide immunoreactivity in the rat amygdala complex]. MEDICINSKI PREGLED 2007; 60:19-24. [PMID: 17853706 DOI: 10.2298/mpns0702019p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Morphological features and morphometric parameters of galanin (GAL) and vasoactive intestinal peptide (VIP) immunoreactive neurons and neuronal fibres were studied in all nuclei of adult male rat amygdala. MATERIAL AND METHODS After perfusion and fixation, rat brains were immunohistochemically stained with antibodies against GAL and VIP and then visualized by avidin-biotin-peroxidase complex. RESULTS AND DISCUSSION The greatest number of galanin-immunoreactive neurons were identified in the medial part of the central nucleus and in the dorsal part of the medial nucleus. In the first case, most neurons were bipolar (37%), and in the second, they were ovoid (45%). GAL-immunoreactive fibers were identified in the medial nucleus, "bed nucleus" of the accessory olfactory tract, fiontal cortical nucleus, amygdalo-hippocampal area and basolateral nucleus. VIP-immunoreactive neurons were diffusely distributed in more nuclei than the previous, mostly in the lateral, basolateral, and basomedial nucleus. They were mostly ovoid (40%). VIP-immunoreactive fibers were observed in the lateral part oJ'the central nucleus, while long and radially oriented fibers were present in the frontal and dorsal cortical nucleus. CONCLUSION By distribution analysis of GAL and VIP immunoreactive neurons and fibers, and according to literature data, it can be assumed that the medial part of the central nucleus receives VIP fibers from other parts of the amygdaloid body, and then sends GAL fibers to the medial nucleus.
Collapse
Affiliation(s)
- Laslo Puskas
- Medicinski fakultet, Institut za anatomiju, Beograd.
| | | | | | | | | | | |
Collapse
|
43
|
FALLON JAMESH, SEROOGY KIMB. Forebrain Projections from Midbrain Cholecystokinin-containing Neurons in the Rata. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.1985.tb29960.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Terashvili M, Wu HE, Schwasinger E, Tseng LF. Paradoxical hyperalgesia induced by mu-opioid receptor agonist endomorphin-2, but not endomorphin-1, microinjected into the centromedial amygdala of the rat. Eur J Pharmacol 2006; 554:137-44. [PMID: 17112504 PMCID: PMC3732481 DOI: 10.1016/j.ejphar.2006.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 09/28/2006] [Accepted: 10/02/2006] [Indexed: 10/24/2022]
Abstract
The effects of endomorphin-2 or endomorphin-1 microinjected into the centromedial amygdala on the thermally-induced tail-flick response were studied in male CD rats. Microinjection of endomorphin-2 (8.7-35.0 nmol) given into the centromedial amygdala time- and dose-dependently decreased the tail-flick latencies. On the other hand, endomorphin-1 (8-32.6 nmol) given into the same site did not cause any change of the tail-flick latency. However, endomorphin-1 (32.6 nmol) or endomorphin-2 (35.0 nmol) given into the basolateral site of amygdala did not affect the tail-flick latency. Pretreatment with the antiserum against dynorphin A(1-17) (200 microg) significantly reversed the decrease of the tail-flick latency induced by endomorphin-2. The decrease of the tail-flick latency induced by endomorphin-2 was also blocked by the endomorphin-2 selective micro-opioid receptor antagonist 3-methoxynaltrexone (6.4 pmol) and by the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (30 nmol), but not by the kappa-opioid receptor antagonist nor-binaltorphimine (6.6 nmol). It is concluded that endomorphin-2, but not endomorphin-1, given into the centromedial amygdala stimulates a 3-methoxynaltrexone-sensitive mu-opioid receptor subtype to induce the release of dynorphin A(1-17), which then acts on the NMDA receptor, but not kappa-opioid receptor for producing hyperalgesia. This conclusion is further supported by the additional findings that dynorphin A(1-17) (2.3 nmol) given into the centromedial amygdala also caused the decrease of the tail-flick latency, which was similarly blocked by the NMDA receptor antagonist MK-801 (30 nmol), but not kappa-opioid receptor antagonist nor-binaltorphimine (6.6 nmol).
Collapse
Affiliation(s)
| | | | | | - Leon F. Tseng
- Corresponding author: Leon F. Tseng, Medical College of Wisconsin, Department of Anesthesiology, Medical Education Building, Room M4308, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA, Tel: (414) 456-5686, Fax: (414) 456-6507,
| |
Collapse
|
45
|
Rowe WB, Kar S, Meaney MJ, Quirion R. Neurotensin receptor levels as a function of brain aging and cognitive performance in the Morris water maze task in the rat. Peptides 2006; 27:2415-23. [PMID: 16872718 DOI: 10.1016/j.peptides.2006.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
The present study evaluated whether neurotensin (NT) binding sites were altered in the aged rat brain and if these alterations were related to the cognitive status of the animal. Aged (24-25 months old) Long-Evans rats were behaviorally screened using the Morris water maze task and were classified as either aged, cognitively impaired (AI) or cognitively unimpaired (AU) based on their relative performances in the task compared to young control (Y) animals. Decreases in specific [125I]NT binding were observed in the hippocampal formation, namely the dentate gyrus (DG), as well as in the septum and hypothalamus. Both aged groups also showed significant reductions in specific [125I]NT binding levels compared to the Y animals in the hippocampal CA3 sub-field, with the AI animals exhibiting the lowest levels. In the Substantia Nigra Zona Compacta (SNc) and the ventral tegmental area (VTA), specific [125I]NT binding was decreased as a function of age while binding in the paraventricular nucleus of the hypothalamus (PVNh) was decreased as a function of age and cognitive status. These alterations in the level of specific [125I] NT binding in the aged animals suggest decreases in NT receptor signaling as a function of age and potential involvement of NT-ergic systems in the etiology of age-related cognitive deficits.
Collapse
Affiliation(s)
- W B Rowe
- Memory Pharmaceuticals, 100 Philips Parkway, Montvale, NJ 07645, USA
| | | | | | | |
Collapse
|
46
|
Ebner K, Singewald N. The role of substance P in stress and anxiety responses. Amino Acids 2006; 31:251-72. [PMID: 16820980 DOI: 10.1007/s00726-006-0335-9] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 02/21/2006] [Indexed: 12/18/2022]
Abstract
Substance P (SP) is one of the most abundant peptides in the central nervous system and has been implicated in a variety of physiological and pathophysiological processes including stress regulation, as well as affective and anxiety-related behaviour. Consistent with these functions, SP and its preferred neurokinin 1 (NK1) receptor has been found within brain areas known to be involved in the regulation of stress and anxiety responses. Aversive and stressful stimuli have been shown repeatedly to change SP brain tissue content, as well as NK1 receptor binding. More recently it has been demonstrated that emotional stressors increase SP efflux in specific limbic structures such as amygdala and septum and that the magnitude of this effect depends on the severity of the stressor. Depending on the brain area, an increase in intracerebral SP concentration (mimicked by SP microinjection) produces mainly anxiogenic-like responses in various behavioural tasks. Based on findings that SP transmission is stimulated under stressful or anxiety-provoking situations it was hypothesised that blockade of NK1 receptors may attenuate stress responses and exert anxiolytic-like effects. Preclinical and clinical studies have found evidence in favour of such an assumption. The status of this research is reviewed here.
Collapse
Affiliation(s)
- K Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
47
|
Morphology, size and distribution of corticotropin releasing factor (CRF) immunoreactive neurons in the central nucleus of the rat amygdaloid complex. ACTA VET-BEOGRAD 2006. [DOI: 10.2298/avb0606449p] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
48
|
Meis S, Sosulina L, Schulz S, Höllt V, Pape HC. Mechanisms of somatostatin-evoked responses in neurons of the rat lateral amygdala. Eur J Neurosci 2005; 21:755-62. [PMID: 15733093 DOI: 10.1111/j.1460-9568.2005.03922.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of somatostatin in the rat lateral amygdala (LA) in vitro were investigated through whole cell recording techniques. Somatostatin induced an inwardly rectifying K+ current in approximately 98% of LA projection neurons. Half-maximal effects were obtained by 189 nM somatostatin. The effects of somatostatin were insensitive to tetrodotoxin, reduced by Ba2+, occluded or abolished by the presence of nonhydrolysable GTP or GDP analogues, respectively, and blocked or mimicked by a somatostatin receptor type 2 antagonist (BIM-23627) or somatostatin receptor type 2 agonist (L-779,976), respectively, while somatostatin receptor type 1, 3 and 4 agonists were ineffective (L-797,591, L-796,778, L-803,087). Responses to somatostatin were associated with membrane hyperpolarization and decrease in input resistance, resulting in a dampening of cell excitability. It is suggested that these cellular mechanisms contribute to the role of somatostatin in decreasing anxiety behaviour as well as to anticonvulsant and antiepileptogenic actions of somatostatin or somatostatin agonists in the amygdala.
Collapse
Affiliation(s)
- Susanne Meis
- Institut für Physiologie, Medizinische Fakultät, Otto-von-Guericke-Universität, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
49
|
Blinder KJ, Johnson TA, Massari VJ. Enkephalins and functionally specific vagal preganglionic neurons to the heart: Ultrastructural studies in the cat. Auton Neurosci 2005; 120:52-61. [PMID: 15996625 DOI: 10.1016/j.autneu.2005.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/22/2005] [Accepted: 03/23/2005] [Indexed: 02/05/2023]
Abstract
In cat, distinct populations of vagal preganglionic and postganglionic neurons selectively modulate heart rate, atrioventricular conduction and left ventricular contractility, respectively. Vagal preganglionic neurons to the heart originate in the ventrolateral part of nucleus ambiguus and project to postganglionic neurons in intracardiac ganglia, including the sinoatrial (SA), atrioventricular (AV) and cranioventricular (CV) ganglia, which selectively modulate heart rate, AV conduction and left ventricular contractility, respectively. These ganglia receive projections from separate populations of vagal preganglionic neurons. The neurochemical anatomy and synaptic interactions of afferent neurons which mediate central control of these preganglionic neurons is incompletely understood. Enkephalins cause bradycardia when microinjected into nucleus ambiguus. It is not known if this effect is mediated by direct synapses of enkephalinergic terminals upon vagal preganglionic neurons to the heart. The effects of opioids in nucleus ambiguus upon AV conduction and cardiac contractility have also not been studied. We have tested the hypothesis that enkephalinergic nerve terminals synapse upon vagal preganglionic neurons projecting to the SA, AV and CV ganglia. Electron microscopy was used combining retrograde labeling from the SA, AV or CV ganglion with immunocytochemistry for enkephalins in ventrolateral nucleus ambiguus. Eight percent of axodendritic synapses upon negative chronotropic, and 12% of axodendritic synapses upon negative dromotropic vagal preganglionic neurons were enkephalinergic. Enkephalinergic axodendritic synapses were also present upon negative inotropic vagal preganglionic neurons. Thus enkephalinergic terminals in ventrolateral nucleus ambiguus can modulate not only heart rate but also atrioventricular conduction and left ventricular contractility by directly synapsing upon cardioinhibitory vagal preganglionic neurons.
Collapse
|
50
|
Shin MS. Vasoactive intestinal peptide in the amygdala inhibits tail flick reflexes in rats. Brain Res 2005; 1040:197-201. [PMID: 15804442 DOI: 10.1016/j.brainres.2005.01.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 01/24/2005] [Accepted: 01/24/2005] [Indexed: 11/25/2022]
Abstract
The present study was conducted to test the capability of a representative type of non-opioid peptides vasoactive intestinal peptide (VIP) in the amygdala to modulate nociception. Bilateral application of VIP into the basolateral region of the amygdala persistently suppressed radiant heat-evoked tail flick reflexes of anesthetized rats. The present result suggests that VIP synapses in the amygdala may play important roles in controlling pain, as with opioid synapses in the amygdala. This result also implies that local VIP in the amygdala is likely to subserve activating the descending antinociceptive systems of the brainstem from the amygdala.
Collapse
Affiliation(s)
- Maeng-Sik Shin
- Department of Psychology, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA.
| |
Collapse
|