1
|
Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, ILL-Raga G, Muñoz FJ. The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology. Antioxidants (Basel) 2024; 13:1208. [PMID: 39456461 PMCID: PMC11505517 DOI: 10.3390/antiox13101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid β-peptide (Aβ) into oligomers and fibrils that cause synaptotoxicity and neuronal death. Aβ exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on Aβ production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to Aβ and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of Aβ in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.
Collapse
Affiliation(s)
- Hugo Fanlo-Ucar
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Pol Picón-Pagès
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
- Laboratory of Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08028 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Gerard ILL-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| |
Collapse
|
2
|
Beretta C, Svensson E, Dakhel A, Zyśk M, Hanrieder J, Sehlin D, Michno W, Erlandsson A. Amyloid-β deposits in human astrocytes contain truncated and highly resistant proteoforms. Mol Cell Neurosci 2024; 128:103916. [PMID: 38244652 DOI: 10.1016/j.mcn.2024.103916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that develops over decades. Glial cells, including astrocytes are tightly connected to the AD pathogenesis, but their impact on disease progression is still unclear. Our previous data show that astrocytes take up large amounts of aggregated amyloid-beta (Aβ) but are unable to successfully degrade the material, which is instead stored intracellularly. The aim of the present study was to analyze the astrocytic Aβ deposits composition in detail in order to understand their role in AD propagation. For this purpose, human induced pluripotent cell (hiPSC)-derived astrocytes were exposed to sonicated Aβ42 fibrils and magnetic beads. Live cell imaging and immunocytochemistry confirmed that the ingested Aβ aggregates and beads were transported to the same lysosomal compartments in the perinuclear region, which allowed us to successfully isolate the Aβ deposits from the astrocytes. Using a battery of experimental techniques, including mass spectrometry, western blot, ELISA and electron microscopy we demonstrate that human astrocytes truncate and pack the Aβ aggregates in a way that makes them highly resistant. Moreover, the astrocytes release specifically truncated forms of Aβ via different routes and thereby expose neighboring cells to pathogenic proteins. Taken together, our study establishes a role for astrocytes in mediating Aβ pathology, which could be of relevance for identifying novel treatment targets for AD.
Collapse
Affiliation(s)
- C Beretta
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden.
| | - E Svensson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden; Department of Neuroinflammation, UCL Queen Square Institute of Neurology, 1 Wakefield Street, WC1N 1PJ London, United Kingdom of Great Britain and Northern Ireland.
| | - A Dakhel
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden.
| | - M Zyśk
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden.
| | - J Hanrieder
- Department of Psychiatry and Neurochemistry, University of Gothenburg, SE-43180 Gothenburg, Sweden.
| | - D Sehlin
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden.
| | - W Michno
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden.
| | - A Erlandsson
- Department of Public Health and Caring Sciences, Molecular Geriatrics, Rudbeck Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden.
| |
Collapse
|
3
|
Ban XX, Wan H, Wan XX, Tan YT, Hu XM, Ban HX, Chen XY, Huang K, Zhang Q, Xiong K. Copper Metabolism and Cuproptosis: Molecular Mechanisms and Therapeutic Perspectives in Neurodegenerative Diseases. Curr Med Sci 2024; 44:28-50. [PMID: 38336987 DOI: 10.1007/s11596-024-2832-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 02/12/2024]
Abstract
Copper is an essential trace element, and plays a vital role in numerous physiological processes within the human body. During normal metabolism, the human body maintains copper homeostasis. Copper deficiency or excess can adversely affect cellular function. Therefore, copper homeostasis is stringently regulated. Recent studies suggest that copper can trigger a specific form of cell death, namely, cuproptosis, which is triggered by excessive levels of intracellular copper. Cuproptosis induces the aggregation of mitochondrial lipoylated proteins, and the loss of iron-sulfur cluster proteins. In neurodegenerative diseases, the pathogenesis and progression of neurological disorders are linked to copper homeostasis. This review summarizes the advances in copper homeostasis and cuproptosis in the nervous system and neurodegenerative diseases. This offers research perspectives that provide new insights into the targeted treatment of neurodegenerative diseases based on cuproptosis.
Collapse
Affiliation(s)
- Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Ya-Ting Tan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Hong-Xia Ban
- Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010050, China
| | - Xin-Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 430013, China.
| |
Collapse
|
4
|
Feng D, Zhao Y, Li W, Li X, Wan J, Wang F. Copper neurotoxicity: Induction of cognitive dysfunction: A review. Medicine (Baltimore) 2023; 102:e36375. [PMID: 38050287 PMCID: PMC10695595 DOI: 10.1097/md.0000000000036375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 12/06/2023] Open
Abstract
Cognitive dysfunction occurs mainly in certain diseases and in the pathological process of aging. In addition to this, it is also widespread in patients undergoing anesthesia, surgery, and cancer chemotherapy. Neuroinflammation, oxidative stress, mitochondrial dysfunction, impaired synaptic plasticity, and lack of neurotrophic support are involved in copper-induced cognitive dysfunction. In addition, recent studies have found that copper mediates cuproptosis and adversely affects cognitive function. Cuproptosis is a copper-dependent, lipoylated mitochondrial protein-driven, non-apoptotic mode of regulated cell death, which provides us with new avenues for identifying and treating related diseases. However, the exact mechanism by which cuproptosis induces cognitive decline is still unclear, and this has attracted the interest of many researchers. In this paper, we analyzed the pathological mechanisms and therapeutic targets of copper-associated cognitive decline, mainly in the context of neurodegenerative diseases, psychiatric and psychological disorders, and diabetes mellitus.
Collapse
Affiliation(s)
- Duan Feng
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu Zhao
- General Surgery Department, Enyang District People’s Hospital, Bazhong City, China
| | - Wei Li
- ICU, Bazhong District People’s Hospital, Bazhong, China
| | - Xuechao Li
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jixiang Wan
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fangjun Wang
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
5
|
Dai DL, Li M, Lee EB. Human Alzheimer's disease reactive astrocytes exhibit a loss of homeostastic gene expression. Acta Neuropathol Commun 2023; 11:127. [PMID: 37533101 PMCID: PMC10398957 DOI: 10.1186/s40478-023-01624-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Astrocytes are one of the brain's major cell types and are responsible for maintaining neuronal homeostasis via regulating the extracellular environment, providing metabolic support, and modulating synaptic activity. In neurodegenerative diseases, such as Alzheimer's disease, astrocytes can take on a hypertrophic appearance. These reactive astrocytes are canonically associated with increases in cytoskeletal proteins, such as glial fibrillary acidic protein and vimentin. However, the molecular alterations that characterize astrocytes in human disease tissues have not been extensively studied with single cell resolution. Using single nucleus RNA sequencing data from normal, pathologic aging, and Alzheimer's disease brains, we identified the transcriptomic changes associated with reactive astrocytes. Deep learning-based clustering algorithms denoised expression data for 17,012 genes and clustered 15,529 astrocyte nuclei, identifying protoplasmic, gray matter and fibrous, white matter astrocyte clusters. RNA trajectory analyses revealed a spectrum of reactivity within protoplasmic astrocytes characterized by a modest increase of reactive genes and a marked decrease in homeostatic genes. Amyloid but not tau pathology correlated with astrocyte reactivity. To identify reactivity-associated genes, linear regressions of gene expression versus reactivity were used to identify the top 52 upregulated and 144 downregulated genes. Gene Ontology analysis revealed that upregulated genes were associated with cellular growth, responses to metal ions, inflammation, and proteostasis. Downregulated genes were involved in cellular interactions, neuronal development, ERBB signaling, and synapse regulation. Transcription factors were significantly enriched among the downregulated genes. Using co-immunofluorescence staining of Alzheimer's disease brain tissues, we confirmed pathologic downregulation of ERBB4 and transcription factor NFIA in reactive astrocytes. Our findings reveal that protoplasmic, gray matter astrocytes in Alzheimer's disease exist within a spectrum of reactivity that is marked by a strong loss of normal function.
Collapse
Affiliation(s)
- David L Dai
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA.
| |
Collapse
|
6
|
Drew VJ, Park M, Kim T. GABA-Positive Astrogliosis in Sleep-Promoting Areas Associated with Sleep Disturbance in 5XFAD Mice. Int J Mol Sci 2023; 24:9695. [PMID: 37298646 PMCID: PMC10253883 DOI: 10.3390/ijms24119695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Sleep disturbances, a debilitating symptom of Alzheimer's disease (AD), are associated with neuropathological changes. However, the relationship between these disturbances and regional neuron and astrocyte pathologies remains unclear. This study examined whether sleep disturbances in AD result from pathological changes in sleep-promoting brain areas. Male 5XFAD mice underwent electroencephalography (EEG) recordings at 3, 6, and 10 months, followed by an immunohistochemical analysis of three brain regions associated with sleep promotion. The findings showed that 5XFAD mice demonstrated reduced duration and bout counts of nonrapid eye movement (NREM) sleep by 6 months and reduced duration and bout counts of rapid eye movement (REM) sleep by 10 months. Additionally, peak theta EEG power frequency during REM sleep decreased by 10 months. Sleep disturbances correlated with the total number of GFAP-positive astrocytes and the ratio of GFAP- and GABA-positive astrocytes across all three sleep-associated regions corresponding to their roles in sleep promotion. The presence of GABRD in sleep-promoting neurons indicated their susceptibility to inhibition by extrasynaptic GABA. This study reveals that neurotoxic reactive astrogliosis in NREM and REM sleep-promoting areas is linked to sleep disturbances in 5XFAD mice, which suggests a potential target for the treatment of sleep disorders in AD.
Collapse
Affiliation(s)
| | | | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (V.J.D.); (M.P.)
| |
Collapse
|
7
|
Xu Y, Deng T, Xie L, Qin T, Sun T. Neuroprotective effects of hawthorn leaf flavonoids in
Aβ
25–35
‐induced
Alzheimer's disease model. Phytother Res 2022; 37:1346-1365. [PMID: 36447359 DOI: 10.1002/ptr.7690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 12/02/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by β-amyloid (Aβ) plaques, neurofibrillary tangles, neuronal cell loss, and oxidative stress. Further deposition of Aβ in the brain induces oxidative stress, neuroinflammation, and memory dysfunction. Hawthorn (Crataegus pinnatifida Bge.) leaf, a known traditional Chinese medicine, is commonly used for the treatment of hyperlipidemia, heart palpitations, forgetfulness, and tinnitus, and its main bioactive components are Hawthorn Leaf Flavonoids (HLF). In this study, we investigated the neuroprotective effects of the HLF on the Aβ25-35 (bilateral hippocampus injection) rat model of AD. The results showed that the oral administration of HLF at a dose of 50, 100, and 200 mg/kg for 30 days significantly ameliorated neuronal cell damage and memory deficits, and markedly increased the enzyme activities of superoxide dismutase and catalase, and the content of glutathione whereas it decreased the malondialdehyde content in the Aβ25-35 rat model of AD as well as suppressed the activation of astrocytes. In addition, HLF up-regulated Nrf-2, NQO-1, and HO-1 protein expressions. Also, it reduced neuroinflammation by inhibiting activation of astrocytes. In summary, these results indicated that HLF decreased the oxidative stress via activating Nrf-2/antioxidant response element signaling pathways, and may suggest as a potential candidate for AD therapeutic agent.
Collapse
Affiliation(s)
- Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province Hospital of Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Linjiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| |
Collapse
|
8
|
Murray TE, Wenzel TJ, Simtchouk S, Greuel BK, Gibon J, Klegeris A. Extracellular Cardiolipin Modulates Select Immune Functions of Astrocytes in Toll-Like Receptor (TLR) 4-Dependent Manner. Mediators Inflamm 2022; 2022:9946439. [PMID: 35369030 PMCID: PMC8975658 DOI: 10.1155/2022/9946439] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/11/2022] [Accepted: 02/16/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by chronic neuroinflammation, which is partially mediated by dysregulated functions of glial cells. Cardiolipin (CL) is a phospholipid normally confined to the inner mitochondrial membrane; however, it has been detected in human sera, indicating that it can exist in the extracellular space where it may interact with nearby cells. Although CL has been shown to modulate several functions of microglia in a toll-like receptor (TLR) 4-dependent manner, the effects of extracellular CL on astrocytes are unknown. In addition to their homeostatic functions, astrocytes participate in neuroimmune responses of the brain and express TLR 4. Therefore, we hypothesized that extracellular CL (1) modulates the secretion of cytokines and cytotoxins by astrocytes, as well as their phagocytic activity, and (2) acts by interacting with astrocyte TLR 4. We demonstrate that CL inhibits the lipopolysaccharide- (LPS-) induced secretion of cytotoxins and expression of glial fibrillary acidic protein (GFAP) by human U118 MG astrocytic cells. CL alone upregulates the phagocytic activity of human astrocytic cells and primary murine astrocytes. CL in combination with LPS upregulates secretion of interleukin (IL)-1β by astrocytic cells. Furthermore, CL alone increases the secretion of monocyte chemoattractant protein (MCP)-1 by astrocytic cells, which is blocked by the TLR 4-specific antagonist TAK-242. We demonstrate that CL upregulates MCP-1 secretion in the absence of its natural carrier protein, β2-glycoprotein 1, indicating that CL may be bioactive in the brain where this protein is not present. Lastly, we show that CL downregulates the expression of astrocytic TLR 4, implying that CL engages this receptor, as its activation has been shown to lead to its degradation. Overall, our study extends the list of cell type functions of which CL modulates and provides evidence that CL, or liposomes containing this phospholipid can be used to modulate specific neuroimmune functions of astrocytes.
Collapse
Affiliation(s)
- Taryn E. Murray
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada V1V 1V7
| | - Tyler J. Wenzel
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada V1V 1V7
| | - Svetlana Simtchouk
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada V1V 1V7
| | - Bridget K. Greuel
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada V1V 1V7
| | - Julien Gibon
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada V1V 1V7
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada V1V 1V7
| |
Collapse
|
9
|
Gao Y, Liu J, Wang J, Liu Y, Zeng LH, Ge W, Ma C. Proteomic analysis of human hippocampal subfields provides new insights into the pathogenesis of Alzheimer's disease and the role of glial cells. Brain Pathol 2022; 32:e13047. [PMID: 35016256 PMCID: PMC9245939 DOI: 10.1111/bpa.13047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 01/23/2023] Open
Abstract
The hippocampus and entorhinal cortex (EC), the earliest affected areas, are considered relative to early memory loss in Alzheimer's disease (AD). The hippocampus is composed of heterogeneous subfields that are affected in a different order and varying degrees during AD pathogenesis. In this study, we conducted a comprehensive proteomic analysis of the hippocampal subfields and EC region in human postmortem specimens obtained from the Chinese human brain bank. Bioinformatics analysis identified region‐consistent differentially expressed proteins (DEPs) which associated with astrocytes, and region‐specific DEPs which associated with oligodendrocytes and the myelin sheath. Further analysis illuminated that the region‐consistent DEPs functioned as connection of region‐specific DEPs. Moreover, in region‐consistent DEPs, the expression level of S100A10, a marker of protective astrocytes, was increased in both aging and AD patients. Immunohistochemical analysis confirmed an increase in the number of S100A10‐positive astrocytes in all hippocampal subfields and the EC region of AD patients. Dual immunofluorescence results further showed that S100A10‐positive astrocytes contained apoptotic neuron debris in AD patients, suggesting that S100A10‐positive astrocytes may protect brain through phagocytosis of apoptotic neurons. In region‐specific DEPs, the proteome showed a specific reduction of oligodendrocytes and myelin markers in CA1, CA3, and EC regions of AD patients. Immunohistochemical analysis confirmed the loss of myelin in EC region. Above all, these results highlight the role of the glial cells in AD and provide new insights into the pathogenesis of AD and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yanpan Gao
- School of Medicine, Zhejiang University City College, Hangzhou, China.,State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiayu Wang
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Yifan Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling-Hui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Hebei Key Laboratory of Chronic Kidney Diseases and Bone Metabolism, Affiliated Hospital of Hebei University, Baoding, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Onaolapo OJ, Olofinnade AT, Ojo FO, Onaolapo AY. Neuroinflammation and Oxidative Stress in Alzheimer's Disease; Can Nutraceuticals and Functional Foods Come to the Rescue? Antiinflamm Antiallergy Agents Med Chem 2022; 21:75-89. [PMID: 36043770 DOI: 10.2174/1871523021666220815151559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD), the most prevalent form of age-related dementia, is typified by progressive memory loss and spatial awareness with personality changes. The increasing socioeconomic burden associated with AD has made it a focus of extensive research. Ample scientific evidence supports the role of neuroinflammation and oxidative stress in AD pathophysiology, and there is increasing research into the possible role of anti-inflammatory and antioxidative agents as disease modifying therapies. While, the result of numerous preclinical studies has demonstrated the benefits of anti-inflammatory agents, these benefits however have not been replicated in clinical trials, necessitating a further search for more promising anti-inflammatory agents. Current understanding highlights the role of diet in the development of neuroinflammation and oxidative stress, as well as the importance of dietary interventions and lifestyle modifications in mitigating them. The current narrative review examines scientific literature for evidence of the roles (if any) of dietary components, nutraceuticals and functional foods in the prevention or management of AD. It also examines how diet/ dietary components could modulate oxidative stress/inflammatory mediators and pathways that are crucial to the pathogenesis and/or progression of AD.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Department of Pharmacology, Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Anthony T Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Ikeja, Lagos State, Nigeria
| | - Folusho O Ojo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Adejoke Y Onaolapo
- Department of Anatomy, Behavioural Neuroscience Unit, Neurobiology Subdivision, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
11
|
Pal A, Rani I, Pawar A, Picozza M, Rongioletti M, Squitti R. Microglia and Astrocytes in Alzheimer's Disease in the Context of the Aberrant Copper Homeostasis Hypothesis. Biomolecules 2021; 11:1598. [PMID: 34827595 PMCID: PMC8615684 DOI: 10.3390/biom11111598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Evidence of copper's (Cu) involvement in Alzheimer's disease (AD) is available, but information on Cu involvement in microglia and astrocytes during the course of AD has yet to be structurally discussed. This review deals with this matter in an attempt to provide an updated discussion on the role of reactive glia challenged by excess labile Cu in a wide picture that embraces all the major processes identified as playing a role in toxicity induced by an imbalance of Cu in AD.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, AIIMS, Kalyani 741245, West Bengal, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala 133207, Haryana, India;
| | - Anil Pawar
- Department of Zoology, DAV University, Jalandhar 144012, Punjab, India;
| | - Mario Picozza
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| |
Collapse
|
12
|
Viejo L, Noori A, Merrill E, Das S, Hyman BT, Serrano-Pozo A. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 48:e12753. [PMID: 34297416 PMCID: PMC8766893 DOI: 10.1111/nan.12753] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS Reactive astrocytes in Alzheimer's disease (AD) have traditionally been demonstrated by increased glial fibrillary acidic protein (GFAP) immunoreactivity; however, astrocyte reaction is a complex and heterogeneous phenomenon involving multiple astrocyte functions beyond cytoskeletal remodelling. To better understand astrocyte reaction in AD, we conducted a systematic review of astrocyte immunohistochemical studies in post-mortem AD brains followed by bioinformatics analyses on the extracted reactive astrocyte markers. METHODS NCBI PubMed, APA PsycInfo and WoS-SCIE databases were interrogated for original English research articles with the search terms 'Alzheimer's disease' AND 'astrocytes.' Bioinformatics analyses included protein-protein interaction network analysis, pathway enrichment, and transcription factor enrichment, as well as comparison with public human -omics datasets. RESULTS A total of 306 articles meeting eligibility criteria rendered 196 proteins, most of which were reported to be upregulated in AD vs control brains. Besides cytoskeletal remodelling (e.g., GFAP), bioinformatics analyses revealed a wide range of functional alterations including neuroinflammation (e.g., IL6, MAPK1/3/8 and TNF), oxidative stress and antioxidant defence (e.g., MT1A/2A, NFE2L2, NOS1/2/3, PRDX6 and SOD1/2), lipid metabolism (e.g., APOE, CLU and LRP1), proteostasis (e.g., cathepsins, CRYAB and HSPB1/2/6/8), extracellular matrix organisation (e.g., CD44, MMP1/3 and SERPINA3), and neurotransmission (e.g., CHRNA7, GABA, GLUL, GRM5, MAOB and SLC1A2), among others. CTCF and ESR1 emerged as potential transcription factors driving these changes. Comparison with published -omics datasets validated our results, demonstrating a significant overlap with reported transcriptomic and proteomic changes in AD brains and/or CSF. CONCLUSIONS Our systematic review of the neuropathological literature reveals the complexity of AD reactive astrogliosis. We have shared these findings as an online resource available at www.astrocyteatlas.org.
Collapse
Affiliation(s)
- Lucía Viejo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ayush Noori
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Harvard College, Cambridge, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
| | - Emily Merrill
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
13
|
Price BR, Johnson LA, Norris CM. Reactive astrocytes: The nexus of pathological and clinical hallmarks of Alzheimer's disease. Ageing Res Rev 2021; 68:101335. [PMID: 33812051 PMCID: PMC8168445 DOI: 10.1016/j.arr.2021.101335] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
Astrocyte reactivity is a hallmark of neuroinflammation that arises with Alzheimer’s disease (AD) and nearly every other neurodegenerative condition. While astrocytes certainly contribute to classic inflammatory processes (e.g. cytokine release, waste clearance, and tissue repair), newly emerging technologies for measuring and targeting cell specific activities in the brain have uncovered essential roles for astrocytes in synapse function, brain metabolism, neurovascular coupling, and sleep/wake patterns. In this review, we use a holistic approach to incorporate, and expand upon, classic neuroinflammatory concepts to consider how astrocyte dysfunction/reactivity modulates multiple pathological and clinical hallmarks of AD. Our ever-evolving understanding of astrocyte signaling in neurodegeneration is not only revealing new drug targets and treatments for dementia but is suggesting we reimagine AD pathophysiological mechanisms.
Collapse
Affiliation(s)
- Brittani R Price
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA, 02111, USA
| | - Lance A Johnson
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Physiology, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA.
| |
Collapse
|
14
|
Hammoud H, Netsyk O, Tafreshiha AS, Korol SV, Jin Z, Li J, Birnir B. Insulin differentially modulates GABA signalling in hippocampal neurons and, in an age-dependent manner, normalizes GABA-activated currents in the tg-APPSwe mouse model of Alzheimer's disease. Acta Physiol (Oxf) 2021; 232:e13623. [PMID: 33559388 DOI: 10.1111/apha.13623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
AIM We examined if tonic γ-aminobutyric acid (GABA)-activated currents in primary hippocampal neurons were modulated by insulin in wild-type and tg-APPSwe mice, an Alzheimer's disease (AD) model. METHODS GABA-activated currents were recorded in dentate gyrus (DG) granule cells and CA3 pyramidal neurons in hippocampal brain slices, from 8 to 10 weeks old (young) wild-type mice and in dorsal DG granule cells in adult, 5-6 and 10-12 (aged) months old wild-type and tg-APPSwe mice, in the absence or presence of insulin, by whole-cell patch-clamp electrophysiology. RESULTS In young mice, insulin (1 nmol/L) enhanced the total spontaneous inhibitory postsynaptic current (sIPSCT ) density in both dorsal and ventral DG granule cells. The extrasynaptic current density was only increased by insulin in dorsal CA3 pyramidal neurons. In absence of action potentials, insulin enhanced DG granule cells and dorsal CA3 pyramidal neurons miniature IPSC (mIPSC) frequency, consistent with insulin regulation of presynaptic GABA release. sIPSCT densities in DG granule cells were similar in wild-type and tg-APPSwe mice at 5-6 months but significantly decreased in aged tg-APPSwe mice where insulin normalized currents to wild-type levels. The extrasynaptic current density was increased in tg-APPSwe mice relative to wild-type littermates but, only in aged tg-APPSwe mice did insulin decrease and normalize the current. CONCLUSION Insulin effects on GABA signalling in hippocampal neurons are selective while multifaceted and context-based. Not only is the response to insulin related to cell-type, hippocampal axis-location, age of animals and disease but also to the subtype of neuronal inhibition involved, synaptic or extrasynaptic GABAA receptors-activated currents.
Collapse
Affiliation(s)
- Hayma Hammoud
- Department of Medical Cell Biology Uppsala University Uppsala Sweden
| | - Olga Netsyk
- Department of Medical Cell Biology Uppsala University Uppsala Sweden
| | | | - Sergiy V. Korol
- Department of Medical Cell Biology Uppsala University Uppsala Sweden
| | - Zhe Jin
- Department of Medical Cell Biology Uppsala University Uppsala Sweden
| | - Jin‐Ping Li
- Department of Medical Biochemistry and Microbiology Uppsala University Uppsala Sweden
| | - Bryndis Birnir
- Department of Medical Cell Biology Uppsala University Uppsala Sweden
| |
Collapse
|
15
|
Lennol MP, Canelles S, Guerra-Cantera S, Argente J, García-Segura LM, de Ceballos ML, Chowen JA, Frago LM. Amyloid-β 1-40 differentially stimulates proliferation, activation of oxidative stress and inflammatory responses in male and female hippocampal astrocyte cultures. Mech Ageing Dev 2021; 195:111462. [PMID: 33609535 DOI: 10.1016/j.mad.2021.111462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and has a higher incidence in women. The main component of the senile plaques characteristic of AD is amyloid-beta (Aβ), with surrounding astrocytes contributing to the degenerative process. We hypothesized that the sex difference in the incidence of AD could be partially due to differential astrocytic responses to Aβ. Thus, the effect of Aβ1-40 on cell viability, the inflammatory response, and oxidative status was studied in cultures of hippocampal astrocytes from male and female rats. Aβ1-40 increased astrocyte viability in both female and male cultures by activating proliferation and survival pathways. Pro-inflammatory and anti-inflammatory responses were induced in astrocytes from both sexes. Aβ1-40 did not affect endoplasmic reticulum stress although it induced oxidative stress in male and female astrocytes. Interestingly, male astrocytes had an increase in cell number and significantly lower cell death in response to Aβ1-40. Conversely, astrocytes from females displayed a greater inflammatory response after the Aβ1-40 challenge. These results suggest that the inflammatory and oxidative environment induced by Aβ1-40 in female astrocytes may contribute to enhance the vulnerability to AD and warrants further studies to unveil the mechanisms underlying sex differences in astrocytic responses.
Collapse
Affiliation(s)
- Matthew P Lennol
- Department of Paediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, Madrid, 28029, Spain; Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Santiago Guerra-Cantera
- Department of Paediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, Madrid, 28029, Spain; Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Jesús Argente
- Department of Paediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, Madrid, 28029, Spain; Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain; IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, Madrid, 28049, Spain
| | - Luis Miguel García-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Av. Doctor Arce, 37, Madrid, 28002, Spain; CIBER de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - María L de Ceballos
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Av. Doctor Arce, 37, Madrid, 28002, Spain; CIBER de Investigación Biomédica en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain; IMDEA Food Institute, CEI UAM + CSIC, Carretera de Cantoblanco 8, Madrid, 28049, Spain
| | - Laura M Frago
- Department of Paediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo, 4, Madrid, 28029, Spain; Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Av. Menéndez Pelayo, 65, Madrid, 28009, Spain; Instituto de Investigación Sanitaria Princesa, IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5 Pabellón 11, Planta 0, Madrid, 28029, Spain.
| |
Collapse
|
16
|
Tavassoly O, Sato T, Tavassoly I. Inhibition of Brain Epidermal Growth Factor Receptor Activation: A Novel Target in Neurodegenerative Diseases and Brain Injuries. Mol Pharmacol 2020; 98:13-22. [PMID: 32350120 DOI: 10.1124/mol.120.119909] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/10/2020] [Indexed: 02/14/2025] Open
Abstract
Several reports have been published recently demonstrating a beneficial effect of epidermal growth factor receptor (EGFR) inhibitors in improving pathologic and behavioral conditions in neurodegenerative diseases (NDDs) such as Alzheimer's disease and Amyotrophic Lateral Sclerosis (ALS) as well as the brain and spinal cord injuries (SCI). Despite successful therapeutic effects of EGFR inhibition in these pathologic conditions, there is still no report of proof-of-concept studies in well-characterized animal models using recently developed blood-brain barrier (BBB)-penetrating EGFR inhibitors, which is due to previous conflicting reports concerning the level of EGFR or activated EGFR in normal and pathologic conditions that caused target engagement to be a concern in any future EGFR inhibition therapy. In this review, the level of EGFR expression and activation in the developing central nervous system (CNS) compared with the adult CNS will be explained as well as how neuronal injury or pathologic conditions, especially inflammation and amyloid fibrils, induce reactive astrocytes leading to an increase in the expression and activation of EGFR and, finally, neurodegeneration. Furthermore, in this review, we will discuss two main molecular mechanisms that can be proposed as the neuroprotective effects of EGFR inhibition in these pathologic conditions. We will also review the recent advances in the development of BBB-penetrating EGFR inhibitors in cancer therapy, which may eventually be repositioned for NDDs and SCI therapy in the future. SIGNIFICANCE STATEMENT: Based on the lessons from the applications of EGFR inhibitors in oncology, it is concluded that EGFR inhibitors can be beneficial in treatment of neurodegenerative diseases and spinal cord injuries. They carry their therapeutic potentials through induction of autophagy and attenuation of reactive astrocytes.
Collapse
Affiliation(s)
- Omid Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan (T.S.); Division of Pulmonary Medicine, Department of Medicine, Keiyu Hospital, Yokohama-shi, Kanagawa, Japan (T.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| | - Takashi Sato
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan (T.S.); Division of Pulmonary Medicine, Department of Medicine, Keiyu Hospital, Yokohama-shi, Kanagawa, Japan (T.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| | - Iman Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada (O.T.); Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan (T.S.); Division of Pulmonary Medicine, Department of Medicine, Keiyu Hospital, Yokohama-shi, Kanagawa, Japan (T.S.); and Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York (I.T.)
| |
Collapse
|
17
|
Singh D, Agrawal A, Singal CMS, Pandey HS, Seth P, Sharma SK. Sinomenine inhibits amyloid beta-induced astrocyte activation and protects neurons against indirect toxicity. Mol Brain 2020; 13:30. [PMID: 32127013 PMCID: PMC7055015 DOI: 10.1186/s13041-020-00569-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/19/2020] [Indexed: 11/12/2022] Open
Abstract
Amyloid beta is a major constituent of the plaques found in the brains of patients suffering from Alzheimer’s disease (AD). A growing body of research work suggests that neuroinflammation plays important roles in the development of AD. Thus, considerable efforts are directed towards identification of compounds that can reduce or inhibit neuroinflammation. Here, we show that sinomenine, a compound present in a Chinese medicinal plant, Sinomenium acutum, inhibits oligomeric amyloid beta-induced production of reactive oxygen species (ROS), nitric oxide (NO) and inflammation-related molecules from astrocytic cells. The conditioned medium from oligomeric amyloid beta-treated astrocytic cells induces cell death in the hippocampal neuronal cells. Importantly, sinomenine inhibits this cell death. In addition, this compound has inhibitory effects on the production of ROS, NO and inflammation-related factors from oligomeric amyloid-beta treated human astrocytes. Finally, the conditioned medium from oligomeric amyloid beta-treated human astrocytes induces cell death in the primary culture of human neurons, which is inhibited by sinomenine. Thus, sinomenine inhibits amyloid beta-induced production of toxic factors from astrocytes, and confers protection to hippocampal neuronal cells as well as human neurons against indirect toxicity. The results suggest that this compound could provide beneficial effects in AD and other neurodegenerative conditions by reducing inflammation and neuronal cell death.
Collapse
Affiliation(s)
- Deepali Singh
- National Brain Research Centre, Manesar, 122052, Haryana, India
| | - Apurva Agrawal
- National Brain Research Centre, Manesar, 122052, Haryana, India
| | | | | | - Pankaj Seth
- National Brain Research Centre, Manesar, 122052, Haryana, India
| | | |
Collapse
|
18
|
Abstract
Neuroinflammation is implicated in contributing to a variety of neurologic and somatic illnesses including Alzheimer's disease (AD), Parkinson's disease (PD), and depression. In this chapter, we focus on the role of neuroinflammation in mediating these three illnesses and portray interactions between the immune response and the central nervous system in the context of sex differences in disease progression. The majority of this chapter is supported by clinical findings; however, we occasionally utilize preclinical models where human studies are currently lacking. We begin by detailing the pathology of neuroinflammation, distinguishing between acute and chronic inflammation, and examining contributions from the innate and adaptive immune systems. Next, we summarize potential mechanisms of immune cell mediators including interleukin-1 beta (IL-1β), tumor necrosis factor α, and IL-6 in AD, PD, and depression development. Given the strong sex bias seen in these illnesses, we additionally examine the role of sex hormones, e.g., estrogen and testosterone in mediating neuroinflammation at the cellular level. Systematically, we detail how sex hormones may contribute to distinct behavioral and clinical symptoms and prognosis between males and females with AD, PD, or depression. Finally, we highlight the possible role of exercise in alleviating neuroinflammation, as well as evidence that antiinflammatory drug therapies improve cognitive symptoms observed in brain-related diseases.
Collapse
Affiliation(s)
- Deepika Mukhara
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Unsong Oh
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
19
|
Abstract
Our understanding of astrocytes and their role in neurological diseases has increased considerably over the past two decades as the diverse roles of these cells have become recognized. Our evolving understanding of these cells suggests that they are more than support cells for neurons and that they play important roles in CNS homeostasis under normal conditions, in neuroprotection and in disease exacerbation. These multiple functions make them excellent candidates for targeted therapies to treat neurological disorders. New technological advances, including in vivo imaging, optogenetics and chemogenetics, have allowed us to examine astrocytic functions in ways that have uncovered new insights into the dynamic roles of these cells. Furthermore, the use of induced pluripotent stem cell-derived astrocytes from patients with a host of neurological disorders can help to tease out the contributions of astrocytes to human disease. In this Review, we explore some of the technological advances developed over the past decade that have aided our understanding of astrocyte function. We also highlight neurological disorders in which astrocyte function or dysfunction is believed to have a role in disease pathogenesis or propagation and discuss how the technological advances have been and could be used to study each of these diseases.
Collapse
|
20
|
Hippocampal neurons in direct contact with astrocytes exposed to amyloid β 25-35 exhibit reduced excitatory synaptic transmission. IBRO Rep 2019; 7:34-41. [PMID: 31388597 PMCID: PMC6669318 DOI: 10.1016/j.ibror.2019.07.1719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022] Open
Abstract
We exposed astrocytes to Aβ 25-35 and then co-cultured them with primary hippocampal neurons. The Aβ25-35-exposed astrocytes lowered excitatory postsynaptic release and the size of the readily releasable synaptic pool. The number of excitatory synapses was reduced by direct contact between Aβ25-35-exposed astrocytes and hippocampal neurons. The dendritic branching was decreased by direct contact between Aβ25-35-exposed astrocytes and hippocampal neurons. The number of excitatory synapses and dendrite branches were conserved by putting distance from Aβ25-35-exposed astrocytes.
Amyloid β protein (Aβ) is closely related to the progression of Alzheimer's disease because senile plaques consisting of Aβ cause synaptic depression and synaptic abnormalities. In the central nervous system, astrocytes are a major glial cell type that contribute to the modulation of synaptic transmission and synaptogenesis. In this study, we examined whether astrocytes exposed to Aβ fragment 25-35 (Aβ25-35) affect synaptic transmission. We show that synaptic transmission by hippocampal neurons was inhibited by astrocytes exposed to Aβ25-35. The Aβ25-35-exposed astrocytes lowered excitatory postsynaptic release and the size of the readily releasable synaptic pool. The number of excitatory synapses was also reduced. However, the number of excitatory synapses was unchanged unless there was direct contact between Aβ25-35-exposed astrocytes and hippocampal neurons. These data indicate that direct contact between Aβ25-35-exposed astrocytes and neurons is critical for inhibiting synaptic transmission in the progression of Alzheimer’s disease.
Collapse
|
21
|
Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer's disease amyloidosis. PLoS One 2019; 14:e0209228. [PMID: 30645585 PMCID: PMC6333398 DOI: 10.1371/journal.pone.0209228] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023] Open
Abstract
Several lines of evidence imply changes in inhibitory interneuron connectivity and subsequent alterations in oscillatory network activities in the pathogenesis of Alzheimer’s Disease (AD). Recently, we provided evidence for an increased immunoreactivity of both the postsynaptic scaffold protein gephyrin and the GABAA receptor γ2-subunit in the hippocampus of young (1 and 3 months of age), APPPS1 mice. These mice represent a well-established model of cerebral amyloidosis, which is a hallmark of human AD. In this study, we demonstrate a robust increase of parvalbumin immunoreactivity and accentuated projections of parvalbumin positive (PV+) interneurons, which target perisomatic regions of pyramidal cells within the hippocampal subregions CA1 and CA3 of 3-month-old APPPS1 mice. Colocalisation studies confirmed a significant increase in the density of PV+ projections labeled with antibodies against a presynaptic (vesicular GABA transporter) and a postsynaptic marker (gephyrin) of inhibitory synapses within the pyramidal cell layer of CA1 and CA3. As perisomatic inhibition by PV+-interneurons is crucial for the generation of hippocampal network oscillations involved in spatial processing, learning and memory formation we investigated the impact of the putative enhanced perisomatic inhibition on two types of fast neuronal network oscillations in acute hippocampal slices: 1. spontaneously occurring sharp wave-ripple complexes (SPW-R), and 2. cholinergic γ-oscillations. Interestingly, both network patterns were generally preserved in APPPS1 mice similar to WT mice. However, the comparison of simultaneous CA3 and CA1 recordings revealed that the incidence and amplitude of SPW-Rs were significantly lower in CA1 vs CA3 in APPPS1 slices, whereas the power of γ-oscillations was significantly higher in CA3 vs CA1 in WT-slices indicating an impaired communication between the CA3 and CA1 network activities in APPPS1 mice. Taken together, our data demonstrate an increased GABAergic synaptic output of PV+ interneurons impinging on pyramidal cells of CA1 and CA3, which might limit the coordinated cross-talk between these two hippocampal areas in young APPPS1 mice and mediate long-term changes in synaptic inhibition during progression of amyloidosis.
Collapse
|
22
|
Li H, Liu CC, Zheng H, Huang TY. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer's disease -conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl Neurodegener 2018; 7:34. [PMID: 30603085 PMCID: PMC6306008 DOI: 10.1186/s40035-018-0139-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/02/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a fatal disease that threatens the quality of life of an aging population at a global scale. Various hypotheses on the etiology of AD have been developed over the years to guide efforts in search of therapeutic strategies. MAIN BODY In this review, we focus on four AD hypotheses currently relevant to AD onset: the prevailing amyloid cascade hypothesis, the well-recognized tau hypothesis, the increasingly popular pathogen (viral infection) hypothesis, and the infection-related antimicrobial protection hypothesis. In briefly reviewing the main evidence supporting each hypothesis and discussing the questions that need to be addressed, we hope to gain a better understanding of the complicated multi-layered interactions in potential causal and/or risk factors in AD pathogenesis. As a defining feature of AD, the existence of amyloid deposits is likely fundamental to AD onset but is insufficient to wholly reproduce many complexities of the disorder. A similar belief is currently also applied to hyperphosphorylated tau aggregates within neurons, where tau has been postulated to drive neurodegeneration in the presence of pre-existing Aβ plaques in the brain. Although infection of the central nerve system by pathogens such as viruses may increase AD risk, it is yet to be determined whether this phenomenon is applicable to all cases of sporadic AD and whether it is a primary trigger for AD onset. Lastly, the antimicrobial protection hypothesis provides insight into a potential physiological role for Aβ peptides, but how Aβ/microbial interactions affect AD pathogenesis during aging awaits further validation. Nevertheless, this hypothesis cautions potential adverse effects in Aβ-targeting therapies by hindering potential roles for Aβ in anti-viral protection. CONCLUSION AD is a multi-factor complex disorder, which likely requires a combinatorial therapeutic approach to successfully slow or reduce symptomatic memory decline. A better understanding of how various causal and/or risk factors affecting disease onset and progression will enhance the likelihood of conceiving effective treatment paradigms, which may involve personalized treatment strategies for individual patients at varying stages of disease progression.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX USA
| | - Timothy Y. Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA USA
| |
Collapse
|
23
|
Herline K, Prelli F, Mehta P, MacMurray C, Goñi F, Wisniewski T. Immunotherapy to improve cognition and reduce pathological species in an Alzheimer's disease mouse model. ALZHEIMERS RESEARCH & THERAPY 2018; 10:54. [PMID: 29914551 PMCID: PMC6006698 DOI: 10.1186/s13195-018-0384-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Background Alzheimer’s disease (AD) is characterized by physiologically endogenous proteins amyloid beta (Aβ) and tau undergoing a conformational change and accumulating as soluble oligomers and insoluble aggregates. Tau and Aβ soluble oligomers, which contain extensive β-sheet secondary structure, are thought to be the most toxic forms. The objective of this study was to determine the ability of TWF9, an anti-β-sheet conformation antibody (aβComAb), to selectively recognize pathological Aβ and phosphorylated tau in AD human tissue compared with cognitively normal age-matched controls and to improve the performance of old 3xTg-AD mice with advanced pathology in behavioral testing after acute treatment with TWF9. Methods In this study, we used immunohistochemistry, immunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) to characterize TWF9 specificity. We further assessed cognitive performance in old (18–22 months) 3xTg-AD mice using both a Barnes maze and novel object recognition after intraperitoneal administration of TWF9 (4 mg/kg) biweekly for 2 weeks before the start of behavioral testing. Injections continued for the duration of the behavioral testing, which lasted 2 weeks. Results Histological analysis of TWF9 in formalin-fixed paraffin-embedded human control and AD (ABC score: A3B3C3) brain tissue revealed preferential cytoplasmic immunoreactivity in neurons in the AD tissue compared with controls (p < 0.05). Furthermore, ELISA using oligomeric and monomeric Aβ showed a preferential affinity for oligomeric Aβ. Immunoprecipitation studies showed that TWF9 extracted both phosphorylated tau (p < 0.01) and Aβ (p < 0.01) from fresh frozen brain tissues. Results show that treated old 3xTg-AD mice have an enhanced novel object recognition memory (p < 0.01) and Barnes maze performance (p = 0.05) compared with control animals. Overall plaque burden, neurofibrillary tangles, microgliosis, and astrocytosis remained unchanged. Soluble phosphorylated tau was significantly reduced in TWF9-treated mice (p < 0.05), and there was a trend for a reduction in soluble Aβ levels in the brain homogenates of female 3xTg-AD mice (p = 0.06). Conclusions This study shows that acute treatment with an aβComAb can effectively improve performance in behavioral testing without reduction of amyloid plaque burden, and that peripherally administered IgG can affect levels of pathological species in the brain.
Collapse
Affiliation(s)
- Krystal Herline
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Frances Prelli
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Pankaj Mehta
- Department of Immunology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, USA
| | | | - Fernando Goñi
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA. .,Departments of Pathology and Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Chun H, Lee CJ. Reactive astrocytes in Alzheimer's disease: A double-edged sword. Neurosci Res 2017; 126:44-52. [PMID: 29225140 DOI: 10.1016/j.neures.2017.11.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a chronic and fatal disease, in which neuronal damage at its late stage cannot be easily reversed. Because AD progression is caused by multiple factors including diverse cellular processes, studies on AD pathogenesis at the molecular and cellular level are challenging. Based on the lessons from unsuccessful neuron-focused research for an AD cure, non-cell autonomous mechanisms including brain inflammation and reactive astrocytes have recently been in the spotlight as potential therapeutic targets for AD. Studies have shown that reactive astrocytes are not only the result of inflammatory defense reactions, but also an active catabolic decomposer that acts by taking up amyloid beta toxins. Here, we give an overview of the characteristics of reactive astrocytes as pathological features of AD. Reactive astrocytes exert biphasic effects, that is, beneficial or detrimental depending on multiple factors. Many efforts have been put forth for defining and characterizing molecular signatures for the beneficial and detrimental reactive astrocytes. In the foreseeable future, manipulating and targeting each established molecular signature should have profound therapeutic implications for the treatment of AD.
Collapse
Affiliation(s)
- Heejung Chun
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - C Justin Lee
- Center for Neuroscience and Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Bio-Med, University of Science and Technology (UST), Daejeon, 34132, Republic of Korea; Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
25
|
Astrocytic expression of the CXCL12 receptor, CXCR7/ACKR3 is a hallmark of the diseased, but not developing CNS. Mol Cell Neurosci 2017; 85:105-118. [DOI: 10.1016/j.mcn.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/09/2017] [Accepted: 09/03/2017] [Indexed: 12/20/2022] Open
|
26
|
Ohki EC, Langan TJ, Rodgers KR, Chou RC. Non-aggregated Aβ25-35 Upregulates Primary Astrocyte Proliferation In Vitro. Front Cell Neurosci 2017; 11:301. [PMID: 29033790 PMCID: PMC5626946 DOI: 10.3389/fncel.2017.00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
Amyloid beta (Aβ) is a peptide cleaved from amyloid precursor protein that contributes to the formation of senile plaques in Alzheimer’s disease (AD). The relationship between Aβ and astrocyte proliferation in AD remains controversial. Despite pathological findings of increased astrocytic mitosis in AD brains, in vitro studies show an inhibitory effect of Aβ on astrocyte proliferation. In this study, we determined the effect of an active fragment of Aβ (Aβ25-35) on the cell cycle progression of primary rat astrocytes. We found that Aβ25-35 (0.3–1.0 μg/ml) enhanced astrocyte proliferation in vitro in a time- and concentration-dependent manner. Increased DNA synthesis by Aβ25-35 was observed during the S phase of the astrocyte cell cycle, as indicated by proliferation kinetics and bromodeoxyuridine immunocytochemical staining. Aggregation of Aβ25-35 abolished the upregulatory effect of Aβ on astrocyte proliferation. Further examination indicated that Aβ25-35 affected astrocyte proliferation during early or mid-G1 phase but had no effect on DNA synthesis at the peak of S phase. These results provide insight into the relationship between Aβ25-35 and astrocyte cell cycling in AD.
Collapse
Affiliation(s)
- Elise C Ohki
- Department of Interdisciplinary Natural Sciences, Roswell Park Cancer Institute, State University of New York at Buffalo, Buffalo, NY, United States
| | - Thomas J Langan
- Departments of Neurology, Pediatrics, and Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.,Hunter James Kelly Research Institute, New York State Center of Excellence Bioinformatics & Life Sciences, Buffalo, NY, United States
| | - Kyla R Rodgers
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Richard C Chou
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States.,Section of Rheumatology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| |
Collapse
|
27
|
Acosta C, Anderson HD, Anderson CM. Astrocyte dysfunction in Alzheimer disease. J Neurosci Res 2017; 95:2430-2447. [PMID: 28467650 DOI: 10.1002/jnr.24075] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface receptors and transporter proteins, resulting in dynamic changes in intracellular Ca2+ or Na+ . Ionic and electrogenic astrocytic changes, in turn, drive vital cell nonautonomous effects supporting brain function, including regulation of synaptic activity, neuronal metabolism, and regional blood supply. Alzheimer disease (AD) is associated with aberrant oligomeric amyloid β generation, which leads to extensive proliferation of astrocytes with a reactive phenotype and abnormal regulation of these processes. Astrocytic morphology, Ca2+ responses, extracellular K+ removal, glutamate transport, amyloid clearance, and energy metabolism are all affected in AD, resulting in a deleterious set of effects that includes glutamate excitotoxicity, impaired synaptic plasticity, reduced carbon delivery to neurons for oxidative phosphorylation, and dysregulated linkages between neuronal energy demand and regional blood supply. This review summarizes how astrocytes are affected in AD and describes how these changes are likely to influence brain function. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Crystal Acosta
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Manitoba, Canada
| | - Hope D Anderson
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Manitoba, Canada.,College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Christopher M Anderson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
28
|
Griffith CM, Xie MX, Qiu WY, Sharp AA, Ma C, Pan A, Yan XX, Patrylo PR. Aberrant expression of the pore-forming KATP channel subunit Kir6.2 in hippocampal reactive astrocytes in the 3xTg-AD mouse model and human Alzheimer’s disease. Neuroscience 2016; 336:81-101. [DOI: 10.1016/j.neuroscience.2016.08.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/15/2016] [Accepted: 08/20/2016] [Indexed: 12/21/2022]
|
29
|
Lee C, Low CYB, Francis PT, Attems J, Wong PTH, Lai MK, Tan MG. An isoform-specific role of FynT tyrosine kinase in Alzheimer's disease. J Neurochem 2015; 136:637-50. [DOI: 10.1111/jnc.13429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Chingli Lee
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
- Department of Clinical Research; Singapore General Hospital; Outram Singapore
| | - Clara Y. B. Low
- Department of Clinical Research; Singapore General Hospital; Outram Singapore
| | - Paul T. Francis
- Wolfson Centre for Age-Related Diseases; King's College London; London UK
| | - Johannes Attems
- Institute of Neuroscience; Newcastle University; Campus for Aging and Vitality; Newcastle upon Tyne UK
| | - Peter T.-H. Wong
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
| | - Mitchell K.P. Lai
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
- Wolfson Centre for Age-Related Diseases; King's College London; London UK
| | - Michelle G.K. Tan
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
- Department of Clinical Research; Singapore General Hospital; Outram Singapore
| |
Collapse
|
30
|
Rama Rao KV, Kielian T. Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. ACTA ACUST UNITED AC 2015; 6:245-263. [PMID: 26543505 DOI: 10.1111/cen3.12237] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective neuron loss in discrete brain regions is a hallmark of various neurodegenerative disorders, although the mechanisms responsible for this regional vulnerability of neurons remain largely unknown. Earlier studies attributed neuron dysfunction and eventual loss during neurodegenerative diseases as exclusively cell autonomous. Although cell-intrinsic factors are one critical aspect in dictating neuron death, recent evidence also supports the involvement of other central nervous system cell types in propagating non-cell autonomous neuronal injury during neurodegenerative diseases. One such example is astrocytes, which support neuronal and synaptic function, but can also contribute to neuroinflammatory processes through robust chemokine secretion. Indeed, aberrations in astrocyte function have been shown to negatively impact neuronal integrity in several neurological diseases. The present review focuses on neuroinflammatory paradigms influenced by neuron-astrocyte cross-talk in the context of select neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
31
|
Katsouri L, Ashraf A, Birch AM, Lee KKL, Mirzaei N, Sastre M. Systemic administration of fibroblast growth factor-2 (FGF2) reduces BACE1 expression and amyloid pathology in APP23 mice. Neurobiol Aging 2014; 36:821-31. [PMID: 25457554 DOI: 10.1016/j.neurobiolaging.2014.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/18/2014] [Accepted: 10/07/2014] [Indexed: 01/15/2023]
Abstract
There is an emerging evidence that growth factors may have a potential beneficial use in the treatment of Alzheimer's disease (AD) because of their neuroprotective properties and effects on neuronal proliferation. Basic fibroblast growth factor or fibroblast growth factor-2 (FGF2) is an anti-inflammatory, angiogenic, and neurotrophic factor that is expressed in many cell types, including neurons and glial cells. Here, we explored whether subcutaneous administration of FGF2 could have therapeutic effects in the APP 23 transgenic mouse, a model of amyloid pathology. FGF2 treatment attenuated spatial memory deficits, reduced amyloid-β (Aβ) and tau pathologies, decreased inducible nitric oxide synthase expression, and increased the number of astrocytes in the dentate gyrus in APP 23 mice compared with the vehicle-treated controls. The decrease in Aβ deposition was associated with a reduction in the expression of BACE1, the main enzyme responsible for Aβ generation. These results were confirmed in a neuroblastoma cell line, which demonstrated that incubation with FGF2 regulates BACE1 transcription. In addition, and in contrast with what has been previously published, the levels of FGF2 were reduced in postmortem brains from AD patients compared with controls. These data, therefore, suggest that systemic administration of FGF2 could have a potential therapeutic application in AD.
Collapse
Affiliation(s)
- Loukia Katsouri
- Division of Brain Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Azhaar Ashraf
- Division of Brain Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Amy M Birch
- Division of Brain Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Kevin K L Lee
- Division of Brain Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Nazanin Mirzaei
- Division of Brain Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Magdalena Sastre
- Division of Brain Sciences, Hammersmith Hospital, Imperial College London, London, UK.
| |
Collapse
|
32
|
Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, Bae JY, Kim T, Lee J, Chun H, Park HJ, Lee DY, Hong J, Kim HY, Oh SJ, Park SJ, Lee H, Yoon BE, Kim Y, Jeong Y, Shim I, Bae YC, Cho J, Kowall NW, Ryu H, Hwang E, Kim D, Lee CJ. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nat Med 2014; 20:886-96. [PMID: 24973918 DOI: 10.1038/nm.3639] [Citation(s) in RCA: 581] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/23/2014] [Indexed: 12/11/2022]
Abstract
In Alzheimer's disease (AD), memory impairment is the most prominent feature that afflicts patients and their families. Although reactive astrocytes have been observed around amyloid plaques since the disease was first described, their role in memory impairment has been poorly understood. Here, we show that reactive astrocytes aberrantly and abundantly produce the inhibitory gliotransmitter GABA by monoamine oxidase-B (Maob) and abnormally release GABA through the bestrophin 1 channel. In the dentate gyrus of mouse models of AD, the released GABA reduces spike probability of granule cells by acting on presynaptic GABA receptors. Suppressing GABA production or release from reactive astrocytes fully restores the impaired spike probability, synaptic plasticity, and learning and memory in the mice. In the postmortem brain of individuals with AD, astrocytic GABA and MAOB are significantly upregulated. We propose that selective inhibition of astrocytic GABA synthesis or release may serve as an effective therapeutic strategy for treating memory impairment in AD.
Collapse
Affiliation(s)
- Seonmi Jo
- 1] Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. [2] WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. [3]
| | - Oleg Yarishkin
- 1] WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. [2]
| | - Yu Jin Hwang
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Ye Eun Chun
- 1] WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. [2] Neuroscience Program, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Mijeong Park
- 1] Neuroscience Program, Korea University of Science and Technology, Daejeon, Republic of Korea. [2] Center for Neuroscience, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Dong Ho Woo
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jin Young Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Taekeun Kim
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jaekwang Lee
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Heejung Chun
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyun Jung Park
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Da Yong Lee
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jinpyo Hong
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hye Yun Kim
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Soo-Jin Oh
- Center for Neuroscience, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Seung Ju Park
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hyo Lee
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Bo-Eun Yoon
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - YoungSoo Kim
- Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Insop Shim
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jeiwon Cho
- 1] Neuroscience Program, Korea University of Science and Technology, Daejeon, Republic of Korea. [2] Center for Neuroscience, Brain Science Institute, KIST, Seoul, Republic of Korea
| | - Neil W Kowall
- 1] Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, Massachusetts, USA. [2] Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA. [3] VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Hoon Ryu
- 1] Center for Neuro-Medicine, Brain Science Institute, KIST, Seoul, Republic of Korea. [2] Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, Massachusetts, USA. [3] Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA. [4] VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Eunmi Hwang
- WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - C Justin Lee
- 1] WCI Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. [2] Neuroscience Program, Korea University of Science and Technology, Daejeon, Republic of Korea. [3] Center for Neuroscience, Brain Science Institute, KIST, Seoul, Republic of Korea. [4] KU-KIST Graduate School of Converging Science of Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Neuroinflammation and copper in Alzheimer's disease. Int J Alzheimers Dis 2013; 2013:145345. [PMID: 24369524 PMCID: PMC3863554 DOI: 10.1155/2013/145345] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/22/2013] [Indexed: 02/06/2023] Open
Abstract
Inflammation is the innate immune response to infection or tissue damage. Initiation of proinflammatory cascades in the central nervous system (CNS) occurs through recognition of danger associated molecular patterns by cognate immune receptors expressed on inflammatory cells and leads to rapid responses to remove the danger stimulus. The presence of activated microglia and astrocytes in the vicinity of amyloid plaques in the brains of Alzheimer's disease (AD) patients and mouse models implicates inflammation as a contributor to AD pathogenesis. Activated microglia play a critical role in amyloid clearance, but chronic deregulation of CNS inflammatory pathways results in secretion of neurotoxic mediators that ultimately contribute to neurodegeneration in AD. Copper (Cu) homeostasis is profoundly affected in AD, and accumulated extracellular Cu drives Aβ aggregation, while intracellular Cu deficiency limits bioavailable Cu required for CNS functions. This review presents an overview of inflammatory events that occur in AD in response to Aβ and highlights recent advances on the role of Cu in modulation of beneficial and detrimental inflammatory responses in AD.
Collapse
|
34
|
Aung WY, Mar S, Benzinger TL. Diffusion tensor MRI as a biomarker in axonal and myelin damage. ACTA ACUST UNITED AC 2013; 5:427-440. [PMID: 24795779 DOI: 10.2217/iim.13.49] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diffusion tensor imaging has been used extensively as a research tool to understand the structural changes associated with white matter pathology. Using water diffusion as the basis to construct anatomic details, diffusion tensor imaging offers the potential to identify structural and functional adaptations before gross anatomical changes, such as lesions and tumors, become apparent on conventional MRI. Over the past 10 years, further parameters, such as axial and radial diffusivity, have been developed to characterize white matter changes specific to axons and myelin. In this paper, the potential application and outstanding issues on the use of diffusion tensor imaging directional diffusivity as a biomarker in axonal and myelin damage in neurological disorders will be reviewed.
Collapse
Affiliation(s)
- Wint Yan Aung
- Department of Radiology, Washington University, School of Medicine, 510 South Kingshighway Boulevard, St Louis, MO 63110, USA
| | - Soe Mar
- Department of Pediatric & Developmental Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Tammie Ls Benzinger
- Department of Radiology, Washington University, School of Medicine, 510 South Kingshighway Boulevard, St Louis, MO 63110, USA ; Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
35
|
Monnerie H, Esquenazi S, Shashidhara S, Le Roux PD. β-Amyloid-induced reactive astrocytes display altered ability to support dendrite and axon growth from mouse cerebral cortical neuronsin vitro. Neurol Res 2013; 27:525-32. [PMID: 15978180 DOI: 10.1179/016164105x40020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The presence of beta-amyloid (betaA) deposition, induction of reactive gliosis and dystrophic neurites, is a characteristic feature of neuritic plaques in Alzheimer's disease. In vitro, betaA-exposed astrocytes become reactive, similar to astrocytes in contact with betaA plaques in vivo. How betaA-exposed reactive astrocytes support neuron process growth, however, is not well defined. Therefore, we used neuron/astrocyte co-cultures in which astrocytes had been grown on betaA, to assess whether process growth was altered. METHODS Purified rat cortical astrocytes were plated on the betaA peptide's neurotoxic fragment (25-35), the scrambled (35-25) peptide, or poly-D-lysine alone and grown to confluency before mouse cortical neurons were seeded at low density onto the astrocyte monolayer. Cell survival was assessed using trypan blue, lactate dehydrogenase release and propidium iodide. Process growth was analyzed using specific antibodies against MAP2 and the 200 kDa neurofilament subunit (NF-H) to identify dendrites and axons, respectively. RESULTS betaA-exposed astrocytes changed dramatically from their flat polygonal shape into stellate process-bearing morphology. Viability however, was not affected. Immunocytochemical analysis of neuronal processes using anti-MAP2 and anti-NF-H, demonstrated that betaA (25-35)induced reactive astrocytes had an altered ability to support dendrite and axon growth after 3 days in vitro. Indeed, primary dendrite number and axon length were decreased by 30 and 26%, respectively, compared with control astrocytes, whereas individual primary dendrite length increased by 20%. Astrocyte support of dendritic branching, however, was not affected by betaA. DISCUSSION We conclude that an astrocyte reaction to betaA may contribute, in part, to neuronal dystrophy associated with betaA plaques.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
36
|
Hutchison ER, Kawamoto EM, Taub DD, Lal A, Abdelmohsen K, Zhang Y, Wood WH, Lehrmann E, Camandola S, Becker KG, Gorospe M, Mattson MP. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 2013; 61:1018-28. [PMID: 23650073 DOI: 10.1002/glia.22483] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/23/2013] [Indexed: 12/12/2022]
Abstract
Inflammation is a common component of acute injuries of the central nervous system (CNS) such as ischemia, and degenerative disorders such as Alzheimer's disease. Glial cells play important roles in local CNS inflammation, and an understanding of the roles for microRNAs in glial reactivity in injury and disease settings may therefore lead to the development of novel therapeutic interventions. Here, we show that the miR-181 family is developmentally regulated and present in high amounts in astrocytes compared to neurons. Overexpression of miR-181c in cultured astrocytes results in increased cell death when exposed to lipopolysaccharide (LPS). We show that miR-181 expression is altered by exposure to LPS, a model of inflammation, in both wild-type and transgenic mice lacking both receptors for the inflammatory cytokine TNF-α. Knockdown of miR-181 enhanced LPS-induced production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, IL-8) and HMGB1, while overexpression of miR-181 resulted in a significant increase in the expression of the anti-inflammatory cytokine IL-10. To assess the effects of miR-181 on the astrocyte transcriptome, we performed gene array and pathway analysis on astrocytes with reduced levels of miR-181b/c. To examine the pool of potential miR-181 targets, we employed a biotin pull-down of miR-181c and gene array analysis. We validated the mRNAs encoding MeCP2 and X-linked inhibitor of apoptosis as targets of miR-181. These findings suggest that miR-181 plays important roles in the molecular responses of astrocytes in inflammatory settings. Further understanding of the role of miR-181 in inflammatory events and CNS injury could lead to novel approaches for the treatment of CNS disorders with an inflammatory component.
Collapse
Affiliation(s)
- Emmette R Hutchison
- Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, Maryland, 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer's disease. J Neurosci 2013; 33:2147-55. [PMID: 23365250 DOI: 10.1523/jneurosci.4437-12.2013] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Diffusion imaging is a promising marker of microstructural damage in neurodegenerative disorders, but interpretation of its relationship with underlying neuropathology can be complex. Here, we examined both volumetric and brain microstructure abnormalities in 13 amnestic patients with mild cognitive impairment (MCI), who progressed to probable Alzheimer's disease (AD) no earlier than 2 years after baseline scanning, in order to focus on early, and hence more sensitive, imaging markers. We compared them to 22 stable amnestic MCI patients with similar cognitive performance and episodic memory impairment but who did not show progression of symptoms for at least 3 years. Significant group differences were mainly found in the volume and microstructure of the left hippocampus, while white matter group differences were also found in the body of the fornix, left fimbria, and superior longitudinal fasciculus (SLF). Diffusion index abnormalities in the SLF were the sign of a subtle microstructural injury not detected by standard atrophy measures in the corresponding gray matter regions. The microstructural measure obtained in the left hippocampus using diffusion imaging showed the most substantial differences between the two groups and was the best single predictor of future progression to AD. An optimal prediction model (91% accuracy, 85% sensitivity, 96% specificity) was obtained by combining MRI measures and CSF protein biomarkers. These results highlight the benefit of using the information of brain microstructural damage, in addition to traditional gray matter volume, to detect early, subtle abnormalities in MCI prior to clinical progression to probable AD and, in combination with CSF markers, to accurately predict such progression.
Collapse
|
38
|
Drummond ES, Muhling J, Martins RN, Wijaya LK, Ehlert EM, Harvey AR. Pathology associated with AAV mediated expression of beta amyloid or C100 in adult mouse hippocampus and cerebellum. PLoS One 2013; 8:e59166. [PMID: 23516609 PMCID: PMC3596293 DOI: 10.1371/journal.pone.0059166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 02/13/2013] [Indexed: 11/18/2022] Open
Abstract
Accumulation of beta amyloid (Aβ) in the brain is a primary feature of Alzheimer’s disease (AD) but the exact molecular mechanisms by which Aβ exerts its toxic actions are not yet entirely clear. We documented pathological changes 3 and 6 months after localised injection of recombinant, bi-cistronic adeno-associated viral vectors (rAAV2) expressing human Aβ40-GFP, Aβ42-GFP, C100-GFP or C100V717F-GFP into the hippocampus and cerebellum of 8 week old male mice. Injection of all rAAV2 vectors resulted in wide-spread transduction within the hippocampus and cerebellum, as shown by expression of transgene mRNA and GFP protein. Despite the lack of accumulation of Aβ protein after injection with AAV vectors, injection of rAAV2-Aβ42-GFP and rAAV2- C100V717F-GFP into the hippocampus resulted in significantly increased microgliosis and altered permeability of the blood brain barrier, the latter revealed by high levels of immunoglobulin G (IgG) around the injection site and the presence of IgG positive cells. In comparison, injection of rAAV2-Aβ40-GFP and rAAV2-C100-GFP into the hippocampus resulted in substantially less neuropathology. Injection of rAAV2 vectors into the cerebellum resulted in similar types of pathological changes, but to a lesser degree. The use of viral vectors to express different types of Aβ and C100 is a powerful technique with which to examine the direct in vivo consequences of Aβ expression in different regions of the mature nervous system and will allow experimentation and analysis of pathological AD-like changes in a broader range of species other than mouse.
Collapse
Affiliation(s)
- Eleanor S Drummond
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Western Australia, Australia.
| | | | | | | | | | | |
Collapse
|
39
|
Vitvitsky VM, Garg SK, Keep RF, Albin RL, Banerjee R. Na+ and K+ ion imbalances in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1671-81. [PMID: 22820549 DOI: 10.1016/j.bbadis.2012.07.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is associated with impaired glutamate clearance and depressed Na(+)/K(+) ATPase levels in AD brain that might lead to a cellular ion imbalance. To test this hypothesis, [Na(+)] and [K(+)] were analyzed in postmortem brain samples of 12 normal and 16 AD individuals, and in cerebrospinal fluid (CSF) from AD patients and matched controls. Statistically significant increases in [Na(+)] in frontal (25%) and parietal cortex (20%) and in cerebellar [K(+)] (15%) were observed in AD samples compared to controls. CSF from AD patients and matched controls exhibited no differences, suggesting that tissue ion imbalances reflected changes in the intracellular compartment. Differences in cation concentrations between normal and AD brain samples were modeled by a 2-fold increase in intracellular [Na(+)] and an 8-15% increase in intracellular [K(+)]. Since amyloid beta peptide (Aβ) is an important contributor to AD brain pathology, we assessed how Aβ affects ion homeostasis in primary murine astrocytes, the most abundant cells in brain tissue. We demonstrate that treatment of astrocytes with the Aβ 25-35 peptide increases intracellular levels of Na(+) (~2-3-fold) and K(+) (~1.5-fold), which were associated with reduced levels of Na(+)/K(+) ATPase and the Na(+)-dependent glutamate transporters, GLAST and GLT-1. Similar increases in astrocytic Na(+) and K(+) levels were also caused by Aβ 1-40, but not by Aβ 1-42 treatment. Our study suggests a previously unrecognized impairment in AD brain cell ion homeostasis that might be triggered by Aβ and could significantly affect electrophysiological activity of brain cells, contributing to the pathophysiology of AD.
Collapse
Affiliation(s)
- Victor M Vitvitsky
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0600, USA
| | | | | | | | | |
Collapse
|
40
|
Aras R, Barron AM, Pike CJ. Caspase activation contributes to astrogliosis. Brain Res 2012; 1450:102-15. [PMID: 22436850 PMCID: PMC3319728 DOI: 10.1016/j.brainres.2012.02.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 01/30/2012] [Accepted: 02/04/2012] [Indexed: 10/28/2022]
Abstract
Caspases, a family of cysteine proteases, are widely activated in neurons and glia in the injured brain, a response thought to induce apoptosis. However, caspase activation in astrocytes following injury is not strongly associated with apoptosis. The present study investigates the potential role of caspase activation in astrocytes with another characteristic response to neural injury, astrogliosis. Caspase activity and morphological and biochemical indices of astrogliosis and apoptosis were assessed in (i) cultured neonatal rat astrocytes treated with astrogliosis-inducing stimuli (dibutryl cAMP, β-amyloid peptide), and (ii) cultures of adult rat hippocampal astrocytes generated from control and kainate-lesioned rats. The effects of broad spectrum and specific pharmacological caspase inhibitors were assessed on indicators of astrogliosis, including stellate morphology and expression of glutamine synthetase and fibroblast growth factor-2. Reactive neonatal and adult astrocytes demonstrated an increase in total caspase activity with a corresponding increase in the expression of active caspase-3 in the absence of cell death. Broad spectrum caspase inhibition with zVAD significantly attenuated increases in glutamine synthetase and fibroblast growth factor-2 in the reactive astrocytes. In the reactive neonatal astrocyte cultures, specific inhibition of caspases-3 and -11 also attenuated glutamine synthetase and fibroblast growth factor-2 expression, but did not reverse the morphological reactive phenotype. Astrogliosis is observed in all forms of brain injury and despite extensive study, its molecular triggers remain largely unknown. While previous studies have demonstrated active caspases in astrocytes following acute brain injury, here we present evidence functionally implicating the caspases in astrogliosis.
Collapse
Affiliation(s)
- Radha Aras
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089
| | - Anna M. Barron
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Christian J. Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
41
|
Yang W, Wu Q, Yuan C, Gao J, Xiao M, Gu M, Ding J, Hu G. Aquaporin-4 mediates astrocyte response to β-amyloid. Mol Cell Neurosci 2012; 49:406-14. [PMID: 22365952 DOI: 10.1016/j.mcn.2012.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/17/2012] [Accepted: 02/06/2012] [Indexed: 12/31/2022] Open
Abstract
It has been demonstrated that the water channel protein aquaporin-4 (AQP4) plays an important role in astrocyte plasticity in response to a variety of injuries or stimuli. However, the potential role of AQP4 in astrocyte response to β-amyloid (Aβ) has not been studied. The purpose of this study was to investigate this issue. Compared to media control, the lower concentrations of Aβ(1-42) (0.1-1 μM) increased AQP4 expression in cultured mouse cortical astrocytes, while the higher concentrations of Aβ(1-42) (10 μM) decreased AQP4 expression. AQP4 gene knockout reduced Aβ(1-42)-induced astrocyte activation and apoptosis, which was associated with a reduction in the uptake of Aβ via decreased upregulation of low-density lipoprotein receptor related protein-1. Moreover, time-course and levels of Aβ(1-42)-induced mitogen-activated protein kinase phosphorylation were altered in AQP4 null astrocytes compared with wild-type controls. Our data reveal a novel role of AQP4 in the uptake of Aβ by astrocytes, indicating that AQP4 is a molecular target for Alzheimer's disease.
Collapse
Affiliation(s)
- Wei Yang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu Province 210029, PR China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Low-density lipoprotein receptor-related protein is decreased in optic neuropathy of Alzheimer disease. J Neuroophthalmol 2011; 31:139-46. [PMID: 21593627 DOI: 10.1097/wno.0b013e31821b602c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Alzheimer disease (AD) is associated with optic nerve degeneration, yet the underlying pathophysiology of this disease and the optic nerve disorder remain poorly understood. Low-density lipoprotein receptor-related protein (LRP) is implicated in the pathogenesis of AD by mediating the transport of amyloid-β (Aβ) out of the brain into the systemic circulation. As a key player in the reaction to central nervous system injury, astrocytes associate with LRP in AD. This study investigates the role of LRP and astrocytes in the pathogenesis of AD optic neuropathy. METHODS To investigate the role of LRP and astrocytes in the pathogenesis of AD optic neuropathy, we conducted immunohistochemical studies on postmortem optic nerves in AD patients (n = 11) and age-matched controls (n = 10) to examine the presence of LRP. Quantitative analyses using imaging software were used to document the extent of LRP in neural tissues. Axonal integrity was assessed by performing immunohistochemistry on the subjects' optic nerves with an antibody to neurofilament (NF) protein. Double-immunofluorescence labeling was performed to investigate whether LRP colocalized with astrocytes, expressing glial fibrillary acidic protein. RESULTS LRP expression was decreased in AD optic nerves compared to that in controls (P < 0.001). LRP immunoreactivity was observed in the microvasculature and perivascularly in close proximity to the astrocytic processes. Colocalization of LRP in the astrocytes of optic nerves was also demonstrated. The presence of optic neuropathy was confirmed in the AD optic nerves by demonstrating greatly reduced immunostaining for NF protein as compared to controls. CONCLUSIONS The reduction of LRP in the AD degenerative optic nerves supports the hypothesis that LRP may play a role in the pathophysiology of AD optic neuropathy.
Collapse
|
43
|
Garg SK, Vitvitsky V, Albin R, Banerjee R. Astrocytic redox remodeling by amyloid beta peptide. Antioxid Redox Signal 2011; 14:2385-97. [PMID: 21235355 PMCID: PMC3096517 DOI: 10.1089/ars.2010.3681] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Astrocytes are critical for neuronal redox homeostasis providing them with cysteine needed for glutathione synthesis. In this study, we demonstrate that the astrocytic redox response signature provoked by amyloid beta (Aβ) is distinct from that of a general oxidant (tertiary-butylhydroperoxide [t-BuOOH]). Acute Aβ treatment increased cystathionine β-synthase (CBS) levels and enhanced transsulfuration flux in contrast to repeated Aβ exposure, which decreased CBS and catalase protein levels. Although t-BuOOH also increased transsulfuration flux, CBS levels were unaffected. The net effect of Aβ treatment was an oxidative shift in the intracellular glutathione/glutathione disulfide redox potential in contrast to a reductive shift in response to peroxide. In the extracellular compartment, Aβ, but not t-BuOOH, enhanced cystine uptake and cysteine accumulation, and resulted in remodeling of the extracellular cysteine/cystine redox potential in the reductive direction. The redox changes elicited by Aβ but not peroxide were associated with enhanced DNA synthesis. CBS activity and protein levels tended to be lower in cerebellum from patients with Alzheimer's disease than in age-matched controls. Our study suggests that the alterations in astrocytic redox status could compromise the neuroprotective potential of astrocytes and may be a potential new target for therapeutic intervention in Alzheimer's disease.
Collapse
Affiliation(s)
- Sanjay K Garg
- Department of Biochemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
44
|
Amyloid β-peptide directly induces spontaneous calcium transients, delayed intercellular calcium waves and gliosis in rat cortical astrocytes. ASN Neuro 2010; 2:e00026. [PMID: 20001968 PMCID: PMC2810812 DOI: 10.1042/an20090035] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 11/23/2009] [Accepted: 12/08/2009] [Indexed: 12/14/2022] Open
Abstract
The contribution of astrocytes to the pathophysiology of AD (Alzheimer's disease) and the molecular and signalling mechanisms that potentially underlie them are still very poorly understood. However, there is mounting evidence that calcium dysregulation in astrocytes may be playing a key role. Intercellular calcium waves in astrocyte networks in vitro can be mechanically induced after Aβ (amyloid β-peptide) treatment, and spontaneously forming intercellular calcium waves have recently been shown in vivo in an APP (amyloid precursor protein)/PS1 (presenilin 1) Alzheimer's transgenic mouse model. However, spontaneous intercellular calcium transients and waves have not been observed in vitro in isolated astrocyte cultures in response to direct Aβ stimulation in the absence of potentially confounding signalling from other cell types. Here, we show that Aβ alone at relatively low concentrations is directly able to induce intracellular calcium transients and spontaneous intercellular calcium waves in isolated astrocytes in purified cultures, raising the possibility of a potential direct effect of Aβ exposure on astrocytes in vivo in the Alzheimer's brain. Waves did not occur immediately after Aβ treatment, but were delayed by many minutes before spontaneously forming, suggesting that intracellular signalling mechanisms required sufficient time to activate before intercellular effects at the network level become evident. Furthermore, the dynamics of intercellular calcium waves were heterogeneous, with distinct radial or longitudinal propagation orientations. Lastly, we also show that changes in the expression levels of the intermediate filament proteins GFAP (glial fibrillary acidic protein) and S100B are affected by Aβ-induced calcium changes differently, with GFAP being more dependent on calcium levels than S100B.
Collapse
|
45
|
Wang MY, Ross-Cisneros FN, Aggarwal D, Liang CY, Sadun AA. Receptor for advanced glycation end products is upregulated in optic neuropathy of Alzheimer's disease. Acta Neuropathol 2009; 118:381-9. [PMID: 19277685 DOI: 10.1007/s00401-009-0513-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 02/14/2009] [Accepted: 03/03/2009] [Indexed: 01/11/2023]
Abstract
Although Alzheimer's disease (AD) has been shown to be associated with a true primary optic neuropathy, the underlying pathophysiology of this disease and in particular the optic nerve disorder is still poorly understood. The receptor for advanced glycation end products (RAGE) has been implicated in the pathogenesis of AD by mediating the transport of plasma amyloid-beta into the brain. Once ligated, RAGE can play a role in signal transduction, leading to amplification and perpetuation of inflammatory processes. As a key player in the reaction to CNS injury, astrocytes have been shown to associate with RAGE in a number of diseases, including AD. To investigate the role of RAGE and astrocytes in the pathogenesis of AD optic neuropathy, we conducted immunohistochemical studies to examine the presence of RAGE in donor eyes from patients with AD (n = 10) and controls (n = 3). Both qualitative observation and quantitative analyses using imaging software were used to document the extent of RAGE in the neural tissues. The intensity and extent of RAGE expression was more prominent in AD nerves compared to controls (P < 0.05). The RAGE immunoreactivity was observed in the microvasculature and in close proximity to astrocytic processes. While RAGE immunoreactivity increased with age, the increase was more precipitous in the AD group compared to the controls. The up-regulation of RAGE in the AD optic nerves indicates that RAGE may play a role in the pathophysiology of AD optic neuropathy.
Collapse
|
46
|
Pike CJ, Carroll JC, Rosario ER, Barron AM. Protective actions of sex steroid hormones in Alzheimer's disease. Front Neuroendocrinol 2009; 30:239-58. [PMID: 19427328 PMCID: PMC2728624 DOI: 10.1016/j.yfrne.2009.04.015] [Citation(s) in RCA: 388] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/25/2009] [Accepted: 04/28/2009] [Indexed: 12/19/2022]
Abstract
Risk for Alzheimer's disease (AD) is associated with age-related loss of sex steroid hormones in both women and men. In post-menopausal women, the precipitous depletion of estrogens and progestogens is hypothesized to increase susceptibility to AD pathogenesis, a concept largely supported by epidemiological evidence but refuted by some clinical findings. Experimental evidence suggests that estrogens have numerous neuroprotective actions relevant to prevention of AD, in particular promotion of neuron viability and reduction of beta-amyloid accumulation, a critical factor in the initiation and progression of AD. Recent findings suggest neural responsiveness to estrogen can diminish with age, reducing neuroprotective actions of estrogen and, consequently, potentially limiting the utility of hormone therapies in aged women. In addition, estrogen neuroprotective actions are also modulated by progestogens. Specifically, continuous progestogen exposure is associated with inhibition of estrogen actions whereas cyclic delivery of progestogens may enhance neural benefits of estrogen. In recent years, emerging literature has begun to elucidate a parallel relationship of sex steroid hormones and AD risk in men. Normal age-related testosterone loss in men is associated with increased risk to several diseases including AD. Like estrogen, testosterone has been established as an endogenous neuroprotective factor that not only increases neuronal resilience against AD-related insults, but also reduces beta-amyloid accumulation. Androgen neuroprotective effects are mediated both directly by activation of androgen pathways and indirectly by aromatization to estradiol and initiation of protective estrogen signaling mechanisms. The successful use of hormone therapies in aging men and women to delay, prevent, and or treat AD will require additional research to optimize key parameters of hormone therapy and may benefit from the continuing development of selective estrogen and androgen receptor modulators.
Collapse
Affiliation(s)
- Christian J Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | |
Collapse
|
47
|
Kume T, Ito R, Taguchi R, Izumi Y, Katsuki H, Niidome T, Takada-Takatori Y, Sugimoto H, Akaike A. Serofendic acid promotes stellation induced by cAMP and cGMP analogs in cultured cortical astrocytes. J Pharmacol Sci 2009; 109:110-8. [PMID: 19122367 DOI: 10.1254/jphs.08254fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We investigated the effect of serofendic acid, a neuroprotective substance derived from fetal calf serum, on the morphological changes in cultured cortical astrocytes. Cultured astrocytes developed a stellate morphology with several processes following exposure to dibutylyl cAMP (dbcAMP), a membrane-permeable cAMP analog; 8-Br-cGMP, a membrane-permeable cGMP analog; or phorbol-12-myristate-13-acetate (PMA), a protein kinase C activator. Serofendic acid significantly accelerated the stellation induced by dbcAMP- and 8-Br-cGMP. In contrast, the PMA-induced stellation was not affected by serofendic acid. Next, we attempted to elucidate the mechanism underlying the dbcAMP-induced stellation and explore the site of action of serofendic acid. Both the stellation induced by dbcAMP and the promotional effect of serofendic acid were partially inhibited by KT5720, a specific protein kinase A (PKA) inhibitor. Furthermore, serofendic acid failed to facilitate the stellation induced by Y-27632, an inhibitor of Rho-associated kinase (ROCK). These results indicate that serofendic acid promotes dbcAMP- and 8-Br-cGMP-induced stellation and the promotional effect on dbcAMP-induced stellation is mediated at least partly by the regulation of PKA activity and not by controlling ROCK activity.
Collapse
Affiliation(s)
- Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schindowski K, Belarbi K, Buée L. Neurotrophic factors in Alzheimer's disease: role of axonal transport. GENES BRAIN AND BEHAVIOR 2008; 7 Suppl 1:43-56. [PMID: 18184369 PMCID: PMC2228393 DOI: 10.1111/j.1601-183x.2007.00378.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurotrophic factors (NTF) are small, versatile proteins that maintain survival and function to specific neuronal populations. In general, the axonal transport of NTF is important as not all of them are synthesized at the site of its action. Nerve growth factor (NGF), for instance, is produced in the neocortex and the hippocampus and then retrogradely transported to the cholinergic neurons of the basal forebrain. Neurodegenerative dementias like Alzheimer’s disease (AD) are linked to deficits in axonal transport. Furthermore, they are also associated with imbalanced distribution and dysregulation of NTF. In particular, brain-derived neurotrophic factor (BDNF) plays a crucial role in cognition, learning and memory formation by modulating synaptic plasticity and is, therefore, a critical molecule in dementia and neurodegenerative diseases. Here, we review the changes of NTF expression and distribution (NGF, BDNF, neurotrophin-3, neurotrophin-4/5 and fibroblast growth factor-2) and their receptors [tropomyosin-related kinase (Trk)A, TrkB, TrkC and p75NTR] in AD and AD models. In addition, we focus on the interaction with neuropathological hallmarks Tau/neurofibrillary tangle and amyloid-β (Abeta)/amyloid plaque pathology and their influence on axonal transport processes in order to unify AD-specific cholinergic degeneration and Tau and Abeta misfolding through NTF pathophysiology.
Collapse
Affiliation(s)
- K Schindowski
- Institut National de la Santé et de la Research Médicale U837, Université Lille 2, Lille Cedex, France.
| | | | | |
Collapse
|
49
|
Nathalie Lacor P. Advances on the understanding of the origins of synaptic pathology in AD. Curr Genomics 2007; 8:486-508. [PMID: 19415125 PMCID: PMC2647163 DOI: 10.2174/138920207783769530] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 12/14/2022] Open
Abstract
Although Alzheimer's disease (AD) was first discovered a century ago, we are still facing a lack of definitive diagnosis during the patient's lifetime and are unable to prescribe a curative treatment. However, the past 10 years have seen a "revamping" of the main hypothesis about AD pathogenesis and the hope to foresee possible treatment. AD is no longer considered an irreversible disease. A major refinement of the classic beta-amyloid cascade describing amyloid fibrils as neurotoxins has been made to integrate the key scientific evidences demonstrating that the first pathological event occurring in AD early stages affects synaptic function and maintenance. A concept fully compatible with synapse loss being the best pathological correlate of AD rather than other described neuropathological hallmarks (amyloid plaques, neurofibrillary tangles or neuronal death). The notion that synaptic alterations might be reverted, thus offering a potential curability, was confirmed by immunotherapy experiments targeting beta-amyloid protein in transgenic AD mice in which cognitive functions were improved despite no reduction in the amyloid plaques burden. The updated amyloid cascade now integrates the synapse failure triggered by soluble Abeta-oligomers. Still no consensus has been reached on the most toxic Abeta conformations, neither on their site of production nor on their extra- versus intra-cellular actions. Evidence shows that soluble Abeta oligomers or ADDLs bind selectively to neurons at their synaptic loci, and trigger major changes in synapse composition and morphology, which ultimately leads to dendritic spine loss. However, the exact mechanism is not yet fully understood but is suspected to involve some membrane receptor(s).
Collapse
|
50
|
Sáez ET, Pehar M, Vargas MR, Barbeito L, Maccioni RB. Production of nerve growth factor by β-amyloid-stimulated astrocytes induces p75NTR-dependent tau hyperphosphorylation in cultured hippocampal neurons. J Neurosci Res 2006; 84:1098-106. [PMID: 16862561 DOI: 10.1002/jnr.20996] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reactive astrocytes surround amyloid depositions and degenerating neurons in Alzheimer's disease (AD). It has been previously shown that beta-amyloid peptide induces inflammatory-like responses in astrocytes, leading to neuronal pathology. Reactive astrocytes up-regulate nerve growth factor (NGF), which can modulate neuronal survival by signaling through TrkA or p75 neurotrophin receptor (p75NTR). Here, we analyzed whether soluble Abeta peptide 25-35 (Abeta) stimulated astrocytic NGF expression, modulating the survival of cultured embryonic hippocampal neurons. Hippocampal astrocytes incubated with Abeta up-regulated NGF expression and release to the culture medium. Abeta-stimulated astrocytes increased tau phosphorylation and reduced the survival of cocultured hippocampal neurons. Neuronal death and tau phosphorylation were reproduced by conditioned media from Abeta-stimulated astrocytes and prevented by caspase inhibitors or blocking antibodies to NGF or p75NTR. Moreover, exogenous NGF was sufficient to induce tau hyperphosphorylation and death of hippocampal neurons, a phenomenon that was potentiated by a low steady-state concentration of nitric oxide. Our findings show that Abeta-activated astrocytes potently stimulate NGF secretion, which in turn causes the death of p75-expressing hippocampal neurons, through a mechanism regulated by nitric oxide. These results suggest a potential role for astrocyte-derived NGF in the progression of AD.
Collapse
Affiliation(s)
- Estefanía T Sáez
- Laboratory of Cellular, Molecular Biology and Neurosciences, Faculty of Sciences, Department Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|