1
|
Wang Y, Hartmann K, Thies E, Mohammadi B, Altmeppen H, Sepulveda-Falla D, Glatzel M, Krasemann S. Loss of Homeostatic Microglia Signature in Prion Diseases. Cells 2022; 11:cells11192948. [PMID: 36230910 PMCID: PMC9563810 DOI: 10.3390/cells11192948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Prion diseases are neurodegenerative diseases that affect humans and animals. They are always fatal and, to date, no treatment exists. The hallmark of prion disease pathophysiology is the misfolding of an endogenous protein, the cellular prion protein (PrPC), into its disease-associated isoform PrPSc. Besides the aggregation and deposition of misfolded PrPSc, prion diseases are characterized by spongiform lesions and the activation of astrocytes and microglia. Microglia are the innate immune cells of the brain. Activated microglia and astrocytes represent a common pathological feature in neurodegenerative disorders. The role of activated microglia has already been studied in prion disease mouse models; however, it is still not fully clear how they contribute to disease progression. Moreover, the role of microglia in human prion diseases has not been thoroughly investigated thus far, and specific molecular pathways are still undetermined. Here, we review the current knowledge on the different roles of microglia in prion pathophysiology. We discuss microglia markers that are also dysregulated in other neurodegenerative diseases including microglia homeostasis markers. Data on murine and human brain tissues show that microglia are highly dysregulated in prion diseases. We highlight here that the loss of homeostatic markers may especially stand out.
Collapse
|
2
|
García-Martínez M, Cortez LM, Otero A, Betancor M, Serrano-Pérez B, Bolea R, Badiola JJ, Garza MC. Distinctive Toll-like Receptors Gene Expression and Glial Response in Different Brain Regions of Natural Scrapie. Int J Mol Sci 2022; 23:ijms23073579. [PMID: 35408945 PMCID: PMC8998348 DOI: 10.3390/ijms23073579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Prion diseases are chronic and fatal neurodegenerative diseases characterized by the accumulation of disease-specific prion protein (PrPSc), spongiform changes, neuronal loss, and gliosis. Growing evidence shows that the neuroinflammatory response is a key component of prion diseases and contributes to neurodegeneration. Toll-like receptors (TLRs) have been proposed as important mediators of innate immune responses triggered in the central nervous system in other human neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. However, little is known about the role of TLRs in prion diseases, and their involvement in the neuropathology of natural scrapie has not been studied. We assessed the gene expression of ovine TLRs in four anatomically distinct brain regions in natural scrapie-infected sheep and evaluated the possible correlations between gene expression and the pathological hallmarks of prion disease. We observed significant changes in TLR expression in scrapie-infected sheep that correlate with the degree of spongiosis, PrPSc deposition, and gliosis in each of the regions studied. Remarkably, TLR4 was the only gene upregulated in all regions, regardless of the severity of neuropathology. In the hippocampus, we observed milder neuropathology associated with a distinct TLR gene expression profile and the presence of a peculiar microglial morphology, called rod microglia, described here for the first time in the brain of scrapie-infected sheep. The concurrence of these features suggests partial neuroprotection of the hippocampus. Finally, a comparison of the findings in naturallyinfected sheep versus an ovinized mouse model (tg338 mice) revealed distinct patterns of TLRgene expression.
Collapse
Affiliation(s)
- Mirta García-Martínez
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - Leonardo M. Cortez
- Department of Medicine and Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: (L.M.C.); (A.O.)
| | - Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
- Correspondence: (L.M.C.); (A.O.)
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - Beatriz Serrano-Pérez
- Agrotecnio-CERCA Center, Department of Animal Science, University of Lleida, 25198 Lleida, Spain;
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - Juan J. Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS Aragón, Universidad de Zaragoza, 50013 Zaragoza, Spain; (M.G.-M.); (M.B.); (R.B.); (J.J.B.)
| | - María Carmen Garza
- Departamento de Anatomía e Histología Humanas, IIS Aragón, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| |
Collapse
|
3
|
Chouhan JK, Püntener U, Booth SG, Teeling JL. Systemic Inflammation Accelerates Changes in Microglial and Synaptic Markers in an Experimental Model of Chronic Neurodegeneration. Front Neurosci 2022; 15:760721. [PMID: 35058740 PMCID: PMC8764443 DOI: 10.3389/fnins.2021.760721] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 12/01/2022] Open
Abstract
Bacterial infections are a common cause of morbidity and mortality in the elderly, and particularly in individuals with a neurodegenerative disease. Experimental models of neurodegeneration have shown that LPS-induced systemic inflammation increases neuronal damage, a process thought to be mediated by activation of "primed" microglia. The effects of a real systemic bacterial infection on the innate immune cells in the brain and neuronal networks are less well described, and therefore, in this study we use the ME7 prion model to investigate the alterations in microglia activation and phenotype and synaptic markers in response to a low grade, live bacterial infection. Mice with or without a pre-existing ME7 prion-induced neurodegenerative disease were given a single systemic injection of live Salmonella typhimurium at early or mid-stage of disease progression. Immune activation markers CD11b and MHCII and pro-inflammatory cytokines were analyzed 4 weeks post-infection. Systemic infection with S. typhimurium resulted in an exaggerated inflammatory response when compared to ME7 prion mice treated with saline. These changes to inflammatory markers were most pronounced at mid-stage disease. Analysis of synaptic markers in ME7 prion mice revealed a significant reduction of genes that are associated with early response in synaptic plasticity, extracellular matrix structure and post-synaptic density, but no further reduction following systemic infection. In contrast, analysis of activity-related neuronal receptors involved in development of learning and memory, such as Grm1 and Grin2a, showed a significant decrease in response to systemic bacterial challenge. These changes were observed early in the disease progression and associated with reduced burrowing activity. The exaggerated innate immune activation and altered expression of genes linked to synaptic plasticity may contribute to the onset and/or progression of neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Jessica L. Teeling
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
4
|
Leite ADOF, Bento Torres Neto J, dos Reis RR, Sobral LL, de Souza ACP, Trévia N, de Oliveira RB, Lins NADA, Diniz DG, Diniz JAP, Vasconcelos PFDC, Anthony DC, Brites D, Picanço Diniz CW. Unwanted Exacerbation of the Immune Response in Neurodegenerative Disease: A Time to Review the Impact. Front Cell Neurosci 2021; 15:749595. [PMID: 34744633 PMCID: PMC8570167 DOI: 10.3389/fncel.2021.749595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic imposed a series of behavioral changes that resulted in increased social isolation and a more sedentary life for many across all age groups, but, above all, for the elderly population who are the most vulnerable to infections and chronic neurodegenerative diseases. Systemic inflammatory responses are known to accelerate neurodegenerative disease progression, which leads to permanent damage, loss of brain function, and the loss of autonomy for many aged people. During the COVID-19 pandemic, a spectrum of inflammatory responses was generated in affected individuals, and it is expected that the elderly patients with chronic neurodegenerative diseases who survived SARSCoV-2 infection, it will be found, sooner or later, that there is a worsening of their neurodegenerative conditions. Using mouse prion disease as a model for chronic neurodegeneration, we review the effects of social isolation, sedentary living, and viral infection on the disease progression with a focus on sickness behavior and on the responses of microglia and astrocytes. Focusing on aging, we discuss the cellular and molecular mechanisms related to immunosenescence in chronic neurodegenerative diseases and how infections may accelerate their progression.
Collapse
Affiliation(s)
- Amanda de Oliveira Ferreira Leite
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - João Bento Torres Neto
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Renata Rodrigues dos Reis
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Luciane Lobato Sobral
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Aline Cristine Passos de Souza
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Nonata Trévia
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Roseane Borner de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Nara Alves de Almeida Lins
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | | | | | | | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
5
|
Neuroinflammation in Prion Disease. Int J Mol Sci 2021; 22:ijms22042196. [PMID: 33672129 PMCID: PMC7926464 DOI: 10.3390/ijms22042196] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Neuroinflammation, typically manifest as microglial activation and astrogliosis accompanied by transcriptomic alterations, represents a common hallmark of various neurodegenerative conditions including prion diseases. Microglia play an overall neuroprotective role in prion disease, whereas reactive astrocytes with aberrant phenotypes propagate prions and contribute to prion-induced neurodegeneration. The existence of heterogeneous subpopulations and dual functions of microglia and astrocytes in prion disease make them potential targets for therapeutic intervention. A variety of neuroinflammation-related molecules are involved in prion pathogenesis. Therapeutics targeting neuroinflammation represents a novel approach to combat prion disease. Deciphering neuroinflammation in prion disease will deepen our understanding of pathogenesis of other neurodegenerative disorders.
Collapse
|
6
|
Kaur N, Chugh H, Sakharkar MK, Dhawan U, Chidambaram SB, Chandra R. Neuroinflammation Mechanisms and Phytotherapeutic Intervention: A Systematic Review. ACS Chem Neurosci 2020; 11:3707-3731. [PMID: 33146995 DOI: 10.1021/acschemneuro.0c00427] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is indicated in the pathogenesis of several acute and chronic neurological disorders. Acute lesions in the brain parenchyma induce intense and highly complex neuroinflammatory reactions with similar mechanisms among various disease prototypes. Microglial cells in the CNS sense tissue damage and initiate inflammatory responses. The cellular and humoral constituents of the neuroinflammatory reaction to brain injury contribute significantly to secondary brain damage and neurodegeneration. Inflammatory cascades such as proinflammatory cytokines from invading leukocytes and direct cell-mediated cytotoxicity between lymphocytes and neurons are known to cause "collateral damage" in models of acute brain injury. In addition to degeneration and neuronal cell loss, there are secondary inflammatory mechanisms that modulate neuronal activity and affect neuroinflammation which can even be detected at the behavioral level. Hence, several of health conditions result from these pathogenetic conditions which are underlined by progressive neuronal function loss due to chronic inflammation and oxidative stress. In the first part of this Review, we discuss critical neuroinflammatory mediators and their pathways in detail. In the second part, we review the phytochemicals which are considered as potential therapeutic molecules for treating neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Navrinder Kaur
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| | - Heerak Chugh
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Meena K. Sakharkar
- College of Pharmacy and Nutrition, University of Sasketchwan, Saskatoon S7N 5E5, Canada
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), S.S. Nagar, Mysuru-570015, India
- Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research JSS AHER, Mysuru-570015, India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| |
Collapse
|
7
|
Mabbott NA, Bradford BM, Pal R, Young R, Donaldson DS. The Effects of Immune System Modulation on Prion Disease Susceptibility and Pathogenesis. Int J Mol Sci 2020; 21:E7299. [PMID: 33023255 PMCID: PMC7582561 DOI: 10.3390/ijms21197299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Prion diseases are a unique group of infectious chronic neurodegenerative disorders to which there are no cures. Although prion infections do not stimulate adaptive immune responses in infected individuals, the actions of certain immune cell populations can have a significant impact on disease pathogenesis. After infection, the targeting of peripherally-acquired prions to specific immune cells in the secondary lymphoid organs (SLO), such as the lymph nodes and spleen, is essential for the efficient transmission of disease to the brain. Once the prions reach the brain, interactions with other immune cell populations can provide either host protection or accelerate the neurodegeneration. In this review, we provide a detailed account of how factors such as inflammation, ageing and pathogen co-infection can affect prion disease pathogenesis and susceptibility. For example, we discuss how changes to the abundance, function and activation status of specific immune cell populations can affect the transmission of prion diseases by peripheral routes. We also describe how the effects of systemic inflammation on certain glial cell subsets in the brains of infected individuals can accelerate the neurodegeneration. A detailed understanding of the factors that affect prion disease transmission and pathogenesis is essential for the development of novel intervention strategies.
Collapse
Affiliation(s)
- Neil A. Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (B.M.B.); (R.P.); (R.Y.); (D.S.D.)
| | | | | | | | | |
Collapse
|
8
|
Carroll JA, Race B, Williams K, Striebel J, Chesebro B. RNA-seq and network analysis reveal unique glial gene expression signatures during prion infection. Mol Brain 2020; 13:71. [PMID: 32381108 PMCID: PMC7206698 DOI: 10.1186/s13041-020-00610-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 02/01/2023] Open
Abstract
Background Prion diseases and prion-like disorders, including Alzheimer’s disease and Parkinson’s disease, are characterized by gliosis and accumulation of misfolded aggregated host proteins. Ablating microglia in prion-infected brain by treatment with the colony-stimulating factor-1 receptor (CSF-1R) inhibitor, PLX5622, increased accumulation of misfolded prion protein and decreased survival time. Methods To better understand the role of glia during neurodegeneration, we used RNA-seq technology, network analysis, and hierarchical cluster analysis to compare gene expression in brains of prion-infected versus mock-inoculated mice. Comparisons were also made between PLX5622-treated prion-infected mice and untreated prion-infected mice to assess mechanisms involved in disease acceleration in the absence of microglia. Results RNA-seq and network analysis suggested that microglia responded to prion infection through activation of integrin CD11c/18 and did not adopt the expression signature associated with other neurodegenerative disease models. Instead, microglia acquired an alternative molecular signature late in the disease process. Furthermore, astrocytes expressed a signature pattern of genes which appeared to be specific for prion diseases. Comparisons were also made with prion-infected mice treated with PLX5622 to assess the impact of microglia ablation on astrocyte gene expression during prion infection. In the presence of microglia, a unique mix of transcripts associated with A1- and A2-reactive astrocytes was increased in brains of prion-infected mice. After ablation of microglia, this reactive astrocyte expression pattern was enhanced. Thus, after prion infection, microglia appeared to decrease the overall A1/A2-astrocyte responses which might contribute to increased survival after infection. Conclusions RNA-seq analysis indicated dysregulation of over 300 biological processes within the CNS during prion disease. Distinctive microglia- and astrocyte-associated expression signatures were identified during prion infection. Furthermore, astrogliosis and the unique astrocyte-associated expression signature were independent of microglial influences. Astrogliosis and the unique astrocyte-associated gene expression pattern were increased when microglia were ablated. Our findings emphasize the potential existence of alternative pathways for activating the A1/A2 paradigm in astrocytes during neurodegenerative disease.
Collapse
Affiliation(s)
- James A Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA.
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| | - James Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| |
Collapse
|
9
|
Experimental Study Using Multiple Strains of Prion Disease in Cattle Reveals an Inverse Relationship between Incubation Time and Misfolded Prion Accumulation, Neuroinflammation, and Autophagy. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1461-1473. [PMID: 32259521 DOI: 10.1016/j.ajpath.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
Proteinopathies result from aberrant folding and accumulation of specific proteins. Currently, there is a lack of knowledge about the factors that influence disease progression, making this a key challenge for the development of therapies for proteinopathies. Because of the similarities between transmissible spongiform encephalopathies (TSEs) and other protein misfolding diseases, TSEs can be used to understand other proteinopathies. Bovine spongiform encephalopathy (BSE) is a TSE that occurs in cattle and can be subdivided into three strains: classic BSE and atypical BSEs (H and L types) that have shorter incubation periods. The NACHT, LRR, and PYD domains-containing protein 3 inflammasome is a critical component of the innate immune system that leads to release of IL-1β. Macroautophagy is an intracellular mechanism that plays an essential role in protein clearance. In this study, the retina was used as a model to investigate the relationship between disease incubation period, prion protein accumulation, neuroinflammation, and changes in macroautophagy. We demonstrate that atypical BSEs present with increased prion protein accumulation, neuroinflammation, and decreased autophagy. This work suggests a relationship between disease time course, neuroinflammation, and the autophagic stress response, and may help identify novel therapeutic biomarkers that can delay or prevent the progression of proteinopathies.
Collapse
|
10
|
Accelerated onset of CNS prion disease in mice co-infected with a gastrointestinal helminth pathogen during the preclinical phase. Sci Rep 2020; 10:4554. [PMID: 32165661 PMCID: PMC7067812 DOI: 10.1038/s41598-020-61483-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/27/2020] [Indexed: 01/12/2023] Open
Abstract
Prion infections in the central nervous system (CNS) can cause extensive neurodegeneration. Systemic inflammation can affect the progression of some neurodegenerative disorders. Therefore, we used the gastrointestinal helminth pathogen Trichuris muris to test the hypothesis that a chronic systemic inflammatory response to a gastrointestinal infection would similarly affect CNS prion disease pathogenesis. Mice were injected with prions directly into the CNS and subsequently orally co-infected with T. muris before the onset of clinical signs. We show that co-infection with a low dose of T. muris that leads to the development of a chronic T helper cell type 1-polarized systemic immune response accelerated the onset of clinical prion disease. In contrast, co-infection with a high dose of T. muris that induces a T helper cell type 2-polarized immune response did not affect prion disease pathogenesis. The reduced survival times in mice co-infected with a low dose of T. muris on d 105 after CNS prion infection coincided with enhanced astrocyte activation in the brain during the preclinical phase. These data aid our understanding of how systemic inflammation may augment the progression of neurodegeneration in the CNS.
Collapse
|
11
|
Neuroinflammation, Microglia, and Cell-Association during Prion Disease. Viruses 2019; 11:v11010065. [PMID: 30650564 PMCID: PMC6356204 DOI: 10.3390/v11010065] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Prion disorders are transmissible diseases caused by a proteinaceous infectious agent that can infect the lymphatic and nervous systems. The clinical features of prion diseases can vary, but common hallmarks in the central nervous system (CNS) are deposition of abnormally folded protease-resistant prion protein (PrPres or PrPSc), astrogliosis, microgliosis, and neurodegeneration. Numerous proinflammatory effectors expressed by astrocytes and microglia are increased in the brain during prion infection, with many of them potentially damaging to neurons when chronically upregulated. Microglia are important first responders to foreign agents and damaged cells in the CNS, but these immune-like cells also serve many essential functions in the healthy CNS. Our current understanding is that microglia are beneficial during prion infection and critical to host defense against prion disease. Studies indicate that reduction of the microglial population accelerates disease and increases PrPSc burden in the CNS. Thus, microglia are unlikely to be a foci of prion propagation in the brain. In contrast, neurons and astrocytes are known to be involved in prion replication and spread. Moreover, certain astrocytes, such as A1 reactive astrocytes, have proven neurotoxic in other neurodegenerative diseases, and thus might also influence the progression of prion-associated neurodegeneration.
Collapse
|
12
|
Butnaru D, Chapman J. The impact of self-replicating proteins on inflammation, autoimmunity and neurodegeneration-An untraveled path. Autoimmun Rev 2019; 18:231-240. [PMID: 30639644 DOI: 10.1016/j.autrev.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) in neurodegenerative diseases is a battlefield in which microglia fight a highly atypical battle. During the inflammatory process microglia themselves become dysfunctional and even with all the available immune arsenal including cytokine or/and antibody production, the battle is eventually lost. A closer look into the picture will reveal the fact that this is mainly due to the atypical characteristics of the infectious agent. The supramolecular assemblies of misfolded proteins carry unique features not encountered in any of the common pathogens. Through misfolding, proteins undergo conformational changes which make them become immunogenic, neurotoxic and highly infective. The immunogenicity appears to be triggered by the exposure of previously hidden hydrophobic portions in proteins which act as damage-associated molecular patters (DAMPs) for the immune system. The neurotoxicity and infectivity are promoted by the small oligomeric forms of misfolded proteins/peptides. Oligomers adopt conformations such as tubular-like, beta-barrel-like, etc., that penetrate cell membranes through their hydrophobic surfaces, thus destabilizing ionic homeostasis. At the same time, oligomers act as a seed for protein misfolding through a prion/prion-like mechanism. Here, we propose the hypothesis that oligomers have catalytic surfaces and exercise their capacity to infect native proteins through specific characteristics such as hydrophobic, electrostatic and π-π stacking interactions as well as the specific surface area (SSA), surface curvature and surface chemistry of their nanoscale supramolecular assemblies. All these are the key elements for prion/prion-like mechanism of self-replication and disease spreading within the CNS. Thus, understanding the mechanism of prion's templating activity may help us in the prevention and development of novel therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Dana Butnaru
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel.
| | - Joab Chapman
- Sheba Medical Center, Israel; Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
13
|
Microglia Are Critical in Host Defense against Prion Disease. J Virol 2018; 92:JVI.00549-18. [PMID: 29769333 DOI: 10.1128/jvi.00549-18] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022] Open
Abstract
Microglial cells in the central nervous system play important roles in neurodevelopment and resistance to infection, yet microglia can become neurotoxic under some conditions. An early event during prion infection is the activation of microglia and astrocytes in the brain prior to damage or death of neurons. Previous prion disease studies using two different strategies to manipulate signaling through the microglial receptor CSF-1R reported contrary effects on survival from prion disease. However, in these studies, reductions of microglial numbers and function were variable, thus confounding interpretation of the results. In the present work, we used oral treatment with a potent inhibitor of CSF-1R, PLX5622, to eliminate 78 to 90% of microglia from cortex early during the course of prion infection. Oral drug treatment early after infection with the RML scrapie strain significantly accelerated vacuolation, astrogliosis, and deposition of disease-associated prion protein. Furthermore, drug-treated mice had advanced clinical disease requiring euthanasia 31 days earlier than untreated control mice. Similarly, PLX5622 treatment during the preclinical phase at 80 days postinfection with RML scrapie also accelerated disease and resulted in euthanasia of mice 33 days earlier than infected controls. PLX5622 also accelerated clinical disease after infection with scrapie strains ME7 and 22L. Thus, microglia are critical in host defense during prion disease. The early accumulation of PrPSc in the absence of microglia suggested that microglia may function by clearing PrPSc, resulting in longer survival.IMPORTANCE Microglia contribute to many aspects of health and disease. When activated, microglia can be beneficial by repairing damage in the central nervous system (CNS) or they can turn harmful by becoming neurotoxic. In prion and prionlike diseases, the involvement of microglia in disease is unclear. Previous studies suggest that microglia can either speed up or slow down disease. In this study, we infected mice with prions and depleted microglia from the brains of mice using PLX5622, an effective CSF-1R tyrosine kinase inhibitor. Microglia were markedly reduced in brains, and prion disease was accelerated, so that mice needed to be euthanized 20 to 33 days earlier than infected control mice due to advanced clinical disease. Similar results occurred when mice were treated with PLX5622 at 80 days after infection, which was just prior to the start of clinical signs. Thus, microglia are important for removing prions, and the disease is faster when microglia are depleted.
Collapse
|
14
|
Kim S, Han S, Kim T, Nam J, Kim YS, Choi EK, Kim MY. Prolonged follicular helper T cell responses in ME7 scrapie-infected mice. Prion 2018; 12:109-116. [PMID: 29617174 DOI: 10.1080/19336896.2018.1458573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
We previously reported that mice intracerebrally inoculated with the mouse-adapted scrapie strain ME7 have markedly diminished T zones in the spleen due to the decreased expression of CCL19 and CCL21. In addition, follicular dendritic cell networks in germinal centers were larger in ME7-infected spleens compared to uninfected spleens. As an extension of that study, we set out to determine how ME7 infection affects spleen structure and follicular helper T (Tfh) cell responses in mice. For this study, mice were intraperitoneally inoculated with brain homogenate of the ME7 inoculum and spleens were analyzed 50, 130, and 200 days after inoculation and compared with those from uninfected mice. The result showed that ME7- infected mice had increased Tfh cell responses which were maintained until end-stage prion disease. Although CD4 T cells decreased in white pulps, they increased in germinal centers, and expressed higher levels of the Tfh-related genes, such as Bcl6, Il21, Cxcr5, Icos, and Pdcd1. In addition, ME7-infected spleens had increased numbers of CD4 memory T cells. These data indicate that although ME7 infection led to impaired splenic white pulp structure, CD4 memory T cells were increased and Tfh cell responses were required and prolonged to provide help for the replication and accumulation of pathogenic prion protein in germinal centers.
Collapse
Affiliation(s)
- Soochan Kim
- a Department of Bioinformatics and Life Science , Soongsil University , Seoul , Korea
| | - Sinsuk Han
- b Department of Biomedical Gerontology , Graduate School of Hallym University , Chuncheon , Korea.,c Ilsong Institute of Life Science, Hallym University , Anyang , Korea
| | - Taehyun Kim
- a Department of Bioinformatics and Life Science , Soongsil University , Seoul , Korea
| | - Jeehoon Nam
- a Department of Bioinformatics and Life Science , Soongsil University , Seoul , Korea
| | - Yong-Sun Kim
- c Ilsong Institute of Life Science, Hallym University , Anyang , Korea.,d Department of Microbiology , College of Medicine, Hallym University , Chuncheon , Korea
| | - Eun-Kyoung Choi
- b Department of Biomedical Gerontology , Graduate School of Hallym University , Chuncheon , Korea.,c Ilsong Institute of Life Science, Hallym University , Anyang , Korea
| | - Mi-Yeon Kim
- a Department of Bioinformatics and Life Science , Soongsil University , Seoul , Korea
| |
Collapse
|
15
|
Franceschini A, Strammiello R, Capellari S, Giese A, Parchi P. Regional pattern of microgliosis in sporadic Creutzfeldt-Jakob disease in relation to phenotypic variants and disease progression. Neuropathol Appl Neurobiol 2018; 44:574-589. [PMID: 29345730 DOI: 10.1111/nan.12461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/22/2017] [Indexed: 12/30/2022]
Abstract
AIMS The aim of this study was to describe the regional profiles of microglial activation in sporadic Creutzfeldt-Jakob disease (sCJD) subtypes and analyse the influence of prion strain, disease duration and codon 129 genotype. METHODS We studied the amount/severity and distribution of activated microglia, protease-resistant prion protein (PrPSc ) spongiform change, and astrogliosis in eight regions of 57 brains, representative of the entire spectrum of sCJD subtypes. RESULTS In each individual subtype, the regional extent and distribution of microgliosis significantly correlated with PrPSc deposition and spongiform change, leading to subtype-specific 'lesion profiles'. However, large differences in the ratio between PrPSc load or the score of spongiform change and microglial activation were seen among disease subtypes. Most significantly, atypical sCJD subtypes such as VV1 and MM2T showed a degree of microglial activation comparable to other disease variants despite the relatively low PrPSc deposition and the less severe spongiform change. Moreover, the mean microglial total load was significantly higher in subtype MM1 than in MM2C, whereas the opposite was true for the PrPSc and spongiform change total loads. Finally, some sCJD subtypes showed distinctive regional cerebellar profiles of microgliosis characterized by a high granular/molecular layer ratio (MV2K) and/or a predominant involvement of white matter (MVK and MM2T). CONCLUSIONS Microglial activation is an early event in sCJD pathogenesis and is strongly influenced by prion strain, PRNP codon 129 genotype and disease duration. Microglial lesion profiling, by highlighting strain-specific properties of prions, contributes to prion strain characterization and classification of human prion diseases, and represents a valid support to molecular and histopathologic typing.
Collapse
Affiliation(s)
- A Franceschini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - R Strammiello
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - S Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS, Institute of Neurological Sciences, Bologna, Italy
| | - A Giese
- Institut für Neuropathologie und Prion Forschung, Ludwig-Maximilians-Universität München, Munich, Germany
| | - P Parchi
- IRCCS, Institute of Neurological Sciences, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
|
17
|
Let's make microglia great again in neurodegenerative disorders. J Neural Transm (Vienna) 2017; 125:751-770. [PMID: 29027011 DOI: 10.1007/s00702-017-1792-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
All of the common neurodegenerative disorders-Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prion diseases-are characterized by accumulation of misfolded proteins that trigger activation of microglia; brain-resident mononuclear phagocytes. This chronic form of neuroinflammation is earmarked by increased release of myriad cytokines and chemokines in patient brains and biofluids. Microglial phagocytosis is compromised early in the disease process, obfuscating clearance of abnormal proteins. This review identifies immune pathologies shared by the major neurodegenerative disorders. The overarching concept is that aberrant innate immune pathways can be targeted for return to homeostasis in hopes of coaxing microglia into clearing neurotoxic misfolded proteins.
Collapse
|
18
|
Diack AB, Alibhai JD, Manson JC. Gene Targeted Transgenic Mouse Models in Prion Research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:157-179. [PMID: 28838660 DOI: 10.1016/bs.pmbts.2017.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The production of transgenic mice expressing different forms of the prion protein (PrP) or devoid of PrP has enabled researchers to study the role of PrP in the infectious process of a prion disease and its normal function in the healthy individual. A wide range of transgenic models have been produced ranging from PrP null mice, normal expression levels to overexpression models, models expressing different species of the Prnp gene and different mutations and polymorphisms within the gene. Using this range of transgenic models has allowed us to define the influence of PrP expression on disease susceptibility and transmission, assess zoonotic potential, define strains of human prion diseases, elucidate the function of PrP, and start to unravel the mechanisms involved in chronic neurodegeneration. This chapter focuses mainly on the use of the gene targeted transgenic models and summarizes the ways in which they have allowed us to study the role of PrP in prion disease and the insights they have provided into the mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Abigail B Diack
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, United Kingdom.
| | - James D Alibhai
- The National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean C Manson
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, United Kingdom
| |
Collapse
|
19
|
Carroll JA, Race B, Phillips K, Striebel JF, Chesebro B. Statins are ineffective at reducing neuroinflammation or prolonging survival in scrapie-infected mice. J Gen Virol 2017; 98:2190-2199. [PMID: 28758631 DOI: 10.1099/jgv.0.000876] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neuroinflammation is a prominent component of several neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, Parkinson's disease, tauopathies, amyotrophic lateral sclerosis and prion diseases. In such conditions, the ability to decrease neuroinflammation by drug therapy may influence disease progression. Statins have been used to treat hyperlipidemia as well as reduce neuroinflammation and oxidative stress in various tissues. In previous studies, treatment of scrapie-infected mice with the type 1 statins, simvastatin or pravastatin, showed a small beneficial effect on survival time. In the current study, to increase the effectiveness of statin therapy, we treated infected mice with atorvastatin, a type 2 statin that has improved pharmacokinetics over many type 1 statins. Treatments with either simvastatin or pravastatin were tested for comparison. We evaluated scrapie-infected mice for protease-resistant PrP (PrPres) accumulation, gliosis, neuroinflammation and time until advanced clinical disease requiring euthanasia. All three statin treatments reduced total serum cholesterol ≥40 % in mice. However, gliosis and PrPres deposition were similar in statin-treated and untreated infected mice. Time to euthanasia due to advanced clinical signs was not changed in statin-treated mice relative to untreated mice, a finding at odds with previous reports. Expression of 84 inflammatory genes involved in neuroinflammation was also quantitated. Seven genes were reduced by pravastatin, and one gene was reduced by atorvastatin. In contrast, simvastatin therapy did not reduce any of the tested genes, but did slightly increase the expression of Ccl2 and Cxcl13. Our studies indicate that none of the three statins tested were effective in reducing scrapie-induced neuroinflammation or neuropathogenesis.
Collapse
Affiliation(s)
- James A Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Katie Phillips
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - James F Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
20
|
Abstract
Prion diseases are a group of progressive and fatal neurodegenerative disorders characterized by deposition of scrapie prion protein (PrPSc) in the CNS. This deposition is accompanied by neuronal loss, spongiform change, astrogliosis, and conspicuous microglial activation. Here, we argue that microglia play an overall neuroprotective role in prion pathogenesis. Several microglia-related molecules, such as Toll-like receptors (TLRs), the complement system, cytokines, chemokines, inflammatory regulators, and phagocytosis mediators, are involved in prion pathogenesis. However, the molecular mechanisms underlying the microglial response to prion infection are largely unknown. Consequently, we lack a comprehensive understanding of the regulatory network of microglial activation. On the positive side, recent findings suggest that therapeutic strategies modulating microglial activation and function may have merit in prion disease. Moreover, studies on the role of microglia in prion disease could deepen our understanding of neuroinflammation in a broad range of neurodegenerative disorders.
Collapse
|
21
|
Obst J, Simon E, Mancuso R, Gomez-Nicola D. The Role of Microglia in Prion Diseases: A Paradigm of Functional Diversity. Front Aging Neurosci 2017; 9:207. [PMID: 28690540 PMCID: PMC5481309 DOI: 10.3389/fnagi.2017.00207] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022] Open
Abstract
Inflammation is a major component of neurodegenerative diseases. Microglia are the innate immune cells in the central nervous system (CNS). In the healthy brain, microglia contribute to tissue homeostasis and regulation of synaptic plasticity. Under disease conditions, they play a key role in the development and maintenance of the neuroinflammatory response, by showing enhanced proliferation and activation. Prion diseases are progressive chronic neurodegenerative disorders associated with the accumulation of the scrapie prion protein PrPSc, a misfolded conformer of the cellular prion protein PrPC. This review article provides the current knowledge on the role of microglia in the pathogenesis of prion disease. A large body of evidence shows that microglia can trigger neurotoxic pathways contributing to progressive degeneration. Yet, microglia are also crucial for controlling inflammatory, repair and regenerative processes. This dual role of microglia is regulated by multiple pathways and evidences the ability of these cells to polarize into distinct phenotypes with characteristic functions. The awareness that the neuroinflammatory response is inextricably involved in producing tissue damage as well as repair in neurodegenerative disorders, opens new perspectives for the modulation of the immune system. A better understanding of this complex process will be essential for developing effective therapies for neurodegenerative diseases, in order to improve the quality of life of patients and mitigating the personal, economic and social consequences derived from these diseases.
Collapse
Affiliation(s)
- Juliane Obst
- Biological Sciences, University of Southampton, Southampton General HospitalSouthampton, United Kingdom
| | - Emilie Simon
- Biological Sciences, University of Southampton, Southampton General HospitalSouthampton, United Kingdom
| | - Renzo Mancuso
- Biological Sciences, University of Southampton, Southampton General HospitalSouthampton, United Kingdom
| | - Diego Gomez-Nicola
- Biological Sciences, University of Southampton, Southampton General HospitalSouthampton, United Kingdom
| |
Collapse
|
22
|
Different Molecular Mechanisms Mediate Direct or Glia-Dependent Prion Protein Fragment 90-231 Neurotoxic Effects in Cerebellar Granule Neurons. Neurotox Res 2017; 32:381-397. [PMID: 28540665 DOI: 10.1007/s12640-017-9749-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022]
Abstract
Glia over-stimulation associates with amyloid deposition contributing to the progression of central nervous system neurodegenerative disorders. Here we analyze the molecular mechanisms mediating microglia-dependent neurotoxicity induced by prion protein (PrP)90-231, an amyloidogenic polypeptide corresponding to the protease-resistant portion of the pathological prion protein scrapie (PrPSc). PrP90-231 neurotoxicity is enhanced by the presence of microglia within neuronal culture, and associated to a rapid neuronal [Ca++] i increase. Indeed, while in "pure" cerebellar granule neuron cultures, PrP90-231 causes a delayed intracellular Ca++ entry mediated by the activation of NMDA receptors; when neuron and glia are co-cultured, a transient increase of [Ca++] i occurs within seconds after treatment in both granule neurons and glial cells, then followed by a delayed and sustained [Ca++] i raise, associated with the induction of the expression of inducible nitric oxide synthase and phagocytic NADPH oxidase. [Ca++] i fast increase in neurons is dependent on the activation of multiple pathways since it is not only inhibited by the blockade of voltage-gated channel activity and NMDA receptors but also prevented by the inhibition of nitric oxide and PGE2 release from glial cells. Thus, Ca++ homeostasis alteration, directly induced by PrP90-231 in cerebellar granule cells, requires the activation of NMDA receptors, but is greatly enhanced by soluble molecules released by activated glia. In glia-enriched cerebellar granule cultures, the activation of inducible nitric oxide (iNOS) and NADPH oxidase represents the main mechanism of toxicity since their pharmacological inhibition prevented PrP90-231 neurotoxicity, whereas NMDA blockade by D(-)-2-amino-5-phosphonopentanoic acid is ineffective; conversely, in pure cerebellar granule cultures, NMDA blockade but not iNOS inhibition strongly reduced PrP90-231 neurotoxicity. These data indicate that amyloidogenic peptides induce neurotoxic signals via both direct neuron interaction and glia activation through different mechanisms responsible of calcium homeostasis disruption in neurons and potentiating each other: the activation of excitotoxic pathways via NMDA receptors and the release of radical species that establish an oxidative milieu.
Collapse
|
23
|
Defining the Microglia Response during the Time Course of Chronic Neurodegeneration. J Virol 2016; 90:3003-17. [PMID: 26719249 PMCID: PMC4810622 DOI: 10.1128/jvi.02613-15] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/23/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Inflammation has been proposed as a major component of neurodegenerative diseases, although the precise role it plays has yet to be defined. We examined the role of key contributors to this inflammatory process, microglia, the major resident immune cell population of the brain, in a prion disease model of chronic neurodegeneration. Initially, we performed an extensive reanalysis of a large study of prion disease, where the transcriptome of mouse brains had been monitored throughout the time course of disease. Our analysis has provided a detailed classification of the disease-associated genes based on cell type of origin and gene function. This revealed that the genes upregulated during disease, regardless of the strain of mouse or prion protein, are expressed predominantly by activated microglia. In order to study the microglia contribution more specifically, we established a mouse model of prion disease in which the 79A murine prion strain was introduced by an intraperitoneal route into BALB/cJ(Fms-EGFP/-) mice, which express enhanced green fluorescent protein under the control of the c-fms operon. Samples were taken at time points during disease progression, and histological analysis of the brain and transcriptional analysis of isolated microglia was carried out. The analysis of isolated microglia revealed a disease-specific, highly proinflammatory signature in addition to an upregulation of genes associated with metabolism and respiratory stress. This study strongly supports the growing recognition of the importance of microglia within the prion disease process and identifies the nature of the response through gene expression analysis of isolated microglia. IMPORTANCE Inflammation has been proposed as a major component of neurodegenerative diseases. We have examined the role of key contributors to this inflammatory process, microglia, the major resident immune cell population of the brain, in a murine prion disease model of chronic neurodegeneration. Our study demonstrates that genes upregulated throughout the disease process are expressed predominantly by microglia. A disease-specific, highly proinflammatory signature was observed in addition to an upregulation of genes associated with metabolism and respiratory stress. This study strongly supports the growing recognition of the important contribution of microglia to a chronic neurodegenerative disease process.
Collapse
|
24
|
Kim S, Han S, Lee YE, Jung WJ, Lee HS, Kim YS, Choi EK, Kim MY. Prion protein-deficient mice exhibit decreased CD4 T and LTi cell numbers and impaired spleen structure. Immunobiology 2016; 221:94-102. [DOI: 10.1016/j.imbio.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 11/16/2022]
|
25
|
Soto C, Satani N. The intricate mechanisms of neurodegeneration in prion diseases. Trends Mol Med 2015; 17:14-24. [PMID: 20889378 DOI: 10.1016/j.molmed.2010.09.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/27/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
Abstract
Prion diseases are a group of infectious neurodegenerative diseases with an entirely novel mechanism of transmission, involving a protein-only infectious agent that propagates the disease by transmitting protein conformational changes. The disease results from extensive and progressive brain degeneration. The molecular mechanisms involved in neurodegeneration are not entirely known but involve multiple processes operating simultaneously and synergistically in the brain, including spongiform degeneration, synaptic alterations, brain inflammation, neuronal death and the accumulation of protein aggregates. Here, we review the pathways implicated in prion-induced brain damage and put the pieces together into a possible model of neurodegeneration in prion disorders. A more comprehensive understanding of the molecular basis of brain degeneration is essential to develop a much needed therapy for these devastating diseases.
Collapse
Affiliation(s)
- Claudio Soto
- Mitchell Center for Alzheimer's disease and related Brain disorders, Department of Neurology, University of Texas Houston Medical School, 6431 Fannin St, Houston, TX 77030, USA
| | | |
Collapse
|
26
|
Norden DM, Muccigrosso MM, Godbout JP. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology 2014; 96:29-41. [PMID: 25445485 DOI: 10.1016/j.neuropharm.2014.10.028] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/26/2014] [Accepted: 10/30/2014] [Indexed: 12/14/2022]
Abstract
Glia of the central nervous system (CNS) help to maintain homeostasis in the brain and support efficient neuronal function. Microglia are innate immune cells of the brain that mediate responses to pathogens and injury. They have key roles in phagocytic clearing, surveying the local microenvironment and propagating inflammatory signals. An interruption in homeostasis induces a cascade of conserved adaptive responses in glia. This response involves biochemical, physiological and morphological changes and is associated with the production of cytokines and secondary mediators that influence synaptic plasticity, cognition and behavior. This reorganization of host priorities represents a beneficial response that is normally adaptive but may become maladaptive when the profile of microglia is compromised. For instance, microglia can develop a primed or pro-inflammatory mRNA, protein and morphological profile with aging, traumatic brain injury and neurodegenerative disease. As a result, primed microglia exhibit an exaggerated inflammatory response to secondary and sub-threshold challenges. Consequences of exaggerated inflammatory responses by microglia include the development of cognitive deficits, impaired synaptic plasticity and accelerated neurodegeneration. Moreover, impairments in regulatory systems in these circumstances may make microglia more resistant to negative feedback and important functions of glia can become compromised and dysfunctional. Overall, the purpose of this review is to discuss key concepts of microglial priming and immune-reactivity in the context of aging, traumatic CNS injury and neurodegenerative disease. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Diana M Norden
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH 43210, USA
| | - Megan M Muccigrosso
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH 43210, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, 333 W. 10th Ave, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr., Columbus, OH 43210, USA; Center for Brain and Spinal Cord Repair, The Ohio State University, 460 W. 12th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Grizenkova J, Akhtar S, Brandner S, Collinge J, Lloyd SE. Microglial Cx3cr1 knockout reduces prion disease incubation time in mice. BMC Neurosci 2014; 15:44. [PMID: 24655482 PMCID: PMC3998043 DOI: 10.1186/1471-2202-15-44] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/18/2014] [Indexed: 01/16/2023] Open
Abstract
Background Microglia are resident mononuclear phagocytes of the brain that become activated in response to insults including neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and prion disease. In the central nervous system the chemokine Cx3cl1 (Fractalkine) is expressed by neurons and its exclusive receptor Cx3cr1 is expressed solely on microglia. Cx3cl1/Cx3cr1 signalling is thought to maintain microglia in their resting state and disrupting this equilibrium may allow microglia to become activated. In prion disease, microglial proliferation has been suggested to contribute to overall disease progression, however, in different mouse models of neurodegeneration, loss of Cx3cr1 has been shown to either worsen or improve the phenotype depending on the paradigm. Results To investigate the role of Cx3cl1/Cx3cr1 signalling in prion disease we infected Cx3cr1 null mice with three different strains of prions. Following challenge with Chandler/RML, ME7 and MRC2 prion strains, Cx3cr1 knockout mice showed highly significant reductions in incubation time. No differences were seen in the pattern and localisation of activated microglia in the brain or in the mRNA expression levels of chemokines/cytokines (Cxcl10, Il-12b, Il-1b, Arg-1 and Cxc3l1). Conclusion Our data suggest a protective role for Cx3cl1/Cx3cr1 cross-talk in prion disease.
Collapse
Affiliation(s)
| | | | | | | | - Sarah E Lloyd
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
28
|
Song K, Na JY, Oh MH, Kim S, Kim YH, Park BY, Shin GW, Kim B, You M, Kwon J. Synthetic prion Peptide 106-126 resulted in an increase matrix metalloproteinases and inflammatory cytokines from rat astrocytes and microglial cells. Toxicol Res 2013; 28:5-9. [PMID: 24278583 PMCID: PMC3834397 DOI: 10.5487/tr.2012.28.1.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/12/2012] [Accepted: 03/21/2012] [Indexed: 12/22/2022] Open
Abstract
It has been shown that the accumulation of prion in the cytoplasm can result in neurodegenerative disorders. Synthetic prion peptide 106-126 (PrP) is a glycoprotein that is expressed predominantly by neurons and other cells, including glial cells. Prion-induced chronic neurodegeneration has a substantial inflammatory component, and an increase in the levels of matrix metalloproteinases (MMPs) may play an important role in neurodegenerative development and progression. However, the expression of MMPs in PrP induced rat astrocytes and microglia has not yet been compared. Thus, in this study, we examined the fluorescence intensity of CD11b positive microglia and Glial Fibrillary Acidic Protein (GFAP) positive astrocytes and found that the fluorescent intensity was increased following incubation with PrP at 24 hours in a dose-dependent manner. We also observed an increase in interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) protein expression, which are initial inflammatory cytokines, in both PrP induced astrocytes and microglia. Furthermore, an increase MMP-1, 3 and 11 expressions in PrP induced astrocytes and microglia was observed by real time PCR. Our results demonstrated PrP induced activation of astrocytes and microglia respectively, which resulted in an increase in inflammatory cytokines and MMPs expression. These results provide the insight into the different sensitivities of glial cells to PrP.
Collapse
Affiliation(s)
- Kibbeum Song
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju 561-156, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Meling S, Kvalheim OM, Arneberg R, Bårdsen K, Hjelle A, Ulvund MJ. Investigation of serum protein profiles in scrapie infected sheep by means of SELDI-TOF-MS and multivariate data analysis. BMC Res Notes 2013; 6:466. [PMID: 24229425 PMCID: PMC3843553 DOI: 10.1186/1756-0500-6-466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 01/18/2023] Open
Abstract
Background Classical scrapie in sheep is a fatal neurodegenerative disease associated with the conversion PrPC to PrPSc. Much is known about genetic susceptibility, uptake and dissemination of PrPSc in the body, but many aspects of prion diseases are still unknown. Different proteomic techniques have been used during the last decade to investigate differences in protein profiles between affected animals and healthy controls. We have investigated the protein profiles in serum of sheep with scrapie and healthy controls by SELDI-TOF-MS and LC-MS/MS. Latent Variable methods such as Principal Component Analysis, Partial Least Squares-Discriminant Analysis and Target Projection methods were used to describe the MS data. Results The serum proteomic profiles showed variable differences between the groups both throughout the incubation period and at the clinical end stage of scrapie. At the end stage, the target projection model separated the two groups with a sensitivity of 97.8%, and serum amyloid A was identified as one of the protein peaks that differed significantly between the groups. Conclusions At the clinical end stage of classical scrapie, ten SELDI peaks significantly discriminated the scrapie group from the healthy controls. During the non-clinical incubation period, individual SELDI peaks were differently expressed between the groups at different time points. Investigations of differences in -omic profiles can contribute to new insights into the underlying disease processes and pathways, and advance our understanding of prion diseases, but comparison and validation across laboratories is difficult and challenging.
Collapse
Affiliation(s)
- Siv Meling
- Department of Production Animal Clinical Sciences, Section for Small Ruminant Research, Norwegian School of Veterinary Science, Kyrkjevegen 332-334, N-4325, Sandnes, Norway.
| | | | | | | | | | | |
Collapse
|
30
|
Das Sarma J. Microglia-mediated neuroinflammation is an amplifier of virus-induced neuropathology. J Neurovirol 2013; 20:122-36. [PMID: 23979705 DOI: 10.1007/s13365-013-0188-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/14/2013] [Accepted: 07/03/2013] [Indexed: 02/07/2023]
Abstract
Microglia, the major resident immune cells in the central nervous system (CNS) are considered as the key cellular mediators of neuroinflammatory processes. In the past few years, microglial research has become a main focus in cellular neuroimmunology and neuroinflammation. Chronic/remitting neurological disease such as multiple sclerosis (MS) has long been considered an inflammatory autoimmune disease with the infiltration of peripheral myelin-specific T cells into the CNS. With the rapid advancement in the field of microglia and astrocytic neurobiology, the term neuroinflammation progressively started to denote chronic CNS cell-specific inflammation in MS. The direct glial responses in MS are different from conventional peripheral immune responses. This review attempts to summarize current findings of neuroinflammatory responses within the CNS by direct infection of neural cells by mouse hepatitis virus (MHV) and the mechanisms by which glial cell responses ultimately contribute to the neuropathology on demyelination. Microglia can be persistently infected by MHV. Microglial activation and phagocytosis are recognized to be critically important in the pathogenesis of demyelination. Emerging evidence for the pathogenic role of microglia and the activation of inflammatory pathways in these cells in MHV infection supports the concept that microglia induced neuroinflammation is an amplifier of virus-induced neuropathology.
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India,
| |
Collapse
|
31
|
Differential pathways for interleukin-1β production activated by chromogranin A and amyloid β in microglia. Neurobiol Aging 2013; 34:2715-25. [PMID: 23831373 DOI: 10.1016/j.neurobiolaging.2013.05.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/20/2013] [Accepted: 05/23/2013] [Indexed: 01/21/2023]
Abstract
Although chromogranin A (CGA) is frequently present in Alzheimer's disease (AD), senile plaques associated with microglial activation, little is known about basic difference between CGA and fibrillar amyloid-β (fAβ) as neuroinflammatory factors. Here we have compared the interleukin-1β (IL-1β) production pathways by CGA and fAβ in microglia. In cultured microglia, production of IL-1β was induced by CGA, but not by fAβ. CGA activated both nuclear factor-κB (NF-κB) and pro-caspase-1, whereas fAβ activated pro-caspase-1 only. For the activation of pro-caspase-1, both CGA and fAβ needed the enzymatic activity of cathepsin B (CatB), but only fAβ required cytosolic leakage of CatB and the NLRP3 inflammasome activation. In contrast, fAβ induced the IL-1β secretion from microglia isolated from the aged mouse brain. In AD brain, highly activated microglia, which showed intense immunoreactivity for CatB and IL-1β, surrounded CGA-positive plaques more frequently than Aβ-positive plaques. These observations indicate differential pathways for the microglial IL-1β production by CGA and fAβ, which may aid in better understanding of the pathological significance of neuroinflammation in AD.
Collapse
|
32
|
Perry VH, Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 2013; 35:601-12. [PMID: 23732506 PMCID: PMC3742955 DOI: 10.1007/s00281-013-0382-8] [Citation(s) in RCA: 437] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/13/2013] [Indexed: 01/05/2023]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play an important role in CNS homeostasis during development, adulthood and ageing. Their phenotype and function have been widely studied, but most studies have focused on their local interactions in the CNS. Microglia are derived from a particular developmental niche, are long-lived, locally replaced and form a significant part of the communication route between the peripheral immune system and the CNS; all these components of microglia biology contribute to maintaining homeostasis. Microglia function is tightly regulated by the CNS microenvironment, and increasing evidence suggests that disturbances, such as neurodegeneration and ageing, can have profound consequences for microglial phenotype and function. We describe the possible biological mechanisms underlying the altered threshold for microglial activation, also known as 'microglial priming', seen in CNS disease and ageing and consider how priming may contribute to turning immune-to-brain communication from a homeostatic pathway into a maladaptive response that contributes to symptoms and progression of diseases of the CNS.
Collapse
Affiliation(s)
- V Hugh Perry
- Centre for Biological Sciences, Southampton General Hospital, University of Southampton, Mail Point 840, LD80B, South Lab and Path Block, SO16 6YD Southampton, UK.
| | | |
Collapse
|
33
|
Immunotherapeutic approaches in prion disease: progress, challenges and potential directions. Ther Deliv 2013; 4:615-28. [DOI: 10.4155/tde.13.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Therapeutic trials utilizing animal models of prion disease have explored a variety of compounds and a number of approaches with varying success, including several immunotherapeutic strategies, such as passive immunization through the delivery of viruses carrying nucleic acid inserts encoding prion protein-specific immunoglobulin. Targeted, organ-specific cellular production of therapeutic proteins is a relatively unexplored approach in the treatment of neurodegeneration despite many successful experimental outcomes in animal models and human trials of other diseases of the CNS. Emphasizing studies utilizing mouse models of disease, this review outlines developments and limitations of immunological approaches to the treatment of prion diseases. In addition, the authors discuss the potential of an experimental therapeutic strategy, utilizing hybridoma cells injected directly into the CNS to establish long-term production of anti-prion antibodies in vivo within the organ associated with the greatest pathogenic change in prion disease, the brain.
Collapse
|
34
|
Anthony DC, Pitossi FJ. Special issue commentary: the changing face of inflammation in the brain. Mol Cell Neurosci 2012; 53:1-5. [PMID: 23147112 DOI: 10.1016/j.mcn.2012.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 12/24/2022] Open
Abstract
The study of inflammation in the brain has been extended to include a wide range of conditions, but there remains plenty of argument over semantics and the precise definition of what constitutes inflammation in these pathologies. In this special issue, we sought to highlight the diversity of what is considered to be inflammation in the brain, and we have accepted that the presence of microglia cells with altered morphology remains a useful starting point. However, it is clear that whatever is the molecular expression profile that accompanies an activated microglial cell, it is not static and it is influenced by factors both intrinsic and extrinsic to the brain. This article is part of a Special Issue entitled 'Neuroinflammation in neurodegeneration and neurodysfunction'.
Collapse
|
35
|
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases that occur in a wide variety of mammals. In humans, TSE diseases include kuru, sporadic and iatrogenic Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), and fatal familial insomnia (FFI). So far, TSE diseases occur only rarely in humans; however, scrapie is a widespread problem in sheep, and the recent epidemic of bovine spongiform encephalopathy (BSE or mad cow disease) has seriously affected the British cattle industry. Of special concern is the recent appearance of a new variant of CJD in humans that is suspected of being caused by infections from BSE-infected cattle products. In all these diseases, an abnormal form of a host protein, prion protein (PrP), is essential for the pathogenic process. The relationship of this protein to the transmissible agent is currently the subject of great interest and controversy and is the subject of this review.
Collapse
|
36
|
Hafner-Bratkovič I, Benčina M, Fitzgerald KA, Golenbock D, Jerala R. NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1β and neuronal toxicity. Cell Mol Life Sci 2012; 69:4215-28. [PMID: 22926439 DOI: 10.1007/s00018-012-1140-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/01/2012] [Accepted: 08/13/2012] [Indexed: 12/12/2022]
Abstract
Prion diseases are fatal transmissible neurodegenerative diseases, characterized by aggregation of the pathological form of prion protein, spongiform degeneration, and neuronal loss, and activation of astrocytes and microglia. Microglia can clear prion plaques, but on the other hand cause neuronal death via release of neurotoxic species. Elevated expression of the proinflammatory cytokine IL-1β has been observed in brains affected by several prion diseases, and IL-1R-deficiency significantly prolonged the onset of the neurodegeneration in mice. We show that microglial cells stimulated by prion protein (PrP) fibrils induced neuronal toxicity. Microglia and macrophages release IL-1β upon stimulation by PrP fibrils, which depends on the NLRP3 inflammasome. Activation of NLRP3 inflammasome by PrP fibrils requires depletion of intracellular K(+), and requires phagocytosis of PrP fibrils and consecutive lysosome destabilization. Among the well-defined molecular forms of PrP, the strongest NLRP3 activation was observed by fibrils, followed by aggregates, while neither native monomeric nor oligomeric PrP were able to activate the NLRP3 inflammasome. Our results together with previous studies on IL-1R-deficient mice suggest the IL-1 signaling pathway as the perspective target for the therapy of prion disease.
Collapse
Affiliation(s)
- Iva Hafner-Bratkovič
- Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
37
|
Sacquin A, Chaigneau T, Defaweux V, Adam M, Schneider B, Bruley Rosset M, Eloit M. Prolongation of prion disease-associated symptomatic phase relates to CD3+ T cell recruitment into the CNS in murine scrapie-infected mice. Brain Behav Immun 2012; 26:919-30. [PMID: 22522067 DOI: 10.1016/j.bbi.2012.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 02/04/2023] Open
Abstract
Prion diseases are caused by the transconformation of the host cellular prion protein PrP(c) into an infectious neurotoxic isoform called PrP(Sc). While vaccine-induced PrP-specific CD4(+) T cells and antibodies partially protect scrapie-infected mice from disease, the potential autoreactivity of CD8(+) cytotoxic T lymphocytes (CTLs) received little attention. Beneficial or pathogenic influence of PrP(c)-specific CTL was evaluated by stimulating a CD8(+) T-cell-only response against PrP in scrapie-infected C57BL/6 mice. To circumvent immune tolerance to PrP, five PrP-derived nonamer peptides identified using prediction algorithms were anchored-optimized to improve binding affinity for H-2D(b) and immunogenicity (NP-peptides). All of the NP-peptides elicited a significant number of IFNγ secreting CD8(+) T cells that better recognized the NP-peptides than the natives; three of them induced T cells that were lytic in vivo for NP-peptide-loaded target cells. Peptides 168 and 192 were naturally processed and presented by the 1C11 neuronal cell line. Minigenes encoding immunogenic NP-peptides inserted into adenovirus (rAds) vectors enhanced the specific CD8(+) T-cell responses. Immunization with rAd encoding 168NP before scrapie inoculation significantly prolonged the survival of infected mice. This effect was attributable to a significant lengthening of the symptomatic phase and was associated with enhanced CD3(+) T cell recruitment to the CNS. However, immunization with Ad168NP in scrapie-incubating mice induced IFNγ-secreting CD8(+) T cells that were not cytolytic in vivo and did not influence disease progression nor infiltrated the brain. In conclusion, the data suggest that vaccine-induced PrP-specific CD8(+) T cells interact with prions into the CNS during the clinical phase of the disease.
Collapse
Affiliation(s)
- Antoine Sacquin
- UMR-S 938, Hôpital St-Antoine, Bât. R. Kourilsky, 184 rue du Fg St-Antoine, 75012 Paris, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Gossner A, Roupaka S, Foster J, Hunter N, Hopkins J. Transcriptional profiling of peripheral lymphoid tissue reveals genes and networks linked to SSBP/1 scrapie pathology in sheep. Vet Microbiol 2011; 153:218-28. [PMID: 21684093 DOI: 10.1016/j.vetmic.2011.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/10/2011] [Accepted: 05/16/2011] [Indexed: 12/30/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are slow and progressive neurodegenerative diseases of humans and animals. The major target organ for all TSEs is the brain but some TSE agents are associated with prior accumulation within the peripheral lymphoid system. Many studies have examined the effects of scrapie infection on the expression of central nervous system (CNS) genes, but this study examines the progression of scrapie pathology in the peripheral lymphoid system and how scrapie infection affects the transcriptome of the lymph nodes and spleen. Infection of sheep with SSBP/1 scrapie resulted in PrP(Sc) deposition in the draining prescapular lymph node (PSLN) by 25 days post infection (dpi) in VRQ/VRQ genotype sheep and 75 dpi in tonsils and spleen. Progression of PrP(Sc) deposition in VRQ/ARR animals was 25 dpi later in the PSLN and 250 dpi later in spleen. Microarray analysis of 75 dpi tissues from VRQ/VRQ sheep identified 52 genes in PSLN and 37 genes in spleen cells that showed significant difference (P ≤ 0.05) between scrapie-infected and mock-infected animals. Transcriptional pathway analysis highlighted immunological disease, cell death and neurological disease as the biological pathways associated with scrapie pathogenesis in the peripheral lymphoid system. PrP(Sc) accumulation of lymphoid tissue resulted in the repression of genes linked to inflammation and oxidative stress, and the up-regulation of genes related to apoptosis.
Collapse
Affiliation(s)
- Anton Gossner
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | | | | | | | | |
Collapse
|
39
|
Avrahami D, Gabizon R. Age-related alterations affect the susceptibility of mice to prion infection. Neurobiol Aging 2011; 32:2006-15. [DOI: 10.1016/j.neurobiolaging.2009.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 12/10/2009] [Accepted: 12/21/2009] [Indexed: 12/29/2022]
|
40
|
Relaño-Ginés A, Lehmann S, Bencsik A, Herva ME, Torres JM, Crozet CA. Stem Cell Therapy Extends Incubation and Survival Time in Prion-Infected Mice in a Time Window–Dependant Manner. J Infect Dis 2011; 204:1038-45. [DOI: 10.1093/infdis/jir484] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Cunningham C. Systemic inflammation and delirium: important co-factors in the progression of dementia. Biochem Soc Trans 2011; 39:945-53. [PMID: 21787328 PMCID: PMC4157218 DOI: 10.1042/bst0390945] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is widely accepted that inflammation plays some role in the progression of chronic neurodegenerative diseases such as AD (Alzheimer's disease), but its precise role remains elusive. It has been known for many years that systemic inflammatory insults can signal to the brain to induce changes in CNS (central nervous system) function, typically grouped under the syndrome of sickness behaviour. These changes are mediated via systemic and CNS cytokine and prostaglandin synthesis. When patients with dementia suffer similar systemic inflammatory insults, delirium is a frequent consequence. This profound and acute exacerbation of cognitive dysfunction is associated with poor prognosis: accelerating cognitive decline and shortening time to permanent institutionalization and death. Therefore a better understanding of how delirium occurs during dementia and how these episodes impact on existing neurodegeneration are now important priorities. The current review summarizes the relationship between dementia, systemic inflammation and episodes of delirium and addresses the basic scientific approaches currently being pursued with respect to understanding acute cognitive dysfunction during aging and dementia. In addition, despite there being limited studies on this subject, it is becoming increasingly clear that infections and other systemic inflammatory conditions do increase the risk of AD and accelerate the progression of established dementia. These data suggest that systemic inflammation is a major contributor to the progression of dementia and constitutes an important clinical target.
Collapse
Affiliation(s)
- Colm Cunningham
- School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Republic of Ireland.
| |
Collapse
|
42
|
Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:2980-3018. [PMID: 21845170 PMCID: PMC3155341 DOI: 10.3390/ijerph8072980] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/05/2011] [Accepted: 07/13/2011] [Indexed: 02/07/2023]
Abstract
Microglia are resident cells of the brain involved in regulatory processes critical for development, maintenance of the neural environment, injury and repair. They belong to the monocytic-macrophage lineage and serve as brain immune cells to orchestrate innate immune responses; however, they are distinct from other tissue macrophages due to their relatively quiescent phenotype and tight regulation by the CNS microenvironment. Microglia actively survey the surrounding parenchyma and respond rapidly to changes such that any disruption to neural architecture or function can contribute to the loss in regulation of the microglia phenotype. In many models of neurodegeneration and neurotoxicity, early events of synaptic degeneration and neuronal loss are accompanied by an inflammatory response including activation of microglia, perivascular monocytes, and recruitment of leukocytes. In culture, microglia have been shown to be capable of releasing several potentially cytotoxic substances, such as reactive oxygen intermediates, nitric oxide, proteases, arachidonic acid derivatives, excitatory amino acids, and cytokines; however, they also produce various neurotrophic factors and quench damage from free radicals and excitotoxins. As the primary source for pro-inflammatory cytokines, microglia are implicated as pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. Neuroinflammation should be considered as a balanced network of processes whereby subtle modifications can shift the cells toward disparate outcomes. For any evaluation of neuroinflammation and microglial responses, within the framework of neurotoxicity or degeneration, one key question in determining the consequence of neuroinflammation is whether the response is an initiating event or the consequence of tissue damage. As examples of environmental exposure-related neuroinflammation in the literature, we provide an evaluation of data on manganese and diesel exhaust particles.
Collapse
|
43
|
Borner R, Bento-Torres J, Souza DRV, Sadala DB, Trevia N, Farias JA, Lins N, Passos A, Quintairos A, Diniz JA, Perry VH, Vasconcelos PF, Cunningham C, Picanço-Diniz CW. Early behavioral changes and quantitative analysis of neuropathological features in murine prion disease: stereological analysis in the albino Swiss mice model. Prion 2011; 5:215-27. [PMID: 21862877 DOI: 10.4161/pri.5.3.16936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Behavioral and neuropathological changes have been widely investigated in murine prion disease but stereological based unbiased estimates of key neuropathological features have not been carried out. After injections of ME7 infected (ME7) or normal brain homogenates (NBH) into dorsal CA1 of albino Swiss mice and C57BL6, we assessed behavioral changes on hippocampal-dependent tasks. We also estimated by optical fractionator at 15 and 18 weeks post-injections (w.p.i.) the total number of neurons, reactive astrocytes, activated microglia and perineuronal nets (PN) in the polymorphic layer of dentate gyrus (PolDG), CA1 and septum in albino Swiss mice. On average, early behavioral changes in albino Swiss mice start four weeks later than in C57BL6. Cluster and discriminant analysis of behavioral data in albino Swiss mice revealed that four of nine subjects start to change their behavior at 12 w.p.i. and reach terminal stage at 22 w.p.i and the remaining subjects start at 22 w.p.i. and reach terminal stage at 26 w.p.i. Biotinylated dextran-amine BDA-tracer experiments in mossy fiber pathway confirmed axonal degeneration, and stereological data showed that early astrocytosis, microgliosis and reduction in the perineuronal nets are independent of a change in the number of neuronal cell bodies. Statistical analysis revealed that the septal region had greater levels of neuroinflammation and extracellular matrix damage than CA1. This stereological and multivariate analysis at early stages of disease in an outbred model of prion disease provided new insights connecting behavioral changes and neuroinflammation and seems to be important to understand the mechanisms of prion disease progression.
Collapse
Affiliation(s)
- Roseane Borner
- Laboratory of Neurodegeneration and Infection at the University Hospital João de Barros Barreto, Federal University of Pará, Belém, Pará, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lunnon K, Teeling JL, Tutt AL, Cragg MS, Glennie MJ, Perry VH. Systemic inflammation modulates Fc receptor expression on microglia during chronic neurodegeneration. THE JOURNAL OF IMMUNOLOGY 2011; 186:7215-24. [PMID: 21572034 DOI: 10.4049/jimmunol.0903833] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic neurodegeneration is a major worldwide health problem, and it has been suggested that systemic inflammation can accelerate the onset and progression of clinical symptoms. A possible explanation is that systemic inflammation "switches" the phenotype of microglia from a relatively benign to a highly aggressive and tissue-damaging phenotype. The current study investigated the molecular mechanism underlying this microglia phenotype "switching." We show in mice with chronic neurodegeneration (ME7 prion model) that there is increased expression of receptors that have a key role in macrophage activation and associated signaling pathways, including TREM-2, Siglec-F, CD200R, and FcγRs. Systemic inflammation induced by LPS further increased protein levels of the activating FcγRIII and FcγRIV, but not of other microglial receptors, including the inhibitory FcγRII. In addition to these changes in receptor expression, IgG levels in the brain parenchyma were increased during chronic neurodegeneration, and these IgG levels further increased after systemic inflammation. γ-Chain-deficient mice show modified proinflammatory cytokine expression in the brain after systemic inflammation. We conclude that systemic inflammation during chronic neurodegeneration increases the expression levels of activating FcγR on microglia and thereby lowers the signaling threshold for Ab-mediated cell activation. At the same time, IgG influx into the brain could provide a cross-linking ligand resulting in excessive microglia activation that is detrimental to neurons already under threat by misfolded protein.
Collapse
Affiliation(s)
- Katie Lunnon
- Central Nervous System Inflammation Group, School of Biological Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | | | | | | | | | | |
Collapse
|
45
|
Hughes MM, Field RH, Perry VH, Murray CL, Cunningham C. Microglia in the degenerating brain are capable of phagocytosis of beads and of apoptotic cells, but do not efficiently remove PrPSc, even upon LPS stimulation. Glia 2011; 58:2017-30. [PMID: 20878768 PMCID: PMC3498730 DOI: 10.1002/glia.21070] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the phagocytic machinery available to microglia the aberrant amyloid proteins produced during Alzheimer's and prion disease, amyloid-β and PrP(Sc), are inefficiently cleared. We have shown that microglia in the ME7 model of prion disease show morphological evidence of activation, synthesize low levels of pro-inflammatory cytokines and are primed to produce exaggerated responses to subsequent inflammatory challenges. Whether these microglia engage in significant phagocytic activity in the disease per se, or upon subsequent inflammatory challenge is not clear. In the present study we show transcriptional activation of a large number of scavenger receptors (SRs), matrix metalloproteinases (MMPs), oxidative enzymes, and cathepsins in ME7 animals. Hippocampally-injected inert latex beads (6 μm) are efficiently phagocytosed by microglia of ME7 prion-diseased animals, but not by microglia in normal animals. Stimulation of ME7 animals with systemic bacterial endotoxin (lipopolysaccharide, LPS) induced further increases in SR-A2, MMP3, and urokinase plasminogen activator receptor (uPAR) but decreased, or did not alter, transcription of most phagocytosis-related genes examined and did not enhance clearance of deposited PrP(Sc). Furthermore, intracerebral injection with LPS (0.5 μg) induced marked microglial production of IL-1β, robust cellular infiltration and marked apoptosis but also did not induce further clearance of PrP(Sc). These data indicate that microglia in the prion-diseased brain are capable of phagocytosis per se, but show limited efficacy in removing PrP(Sc) even upon marked escalation of CNS inflammation. Furthermore, microglia/macrophages remain IL-1β-negative during phagocytosis of apoptotic cells. The data demonstrate that phagocytic activity and pro-inflammatory microglial phenotype do not necessarily correlate.
Collapse
Affiliation(s)
- Martina M Hughes
- Trinity College Institute of Neuroscience and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Republic of Ireland
| | | | | | | | | |
Collapse
|
46
|
The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective. ASN Neuro 2010; 2:e00047. [PMID: 20967131 PMCID: PMC2954441 DOI: 10.1042/an20100024] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/17/2010] [Accepted: 09/22/2010] [Indexed: 11/17/2022] Open
Abstract
Chronic neurodegenerative diseases of the CNS (central nervous system) are characterized by the loss of neurons. There is, however, growing evidence to show that an early stage of this process involves degeneration of presynaptic terminals prior to the loss of the cell body. Synaptic plasticity in CNS pathology has been associated with microglia and the phenomenon of synaptic stripping. We review here the evidence for the involvement of microglia in synaptic stripping and synapse degeneration and we conclude that this is a case of guilt by association. In disease models of chronic neurodegeneration, there is no evidence that microglia play an active role in either synaptic stripping or synapse degeneration, but the degeneration of the synapse and the envelopment of a degenerating terminal appears to be a neuron autonomous event. We highlight here some of the gaps in our understanding of synapse degeneration in chronic neurodegenerative disease.
Collapse
Key Words
- ALS, amyotrophic lateral sclerosis
- CNS, central nervous system
- CSP, cysteine string protein
- ER, endoplasmic reticulum
- LTP, long-term potentiation
- NAA, N-acetylaspartate
- PNS, peripheral nervous system
- PrPSc, abnormal disease-specific conformation of PrP
- VAMP-2, vesicle-associated membrane protein-2
- chronic neurodegeneration
- degeneration
- hAPP, human amyloid precursor protein
- microglia
- nNOS, neuronal-nitric oxide synthase
- synapse
- synaptic stripping
Collapse
|
47
|
Perry VH. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol 2010; 120:277-86. [PMID: 20644946 DOI: 10.1007/s00401-010-0722-x] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 12/19/2022]
Abstract
Systemic infection or inflammation gives rise to signals that communicate with the brain and leads to changes in metabolism and behaviour collectively known as sickness behaviour. In healthy young individuals, these changes are normally transient with no long-term consequences. The microglia are involved in the immune to brain signalling pathways. In the aged or diseased brain, the microglia have a primed phenotype as a consequence of changes in their local microenvironment. Systemic inflammation impacts on these primed microglia and switches them from a relatively benign to an aggressive phenotype with the enhanced synthesis of pro-inflammatory mediators. Recent evidence suggests that systemic inflammation contributes to the exacerbation of acute symptoms of chronic neurodegenerative disease and may accelerate disease progression. The normal homeostatic role that microglia play in signalling about systemic infections and inflammation becomes maladaptive in the aged and diseased brain and this offers a route to therapeutic intervention. Prompt treatment of systemic inflammation or blockade of signalling pathways from the periphery to the brain may help to slow neurodegeneration and improve the quality of life for individuals suffering from chronic neurodegenerative disease.
Collapse
Affiliation(s)
- V Hugh Perry
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
48
|
Anti-PrP antibodies detected at terminal stage of prion-affected mouse. Cell Immunol 2010; 263:212-8. [PMID: 20417929 DOI: 10.1016/j.cellimm.2010.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/23/2010] [Accepted: 03/30/2010] [Indexed: 11/20/2022]
Abstract
The causative agent of prion diseases is the pathological isoform (PrPSc) of the host-encoded cellular prion protein (PrPC). PrPSc has an identical amino acid sequence to PrPC; thus, it has been assumed that an immune response against PrPSc could not be found in prion-affected animals. In this study, we found the anti-prion protein (PrP) antibody at the terminal stage of mouse scrapie. Several sera from mice in the terminal stage of scrapie reacted to the recombinant mouse PrP (rMPrP) molecules and brain homogenates of mouse prion diseases. These results indicate that mouse could recognize PrPC or PrPSc as antigens by the host immune system. Furthermore, immunization with rMPrP generates high titers of anti-PrP antibodies in wild-type mice. Some anti-PrP antibodies immunized with rMPrP prevent PrPSc replication in vitro. The mouse sera from terminal prion disease have several wide epitopes, although mouse sera immunized with rMPrP possess narrow epitopes.
Collapse
|
49
|
Cunningham O, Campion S, Perry VH, Murray C, Sidenius N, Docagne F, Cunningham C. Microglia and the urokinase plasminogen activator receptor/uPA system in innate brain inflammation. Glia 2010; 57:1802-14. [PMID: 19459212 PMCID: PMC2816357 DOI: 10.1002/glia.20892] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The urokinase plasminogen activator (uPA) receptor (uPAR) is a GPI-linked cell surface protein that facilitates focused plasmin proteolytic activity at the cell surface. uPAR has been detected in macrophages infiltrating the central nervous system (CNS) and soluble uPAR has been detected in the cerebrospinal fluid during a number of CNS pathologies. However, its expression by resident microglial cells in vivo remains uncertain. In this work, we aimed to elucidate the murine CNS expression of uPAR and uPA as well as that of tissue plasminogen activator and plasminogen activator inhibitor 1 (PAI-1) during insults generating distinct and well-characterized inflammatory responses; acute intracerebral lipopolysaccharide (LPS), acute kainate-induced neurodegeneration, and chronic neurodegeneration induced by prion disease inoculation. All three insults induced marked expression of uPAR at both mRNA and protein level compared to controls (naïve, saline, or control inoculum-injected). uPAR expression was microglial in all cases. Conversely, uPA transcription and activity was only markedly increased during chronic neurodegeneration. Dissociation of uPA and uPAR levels in acute challenges is suggestive of additional proteolysis-independent roles for uPAR. PAI-1 was most highly expressed upon LPS challenge, whereas tissue plasminogen activator mRNA was constitutively present and less responsive to all insults studied. These data are novel and suggest much wider involvement of the uPAR/uPA system in CNS function and pathology than previously supposed.
Collapse
|
50
|
Mathieu P, Battista D, Depino A, Roca V, Graciarena M, Pitossi F. The more you have, the less you get: the functional role of inflammation on neuronal differentiation of endogenous and transplanted neural stem cells in the adult brain. J Neurochem 2009; 112:1368-85. [PMID: 20028453 DOI: 10.1111/j.1471-4159.2009.06548.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The differentiation of neural stem cells toward a neuronal phenotype is determined by the extracellular and intracellular factors that form the neurogenic niche. In this review, we discuss the available data on the functional role of inflammation and in particular, pro- and anti-inflammatory cytokines, on neuronal differentiation from endogenous and transplanted neural stem/progenitor cells. In addition, we discuss the role of microglial cell activation on these processes and the fact that microglial cell activation is not univocally associated with a pro-inflammatory milieu. We conclude that brain cytokines could be regarded as part of the endogenous neurogenic niche. In addition, we propose that accumulating evidence suggests that pro-inflammatory cytokines have a negative effect on neuronal differentiation, while anti-inflammatory cytokines exert an opposite effect. The clarification of the functional role of cytokines on neuronal differentiation will be relevant not only to better understand adult neurogenesis, but also to envisage complementary treatments to modulate cytokine action that could increase the therapeutic benefit of future progenitor/stem cell-based therapies.
Collapse
Affiliation(s)
- Patricia Mathieu
- Institute Leloir Foundation-IIBBA-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|