1
|
Harboul K, Chtibi H, Amakdouf H, Hammani K, El-Karkouri A. Bioreduction of hexavalent chromium and removal mechanisms using Staphylococcus succinus. World J Microbiol Biotechnol 2025; 41:147. [PMID: 40289046 DOI: 10.1007/s11274-025-04347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/30/2025] [Indexed: 04/29/2025]
Abstract
The microbial reduction of hexavalent chromium (Cr(VI)), particularly by bacteria, has been extensively studied, revealing varying removal mechanisms among different strains. This investigation identified a novel bacterial strain, Staphylococcus succinus subsp. Succinus AMG-D1, which was isolated from mining soil and Cr(VI)-resistant. This strain demonstrated the capability to completely remove a high concentration of 200 mg/L Cr(VI) within 120 h at pH 7 and 35 °C. Moreover, it effectively reduced repeated contamination of 100 mg/L Cr(VI). Scanning electron microscopy analysis confirmed the strain's high resistance to Cr(VI), coupled with the secretion of a viscous material, possibly metal-adsorbing exopolysaccharides. Energy dispersive X-ray peaks analysis revealed characteristic chromium peaks, indicating the presence of adsorbed Cr(VI) and/or precipitated species of reduced chromium (Cr(III)). Further investigations into Cr(VI) removal mechanisms have revealed a detoxification process involving adsorption, accumulation, and enzymatically mediated biological reduction. This reduction predominantly occurs through constitutive cytoplasmic proteins. Moreover, a protein with a molecular weight of approximately 30 kDa was identified on an SDS-PAGE gel, potentially responsible for Cr(VI) reduction. The remarkable resistance and substantial reduction capabilities of Staphylococcus succinus position it as a promising strain for bioremediation applications.
Collapse
Affiliation(s)
- Kaoutar Harboul
- Natural Resources and Environment Laboratory, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, 30050, Fez, Morocco
| | - Houda Chtibi
- Natural Resources and Environment Laboratory, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, 30050, Fez, Morocco
| | - Halima Amakdouf
- Biotechnology, Environment, Agri-Food and Health Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, 30050, Fez, Morocco
| | - Khalil Hammani
- Natural Resources and Environment Laboratory, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, 30050, Fez, Morocco
| | - Abdenbi El-Karkouri
- Biotechnology, Environment, Agri-Food and Health Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, 30050, Fez, Morocco.
| |
Collapse
|
2
|
S S, R.V H. Myco-remediation of chromium heavy metal from industrial wastewater: A review. Toxicol Rep 2024; 13:101740. [PMID: 39399094 PMCID: PMC11470465 DOI: 10.1016/j.toxrep.2024.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Chromium a heavy metal present in the effluent of the industries causes accumulation of toxicity in water. Chromium commonly has Cr (III) and Cr (VI), two oxidation states, in which hexavalent form causes more health issues to human, other species and environment. The increased anthropogenic effects, especially tannery industrial effluent contributes the higher percentage of chromium accumulation. Removal of heavy metal can be attributed to many aspects, conventionally the physio-chemical methods which superseded by biological means of remediation. Chromium resistant microbes can be used to remove metal ions of chromium from the effluent, as this can be considered an eco-friendly approach. The microbial accession of nanoparticles synthesis is being focused, due to its accuracy and specificity in results. Mycoremediation grabbed attention as fungal absorbance efficiency and the surface-mechanism of heavy metal ions correlates each other. Current study in-depth indulges the base to core mechanism of mycoremediation of chromium ions from different effluents. Fungal-assisted mechanism of chromium ions have insists to be fewer, which may gain attention by enhancing the methodology of removal of chromium ions. This study focuses on improvement of fungal strain and pave-way, to improvise the study with immobilization technique which renders usage of the adsorbents redundant usage and applications, substantially with the low-cost polymeric material alginate is given more importance for immobilization technique. Alginate apart from low-cost adsorbent, is an excellent support for fungal producing nanoparticles which would provide wide-cast and an extraordinary adsorbent material.
Collapse
Affiliation(s)
- Shruthi. S
- Department of Biotechnology. Rajalakshmi Engineering College, Thandalam, Chennai 602105, India
| | - Hemavathy. R.V
- Department of Biotechnology. Rajalakshmi Engineering College, Thandalam, Chennai 602105, India
| |
Collapse
|
3
|
Liu ZS, Wang KH, Han Q, Jiang CY, Liu SJ, Li DF. Sphingobium sp. SJ10-10 encodes a not-yet-reported chromate reductase and the classical Rieske dioxygenases to simultaneously degrade PAH and reduce chromate. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134889. [PMID: 38878436 DOI: 10.1016/j.jhazmat.2024.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Both polycyclic aromatic hydrocarbons (PAHs) and heavy metals persist in the environment and are toxic to organisms. Their co-occurrence makes any of them difficult to remove during bioremediation and poses challenges to environmental management and public health. Microorganisms capable of effectively degrading PAHs and detoxifying heavy metals concurrently are required to improve the bioremediation process. In this study, we isolated a new strain, Sphingobium sp. SJ10-10, from an abandoned coking plant and demonstrated its capability to simultaneously degrade 92.6 % of 75 mg/L phenanthrene and reduce 90 % of 3.5 mg/L hexavalent chromium [Cr(VI)] within 1.5 days. Strain SJ10-10 encodes Rieske non-heme iron ring-hydroxylating oxygenases (RHOs) to initiate PAH degradation. Additionally, a not-yet-reported protein referred to as Sphingobium chromate reductase (SchR), with low sequence identity to known chromate reductases, was identified to reduce Cr(VI). SchR is distributed across different genera and can be classified into two classes: one from Sphingobium members and the other from non-Sphingobium species. The widespread presence of SchR in those RHO-containing Sphingobium members suggests that they are excellent candidates for bioremediation. In summary, our study demonstrates the simultaneous removal of PAHs and Cr(VI) by strain SJ10-10 and provides valuable insights into microbial strategies for managing complex pollutant mixtures.
Collapse
Affiliation(s)
- Ze-Shen Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke-Huan Wang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qun Han
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - De-Feng Li
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Mishra S, Dubey P, Naseem M, Rishi S, Patel A, Srivastava PK. A kinetic modelling approach to explore mechanism of Cr(VI) detoxification by a novel strain Pseudochrobactrum saccharolyticum NBRI-CRB 13 using response surface methodology. World J Microbiol Biotechnol 2024; 40:288. [PMID: 39101971 DOI: 10.1007/s11274-024-04099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
A novel Pseudochrobactrum saccharolyticum strain NBRI-CRB 13, isolated from tannery sludge, was studied to grow up to 500 mgL-1 of Cr(VI) and showed Cr(VI) detoxification by reducing > 90% of Cr(VI) at different concentrations 25, 50 and 100 mgL-1. Kinetic studies showed that first-order models were fitted (R2 = 0.998) to the time-dependent Cr(VI) reduction with degradation rate constant (k) (1.03-0.429 h-1). Cr(VI) detoxification was primarily related to the extracellular fraction of microbial cells, which showed a maximum extracellular reductase enzyme activity led to 94.6% reduction of Cr(VI). Moreover, the strain showed maximum extracellular polymeric substances (EPS) production at 100 mgL-1 Cr(VI), which is presumably the reason for Cr(VI) removal as EPS serves as the metal binding site for Cr(VI) ions. Further, an optimization study using Box-Behnken design was conducted considering parameters viz., pH, temperature, and initial concentration of Cr(VI). The maximum percent reduction of Cr(VI) was obtained at pH 6.5, temperature 30 °C with 62.5 mgL-1Cr(VI) concentration. Further, the Cr(VI) reduction and adsorption ability of strain P. saccharolyticum NBRI-CRB13 were confirmed by SEM-EDS, FTIR, and XRD analyses. FTIR analysis confirmed the presence of functional groups (-OH, -COOH, -PO4) on bacterial cell walls, which were more likely to interact with positively charged chromium ions. The study elucidated the reduction of Cr(VI) by the novel bacterium within 24 h using the response surface methodology approach and advocated its application in real-time situations.
Collapse
Affiliation(s)
- Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Priya Dubey
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
- Department of Biosciences, Integral University, Lucknow, India
| | - Mariya Naseem
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Saloni Rishi
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Anju Patel
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Pankaj Kumar Srivastava
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India.
| |
Collapse
|
5
|
Saikat TA, Sayem Khan MA, Islam MS, Tasnim Z, Ahmed S. Characterization and genome mining of Bacillus subtilis BDSA1 isolated from river water in Bangladesh: A promising bacterium with diverse biotechnological applications. Heliyon 2024; 10:e34369. [PMID: 39114027 PMCID: PMC11305188 DOI: 10.1016/j.heliyon.2024.e34369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
The metabolic versatility of Bacillus subtilis makes it useful for a wide range of applications in biotechnology, from bioremediation to industrially important metabolite production. Understanding the molecular attributes of the biocontrol characteristics of B. subtilis is necessary for its tailored use in the environment and industry. Therefore, the present study aimed to conduct phenotypic characterization and whole genome analysis of the B. subtilis BDSA1 isolated from polluted river water from Dhaka, Bangladesh to explore its biotechnological potential. The chromium reduction capacity at 100 ppm Cr (VI) showed that B. subtilis BDSA1 reduced 40 % of Cr (VI) within 24hrs at 37 °C. Exposure of this bacterium to 200 ppm cadmium resulted in 43 % adsorption following one week of incubation at 37 °C. Molecular detection of chrA and czcC gene confirmed chromium and cadmium resistance characteristics of BDSA1. The size of the genome of the B. subtilis BDSA1 was 4.2 Mb with 43.4 % GC content. Genome annotation detected the presence of numerous genes involved in the degradation of xenobiotics, resistance to abiotic stress, production of lytic enzymes, siderophore formation, and plant growth promotion. The assembled genome also carried chromium, cadmium, copper, and arsenic resistance-related genes, notably cadA, czcD, czrA, arsB etc. Genome mining revealed six biosynthetic gene clusters for bacillaene, bacillibacin, bacilysin, subtilosin, fengycin and surfactin. Importantly, BDSA1 was predicted to be non-pathogenic to humans and had only two acquired antimicrobial resistance genes. The pan-genome analysis showed the openness of the B. subtilis pan-genome. Our findings suggested that B. subtilis BDSA1 might be a promising candidate for diverse biotechnological uses.
Collapse
Affiliation(s)
| | - Md Abu Sayem Khan
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Md Saiful Islam
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Zarin Tasnim
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Sangita Ahmed
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
6
|
Wang X, Zhang Y, Sun X, Jia X, Liu Y, Xiao X, Gao H, Li L. Efficient removal of hexavalent chromium from water by Bacillus sp. Y2-7 with production of extracellular polymeric substances. ENVIRONMENTAL TECHNOLOGY 2024; 45:2698-2708. [PMID: 36847602 DOI: 10.1080/09593330.2023.2185817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Bioremediation is an environmentally friendly technology for the treatment of chromium-contaminated sites. Here, a hexavalent chromium [Cr(VI)]-resistant strain was isolated from oil-contaminated soil and designated as Bacillus sp. Y2-7 based on 16S rDNA sequence characterization. The effects of various factors including inoculation dose, pH value, glucose concentration, and temperature on Cr(VI) removal rates were then evaluated. Based on the response surface methodology, optimal Cr(VI) removal efficiency (above 90%) could be achieved at an initial Cr(VI) concentration of 155.0 mg·L-1, glucose concentration of 11.479 g·L-1, and pH of 7.1. The potential removal mechanisms of Cr(VI) by strain Y2-7 were also supposed. The contents of polysaccharide and protein in extracellular polymer (EPS) of strain Y2-7 decreased slowly after cultured with Cr(VI) of 15 mg·L-1 from 1 to 7 days. We thus inferred that EPS bonded with Cr(VI) and underwent morphological changes in water. Molecular operating environment (MOE) analysis suggested that macromolecular protein complexes in Bacillus sp. Y2-7 and hexavalent chromium could establish hydrogen bonds. Collectively, our findings indicate that Bacillus sp. Y2-7 is an excellent bacterial candidate for chromium bioremediation.
Collapse
Affiliation(s)
- Xuehan Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Ying Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Xiaojie Sun
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Xianchao Jia
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Yin Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Xinfeng Xiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Hongge Gao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Lin Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
7
|
Chi Z, Zhang P, Hou L, Li H, Liang S, Song A. Effects of chromate on nitrogen removal and microbial community in two-stage vertical-flow constructed wetlands. CHEMOSPHERE 2023; 345:140556. [PMID: 37890796 DOI: 10.1016/j.chemosphere.2023.140556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Nitrogen and chromium (Cr(VI)) pollution in waterbodies pose great threats to human health, and a cost-effective alternative with Cr(VI) and nitrogen simultaneous removal is still needed. This study investigated the influence of Cr(VI) on nitrogen removal in the two-stage vertical-flow constructed wetlands (TS-VFCWs) along with iron ore and woodchip, and explored relationship between Cr(VI) and nitrogen removal. The results showed that efficient Cr(VI) and nitrogen removal were simultaneously achieved in TS-VFCWs together with iron-ore and woodchip under 2 mg/L-Cr(VI), whereas 10 mg/L-Cr(VI) gave significant and recoverable inhibition of nitrogen removal. Cr(VI) supplementation promoted the beneficiation of Cr(VI)-reducing/resistant bacteria IMCC26207 and Bryobacter on iron-ore. Woodchip enriched Cr(VI)-reducing bacteria Streptomyces and Thiobacillus. XRD and XPS showed that abundant bound-Cr existed in the surface of iron ore and woodchip, and Cr(III) precipitation/oxide was the major product. High abundances of nitrifying and autotrophic/heterotrophic denitrifying bacteria ensured good nitrogen removal at Cr(VI) stress.
Collapse
Affiliation(s)
- Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Pengdong Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Lining Hou
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China.
| | - Shen Liang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China
| | - Aiwen Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, PR China
| |
Collapse
|
8
|
Kelany MS, El-Sawy MA, El-Gendy AR, Beltagy EA. Bioremediation of industrial wastewater heavy metals using solo and consortium Enterobacter spp. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1357. [PMID: 37870616 PMCID: PMC10593623 DOI: 10.1007/s10661-023-11951-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Heavy metals are considered the most common pollutants in industrial wastewater areas. Out of thirty bacterial isolates, only 3 isolates sighted the highest metal resistance activity for Zn+2, Fe+2, Pb+2, Co+2, Mn+2, Ni+2, and Cd+2. The biochemical and DNA homology identification with similarities 99.58%, 99.79%, and 99.86% of those isolates was identified and deposited in WDCM, respectively, as Enterobacter kobei OM144907 SCUF0000311, Enterobacter cloacae OM180597 SCUF0000312, and Enterobacter hormaechei OM181067 SCUF0000313. The minimum tolerance activity (MIC) of heavy metal concentrations against E. kobei and E. cloacae was 25, 15, and 15 mmol/l for Ni+2, Fe+2, and Mn+2, respectively, and 10 mmol/l for Zn+2, Pb+2, Co+2, and Cd+2, while against E. hormaechei, it is 15 mmol/l for Ni+2, Fe+2, and Mn+2 and 10 mmol/l for Zn+2, Pb+2, Co+2, and Cd+2. The consortium and solitary application of bacterial isolates towards heavy metal removal at 100%, 200%, and 300% industrial wastewater concentrations were conducted and showed that more than 90% removal of Zn+2, Fe+2, Pb+2, Mn+2, Ni+2, and Cd+2 from a non-concentrated polluted sample (100%) was reported by the three strains. With doubling the polluted sample concentration (200%), the highest removal efficiency for Zn+2, Pb+2, Mn+2, Ni+2, and Cd+2 was reported by E. cloacae as 70. 75, 66, 65, and 57%, respectively. Removal efficiency after increasing the polluted sample concentration to 300% showed that E. cloacae removed above 45% of all tested heavy metals except Pb+2. Ultimately, E. cloacae exposed the highest efficiency with recommendations for heavy metals removal under higher concentrations.
Collapse
Affiliation(s)
| | | | | | - Ehab Aly Beltagy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| |
Collapse
|
9
|
Zhang B, Jiao W. Biochar facilitated bacterial reduction of Cr(VI) by Shewanella Putrefaciens CN32: Pathways and surface characteristics. ENVIRONMENTAL RESEARCH 2022; 214:113971. [PMID: 35952752 DOI: 10.1016/j.envres.2022.113971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Biochar can facilitate the microbial reduction of various pollutants in soil and groundwater environments, but its impact on Cr(VI) reduction by dissimilatory metal reducing bacteria (DMRB) remains to be systematically investigated. In this study, we prepared biochars at 500 °C and 700 °C from wheat straw and grass, and investigated the impact of these biochars on Cr(VI) reduction by a model DMRB, Shewanella Putrefaciens CN32 (CN32). Pristine biochars abiotically reduced Cr(VI), which decreased the concentration and toxicity of chromium to CN32 cells, and brought about higher overall Cr(VI) removal extent after CN32 were added sequentially; on the other hand, no enhancement effect were observed when biochars and CN32 were added simultaneously. Further tests between biologically reduced biochars and Cr(VI) revealed that the reaction rates between bioreduced biochars and Cr(VI) are relatively sluggish compared to that of direct Cr(VI) reduction by CN32, which prohibited biochars from directly accelerating the Cr(VI) reduction by CN32 in simultaneous-addition scenario. The relative importance of biochars' surface functional groups and surface areas on their reactivities towards Cr(VI) reduction were also investigated. This study deepened our understanding towards the role of biochar played during bacterial Cr(VI) reduction and could potentially contribute to optimizing the biochar-based Cr(VI) bioremediation strategies.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wentao Jiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
10
|
Zhang W, Zhu Y, Gu R, Liang Z, Xu W, Jat Baloch MY. Health Risk Assessment during In Situ Remediation of Cr(VI)-Contaminated Groundwater by Permeable Reactive Barriers: A Field-Scale Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13079. [PMID: 36293661 PMCID: PMC9603126 DOI: 10.3390/ijerph192013079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 05/19/2023]
Abstract
The presence of residual Cr(VI) in soils causes groundwater contamination in aquifers, affecting the health of exposed populations. Initially, permeable reactive barriers(PRB) effectively removed Cr(VI) from groundwater. However, as PRB clogging increased and Cr(VI) was released from upstream soils, the contamination plume continued to spread downstream. By 2020, the level of contamination in the downstream was nearly identical to that in the upstream. The study results show that during normal operation, the PRB can successfully remove Cr(VI) from contaminated groundwater and reduce the carcinogenic and non-carcinogenic risks to humans from the downstream side of groundwater. However, the remediated groundwater still poses an unacceptable risk to human health. The sensitivity analysis revealed that the concentration of the pollutant was the most sensitive parameter and interacted significantly with other factors. Ultimately, it was determined that the residual Cr(VI) in the soil of the study region continues to contaminate the groundwater and constitutes a serious health danger to residents in the vicinity. As remediated groundwater still poses a severe threat to human health, PRB may not be as effective as people believe.
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yifan Zhu
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Ruiting Gu
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Zhentian Liang
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Wenyan Xu
- Chemical Geological Prospecting Institute of Liaoning Province Co., Ltd., Jinzhou 121007, China
| | - Muhammad Yousuf Jat Baloch
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| |
Collapse
|
11
|
In Vitro Evaluation of Extracellular Enzyme Activity and Its Biocontrol Efficacy of Bacterial Isolates from Pepper Plants for the Management of Phytophthora capsici. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6778352. [PMID: 36199757 PMCID: PMC9529479 DOI: 10.1155/2022/6778352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/10/2022] [Indexed: 12/01/2022]
Abstract
Phytophthora capsici is one of the most devastating fungal pathogens, causing severe diseases that lead to economic loss in the pepper industry. As a result of the infections, the chemical approach is becoming more popular. Biological control, on the other hand, is better suited to controlling fungal pathogens. The biological control approach significantly reduces the problems associated with chemical applications while restoring natural environmental balance. As a result, the overall findings indicate that certain bacterial isolates play a beneficial role in lytic enzyme production and biocontrol activities against P. capsici. Bacterial isolates obtained from the pepper plants were screened for lytic enzyme and anti-oomycete activity against Phytophthora capsici in Ethiopia. Sixty bacterial isolates were isolated and tested against Phytophthora capsici. From these bacterial isolates, different inhibition zones and hydrolytic enzyme production were detected. Biochemical tests using an automated machine (MALDI-TOF, VITEK 2 compact and 16S rRNA) revealed that three of them, AAUSR23, AAULE41, and AAULE51, showed a high inhibition zone and high production of hydrolytic enzymes and were identified as Enterobacter cloacae (AAUSR23), Pseudomonas fluorescens (AAULE41), and undetermined (AAULE51). The effects of diffusable metabolite isolate AAULE51 has a 66.7% inhibition zone against Phytophthora capsici, followed by AAULE41 and AAUSR23, which have 59.7% and 14.1% inhibition zones, respectively. These bacterial isolates showed high production of hydrolytic enzymes like protease, cellulase, chitinase, and lipase (5-34 diameter of inhibition zone). As a result, the overall findings show that selected bacterial isolates play a beneficial role in lytic enzyme production and for their biocontrol activities against P. capsici.
Collapse
|
12
|
Zhang L, He F, Guan Y. Immobilization of hexavalent chromium in contaminated soil by nano-sized layered double hydroxide intercalated with diethyldithiocarbamate: Fraction distribution, plant growth, and microbial evolution. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128382. [PMID: 35739652 DOI: 10.1016/j.jhazmat.2022.128382] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 06/15/2023]
Abstract
Soil contamination by hexavalent chromium (Cr(VI)) poses great risks to human health and ecosystem safety. We introduced a new cheap and efficient layered double hydroxide intercalated with diethyldithiocarbamate (DDTC-LDH) for in-situ remediation of Cr(VI)-contaminated soil. The content of Cr(VI) in contaminated soil (134.26 mg kg-1) was rapidly reduced to 1.39 mg kg-1 within 10 days by 0.5% of DDTC-LDH. This result attains to or even exceeds the effectiveness of most of reported soil amendments for Cr(VI) removal in soils. The production cost of DDTC-LDH ($4.02 kg-1) was relatively low than some common materials, such as nano zero-valent iron ($22.80-140.84 kg-1). The growth of water spinach became better with the increase of DDTC-LDH dose from 0% to 0.5%, suggesting the recovery of soil function. DDTC-LDH significantly altered the structure and function of soil microbial communities. The species that have Cr(VI)-resistant or Cr(VI)-reductive ability were enriched in DDTC-LDH remediated soils. Network analysis revealed a significant functional niche differentiation of soil microbial communities. In addition to the enhancement of Cr(VI) reduction, the stimulation of plant growth promoting traits, including siderophore biosynthesis, oxidation resistance to reactive oxygen species, and phosphorus availability by DDTC-LDH was another essential mechanism for the immediate remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Lixun Zhang
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Fangxin He
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
13
|
An Q, Jin N, Deng S, Zhao B, Liu M, Ran B, Zhang L. Ni(II), Cr(VI), Cu(II) and nitrate removal by the co-system of Pseudomonas hibiscicola strain L1 immobilized on peanut shell biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152635. [PMID: 34963593 DOI: 10.1016/j.scitotenv.2021.152635] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/23/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
At present, the improvement of nitrate and mixed heavy metals removal in wastewater by microorganism are urgently needed. Previous studies have shown that Pseudomonas hibiscicola strain L1 exhibited Ni(II) removal ability under aerobic denitrification. In this study, the characteristics of the free strain L1, peanut shell biochar (PBC) and further the co-system of strain L1 immobilized on PBC were investigated for the removal of Ni(II), Cr(VI), Cu(II) and nitrate in mix-wastewater. The results illustrated that strain L1 could remove 15.51% - 32.55% of Ni(II) (20-100 mg·L-1), and removal ratios by co-system were ranked as Ni(II) (81.17%) > Cu(II) (45.84%) > Cr(VI) (38.21%). Scanning Electron Microscope (SEM), X-ray Diffractometer (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) images indicated that the strain L1 immobilized well on PBC and had vigorous biological activity; the crystals of Ni(OH)2, Cu(OH)2 and CrO(OH) etc. were formed on surface of co-system with various functional groups participated in. In Sequential Batch Reactor (SBR), the pollutant removal ratios by co-system were higher than that by free strain L1. This study illustrated that the co-system of strain L1 immobilized on PBC was qualified to be applied for practical scenarios of effective heavy metal removal of electroplating mix-wastewater.
Collapse
Affiliation(s)
- Qiang An
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Ningjie Jin
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Bin Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Meng Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Binbin Ran
- College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Laisheng Zhang
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
14
|
Minhas PS, Saha JK, Dotaniya ML, Sarkar A, Saha M. Wastewater irrigation in India: Current status, impacts and response options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152001. [PMID: 34856275 DOI: 10.1016/j.scitotenv.2021.152001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Wastewater generated from urban agglomerations in India is estimated to be 26.4 km3 annually and 28% of it is treated. This has a potential to irrigate about 2.1 million-ha agricultural land, contribute 4 million Mg of plant nutrients, generate 2.8 million person-days of employment and reduce green house gas (GHG) emission by 73.7 million Mg CO2-e. Farmers in peri-urban areas depend largely on raw and partially treated wastewater for livelihood via raising high value crops such as vegetable, fodders and fruits. Both controlled and uncontrolled disposal of waste waters leads to progressive and irreversible contamination of soils, surface and ground waters with pathogens, heavy metals and organic micro-contaminants and consequently their bio-transfer through the chain: sewage-soil-vegetation-animal-humans. This has led to the development of a considerable assortment of regulatory measures and guidelines aimed at reducing or eliminating wastewater related health risks. Because conventional treatment technologies are cost prohibitive, alternate methods based on biological and land treatment systems are being advocated. Since soils are the most logical sinks for wastewater, efforts are to optimise rates and methods of water application, quantify the sink capacity of soils to immobilise contaminants and protect the quality of produce. Reuse of diluted or undiluted wastewaters improves crop productivity by 10-36% though production sustainability depends on soil type, climatic conditions, crop grown, irrigation techniques and socio-political factors. Disposal of wastewater in tree plantations and constructed wetlands with consequent removal of toxic metals/compounds using hyper-accumulators/accumulators plants provide for a possible alternative. Ignoring the associated risks, using pisciculture for sewage disposal is quite popular in high rainfall areas. With growing water scarcities, it is utmost important to recognise wastewaters as a valuable resource and formulate appropriate policy initiatives considering the health and livelihood issues of the per-urban farmers and consumers of food as well as risks to environment.
Collapse
Affiliation(s)
- Paramjit S Minhas
- ICAR-Central Soil Salinity Research Institute, Karnal 132001, India.
| | | | - M L Dotaniya
- ICAR-Directorate of Rapeseed Mustard Research, Bharatpur 321303, India
| | - Abhijit Sarkar
- ICAR-Indian Institute of Soil Science, Bhopal 462038, India
| | | |
Collapse
|
15
|
Wang Q, Song X, Wei C, Jin P, Chen X, Tang Z, Li K, Ding X, Fu H. In situ remediation of Cr(VI) contaminated groundwater by ZVI-PRB and the corresponding indigenous microbial community responses: a field-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150260. [PMID: 34537698 DOI: 10.1016/j.scitotenv.2021.150260] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The performance of a permeable reactive barrier (PRB) for the in situ remediation of hexavalent chromium [Cr(VI)] contaminated groundwater, and the resulted responses in the indigenous microbial community, were investigated in a field-scale study. The PRB consisted of a mixture of zero-valent iron (ZVI), gravel and sand. The results showed that the PRB segment with 20% active reaction medium (ZVI) was able to successfully reduce Cr(VI) via chemical reduction from 27.29-242.65 mg/L to below the clean-up goal of 0.1 mg/L, and can be scaled-up under field conditions. It was found that the ZVI induced significant changes in the indigenous microbial community structure and compositions in the area of the PRB and those areas downgradient. The competitive growth among Cr(VI)-reducing bacteria (the reduced abundance of Hydrogenophaga, Pseudomonas, Exiguobacterium and Rhodobacter, along with the enrichment of Rivibacter and Candidatus_Desulforudis) were observed in PRB. In addition, Cr(VI)-reducing bacteria (Hydrogenophaga, Pseudomonas, Exiguobacterium and Rhodobacter) were enriched in the downgradient of PRB, indicating that Cr(VI) can be further bio-reduced to Cr(III). The Cr(VI) bio-reduction could serve as a secondary mechanism for further removal of Cr(VI) from contaminated groundwater, suggesting that the actual lifetime of a PRB can be prolonged, which is important for the design and economic assessment of a PRB. Further analysis revealed that pH, dissolved oxygen, Cr(VI) level, the oxidation-reduction potential, and temperature were the main environmental factors influencing the subsurface microbial community compositions.
Collapse
Affiliation(s)
- Qing Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Xin Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Changlong Wei
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peng Jin
- EPCR Innovation and Technology LLC, PA 19406, USA
| | - Xing Chen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhiwen Tang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Li
- NO.1 Institute of Geo-environment Survey of Henan, Henan 450003, China
| | - Xiaoyan Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Fu
- Nanjing Kangdi Environmental Protection Technology Co., LTD, Nanjing 21000, China
| |
Collapse
|
16
|
Jiang Y, Yang F, Dai M, Ali I, Shen X, Hou X, Alhewairini SS, Peng C, Naz I. Application of microbial immobilization technology for remediation of Cr(VI) contamination: A review. CHEMOSPHERE 2022; 286:131721. [PMID: 34352550 DOI: 10.1016/j.chemosphere.2021.131721] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The discharge of chromium (Cr) contaminated wastewater is creating a serious threat to aquatic environment due to the rapid pace in agricultural and industrial activities. Particularly, the long-term exposure of Cr(VI) polluted wastewater to the environment is causing serious harm to human health. Therefore, the treatment of Cr(VI) contaminated wastewater is demanding widespread attention. Regarding this, the bioremediation is being considered as a reliable and feasible option to handle Cr(VI) contaminated wastewater because of having low technical investment and operating costs. However, certain factors such as loss of microorganisms, toxicity to microorganisms and uneven microbial growth cycle in the presence of high concentrations of Cr(VI) are hindering its commercial applications. Regarding this, microbial immobilization technology (MIT) is getting great research interest because it could overcome the shortcomings of bioremediation technology's poor tolerance against Cr. Therefore, this review is the first attempt to emphases recent research developments in the remediation of Cr(VI) contamination via MIT. Starting from the selection of immobilized carrier, the present review is designed to critically discuss the various microbial immobilizing methods i.e., adsorption, embedding, covalent binding and medium interception. Further, the mechanism of Cr(VI) removal by immobilized microorganism has also been explored, precisely. In addition, three kinds of microorganism immobilization devices have been critically examined. Finally, knowledge gaps/key challenges and future perspectives are also discussed that would be helpful for the experts in improving MIT for the remediation of Cr(VI) contamination.
Collapse
Affiliation(s)
- Yating Jiang
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China; The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China
| | - Fei Yang
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China
| | - Min Dai
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China
| | - Imran Ali
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Xing Shen
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China
| | - Xiaoting Hou
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China; Sunwater Environmental Science & Technology Co. Ltd., Rizhao, 262300, China
| | - Saleh S Alhewairini
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Qassim, Saudi Arabia
| | - Changsheng Peng
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China; The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao,266100, China.
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah, 51452, Saudi Arabia.
| |
Collapse
|
17
|
Nacer A, Boudjema S, Bouhaous M, Boudouaia N, Bengharez Z. Bioremediation of hexavalent chromium by an indigenous bacterium Bacillus cereus S10C1: optimization study using two level full factorial experimental design. CR CHIM 2021. [DOI: 10.5802/crchim.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Sahoo H, Kumari S, Naik UC. Characterization of multi-metal-resistant Serratia sp. GP01 for treatment of effluent from fertilizer industries. Arch Microbiol 2021; 203:5425-5435. [PMID: 34405261 DOI: 10.1007/s00203-021-02523-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
The effluent generated from fertilizer plants in Paradeep in the coast of the Bay of Bengal is the major pollutant causing health hazard in the vicinity of the area with respect to plants, animals and microbes. Samples of effluent were found to contain heavy metals (mg L-1): Cr (100), Ni (36.975), Mn (68.673), Pb (20.133), Cu (74.44), Zn (176.716), Hg (5.358) and As (24.287) as analyzed by XRF. Indigenous bacterial strains were screened for chromate and multi-metal resistance to remediate the toxic pollutants. The isolated strain G1 was identified as Serratia sp. through 16S-rDNA sequence homology. The potent strain Serratia sp. GP01 treated with 100 mg L-1 of K2Cr2O7 has shown the efficacy of reducing 69.05 mg L-1 of Cr over 48 h of incubation. Further, presence of chromate reductase gene (ChR) in Serratia sp. confirmed the enzymatic reduction of Cr(VI). SEM-EDX and SEM mapping analysis revealed substantial biosorption of Cr and other heavy metals present in effluent by Serratia sp. GP01. Antioxidant enzymes such as catalase (72.15 U mL-1), SOD (57.14 U mL-1) and peroxidase (62.49 U mL-1) were found to be higher as compared to the control condition. FTIR study also revealed the role of N-H, O-H, C = C, C-H, C-O, C-N, and C = O functional groups of the cell surface of Serratia sp. treated with K2Cr2O7 and effluent from the fertilizer industry. Isolated strain Serratia sp. could be used for the detoxification of Cr(VI) and other heavy metals in fertilizer plant effluent.
Collapse
Affiliation(s)
- Hrudananda Sahoo
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India
| | - Sushama Kumari
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India
| | - Umesh Chandra Naik
- Environmental Microbiology Laboratory, Department of Botany, Ravenshaw University, Cuttack, 753003, India. .,Centre of Excellence in Environment and Public Health, Ravenshaw University, Cuttack, 753003, India.
| |
Collapse
|
19
|
Hyder S, Gondal AS, Rizvi ZF, Atiq R, Haider MIS, Fatima N, Inam-Ul-Haq M. Biological Control of Chili Damping-Off Disease, Caused by Pythium myriotylum. Front Microbiol 2021; 12:587431. [PMID: 34054741 PMCID: PMC8155717 DOI: 10.3389/fmicb.2021.587431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Pythium myriotylum is a notorious soil-borne oomycete that causes post-emergence damping-off in chili pepper. Of various disease management strategies, utilization of plant growth promoting rhizobacteria (PGPR) in disease suppression and plant growth promotion is an interesting strategy. The present study was performed to isolate and characterize PGPR indigenous to the chili rhizosphere in Pakistan, and to test the potential to suppress the damping-off and plant growth promotion in chili. Out of a total of 28 antagonists, eight bacterial isolates (4a2, JHL-8, JHL-12, 1C2, RH-24, 1D, 5C, and RH-87) significantly suppressed the colony growth of P. myriotylum in a dual culture experiment. All the tested bacterial isolates were characterized for biochemical attributes, and 16S rRNA sequence based phylogenetic analysis identified these isolates as Flavobacterium spp., Bacillus megaterium, Pseudomonas putida, Bacillus cereus, and Pseudomonas libanensis. All the tested bacterial isolates showed positive test results for ammonia production, starch hydrolase (except 4a2), and hydrogen cyanide production (except 4a2 and 1D). All the tested antagonists produced indole-3-acetic acid (13.4–39.0 μg mL–1), solubilized inorganic phosphate (75–103 μg mL–1), and produced siderophores (17.1–23.7%) in vitro. All the tested bacterial isolates showed varying levels of susceptibility and resistance response against different antibiotics and all these bacterial isolates were found to be non-pathogenic to chili seeds and notably enhanced percentage seed germination, plumule, redical length, and vigor index over un-inoculated control. Additionally, under pathogen pressure, bacterization increased the defense related enzymes such as Peroxidase (PO), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL) activates. Moreover, the treatment of chili seeds with these bacterial isolates significantly suppressed the damping-off caused by P. myriotylum and improved PGP traits compared to the control. In addition, a positive correlation was noticed between shoot, root length, and dry shoot and root weight, and there was a negative correlation between dry shoot, root weight, and seedling percentage mortality. These results showed that native PGPR possesses multiple traits beneficial to the chili plants and can be used to develop eco-friendly and effective seed treatment formulation as an alternative to synthetic chemical fungicides.
Collapse
Affiliation(s)
- Sajjad Hyder
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | | | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Rashida Atiq
- Department of Plant Pathology, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Nida Fatima
- Department of Soil Science and SWC, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Inam-Ul-Haq
- Department of Plant Pathology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
20
|
Hernández-Peña CC, Lares-Villa F, Santos-Villalobos SDEL, Estrada-Alvarado MI, Cruz-Soto A, Flores-Tavizón E, Soto-Padilla MY. Reduction in concentration of chromium (VI) by Lysinibacillus macroides isolated from sediments of the Chapala Lake, Mexico. AN ACAD BRAS CIENC 2021; 93:e20190144. [PMID: 33852669 DOI: 10.1590/0001-3765202120190144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022] Open
Abstract
The Chapala Lake is one of the most polluted lakes in Mexico, due to the in flow of effluents from several industrial plants, the lake accumulates pollutants such as chromium(VI) which is considered important for aquatic ecosystem. This study aimed was to evaluate the ability to decrease the concentration of chromium (VI) by Lysinibacillus macroides 2(1B)104A, isolated from sediments of the Chapala Lake. The strain was identified through 16S rRNA sequencing and phylogenetic analysis. Results showed that this strain grows in concentrations of 50, 100, 200 and 300 mgL-1 Cr(VI), in pH ranging 6 to 7, showing 79.508% reduction in concentration 50 mgL-1, determining that the reduction occurs extracellularly. Likewise, it was observed that Lysinibacillus macroides reduced the concentration of Cr(IV) in the broth, it was not observed that the bacteria could sequester Cr(VI) in the membrane or intracellularly. However, it reduced the concentration of Cr(VI) in the broth. Lysinibacillus macroides 2(1B)104A isolate showed having the ability that decrease the concentration of Cr(VI), which makes it a viable options for bioremediation of water polluted with this metal.
Collapse
Affiliation(s)
- Claudia C Hernández-Peña
- Programa de Doctorado en Ciencias con Especialidad en Biotecnología, Instituto Tecnológico de Sonora, Departamento de Biotecnología y Ciencias Alimentarias, 5 de Febrero No. 818 sur, Colonia Centro, C.P. 85000, Ciudad Obregón, Sonora, Mexico.,Universidad Autónoma de Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico Biológicas, Anillo Envolvente y Estocolmo, s/n, Zona Pronaf, C.P. 32300, Ciudad Juárez, Chihuahua, Mexico
| | - Fernando Lares-Villa
- Instituto Tecnológico de Sonora, Departamento de Ciencias Agronómicas y Veterinarias, 5 de Febrero No. 818 sur, Colonia Centro, C.P. 85000, Ciudad Obregón, Sonora, Mexico
| | - Sergio DE Los Santos-Villalobos
- CONACYT- Instituto Tecnológico de Sonora, Departamento de Ciencias del Agua y Medio Ambiente, 5 de Febrero No. 818 sur, Colonia Centro, C.P. 85000, Ciudad Obregón, Sonora, Mexico
| | - María Isabel Estrada-Alvarado
- Instituto Tecnológico de Sonora, Departamento de Biotecnología y Ciencias Alimentarias, 5 de Febrero No. 818 sur, Colonia Centro, C.P. 85000, Ciudad Obregón, Sonora, Mexico
| | - Alejandro Cruz-Soto
- Universidad Autónoma de Ciudad Juárez/UACJ, Instituto de Ingeniería y Tecnología, Avenida del Charro 450 norte, Ciudad Juárez, Chihuahua, C.P. 32310, Mexico
| | - Edith Flores-Tavizón
- Universidad Autónoma de Ciudad Juárez/UACJ, Instituto de Ingeniería y Tecnología, Avenida del Charro 450 norte, Ciudad Juárez, Chihuahua, C.P. 32310, Mexico
| | - Marisela Y Soto-Padilla
- Universidad Autónoma de Ciudad Juárez/UACJ, Instituto de Ingeniería y Tecnología, Avenida del Charro 450 norte, Ciudad Juárez, Chihuahua, C.P. 32310, Mexico
| |
Collapse
|
21
|
Lyu Y, Yang T, Liu H, Qi Z, Li P, Shi Z, Xiang Z, Gong D, Li N, Zhang Y. Enrichment and characterization of an effective hexavalent chromium-reducing microbial community YEM001. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19866-19877. [PMID: 33410044 DOI: 10.1007/s11356-020-11863-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Chromium (Cr) is one of the most widely used heavy metals in industrial processes, resulting in water and soil pollution that seriously threaten environmental safety. In this paper, we have directionally enriched a Cr(VI)-reducing bacterial community YEM001 from no-Cr(VI) polluted pond sedimental sludge by selectively growing it in Cr(VI)-containing media. This community could effectively reduce Cr(VI) in laboratory rich media containing different concentrations of Cr(VI), such as 61% reduction at 435 mg/L Cr(VI), 85% reduction at 355 mg/L Cr(VI), and complete reduction at 269 mg/L Cr(VI) in 93.5 h. It was also able to completely reduce 100 mg/L and 300 mg/L Cr(VI) in landfill leachate and natural sludge in 48 h, respectively. Optimal pH for Cr(VI) reduction of the YEM001 is between 7 and 8 and the best efficiency for Cr(VI) reduction occurs at 30 °C. Metagenomic data demonstrated that the YEM001 community was composed of multiple bacteria, including well-known Cr(VI)-reducing bacteria and non-Cr(VI)-reducing bacteria. Delftia, Comamonas, Alicycliphilus, Acidovorax, Bacillus, and Clostridioides account for 83% of total community abundance. The stability of the composition of the YEM001 community and its Cr(VI)-reducing activity allows for its application in bioremediation of environmental Cr(VI) pollution.
Collapse
Affiliation(s)
- Yucai Lyu
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China.
- Hubei Engineering Technology Research Center for Farmland Environmental Monitoring, China Three Gorges University, Yichang, 443002, China.
- Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang, 443002, China.
| | - Tao Yang
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Herong Liu
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Zheng Qi
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Ping Li
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
| | - Ziyao Shi
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Zhen Xiang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Dachun Gong
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China
- Hubei Engineering Technology Research Center for Farmland Environmental Monitoring, China Three Gorges University, Yichang, 443002, China
- Key Laboratory of Functional Yeast, China National Light Industry, China Three Gorges University, Yichang, 443002, China
| | - Ning Li
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China
| | - Yaoping Zhang
- Hubei Engineering Research Center for Biological Jiaosu, China Three Gorges University, Yichang, 443002, China.
- DOE-Great Lakes Bioenergy Research Center (GLBRC), University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Ishaq AR, Manzoor M, Hussain A, Altaf J, Rehman SU, Javed Z, Afzal I, Noor A, Noor F. Prospect of microbial food borne diseases in Pakistan: a review. BRAZ J BIOL 2021; 81:940-953. [PMID: 33605364 DOI: 10.1590/1519-6984.232466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Nowadays food borne illness is most common in people due to their epidemic nature. These diseases affect the human digestive system through bacteria, viruses and parasites. The agents of illness are transmitted in our body through various types of food items, water and uncooked. Pathogens show drastic changes in immunosuppressant people. This review gives general insights to harmful microbial life. Pakistan is a developed country and because of its improper food management, a lot of gastrointestinal problems are noted in many patients. Bacteria are most common agents to spread diarrhoea, villi infection, constipation and dysenteric disease in human and induce the rejection of organ transplant. Enhancement of their lifestyle, properly cooked food should be used and to overcome the outbreak of the diseases.
Collapse
Affiliation(s)
- A R Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - M Manzoor
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - A Hussain
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - J Altaf
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - S Ur Rehman
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Z Javed
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - I Afzal
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - A Noor
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - F Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
23
|
Fu L, Feng A, Xiao J, Wu Q, Ye Q, Peng S. Remediation of soil contaminated with high levels of hexavalent chromium by combined chemical-microbial reduction and stabilization. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123847. [PMID: 33264926 DOI: 10.1016/j.jhazmat.2020.123847] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
In order to solve the problem of re-oxidation after chemical remediation of soil contaminated with high levels of hexavalent chromium (Cr(VI)), we investigated the use of chemical reduction combined with microbial stabilization to remediate soils contaminated with high Cr(VI) concentration. The leaching toxicity and microbial diversity of Cr(VI)-contaminated soil and the leaching toxicity of remediated soil oxidized by potassium permanganate (KMnO4) were measured. The results indicate that the conversion rate of Cr(VI) reached 97 %, and the concentration of Cr(VI) in toxic solutions leaching can be reduced by 95 % after 40 days of microbial stabilization. Sterilization experiments showed that the reduction of Cr(VI) by microorganisms is stable. The results of microbial diversity analysis indicate that bacterial community changed more than fungal community during the reduction process of Cr(VI), and the species abundance and species evenness of bacteria decreased. Bacillus spp. and Halomonas spp. were the dominant species in this study.
Collapse
Affiliation(s)
- Lijuan Fu
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Aixi Feng
- Yuhuan Environmental Science and Technology Co., Ltd, No. 88, Hongqi Street, Qiaoxi District, Shijiazhuang, Hebei Province, 050000, China
| | - Jingjing Xiao
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Qing Wu
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| | - Qunying Ye
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| | - Sen Peng
- School of Environmental Science and Engineering, Tianjin University, NO. 135 Yaguan Road, Jinnan District, Tianjin, 300350, China
| |
Collapse
|
24
|
Evaluation of Cr(VI) Reducing Capability of Shewanella putrefaciens (MTTC8410) and Optimization of Operational Parameters. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.4.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bioremediation is an important technology to remediate the chromium (Cr) contaminated soil and water. In this study, Shewanella putrefaciens (MTTC8410) was used to investigate the influence of carbon concentration, pH, and temperature on reduction of hexavalent chromium [Cr(VI)] into trivalent chromium [Cr(III)]. The increased bacterial growth rate was significantly reduced the Cr(VI) concentration. In batch mode experiments, 1% starch recorded the highest reduction of Cr(VI) (90%) followed by 1% glucose (88% reduction) and a reduction of 77% was by 1% cellulose. By using various pH conditions the maximum Cr(VI) reduction was achieved at pH 7.0. In this experiment the maximum Cr(VI) reduction (75%) was observed at 35°C, followed by 30°C with 62% of Cr(VI) reduction. Bioreactor analysis revealed the highest reduction of Cr(VI) (88%) in unsterile tannery effluent. The significant levels of physico- chemical parameters were reduced in unsterile tannery effluent, as compared to the sterile tannery effluent. The experimental results revealed that the S. putrefaciens (MTTC8410) could be used as a potential bacterial strain for reduction of Cr(VI) from contaminated groundwater.
Collapse
|
25
|
Ma L, Chen N, Feng C. Chromium(VI) bioreduction behavior and microbial revolution by phosphorus minerals in continuous flow experiment. BIORESOURCE TECHNOLOGY 2020; 315:123847. [PMID: 32702581 DOI: 10.1016/j.biortech.2020.123847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/11/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Chromium (Cr) contamination in groundwater is a serious threat to both the environment and public health, due to its high toxicity and extensive industrial application. Based on previous studies on the enhancement of Cr(VI) bioreduction by phosphorus minerals, it is of great significance to assess its practical application potential. Towards this aim, Cr(VI) bioreduction guided by phosphorus minerals under continuous flow condition was conducted with the variation of initial concentration and HRT, where it was conservatively estimated that 5 g of phosphorus minerals can satisfy the needs of normal operation of a maximum of 200 cm3 bioreactor at a chromium load of 40 mg/(L·d), and further analysis was performed for operating characteristics and microbial community along the route and the reactor. The results of this study provide new insights and empirical support for the in-situ bioremediation reinforcement of Cr(VI)-contaminated groundwater.
Collapse
Affiliation(s)
- Linlin Ma
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
26
|
Bioremediation of Hexavalent Chromium by Chromium Resistant Bacteria Reduces Phytotoxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176013. [PMID: 32824890 PMCID: PMC7504174 DOI: 10.3390/ijerph17176013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/03/2022]
Abstract
Chromium (Cr) (VI) has long been known as an environmental hazard that can be reduced from aqueous solutions through bioremediation by living cells. In this study, we investigated the efficiency of reduction and biosorption of Cr(VI) by chromate resistant bacteria isolated from tannery effluent. From 28 screened Cr(VI) resistant isolates, selected bacterial strain SH-1 was identified as Klebsiella sp. via 16S rRNA sequencing. In Luria–Bertani broth, the relative reduction level of Cr(VI) was 95%, but in tannery effluent, it was 63.08% after 72 h of incubation. The cell-free extract of SH-1 showed a 72.2% reduction of Cr(VI), which indicated a higher activity of Cr(VI) reducing enzyme than the control. Live and dead biomass of SH-1 adsorbed 51.25 mg and 29.03 mg Cr(VI) per gram of dry weight, respectively. Two adsorption isotherm models—Langmuir and Freundlich—were used for the illustration of Cr(VI) biosorption using SH-1 live biomass. Scanning electron microscopy (SEM) analysis showed an increased cell size of the treated biomass when compared to the controlled biomass, which supports the adsorption of reduced Cr on the biomass cell surface. Fourier-transform infrared analysis indicated that Cr(VI) had an effect on bacterial biomass, including quantitative and structural modifications. Moreover, the chickpea seed germination study showed beneficial environmental effects that suggest possible application of the isolate for the bioremediation of toxic Cr(VI).
Collapse
|
27
|
Shah S, Damare S. Cellular response of Brevibacterium casei #NIOSBA88 to arsenic and chromium-a proteomic approach. Braz J Microbiol 2020; 51:1885-1895. [PMID: 32729030 DOI: 10.1007/s42770-020-00353-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/25/2020] [Indexed: 11/25/2022] Open
Abstract
Cellular response against different heavy metal stress differs with the metal. Arsenic and chromium are heavy metals and toxic to living systems. The concentration of these metals in seawater is very low. However, due to their solubility in nature, they actively enter cells via various transport mechanisms and cause damage to the cells. Brevibacterium casei #NIOSBA88, a marine-derived, gram-positive isolate was multi-metal tolerant. Proteomic analysis of this isolate in response to arsenic and chromium resulted in the identification of total 2549 proteins, out of which 880 proteins were found to be commonly expressed at 750 mgL-1 arsenic and 100 mgL-1 chromium and in absence of both the metals. In contrast, 533, 212, and 270 proteins were found to be unique in the absence of any metal, 750 mgL-1 of arsenic and 100 mgL-1 of chromium respectively. Proteins such as antibiotic biosynthesis monooxygenase, ArsR family transcriptional regulator, cytochrome C oxidase subunit II, and thioredoxin reductase were exclusively expressed only in response to arsenic and chromium. Other proteins like superoxide dismutase, lipid hydroperoxide reductase, and thioredoxin-disulfide reductase were found to be upregulated in response to both the metals. Most of the proteins involved in the normal cell functioning were found to be downregulated. Major metabolic functions affected include amino acid metabolism, carbohydrate metabolism, translation, and energy metabolism. Peptide mass fingerprinting of Brevibacterium casei #NIOSBA88 exposed to arsenic and chromium respectively revealed the deleterious effect of these metals on the bacterium and its strategy to overcome the stress.
Collapse
Affiliation(s)
- Shruti Shah
- Biological Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, Goa, India
| | - Samir Damare
- Biological Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, Goa, India.
| |
Collapse
|
28
|
Muzammil S, Siddique MH, Mureed F, Andleeb R, Jabeen F, Waseem M, Zafar S, Rehman HF, Ali T, Ashraf A. Assessment of cadmium tolerance and biosorptive potential of Bacillus Cereus GCFSD01 isolated from cadmium contaminated soil. BRAZ J BIOL 2020; 81:398-405. [PMID: 32696847 DOI: 10.1590/1519-6984.227200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/14/2019] [Indexed: 11/21/2022] Open
Abstract
Continuous occurrence of heavy metals is a major cause of environmental pollution due to its toxic effects. At minimum concentrations, these metals are highly reactive and can gather in the food chains and food web, causing major dangers to public health concerns. Soil samples were collected from Paharang drain, Faisalabad. Cadmium tolerant bacteria were isolated and evaluated for their MIC against Cd. The isolated bacterial strain GCFSD01 showed MIC value upto 30 mM/L. The bacterial strain with the highest resistance against Cd was selected for further study. Molecular characterization of bacterial isolate GCFSD01 was performed by 16S rRNA which confirmed it as Bacillus cereus. Optimum growth conditions of bacterial strain were also evaluated. Strain GCFSD01 showed optimum growth at pH 7 and 37 °C temperature. Our result revealed that B. cereus strain GCFSD01 reduced 61.3% Cd after 48 hrs. Multiple metal tolerance and Cd reduction by B. cereus indicate its potential for further use for decontamination of polluted soil.
Collapse
Affiliation(s)
- S Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - M H Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - F Mureed
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - R Andleeb
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - F Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - M Waseem
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - S Zafar
- Department of Botany, Government College University Faisalabad, Faisalabad, Pakistan
| | - H F Rehman
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - T Ali
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - A Ashraf
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
29
|
Upadhyay S, Tarafdar A, Sinha A. Assessment of Serratia sp. isolated from iron ore mine in hexavalent chromium reduction: kinetics, fate and variation in cellular morphology. ENVIRONMENTAL TECHNOLOGY 2020; 41:1117-1126. [PMID: 30198414 DOI: 10.1080/09593330.2018.1521875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Serratia sp. strain SU.ISM.1 was isolated from Noamundi iron ore mines for the first time and was observed for hexavalent chromium reduction, and growth kinetics modelling was applied for bacterial chromium reduction. For 4-8 ppm of hexavalent chromium concentration, complete reduction was observed within 36 h when the selected isolate was applied, and for 12-20 ppm chromium concentration, complete reduction was achieved within 48 h. The viable biomass concentration increased up to 36 h of treatment time, after which the biomass concentration gradually declined. The Aiba model of product inhibition growth kinetics best described the growth of biomass in the presence of hexavalent chromium. The total mass conversion of Cr(VI) to Cr(III) for 4, 8, 12, 16 and 20 ppm was found to be 94.9%, 88.5%, 74.66%, 70.75% and 78.8%, respectively. The AFM and FESEM studies showed that the roughness of the cell surface increased with increasing concentration of hexavalent chromium, probably due to adsorption of chromium.
Collapse
Affiliation(s)
- Shivangi Upadhyay
- Department of Environmental Science & Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Abhrajyoti Tarafdar
- Department of Environmental Science & Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Alok Sinha
- Department of Environmental Science & Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| |
Collapse
|
30
|
Zhang X, Yan J, Luo X, Zhu Y, Xia L, Luo L. Simultaneous ammonia and Cr (VI) removal by Pseudomonas aeruginosa LX in wastewater. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Ma L, Chen N, Feng C, Li M, Gao Y, Hu Y. Coupling enhancement of Chromium(VI) bioreduction in groundwater by phosphorus minerals. CHEMOSPHERE 2020; 240:124896. [PMID: 31563716 DOI: 10.1016/j.chemosphere.2019.124896] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/04/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Groundwater contaminated by hexavalent chromium (Cr(VI)) has posed severe threat to the environment and public health. Although heterotrophic bioremediation has been known as an efficient approach, little is explored on mineral nutrient source addition such as phosphorus minerals. In this study, the stabilization and sustainability of phosphorus minerals for providing phosphorus has been investigated, and the enhancement of Cr(VI) removal by mixed bacterial consortium coupled with phosphorus minerals was also observed and further verified, with 1.4-3.9 times K values (first-order) increase under different conditions. We demonstrated that the applied of phosphorus minerals facilitated the reduction of Cr(VI) and the removal of Cr(III), promoted the resistance of Cr(VI) and the generation of antioxidase, and engendered the evolution of microbial community structures and functional genes. These findings provide a new insight for enhancement of Cr(VI)-contaminated groundwater in-situ remediation.
Collapse
Affiliation(s)
- Linlin Ma
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yu Gao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Yutian Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
32
|
Ma L, Chen N, Feng C, Hu Y, Li M, Liu T. Feasibility and mechanism of microbial-phosphorus minerals-alginate immobilized particles in bioreduction of hexavalent chromium and synchronous removal of trivalent chromium. BIORESOURCE TECHNOLOGY 2019; 294:122213. [PMID: 31605915 DOI: 10.1016/j.biortech.2019.122213] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Chromium(VI) contaminated groundwater has become an increasingly prominent problem due to its extensive application in industry. Based on the easy-loss defect of microbial in practical application and previous research on the coupling enhancement of Cr(VI) bioreduction by phosphorus minerals, Microbial-Phosphorus minerals-Alginate (MPA) immobilized particles were proposed and investigated in this study. The feasibility of MPA immobilized particles were proved, with the higher reduction efficiency, lower phosphorus surplus, significant 94% of total Cr reduction and 85% of intragranular fixation. These superiorities were also obtained at different pH and initial Cr(VI) concentration conditions. Furthermore, the mechanisms of the enhancement of MPA were investigated from microbial level (microbial biomass, antioxidase, gene expression and microbial community analysis) and physics level (adsorption kinetic and isotherm), where the speculation that the reduction mainly took place outside the particles was proposed. This research provides a new approach for the practical application of Cr(VI)-contaminated groundwater in-situ bioremediation.
Collapse
Affiliation(s)
- Linlin Ma
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yutian Hu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Tong Liu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
33
|
Prabhakaran DC, Bolaños-Benitez V, Sivry Y, Gelabert A, Riotte J, Subramanian S. Mechanistic studies on the bioremediation of Cr(VI) using Sphingopyxis macrogoltabida SUK2c, a Cr(VI) tolerant bacterial isolate. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Shah S, Damare S. Proteomic response of marine-derived Staphylococcus cohnii #NIOSBK35 to varying Cr(vi) concentrations. Metallomics 2019; 11:1465-1471. [PMID: 31237606 DOI: 10.1039/c9mt00089e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chromium in its hexavalent state is a water-soluble and toxic element to living organisms present in the environment. However, some organisms are resistant and reduce the toxic forms of Cr(vi) to less toxic or non-toxic forms. A global proteomic analysis of Staphylococcus sp. #NIOSBK35 under different chromate concentrations (0, 100, 200 and 300 mg L-1) at different time points in its growth stages (6, 9, 12, 18, 24 and 36 h) resulted in the identification of 878 proteins. Of all the proteins expressed, 13 proteins [23 rDNA (uracil-5-) methyltransferase RumA, multidrug ABC transporter ATP binding protein, dihydroxy acid dehydratase, polysaccharide biosynthesis protein, etc.] were expressed only in the presence of chromium. 14 proteins were up-regulated in response to chromium(vi), namely, alkyl hydroperoxide reductase, ATP-dependent Zn metallopeptidase, hsp90- like protein, NAD (P)-dependent oxidoreductase, etc. Most of the proteins involved in normal cell functioning like 1-pyrroline-5-carboxylate dehydrogenase, ribosomal proteins (30S ribosomal protein S11, 30S ribosomal protein S2, and 50S ribosomal protein L32), aconitate hydratase, DNA primase, serine-tRNA ligase, phosphoenolpyruvate-protein phosphotransferase, enolase, sulfur transferase FdhD, etc. were found to be down-regulated. On grouping these proteins into their COG (cluster of orthologous groups) functional categories, they were found to be involved in translation, carbohydrate metabolism, stress proteins, amino acid transport and membrane transport mechanisms. The proteomic response given by Staphylococcus sp. #NIOSBK35 did not show expression of Cr-specific proteins, indicating a different mechanism of Cr-tolerance as the organism was able to survive and grow at high concentrations of Cr(vi).
Collapse
Affiliation(s)
- Shruti Shah
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Dona Paula, Goa 403004, India.
| | - Samir Damare
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Dona Paula, Goa 403004, India.
| |
Collapse
|
35
|
Ma L, Xu J, Chen N, Li M, Feng C. Microbial reduction fate of chromium (Cr) in aqueous solution by mixed bacterial consortium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:763-770. [PMID: 30583287 DOI: 10.1016/j.ecoenv.2018.12.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Groundwater contaminated by Cr(VI) requires effective remediation to prevent adverse environmental impacts. The biodegradation of Cr(VI) has been documented for several decades, but little remains known about the removal fate of chromium, including the main species of reductase (sites) and functional genes involved in Cr(VI) reduction in mixed bacterial consortium. Cr(VI) reduction in this study was verified to be an enzyme-mediated process. Meanwhile, Cr(VI) reduction of different cell components demonstrated that the extracellular enzyme was the main active substance, and the distribution of Cr after experiment was quantified using mass balance calculation. Furthermore, the optimal pH for reduction was 8.0, with the reduction rate decreasing with increasing initial Cr(VI) concentrations. The co-existing oxyanions had little effect on Cr(VI) reduction, while the presence of other heavy metals had a relatively significant influence. The evolutionary behavior of microbial community structure and functional genes affected by Cr(VI) were also analyzed, which provided new insights on the underlying mechanisms involved in bioreduction in this study. These results generated new understanding of the reduction mechanisms on the Cr-relevant bacterial species and genes, which would be helpful in designing strategies for the bioremediation of Cr(VI) contaminated water.
Collapse
Affiliation(s)
- Linlin Ma
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jinming Xu
- School of Sciences, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
36
|
Wu M, Li Y, Li J, Wang Y, Xu H, Zhao Y. Bioreduction of hexavalent chromium using a novel strain CRB-7 immobilized on multiple materials. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:412-420. [PMID: 30703702 DOI: 10.1016/j.jhazmat.2019.01.059] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
In this study, a novel Cr(VI) tolerant strain CRB-7 identified as Bacillus sp., was isolated and characterized for its high Cr(VI) reduction. The strain CRB-7 grew well and effectively reduced Cr(VI) under various conditions including pH (7-9), temperature (30-40 °C) and Cr(VI) concentrations (50-250 mg L-1). It almost completely reduced 120 mg L-1 Cr(VI) within 48 h under optimized condition of pH 7 and 37 °C. Further characterization by SEM-EDS and FTIR analyses indicated Cr(VI) removal mechanism of CRB-7 was predominately via bioreduction with little amount of bioadsorption. Furthermore, the strain CRB-7 based immobilized biobeads were successfully synthesized using five different porous materials as bacterial loading carrier respectively to ascertain the optimal immobilization biocomposite for Cr(VI) removal. CRB-7 cells immobilized with 3% sodium alginate (SA) and 5% humic acid (HA) exhibited the highest Cr(VI) removal efficiency. Moreover, immobilized biobeads have the advantages over free cells in being more stable and easier to reuse. High Cr(VI) reducing ability of the free and immobilized CRB-7 cells suggest the strain CRB-7, especially the B-HA-SA biocomposite is promising for remediating Cr(VI)-contaminated sites.
Collapse
Affiliation(s)
- Minghui Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Yunzhen Li
- Sichuan Academy of Environmental Sciences, Chengdu, Sichuan, 610041, China
| | - Junjie Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Ying Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Heng Xu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Yun Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
37
|
Assessment of Plant Growth Promoting and Abiotic Stress Tolerance Properties of Wheat Endophytic Fungi. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6105865. [PMID: 31032353 PMCID: PMC6457323 DOI: 10.1155/2019/6105865] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/01/2022]
Abstract
The aims of the present work were to isolate and characterize fungal endophytic communities associated with healthy wheat (Triticum aestivum L.) plants, collected from the North China. Segregated endophytes were screened for their PGP traits, abiotic stresses (heavy metals, salinity, drought, and temperature), and antibiotic sensitivity. A total of 16 endophytic fungi were isolated using the culture-dependent approach from different tissue parts of wheat plants. Based upon their internal transcribed spacer (ITS) rDNA gene sequencing, 15 out of 16 isolates were selected for further analysis. In the contemporary investigation, a number of the tested endophytes exhibited fairly good 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) (0.03±0.011 to 1.43±0.01 µmol α-KB mg−1 protein hr−1), indole acetic acid (IAA) (1.125±0.04 to36.12±0.004µgml−1), and phosphate solubilizing index (PSI) (2.08±0.03to5.16±0.36) activities. More than 30% isolates gave positive result for siderophore and ammonia tests, whereas all exhibited catalase activity but only 2 (582PDA1 and 582PDA11) produced hydrogen cyanide. Trichoderma strains showed salt, heavy metals, and drought tolerance at high levels and also exhibited resistance to all the tested antibiotics. Strain 582PDA4 was found to be the most temperature (55°C) tolerant isolate. The findings of this study indicated that the microbial endophytes isolated from wheat plants possessing a crucial function to improve plant growth could be utilized as biofertilizers or bioagents to establish a sustainable crop production system.
Collapse
|
38
|
Banerjee S, Kamila B, Barman S, Joshi SR, Mandal T, Halder G. Interlining Cr(VI) remediation mechanism by a novel bacterium Pseudomonas brenneri isolated from coalmine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:271-282. [PMID: 30583101 DOI: 10.1016/j.jenvman.2018.12.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 12/08/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
A bioremedial approach was investigated on the removal of Cr(VI) from aqueous solution using a novel chromium reducing bacteria isolated from coalmine wastewater. Cr(VI) removal efficacy of the bacterium was determined in a series of batch studies under the influence of various parameters viz., pH (1-7), temperature (20-40 °C), initial metal concentration (1-150 mg/L), agitation speed (80-150 rpm) and substrate concentration (1-5 mg/L). Oxygen involvement in the removal process was determined by different incubation conditions. Substrate consumption and its resultant biomass generation were considered for determining the viability of the microbe under varied metal concentration. The microbial isolate survived in Cr(VI) tainted solution with initial concentration of 1-140 mg/L, among which maximum remediation was found in 60 mg/L Cr(VI) loaded solution. The bacterial species also survived in other metal solution viz., Fe(II), As(V), Cu(II), Pb(II), Zn(II), Mg(II), Mn(II) apart from Cr(VI). Multiple approaches were tested to facilitate understanding of the bacterial Cr(VI) removal mechanism. The bacteria accumulated metal ions in the exponential growth phase both on and within the cell. Underlying latent factors which governed the bacterial growth and its removal activity was determined with the classical Monod equation. The isolated bacterium also survived in the bimetallic solutions with significant removal of Cr(VI). The microbial species isolated from mining area was identified as Pseudomonas brenneri by 16s rRNA molecular characterization. Hence, the isolated novel bacterium illustrated promising involvement towards bio-treatment of Cr(VI) laden wastewater.
Collapse
Affiliation(s)
- Soumya Banerjee
- Department of Chemical Engg, National Institute of Technology Durgapur, West Bengal, India
| | - Biswajit Kamila
- Department of Chemical Engg, Calcutta University, West Bengal, India
| | | | - S R Joshi
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, India
| | - Tamal Mandal
- Department of Chemical Engg, National Institute of Technology Durgapur, West Bengal, India
| | - Gopinath Halder
- Department of Chemical Engg, National Institute of Technology Durgapur, West Bengal, India.
| |
Collapse
|
39
|
Recognition of a New Cr(VI)-Reducing Strain and Study of the Potential Capacity for Reduction of Cr(VI) of the Strain. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5135017. [PMID: 30881989 PMCID: PMC6387719 DOI: 10.1155/2019/5135017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/14/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022]
Abstract
The biotransformation of hexavalent chromium [Cr(VI)] via Cr(VI)-reducing microorganisms is considered an ecofriendly approach to detoxify Cr(VI). A new Cr(VI)-reducing bacterium named Microbacterium sp. QH-2 was isolated in this study. Scanning electron microscopy (SEM) images showed protrusions on the bacterial surface of strain QH-2 after an 18 h incubation in media under 10 mM Cr(VI) treatment. Results of the experiments on the capacity of reducing Cr(VI) indicated that strain QH-2 could reduce 100% Cr(VI) less than 48-96 h. When media with 4 mM Cr(VI) were incubated, the fastest reduction rate of strain QH-2 could come up to 2.17 mg/L Cr(VI) h−1. Furthermore, strain QH-2 could reduce Cr(VI) over the pH between 7 and 10. The optimum pH to reduce Cr(VI) by strain QH-2 was 9. Strain QH-2 also exhibited a relatively high tolerance even to 20 mM Cr(VI). These results declared that strain QH-2 had the potential to detoxify Cr(VI) in the Cr(VI)-contaminated soil or effluent.
Collapse
|
40
|
Biotransformation of Cr (VI) by Newly Invented Bacterial Consortium SN6. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Ranawat P, Rawat S. Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4105-4133. [PMID: 29238927 DOI: 10.1007/s11356-017-0869-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Metal-tolerant thermophiles are inhabitants of a wide range of extreme habitats like solfatara fields, hot springs, mud holes, hydrothermal vents oozing out from metal-rich ores, hypersaline pools and soil crusts enriched with metals and other elements. The ability to withstand adverse environmental conditions, like high temperature, high metal concentration and sometimes high pH in their niche, makes them an interesting subject for understanding mechanisms behind their ability to deal with multiple duress simultaneously. Metals are essential for biological systems, as they participate in biochemistries that cannot be achieved only by organic molecules. However, the excess concentration of metals can disrupt natural biogeochemical processes and can impose toxicity. Thermophiles counteract metal toxicity via their unique cell wall, metabolic factors and enzymes that carry out metal-based redox transformations, metal sequestration by metallothioneins and metallochaperones as well as metal efflux. Thermophilic metal resistance is heterogeneous at both genetic and physiology levels and may be chromosomally, plasmid or transposon encoded with one or more genes being involved. These effective response mechanisms either individually or synergistically make proliferation of thermophiles in metal-rich habitats possibly. This article presents the state of the art and future perspectives of responses of thermophiles to metals at genetic as well as physiological levels.
Collapse
Affiliation(s)
- Preeti Ranawat
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal), Uttarakhand, India
| | - Seema Rawat
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
42
|
Bharagava RN, Mishra S. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:102-109. [PMID: 28841524 DOI: 10.1016/j.ecoenv.2017.08.040] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Present study deals with the isolation and characterization of a bacterium capable for the effective reduction of Cr(VI) from tannery wastewater. Based on the 16S rRNA gene sequence analysis, this bacterium was identified as Cellulosimicrobium sp. (KX710177). During the Cr(VI) reduction experiment performed at 50, 100, 200,and 300mg/L of Cr(VI) concentrations, the bacterium showed 99.33% and 96.98% reduction at 50 and 100mg/L at 24 and 96h, respectively. However, at 200 and 300mg/L concentration of Cr(VI), only 84.62% and 62.28% reduction was achieved after 96h, respectively. The SEM analysis revealed that bacterial cells exposed to Cr(VI) showed increased cell size in comparison to unexposed cells, which might be due to either the precipitation or adsorption of reduced Cr(III) on bacterial cells. Further, the Energy Dispersive X-ray (EDX) analysis showed some chromium peaks for cells exposed to Cr(VI), which might be either due to the presence of precipitated reduced Cr(III) on cells or complexation of Cr(III) with cell surface molecules. The bacterium also showed resistance and sensitivity against the tested antibiotics with a wide range of MIC values ranging from 250 to 800mg/L for different heavy metals. Thus, this multi-drug and multi-metal resistant bacterium can be used as a potential agent for the effective bioremediation of metal contaminated sites.
Collapse
Affiliation(s)
- Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| | - Sandhya Mishra
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| |
Collapse
|
43
|
Zhou S, Dong L, Deng P, Jia Y, Bai Q, Gao J, Xiao H. Reducing capacity and enzyme activity of chromate reductase in a ChrT-engineered strain. Exp Ther Med 2017; 14:2361-2366. [PMID: 28962168 DOI: 10.3892/etm.2017.4775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/28/2017] [Indexed: 12/17/2022] Open
Abstract
In order to remediate the metal-contaminated soil and water ecosystems with microorganisms, an engineered strain, which contained the chromate reductase ChrT gene from Serratia sp. S2, was studied in detail for its Cr (VI) reduction efficiency, optimal culture condition and chromate reductase activity. Results demonstrated that the engineered strain had a high Cr (VI) reduction rate of up to 40% at a concentration of 50 mg/l after being cultured for 48 h. Additionally, the optimal culture conditions were pH 7.0 and 37°C. Furthermore, the carbon sources and metal cations exhibited significant effects on the Cr (VI) reduction rate of the engineered bacterium. Sodium lactate, sodium acetate, Cu2+, Co2+ and Pb2+ were positively correlated with the reduction rate. Chromate reductase was soluble and presented in the cytoplasm. Furthermore, the enzymatic activity with nicotinamide adenine dinucleotide phosphate, which was as an electron donor, reached 14.83 U/mg.
Collapse
Affiliation(s)
- Simin Zhou
- Department of Health Laboratory Technology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lanlan Dong
- Department of Health Laboratory Technology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Peng Deng
- Yubei District Center for Disease Control and Prevention, Chongqing 401120, P.R. China
| | - Yan Jia
- Department of Health Laboratory Technology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qunhua Bai
- Department of Health Laboratory Technology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jieying Gao
- Department of Health Laboratory Technology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong Xiao
- Department of Health Laboratory Technology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
44
|
Upadhyay N, Vishwakarma K, Singh J, Mishra M, Kumar V, Rani R, Mishra RK, Chauhan DK, Tripathi DK, Sharma S. Tolerance and Reduction of Chromium(VI) by Bacillus sp. MNU16 Isolated from Contaminated Coal Mining Soil. FRONTIERS IN PLANT SCIENCE 2017; 8:778. [PMID: 28588589 PMCID: PMC5438964 DOI: 10.3389/fpls.2017.00778] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/25/2017] [Indexed: 05/12/2023]
Abstract
The bacterium MNU16 was isolated from contaminated soils of coal mine and subsequently screened for different plant growth promoting (PGP) activities. The isolate was further identified by 16S rRNA sequencing as Bacillus subtilis MNU16 with IAA concentration (56.95 ± 0.43 6μg/ml), siderophore unit (9.73 ± 2.05%), phosphate solubilization (285.13 ± 1.05 μg/ml) and ACC deaminase activity (116.79 ± 0.019 μmoles α-ketobutyrate/mg/24 h). Further, to evaluate the metal resistance profile of bacterium, the isolate was screened for multi-metal resistance (viz. 900 mg/L for Cr, 600 mg/L for As, 700 mg/L for Ni and 300 mg/L for Hg). Additionally, the resistance pattern of B. subtilis MNU16 against Cr(VI) (from 50 to 300 mg/L) treatments were evaluated. An enriched population was observed at 0-200 mg/L Cr(VI) concentration while slight reductions were observed at 250 and 300 mg/L Cr(VI). Further, the chromium reduction ability at 50 mg/L of Cr(VI) highlighted that the bacterium B. subtilis MNU16 reduced 75% of Cr(VI) to 13.23 mg/L within 72 h. The localization of electron dense precipitates was observed in the TEM images of B. subtilis MNU16 which is might be due to the reduction of Cr(VI) to Cr(III). The data of fluorescence microscopy and flow cytometry with respect to Cr(VI) treatments (50-300 mg/L) showed a similar pattern and clearly revealed the less toxic effect of hexavalent chromium upto 200 mg/L Cr(VI) concentration. However, toxicity effects were more pronounced at 300 mg/L Cr(VI). Therefore, the present study suggests that the plant growth promoting potential and resistance efficacy of B. subtilis MNU16 will go a long way in developing an effective bioremediation approach for Cr(VI) contaminated soils.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Biotechnology, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| | - Kanchan Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| | - Jaspreet Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| | - Mitali Mishra
- Department of Biotechnology, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| | - Vivek Kumar
- Department of Biotechnology, Himalayan Institute of Biosciences, Swami Rama Himalayan UniversityDehradun, India
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| | - Rohit K. Mishra
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| | - Devendra K. Chauhan
- D D Plant Interdisciplinary Research Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Durgesh K. Tripathi
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| |
Collapse
|
45
|
Fernández PM, Cruz EL, Viñarta SC, Castellanos de Figueroa LI. Optimization of Culture Conditions for Growth Associated with Cr(VI) Removal by Wickerhamomyces anomalus M10. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 98:400-406. [PMID: 27830289 DOI: 10.1007/s00128-016-1958-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Chromate-resistant microorganisms with the ability of reducing toxic Cr(VI) to less toxic Cr(III), are candidates for bioremediation. An alternative culture medium to reduce Cr(VI) using Wickerhamomyces anomalus M10 was optimized. Using the Plackett-Burman design, it was determined that sucrose, K2HPO4 and inoculum size had significant effects on chromate removal (i.e., reduction) at 24 h. Concentrations of these significant factors were adjusted using a complete factorial design. In this case, only the K2HPO4 effect was significant at 12 h of culture, with greater Cr(VI) removal at low concentration (1.2 g L-1). The optimum medium was validated at the fermenter scale level. Optimal culture conditions for complete removal of Cr(VI) (1 mM) were 400 rpm agitation and air flow of 1 vvm. Moreover, W. anomalus M10 completely removed consecutively added pulses of Cr(VI) (1 mM). These results show interesting characteristics from the standpoint of biotechnology because the development of a future remediation process using W. anomalus M10 can represent an efficient and highly profitable technology for removing the toxic form of Cr.
Collapse
Affiliation(s)
| | | | | | - Lucía Inés Castellanos de Figueroa
- PROIMI-CONICET, Av. Belgrano y Caseros (T4001MVB), Tucumán, Argentina
- Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
46
|
Thatoi HN, Pradhan SK. Detoxification and Bioremediation of Hexavalent Chromium Using Microbes and Their Genes: An Insight into Genomic, Proteomic and Bioinformatics Studies. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
47
|
Sathishkumar K, Murugan K, Benelli G, Higuchi A, Rajasekar A. Bioreduction of hexavalent chromium by Pseudomonas stutzeri L1 and Acinetobacter baumannii L2. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1240-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Huang H, Wu K, Khan A, Jiang Y, Ling Z, Liu P, Chen Y, Tao X, Li X. A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium. BIORESOURCE TECHNOLOGY 2016; 207:370-8. [PMID: 26901089 DOI: 10.1016/j.biortech.2016.02.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 05/02/2023]
Abstract
Combined pollutants with polycyclic aromatic hydrocarbons (PAHs) and heavy metals have been identified as toxic and unmanageable contaminates. In this work, Pseudomonas gessardii strain LZ-E isolated from wastewater discharge site of a petrochemical company degrades naphthalene and reduces Cr(VI) simultaneously. 95% of 10mgL(-1) Cr(VI) was reduced to Cr(III) while 77% of 800mgL(-1) naphthalene was degraded when strain LZ-E was incubated in BH medium for 48h. Furthermore, naphthalene promotes Cr(VI) reduction in strain LZ-E as catechol and phthalic acid produced in naphthalene degradation are able to reduce Cr(VI) abiotically. An aerated bioreactor system was setup to test strain LZ-E's remediation ability. Strain LZ-E continuously remediated naphthalene and Cr(VI) at rates of 15mgL(-1)h(-1) and 0.20mgL(-1)h(-1) of 800mgL(-1) naphthalene and 10mgL(-1) Cr(VI) addition with eight batches in 16days. In summary, strain LZ-E is a potential applicant for combined pollution remediation.
Collapse
Affiliation(s)
- Haiying Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Kejia Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Yiming Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Pu Liu
- Department of Development Biology Sciences, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Yong Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Xuanyu Tao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
49
|
Manikandan M, Kannan V, Mendoza OH, Kanimozhi M, Chun S, Pašić L. The contribution of endophytic bacteria to Albizia lebbeck-mediated phytoremediation of tannery effluent contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:77-86. [PMID: 26147743 DOI: 10.1080/15226514.2015.1064351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Toxicity of chromium often impairs the remediation capacity of plants used in phytoremediation of polluted soils. In this study, we have identified Albizia lebbeck as a prospective chromium hyperaccumulator and examined cultivable diversity of endophytes present in chromium-treated and control saplings. High numbers (22-100%) of endophytic bacteria, isolated from root, stem, and leaf tissues, could tolerate elevated (1-3 mM) concentrations of K2CrO7. 16S rRNA gene sequence-based phylogenetic analysis showed that the 118 isolates obtained comprised of 17 operational taxonomic units affiliated with the proteobacterial genera Rhizobium (18%), Marinomonas (1%), Pseudomonas (16%), and Xanthomonas (7%) but also with members of Firmicutes genera, such as Bacillus (35%) and Salinococcus (3%). The novel isolates belonging to Salinococcus and Bacillus could tolerate high K2CrO7 concentrations (3 mM) and also showed elevated activity of chromate reductase. In addition, majority (%) of the endophytic isolates also showed production of indole-3-acetic acid. Taken together, our results indicate that the innate endophytic bacterial community assists plants in reducing heavy metal toxicity.
Collapse
Affiliation(s)
- Muthu Manikandan
- a Department of Bioresource and Food Science , Konkuk University , Seoul , Korea
| | - Vijayaraghavan Kannan
- b Center for Advanced Studies in Botany , University of Madras Guindy Campus , Chennai , India
| | | | - Mahalingam Kanimozhi
- b Center for Advanced Studies in Botany , University of Madras Guindy Campus , Chennai , India
| | - Sechul Chun
- a Department of Bioresource and Food Science , Konkuk University , Seoul , Korea
| | - Lejla Pašić
- d Department of Biology , Biotechnical Faculty, University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
50
|
Manikandan M, Gopal J, Kumaran RS, Kannan V, Chun S. Purification and characterization of a highly active chromate reductase from endophytic Bacillus sp. DGV19 of Albizzia lebbeck (L.) Benth. actively involved in phytoremediation of tannery effluent-contaminated sites. Prep Biochem Biotechnol 2015; 46:192-9. [PMID: 26444299 DOI: 10.1080/10826068.2015.1068803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phytoremediation using timber-yielding tree species is considered to be the most efficient method for chromium/tannery effluent-contaminated sites. In this study, we have chosen Albizzia lebbeck, a chromium hyperaccumulator plant, and studied one of its chromium detoxification processes operated by its endophytic bacterial assemblage. Out of the four different groups of endophytic bacteria comprising Pseudomonas, Rhizobium, Bacillus, and Salinicoccus identified from A. lebbeck employed in phytoremediation of tannery effluent-contaminated soil, Bacillus predominated with three species, which exhibited not only remarkable chromium accumulation ability but also high chromium reductase activity. A chromate reductase was purified to homogeneity from the most efficient chromium accumulator, Bacillus sp. DGV 019, and the purified 34.2-kD enzyme was observed to be stable at temperatures from 20°C to 60°C. The enzyme was active over a wide range of pH values (4.0-9.0). Furthermore, the enzyme activity was enhanced with the electron donors NADH, followed by NADPH, not affected by glutathione and ascorbic acid. Cu(2+) enhanced the activity of the purified enzyme but was inhibited by Zn(2+) and etheylenediamine tetraacetic acid (EDTA). In conclusion, due to its versatile adaptability the chromate reductase can be used for chromium remediation.
Collapse
Affiliation(s)
- Muthu Manikandan
- a Department of Bioresource and Food Science , Konkuk University , Seoul , South Korea
| | - Judy Gopal
- a Department of Bioresource and Food Science , Konkuk University , Seoul , South Korea
| | | | - Vijayaraghavan Kannan
- c Center for Advanced Studies in Botany , University of Madras, Guindy Campus , Chennai , India
| | - Sechul Chun
- a Department of Bioresource and Food Science , Konkuk University , Seoul , South Korea
| |
Collapse
|