1
|
Guarnieri A, Triunfo M, Ianniciello D, Tedesco F, Salvia R, Scieuzo C, Schmitt E, Capece A, Falabella P. Insect-derived chitosan, a biopolymer for the increased shelf life of white and red grapes. Int J Biol Macromol 2024; 275:133149. [PMID: 38945705 DOI: 10.1016/j.ijbiomac.2024.133149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
Post-harvest water loss and microbial infections are the root cause of the rapid deterioration of fresh fruit after the picking process, with both environmental and economic implications. Therefore, it is crucial to find solutions that can increase the shelf life of fresh fruits. For this purpose, edible coatings, naturally derived and non-synthetic, are acknowledged as a safe strategy. Among polymeric coatings, chitosan is one of the most effective. In this work, this biopolymer, produced from chitin extracted from Hermetia illucens, an alternative and more sustainable source than crustaceans (the commercial one), was exploited to extend the shelf life of white and red grapes. Chitosan from H. illucens pupal exuviae, at 0.5 % and 1 % concentrations, was applied on both grapes, which were then stored at room temperature or 4 °C. The study of chemical-physical parameters such as weight loss, Total Soluble Solids and pH, demonstrated the effectiveness of the biopolymer, even better than crustacean chitosan. Moreover, the analysis of nutraceutical properties has demonstrated that this natural edible coating improves the quality of grapes, with beneficial effects for human health. The obtained results, therefore, confirmed the viability of using insect-chitosan as an alternative to crustaceans for the preservation of fresh food.
Collapse
Affiliation(s)
- Anna Guarnieri
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Micaela Triunfo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Dolores Ianniciello
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Francesco Tedesco
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Eric Schmitt
- Protix B.V., Industriestaat 3, NC 5107 Dongen, the Netherlands
| | - Angela Capece
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy; Spinoff XFlies s.r.l, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| |
Collapse
|
2
|
Aonishi K, Miyao S, Yokoi L, Kitaoka N, Koyama K, Matsuura H, Koseki S. Isolation and Identification of the Antibacterial Compounds Produced by Maillard Reaction of Xylose with Phenylalanine or Proline. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16010-16017. [PMID: 38965162 DOI: 10.1021/acs.jafc.4c04911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Maillard reaction products (MRPs) of xylose with phenylalanine and xylose with proline exhibit high antibacterial activity. However, the active antibacterial compounds in MRPs have not yet been identified or isolated. This study aimed to isolate the active compounds in the two antibacterial MRPs. The organic layer of the MRP solution was separated and purified using silica gel chromatography and high-performance liquid chromatography. The chemical structures of the isolated compounds were determined by mass spectrometry and nuclear magnetic resonance spectroscopy. The compounds inhibited the growth of Bacillus cereus and Salmonella Typhimurium at 25 °C for 7 days at a concentration of 0.25 mM. Furthermore, the isolated compounds inhibited the growth of naturally occurring microflora of lettuce and chicken thighs at 25 °C for 2 days at a concentration of 0.5-1.0 mM. The antibacterial compounds found in MRPs demonstrated a wide range of effectiveness and indicated their potential as alternative preservatives.
Collapse
Affiliation(s)
- Kazuho Aonishi
- Graduate school of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Shungo Miyao
- Graduate school of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Lisa Yokoi
- Graduate school of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Naoki Kitaoka
- Research faculty of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Kento Koyama
- Research faculty of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Hideyuki Matsuura
- Research faculty of agriculture, Hokkaido University, Sapporo 0608589, Japan
| | - Shigenobu Koseki
- Research faculty of agriculture, Hokkaido University, Sapporo 0608589, Japan
| |
Collapse
|
3
|
Rahmanzadeh-Ishkeh S, Shirzad H, Tofighi Z, Fattahi M, Ghosta Y. Exogenous melatonin prolongs raspberry postharvest life quality by increasing some antioxidant and enzyme activity and phytochemical contents. Sci Rep 2024; 14:11508. [PMID: 38769439 PMCID: PMC11106078 DOI: 10.1038/s41598-024-62111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
There is a growing trend towards enhancing the post-harvest shelf life and maintaining the nutritional quality of horticultural products using eco-friendly methods. Raspberries are valued for their diverse array of phenolic compounds, which are key contributors to their health-promoting properties. However, raspberries are prone to a relatively short post-harvest lifespan. The present study aimed to investigate the effect of exogenous melatonin (MEL; 0, 0.001, 0.01, and 0.1 mM) on decay control and shelf-life extension. The results demonstrated that MEL treatment significantly reduced the fruit decay rate (P ≤ 0.01). Based on the findings, MEL treatment significantly increased titratable acidity (TA), total phenolics content (TPC), total flavonoid content (TFC), and total anthocyanin content (TAC). Furthermore, the MEL-treated samples showed increased levels of rutin and quercetin content, as well as antioxidant activity as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reduction activity potential (FRAP). Additionally, the samples exhibited higher levels of phenylalanine ammonia-lyase (PAL) and catalase (CAT) enzymes compared to the control samples. Moreover, the levels of pH, total soluble solids (TSS), and IC50 were decreased in the MEL-treated samples (P ≤ 0.01). The highest amount of TA (0.619 g/100 ml juice), rutin (16.722 µg/ml juice) and quercetin (1.467 µg/ml juice), and PAL activity (225.696 nm/g FW/min) was observed at 0.001 mM treatment, while, the highest amount of TAC (227.235 mg Cy-g/100 ml juice) at a concentration of 0.01 mM and CAT (0.696 u/g FW) and TAL activities (9.553 nm/100 g FW) at a concentration of 0.1 mM were obtained. Considering the lack of significant differences in the effects of melatonin concentrations and the low dose of 0.001 mM, this concentration is recommended for further research. The hierarchical cluster analysis (HCA) and principal component analysis (PCA) divided the treatments into three groups based on their characteristics. Based on the Pearson correlation between TPC, TFC, TAC, and TAA, a positive correlation was observed with antioxidant (DPPH and FRAP) and enzyme (PAL and CAT) activities. The results of this study have identified melatonin as an eco-friendly compound that enhances the shelf life of raspberry fruits by improving phenolic compounds, as well as antioxidant and enzyme activities.
Collapse
Affiliation(s)
| | - Habib Shirzad
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Zahra Tofighi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Fattahi
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Youbert Ghosta
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
4
|
Liu G, Chen B, Liu H, Wang X, Zhang Y, Wang C, Liu C, Zhong Y, Qiao Y. Effects of Hydroxyethyl Cellulose and Sulfated Rice Bran Polysaccharide Coating on Quality Maintenance of Cherry Tomatoes during Cold Storage. Foods 2023; 12:3156. [PMID: 37685089 PMCID: PMC10486926 DOI: 10.3390/foods12173156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Cherry tomatoes are easily damaged due to their high moisture content. A composite coating was developed to delay deterioration and prolong storage by mixing antibacterial sulfated rice bran polysaccharides (SRBP) and edible hydroxyethyl cellulose (HEC) with film-forming properties. The effects of HEC, HEC-5% SRBP, and HEC-20% SRBP preservative coatings on the maintenance of the quality of cherry tomatoes (LycopersivonesculentumMill., Xiaohuang F2) during cold storage were investigated. The HEC-20% SRBP coating significantly reduced tomato deterioration and weight loss, delayed firmness loss, decreased polyphenol oxidase activity, and increased peroxidase activity. Furthermore, cherry tomatoes treated with HEC-20% SRBP maintained high levels of titratable acid, ascorbic acid, total phenols, and carotenoids. Cherry tomatoes coated with HEC-SRBP also had higher levels of volatile substances and a greater variety of these substances compared to uncoated tomatoes. In conclusion, the HEC-20% SRBP coating effectively delayed deterioration and preserved cherry tomatoes' nutrient and flavor qualities during postharvest cold storage, suggesting it could be a novel food preservation method.
Collapse
Affiliation(s)
- Guige Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Bingjie Chen
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Hongru Liu
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Xiao Wang
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Yi Zhang
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Cunfang Wang
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Chenxia Liu
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| | - Yaoguang Zhong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Yongjin Qiao
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (B.C.); (H.L.); (X.W.); (Y.Z.); (C.W.); (C.L.)
| |
Collapse
|
5
|
Chen Y, Liu Y, Dong Q, Xu C, Deng S, Kang Y, Fan M, Li L. Application of functionalized chitosan in food: A review. Int J Biol Macromol 2023; 235:123716. [PMID: 36801297 DOI: 10.1016/j.ijbiomac.2023.123716] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Environmental and sustainability issues have received increasing attention in recent years. As a natural biopolymer, chitosan has been developed as a sustainable alternative to traditional chemicals such as food preservation, food processing, food packaging, and food additives due to its abundant functional groups and excellent biological functions. This review analyzes and summarizes the unique properties of chitosan, with a particular focus on the mechanism of action for its antibacterial and antioxidant properties. This provides a lot of information for the preparation and application of chitosan-based antibacterial and antioxidant composites. In addition, chitosan is modified by physical, chemical and biological modifications to obtain a variety of functionalized chitosan-based materials. The modification not only improves the physicochemical properties of chitosan, but also enables it to have different functions and effects, showing promising applications in multifunctional fields such as food processing, food packaging, and food ingredients. In the current review, applications, challenges, and future perspectives of functionalized chitosan in food will be discussed.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Yong Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qingfeng Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shanggui Deng
- Engineering Research Center of Food Thermal Processing Technology, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, Zhejiang, China
| | - Yongfeng Kang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China.
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
Zhou Y, Hu L, Chen Y, Liao L, Li R, Wang H, Mo Y, Lin L, Liu K. The combined effect of ascorbic acid and chitosan coating on postharvest quality and cell wall metabolism of papaya fruits. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Karthik C, Caroline DG, Pandi Prabha S. Nanochitosan augmented with essential oils and extracts as an edible antimicrobial coating for the shelf life extension of fresh produce: a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Saeed M, Azam M, Ahmad T, Akhtar S, Hussain M, Nasir S, Ain QU. Utilization of pomegranate peel extract as antifungal coating agent against
Fusarium oxysporum
on tomatoes. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Muhammad Saeed
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Muhammad Azam
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Tanveer Ahmad
- Department of Horticulture, MNS‐University of Agriculture Multan Punjab Pakistan
| | - Saeed Akhtar
- Institute of Food Science & Nutrition Bahauddin Zakariya University Multan Punjab Pakistan
| | - Majid Hussain
- Institute of Food Science & Nutrition Bahauddin Zakariya University Multan Punjab Pakistan
| | - Saba Nasir
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Qurat Ul Ain
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
9
|
Wang X, Zhang X, Sun M, Wang L, Zou Y, Fu L, Han C, Li A, Li L, Zhu C. Impact of vanillin on postharvest disease control of apple. Front Microbiol 2022; 13:979737. [PMID: 36090122 PMCID: PMC9456617 DOI: 10.3389/fmicb.2022.979737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Apple fruits are susceptible to infection by postharvest fungal pathogens, which may cause fruit decay and severe economic losses. This study investigated the antifungal spectrum of vanillin against common decay pathogens of apple and explored the antifungal mechanisms of vanillin in vitro. In vivo experiments were carried out to evaluate the effects of vanillin on apple postharvest disease control and fruit quality. Moreover, the induced resistance mechanism of vanillin on apple fruit was preliminarily explored. The results showed that vanillin has broad-spectrum antifungal effects, especially on Alternaria alternata. Vanillin could significantly inhibit the growth rate, mycelium biomass, and spore germination of pathogenic fungi by increasing the cell membrane permeability and lipid peroxidation. Importantly, vanillin treatment reduced the incidence of apple decay caused by A. alternata and Penicillium expansum, and contributed to improve fruit quality. Further studies indicated that vanillin could induce elevation in the activities of defense-related enzymes in apple fruit, such as phenylalanine ammonia-lyase (PAL), chitinase (CHI) and β-1,3-glucanase (β-1,3-GA), and increase total phenols and flavonoids contents. Generally, these results suggest that vanillin may contribute to the induced resistance of apple fruits to pathogenic fungi. To conclude, the results of this research provide theoretical foundations for the application of vanillin in the control of apple postharvest decay caused by fungal pathogens.
Collapse
Affiliation(s)
- Xiangyu Wang
- College of Life Science, Liaoning University, Shenyang, China
| | - Xuemin Zhang
- College of Life Science, Liaoning University, Shenyang, China
| | - Meng Sun
- College of Life Science, Liaoning University, Shenyang, China
| | - Li Wang
- College of Life Science, Liaoning University, Shenyang, China
| | - Yaoyuan Zou
- College of Life Science, Liaoning University, Shenyang, China
| | - Lin Fu
- College of Life Science, Liaoning University, Shenyang, China
| | - Chuanyu Han
- College of Life Science, Liaoning University, Shenyang, China
| | - Anqing Li
- College of Life Science, Liaoning University, Shenyang, China
| | - Limei Li
- Jilin Provincial Academy of Forestry Science, Changchun, China
- Limei Li,
| | - Chunyu Zhu
- College of Life Science, Liaoning University, Shenyang, China
- *Correspondence: Chunyu Zhu,
| |
Collapse
|
10
|
Jiang Z, Wang J, Xiang D, Zhang Z. Functional Properties and Preservative Effect of P-Hydroxybenzoic Acid Grafted Chitosan Films on Fresh-Cut Jackfruit. Foods 2022; 11:foods11091360. [PMID: 35564083 PMCID: PMC9100193 DOI: 10.3390/foods11091360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
In the present study, p-hydroxybenzoic acid-grafted chitosan (PA-g-CS) conjugates with different grafting degrees were synthesized by a free radical-regulated grafting approach. The conjugates were further developed into films by casting, and their characteristics and preservative effects on fresh-cut jackfruit were evaluated. Compared to the CS film, the PA-g-CS film showed comprehensive performance improvements, including enhancements of water solubility, anti-ultraviolet capacity, antioxidation, and antibacterial activity. Moreover, compared with CS film, some appreciable and favorable changes of physical properties were observed in the PA-g-CS films, which included water vapor permeability, oxygen permeability, surface morphology, moisture content, and mechanical intensity. Furthermore, compared to CS alone, the application of PA-g-CS films to fresh-cut jackfruit exerted a beneficial effect on the quality of products, as indicated by the inhibition of weight loss, softening, and membrane damage, the maintenance of soluble solids and ascorbic acids contents, as well as a reduced bacterial count and a higher sensory score. Among these PA-g-CS films, the best preservation effect was achieved with the highest degree of grafting (PA-g-CS III). The results suggested that the PA-g-CS film has the potential to be explored as a new type of packaging material for the preservation of fresh-cut fruits and vegetables.
Collapse
Affiliation(s)
- Zhiguo Jiang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (J.W.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China
| | - Jiaolong Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (J.W.)
| | - Dong Xiang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (J.W.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China
- Correspondence: (D.X.); (Z.Z.)
| | - Zhengke Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; (Z.J.); (J.W.)
- Correspondence: (D.X.); (Z.Z.)
| |
Collapse
|
11
|
Changes in the quality of fruits of four sweet cherry cultivars grown under rain-shelter cultivation during storage at room temperature. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ali EF, Hassan FAS, Al‐Harbi MS, Ibrahim OHM, Abdul‐Hafeez EY, Moussa MM. Impact of chitosan nanoparticles edible coating on shelf‐life extension and postharvest quality of coriander herb. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Esmat F. Ali
- Department of Biology College of Science Taif University Taif Saudi Arabia
- Department of Horticulture (Floriculture) Faculty of Agriculture Assuit University Assiut Egypt
| | - Fahmy A. S. Hassan
- Department of Horticulture Faculty of Agriculture Tanta University Tanta Egypt
| | | | - Omer H. M. Ibrahim
- Department of Horticulture (Floriculture) Faculty of Agriculture Assuit University Assiut Egypt
- Department of Arid Land Agriculture Faculty of Meteorology, Environment and Arid Land Agriculture King Abdulaziz University Jeddah Saudi Arabia
| | - Essam Y. Abdul‐Hafeez
- Department of Horticulture (Floriculture) Faculty of Agriculture Assuit University Assiut Egypt
| | - Mohamed M. Moussa
- Department of Horticulture Faculty of Agriculture Menoufia University Shibin Al Kawm Egypt
| |
Collapse
|
13
|
Siddique Z, Malik AU, Asi MR, Anwar R, Inam Ur Raheem M. Sonolytic-ozonation technology for sanitizing microbial contaminants and pesticide residues from spinach (Spinacia oleracea L.) leaves, at household level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52913-52924. [PMID: 34019209 DOI: 10.1007/s11356-021-14203-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Increasing foodborne illnesses linked with the consumption of contaminated food pose serious health risks. Fresh fruits and vegetables can potentially be contaminated (microbes/chemicals) throughout the supply chain. Various chemical and thermal approaches have been used in the past to decontaminate fresh produce, which have had a negative impact on commodities and health hazardous. Henceforth, this conducted study was aim to test an ecofriendly/green decontamination technique, for impact on food safety and quality of spinach. Freshly harvested spinach leaves were treated with a combined application of ozone and ultrasound (O3+US) for different times (5, 10, and 15 min) in an aqueous medium. Different food safety (microbes and pesticide residues) and quality (VC content, TSS, TA, and weight loss) parameters were studied in comparison with tap washed samples. Total plate count method was used to evaluate microbial contamination and pesticide residues were determined by HPLC. There was gradual decrease in contaminants with increase in O3+US treatment time. Sonolytic-ozonation 10 and 15 min treatments were found optimal in reduction of microbial counts (TPC, E. coli, Salmonella, and Listeria) and pesticide residues (10 min 94.04% and 15 min 99.77% residue reduction). However, chlorophyll degradation was observed in 15 min treated sample under 1-week household storage. There was no significant detrimental impact on quality parameters of spinach during 1 week of storage under refrigerated conditions. So, it was concluded that O3+US treatment for 10 min can be employed for microbial and chemical decontamination in spinach leaves at household level without any negative effect on its quality up to 1 week under refrigerator storage (5 ± 2 ○C).
Collapse
Affiliation(s)
- Zarghona Siddique
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Aman Ullah Malik
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Raheel Anwar
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Inam Ur Raheem
- Department of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
14
|
Gohari G, Zareei E, Kulak M, Labib P, Mahmoudi R, Panahirad S, Jafari H, Mahdavinia G, Juárez-Maldonado A, Lorenzo JM. Improving the Berry Quality and Antioxidant Potential of Flame Seedless Grapes by Foliar Application of Chitosan-Phenylalanine Nanocomposites (CS-Phe NCs). NANOMATERIALS 2021; 11:nano11092287. [PMID: 34578605 PMCID: PMC8468444 DOI: 10.3390/nano11092287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022]
Abstract
The production and sustainability of grape berries with high quality and health-promoting properties is a major goal. In this regard, nano-engineered materials are being used for improving the quality and marketability of berries. In this study, we investigated the potential role of chitosan–phenylalanine nanocomposites (CS–Phe NCs) in improving the quality of Flame Seedless (Vitis vinifera L.) grape berries, such as titratable acidity (TA), pH, total soluble solids (TSS), ascorbic acid, total phenolics, total flavonoids, anthocyanin, 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging activity, and phenylalanine ammonia-lyase (PAL) activity. In this context, grape berries collected in two growing seasons (2018–2019) were screened. Regarding the experimental design, the treatments included chitosan at a 0.5% concentration (CS 0.5%), phenylalanine at 5 mM and 10 mM concentrations (Phe 5 mM and Phe 10 mM), and chitosan–phenylalanine nanocomposites (CS–Phe NCs) at 5 mM and 10 mM concentrations. The lowest TA was recorded in grape berries treated with CS–Phe NCs with a 10 mM concentration. However, treatments enhanced with TSS, which reached the highest value with 10 mM of CS–Phe NCs, were reflected as the highest ratio of TSS/TA with 10 mM of CS–Phe NC treatment. Nanocomposites (NCs) also increased pH values in both study years compared to the control. Similarly, the ascorbic acid and total phenolic content increased in response to NP treatment, reaching the highest value with 5 mM and 10 mM of CS–Phe NCs in 2018 and 2019, respectively. The highest flavonoid content was observed with 5 mM of CS–Phe NCs in both study years. In addition, the anthocyanin content increased with 5 and 10 mM of CS–Phe NCs. PAL activity was found to be the highest with 5 mM of CS–Phe NCs in both study years. In addition, in accordance with the increase in PAL activity, increased total phenolics and anthocyanin, and higher DPPH radical scavenging activity of the grapes were recorded with the treatments compared to the control. As deduced from the findings, the coating substantially influenced the metabolic pathway, and the subsequent alterations induced by the treatments were notably appreciated due to there being no adverse impacts perceived.
Collapse
Affiliation(s)
- Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh 55181-83111, Iran
- Correspondence: (G.G.); (A.J.-M.); (J.M.L.)
| | - Elnaz Zareei
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj 66177-10175, Iran;
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, Igdir 18900, Turkey;
| | - Parisa Labib
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 55181-83111, Iran; (P.L.); (G.M.)
| | - Roghayeh Mahmoudi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran;
| | - Hessam Jafari
- Department of Organic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran;
| | - Gholamreza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh 55181-83111, Iran; (P.L.); (G.M.)
| | - Antonio Juárez-Maldonado
- Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
- Correspondence: (G.G.); (A.J.-M.); (J.M.L.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: (G.G.); (A.J.-M.); (J.M.L.)
| |
Collapse
|
15
|
Chitosan-Phenylalanine Nanoparticles (Cs-Phe Nps) Extend the Postharvest Life of Persimmon (Diospyros kaki) Fruits under Chilling Stress. COATINGS 2021. [DOI: 10.3390/coatings11070819] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There are high levels of damage imposed on persimmon fruit postharvest, especially after storing it in cold storage, which causes chilling injury (CI). To reduce this stress on the fruit, the conventional way is to use chemical treatments. Since there is a limitation in the use of chemical materials, it is necessary to apply non-harmful treatments to decrease chilling injury and maintain the quality of persimmon in cold storage. The aim of this study is to investigate the effects of chitosan-loaded phenylalanine nanoparticles (Cs-Phe NPs) (2.5 and 5 mM) on physiochemical and quality factors of persimmon (Diospyros kaki) during 45 days of storage at 4 °C (38 °F) and evaluate the impact of Cs-Phe NPs on the preserving quality in order to reduce the chilling injury of this fruit. The experiment was conducted using a completely randomized design with three replications. Treatments were applied at 15, 30, and 45 days after storage at 4 °C with ≥90% relative humidity. The size of Cs-Phe NPs was less than 100 nm, approximately. The results showed that application of 5 mM of Cs-Phe NPs delayed the negative effects of chilling stress and enhanced antioxidant capacity, firmness, and total soluble solids of persimmon fruit. Lower H2O2 and malonaldehyde (MDA) accumulation along with higher soluble tannin and total carotenoid accumulation in persimmon fruit treated with 5 mM Cs-Phe NPs was also observed. Fruit coated using Cs-Phe NPs in both concentrations (2.5 and 5 mM) showed the highest antioxidant enzyme activity for superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) and the lowest for polyphenol oxidase (PPO) and chilling injury during storage. According to our results, 5 mM of Cs-Phe NPs could be considered as the best treatment under chilling-stress conditions.
Collapse
|
16
|
Shirzad H, Alirezalu A, Alirezalu K, Yaghoubi M, Ghorbani B, Pateiro M, Lorenzo JM. Effect of Aloysia citrodora Essential Oil on Biochemicals, Antioxidant Characteristics, and Shelf Life of Strawberry Fruit during Storage. Metabolites 2021; 11:metabo11050256. [PMID: 33919369 PMCID: PMC8143293 DOI: 10.3390/metabo11050256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 01/19/2023] Open
Abstract
Strawberry fruits are highly susceptible to cold burning, resulting in low storage periods at low temperatures. Plant extracts or essential oils (EOs) can potentially be used as preservatives in fruits throughout the refrigerated period. In the present study, the biochemicals, antioxidant characteristics, and shelf life of treated strawberries with Aloysia citrodora essential oil (ACEOs) were evaluated during keeping time. The treatments were produced as follows: T1, control; T2, 250 ppm ACEOs; T3, 500 ppm ACEOs; and T4, 750 ppm ACEOs. Total soluble solids (TSS), weight loss, titratable acidity (TA), antioxidant activity (DPPH assay), total phenolic (TPC), flavonoid and anthocyanin contents (TFC), and enzymes activity (peroxidase and ascorbate peroxidase) were evaluated during the refrigerated period (5 °C with relative humidity of 85–90% for 20 days). The results revealed that weight loss and TA were reduced in all treatments during storage, being that the rates were lower in samples treated with ACEOs. TPC, TFC, TSS, antioxidant, and enzymes activity were higher in treated fruits than control.
Collapse
Affiliation(s)
- Habib Shirzad
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia P.O. Box 165-5715944931, Iran; (H.S.); (A.A.); (B.G.)
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia P.O. Box 165-5715944931, Iran; (H.S.); (A.A.); (B.G.)
| | - Kazem Alirezalu
- Department of Food Science and Technology, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Tabriz 51666, Iran;
| | - Milad Yaghoubi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz 51666, Iran;
| | - Bahareh Ghorbani
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia P.O. Box 165-5715944931, Iran; (H.S.); (A.A.); (B.G.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
17
|
Perdana MI, Ruamcharoen J, Panphon S, Leelakriangsak M. Antimicrobial activity and physical properties of starch/chitosan film incorporated with lemongrass essential oil and its application. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110934] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Effect of Chitosan Nanoemulsion on Enhancing the Phytochemical Contents, Health-Promoting Components, and Shelf Life of Raspberry (Rubus sanctus Schreber). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052224] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Due to high water content and perishability, the raspberry fruit is sensitive to postharvest fungal contamination and postharvest losses. In this study, chitosan was used as an edible coating to increase the storage of raspberries, and nanotechnology was used to increase chitosan efficiency. The fruit was treated with an emulsion containing nanoparticles of chitosan (ECNPC) at 0, 2.5, and 5 g L−1, and stored for 9 d. Decay extension rate, fruit phytochemical contents, including total phenolics, flavonoids, and anthocyanin content, phenylalanine ammonia-lyase (PAL), and guaiacol-peroxidase enzymes and antioxidant activity, and other qualitative properties were evaluated during and at the end of storage. After 9 d of storage, the highest amounts of phenolics compounds, PAL enzyme activity, and antioxidant activity were observed in fruit treated with ECNPC at 5 g L−1. The highest levels of total phenol, PAL enzyme activity, and antioxidant activity were 57.53 g L−1, 118.88 μmol/min trans-cinnamic acid, and 85.16%, respectively. ECNPC can be considered as an effective, safe, and environmentally friendly method for enhancing fruit phytochemical contents, postharvest life, and health-promoting capacity.
Collapse
|
19
|
Packham's Triumph Pears ( Pyrus communis L.) Post-Harvest Treatment during Cold Storage Based on Chitosan and Rue Essential Oil. Molecules 2021; 26:molecules26030725. [PMID: 33573272 PMCID: PMC7866551 DOI: 10.3390/molecules26030725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/10/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Pears (Pyrus communis L.) cv. Packham’s Triumph are very traditional for human consumption, but pear is a highly perishable climacteric fruit with a short shelf-life affected by several diseases with a microbial origin. In this study, a protective effect on the quality properties of pears was evidenced after the surface application of chitosan-Ruta graveolens essential oil coatings (CS + RGEO) in four different concentrations (0, 0.5, 1.0 and 1.5 %, v/v) during 21 days of storage under 18 °C. After 21 days of treatment, a weight loss reduction of 10% (from 40.2 ± 5.3 to 20.3 ± 3.9) compared to the uncoated pears was evident with CS + RGEO 0.5%. All the fruits’ physical-chemical properties evidenced a protective effect of the coatings. The maturity index increased for all the treatments. However, the pears with CS + RGEO 1.5% were lower (70.21) than the uncoated fruits (98.96). The loss of firmness for the uncoated samples was higher compared to the coated samples. The pears’ most excellent mechanical resistance was obtained with CS + RGEO 0.5% after 21 days of storage, both for compression resistance (7.42 kPa) and force (22.7 N). Microbiological studies demonstrated the protective power of the coatings. Aerobic mesophilic bacteria and molds were significantly reduced (in 3 Log CFU/g compared to control) using 15 µL/mL of RGEO, without affecting consumer perception. The results presented in this study showed that CS + RGEO coatings are promising in the post-harvest treatment of pears.
Collapse
|
20
|
Functional properties of chitosan derivatives obtained through Maillard reaction: A novel promising food preservative. Food Chem 2021; 349:129072. [PMID: 33556729 DOI: 10.1016/j.foodchem.2021.129072] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 01/17/2023]
Abstract
This review provides an insight about the functional properties of chitosan obtained through Maillard reaction to enhance the shelf life and food quality. Maillard reaction is a promising and safe method to obtain commercial water-soluble chitosan's through Schiff base linkage and Amadori or Heyns rearrangement. Likewise, chitosan derivatives exert an enhanced antimicrobial, antioxidant, and emulsifying properties due to the development of Maillard reaction products (MRPs) like reductones and melanoidins. Additionally, the application of chitosan-MRPs effectively inhibited the microbial spoilage, reduced lipid oxidative, and extended the shelf life and the quality of fresh food products. Therefore, understand the potential of chitosan-MRPs derivatives as a functional biomaterial to improve the postharvest quality and extending the shelf life of food products will scale up its application as a food preservative.
Collapse
|
21
|
Rajestary R, Landi L, Romanazzi G. Chitosan and postharvest decay of fresh fruit: Meta‐analysis of disease control and antimicrobial and eliciting activities. Compr Rev Food Sci Food Saf 2020; 20:563-582. [DOI: 10.1111/1541-4337.12672] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Razieh Rajestary
- Department of Agricultural, Food and Environmental Sciences Marche Polytechnic University Via Brecce Bianche 10 Ancona Italy
| | - Lucia Landi
- Department of Agricultural, Food and Environmental Sciences Marche Polytechnic University Via Brecce Bianche 10 Ancona Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences Marche Polytechnic University Via Brecce Bianche 10 Ancona Italy
| |
Collapse
|
22
|
NAKILCIOğLU-TAş E, ÖTLEş S. Kinetics of colour and texture changes of button mushrooms (Agaricus bisporus) coated with chitosan during storage at low temperature. AN ACAD BRAS CIENC 2020; 92:e20181387. [PMID: 32556048 DOI: 10.1590/0001-3765202020181387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 07/18/2019] [Indexed: 01/02/2023] Open
Abstract
Kinetics of color and texture changes in coated button mushrooms were investigated as a function of coating agent's rate (1%, 2% and 3% w/v chitosan). The inner and outer surface colours of mushrooms in terms of CIELAB parameters L*, a*, b*, C*, ° h, ∆E, and Browning Index (BI), and their textural properties in terms of firmness were evaluated. The color values on both sides of the mushrooms except for L* values increased and their firmness decreased with the coating treatment. The color changes of the inner and outer surface of mushrooms and their texture changes followed zero-order reaction models with higher R2 (0.9987-0.9999) and lower RMSE (4.8448 x 10-5-1.6690) and χ2 values (3.9120 x 10-9-4.6425). The 2% chitosan solution was determined to be the most effective coating agent among the coating agents used to extend the post-harvest shelf life by optimally preserving the color parameters of the mushrooms together with their texture properties.
Collapse
Affiliation(s)
- Emine NAKILCIOğLU-TAş
- Ege University, Department of Food Engineering, Faculty of Engineering, 35040 Izmir, Turkey
| | - Semih ÖTLEş
- Ege University, Department of Food Engineering, Faculty of Engineering, 35040 Izmir, Turkey
| |
Collapse
|
23
|
Priyadarshi R, Rhim JW. Chitosan-based biodegradable functional films for food packaging applications. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102346] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Fang X, Duan Q, Wang Z, Li F, Du J, Ke W, Liu D, Beier RC, Guo X, Zhang Y. Products of Lactobacillus delbrueckii subsp. bulgaricus Strain F17 and Leuconostoc lactis Strain H52 Are Biopreservatives for Improving Postharvest Quality of 'Red Globe' Grapes. Microorganisms 2020; 8:E656. [PMID: 32365911 PMCID: PMC7285285 DOI: 10.3390/microorganisms8050656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
'Red Globe' table grapes are large, edible, seeded fruit with firm flesh that tastes good, but can have poor postharvest shelf-life. This study was conducted to explore the effects of products of Lactobacillus delbrueckii subsp. bulgaricus strain F17 and Leuconostoc lactis strain H52 on 'Red Globe' table grapes for the enhancement of shelf-life and improvement of grape quality characteristics during postharvest storage. Strains F17 and H52 were isolated from traditional fermented yak milk obtained in the Qinghai-Tibetan Plateau. Samples from untreated and treated grapes were analyzed for physicochemical, biochemical, and microbiological properties (weight loss, decay rate, pH, total soluble solids content, titratable acidity, total phenols, sensory evaluation, and microbial growth) for 20 days. The results demonstrated that supernatants from both strains significantly reduced weight loss, decay rate, aerobic mesophilic bacteria, and coliform bacteria counts; delayed maturity and senescence of table grapes; and reduced titratable acidity and total phenols. However, the supernatant of strain F17 was more effective and resulted in better sensory evaluations and had a significant inhibitory effect on yeast and molds by day 5. Meanwhile, the supernatant from strain H52 had a significant inhibitory effect on fungi over the whole storage period. In addition, the results of the Pearson correlation analysis suggested that weight loss, decay rate, total soluble solids content, and microorganisms were highly correlated with the sensory evaluation data and quality of postharvest grapes when treated with the products of strain F17. On the basis of these data and sensory organoleptic qualities, the supernatant containing products from strain F17 had the best potential as a biopreservative to improve the postharvest quality of 'Red Globe' table grapes.
Collapse
Affiliation(s)
- Xiang Fang
- College of Public Health, Lanzhou University, Lanzhou 730000, China; (X.F.); (Z.W.); (F.L.); (D.L.)
| | - Qinchun Duan
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Q.D.); (J.D.); (W.K.); (X.G.)
| | - Zhuo Wang
- College of Public Health, Lanzhou University, Lanzhou 730000, China; (X.F.); (Z.W.); (F.L.); (D.L.)
| | - Fuyun Li
- College of Public Health, Lanzhou University, Lanzhou 730000, China; (X.F.); (Z.W.); (F.L.); (D.L.)
| | - Jianxiong Du
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Q.D.); (J.D.); (W.K.); (X.G.)
| | - Wencan Ke
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Q.D.); (J.D.); (W.K.); (X.G.)
| | - Diru Liu
- College of Public Health, Lanzhou University, Lanzhou 730000, China; (X.F.); (Z.W.); (F.L.); (D.L.)
| | - Ross C. Beier
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA;
| | - Xusheng Guo
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Q.D.); (J.D.); (W.K.); (X.G.)
| | - Ying Zhang
- College of Public Health, Lanzhou University, Lanzhou 730000, China; (X.F.); (Z.W.); (F.L.); (D.L.)
| |
Collapse
|
25
|
Goffi V, Magri A, Botondi R, Petriccione M. Response of antioxidant system to postharvest ozone treatment in 'Soreli' kiwifruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:961-968. [PMID: 31591725 DOI: 10.1002/jsfa.10055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/10/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Among the challenges for postharvest researchers is that of understanding the physiological and biochemical pathways associated with postharvest fruit decay. Fruit senescence directly affects sensorial and nutritional quality during postharvest life. It has been clarified that reactive oxygen species and oxidative damage are responsible for fruit senescence. Some cultivars of yellow-fleshed kiwifruit can be stored for a short period compared with green-fleshed kiwifruit. Postharvest performance is affected by the physiological state of the fruit at harvest, associated with its postharvest management. Among several postharvest applications, ozone treatment is considered as a cost-effective and eco-friendly food-processing technology to preserve the fruits' quality during cold storage. In this study, we investigated the influence of ozone, after gradual cooling treatment, on the antioxidant defense system in Actinidia chinensis, 'Soreli'. RESULTS Bioactive compound content decreased during cold storage, and ozone treatment enhanced the activities of superoxide dismutase and catalase during cold storage. This treatment preserved membrane integrity by inhibiting lipoxygenase activity and malondialdehyde accumulation. A multivariate statistical approach, using principal component analysis, provided the global response to the effect of ozone postharvest treatment during cold storage in kiwifruit 'Soreli'. CONCLUSION Ozone treatment improves the efficiency of antioxidative system and storability of 'Soreli' kiwifruits. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valentina Goffi
- Department for Innovation in Biological, Agro-Food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Anna Magri
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria (CREA), Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Caserta, Italy
| | - Rinaldo Botondi
- Department for Innovation in Biological, Agro-Food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Milena Petriccione
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria (CREA), Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Caserta, Italy
| |
Collapse
|
26
|
Functional and biological properties of Maillard conjugates and their potential application in medical and food: A review. Food Res Int 2020; 131:109003. [PMID: 32247496 DOI: 10.1016/j.foodres.2020.109003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/23/2019] [Accepted: 01/12/2020] [Indexed: 01/13/2023]
Abstract
Protein and peptides are usually sensitive to environmental stresses, such as pH changes, high temperature, ionic strength, and digestive enzymes amongst other, which limit their food and medicinal applications. Maillard reaction (also called Maillard conjugation or glycation) occurs naturally without the addition of chemical agents and has been vastly applied to boost protein/peptide/amino acid functionalities and biological properties. Protein/peptide-saccharide conjugates are currently used as emulsifiers, antioxidants, antimicrobials, gelling agents, and anti-browning compounds in food model systems and products. The conjugates also possess the excellent stabilizing ability as a potent delivery system to enhance the stability and bioaccessibility of many bioactive compounds. Carbonyl scavengers such as polyphenols are able to significantly inhibit the formation of advanced glycation end products without a significant effect on early Maillard reaction products (MRPs) and melanoidins, which are currently applied as functional ingredients. This review paper highlights the technological functionality and biological properties of glycoconjugates in food model systems and products. Recent applications of MRPs in medical sciences are also presented.
Collapse
|
27
|
Souza EL, Lundgren GA, Oliveira KÁR, Berger LRR, Magnani M. An Analysis of the Published Literature on the Effects of Edible Coatings Formed by Polysaccharides and Essential Oils on Postharvest Microbial Control and Overall Quality of Fruit. Compr Rev Food Sci Food Saf 2019; 18:1947-1967. [DOI: 10.1111/1541-4337.12498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/29/2019] [Accepted: 08/27/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Evandro L. Souza
- Laboratory of Food Microbiology, Dept. of Nutrition, Health Sciences CenterFederal Univ. of Paraíba João Pessoa Brazil
| | - Giovanna A. Lundgren
- Laboratory of Food Microbiology, Dept. of Nutrition, Health Sciences CenterFederal Univ. of Paraíba João Pessoa Brazil
| | - Kataryne Á. R. Oliveira
- Laboratory of Food Microbiology, Dept. of Nutrition, Health Sciences CenterFederal Univ. of Paraíba João Pessoa Brazil
| | - Lúcia R. R. Berger
- Laboratory of Food Microbiology, Dept. of Nutrition, Health Sciences CenterFederal Univ. of Paraíba João Pessoa Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Dept. of Food EngineeringFederal Univ. of Paraíba João Pessoa Brazil
| |
Collapse
|
28
|
Effects of chitosan treatment on the storability and quality properties of longan fruit during storage. Food Chem 2019; 306:125627. [PMID: 31610328 DOI: 10.1016/j.foodchem.2019.125627] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023]
Abstract
Effects of various concentrations of Kadozan (chitosan) treatment on storability and quality properties of harvested 'Fuyan' longans were investigated. Compared to the control samples, Kadozan treated-longans displayed lower fruit respiration rate, lower pericarp cell membrane permeability, pericarp browning index, pulp breakdown index, fruit disease index, and weight loss, but higher rate of commercially acceptable fruit, higher levels of pericarp chlorophyll, carotenoid, anthocyanin, flavonoid and total phenolics, higher amounts of pulp total soluble sugar, sucrose, total soluble solids, and vitamin C. These results revealed Kadozan treatment could increase storability and retain better quality of harvested longan fruit. Among different concentrations of Kadozan, the dilution of 1:500 (VKadozan: VKadozan + Water) showed the best results in storability and maintained the best quality of longans during storage. These findings demonstrated that Kadozan could be a facile and eco-friendly postharvest handling approach for increasing storability and lengthening shelf-life of harvested 'Fuyan' longan fruit.
Collapse
|
29
|
Cui H, Abdel‐Samie MA, Lin L. Novel packaging systems in grape storage—A review. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Haiying Cui
- School of Food and Biological EngineeringJiangsu University Zhenjiang China
| | - Mohamed Abdel‐Shafi Abdel‐Samie
- School of Food and Biological EngineeringJiangsu University Zhenjiang China
- Department of Food and Dairy Sciences and TechnologyArish University Arish Egypt
| | - Lin Lin
- School of Food and Biological EngineeringJiangsu University Zhenjiang China
| |
Collapse
|
30
|
Grande Tovar CD, Delgado-Ospina J, Navia Porras DP, Peralta-Ruiz Y, Cordero AP, Castro JI, Chaur Valencia MN, Mina JH, Chaves López C. Colletotrichum Gloesporioides Inhibition In Situ by Chitosan- Ruta graveolens Essential Oil Coatings: Effect on Microbiological, Physicochemical, and Organoleptic Properties of Guava ( Psidium guajava L.) during Room Temperature Storage. Biomolecules 2019; 9:biom9090399. [PMID: 31443462 PMCID: PMC6770565 DOI: 10.3390/biom9090399] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 01/11/2023] Open
Abstract
Guava is a fruit appreciated worldwide for its high content of bioactive compounds. However, it is considered a highly perishable fruit, generally attacked by pathogenic species such as the fungi Colletotrichum gloeosporioides, which causes anthracnosis. To diminish the losses caused by pathogenic fungi, coatings of chitosan (CS) with Ruta graveolens essential oil (RGEO) in different concentrations (0.5, 1.0, 1.5% v/v) were applied in situ and their effects on the physical properties and microbiological quality of the guavas were studied. The CS+RGEO coated fruits exhibited better physicochemical behavior and lower microbiological decay as compared to the uncoated guavas, demonstrating the effectiveness of the coatings, especially those with 1.5% of RGEO content. All the fruits coated had greater acceptance and quality than the controls, being more those with essential oil incorporation. In situ investigation of C. gloesporioides infection of guavas demonstrated that the CS+RGEO coated guavas showed a high percentage of inhibition in the development of anthracnose lesions. In the present investigation, an alternative method has been proposed to extend the stability of the guavas fruit up to 12 days with application in the food industry.
Collapse
Affiliation(s)
- Carlos David Grande Tovar
- Grupo de Investigación de fotoquímica y fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Cali 76001, Colombia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Diana Paola Navia Porras
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Cali 76001, Colombia
| | - Yeimmy Peralta-Ruiz
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
- Facultad de Ingeniería, Programa de Ingeniería Agroindustrial, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Alexander Pérez Cordero
- Grupo de Investigación en Bioprospección Agropecuarias, Universidad de Sucre, carrera 28 # 5-267, Puerta Roja - Sincelejo (Sucre) 700008, Colombia
| | - Jorge Iván Castro
- Laboratorio SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia
| | - Manuel Noé Chaur Valencia
- Laboratorio SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia.
| | - José Hermínsul Mina
- Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia.
| | - Clemencia Chaves López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy.
| |
Collapse
|
31
|
Effect of Chitosan-Ascorbic Acid Coatings on the Refrigerated Storage Stability of Fresh-Cut Apples. COATINGS 2019. [DOI: 10.3390/coatings9080503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Using natural antimicrobial substances in edible films becomes crucial to extend the shelf-life of fresh-cut fruits due to the consumers’ preferences. In this study chitosan and ascorbic acid based film was used to improve the shelf-life of fresh-cut apples. Fresh-cut apple cubes were dipped in water (control), ascorbic acid (1%) or mixtures of chitosan–ascorbic acid in different ratios (1%:1%, 2%:2% or 1%:5%) for 5 min. After draining, fresh-cut apples were packed in sterile polypropylene jars and stored at 5 °C for 14 days. The treatment with chitosan and ascorbic acid suppressed browning, retained flesh firmness and maintained phenolic compounds throughout the storage period. Moreover, the treatment with chitosan–ascorbic acid significantly retarded the microbial growth during storage. Those findings suggested that the best performance was acquired in 1% chitosan and 5% ascorbic acid coating. That coating could be practical and useful to prolonging the chemical and microbial shelf lives of fresh-cut apples during refrigerated storage.
Collapse
|
32
|
Madanipour S, Alimohammadi M, Rezaie S, Nabizadeh R, Jahed Khaniki G, Hadi M, Yousefi M, Madihi Bidgoli S, Yousefzadeh S. Influence of postharvest application of chitosan combined with ethanolic extract of liquorice on shelflife of apple fruit. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:331-336. [PMID: 31321050 PMCID: PMC6582078 DOI: 10.1007/s40201-019-00351-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/06/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Edible coatings are useful method that applied to preserve postharvest quality of production. The coatings can extend the shelf life of products and inhibit microbial growth. Chitosan based coatings are one of the best methods to prolong fruit and vegetable shelf life. The antimicrobial and other properties of chitosan are developed when it is combined with other functional ingredients. METHODS The effectiveness of chitosan, ethanolic extract of liquorice (LE) and complex of chitosan-liquorice extract (CHLE) was evaluated for controlling blue mold and extending shelf life in apples. The fruits were coated with chitosan(1.0%), LE (62.5 mg/ml) and CHLE coating, and stored at 25 °C. Quality properties of fruit (such as weight loss, firmness, total soluble solid content(TSS), titrable acidity and pH) and decay incidence were assessed on 0,1,4,7 and 14 days of incubation, respectively. RESULTS The results of experiments indicated that minimum of water loss(3.8%), TSS(14.53) and firmness(5.6 kg/cm2 ) were in CHLE coated apples. In addition, this coating significantly inhibited penicillium expansum during the storage and the lowest decay incidence was for apples coated with CHLE(29 mm). Chitosan and LE coating retarded undesirable changes during postharvest storage and inhibited decay incidence compared with uncoated samples. There was no significant difference (p ≤ 0/05) between treatments and control overtime in terms of titrable acidity and pH levels. CONCLUSIONS The results reported here indicate importance and efficacy of CHLE coating in extending shelflife and reduction of postharvest losses of apple in storage time.
Collapse
Affiliation(s)
- Samira Madanipour
- Department of Environment Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environment Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Health Equity Research Center (HERC), Tehran University of Medical Sciences, Tehran, Iran
| | - Sassan Rezaie
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environment Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Jahed Khaniki
- Department of Environment Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Yousefi
- Department of Environment Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Madihi Bidgoli
- Department of Environment Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Yousefzadeh
- Department of Environment Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Yu X, Jing Y, Yan F. Chitooligosaccharide–Lysine Maillard Reaction Products: Preparation and Potential Application on Fresh-Cut Kiwifruit. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02284-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
34
|
Molybdenum disulfide nanosheets loaded with chitosan and silver nanoparticles effective antifungal activities: in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:486-497. [DOI: 10.1016/j.msec.2018.12.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 04/04/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
|
35
|
Improved Postharvest Preservation Effects of Pholiota nameko Mushroom by Sodium Alginate–Based Edible Composite Coating. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-2235-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Romanazzi G, Feliziani E, Sivakumar D. Chitosan, a Biopolymer With Triple Action on Postharvest Decay of Fruit and Vegetables: Eliciting, Antimicrobial and Film-Forming Properties. Front Microbiol 2018; 9:2745. [PMID: 30564200 PMCID: PMC6288236 DOI: 10.3389/fmicb.2018.02745] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Chitosan is a natural biopolymer from crab shells that is known for its biocompatibility, biodegradability, and bioactivity. In human medicine, chitosan is used as a stabilizer for active ingredients in tablets, and is popular in slimming diets. Due to its low toxicity, it was the first basic substance approved by the European Union for plant protection (Reg. EU 2014/563), for both organic agriculture and integrated pest management. When applied to plants, chitosan shows triple activity: (i) elicitation of host defenses; (ii) antimicrobial activity; and (iii) film formation on the treated surface. The eliciting activity of chitosan has been studied since the 1990's, which started with monitoring of enzyme activities linked to defense mechanisms (e.g., chitinase, β-1,3 glucanase, phenylalanine ammonia-lyase) in different fruit (e.g., strawberry, other berries, citrus fruit, table grapes). This continued with investigations with qRT-PCR (Quantitative Real-Time Polymerase Chain Reaction), and more recently, with RNA-Seq. The antimicrobial activity of chitosan against a wide range of plant pathogens has been confirmed through many in-vitro and in-vivo studies. Once applied to a plant surface (e.g., dipping, spraying), chitosan forms an edible coating, the properties of which (e.g., thickness, viscosity, gas and water permeability) depend on the acid in which it is dissolved. Based on data in literature, we propose that overall, the eliciting represents 30 to 40% of the chitosan activity, its antimicrobial activity 35 to 45%, and its film-forming activity 20 to 30%, in terms of its effectiveness in the control of postharvest decay of fresh fruit. As well as being used alone, chitosan can be applied together with many other alternatives to synthetic fungicides, to boost its eliciting, antimicrobial and film-forming properties, with additive, and at times synergistic, interactions. Several commercial chitosan formulations are available as biopesticides, with their effectiveness due to the integrated combination of these three mechanisms of action of chitosan.
Collapse
Affiliation(s)
- Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Erica Feliziani
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Dharini Sivakumar
- Department of Crop Sciences, Postharvest Technology Group, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
37
|
Xing K, Li TJ, Liu YF, Zhang J, Zhang Y, Shen XQ, Li XY, Miao XM, Feng ZZ, Peng X, Li ZY, Qin S. Antifungal and eliciting properties of chitosan against Ceratocystis fimbriata in sweet potato. Food Chem 2018; 268:188-195. [DOI: 10.1016/j.foodchem.2018.06.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
|
38
|
Zhang L, Chen F, Lai S, Wang H, Yang H. Impact of soybean protein isolate-chitosan edible coating on the softening of apricot fruit during storage. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Silva-Vera W, Zamorano-Riquelme M, Rocco-Orellana C, Vega-Viveros R, Gimenez-Castillo B, Silva-Weiss A, Osorio-Lira F. Study of Spray System Applications of Edible Coating Suspensions Based on Hydrocolloids Containing Cellulose Nanofibers on Grape Surface (Vitis vinifera L.). FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2126-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Nair MS, Saxena A, Kaur C. Characterization and Antifungal Activity of Pomegranate Peel Extract and its Use in Polysaccharide-Based Edible Coatings to Extend the Shelf-Life of Capsicum (Capsicum annuum L.). FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2101-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Wang H, Qian J, Ding F. Emerging Chitosan-Based Films for Food Packaging Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:395-413. [PMID: 29257871 DOI: 10.1021/acs.jafc.7b04528] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent years have witnessed great developments in biobased polymer packaging films for the serious environmental problems caused by the petroleum-based nonbiodegradable packaging materials. Chitosan is one of the most abundant biopolymers after cellulose. Chitosan-based materials have been widely applied in various fields for their biological and physical properties of biocompatibility, biodegradability, antimicrobial ability, and easy film forming ability. Different chitosan-based films have been fabricated and applied in the field of food packaging. Most of the review papers related to chitosan-based films are focusing on antibacterial food packaging films. Along with the advances in the nanotechnology and polymer science, numerous strategies, for instance direct casting, coating, dipping, layer-by-layer assembly, and extrusion, have been employed to prepare chitosan-based films with multiple functionalities. The emerging food packaging applications of chitosan-based films as antibacterial films, barrier films, and sensing films have achieved great developments. This article comprehensively reviews recent advances in the preparation and application of engineered chitosan-based films in food packaging fields.
Collapse
Affiliation(s)
- Hongxia Wang
- School of Printing and Packaging, Wuhan University , Wuhan 430072, PR China
| | - Jun Qian
- School of Printing and Packaging, Wuhan University , Wuhan 430072, PR China
| | - Fuyuan Ding
- School of Printing and Packaging, Wuhan University , Wuhan 430072, PR China
| |
Collapse
|
42
|
Hao XL, Zhang JJ, Li XH, Wang W. Application of a chitosan coating as a carrier for natamycin to maintain the storage quality of ground cherry (Physalis pubescens L.). J Zhejiang Univ Sci B 2017. [DOI: 10.1631/jzus.b1600295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Han C, Jin P, Li M, Wang L, Zheng Y. Physiological and Transcriptomic Analysis Validates Previous Findings of Changes in Primary Metabolism for the Production of Phenolic Antioxidants in Wounded Carrots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7159-7167. [PMID: 28759723 DOI: 10.1021/acs.jafc.7b01137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Wounding induces the accumulation of phenolic compounds in carrot. This study uses physiological and transcriptomic analysis to validate previous findings relating primary metabolism and secondary metabolites in wounded carrots. Our data confirmed that increased wounding intensity strengthened the accumulation of phenolics accompanied by enhancing respiration and showed the loss of fructose and glucose and the increase of energy status in carrots. In addition, transcriptomic evaluation of shredded carrots indicated that the respiratory metabolism, sugar metabolism, energy metabolism, and phenolic biosynthesis related pathways, such as "citrate cycle (TCA cycle)", "oxidative phosphorylation" and "phenylpropanoid biosynthesis", were activated by wounding. Also, the differentially expressed genes (DEGs) involved in the conversion of sugars to phenolics were extensively up-regulated after wounding. Thus, the physiological and transcriptomic data validate previous findings that wounding accelerates the primary metabolisms of carrot including respiratory metabolism, sugar metabolism, and energy metabolism to meet the demand for the production of phenolic antioxidants.
Collapse
Affiliation(s)
- Cong Han
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Meilin Li
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| | - Lei Wang
- College of Agriculture, Liaocheng University , Liaocheng 252000, People's Republic of China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, People's Republic of China
| |
Collapse
|
44
|
Chen C, Peng X, Zeng R, Wan C, Chen M, Chen J. Physiological and Biochemical Responses in Cold-Stored Citrus Fruits to Carboxymethyl Cellulose Coating Containing Ethanol Extract of Impatiens balsamina
L. Stems. J FOOD PROCESS PRES 2017; 41:e12999. [DOI: 10.1111/jfpp.12999] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables; Jiangxi Agricultural University; Nanchang 330045 PR China
| | - Xuan Peng
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables; Jiangxi Agricultural University; Nanchang 330045 PR China
| | - Rong Zeng
- Department of Food Science; Foshan University; Foshan 528000 PR China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables; Jiangxi Agricultural University; Nanchang 330045 PR China
| | - Ming Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables; Jiangxi Agricultural University; Nanchang 330045 PR China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables; Jiangxi Agricultural University; Nanchang 330045 PR China
| |
Collapse
|
45
|
Chen X, Zhu Z, Zhang X, Oana Antoce A, Mu W. Modeling the Microbiological Shelf Life of Table Grapes and Evaluating the Effects of Constant Concentrations of Sulfur Dioxide. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoyu Chen
- China Agricultural University; Beijing China
| | - Zhiqiang Zhu
- National Engineering Technology Research Center for Preservation of Agricultural Products; Tianjin China
| | - Xiaoshuan Zhang
- China Agricultural University; Beijing China
- Beijing Laboratory of Food Quality and Safety; China Agricultural University; Beijing China
| | - Arina Oana Antoce
- Department of Bioengineering of Horti-Viticultural Systems; University of Agronomic Sciences and Veterinary Medicine of Bucharest; Bucharest Romania
| | - Weisong Mu
- China Agricultural University; Beijing China
- Beijing Laboratory of Food Quality and Safety; China Agricultural University; Beijing China
| |
Collapse
|
46
|
Nair MS, Saxena A, Kaur C. Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.). Food Chem 2017; 240:245-252. [PMID: 28946269 DOI: 10.1016/j.foodchem.2017.07.122] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 11/28/2022]
Abstract
The influence of chitosan (1% w/v) and alginate (2% w/v) coatings in combination with pomegranate peel extract (PPE; 1% w/v) on quality of guavas (cv Allahabad safeda) were studied. Restricted changes were recorded in respiration rate, ripening index, and instrumental colour values in case of the coated samples as compared to the control for 20days at 10°C. Samples coated with chitosan enriched with PPE (CHE) proved to be the most effective treatment in maintaining the overall fruit quality. Ascorbic acid, total phenolics, total flavonoids contents and antioxidant activity were recorded with restricted losses of 29%, 8%, 12%, 12% (DPPH) and 9% (FRAP), respectively for CHE samples at the end of storage. A higher degree of correlation (r>0.918) was established between various phytochemicals and AOA. PPE enriched coatings was proved efficient in maintaining the quality of guavas during 20days of low temperature storage.
Collapse
Affiliation(s)
- M Sneha Nair
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida 201303, India
| | - Alok Saxena
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida 201303, India.
| | - Charanjit Kaur
- Division of Food Science and Post Harvest Technology, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
47
|
Zalewska M, Marcinkowska‐Lesiak M, Onopiuk A. Physicochemical properties of white button mushrooms (
Agaricus bisporus)
as affected by coating. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Magdalena Zalewska
- Department of Technique and Food Development, Faculty of Human Nutrition and Consumer SciencesWarsaw University of Life SciencesNowoursynowska 159c Street, Warsaw, 02‐776 Poland
| | - Monika Marcinkowska‐Lesiak
- Department of Technique and Food Development, Faculty of Human Nutrition and Consumer SciencesWarsaw University of Life SciencesNowoursynowska 159c Street, Warsaw, 02‐776 Poland
| | - Anna Onopiuk
- Department of Technique and Food Development, Faculty of Human Nutrition and Consumer SciencesWarsaw University of Life SciencesNowoursynowska 159c Street, Warsaw, 02‐776 Poland
| |
Collapse
|
48
|
Konuk Takma D, Korel F. Impact of preharvest and postharvest alginate treatments enriched with vanillin on postharvest decay, biochemical properties, quality and sensory attributes of table grapes. Food Chem 2017; 221:187-195. [DOI: 10.1016/j.foodchem.2016.09.195] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 11/30/2022]
|
49
|
Romanazzi G, Feliziani E, Baños SB, Sivakumar D. Shelf life extension of fresh fruit and vegetables by chitosan treatment. Crit Rev Food Sci Nutr 2017; 57:579-601. [PMID: 26047630 DOI: 10.1080/10408398.2014.900474] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Among alternatives that are currently under investigation to replace the use of synthetic fungicides to control postharvest diseases in fresh produce and to extend their shelf life, chitosan application has shown promising disease control, at both preharvest and postharvest stages. Chitosan shows a dual mode of action, on the pathogen and on the plant, as it reduces the growth of decay-causing fungi and foodborne pathogens and induces resistance responses in the host tissues. Chitosan coating forms a semipermeable film on the surface of fruit and vegetables, thereby delaying the rate of respiration, decreasing weight loss, maintaining the overall quality, and prolonging the shelf life. Moreover, the coating can provide a substrate for incorporation of other functional food additives, such as minerals, vitamins, or other drugs or nutraceutical compounds that can be used to enhance the beneficial properties of fresh commodities, or in some cases the antimicrobial activity of chitosan. Chitosan coating has been approved as GRAS substance by USFDA, and its application is safe for the consumer and the environment. This review summarizes the most relevant and recent knowledge in the application of chitosan in postharvest disease control and maintenance of overall fruit and vegetable quality during postharvest storage.
Collapse
Affiliation(s)
- Gianfranco Romanazzi
- a Department of Agricultural, Food and Environmental Sciences , Marche Polytechnic University , Ancona , Italy
| | - Erica Feliziani
- a Department of Agricultural, Food and Environmental Sciences , Marche Polytechnic University , Ancona , Italy
| | - Silvia Bautista Baños
- b Centro de Desarrollo de Productos Bióticos , Instituto Politécnico Nacional Carr, San Isidro Yautepec Morelos , Mexico
| | - Dharini Sivakumar
- c Department of Crop Sciences , Tshwane University of Technology, Pretoria West , Pretoria , South Africa
| |
Collapse
|
50
|
About the Sterilization of Chitosan Hydrogel Nanoparticles. PLoS One 2016; 11:e0168862. [PMID: 28002493 PMCID: PMC5176313 DOI: 10.1371/journal.pone.0168862] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 12/07/2016] [Indexed: 01/12/2023] Open
Abstract
In the last years, nanostructured biomaterials have raised a great interest as platforms for delivery of drugs, genes, imaging agents and for tissue engineering applications. In particular, hydrogel nanoparticles (HNP) associate the distinctive features of hydrogels (high water uptake capacity, biocompatibility) with the advantages of being possible to tailor its physicochemical properties at nano-scale to increase solubility, immunocompatibility and cellular uptake. In order to be safe, HNP for biomedical applications, such as injectable or ophthalmic formulations, must be sterile. Literature is very scarce with respect to sterilization effects on nanostructured systems, and even more in what concerns HNP. This work aims to evaluate the effect and effectiveness of different sterilization methods on chitosan (CS) hydrogel nanoparticles. In addition to conventional methods (steam autoclave and gamma irradiation), a recent ozone-based method of sterilization was also tested. A model chitosan-tripolyphosphate (TPP) hydrogel nanoparticles (CS-HNP), with a broad spectrum of possible applications was produced and sterilized in the absence and in the presence of protective sugars (glucose and mannitol). Properties like size, zeta potential, absorbance, morphology, chemical structure and cytotoxicity were evaluated. It was found that the CS-HNP degrade by autoclaving and that sugars have no protective effect. Concerning gamma irradiation, the formation of agglomerates was observed, compromising the suspension stability. However, the nanoparticles resistance increases considerably in the presence of the sugars. Ozone sterilization did not lead to significant physical adverse effects, however, slight toxicity signs were observed, contrarily to gamma irradiation where no detectable changes on cells were found. Ozonation in the presence of sugars avoided cytotoxicity. Nevertheless, some chemical alterations were observed in the nanoparticles.
Collapse
|