1
|
Zhang J, Tang J, Shi S, Huang H, Li Y, Liu W, Shi J, Tong C, Pang J, Wu C. Research progress on marine polysaccharide-based Pickering emulsions and their potential applications in the food industry. Food Res Int 2025; 208:116073. [PMID: 40263875 DOI: 10.1016/j.foodres.2025.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/27/2025] [Accepted: 02/22/2025] [Indexed: 04/24/2025]
Abstract
Recently, natural biopolymers have increasingly been utilized to stabilize Pickering emulsions (PEs) for food applications. The research and development of marine polysaccharides is one of the hotspots in the field of PEs due to their low-cost, non-toxicity, abundant, and sustainability. This review aims to provide a comprehensive overview of the latest advancements in marine polysaccharide-based stabilized PEs systems. We begin with an introduction to the sources of marine polysaccharides and the methods for fabricating marine polysaccharide-based PEs. Following this, we summarize the role of natural marine polysaccharides and their complexes (combined with other polysaccharides, proteins, polyphenols, fatty acids, or other particles) as particles to form and stabilize PEs. Additionally, we detail the current applications of marine polysaccharide-based PEs in food packaging films/coatings, 3D printing, encapsulation and delivery of functional food ingredients, as well as in fat substitutes. Finally, potential future developments of PEs stabilized by marine polysaccharides in the food industry are also proposed. This review will provide valuable references to promote the application of marine polysaccharide-based PEs in the food sector.
Collapse
Affiliation(s)
- Jianxi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junjie Tang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Si Shi
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongyan Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanzhao Li
- Engineering University of Peoples Armed Police, Coll Equipment Management & Supportabil, Xian, Shaanxi, China
| | - Wenhao Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jie Shi
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Cailing Tong
- Xiamen Ocean Vocational College, Xiamen, Fujian, China.
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Sabat S, Bej S, Swain S, Bishoyi AK, Sahoo CR, Sabat G, Padhy RN. Phycochemistry and pharmacological significance of filamentous cyanobacterium Spirulina sp. BIORESOUR BIOPROCESS 2025; 12:27. [PMID: 40178689 PMCID: PMC11968576 DOI: 10.1186/s40643-025-00861-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
The cyanobacterium, Spirulina sp. is a photosynthetic blue-green alga with essential nutrients, vitamins nucleic acids, proteins, carbohydrates, fatty acids and pigments carotenes; and phycocyanins are the significant components having immunomodulatory, anti-inflammatory properties, which are used in food and cosmetics industries. Spirulina sp. can play an important role in human and animal nutrition for potential health benefits due to their phycochemical and pharmaceutical significance. This study highlights antibacterial, antifungal, antiviral, antioxidant, nephroprotective, cardioprotective, anticancer, neuroprotective, anti-aging, anti-inflammatory, and immunomodulatory properties. It highlights anti-anemic, antidiabetic, probiotic, anti-malarial, anti-obesity and weight loss, anti-genotoxicity, anti-thrombic, radioprotective, and detoxifying effects of Spirulina sp. Pharmaceutical studies indicate it may improve heart health and add to the treatment of diabetes, obesity and weight loss. It can play a major role in protecting the environment by recycling wastewater and providing food for humans and animals. Spirulina sp. can supply ingredients for aquaculture and agricultural feeds, pigments, antioxidants, and essential omega-3 oils, among other human health and wellness products. The amino acid of Spirulina is among the greatest qualititavely of any plant, even higher than that of soybean. Furthermore, cyanobacterium Spirulina sp. could be a future antimicrobial drug agent.
Collapse
Affiliation(s)
- Sanjana Sabat
- Central Research Laboratory, Institute of Medical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Shuvasree Bej
- Central Research Laboratory, Institute of Medical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Surendra Swain
- Central Research Laboratory, Institute of Medical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Goutam Sabat
- Department of Botany and Biotechnology, Khallikote Unitary University, Berhampur, Odisha, 760001, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
3
|
Fan Y, Zheng T, Liang S, Niu Y, Xiao Z, Fan J. Metabolic profiling of polysaccharides from Leccinum crocipodium (Letellier.) Watliag stem fermented by Bacteroides thetaiotaomicron and their immunomodulatory effects. Int J Biol Macromol 2025:142026. [PMID: 40086542 DOI: 10.1016/j.ijbiomac.2025.142026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Leccinum crocipodium (Letellier.) Watliag has attracted increasing attention for their biological activity. In this study, the active polysaccharide components (LCSP11 and LCSP22) extracted from the stem of L. crocipodium (Letellier.) Watliag were investigated to assess structural characterization of LCSP11 and LCSP22, their effects on the metabolic profile of Bacteroides thetaiotaomicron, and the immune activities of the resulting fermentation products. The results showed that LCSP11 and LCSP22 were a type of heteropolysaccharide and amorphous state with good stability, which displayed molecular aggregation in aqueous solutions. LCSP11 and LCSP22 were effectively fermented by Bacteroides thetaiotaomicron, producing a variety of microbial metabolites, including organic acids and derivatives (30.13 %), lipids and lipid-like molecules (21.33 %), and organoheterocyclic compounds (17.45 %). Multiple differential metabolites were identified in the fermentation products (F11 and F22), with significant accumulation of peptides, amino acids, nucleotides, steroids, and fatty acids, such as murabutide and L-cystine. KEGG pathway analysis identified six enriched metabolic pathways in F11 and five in F22, with the histidine metabolic pathway significantly enriched in F11. Furthermore, LCSP22 fermentation by Bacteroides thetaiotaomicron produced short-chain fatty acids, including acetic acid, propionic acid, isovaleric acid, and caproic acid. Cellular experiments suggested that these fermentation metabolites exhibited immunoactivating effects on RAW264.7 cells, significantly enhancing phagocytic capacity and promoting the secretion of nitric acid (NO) and cytokines, including TNF-α, IL-6, and IL-2. These results provide new insights into the immunomodulatory activities of polysaccharides from the stem of L. crocipodium (Letellier.) Watliag fermented by Bacteroides thetaiotaomicron and broadens the potential applications of this natural resource in food, nutrition, and biomedicine.
Collapse
Affiliation(s)
- Yingrun Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tingting Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er 665000, China
| | - Shuangmin Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yun Niu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhichao Xiao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
4
|
Yu R, Song Z, Jin L, Jiao L, Liu H, Zhang S, Hu Y, Sun Y, Li E, Zhao G, Liu Z, Cai T. Polyethyleneimine-modified Laminarin nanoparticles as a novel vaccine adjuvant for ovalbumin to enhance the immune responses. Int J Biol Macromol 2025; 292:139157. [PMID: 39725115 DOI: 10.1016/j.ijbiomac.2024.139157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Functional modification of drugs can significantly improve their efficacy and safety, thus enabling targeted therapy. Functional modifications based on polysaccharides can alter their molecular structure, and effectively enhance their functional properties and biological activities. Herein, we designed and synthesized cationic Laminarin (CLam) modified with polyethyleneimine (PEI) and explored its application as a vaccine adjuvant. The PEI modification resulted in a positively charged surface of CLam, which was mixed with model antigen (Ovalbumin, OVA) to form CLam/OVA nanoparticles with an optimal particle size of about 380.07 nm, a uniform distribution of the particle size and a stable system. In vitro experiments showed that the positive charge on the surface of CLam/OVA enabled it to be effectively internalized by bone marrow dendritic cells (BMDCs), promoted cell maturation, lysosomal escape, and the efficiency of antigen cross-presentation. Mechanically, CLam/OVA induces BMDC function via toll-like receptors, cytokine receptors, and chemokine-mediated signaling pathways. CLam/OVA induced stronger humoral and cellular immunity compared to the aluminum adjuvant. CLam/OVA induces higher levels of OVA-specific antibodies, generates cytotoxic T lymphocyte immune responses, and stimulates IFN-γ secretion. Overall, this study demonstrates that functionalization is critical for the rational design of polysaccharides to boost antigen-specific immune responses for more effective and long-lasting vaccination.
Collapse
Affiliation(s)
- Ruihong Yu
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Zuchen Song
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Lan Jin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Lina Jiao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Huina Liu
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China
| | - Yaoren Hu
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China
| | - Yuechao Sun
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China
| | - Entao Li
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China
| | - Guofang Zhao
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China.
| | - Zhenguang Liu
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Ting Cai
- Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315000, Zhejiang, China.
| |
Collapse
|
5
|
Meng W, Zhang J, Hou H, Yu L, Dong P. Exploring the structures and molecular mechanisms of bioactive compounds from marine foods for hyperuricemia prevention: a systematic review. Crit Rev Food Sci Nutr 2025:1-19. [PMID: 40020721 DOI: 10.1080/10408398.2025.2464700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Hyperuricemia, characterized by an elevation in serum uric acid (UA) levels, stands as a significant metabolic ailment threatening human well-being. Presently, dietary adjustments have become a crucial strategy in managing serum UA levels among individuals grappling with hyperuricemia and gout. Given its unique ecosystem, the ocean hosts a plethora of organisms boasting distinct structures and active components. The marine bioactive substances, such as bioactive peptides, polysaccharides, lipids, and small molecules, have garnered attention in the research and development of modern functional foods and biomedicine due to their profound efficacy and distinctive compositions. Notably, the functional components of marine foods have been studied for their potential in preventing hyperuricemia. However, the precise molecular mechanism underlying their actions remain incompletely elucidated. This review article highlights the diversity of marine active compounds and the latest progress in understanding urate-lowering mechanism. Principal mechanisms primarily encompass the regulation of UA metabolism, maintenance of intestinal homeostasis, mitigation of inflammatory responses, and alleviation of oxidative stress. Furthermore, we scrutinized the constraints of prior studies and provided recommendations. In sum, this article furnished a valuable resource concerning the intervention of bioactive compounds sourced from marine foods in the context of hyperuricemia.
Collapse
Affiliation(s)
- Wenya Meng
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jing Zhang
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hu Hou
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Long Yu
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Ping Dong
- School of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
6
|
Ibrahim D, Khater SI, Sherkawy HS, Elgamal A, Hasan AA, Muhammed AA, Farag MFM, Eissa SA, Ismail TA, Eissa HM, Eskandrani AA, Alansari WS, El-Emam MMA. Protective Role of Nano-encapsulated Bifidobacterium breve, Bacilllus coagulans, and Lactobacillus plantarum in Colitis Model: Insights Toward Propagation of Short-Chain Fatty Acids and Reduction of Exaggerated Inflammatory and Oxidative Response. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10472-y. [PMID: 39900879 DOI: 10.1007/s12602-025-10472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
Irritable bowel disease (IBD), also known as ulcerative colitis and Crohn's disease, is a chronic inflammatory disorder affecting millions of people worldwide. Herein, nano-encapsulated multi-strain probiotics formulation, comprising Bifidobacterium breve DSM24732 and B. coagulans SANK 70258 and L. plantarum DSM24730 (BBLNPs) is used as an effective intervention technique for attenuating IBD through gut microenvironment regulation. The efficacy of the prophylactic role of BBLNPs in alleviating injury induced by dextran sulfate sodium (DSS) was evaluated by assessing oxidative and inflammatory responses, levels of short-chain fatty acids (SCFAs) and their regulation on GPR41/43 pathway, expression of genes related to tight-junctions and autophagy, immunohistochemistry of IL1β and GPR43, and histological examination of inflamed colonic tissue. The severity of clinical signs and paracellular permeability to FITC (fluorescein isothiocyanate)-labeled dextran was significantly decreased after BBLNP treatment. Reduction of oxidative stress-associated biomarkers (MDA, ROS, and H2O2) and acceleration of antioxidant enzyme activities (SOD, CAT, and GSH-Px) were noted in the BBLNP-treated group. Subsiding of inflammatory markers (TNF-α, IL-18, IL-6, TRL-4, CD-8, NLRP3, and caspase 1) and upregulation of tight-junction-related genes (occludin and JAM) was detected in BBLNPs. Administration of BBLNPs remarkably resulted in a higher level of SCFAs which parrel with colonic upregulation of GPR41 and GPR43 expression compared to DSS-treated rats. Notable modulation of autophagy-related genes (p62, mTOR, LC3, and Beclin-1) was identified post BBLNP treatment. The mRNA expressions of p62 and mTOR were significantly downregulated, while LC3 and Beclin-1 were upregulated after prophylactic treatment with BBLNPs. Immune-stained labeled cells showed lower expression of IL-1β and higher expression levels of GPR43 in BBLNPs compared to the DSS-induced group. The intestinal damage caused by DSSwas effectively mitigated by oral BBLNP treatment, as supported by the restoration of healthy colonic tissue architecture. The findings suggest that BBLNPs have a promising avenue in the remission of IBD by modulating inflammation, oxidative stress, microbial metabolites such as SCFAs, and autophagy.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Safaa I Khater
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hoda S Sherkawy
- Department of Medical Biochemistry, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Asmaa A Hasan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Asmaa A Muhammed
- Department of Medical Physiology, Faculty of Medicine, Aswan University, Aswan, 81511, Egypt
| | - Mohamed F M Farag
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samar A Eissa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Hemmat M Eissa
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mahran Mohamed Abd El-Emam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
7
|
Ma C, Xu C, Zheng M, Zhang S, Liu Q, Lyu J, Pang X, Wang Y. Utilizing Lactic Acid Bacteria to Improve Hyperlipidemia: A Comprehensive Analysis from Gut Microbiota to Metabolic Pathways. Foods 2024; 13:4058. [PMID: 39767000 PMCID: PMC11675396 DOI: 10.3390/foods13244058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Hyperlipidemia poses significant risks for cardiovascular diseases, with emerging evidence underscoring the critical role of gut microbiota in metabolic regulation. This study explores Lactobacillus casei CAAS36, a probiotic strain with promising cholesterol-lowering capabilities, assessing its impact on hyperlipidemic hamsters. Utilizing 1H NMR-based metabolomics and 16S rRNA gene sequencing, we observed that L. casei CAAS36 treatment not only altered metabolic pathways but also reshaped gut microbiota composition. Notably, the treatment restored the balance between Firmicutes and Bacteroidetes and significantly increased the abundance of propionate-producing Muribaculaceae. Metabolically, L. casei CAAS36 administration led to the normalization of key lipid markers, including reductions in total cholesterol, LDL-C, and triglycerides (29.9%, 29.4% and 32.6%), while enhancing the protective HDL-C levels. These effects were accompanied by significant increases in beneficial metabolites such as propionate and succinate, which are known for their roles in preventing metabolic disorders. These findings highlight the dual regulatory effects of L. casei CAAS36 on the metabolic profile and gut microbiota, suggesting a substantial potential for this probiotic in the management of hyperlipidemia and possibly other metabolic diseases. Future applications may include its use as a natural therapeutic agent in clinical settings, aiming to reduce reliance on conventional pharmaceuticals and their associated side effects.
Collapse
Affiliation(s)
- Changlu Ma
- Department of Food and Bio-Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China;
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (C.X.); (M.Z.); (S.Z.); (J.L.)
| | - Chen Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (C.X.); (M.Z.); (S.Z.); (J.L.)
| | - Mumin Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (C.X.); (M.Z.); (S.Z.); (J.L.)
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (C.X.); (M.Z.); (S.Z.); (J.L.)
| | - Qifeng Liu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Jiaping Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (C.X.); (M.Z.); (S.Z.); (J.L.)
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (C.X.); (M.Z.); (S.Z.); (J.L.)
| | - Yinghong Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| |
Collapse
|
8
|
Liu Q, Li G, Zhu S, Chen J, Jin M, Huang C, Chai L, Si L, Yang R. The effects of kelp powder and fucoidan on the intestinal digestive capacity, immune response, and bacterial community structure composition of large yellow croakers (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109810. [PMID: 39111606 DOI: 10.1016/j.fsi.2024.109810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/14/2024]
Abstract
Feed terrestrial components can induce intestinal stress in fish, affecting their overall health and growth. Recent studies suggest that seaweed products may improve fish intestinal health. In this experiment, three types of feed were prepared: a basic diet (C group), a diet with 0.2 % fucoidan (F group), and a diet with 3 % kelp powder (K group). These diets were fed to large yellow croaker (Larimichthys crocea) over an 8-week period. Each feed was randomly assigned to three seawater cages (4.0 m × 4.0 m × 5.0 m) containing 700 fish per cage. The study assessed changes in growth and intestinal health, including intestinal tissue morphology, digestive enzyme activities, expression of immune-related genes, and bacterial community structure. Results showed that incorporating seaweed products into the diet improved the growth and quality traits of large yellow croakers and significantly enhanced their intestinal digestive capacity (P < 0.05). Specifically, the 0.2 % fucoidan diet significantly increased the intestinal villus length and the activities of digestive enzymes such as trypsin, lipase, and α-amylase (P < 0.05). The 3 % kelp powder diet significantly enhanced the intestinal crypt depth and the activities of trypsin and lipase (P < 0.05). Both seaweed additives significantly enhanced intestinal health by mitigating inflammatory factors. Notably, the control group's biomarkers indicated a high presence of potential pathogenic bacteria, such as Streptococcus, Pseudomonas, Enterococcus, Herbaspirillum, Neisseria, Haemophilus, and Stenotrophomonas. After the addition of seaweed additives, these bacteria were no longer the indicator bacteria, while the abundance of beneficial bacteria like Ligilactobacillus and Lactobacillus increased. Significant reductions in the expression of inflammatory factors (e.g., il-6, tnf-α, ifn-γ in the fucoidan group and il-8 in the kelp powder group) further supported these findings. Our findings suggested that both seaweed additives helped balance intestinal microbial communities and reduce bacterial antigen load. Considering the effects, costs, manufacturing, and nutrition, adding 3 % kelp powder to the feed of large yellow croaker might be preferable. This study substantiated the beneficial effects of seaweed on the aquaculture of large yellow croaker, particularly in improving intestinal health. These findings advocated for its wider and more scientifically validated use in fish farming practices.
Collapse
Affiliation(s)
- Qiqin Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guoyi Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Sifeng Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Min Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chengwei Huang
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315012, China
| | - Liyue Chai
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315012, China
| | - Liegang Si
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315012, China.
| | - Rui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
9
|
Li Y, Wu S, Chen H, Xiao W, Li C, Peng Z, Li Z, Liu J, Lin L, Zeng X. Inorganic salt starvation improves the polysaccharide production and CO 2 fixation by Porphyridium purpureum. Bioprocess Biosyst Eng 2024; 47:1017-1026. [PMID: 38740635 DOI: 10.1007/s00449-024-03017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
The microalgae industry shows a promising future in the production of high-value products such as pigments, phycoerythrin, polyunsaturated fatty acids, and polysaccharides. It was found that polysaccharides have high biomedical value (such as antiviral, antibacterial, antitumor, antioxidative) and industrial application prospects (such as antioxidants). This study aimed to improve the polysaccharides accumulation of Porphyridium purpureum CoE1, which was effectuated by inorganic salt starvation strategy whilst supplying rich carbon dioxide. At a culturing temperature of 25 °C, the highest polysaccharide content (2.89 g/L) was achieved in 50% artificial seawater on the 12th day. This accounted for approximately 37.29% of the dry biomass, signifying a 25.3% increase in polysaccharide production compared to the culture in 100% artificial seawater. Subsequently, separation, purification and characterization of polysaccharides produced were conducted. Furthermore, the assessment of CO2 fixation capacity during the cultivation of P. purpureum CoE1 was conducted in a 10 L photobioreactor. This indicated that the strain exhibited an excellent CO2 fixation capacity of 1.66 g CO2/g biomass/d. This study proposed an efficient and feasible approach that not only increasing the yield of polysaccharides by P. purpureum CoE1, but also fixing CO2 with a high rate, which showed great potential in the microalgae industry and Bio-Energy with Carbon Capture and Storage.
Collapse
Affiliation(s)
- Yinchen Li
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen Key Laboratory of Clean and High-Valued Applications of Biomass, Xiamen University, Xiamen, 361102, China
| | - Shengshan Wu
- College of Energy, Xiamen University, Xiamen, 361102, China.
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen Key Laboratory of Clean and High-Valued Applications of Biomass, Xiamen University, Xiamen, 361102, China.
| | - Haowei Chen
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen Key Laboratory of Clean and High-Valued Applications of Biomass, Xiamen University, Xiamen, 361102, China
| | - Wupeng Xiao
- State Key Laboratory of Marine Environmental Science/Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Chuang Li
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen Key Laboratory of Clean and High-Valued Applications of Biomass, Xiamen University, Xiamen, 361102, China
| | - Zhiqing Peng
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen Key Laboratory of Clean and High-Valued Applications of Biomass, Xiamen University, Xiamen, 361102, China
| | - Zheng Li
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen Key Laboratory of Clean and High-Valued Applications of Biomass, Xiamen University, Xiamen, 361102, China
| | - Jian Liu
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen Key Laboratory of Clean and High-Valued Applications of Biomass, Xiamen University, Xiamen, 361102, China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, 361102, China
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen Key Laboratory of Clean and High-Valued Applications of Biomass, Xiamen University, Xiamen, 361102, China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen, 361102, China.
- Fujian Engineering and Research Center of Clean and High-Valued Technologies for Biomass, Xiamen Key Laboratory of Clean and High-Valued Applications of Biomass, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
10
|
Jiang L, Li J, Yang R, Chen S, Wu Y, Jin Y, Wang J, Weng Q, Wang J. Effect of hydrogel drug delivery system for treating ulcerative colitis: A preclinical meta-analysis. Int J Pharm 2024; 659:124281. [PMID: 38802026 DOI: 10.1016/j.ijpharm.2024.124281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Hydrogel drug delivery systems (DDSs) for treating ulcerative colitis (UC) have garnered attention. However, there is a lack of meta-analysis summarizing their effectiveness. Therefore, this study aimed to conduct a meta-analysis of pre-clinical evidence comparing hydrogel DDSs with free drug administration. Subgroup analyses were performed based on hydrogel materials (polysaccharide versus non-polysaccharide) and administration routes of the hydrogel DDSs (rectal versus oral). The outcome indicators included colon length, histological scores, tumor necrosis factor-α (TNF-α), zonula occludens protein 1(ZO-1), and area under the curve (AUC). The results confirmed the therapeutic enhancement of the hydrogel DDSs for UC compared with the free drug group. Notably, no significant differences were found between polysaccharide and non-polysaccharide materials, however, oral administration was found superior regarding TNF-α and AUC. In conclusion, oral hydrogel DDSs can serve as potential excellent dosage forms in oral colon -targeting DDSs, and in the design of colon hydrogel delivery systems, polysaccharides do not show advantages compared with other materials.
Collapse
Affiliation(s)
- Lan Jiang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China
| | - Jia Li
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Runkun Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Shunpeng Chen
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Yongjun Wu
- Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yuanyuan Jin
- Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Center (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang 312500, China.
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; Beijing Life Science Academy, Beijing 102200, China.
| |
Collapse
|
11
|
Zhang X, Wang J, Zhang T, Li S, Liu J, Li M, Lu J, Zhang M, Chen H. Updated Progress on Polysaccharides with Anti-Diabetic Effects through the Regulation of Gut Microbiota: Sources, Mechanisms, and Structure-Activity Relationships. Pharmaceuticals (Basel) 2024; 17:456. [PMID: 38675416 PMCID: PMC11053653 DOI: 10.3390/ph17040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus (DM) is a common chronic metabolic disease worldwide. The disturbance of the gut microbiota has a complex influence on the development of DM. Polysaccharides are one type of the most important natural components with anti-diabetic effects. Gut microbiota can participate in the fermentation of polysaccharides, and through this, polysaccharides regulate the gut microbiota and improve DM. This review begins by a summary of the sources, anti-diabetic effects and the gut microbiota regulation functions of natural polysaccharides. Then, the mechanisms of polysaccharides in regulating the gut microbiota to exert anti-diabetic effects and the structure-activity relationship are summarized. It is found that polysaccharides from plants, fungi, and marine organisms show great hypoglycemic activities and the gut microbiota regulation functions. The mechanisms mainly include repairing the gut burrier, reshaping gut microbiota composition, changing the metabolites, regulating anti-inflammatory activity and immune function, and regulating the signal pathways. Structural characteristics of polysaccharides, such as monosaccharide composition, molecular weight, and type of glycosidic linkage, show great influence on the anti-diabetic activity of polysaccharides. This review provides a reference for the exploration and development of the anti-diabetic effects of polysaccharides.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Jingyang Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China;
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; (X.Z.); (J.W.); (T.Z.); (S.L.); (J.L.); (M.L.); (J.L.)
| |
Collapse
|
12
|
Wang Q, Wang Y, Wang Y, Zhang Q, Mi J, Ma Q, Li T, Huang S. Agaro-oligosaccharides mitigate deoxynivalenol-induced intestinal inflammation by regulating gut microbiota and enhancing intestinal barrier function in mice. Food Funct 2024; 15:3380-3394. [PMID: 38498054 DOI: 10.1039/d3fo04898e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Agarose-derived agaro-oligosaccharides (AgaroS) have been extensively studied in terms of structures and bioactivities; they reportedly possess antioxidant and anti-inflammatory activities that maintain intestinal homeostasis and host health. However, the protective effects of AgaroS on deoxynivalenol (DON)-induced intestinal dysfunction remain unclear. We investigated the effects of AgaroS on DON-induced intestinal dysfunction in mice and explored the underlying protective mechanisms. In total, 32 mice were randomly allocated to four treatments (n = 8 each) for 28 days. From day 1 to day 21, the control (CON) and DON groups received oral phosphate-buffered saline (200 μL per day); the AgaroS and AgaroS + DON groups received 200 mg AgaroS per kg body weight once daily by orogastric gavage. Experimental intestinal injury was induced by adding DON (4.8 mg per kg body weight) via gavage from day 21 to day 28. Phosphate-buffered saline was administered once daily by gavage in the CON and AgaroS groups. Herein, AgaroS supplementation led to a higher final body weight and smaller body weight loss and a lower concentration of plasma inflammatory cytokines, compared with the DON group. The DON group showed a significantly reduced ileal villus height and villus height/crypt depth, compared with the CON and AgaroS + DON groups. However, AgaroS supplementation improved DON-induced intestinal injury in mice. Compared with the DON group, ileal and colonic protein expression levels of claudin, occludin, Ki67, and mucin2 were significantly higher in the AgaroS supplementation group. Colonic levels of the anti-inflammatory cytokine IL-1β tended to be higher in the DON group than in the AgaroS + DON group. AgaroS altered the gut microbiota composition, accompanied by increased production of short-chain fatty acids in mice. In conclusion, our findings highlight a promising anti-mycotoxin approach whereby AgaroS alleviate DON-induced intestinal inflammation by modulating intestinal barrier functional integrity and gut microbiota in mice.
Collapse
Affiliation(s)
- Qingfeng Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yanwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiyue Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 21001, Liaoning, China
| | - Jinqiu Mi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Tiantian Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| |
Collapse
|
13
|
Li M, Su J, Wu J, Zhao D, Huang M, Lu Y, Zheng J, Zheng F, Sun B, Liang H. The Regulatory Effect of Huangshui Polysaccharides on Intestinal Microbiota and Metabolites during In Vitro Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5222-5236. [PMID: 38377589 DOI: 10.1021/acs.jafc.3c08658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Huangshui polysaccharides (HSPs) have attracted extensive attention recently for their biological activity and physicochemical property. This research investigated the extraction, structural characterization, and prebiotic activity of three different HSPs (HSP40-0, HSP60-0, and HSP80-0) in vitro to reveal the scientific support for the high-value utilization of Huangshui. HSPs were heteropolysaccharide with diverse structures and surface morphologies. Comprehensive analysis was conducted through 16S rRNA gene sequencing and metabolite profiling techniques, and results showed that HSPs had different potentials to regulate the gut microbiota due to their different structures; for instance, both HSP40-0 and HSP80-0 could notably increase the relative abundance of Bacteroidota, whereas HSP60-0 could increase the relative abundance of Phascolarctobacterium. In addition, HSPs upregulated beneficial differential metabolites, especially short-chain fatty acids (SCFAs). Fermentation products containing these metabolites exhibited anti-inflammatory effects on LPS-treated Caco-2 cells. This study will provide reference for exploring the relationship between the natural polysaccharide structure and the prebiotic activity and widen the application of Huangshui.
Collapse
Affiliation(s)
- Mei Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Su
- Key Laboratory of Soild-state Fermentation and Resource Utilization of Sichuan Province/Key Laboratory of Strong Flavor Baijiu Soild-state Fermentation of China Light Industry/Engineering Technology Research Center of Baijiu Brewing Special Grain of China, Wuliangye Yibin Co. Ltd., Yibin 644007, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Dong Zhao
- Key Laboratory of Soild-state Fermentation and Resource Utilization of Sichuan Province/Key Laboratory of Strong Flavor Baijiu Soild-state Fermentation of China Light Industry/Engineering Technology Research Center of Baijiu Brewing Special Grain of China, Wuliangye Yibin Co. Ltd., Yibin 644007, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yanping Lu
- Key Laboratory of Soild-state Fermentation and Resource Utilization of Sichuan Province/Key Laboratory of Strong Flavor Baijiu Soild-state Fermentation of China Light Industry/Engineering Technology Research Center of Baijiu Brewing Special Grain of China, Wuliangye Yibin Co. Ltd., Yibin 644007, China
| | - Jia Zheng
- Key Laboratory of Soild-state Fermentation and Resource Utilization of Sichuan Province/Key Laboratory of Strong Flavor Baijiu Soild-state Fermentation of China Light Industry/Engineering Technology Research Center of Baijiu Brewing Special Grain of China, Wuliangye Yibin Co. Ltd., Yibin 644007, China
| | - Fuping Zheng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Haiyan Liang
- College of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
14
|
Zhao WX, Wang T, Zhang YN, Chen Q, Wang Y, Xing YQ, Zheng J, Duan CC, Chen LJ, Zhao HJ, Wang SJ. Molecular Mechanism of Polysaccharides Extracted from Chinese Medicine Targeting Gut Microbiota for Promoting Health. Chin J Integr Med 2024; 30:171-180. [PMID: 35583582 DOI: 10.1007/s11655-022-3522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
The accumulating evidence revealed that gut microbiota plays an important role in pathological process of disease including obesity, type 2 diabetes mellitus, heart failure, and non-alcoholic fatty liver disease. Polysaccharides extracted from Chinese medicine (CM) can not only alleviate pathological status but also promote health by anti-inflammatory, regulating immunity, lowering blood glucose and lipids, anti-cancer, and anti-oxidation. The alterations of gut microbiota composition and metabolism pathways are the potential mechanisms of CM polysaccharides treatment. In addition, they exert functions through gut-organ axis or play an indirect role by synergistic actions with other drugs or components mediated by gut microbiota. This review summarizes the molecular mechanisms of CM polysaccharides interacted with intestinal microbial inhabitants as potential prebiotics for promoting health.
Collapse
Affiliation(s)
- Wen-Xiao Zhao
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Ya-Nan Zhang
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Qian Chen
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Yuan Wang
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Yan-Qing Xing
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Jun Zheng
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Chen-Chen Duan
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Li-Jun Chen
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Hai-Jun Zhao
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Shi-Jun Wang
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| |
Collapse
|
15
|
Zhao G, Niu Y, Wang H, Qin S, Zhang R, Wu Y, Xiao X, Xu Y, Yang C. Effects of three different plant-derived polysaccharides on growth performance, immunity, antioxidant function, and cecal microbiota of broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1020-1029. [PMID: 37718500 DOI: 10.1002/jsfa.12988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND This study investigated the effects of dietary plant polysaccharides on growth performance, immune status and intestinal health in broilers. We randomly divided 960 one-day-old Arbor Acres broiler chicks into four groups. The control (CON) group was fed a basal diet, and the remaining groups were fed a basal diet supplemented with 1000 mg kg-1 Ginseng polysaccharide (GPS), Astragalus polysaccharide (APS), or Salvia miltiorrhiza polysaccharide (SMP) for 42 days. RESULTS Dietary supplementation with SMP significantly increased body weight (BW) at 21 and 42 days of age, average daily gain (ADG) and average daily feed intake (ADFI) during the starter and whole experimental period, decreased the concentrations of interleukin-1 beta (IL-1β), tumor necrosis factor α (TNF-α) and malondialdehyde (MDA), increased the levels of interleukin-4 (IL-4) and interleukin-10 (IL-10) and catalase (CAT) activity in the serum (P < 0.05). GPS, APS, and SMP supplementation increased serum levels of immunoglobulins, activities of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD) and total antioxidant capacity (T-AOC), and cecal concentrations of acetic acid and propionic acid of broilers (P < 0.05). Furthermore, high-throughput sequencing results showed that the relative abundance of Firmicutes was decreased while the relative abundance of Bacteroidota, Alistipes, and Prevotellaceae_NK3B31_group were increased (P < 0.05) in the GPS, APS, and SMP groups compared with the CON group. CONCLUSION Dietary GPS, APS, and SMP supplementation could improve growth performance, enhance immune function by increasing serum immunoglobulin and regulating cytokines, improve antioxidant function by increasing serum antioxidant enzyme activity, increase volatile fatty acid levels and improve the microbial composition in the cecum of broilers. Dietary SMP supplementation had the optimal effect in this study. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guiling Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Yu Niu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Huixian Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Songke Qin
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Xiao Xiao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Yinglei Xu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, China
| |
Collapse
|
16
|
Chen M, Chen X, Guo Y, Liu N, Wang K, Gong P, Zhao Y, Cai L. Effect of in vitro digestion and fermentation of kiwifruit pomace polysaccharides on structural characteristics and human gut microbiota. Int J Biol Macromol 2023; 253:127141. [PMID: 37776924 DOI: 10.1016/j.ijbiomac.2023.127141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Kiwifruit pomace is abundant in polysaccharides that exhibit diverse biological activities and prebiotic potential. This study delves into the digestive behavior and fermentation characteristics of kiwifruit pomace polysaccharides (KFP) through an in vitro simulated saliva-gastrointestinal digestion and fecal fermentation. The results reveal that following simulated digestion of KFP, its molecular weight reduced by 4.7%, and the reducing sugar (CR) increased by 9.5%. However, the monosaccharide composition and Fourier transform infrared spectroscopy characteristics showed no significant changes, suggesting that KFP remained undigested. Furthermore, even after saliva-gastrointestinal digestion, KFP retained in vitro hypolipidemic and hypoglycemic activities. Subsequently, fecal fermentation significantly altered the physicochemical properties of indigestible KFP (KFPI), particularly leading to an 89.71% reduction in CR. This indicates that gut microbiota could decompose KFPI and metabolize it into SCFAs. Moreover, after 48 h of KFPI fecal fermentation, it was observed that KFPI contributed to maintaining the balance of gut microbiota by promoting the proliferation of beneficial bacteria like Bacteroides, Lactobacillus, and Bifidobacterium, while inhibiting the unfavorable bacteria like Bilophila. In summary, this study offers a comprehensive exploration of in vitro digestion and fecal fermentation characteristics of KFP, providing valuable insights for potential development of KFP as a prebiotic for promoting intestinal health.
Collapse
Affiliation(s)
- Mengyin Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China.
| | - Yuxi Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Nannan Liu
- College of Chemistry and Materials Science, Weinan Normal University, Weinan 714000, China
| | - Ketang Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Yanni Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| | - Luyang Cai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi 'an 710021, China
| |
Collapse
|
17
|
Tang X, Yang L, Miao Y, Ha W, Li Z, Mi D. Angelica polysaccharides relieve blood glucose levels in diabetic KKAy mice possibly by modulating gut microbiota: an integrated gut microbiota and metabolism analysis. BMC Microbiol 2023; 23:281. [PMID: 37784018 PMCID: PMC10546737 DOI: 10.1186/s12866-023-03029-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Angelica polysaccharides (AP) have numerous benefits in relieving type 2 diabetes (T2D). However, the underlying mechanisms have yet to be fully understood. Recent many reports have suggested that altering gut microbiota can have adverse effects on the host metabolism and contribute to the development of T2D. Here, we successfully established the T2D model using the male KKAy mice with high-fat and high-sugar feed. Meanwhile, the male C57BL/6 mice were fed with a normal feed. T2D KKAy mice were fed either with or without AP supplementation. In each group, we measured the mice's fasting blood glucose, weight, and fasting serum insulin levels. We collected the cecum content of mice, the gut microbiota was analyzed by targeted full-length 16S rRNA metagenomic sequencing and metabolites were analyzed by untargeted-metabolomics. RESULTS We found AP effectively alleviated glycemic disorders of T2D KKAy mice, with the changes in gut microbiota composition and function. Many bacteria species and metabolites were markedly changed in T2D KKAy mice and reversed by AP. Additionally, 16 altered metabolic pathways affected by AP were figured out by combining metagenomic pathway enrichment analysis and metabolic pathway enrichment analysis. The key metabolites in 16 metabolic pathways were significantly associated with the gut microbial alteration. Together, our findings showed that AP supplementation could attenuate the diabetic phenotype. Significant gut microbiota and gut metabolite changes were observed in the T2D KKAy mice and AP intervention. CONCLUSIONS Administration of AP has been shown to improve the composition of intestinal microbiota in T2D KKAy mice, thus providing further evidence for the potential therapeutic application of AP in the treatment of T2D.
Collapse
Affiliation(s)
- Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Sichuan Province, Nanchong City, China
| | - Lixia Yang
- Gansu Academy of Traditional Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Yandong Miao
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai City, Shandong Province, China
| | - Wuhua Ha
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Zheng Li
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China.
- Gansu Academy of Traditional Chinese Medicine, Lanzhou City, Gansu Province, China.
| |
Collapse
|
18
|
Tang C, Wang Y, Chen D, Zhang M, Xu J, Xu C, Liu J, Kan J, Jin C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int 2023; 172:113192. [PMID: 37689942 DOI: 10.1016/j.foodres.2023.113192] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Unhealthy dietary patterns-induced obesity and obesity-related complications pose a great threat to human health all over the world. Accumulating evidence suggests that the pathophysiology of obesity and obesity-associated metabolic disorders is closely associated with dysregulation of lipid and energy metabolism, and metabolic inflammation. In this review, three potential anti-obesity mechanisms of natural polysaccharides are introduced. Firstly, natural polysaccharides protect against diet-induced obesity directly by improving lipid and cholesterol metabolism. Since the immunity also affects lipid and energy metabolism, natural polysaccharides improve lipid and energy metabolism by regulating host immunity. Moreover, diet-induced mitochondrial dysfunction, prolonged endoplasmic reticulum stress, defective autophagy and microbial dysbiosis can disrupt lipid and/or energy metabolism in a direct and/or inflammation-induced manner. Therefore, natural polysaccharides also improve lipid and energy metabolism and suppress inflammation by alleviating mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagy and regulating gut microbiota composition. Specifically, this review comprehensively summarizes underlying anti-obesity mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates anti-obesity mechanisms of natural polysaccharides from the perspectives of their hypolipidemic, energy-regulating and immune-regulating mechanisms.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yuxin Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jingguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and safety of agricultural product, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
19
|
Liu M, Liu Z, Zhang N, Cao Z, Fu J, Yuan W, Wu H, Shang H. Preparation of polysaccharides from Crepis tectorum Linn. and the regulation effects on intestinal microbiota. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
20
|
Niu Y, Liu W, Fan X, Wen D, Wu D, Wang H, Liu Z, Li B. Beyond cellulose: pharmaceutical potential for bioactive plant polysaccharides in treating disease and gut dysbiosis. Front Microbiol 2023; 14:1183130. [PMID: 37293228 PMCID: PMC10244522 DOI: 10.3389/fmicb.2023.1183130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Polysaccharides derived from plants, algae, or fungi serve as the major components of some human diets. Polysaccharides have been shown to exhibit diverse biological activities in improving human health, and have also been proposed to function as potent modulators of gut microbiota composition, thus playing a bi-directional regulatory role in host health. Here, we review a variety of polysaccharide structures potentially linked to biological functions, and cover current research progress in characterizing their pharmaceutical effects in various disease models, including antioxidant, anticoagulant, anti-inflammatory, immunomodulatory, hypoglycemic, and antimicrobial activities. We also highlight the effects of polysaccharides on modulating gut microbiota via enrichment for beneficial taxa and suppression of potential pathogens, leading to increased microbial expression of carbohydrate-active enzymes and enhanced short chain fatty acid production. This review also discusses polysaccharide-mediated improvements in gut function by influencing interleukin and hormone secretion in host intestinal epithelial cells.
Collapse
Affiliation(s)
- Yuanlin Niu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Wei Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueni Fan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Dongxu Wen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Dan Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hongzhuang Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Li
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
21
|
Wang S, Zhang B, Chang X, Zhao H, Zhang H, Zhao T, Qi H. Potential use of seaweed polysaccharides as prebiotics for management of metabolic syndrome: a review. Crit Rev Food Sci Nutr 2023; 64:7707-7727. [PMID: 36971135 DOI: 10.1080/10408398.2023.2191135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Seaweed polysaccharides (SPs) obtained from seaweeds are a class of functional prebiotics. SPs can regulate glucose and lipid anomalies, affect appetite, reduce inflammation and oxidative stress, and therefore have great potential for managing metabolic syndrome (MetS). SPs are poorly digested by the human gastrointestinal tract but are available to the gut microbiota to produce metabolites and exert a series of positive effects, which may be the mechanism by which SPs render their anti-MetS effects. This article reviews the potential of SPs as prebiotics in the management of MetS-related metabolic disturbances. The structure of SPs and studies related to the process of their degradation by gut bacteria and their therapeutic effects on MetS are highlighted. In summary, this review provides new perspectives on SPs as prebiotics to prevent and treat MetS.
Collapse
Affiliation(s)
- Shaopeng Wang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Bo Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Xintao Chang
- Department of Pharmacy, People's Hospital of Zhangqiu District, Jinan, Shandong, PR China
| | - Hailing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Huimin Qi
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
| |
Collapse
|
22
|
Wu G, Gu W, Chen G, Cheng H, Li D, Xie Z. Interactions of tea polysaccharides with gut microbiota and their health-promoting effects to host: Advances and perspectives. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
23
|
Bai Z, Huang X, Wu G, Zhang Y, Xu H, Chen Y, Yang H, Nie S. Polysaccharides from small black soybean alleviating type 2 diabetes via modulation of gut microbiota and serum metabolism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
24
|
Deng Q, Wang W, Zhang L, Chen L, Zhang Q, Zhang Y, He S, Li J. Gougunao tea polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota. Food Funct 2023; 14:703-719. [PMID: 36511170 DOI: 10.1039/d2fo01828d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Many natural polysaccharides have been proven to have ameliorative effects on high-fat diet-induced hyperlipidemia with fewer side effects. However, similar data on Gougunao tea polysaccharides remain obscure. In this study, we aimed to investigate the role of Gougunao tea polysaccharides (GTP40) in the alleviation of hyperlipidemia and regulation of gut microbiota in C57BL/6J mice induced by a high-fat diet. The results indicated that GTP40 intervention inhibited the abnormal growth of body weight and the excessive accumulation of lipid droplets in the livers and ameliorated the biochemical parameters of serum/liver related to lipid metabolism in hyperlipidemia mice. The elevated levels of antioxidant enzyme and anti-inflammation cytokine in serum, as well as the up-regulating anti-inflammation gene in the liver, reflected that GTP40 might mitigate the oxidative and inflammatory stress induced by a high-fat diet. In addition, GTP40 could modulate the composition, abundance, and diversity of gut microbiota in hyperlipidemia mice. Besides, Spearman's correlation analysis implied that GTP40 intervention could enrich beneficial bacteria (e.g., Akkermansia, Bacteroides, Roseburia, and Alistipes), and decrease harmful bacteria (e.g., Blautia, Faecalibaculum, Streptococcus, and norank_f_Desulfovibrionaceae), which were correlated with the lipid metabolic parameters associated with hyperlipidemia. Moreover, it also indicated that there was a significant correlation between gut microbiota and SCFAs. Thus, GTP40 may be a novel strategy against fat accumulation, oxidative stress, and inflammation, as well as restoring the normal microbial balance of the gut in hyperlipidemia mice.
Collapse
Affiliation(s)
- Qihuan Deng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Wenjun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Lieyuan Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China. .,Technical Center of Nanchang Customs, Nanchang 330038, China
| | - Lingli Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Qingfeng Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Ying Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Sichen He
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jingen Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
25
|
Wang L, Yan C, Wang L, Ai C, Wang S, Shen C, Tong Y, Song S. Ascophyllum nodosum polysaccharide regulates gut microbiota metabolites to protect against colonic inflammation in mice. Food Funct 2023; 14:810-821. [PMID: 36617886 DOI: 10.1039/d2fo02964b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ascophyllum nodosum polysaccharide (ANP) can protect against colonic inflammation but the underlying mechanism is still unclear. This study has determined the metabolites of gut microbiota regulated by ANP to reveal the mechanism of the anti-inflammation effect of ANP. Using an in vitro colonic fermentation model, the results indicate that gut microbiota could utilize a proportion of ANP to increase the concentrations of short-chain fatty acids (SCFAs) and decrease ammonia content. Metabolomics revealed that 46 differential metabolites, such as betaine, L-carnitine, and aminoimidazole carboxamide ribonucleotide (AICAR), could be altered by ANP. Metabolic pathway analysis showed that ANP mainly up-regulated the phenylalanine, tyrosine, and tryptophan biosynthesis and aminoacyl-tRNA biosynthesis, which were negatively correlated with inflammation progression. Interestingly, these metabolites associated with inflammation were also up-regulated by ANP in colitis mice, including betaine, L-carnitine, AICAR, N-acetyl-glutamine, tryptophan, and valine, which were mainly associated with amino acid metabolism and aminoacyl-tRNA biosynthesis. Furthermore, the metabolites modulated by ANP were associated with the relative abundances of Akkermansia, Bacteroides, Blautia, Coprobacillus, Enterobacter, and Klebsiella. Additionally, based on VIP values, betaine is a key metabolite after the ANP supplement in vitro and in vivo. As indicated by these findings, ANP can up-regulate the production of SCFAs, betaine, L-carnitine, and AICAR and aminoacyl-tRNA biosynthesis to protect against colonic inflammation and maintain intestinal health.
Collapse
Affiliation(s)
- Lilong Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Chunhong Yan
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Linlin Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Songtao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Yuqin Tong
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| |
Collapse
|
26
|
Liu Q, Hu L, Wang C, Cheng M, Liu M, Wang L, Pan P, Chen J. Renewable marine polysaccharides for microenvironment-responsive wound healing. Int J Biol Macromol 2023; 225:526-543. [PMID: 36395940 DOI: 10.1016/j.ijbiomac.2022.11.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Marine polysaccharides (MPs) are an eco-friendly and renewable resource with a distinctive set of biological functions and are regarded as biological materials that can be in contact with tissues and body fluids for an extended time and promote tissue or organ regeneration. Skin tissue is easily invaded by the external environment due to its softness and large surface area. However, the body's natural physiological healing process is often too slow or suffers from the incomplete restoration of skin structure and function. Functional wound dressings are crucial for skin tissue engineering. Herein, popular MPs from different sources are summarized systematically. In particular, the structure-effectiveness of MP-based wound dressings and the physiological remodeling process of different wounds are reviewed in detail. Finally, the prospect of MP-based smart wound dressings is stated in conjunction with the wound microenvironment and provides new opportunities for high-value biomedical applications of MPs.
Collapse
Affiliation(s)
- Qing Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Le Hu
- Marine College, Shandong University, Weihai 264209, China
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Meiqi Cheng
- Marine College, Shandong University, Weihai 264209, China
| | - Man Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Lin Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
27
|
Treatment of Dyslipidemia through Targeted Therapy of Gut Microbiota. Nutrients 2023; 15:nu15010228. [PMID: 36615885 PMCID: PMC9823358 DOI: 10.3390/nu15010228] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Dyslipidemia is a multifaceted condition with various genetic and environmental factors contributing to its pathogenesis. Further, this condition represents an important risk factor for its related sequalae including cardiovascular diseases (CVD) such as coronary artery disease (CAD) and stroke. Emerging evidence has shown that gut microbiota and their metabolites can worsen or protect against the development of dyslipidemia. Although there are currently numerous treatment modalities available including lifestyle modification and pharmacologic interventions, there has been promising research on dyslipidemia that involves the benefits of modulating gut microbiota in treating alterations in lipid metabolism. In this review, we examine the relationship between gut microbiota and dyslipidemia, the impact of gut microbiota metabolites on the development of dyslipidemia, and the current research on dietary interventions, prebiotics, probiotics, synbiotics and microbiota transplant as therapeutic modalities in prevention of cardiovascular disease. Overall, understanding the mechanisms by which gut microbiota and their metabolites affect dyslipidemia progression will help develop more precise therapeutic targets to optimize lipid metabolism.
Collapse
|
28
|
Zou T, Xie F, Liang P, Chen J, Wang Z, Du M, You J. Polysaccharide-rich fractions from Enteromorpha prolifera improve hepatic steatosis and gut barrier integrity in high-fat diet-induced obese mice linking to modulation of gut microbiota. Biomed Pharmacother 2023; 157:114034. [PMID: 36434956 DOI: 10.1016/j.biopha.2022.114034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Polysaccharides from Enteromorpha prolifera (EP) possess important benefits in the management of obesity and associated metabolic diseases, but to date, the underlying mechanism linking this alleviative effect of EP to gut microbiota remains obscure. This study aimed to investigate the effects of EP in improving lipid metabolism disorders and intestinal barrier disruption in mice with high-fat diet (HFD), and its association with modulation of gut microbiota. C57BL/6 mice were fed a control diet or a HFD with or without 5% EP for 12 weeks. Factors related to lipid metabolism, insulin signaling and intestinal barrier integrity, as well as the involvement of gut microbiota and metabolites, were measured. EP supplementation reduced HFD-induced adiposity and mitigated insulin resistance, hepatic steatosis and elevation of serum lipopolysaccharides (LPS). HFD impaired intestinal barrier integrity while improved due to EP. Moreover, EP administration ameliorated HFD-induced gut dysbiosis, as revealed by the increased short-chain fatty acid (SCFA)-producing bacteria (e.g., Bacteroides, Parabacteroides, Alloprevotella, and Ruminococcus) and gut barrier-protective Akkermansia muciniphila and decreased endotoxin-producing bacteria (e.g., Desulfovibrionaceae and Bilophila), accompanied by enrichment in intestinal SCFA content and reduction in circulating LPS level. The change of dominant bacterial genera is significantly correlated with improved metabolic profiles and intestinal permeability induced by EP. In conclusion, our results indicate that EP can attenuate HFD-induced metabolic disorders along with restoration of gut barrier integrity and lowering of circulating endotoxin, and these improvements are associated with modulation of gut microbiota composition and related metabolites. These data deepen mechanistic understanding of the anti-obesity and metabolic improving effects of EP.
Collapse
Affiliation(s)
- Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Fei Xie
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Pengbo Liang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Zirui Wang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Min Du
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.
| |
Collapse
|
29
|
Zhang B, Lan W, Xie J. Chemical modifications in the structure of marine polysaccharide as serviceable food processing and preservation assistant: A review. Int J Biol Macromol 2022; 223:1539-1555. [PMID: 36370860 DOI: 10.1016/j.ijbiomac.2022.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Marine polysaccharides are a kind of natural polysaccharides which isolated and extracted from marine organisms. Now some marine polysaccharides, such as chitosan, sodium alginate and agar, have been proven to exhibit antibacterial, antioxidant functions and biocompatibility, which are often used to preserve food or improve the physicochemical properties of food. However, they still have the defects of unsatisfactory preservation effect and biological activity, which can be remedied by its modification. Chemical modification is the most effective of all modification methods. The advances in common chemical modification methods of chitosan, sodium alginate, agar and other marine polysaccharides and research progress of modified products in food processing and preservation were summarized, and the influence of additional reaction conditions on the existence of chemical modification sites of polysaccharides was discussed. The modification of functional groups in natural marine polysaccharides leads to the change of molecular structure, which can improve the physical, chemical and biological properties of marine polysaccharides. Chemically modified products have been used in various fields of food applications, such as food preservatives, food additives, food packaging, and food processing aids. In general, chemical modification has excellent potential for food processing and preservation, which can improve the function of marine polysaccharides.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
30
|
Structural Characterization and Anti-Nonalcoholic Fatty Liver Effect of High-Sulfated Ulva pertusa Polysaccharide. Pharmaceuticals (Basel) 2022; 16:ph16010062. [PMID: 36678559 PMCID: PMC9865482 DOI: 10.3390/ph16010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The high-sulfated derivative of Ulva pertusa polysaccharide (HU), with unclear structure, has better anti-hyperlipidmia activity than U pertusa polysaccharide ulvan (U). In this study, we explore the main structure of HU and its therapeutic effect against nonalcoholic fatty liver disease (NAFLD). The main structure of HU was elucidated using FT-IR and NMR (13C, 1H, COSY, HSQC, HMBC). The anti-NAFLD activity of HU was explored using the high-fat diet mouse model to detect indicators of blood lipid and liver function and observe the pathologic changes in epididymal fat and the liver. Results showed that HU had these main structural fragments: →4)-β-D-Glcp(1→4)-α-L-Rhap2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp2,3S(1→; →4)-α-L-Rhap3S(1→4)-β-D-Xylp(1→; →4)-α-L-IdopA3S(1→4)-α-L-Rhap3S(1→; →4)-β-D-GlcpA(1→3)-α-L-Rhap(1→; →4)-α-L-IdopA3S(1→4)-β-D-Glcp3Me(1→; →4)-β-D-Xylp2,3S(1→4)-α-L-IdopA3S(1→; and →4)-β-D-Xylp(1→4)-α-L-IdopA3S(1→. Treatment results indicated that HU markedly decreased levels of TC, LDL-C, TG, and AST. Furthermore, lipid droplets in the liver were reduced, and the abnormal enlargement of epididymal fat cells was suppressed. Thus, HU appears to have a protective effect on the development of NAFLD.
Collapse
|
31
|
Pi Y, Zhang X, Wu Y, Wang Z, Bai Y, Liu X, Han D, Zhao J, Tobin I, Zhao J, Zhang G, Wang J. Alginate Alleviates Dextran Sulfate Sodium-Induced Colitis by Promoting Bifidobacterium animalis and Intestinal Hyodeoxycholic Acid Synthesis in Mice. Microbiol Spectr 2022; 10:e0297922. [PMID: 36219101 PMCID: PMC9769733 DOI: 10.1128/spectrum.02979-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/16/2022] [Indexed: 01/09/2023] Open
Abstract
Alginate (ALG) is known to alleviate intestinal inflammation in inflammatory bowel disease, but its mechanism of action remains elusive. In the present study, we studied the involvement of the intestinal microbiota and bile acid (BA) metabolism in ALG-mediated anti-inflammatory effects in mice. A combination of 16S rRNA gene amplicon sequencing, shotgun metagenomic sequencing, and targeted BA metabolomic profiling was employed to investigate structural and functional differences in the colonic microbiota and BA metabolism in dextran sulfate sodium (DSS)-treated mice with or without dietary supplementation of ALG. We further explored the role of the intestinal microbiota as well as a selected ALG-enriched bacterium and BA in DSS-induced colitis. Dietary ALG alleviated DSS-mediated intestinal inflammation and enriched a small set of bacteria including Bifidobacterium animalis in the colon (P < 0.05). Additionally, ALG restored several bacteria carrying secondary BA-synthesizing enzymes such as 7α-hydroxysteroid dehydrogenase and BA hydrolase to healthy levels in DSS-treated mice. Although a majority of BAs were suppressed by DSS, a few secondary BAs such as hyodeoxycholic acid (HDCA) were markedly enriched by ALG. Furthermore, ALG significantly upregulated the expression of a major BA receptor, the farnesoid X receptor, while suppressing NF-κB and c-Jun N-terminal kinase (JNK) activation. Depletion of the intestinal microbiota completely abrogated the protective effect of ALG in DSS-treated mice. Similar to ALG, B. animalis and HDCA exerted a strong anti-inflammatory effect in DSS-induced colitis by downregulating inflammatory cytokines (interleukin-1β [IL-1β], IL-6, and tumor necrosis factor alpha [TNF-α]). Taken together, these results indicated that ALG achieves its alleviating effect on intestinal inflammation through regulation of the microbiota by enriching B. animalis to promote the biosynthesis of specific secondary BAs such as HDCA. These findings have revealed intricate interactions among the intestinal microbiota, BA metabolism, and intestinal health and further provided a novel strategy to improve intestinal health through targeted manipulation of the intestinal microbiota and BA metabolism. IMPORTANCE ALG has been shown to ameliorate inflammatory bowel disease (IBD), but little is known about the mechanism of its anti-inflammatory action. This study was the first to demonstrate that ALG provided a preventive effect against colitis in an intestinal microbiota-dependent manner. Furthermore, we confirmed that by selectively enriching intestinal B. animalis and secondary BA (HDCA), ALG contributed to the attenuation of DSS-induced colitis. These findings contribute to a better understanding of the mechanism of action of ALG on the attenuation of colitis and provide new approaches to IBD therapy by regulating gut microbial BA metabolism.
Collapse
Affiliation(s)
- Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, Porwal O, Alam A, Parveen SR, Singh H, Chellappan DK, Gupta G, Kumbhar P, Disouza J, Patravale V, Adams J, Dua K, Singh SK. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery. Chem Biol Interact 2022; 368:110238. [DOI: 10.1016/j.cbi.2022.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022]
|
33
|
Lin Q, Liu M, Erhunmwunsee F, Li B, Mou Y, Wang S, Zhang G, Tian J. Chinese patent medicine shouhui tongbian capsule attenuated loperamide-induced constipation through modulating the gut microbiota in rat. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115575. [PMID: 35934189 DOI: 10.1016/j.jep.2022.115575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shouhui tongbian capsule (SHTC) is a commercial Chinese patent medicine used in the treatment of constipation. However, its mechanism of action remains unclear. AIM OF THE STUDY The present study was undertaken to assess SHTC relieved effects on the clinical symptoms of loperamide (LOP) induced constipation in Sprague Dawley (SD) rat model and to clarify the relationship between the protective effect of SHTC on constipation and the gut microbiota. MATERIALS AND METHODS Constipation male SD rats models were induced with solution of LOP (1.5 mg/kg bw), and rats were treated with an oral dose of SHTC (35, 70 mg/kg bw) three times a day after successful modeling. All rats were assessed weekly by change in body weight, gastric emptying rate, fecal moisture content and wet/dry weight. Hematoxylin and eosin (H&E) were used to observe parts of the rats small intestine. The gut microbiota in colonic contents was analyzed using 16SrRNA gene sequencing. Contents of short-chain fatty acids (SCFAs) were analyzed by gas chromatography-mass spectrometer (GCMS). RESULTS The results confirmed the therapeutic effects of SHTC on constipation. Specifically, SHTC could alleviate the decrease in body weight, gastric emptying rate and fecal moisture content caused by LOP-induced constipation. The pathological damage of small intestine was significantly improved by H&E staining. Notably, SHTC increased the relative abundances of Lactobacillus and the ratio of Firmicutes to Bacteroides (F/B). In addition, the content of acetic acid and propionic acid was significantly increased in constipated rats fed with SHTC. CONCLUSION SHTC could ameliorate the development of LOP-induced constipation in rats by remodeling the structure of gut microbial community and regulating production of intestinal metabolites.
Collapse
Affiliation(s)
- Qian Lin
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China
| | - Man Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China
| | - Famous Erhunmwunsee
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China
| | - Bing Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yanfang Mou
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Sen Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China.
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China.
| |
Collapse
|
34
|
Hanmantrao M, Chaterjee S, Kumar R, Vishwas S, Harish V, Porwal O, Alrouji M, Alomeir O, Alhajlah S, Gulati M, Gupta G, Dua K, Singh SK. Development of Guar Gum-Pectin-Based Colon Targeted Solid Self-Nanoemulsifying Drug Delivery System of Xanthohumol. Pharmaceutics 2022; 14:2384. [PMID: 36365203 PMCID: PMC9693267 DOI: 10.3390/pharmaceutics14112384] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 09/19/2023] Open
Abstract
Present study deciphers development of oral polysaccharide-based colon targeted solid self-nanoemulsifying drug delivery system (S-SNEDDS) of xanthohumol (XH). Several studies have shown that XH has anti-inflammatory and antioxidant properties, suggesting that it could be a good candidate for the treatment of colorectal diseases (CRD). Despite its potential, XH has a low aqueous solubility. As a result, its bioavailability is constrained by the dissolution rate. The liquid (L)-SNEDDS was constituted using Labrafac PG as oil, Tween 80 as surfactant and Transcutol P as co-surfactant. The L-SNEDDS was then adsorbed onto the surface of guar gum and pectin and developed into S-SNEDDS powder. Ternary phase diagram was used to optimize the process of developing L-SNEDDS. The formulation showed mean droplet size of 118.96 ± 5.94 nm and zeta potential of -19.08 ± 0.95 mV and drug loading of 94.20 ± 4.71%. Dissolution studies carried out in medium containing rat caecal contents (RCC) represented the targeted release of S-SNEDDS powder. It was observed that S-SNEDDS showed less than 10% release XH in initial 5 h and rapid release occurred between the 5th and 10th hour. Results of cytotoxicity studies revealed good cytotoxicity of XH loaded S-SNEDDS for Caco2 cells as compared to raw-XH.
Collapse
Affiliation(s)
- Mahesh Hanmantrao
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sourabh Chaterjee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil 4401, Iraq
| | - Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Othman Alomeir
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
35
|
Ou J, Wang Z, Liu X, Song B, Chen J, Li R, Jia X, Huang R, Xiang W, Zhong S. Regulatory effects of marine polysaccharides on gut microbiota dysbiosis: A review. Food Chem X 2022; 15:100444. [PMID: 36211733 PMCID: PMC9532782 DOI: 10.1016/j.fochx.2022.100444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The gut microbiota dysbiosis is a state which the physiological combinations of flora are transformed into pathological combinations caused by factors such as diets, pollution, and drugs. Increasing evidence shows that dysbiosis is closely related to many diseases. With the continuous development and utilization of marine resources, marine polysaccharides have been found to regulate dysbiosis in many studies. In this review, we introduce the types of dysbiosis and the degree of it caused by different factors. We highlight the regulating effects of marine polysaccharides on dysbiosis as a potential prebiotic. The mechanisms of marine polysaccharides to regulate dysbiosis including protection of intestinal barrier, regulatory effect on gut microbiota, alteration for related metabolites, and some other possible mechanisms were summarized. And we aim to provide some references for the high-value utilization of marine polysaccharides and new targets for the treatment of gut microbiota dysbiosis by this review.
Collapse
Affiliation(s)
- Jieying Ou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Xiaofei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Bingbing Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Jianping Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Xuejing Jia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Riming Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenzhou Xiang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
36
|
Halder U, Mazumder K, Kumar KJ, Bandopadhyay R. Structural insight into a glucomannan-type extracellular polysaccharide produced by a marine Bacillus altitudinis SORB11 from Southern Ocean. Sci Rep 2022; 12:16322. [PMID: 36175467 PMCID: PMC9523031 DOI: 10.1038/s41598-022-20822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Extracellular polysaccharide (EPS) produced by a deep-sea, psychrotolerant Bacillus altitudinis SORB11 was evaluated by considering physiochemical nature and structural constituents. The productivity of crude EPS was measured ~ 13.17 g L-1. The surface topography of the crude EPS showed a porous, webbed structure along with a branched coil-like configuration. The crystalline crude EPS contained a high amount of sulfur. Further, the crude EPS was subjected for purification. The molecular weight of purified EPS was determined ~ 9.8 × 104 Da. The purified EPS was appeared to show glucomannan-like configuration that is composed of → 4)-β-Manp-(1 → and → 4)-β-Glcp-(1 → residues. So, this polysaccharide was comparable to the structure of plant-derived glucomannan. Subsequently, EPS biosynthesis protein clusters like EpsC, EpsD, EpsE, and glycosyltransferase family proteins were predicted from the genome of strain SORB11, which may provide an insight into the production of glucomannan-type of polysaccharide. This low molecular weight linear form of glucomannan-type EPS might be involved to form a network-like unattached aggregation, and helps in cell-to-cell interaction in deep-sea microbial species.
Collapse
Affiliation(s)
- Urmi Halder
- Microbiology Section, Department of Botany, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Koushik Mazumder
- National Agri-Food Biotechnology Institute, Sector 81, SAS Nagar, Punjab, 140308, India
| | - K Jayaram Kumar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Rajib Bandopadhyay
- Microbiology Section, Department of Botany, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
37
|
Xiang X, Jiang Q, Yang H, Zhou X, Chen Y, Chen H, Liu S, Chen L. A review on shellfish polysaccharides: Extraction, characterization and amelioration of metabolic syndrome. Front Nutr 2022; 9:974860. [PMID: 36176638 PMCID: PMC9513460 DOI: 10.3389/fnut.2022.974860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Shellfish are diverse, widely distributed organisms that are a rich source of biological resources. Polysaccharides are an important components in shellfish, hence a great deal of attention has been directed at isolation and characterization of shellfish polysaccharides because of their numerous health benefits. Differences in shellfish species, habits, and environment result in the diversity of the structure and composition of polysaccharides. Thus, shellfish polysaccharides possess special biological activities. Studies have shown that shellfish polysaccharides exert biological activities, including antioxidant, antitumor, immune-regulation, hypolipidemic, antihypertensive, and antihyperglycemic effects, and are widely used in cosmetics, health products, and medicine. This review spotlights the extraction and purification methods of shellfish polysaccharides and analyses their structures, biological activities and conformational relationships; discusses the regulatory mechanism of shellfish polysaccharides on hyperlipidemia, hypertension, and hyperglycemia caused by lipid metabolism disorders; and summarizes its alleviation of lipid metabolism-related diseases. This review provides a reference for the in-depth development and utilization of shellfish polysaccharides as a functional food to regulate lipid metabolism-related diseases. To achieve high value utilization of marine shellfish resources while actively promoting the development of marine biological industry and health industry.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- *Correspondence: Shulai Liu,
| | - Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Lin Chen,
| |
Collapse
|
38
|
Zuo J, Zhang Y, Wu Y, Liu J, Wu Q, Shen Y, Jin L, Wu M, Ma Z, Tong H. Sargassum fusiforme fucoidan ameliorates diet-induced obesity through enhancing thermogenesis of adipose tissues and modulating gut microbiota. Int J Biol Macromol 2022; 216:728-740. [PMID: 35907465 DOI: 10.1016/j.ijbiomac.2022.07.184] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/23/2022]
Abstract
Obesity has become a global epidemic. Sargassum fusiforme fucoidan (Fuc) is a group of water-soluble heteropolysaccharides that exhibits a wide range of medicinal functions. It consists of l-fucose and sulfate groups, with l-fucose as the main monosaccharide. This study investigated the therapeutic effects of Fuc on diet-induced obesity (DIO) in C57BL/6J female mice. Fuc significantly alleviated obesity in mice induced by high-fat high-fructose (HFHF) feeding, inhibiting body weight gain, reducing fat accumulation, and improving hepatic steatosis. In addition, Fuc significantly improved glucose tolerance and insulin sensitivity by enhancing the phosphorylation level of AKT (at Ser473) in the adipose tissues. Mechanistically, although Fuc did not decrease the energy intake in DIO mice, it significantly increased the energy expenditure by up-regulating the expression of uncoupling protein 1 (UCP1) in the adipose tissues. Notably, Fuc also improved the obesity-driven dysbiosis of gut microbiota and decreased the relative abundance of the obesity-related intestinal bacteria. However, Fuc was unable to alleviate DIO-induced metabolic disorders in pseudo-sterile mice. Our findings suggested that Fuc might remodel gut microbiota and exert its weight loss and hypolipidemic effects by increasing the energy expenditure, thus providing a novel perspective for treating obesity and related complications.
Collapse
Affiliation(s)
- Jihui Zuo
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qifang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yizhe Shen
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Jin
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
39
|
Huang W, Deng Z, Lu L, Ouyang Y, Zhong S, Luo T, Fan Y, Zheng L. Polysaccharides from soybean residue fermented by Neurospora crassa alleviate DSS-induced gut barrier damage and microbiota disturbance in mice. Food Funct 2022; 13:5739-5751. [PMID: 35527507 DOI: 10.1039/d2fo00137c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Soluble polysaccharides derived from microbial fermentation of agricultural by-products were considered as potential functional ingredients, primarily having probiotic properties. Herein, soluble polysaccharides (FSRP) were isolated from soybean residue fermented by Neurospora crassa, and FSRP mainly contained rhamnose, arabinose, fucose, mannose, glucose, and galactose, according to GC-MS analysis. To further investigate the protective effect of FSRP against colitis, dextran sulfate sodium induction (DSS)-treated mice were orally gavaged with FSRP (200 mg kg-1 d-1) or inulin (400 mg kg-1 d-1, a positive control) for 7 d. The results showed that DSS-treated mice displayed symptoms of body weight loss, atrophy, and histopathological changes of colon, as well as gut barrier damage, which were recovered after FSRP supplementation (similar to inulin). Furthermore, the beneficial effects of FSRP were linked to a decreased inflammatory response and increased protein expression of E-cadherin, claudin-1 and ZO-1. Illumina-MiSeq sequencing analysis revealed that FSRP increased microbial diversity and altered community structure. Specifically, FSRP could modulate the abundance of inflammation-related bacteria (such as Tenericutes, Clostridia, and Bacilli) to ameliorate colitis symptoms. Therefore, FSRP can relieve DSS-induced colitis, which is closely associated with reduced levels of inflammatory factors, improved gut barrier function and gut microbiota homeostasis.
Collapse
Affiliation(s)
- Wenli Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China.
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China.
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, Jiangxi, P. R. China
| | - Ling Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China.
| | - Yaoming Ouyang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China.
| | - Shuyuan Zhong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China.
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China.
| | - Yawei Fan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China.
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China.
| |
Collapse
|
40
|
Xiang X, Wang R, Chen L, Chen Y, Zheng B, Deng S, Liu S, Sun P, Shen G. Immunomodulatory activity of a water-soluble polysaccharide extracted from mussel on cyclophosphamide-induced immunosuppressive mice models. NPJ Sci Food 2022; 6:26. [PMID: 35478196 PMCID: PMC9046246 DOI: 10.1038/s41538-022-00140-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
This study aimed to investigate the protective effect of mussel polysaccharide (MP) on cyclophosphamide (Cy)-induced intestinal mucosal immunosuppression and microbial dysbiosis in mice. MP was shown to stimulate secretion of cytokines (SIgA, IL-2, IF-γ, IL-4, IL-10) and production of transcription factors (occludin, claudin-1, ZO-1, mucin-2, IL-2, IF-γ, IL-4, IL-10). Key proteins (p-IκB-α, p-p65) of the NF-κB pathway were upregulated after MP administration. SCFAs levels, which were decreased after the Cy treatment, were improved after treatment with MP. Furthermore, 16 S rRNA sequencing data of fecal samples revealed, through α-diversity and β-diversity analysis, that MP improved microbial community diversity and modulate the overall composition of gut microbiota. Taxonomic composition analysis showed that MP increased the abundance of probiotics species (Lactobacillus) and decreased the proportion of pathogenic species (Desulfovibrio). These findings suggested that MP has a potential immunomodulatory activity on the immunosuppressive mice.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Rui Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Lin Chen
- Sericultural and Tea Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316000, People's Republic of China
| | - Shanggui Deng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316000, People's Republic of China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China. .,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China. .,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Guoxin Shen
- Sericultural and Tea Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
41
|
Sun CY, Zheng ZL, Chen CW, Lu BW, Liu D. Targeting Gut Microbiota With Natural Polysaccharides: Effective Interventions Against High-Fat Diet-Induced Metabolic Diseases. Front Microbiol 2022; 13:859206. [PMID: 35369480 PMCID: PMC8965082 DOI: 10.3389/fmicb.2022.859206] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Unhealthy diet, in particular high-fat diet (HFD) intake, can cause the development of several metabolic disorders, including obesity, hyperlipidemia, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome (MetS). These popular metabolic diseases reduce the quality of life, and induce premature death worldwide. Evidence is accumulating that the gut microbiota is inextricably associated with HFD-induced metabolic disorders, and dietary intervention of gut microbiota is an effective therapeutic strategy for these metabolic dysfunctions. Polysaccharides are polymeric carbohydrate macromolecules and sources of fermentable dietary fiber that exhibit biological activities in the prevention and treatment of HFD-induced metabolic diseases. Of note, natural polysaccharides are among the most potent modulators of the gut microbiota composition. However, the prebiotics-like effects of polysaccharides in treating HFD-induced metabolic diseases remain elusive. In this review, we introduce the critical role of gut microbiota human health and HFD-induced metabolic disorders. Importantly, we review current knowledge about the role of natural polysaccharides in improving HFD-induced metabolic diseases by regulating gut microbiota.
Collapse
Affiliation(s)
- Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | | | - Cun-Wu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Bao-Wei Lu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| |
Collapse
|
42
|
Huang R, Wu E, Deng X. Potential of Lycium barbarum polysaccharide for the control of glucose and lipid metabolism disorders: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2057529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rongrong Huang
- Department of Pharmacy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Enhui Wu
- Department of Laboratory of Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou China
| | - Xiangliang Deng
- Department of Laboratory of Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou China
- Department of Basic Teaching and Research Section of Traditional Chinese Medicine, School of Chinese Medicine, Guangdong Pharmaceutical University, Yunfu China
| |
Collapse
|
43
|
Yu H, Yi X, Gao X, Ji J, Liu Z, Xia G, Li C, Zhang X, Shen X. Tilapia-Head Chondroitin Sulfate Protects against Nonalcoholic Fatty Liver Disease via Modulating the Gut-Liver Axis in High-Fat-Diet-Fed C57BL/6 Mice. Foods 2022; 11:foods11070922. [PMID: 35407014 PMCID: PMC8997817 DOI: 10.3390/foods11070922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
We isolated and characterized tilapia-head chondroitin sulfate (TH-CS) and explored its biological activity and mechanisms of action as an oral supplement for nonalcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in mice. The results showed that treatment with TH-CS for 8 weeks alleviated the development of NAFLD, as evidenced by the notable improvement in liver damage, blood lipid accumulation and insulin resistance (IR). Meanwhile, TH-CS treatment reduced the expression of proinflammatory cytokines and normalized oxidative stress. Additionally, the analysis of 16S rDNA sequencing revealed that TH-CS could restore gut microbiota balance and increase the relative abundance of short-chain fatty acid (SCFA)-producing bacteria. Furthermore, SCFAs produced by related bacteria can further improve lipid metabolism and IR by regulating lipid synthesis signals. In conclusion, TH-CS is an effective dietary supplement for the prevention of NAFLD, and may serve as a potential supplementary treatment for lipid-related metabolic syndrome.
Collapse
Affiliation(s)
- Hui Yu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Xia Gao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Jun Ji
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Chuan Li
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (H.Y.); (X.Y.); (X.G.); (J.J.); (Z.L.); (G.X.); (C.L.); (X.Z.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
- Correspondence: ; Tel./Fax: +86-0898-6619-3581
| |
Collapse
|
44
|
Li D, Luo F, Guo T, Han S, Wang H, Lin Q. Targeting NF-κB pathway by dietary lignans in inflammation: expanding roles of gut microbiota and metabolites. Crit Rev Food Sci Nutr 2022; 63:5967-5983. [PMID: 35068283 DOI: 10.1080/10408398.2022.2026871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammation is a major factor affecting human health. Nuclear factor-kappa B (NF-κB) plays a vital role in the development of inflammation, and the promoters of most inflammatory cytokine genes have NF-κB-binding sites. Targeting NF-κB could be an exciting route for the prevention and treatment of inflammatory diseases. As important constituents of natural plants, lignans are proved to have numerous biological functions. There are growing pieces of evidence demonstrate that lignans have the potential anti-inflammatory activities. In this work, the type, structure and source of lignans and the influence on mitigating the inflammation are systematically summarized. This review focuses on the targeting NF-κB signaling pathway in the inflammatory response by different lignans and their molecular mechanisms. Lignans also regulate gut microflora and change gut microbial metabolites, which exert novel pathway to prevent NF-κB activation. Taken together, lignans target NF-κB with various mechanisms to inhibit inflammatory cytokine expressions in the inflammatory response. It will provide a scientific theoretical basis for further research on the anti-inflammatory effects of lignans and the development of functional foods.
Collapse
Affiliation(s)
- Dan Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Hanqing Wang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
45
|
Chen G, Zeng R, Wang X, Cai H, Chen J, Zhong Y, Zhong S, Jia X. Antithrombotic Activity of Heparinoid G2 and Its Derivatives from the Clam Coelomactra antiquata. Mar Drugs 2022; 20:md20010050. [PMID: 35049905 PMCID: PMC8779706 DOI: 10.3390/md20010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Clam heparinoid G2 (60.25 kDa) and its depolymerized derivatives DG1 (24.48 kDa) and DG2 (6.75 kDa) prepared from Coelomactra antiquata have been documented to have excellent fibrinolytic and anticoagulant activity. In this study, to further explore the antithrombotic activity of G2, DG1 and DG2, azure A, sheep plasma, and clot lytic rate assays were used to determine their anticoagulant and thrombolytic activity in vitro. The results indicated that the anticoagulant titer of G2 was approximately 70% that of heparin and the thrombolytic activity of DG2 was greater than G2, DG1, and heparin activities. Moreover, in a carrageenan-induced venous thrombosis model, oral administration of G2 and DG1 each at 20 mg/kg and 40 mg/kg for 7 days significantly reduced blacktail thrombus formation, increased tissue-type plasminogen activator, fibrin degradation products, and D-dimer levels, decreased von Willebrand factor and thromboxane B2 levels, and restored phylum and genus abundance changes of intestinal bacteria. DG2 had no antithrombotic effect. At 20 mg/kg, G2, DG1, and heparin had comparable antithrombotic activities, and DG1 at 40 mg/kg had more muscular antithrombotic activity than G2. Thus, DG1 could be an antithrombotic oral agent owing to its more robust antithrombotic activity and lower molecular weight.
Collapse
Affiliation(s)
- Guanlan Chen
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Rui Zeng
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongying Cai
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiajia Chen
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingxiong Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-188-2669-9336
| | - Xuejing Jia
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
46
|
Lin Q, Yang L, Han L, Wang Z, Luo M, Zhu D, Liu H, Li X, Feng Y. Effects of soy hull polysaccharide on dyslipidemia and pathoglycemia in rats induced by a high-fat-high-sucrose diet. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Ultrasound-Assisted Modification of Insoluble Dietary Fiber from Chia (Salvia hispanica L.) Seeds. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5035299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modification of insoluble dietary fiber (IDF) to soluble dietary fiber (SDF) improves not only the various health benefits but also the functional properties for improved product development. This research aimed to examine the effects of sonication treatment on the functional and physicochemical properties with possible structural changes in chia seeds dietary fiber. Central composite design was applied to optimize the sonication treatment process (amplitude 55%, time 20 min, and temperature 40°C) based on the oil holding capacity (OHC) and water holding capacity (WHC) as responses. Under these optimum conditions, ultrasound-treated IDF exhibited better functional and physicochemical properties such as OHC, WHC, glucose adsorption capacity (GAC), and water retention capacity (WRC) than untreated IDF. Fourier-transform infrared spectroscopy further confirmed the structural changes in treated and untreated IDF to explain the changes in the studied parameters.
Collapse
|
48
|
Li Y, Qin J, Cheng Y, Lv D, Li M, Qi Y, Lan J, Zhao Q, Li Z. Marine Sulfated Polysaccharides: Preventive and Therapeutic Effects on Metabolic Syndrome: A Review. Mar Drugs 2021; 19:md19110608. [PMID: 34822479 PMCID: PMC8618309 DOI: 10.3390/md19110608] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome is the pathological basis of cardiovascular and cerebrovascular diseases and type 2 diabetes. With the prevalence of modern lifestyles, the incidence of metabolic syndrome has risen rapidly. In recent years, marine sulfate polysaccharides (MSPs) have shown positive effects in the prevention and treatment of metabolic syndrome, and they mainly come from seaweeds and marine animals. MSPs are rich in sulfate and have stronger biological activity compared with terrestrial polysaccharides. MSPs can alleviate metabolic syndrome by regulating glucose metabolism and lipid metabolism. In addition, MSPs prevent and treat metabolic syndrome by interacting with gut microbiota. MSPs can be degraded by gut microbes to produce metabolites such as short chain fatty acids (SCFAs) and free sulfate and affect the composition of gut microbiota. The difference between MSPs and other polysaccharides lies in the sulfation pattern and sulfate content, therefore, which is very important for anti-metabolic syndrome activity of MSPs. This review summarizes the latest findings on effects of MSPs on metabolic syndrome, mechanisms of MSPs in treatment/prevention of metabolic syndrome, interactions between MSPs and gut microbiota, and the role of sulfate group and sulfation pattern in MSPs activity. However, more clinical trials are needed to confirm the potential preventive and therapeutic effects on human body. It may be a better choice to develop new functional foods containing MSPs for dietary intervention in metabolic syndrome.
Collapse
Affiliation(s)
- Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian 116023, China
| | - Juan Qin
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
| | - Yinghui Cheng
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
| | - Dong Lv
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, China
| | - Meng Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian 116023, China
| | - Yanxia Qi
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian 116023, China
| | - Jing Lan
- Dalian Zhenjiu Biological Industry Co., Ltd., Dalian 116023, China;
| | - Qiancheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (Q.Z.); (Z.L.); Tel.: +86-411-84673500 (Q.Z.); +86-411-84763107 (Z.L.)
| | - Zhibo Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, China
- Correspondence: (Q.Z.); (Z.L.); Tel.: +86-411-84673500 (Q.Z.); +86-411-84763107 (Z.L.)
| |
Collapse
|
49
|
Yang M, Yin Y, Wang F, Zhang H, Ma X, Yin Y, Tan B, Chen J. Supplementation With Lycium barbarum Polysaccharides Reduce Obesity in High-Fat Diet-Fed Mice by Modulation of Gut Microbiota. Front Microbiol 2021; 12:719967. [PMID: 34512598 PMCID: PMC8427603 DOI: 10.3389/fmicb.2021.719967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/09/2021] [Indexed: 01/12/2023] Open
Abstract
Lycium barbarum polysaccharides (LBPs) have been proved to prevent obesity and modulate gut microbiota. However, the underlying mechanisms of LBPs’ regulating lipid metabolism remain entirely unclear. Therefore, the purpose of this study was to determine whether LBPs are able to modulate the gut microbiota to prevent obesity. The results showed that oral administration of LBPs alleviated dyslipidemia by decreasing the serum levels of total triglycerides, total cholesterol, and low-density lipoprotein-cholesterol and elevating the high-density lipoprotein cholesterol in obese mice. Furthermore, LBP treatment decreased the number and size of adipocytes in epididymal adipose tissues and downregulated the expression of adipogenesis-related genes, including acetyl-CoA carboxylase 1, fatty acid synthase, stearoyl-CoA desaturase 1, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor γ, and CCAAT/enhancer-binding protein α. 16S rRNA gene sequencing analysis showed that LBPs increased the diversity of bacteria, reduced the Firmicutes/Bacteroidetes ratio, and improved the gut dysbiosis induced by a high-fat diet; for example, LBPs increased the production of short-chain fatty acid-producing bacteria Lacticigenium, Lachnospiraceae_NK4A136_group, and Butyricicoccus. LBPs treatment also increased the content of fecal short-chain fatty acids, including butyric acid. These findings illustrate that LBPs might be developed as a potential prebiotic to improve lipid metabolism and intestinal diseases.
Collapse
Affiliation(s)
- Mei Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yexin Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haihan Zhang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaokang Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha, China
| | - Bie Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha, China
| |
Collapse
|
50
|
Wang B, Yu H, He Y, Wen L, Gu J, Wang X, Miao X, Qiu G, Wang H. Effect of soybean insoluble dietary fiber on prevention of obesity in high-fat diet fed mice via regulation of the gut microbiota. Food Funct 2021; 12:7923-7937. [PMID: 34251010 DOI: 10.1039/d1fo00078k] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing evidence has shown that the gut microbiota plays an important role in preventing obesity; however, the mechanism by which insoluble dietary fiber (IDF) prevents high-fat diet (HFD)-induced obesity remains unclear. This study aimed to investigate the effect of SIDF on obesity in HFD mice and determine the mechanism by which it prevents obesity through regulating the gut microbiota. Soybean insoluble dietary fiber (SIDF) was used as an intervention in HFD mice for 20 weeks. The results showed that SIDF significantly reduced the body weight (BW), fat index, total cholesterol, triglyceride, and low-density lipoprotein cholesterol while increasing the content of high-density lipoprotein cholesterol in HFD mice. SIDF intervention was also beneficial for the reduction of liver lipid content and fatty droplets in mice. Furthermore, SIDF intervention improved the gut microbiota composition by increasing the relative abundance of potentially beneficial bacteria (such as Lactobacillales [order], Lactobacillus [genus], Lachnospirace_Nk4A136_group [genus]), and reduced the relative abundance of potentially harmful bacteria (such as Lachnospiraceae [family] and Bacteroides_acidifaciens [species]), which correlated with obesity (at least p < 0.05 in all instances). Finally, SIDF was fermented by related beneficial bacteria, which increased the content of the short-chain fatty acids (SCFAs), and promoted the secretion of satiety hormones. In conclusion, SIDF intervention could prevent obesity in HFD mice by modulating the gut microbiota composition. Hence, SIDF may be used as a potential ingredient in functional foods.
Collapse
Affiliation(s)
- Bixiang Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China.
| | | | | | | | | | | | | | | | | |
Collapse
|