1
|
Preethy H A, Rajendran K, Sukumar AJ, Krishnan UM. Emerging paradigms in Alzheimer's therapy. Eur J Pharmacol 2024; 981:176872. [PMID: 39117266 DOI: 10.1016/j.ejphar.2024.176872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder that affects elderly, and its incidence is continuously increasing across the globe. Unfortunately, despite decades of research, a complete cure for Alzheimer's disease continues to elude us. The current medications are mainly symptomatic and slow the disease progression but do not result in reversal of all disease pathologies. The growing body of knowledge on the factors responsible for the onset and progression of the disease has resulted in the identification of new targets that could be targeted for treatment of Alzheimer's disease. This has opened new vistas for treatment of Alzheimer's disease that have moved away from chemotherapeutic agents modulating a single target to biologics and combinations that acted on multiple targets thereby offering better therapeutic outcomes. This review discusses the emerging directions in therapeutic interventions against Alzheimer's disease highlighting their merits that promise to change the treatment paradigm and challenges that limit their clinical translation.
Collapse
Affiliation(s)
- Agnes Preethy H
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Anitha Josephine Sukumar
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
2
|
Li R, Liu Y, Meng Y, Qu X, Shang M, Yang L, Chai J. Study on correlation between perioperative cognitive function and nutritional status in elderly patients with gastric cancer. Exp Gerontol 2024; 193:112467. [PMID: 38797287 DOI: 10.1016/j.exger.2024.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE To investigate the cognitive function and nutritional status of elderly patients with gastric cancer during perioperative period, and to analyze their correlation. METHODS Aged patients undergoing gastric cancer surgery in The Affiliated Cancer Hospital of Shandong First Medical University from March to October 2021 were selected as the subjects of this study. The monitoring data of cognitive function and nutritional status were retrospectively analyzed from 1 to 3 days before surgery, 1 and 3 days after surgery, 7 days after surgery (before discharge) and 30 days after surgery to analyze the correlation between cognitive function and nutritional status in elderly patients with gastric cancer. RESULTS the incidence of mild cognitive impairment in elderly patients with gastric cancer was 52.43 %, the visual space of the two groups' (mild cognitive impairment) ability of execution, name, attention, language, abstract thinking, delayed memory and cognitive function scores were lower than 1 set of directional force (cognitive function in normal group), statistically significant difference (P < 0.05). The nutritional status of elderly patients with gastric cancer was lower than that of healthy elderly group at the same period (P < 0.05). The scores of visual spatial executive function, name, attention, delayed memory, orientation and total score of cognitive function in elderly gastric cancer patients were positively correlated with nutritional status (P < 0.05). CONCLUSIONS The cognitive function and nutritional status of elderly patients with gastric cancer are both in a low state during treatment and a higher level of cognitive function can help patients maintain a more correct nutritional cognition, and the nutritional status of patients will be relatively better. There is a positive correlation between cognitive function and nutritional status in elderly patients with gastric cancer, which should be paid attention to in the treatment.
Collapse
Affiliation(s)
- Rong Li
- Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China; Shandong Cancer Hospital and Institute, Jinan, China; Philippine Christian University Center for International Education, the Philippines
| | - Yuping Liu
- Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China; Shandong Cancer Hospital and Institute, Jinan, China
| | - Yingtao Meng
- Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China; Shandong Cancer Hospital and Institute, Jinan, China
| | - Xianlin Qu
- Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China; Shandong Cancer Hospital and Institute, Jinan, China
| | - Meimei Shang
- Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China; Shandong Cancer Hospital and Institute, Jinan, China
| | - Lihui Yang
- Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China; Shandong Cancer Hospital and Institute, Jinan, China
| | - Jie Chai
- Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China; Shandong Cancer Hospital and Institute, Jinan, China.
| |
Collapse
|
3
|
Imboden M. Maintaining Brain Health: An Imperative for Successful Aging and Business Performance. Am J Health Promot 2024; 38:576-580. [PMID: 38553419 DOI: 10.1177/08901171241232042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Affiliation(s)
- Mary Imboden
- Center for Cardiovascular Analytics, Research and Data Science, Providence Heart Institute, Providence Saint Joseph Health, Portland, Oregon, USA
| |
Collapse
|
4
|
Imboden M. Maintaining Brain Health: An Imperative for Successful Aging and Business Performance. Am J Health Promot 2024; 38:576-589. [PMID: 38553416 DOI: 10.1177/08901171241232042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Affiliation(s)
- Mary Imboden
- Center for Cardiovascular Analytics, Research and Data Science, Providence Heart Institute, Providence Saint Joseph Health, Portland, Oregon, USA
| |
Collapse
|
5
|
Macri E, Azhar Y. Prevention of Neurologic Disease with Fasting. Semin Neurol 2022; 42:549-557. [PMID: 36216359 DOI: 10.1055/a-1957-8449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fasting has been widely studied in both prevention and treatment of many neurologic disorders. Some conditions may be prevented with any type of fasting, while some may require a stricter regimen. Fasting reduces weight, fasting blood glucose, and insulin resistance, and favorably alters the gut biome and the immune system. This article discusses various versions of fasting that have been studied as well as the known and theoretical mechanisms of how fasting effects the body and the brain. This article will then review evidence supporting the potential preventive and treatment effects of fasting in specific neurologic disorders including ameliorating the symptoms of Parkinson's disease, improving cognition in Alzheimer's disease, reducing migraine frequency and intensity, and reducing seizure frequency in epilepsy.
Collapse
Affiliation(s)
- Elizabeth Macri
- Department of Neurology, The University of New Mexico, Albuquerque, New Mexico
| | - Yusra Azhar
- Department of Neurology, The University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
6
|
Gentreau M, Reynes C, Sabatier R, Maller JJ, Meslin C, Deverdun J, Le Bars E, Raymond M, Berticat C, Artero S. Glucometabolic Changes Are Associated with Structural Gray Matter Alterations in Prodromal Dementia. J Alzheimers Dis 2022; 89:1293-1302. [PMID: 36031896 DOI: 10.3233/jad-220490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Glucometabolic changes, such as high glycemic load (GL) diet and insulin resistance (IR), are potential risk factor of Alzheimer's disease (AD). Yet, the effect of these factors on brain alterations that contribute to AD pathology has not been clearly demonstrated. OBJECTIVE We aimed to assess the relationship of GL and IR with gray matter volumes involved in prodromal dementia. METHODS GL and Triglyceride-Glucose (TyG) index, an IR surrogate marker, were calculated in 497 participants who underwent magnetic resonance imaging (MRI). The gray matter volumes most related to prodromal dementia/mild cognitive impairment (diagnosed in 18/158 participants during the 7-year follow-up) were identified using a data-driven machine learning algorithm. RESULTS Higher GL diet was associated with reduced amygdala volume. The TyG index was negatively associated with the hippocampus, amygdala, and putamen volumes. CONCLUSION These results suggest that GL and IR are associated with lower gray matter volumes in brain regions involved in AD pathology.
Collapse
Affiliation(s)
- Mélissa Gentreau
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Robert Sabatier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Jerome J Maller
- Monash Alfred Psychiatry Research Centre, Melbourne, Victoria, Australia.,General Electric Healthcare, Richmond, Melbourne, Australia
| | - Chantal Meslin
- Centre for Mental Health Research, Australian National University, Canberra, Australia
| | - Jeremy Deverdun
- I2FH, Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
| | - Emmanuelle Le Bars
- I2FH, Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, University of Montpellier, Montpellier, France
| | - Michel Raymond
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Claire Berticat
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Sylvaine Artero
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
7
|
Ruffini N, Klingenberg S, Heese R, Schweiger S, Gerber S. The Big Picture of Neurodegeneration: A Meta Study to Extract the Essential Evidence on Neurodegenerative Diseases in a Network-Based Approach. Front Aging Neurosci 2022; 14:866886. [PMID: 35832065 PMCID: PMC9271745 DOI: 10.3389/fnagi.2022.866886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
The common features of all neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease, are the accumulation of aggregated and misfolded proteins and the progressive loss of neurons, leading to cognitive decline and locomotive dysfunction. Still, they differ in their ultimate manifestation, the affected brain region, and the kind of proteinopathy. In the last decades, a vast number of processes have been described as associated with neurodegenerative diseases, making it increasingly harder to keep an overview of the big picture forming from all those data. In this meta-study, we analyzed genomic, transcriptomic, proteomic, and epigenomic data of the aforementioned diseases using the data of 234 studies in a network-based approach to study significant general coherences but also specific processes in individual diseases or omics levels. In the analysis part, we focus on only some of the emerging findings, but trust that the meta-study provided here will be a valuable resource for various other researchers focusing on specific processes or genes contributing to the development of neurodegeneration.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research, Leibniz Association, Mainz, Germany
| | - Susanne Klingenberg
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Raoul Heese
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| | - Susann Schweiger
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
8
|
Zhang Q, Wu S, Liu X, Yang J, Dong X, Zhou Y, Chen J, Li Y, Yang J. An Observation Study of Urinary Biomarkers Exploratory in Alzheimer's Disease using High Resolution Mass Spectrometry. Biomed Chromatogr 2022; 36:e5421. [PMID: 35653409 DOI: 10.1002/bmc.5421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) is regarded as a progressive neurodegenerative dementia, characterized by degeneration of distinct neuronal populations. A case-control study was carried out by using high resolution mass spectrometry to explore AD associated urinary metabolic biomarkers from 30 AD patients and 30 cognitively normal (CN) individuals, respectively. In total, 49 metabolites were determined and validated as known compounds by LC/MS analysis. With two sample t-test statistical analysis (p<0.05), 19 metabolites were shown to be significantly differed from AD to CN. A diagnostic model of receiver-operator characteristic (ROC) curve was constructed with a combination of 9 selected metabolites and yielded a separation with an area under the curve value of 0.976 between two groups. This study indicated urinary metabolites showed a significant expression between AD and CN. AD related metabolites enable to satisfy the diagnostic power of disease discrimination. Additionally, as a non-invasive approach, urine collection provides its convenience in clinical diagnosis of AD.
Collapse
Affiliation(s)
- Qun Zhang
- Shanghai Baoshan Elderly Care Home, Shanghai, China
| | - Shuo Wu
- Clinical research center, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Xinru Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jun Yang
- Shanghai Baoshan Elderly Care Home, Shanghai, China
| | - Xin Dong
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,School of medicine, Shanghai University, Shanghai, China
| | - Yinge Zhou
- School of medicine, Shanghai University, Shanghai, China
| | - Junjie Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yamei Li
- Neurology department, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Jingzhi Yang
- Clinical research center, Shanghai Baoshan Luodian Hospital, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
9
|
Huang Y, Wei Y, Xu J, Wei X. A comprehensive review on the prevention and regulation of Alzheimer's disease by tea and its active ingredients. Crit Rev Food Sci Nutr 2022; 63:10560-10584. [PMID: 35647742 DOI: 10.1080/10408398.2022.2081128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) has brought a heavy burden to society as a representative neurodegenerative disease. The etiology of AD combines multiple factors, concluding family, gender, head trauma, diseases and social psychology. There are multiple hypotheses explaining the pathogenesis of AD such as β-amyloid (Aβ) deposition and tau hyperphosphorylation, which lead to extracellular amyloid plaques and neurofibrillary tangles in neurons. The existing therapeutic drugs have several disadvantages including single target, poor curative effect, and obvious side effects. Tea contains many bioactive components, such as tea polyphenols (TPP), L-theanine (L-TH), tea pigment, tea polysaccharides and caffeine. The epidemiological investigations have shown that drinking tea can reduce the risk of AD. The mechanisms of tea active ingredients in the prevention and regulation of AD includes reducing the generation and aggregation of Aβ; inhibiting tau aggregation and hyperphosphorylation; inhibiting neuronal apoptosis and regulate neurotransmitters; relieving oxidative stress and neuroinflammation as well as the regulation of intestinal flora. This review summarizes the different signaling pathways that tea active ingredients regulate AD. Furthermore, we propose the main limitations of current research and future research directions, hoping to contribute to the development of natural functional foods based on tea active ingredients in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
10
|
Jiwani R, Robbins R, Neri A, Renero J, Lopez E, Serra MC. Effect of Dietary Intake Through Whole Foods on Cognitive Function: Review of Randomized Controlled Trials. Curr Nutr Rep 2022; 11:146-160. [PMID: 35334104 PMCID: PMC11110908 DOI: 10.1007/s13668-022-00412-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW This review evaluated recent randomized controlled trials (RCTs) examining the chronic intake of whole foods associated with the Mediterranean, Dietary Approaches to Stop Hypertension (DASH), Mediterranean-DASH Intervention for Neurogenerative Delay (MIND), and ketogenic (KETO) diets on cognitive function. RECENT FINDINGS We identified RCTs related to olive oil (N = 3), nuts (N = 7), fatty fish (N = 1), lean meats (N = 4), fruits and vegetables (N = 9), legumes (N = 1), and low-fat dairy (N = 4), with 26/29 reporting positive results on at least one measure of cognition. We also identified 6 RCTs related to whole food-induced KETO diets, with half reporting positive effects on cognition. Variations in study design (i.e., generally the studies are < 6 months and include middle-aged and older, cognitively intact participants) and small sample sizes make it difficult to draw conclusions across studies; however, the current evidence from RCTs generally supports individual component intakes of these dietary patterns as an effective, nonpharmacological approach to improve cognitive health in adults.
Collapse
Affiliation(s)
- Rozmin Jiwani
- School of Nursing, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA.
| | - Ronna Robbins
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Alfonso Neri
- School of Nursing, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Jose Renero
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Emme Lopez
- Dolph Briscoe, Jr. Library, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Monica C Serra
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
11
|
Personalized Nutrition in the Management of Female Infertility: New Insights on Chronic Low-Grade Inflammation. Nutrients 2022; 14:nu14091918. [PMID: 35565885 PMCID: PMC9105997 DOI: 10.3390/nu14091918] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence on the significance of nutrition in reproduction is emerging from both animal and human studies, suggesting a mutual association between nutrition and female fertility. Different “fertile” dietary patterns have been studied; however, in humans, conflicting results or weak correlations are often reported, probably because of the individual variations in genome, proteome, metabolome, and microbiome and the extent of exposure to different environmental conditions. In this scenario, “precision nutrition”, namely personalized dietary patterns based on deep phenotyping and on metabolomics, microbiome, and nutrigenetics of each case, might be more efficient for infertile patients than applying a generic nutritional approach. In this review, we report on new insights into the nutritional management of infertile patients, discussing the main nutrigenetic, nutrigenomic, and microbiomic aspects that should be investigated to achieve effective personalized nutritional interventions. Specifically, we will focus on the management of low-grade chronic inflammation, which is associated with several infertility-related diseases.
Collapse
|
12
|
Food for Special Medical Purposes and Nutraceuticals for Pain: A Narrative Review. Pain Ther 2021; 10:225-242. [PMID: 33594594 PMCID: PMC8119521 DOI: 10.1007/s40122-021-00239-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/30/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction The present paper focuses on the possible contribution of food compounds to alleviate symptomatic pains. Chronic pain can more easily be linked to anticipatory signals such as thirst and hunger than it is to sensory perceptions as its chronicity makes it fall under the behavioural category rather than it does senses. In fact, pain often negatively affects one’s normal feeding behavioural patterns, both directly and indirectly, as it is associated with pain or because of its prostrating effects. Nutritional Compounds for Pain Several nutraceuticals and Foods for Special Medical Purposes (FSMPs) are reported to have significant pain relief efficacy with multiple antioxidant and anti-inflammatory properties. Apart from the aforementioned properties, amino acids, fatty acids, trace elements and vitamins may have a role in the modulation of pain signals to and within the nervous system. Conclusion In our opinion, this review could be of great interest to clinicians, as it offers a complementary perspective in the management of pain. Trials with well-defined patient and symptoms selection and a robust pharmacological design are pivotal points to let these promising compounds become better accepted by the medical community.
Collapse
|
13
|
Gomez-Pinilla F, Cipolat RP, Royes LFF. Dietary fructose as a model to explore the influence of peripheral metabolism on brain function and plasticity. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166036. [PMID: 33508421 DOI: 10.1016/j.bbadis.2020.166036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
Abstract
High consumption of fructose has paralleled an explosion in metabolic disorders including obesity and type 2 diabetes. Even more problematic, sustained consumption of fructose is perceived as a threat for brain function and development of neurological disorders. The action of fructose on peripheral organs is an excellent model to understand how systemic physiology impacts the brain. Given the recognized action of fructose on liver metabolism, here we discuss mechanisms by which fructose can impact the brain by interacting with liver and other organs. The interaction between peripheral and central mechanisms is a suitable target to reduce the pathophysiological consequences of neurological disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Neurosurgery, UCLA Brain Injury Research Center, University of California Los Angeles, USA; Department of Integrative Biology and Physiology, UCLA Brain Injury Research Center, University of California Los Angeles, USA.
| | - Rafael Parcianello Cipolat
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Luiz Fernando Freire Royes
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| |
Collapse
|
14
|
Davis JJ, Fournakis N, Ellison J. Ketogenic Diet for the Treatment and Prevention of Dementia: A Review. J Geriatr Psychiatry Neurol 2021; 34:3-10. [PMID: 31996078 DOI: 10.1177/0891988720901785] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dementia (major neurocognitive disorder) is an increasingly common syndrome with a significant burden on patients, caregivers, the health-care system, and the society. The prevalence of dementia will certainly continue to grow as the US population ages. Current treatments for dementia, though, are limited. One proposed nonpharmacologic approach for the delay or prevention of dementia is the use of a ketogenic diet. The ketogenic diet was originally employed to treat refractory epilepsy and has shown promise in many neurologic diseases. It has also gained recent popularity for its weight loss effects. Several preclinical studies have confirmed a benefit of ketosis on cognition and systemic inflammation. Given the renewed emphasis on neuroinflammation as a pathogenic contributor to cognitive decline, and the decreased systemic inflammation observed with the ketogenic diet, it is plausible that this diet may delay, ameliorate, or prevent progression of cognitive decline. Several small human studies have shown benefit on cognition in dementia with a ketogenic diet intervention. Future, large controlled studies are needed to confirm this benefit; however, the ketogenic diet has shown promise in regard to delay or mitigation of symptoms of cognitive decline.
Collapse
Affiliation(s)
- Joshua J Davis
- Department of Emergency Medicine, 12311Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Nicole Fournakis
- Center for Community Health in the Office of Health Equity at 5973Christiana Care Health System, Newark, DE, USA
| | - James Ellison
- The Swank Foundation Endowed Chair in Memory Care and Geriatrics at 5973Christiana Care Health System, Newark, DE, USA
| |
Collapse
|
15
|
Lodha D, Rajasekaran S, Jayavelu T, Subramaniam JR. Detrimental effects of fructose on mitochondria in mouse motor neurons and on C. elegans healthspan. Nutr Neurosci 2020; 25:1277-1286. [PMID: 33258406 DOI: 10.1080/1028415x.2020.1853413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Fructose-common sweetener, consumed in large quantities, is now known to be associated with various metabolic diseases. Recent reports suggest fructose's involvement in neurodegeneration, neurotoxicity, and neuroinflammation. But, its impact at cellular and subcellular level and on energy metabolism, especially, mitochondrial bioenergetics, in neurons is not known. OBJECTIVES To study the adverse effects of high fructose in general, and on the mitochondria in a spinal cord motor neuron cell line, NSC-34, in vitro, and Caenorhabditis elegans in vivo. METHODS NSC-34 was treated with 0.5%-5% of fructose for different time periods. Fructose's effect on cell viability (MTT assay), metabolic activity (XF24 Seahorse assays) and C. elegans, chronically fed with 5% fructose and alteration in healthspan/mitochondria was monitored. RESULTS In NSC-34: Fructose at 4-5% elicits 60% cell death. Unlike 1%, 5% fructose (F5%) decreased mitochondrial membrane potential by 29%. Shockingly, 6hours F5% treatment almost abolished mitochondrial respiration - basal-respiration (∨123%), maximal-respiration (∨ 95%) and spare-respiratory-capacity (∨ 83%) and ATP production (∨98%) as revealed by XF 24- Seahorse assays. But non - mitochondrial respiration was spared. F5% treatment for 48hrs resulted in the total shutdown of respiratory machinery including glycolysis. Chronic feeding of wildtype C.elegans to F5% throughout, shortened lifespan by ~3 days (∨ 17%), progressively reduced movement (day-2 -∨10.25%, day-5 -∨25% and day-10 -∨56%) and food intake with age (day-5-∨9% and day-10 -∨48%) and instigated mitochondrial swelling and disarray in their arrangement in adult worms body-wall muscle cells. CONCLUSION Chronic exposure to high fructose negatively impacts cell viability, mitochondrial function, basal glycolysis, and healthspan.
Collapse
Affiliation(s)
- Divya Lodha
- Centre for Preclinical and Translational Medical Research, Central Research Facility, Sri Ramachandra Institute for Higher Education and Research, Chennai, India
| | | | | | - Jamuna R Subramaniam
- Centre for Preclinical and Translational Medical Research, Central Research Facility, Sri Ramachandra Institute for Higher Education and Research, Chennai, India
| |
Collapse
|
16
|
Albrahim T. The potential role of nutritional components in improving brain function among patients with Alzheimers disease: a meta-analysis of RCT studies. ACTA ACUST UNITED AC 2020; 25:4-17. [PMID: 31982903 PMCID: PMC8015632 DOI: 10.17712/nsj.2020.1.20190037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To find out the potential role of nutritional components in improving brain function among patients with Alzheimer`s disease (AD). METHODS The correlation between nutrition and cerebral function in cases of AD has been the focus of 19 prospective randomised controlled trials (RCTs) with a combined research sample of 2297 patients. These RCTs are subject to systematic review and meta-analysis in the current paper RESULTS: Findings showed that chain-free secondary saturated fatty acids (SFA) and trans fatty acids (TFA) occurred in higher concentrations in AD patients` brains than in controls. Furthermore, neuroinflammation was caused by remodelling of the lipid membrane and AD patients` cognitive function was impacted by alterations in tyrosine, tryptophan, purine, and tocopherol pathway metabolomics. Moreover, in cases of mild-to-moderate AD, reduction in functionality was induced by administration of alpha-tocopherol for more than 12 months. Consumption of Souvenaid helps in synaptic synthesis, which enhances functional connectivity. Furthermore, consumption of the B vitamins folate, cobalamin and pyridoxine at dosages of 0.8 mg, 0.5 mg and 20 mg per day, respectively, over a period of one year resulted in lower plasma tHcy levels and brain atrophy. CONCLUSION Chain-free SFA and TFA occur in greater amounts in the brains of individuals with AD than in those without AD.
Collapse
Affiliation(s)
- Tarfa Albrahim
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia. E-mail:
| |
Collapse
|
17
|
Emerging Therapeutic Promise of Ketogenic Diet to Attenuate Neuropathological Alterations in Alzheimer's Disease. Mol Neurobiol 2020; 57:4961-4977. [PMID: 32820459 DOI: 10.1007/s12035-020-02065-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial and chronic neurodegenerative disorder that interferes with memory, thinking, and behavior. The consumption of dietary fat has been considered a vital factor for AD as this disease is related to blood-brain barrier function and cholesterol signaling. The ε4 allele of apolipoprotein E (APOE4) is a primary genetic risk factor that encodes one of many proteins accountable for the transport of cholesterol and it is deemed as the leading cholesterol transport proteins in the brain. In case of AD development, the causative factor is the high level of serum/plasma cholesterol. However, this statement is arguable and, in the meantime, the levels of brain cholesterol in individuals with AD are extremely inconstant and levels of cholesterol in the brain and serum/plasma of AD individuals do not reflect cholesterol as a risk factor. In fact, APOE4 is neither fundamental nor sufficient for the advancement of AD; it just acts as a synergistic and increases the danger of AD. Another noticeable characteristic of AD is area-specific decreases in the metabolism of brain glucose. It has been found that the brain cells cannot efficiently metabolize fats; hence, they totally rely upon glucose as a vitality substrate. Thus, suppression of glucose metabolism can possess an intense effect on brain actions. Hypometabolism is frequently found in AD and has quite recently achieved impressive consideration as a plausible target for interfering in the progression of the disease. One promising approach is to keep up the normal supply of glucose to the brain with ketone bodies from the ketogenic diet signifies a potential therapeutic agent for AD. Therefore, this review represents the role of ketogenic diets to combat AD pathogenesis by considering the influence of APOE.
Collapse
|
18
|
Dietary Carbohydrate Constituents Related to Gut Dysbiosis and Health. Microorganisms 2020; 8:microorganisms8030427. [PMID: 32197401 PMCID: PMC7143995 DOI: 10.3390/microorganisms8030427] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
Recent studies report that microbiota in the human intestine play an important role in host health and that both long- and short-term diets influence gut microbiota. These findings have fueled interest in the potential of food to promote health by shaping the intestinal microbiota. Despite the fact that large populations in Asia consume high quantities of carbohydrates, such diets have been ignored in comparison to the attention received by Western diets containing high quantities of fat and animal protein. We gathered data that suggest an association between imbalanced high-carbohydrate intake and gut microbiota and host health. In this review, we identify not only the effect of total carbohydrates on the intestinal microbiota specifically and the health of their hosts in general, but also how specific types of carbohydrates influence both factors.
Collapse
|
19
|
Williams T, Borchelt DR, Chakrabarty P. Therapeutic approaches targeting Apolipoprotein E function in Alzheimer's disease. Mol Neurodegener 2020; 15:8. [PMID: 32005122 PMCID: PMC6995170 DOI: 10.1186/s13024-020-0358-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
One of the primary genetic risk factors for Alzheimer’s disease (AD) is the presence of the Ɛ4 allele of apolipoprotein E (APOE). APOE is a polymorphic lipoprotein that is a major cholesterol carrier in the brain. It is also involved in various cellular functions such as neuronal signaling, neuroinflammation and glucose metabolism. Humans predominantly possess three different allelic variants of APOE, termed E2, E3, and E4, with the E3 allele being the most common. The presence of the E4 allele is associated with increased risk of AD whereas E2 reduces the risk. To understand the molecular mechanisms that underlie APOE-related genetic risk, considerable effort has been devoted towards developing cellular and animal models. Data from these models indicate that APOE4 exacerbates amyloid β plaque burden in a dose-dependent manner. and may also enhance tau pathogenesis in an isoform-dependent manner. Other studies have suggested APOE4 increases the risk of AD by mechanisms that are distinct from modulation of Aβ or tau pathology. Further, whether plasma APOE, by influencing systemic metabolic pathways, can also possibly alter CNS function indirectly is not complete;y understood. Collectively, the available studies suggest that APOE may impact multiple signaling pathways and thus investigators have sought therapeutics that would disrupt pathological functions of APOE while preserving or enhancing beneficial functions. This review will highlight some of the therapeutic strategies that are currently being pursued to target APOE4 towards preventing or treating AD and we will discuss additional strategies that holds promise for the future.
Collapse
Affiliation(s)
- Tosha Williams
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA. .,Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA. .,McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
20
|
Ekweogu CN, Ude VC, Nwankpa P, Emmanuel O, Ugbogu EA. Ameliorative effect of aqueous leaf extract of Solanum aethiopicum on phenylhydrazine-induced anaemia and toxicity in rats. Toxicol Res 2019; 36:227-238. [PMID: 32685427 DOI: 10.1007/s43188-019-00021-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/21/2023] Open
Abstract
Solanum aethiopicum is used in ethnomedicine for the treatment of overweight, constipation and anaemia. This study evaluated the ameliorative effect of aqueous leaf extract of S. aethiopicum on phenylhydrazine-induced anaemia in rats. Acute toxicity was determined in male and female rats (n = 5/group/sex) by oral administration of single dose of up to 5000 mg/kg of the S. aethiopicum extract. The experimental rats were randomly grouped into five (5) groups of 6 rats each. Group (i) served as normal control, group (ii) negative control, group (iii) standard drug-5 mg/kg ferrous sulphate, groups (iv) and (v), 200 and 400 mg/kg of S. aethiopicum extract respectively. Phenylhydrazine (PHZ) was administered intraperitoneally at the dose of 50 mg/kg body weight for two consecutive days to groups (ii-v). After 14 days, the rats were sacrificed; blood, liver and kidney were collected. The haematological, lipid profile, liver and kidney function parameters were determined and the histopathology of the liver and kidney were examined. In acute toxicity study, no signs of toxicity or death were recorded. The study shows an observable significant (P < 0.05) increase in packed cell volume, haemoglobin and red blood cell counts at 400 mg/kg S. aethiopicum extract in both the male and female rats when compared to other groups. Solanum aethiopicum extract at the dose of 400 mg/kg reduced aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), urea, creatinine and chloride. The results of this study lent credence to the use of S. aethiopicum leaf as an anti-anaemic tonic with a wide margin of safety and hepato/reno-protective potentials.
Collapse
Affiliation(s)
| | - Victor Chibueze Ude
- Department of Medical Biochemistry, College of Medicine, Enugu State University of Science and Technology, PMB 01660, Enugu, Nigeria
| | - Promise Nwankpa
- Department of Medical Biochemistry, Imo State University, PMB 2000, Owerri, Imo State Nigeria
| | - Okezie Emmanuel
- Department of Biochemistry, Abia State University, PMB 2000, Uturu, Abia State Nigeria
| | | |
Collapse
|
21
|
Allen SP, Hall B, Woof R, Francis L, Gatto N, Shaw AC, Myszczynska M, Hemingway J, Coldicott I, Willcock A, Job L, Hughes RM, Boschian C, Bayatti N, Heath PR, Bandmann O, Mortiboys H, Ferraiuolo L, Shaw PJ. C9orf72 expansion within astrocytes reduces metabolic flexibility in amyotrophic lateral sclerosis. Brain 2019; 142:3771-3790. [PMID: 31647549 PMCID: PMC6906594 DOI: 10.1093/brain/awz302] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
It is important to understand how the disease process affects the metabolic pathways in amyotrophic lateral sclerosis and whether these pathways can be manipulated to ameliorate disease progression. To analyse the basis of the metabolic defect in amyotrophic lateral sclerosis we used a phenotypic metabolic profiling approach. Using fibroblasts and reprogrammed induced astrocytes from C9orf72 and sporadic amyotrophic lateral sclerosis cases we measured the production rate of reduced nicotinamide adenine dinucleotides (NADH) from 91 potential energy substrates simultaneously. Our screening approach identified that C9orf72 and sporadic amyotrophic lateral sclerosis induced astrocytes have distinct metabolic profiles compared to controls and displayed a loss of metabolic flexibility that was not observed in fibroblast models. This loss of metabolic flexibility, involving defects in adenosine, fructose and glycogen metabolism, as well as disruptions in the membrane transport of mitochondrial specific energy substrates, contributed to increased starvation induced toxicity in C9orf72 induced astrocytes. A reduction in glycogen metabolism was attributed to loss of glycogen phosphorylase and phosphoglucomutase at the protein level in both C9orf72 induced astrocytes and induced neurons. In addition, we found alterations in the levels of fructose metabolism enzymes and a reduction in the methylglyoxal removal enzyme GLO1 in both C9orf72 and sporadic models of disease. Our data show that metabolic flexibility is important in the CNS in times of bioenergetic stress.
Collapse
Affiliation(s)
- Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Benjamin Hall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Ryan Woof
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Francis
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Noemi Gatto
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Allan C Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Monika Myszczynska
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Jordan Hemingway
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Amelia Willcock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Lucy Job
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Rachel M Hughes
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Camilla Boschian
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Nadhim Bayatti
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385 Glossop Road, Sheffield S10 2HQ, UK
| |
Collapse
|
22
|
The ketogenic diet as a potential treatment and prevention strategy for Alzheimer's disease. Nutrition 2019; 60:118-121. [DOI: 10.1016/j.nut.2018.10.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/12/2018] [Accepted: 10/07/2018] [Indexed: 01/01/2023]
|
23
|
Hill E, Goodwill AM, Gorelik A, Szoeke C. Diet and biomarkers of Alzheimer's disease: a systematic review and meta-analysis. Neurobiol Aging 2019; 76:45-52. [DOI: 10.1016/j.neurobiolaging.2018.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022]
|
24
|
Băbţan AM, Ilea A, Boşca BA, Crişan M, Petrescu NB, Collino M, Sainz RM, Gerlach JQ, Câmpian RS. Advanced glycation end products as biomarkers in systemic diseases: premises and perspectives of salivary advanced glycation end products. Biomark Med 2019; 13:479-495. [PMID: 30968701 DOI: 10.2217/bmm-2018-0448] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Advanced glycation end products (AGEs) are glycated proteins associated with high dry temperature food processing, coloring and flavor modification of food products. Previous studies on diet-related disease support the role of the glycation products as biomarkers in local and general proinflammatory response. Exogenous and endogenous AGEs are involved in chronic low-level inflammation, which underlies the onset of metabolic syndrome influenced by food intake, there by demonstrating their implication in diet-related pathologies. Although studies have revealed a strong association between the accumulation of AGEs and the occurrence/worsening of metabolic diseases, their routine use for the diagnosis or monitoring of local and general disease has not yet been reported.
Collapse
Affiliation(s)
- Anida M Băbţan
- Department of Oral Rehabilitation, Oral Health & Dental Office Management, Faculty of Dentistry, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Victor Babe? Street, no 15, 400012, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Oral Health & Dental Office Management, Faculty of Dentistry, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Victor Babe? Street, no 15, 400012, Romania
| | - Bianca A Boşca
- Department of Histology, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Louis Pasteur Street, no 4, Cluj-Napoca, 400349, Romania
| | - Maria Crişan
- Department of Histology, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Louis Pasteur Street, no 4, Cluj-Napoca, 400349, Romania
| | - Nausica B Petrescu
- Department of Oral Rehabilitation, Oral Health & Dental Office Management, Faculty of Dentistry, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Victor Babe? Street, no 15, 400012, Romania
| | - Massimo Collino
- Department of Drug Science & Technology, University of Turin, Corso Raffaello 33, 10125 Torino, Italy
| | - Rosa M Sainz
- Department of Morphology & Cell Biology, University of Oviedo, Campus del Cristo. C/Julián Clavería 6. 33006 Oviedo, Spain
| | - Jared Q Gerlach
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91 CF50 Galway, Ireland
| | - Radu S Câmpian
- Department of Oral Rehabilitation, Oral Health & Dental Office Management, Faculty of Dentistry, ‘Iuliu Haţieganu’ University of Medicine & Pharmacy Cluj-Napoca, Romania, Victor Babe? Street, no 15, 400012, Romania
| |
Collapse
|
25
|
Prisingkorn W, Jakovlić I, Yi SK, Deng FY, Zhao YH, Wang WM. Gene expression patterns indicate that a high-fat-high-carbohydrate diet causes mitochondrial dysfunction in fish. Genome 2019; 62:53-67. [PMID: 30830800 DOI: 10.1139/gen-2018-0159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Expensive and unsustainable fishmeal is increasingly being replaced with cheaper lipids and carbohydrates as sources of energy in aquaculture. Although it is known that the excess of lipids and carbohydrates has negative effects on nutrient utilization, growth, metabolic homeostasis, and health of fish, our current understanding of mechanisms behind these effects is limited. To improve the understanding of diet-induced metabolic disorders (both in fish and other vertebrates), we conducted an eight-week high-fat-high-carbohydrate diet feeding trial on blunt snout bream (Megalobrama amblycephala), and studied gene expression changes (transcriptome and qPCR) in the liver. Disproportionately large numbers of differentially expressed genes were associated with mitochondrial metabolism, neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's), and functional categories indicative of liver dysfunction. A high-fat-high-carbohydrate diet may have caused mitochondrial dysfunction, and possibly downregulated the mitochondrial biogenesis in the liver. While the relationship between diet and neurodegenerative disorders is well-established in mammals, this is the first report of this connection in fish. We propose that fishes should be further explored as a potentially promising model to study the mechanisms of diet-associated neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- Wassana Prisingkorn
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Ivan Jakovlić
- b Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan 430075, P.R. China
| | - Shao-Kui Yi
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Fang-Yu Deng
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Yu-Hua Zhao
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Wei-Min Wang
- a College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| |
Collapse
|
26
|
Fernandez A, Santi A, Torres Aleman I. Insulin Peptides as Mediators of the Impact of Life Style in Alzheimer's disease. Brain Plast 2018; 4:3-15. [PMID: 30564544 PMCID: PMC6297900 DOI: 10.3233/bpl-180071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 01/15/2023] Open
Abstract
The search for the cause of Alzheimer's disease (AD), that affects millions of people worldwide, is currently one of the most important scientific endeavors from a clinical perspective. There are so many mechanisms proposed, and so disparate changes observed, that it is becoming a challenging task to provide a comprehensive view of possible pathogenic processes in AD. Tauopathy (intracellular neurofibrillary tangles) and amyloidosis (extracellular amyloid plaques) are the anatomical hallmarks of the disease, and the formation of these proteinaceous aggregates in specific brain areas is widely held as the ultimate pathogenic mechanism. However, the triggers of this dysproteostasis process remain unknown. Further, neurofibrillary tangles and plaques may only constitute the last stages of a process of still uncertain origin. Thus, without an established knowledge of its etiology, and no cure in the horizon, prevention - or merely delaying its development, has become a last-resort goal in AD research. As with other success stories in preventive medicine, epidemiological studies have provided basic knowledge of risk factors in AD that may contribute to understand its etiology. Disregarding old age, gender, and ApoE4 genotype as non preventable risk factors, there are diverse life-style traits - many of them closely related to cardiovascular health, that have been associated to AD risk. Most prominent among them are diet, physical and mental activity, exposure to stress, and sleep/wake patterns. We argue that all these life-style factors engage insulinergic pathways that affect brain function, providing a potentially unifying thread for life-style and AD risk. Although further studies are needed to firmly establish a link between faulty insulinergic function and AD, we herein summarize the evidence that this link should be thoroughly considered.
Collapse
Affiliation(s)
| | - A. Santi
- Cajal Institute and Ciberned, Madrid, Spain
| | | |
Collapse
|
27
|
Zilberter T, Zilberter Y. Ketogenic Ratio Determines Metabolic Effects of Macronutrients and Prevents Interpretive Bias. Front Nutr 2018; 5:75. [PMID: 30214902 PMCID: PMC6125377 DOI: 10.3389/fnut.2018.00075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
|
28
|
Abstract
We gathered some theoretic and practical concepts related to the importance of nutrition in the prevention and management of Alzheimer disease (AD). Besides the role of nutrients in brain development and functioning, some nutrients exert special control in the development of AD, due to their participation in neurotransmitter synthesis, their modulation in epigenetics mechanisms, and as antioxidants. In addition, some non-nutrient food-derived substances have shown potential in the control of neuroinflammation and consequently in the prevention of AD. Finally, it is important to be aware of the nutritional status and food intake patterns of the patient with AD.
Collapse
Affiliation(s)
- Shirley Steffany Muñoz Fernández
- Department of Nutrition, School of Public Health, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo CEP - 01246-904, São Paulo, SP, Brazil
| | - Sandra Maria Lima Ribeiro
- School of Public Health and School of Arts, Sciences and Humanities, University of São Paulo, Av. Dr. Arnaldo, 715, São Paulo CEP - 01246-904, Brazil and Av. Arlindo Bettio, 1000 CEP 03828-000, São Paulo, SP, Brazil.
| |
Collapse
|
29
|
Ravi SK, Narasingappa RB, Vincent B. Neuro-nutrients as anti-alzheimer's disease agents: A critical review. Crit Rev Food Sci Nutr 2018; 59:2999-3018. [PMID: 29846084 DOI: 10.1080/10408398.2018.1481012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is characterized by a massive neuronal death causing memory loss, cognitive impairment and behavioral alteration that ultimately lead to dementia and death. AD is a multi-factorial pathology controlled by molecular events such as oxidative stress, protein aggregation, mitochondrial dysfunction and neuro inflammation. Nowadays, there is no efficient disease-modifying treatment for AD and epidemiological studies have suggested that diet and nutrition have a significant impact on the development of this disorder. Indeed, some nutrients can protect all kind of cells, including neurons. As prevention is better than cure, life style improvement, with a special emphasis on diet, should seriously be considered as an anti-AD track and intake of nutrients promoting neuronal health is the need of the hour. Diets rich in unsaturated fatty acids, polyphenols and vitamins have been shown to protect against AD, whereas saturated fatty acids-containing diets deprived of polyphenols promote the development of the disease. Thus, Mediterranean diets, mainly composed of fruits, vegetables and omega-3 fatty acids, stand as valuable, mild and preventive anti-AD agents. This review focuses on our current knowledge in the field and how one can fight this devastating neurodegenerative disorder through the simple proper modification of our life style.
Collapse
Affiliation(s)
- Sunil K Ravi
- Department of Biotechnology, College of Agriculture, University of Agriculture Sciences , Bangalore , Hassan , Karnataka , India
| | - Ramesh B Narasingappa
- Department of Biotechnology, College of Agriculture, University of Agriculture Sciences , Bangalore , Hassan , Karnataka , India
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand.,Centre National de la Recherche Scientifique , Paris , France
| |
Collapse
|
30
|
Foscolou A, Magriplis E, Tyrovolas S, Chrysohoou C, Sidossis L, Matalas AL, Rallidis L, Panagiotakos D. The association of protein and carbohydrate intake with successful aging: a combined analysis of two epidemiological studies. Eur J Nutr 2018; 58:807-817. [DOI: 10.1007/s00394-018-1693-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
|
31
|
High-Fructose Consumption Impairs the Redox System and Protein Quality Control in the Brain of Syrian Hamsters: Therapeutic Effects of Melatonin. Mol Neurobiol 2018; 55:7973-7986. [DOI: 10.1007/s12035-018-0967-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/16/2018] [Indexed: 02/06/2023]
|
32
|
Levy B, Tsoy E, Gable S. Developing Cognitive Markers of Alzheimer's Disease for Primary Care: Implications for Behavioral and Global Prevention. J Alzheimers Dis 2018; 54:1259-1272. [PMID: 27567831 DOI: 10.3233/jad-160309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A comprehensive approach to the prevention of Alzheimer's disease (AD) warrants a synergy across multiple domains and procedures. Whereas the study of biological markers has mobilized major activity in the field, the development of cognitive markers is largely ignored, despite the unique advantages they may offer. Cognitive markers essentially assess the core clinical feature that biological markers intend to predict. In this respect, cognitive markers expand the foundation of preclinical diagnostics and disease staging in a manner that integrates both physiological and psychological factors. In addition, the cost-effective implementation of cognitive markers makes them remarkably conducive to community-wide screenings, and thereby a vital component of any global blueprint for prevention. Specifically, in the primary care setting, cognitive markers may provide effective gate keeping for more invasive, labor intensive, and expensive procedures. From this perspective, cognitive markers may provide the first step for identifying preclinical treatment recipients in general public. Moreover, the detection of preclinical decline via cognitive markers can increase awareness of AD risk and the motivation for making protective lifestyle changes. The behavioral approach might be expedient for prevention in light of the compelling evidence of lifestyle amelioration of AD risk. In an integrative view, incorporating cognitive markers to primary care may facilitate a synergetic development in preventive interventions that carries epidemiological significance. This paper addresses the theoretical, methodological, and pragmatic aspects of this prospect.
Collapse
|
33
|
Alfaro IE, Albornoz A, Molina A, Moreno J, Cordero K, Criollo A, Budini M. Chaperone Mediated Autophagy in the Crosstalk of Neurodegenerative Diseases and Metabolic Disorders. Front Endocrinol (Lausanne) 2018; 9:778. [PMID: 30766511 PMCID: PMC6365421 DOI: 10.3389/fendo.2018.00778] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Chaperone Mediated Autophagy (CMA) is a lysosomal-dependent protein degradation pathway. At least 30% of cytosolic proteins can be degraded by this process. The two major protein players of CMA are LAMP-2A and HSC70. While LAMP-2A works as a receptor for protein substrates at the lysosomal membrane, HSC70 specifically binds protein targets and takes them for CMA degradation. Because of the broad spectrum of proteins able to be degraded by CMA, this pathway has been involved in physiological and pathological processes such as lipid and carbohydrate metabolism, and neurodegenerative diseases, respectively. Both, CMA, and the mentioned processes, are affected by aging and by inadequate nutritional habits such as a high fat diet or a high carbohydrate diet. Little is known regarding about CMA, which is considered a common regulation factor that links metabolism with neurodegenerative disorders. This review summarizes what is known about CMA, focusing on its molecular mechanism, its role in protein, lipid and carbohydrate metabolism. In addition, the review will discuss how CMA could be linked to protein, lipids and carbohydrate metabolism within neurodegenerative diseases. Furthermore, it will be discussed how aging and inadequate nutritional habits can have an impact on both CMA activity and neurodegenerative disorders.
Collapse
Affiliation(s)
- Iván E. Alfaro
- Fundación Ciencia & Vida, Santiago, Chile
- *Correspondence: Iván E. Alfaro
| | | | - Alfredo Molina
- Dentistry Faculty, Institute in Dentistry Sciences, University of Chile, Santiago, Chile
| | - José Moreno
- Dentistry Faculty, Institute in Dentistry Sciences, University of Chile, Santiago, Chile
| | - Karina Cordero
- Dentistry Faculty, Institute in Dentistry Sciences, University of Chile, Santiago, Chile
| | - Alfredo Criollo
- Dentistry Faculty, Institute in Dentistry Sciences, University of Chile, Santiago, Chile
- Autophagy Research Center (ARC), Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Mauricio Budini
- Dentistry Faculty, Institute in Dentistry Sciences, University of Chile, Santiago, Chile
- Autophagy Research Center (ARC), Santiago, Chile
- Mauricio Budini
| |
Collapse
|
34
|
Prisingkorn W, Prathomya P, Jakovlić I, Liu H, Zhao YH, Wang WM. Transcriptomics, metabolomics and histology indicate that high-carbohydrate diet negatively affects the liver health of blunt snout bream (Megalobrama amblycephala). BMC Genomics 2017; 18:856. [PMID: 29121861 PMCID: PMC5680769 DOI: 10.1186/s12864-017-4246-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Background Global trend of the introduction of high levels of relatively cheap carbohydrates to reduce the amount of costly protein in the aquatic animal feed production has affected the aquaculture of an economically important cyprinid fish, blunt snout bream (Megalobrama amblycephala). This dietary shift has resulted in increased prevalence of metabolic disorders, often causing economic losses. High dietary intake of carbohydrates, associated with obesity, is one of the major causes of non-alcoholic fatty liver disease (NAFLD) in humans. Results We have conducted an eight-week feeding trial to better understand how a high-carbohydrate diet (HCBD) affects the liver health in this fish. Hepatosomatic index and lipid content were significantly (P < 0.05) higher in the HCBD group. Histology results also suggested pathological changes in the livers of HCBD group, with excessive lipid accumulation and indication of liver damage. Metabolomics and serum biochemistry analyses showed that a number of metabolites indicative of liver damage were increased in the HCBD group. This group also exhibited low levels of betaine, which is a metabolite crucial for maintaining the healthy liver functions. Transcriptomic and qPCR analyses indicated that HCBD had a strong impact on the expression of a large number of genes associated with the NAFLD and insulin signalling pathways, which may lead to the development of insulin resistance in hepatocytes, pathological liver changes, and eventually the NAFLD. Conclusions Transcriptomics, metabolomics and histology results all indicate early symptoms of liver damage. However whether these would actually lead to the development of NAFLD after a longer period of time, remains inconclusive. Additionally, a very high number of upregulated genes in the HCBD group associated with several neurodegenerative diseases is a strong indication of neurodegenerative changes caused by the high-carbohydrate diet in blunt snout bream. This suggests that fish might present a good model to study neurodegenerative changes associated with high-carbohydrate diet in humans. Electronic supplementary material The online version of this article (10.1186/s12864-017-4246-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wassana Prisingkorn
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Panita Prathomya
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075, People's Republic of China
| | - Han Liu
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Yu-Hua Zhao
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| | - Wei-Min Wang
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
35
|
Dietary Sugars and Endogenous Formation of Advanced Glycation Endproducts: Emerging Mechanisms of Disease. Nutrients 2017; 9:nu9040385. [PMID: 28420091 PMCID: PMC5409724 DOI: 10.3390/nu9040385] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/13/2022] Open
Abstract
The rapid increase in metabolic diseases, which occurred in the last three decades in both industrialized and developing countries, has been related to the rise in sugar-added foods and sweetened beverages consumption. An emerging topic in the pathogenesis of metabolic diseases related to modern nutrition is the role of Advanced Glycation Endproducts (AGEs). AGEs can be ingested with high temperature processed foods, but also endogenously formed as a consequence of a high dietary sugar intake. Animal models of high sugar consumption, in particular fructose, have reported AGE accumulation in different tissues in association with peripheral insulin resistance and lipid metabolism alterations. The in vitro observation that fructose is one of the most rapid and effective glycating agents when compared to other sugars has prompted the investigation of the in vivo fructose-induced glycation. In particular, the widespread employment of fructose as sweetener has been ascribed by many experimental and observational studies for the enhancement of lipogenesis and intracellular lipid deposition. Indeed, diet-derived AGEs have been demonstrated to interfere with many cell functions such as lipid synthesis, inflammation, antioxidant defences, and mitochondrial metabolism. Moreover, emerging evidence also in humans suggest that this impact of dietary AGEs on different signalling pathways can contribute to the onset of organ damage in liver, skeletal and cardiac muscle, and the brain, affecting not only metabolic control, but global health. Indeed, the most recent reports on the effects of high sugar consumption and diet-derived AGEs on human health reviewed here suggest the need to limit the dietary sources of AGEs, including added sugars, to prevent the development of metabolic diseases and related comorbidities.
Collapse
|
36
|
Sawikr Y, Yarla NS, Peluso I, Kamal MA, Aliev G, Bishayee A. Neuroinflammation in Alzheimer's Disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:33-57. [PMID: 28427563 DOI: 10.1016/bs.apcsb.2017.02.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Berger AL. Insulin resistance and reduced brain glucose metabolism in the aetiology of Alzheimer’s disease. JOURNAL OF INSULIN RESISTANCE 2016. [DOI: 10.4102/jir.v1i1.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Significant epidemiological and clinical evidence has emerged that suggests Alzheimer’s disease (AD) can be added to the list of chronic illnesses that are primarily caused by modern diets and lifestyles at odds with human physiology. High intakes of refined carbohydrates insufficient physical activity, suboptimal sleep quantity and quality, and other factors that may contribute to insulin resistance combine to create a perfect storm of glycation and oxidative stress in the brain. Specific neurons lose the ability to metabolise and harness energy from glucose, ultimately resulting in neuronal degeneration and death. Simultaneously, chronic peripheral hyperinsulinaemia prevents ketogenesis, thus depriving struggling neurons of a highly efficient alternative fuel substrate. The intimate association between type 2 diabetes and AD suggests that they have common underlying causes, namely insulin resistance and perturbed glucose metabolism. Preclinical evidence of AD is detectable decades before over symptoms appear, indicating that AD progresses over time, with observable signs manifesting only after the brain’s compensatory mechanisms have failed and widespread neuronal atrophy begins to interfere with cognition and performance of daily life tasks. That dietary and environmental triggers play pivotal roles in causing AD suggests that nutrition and lifestyle based interventions may hold the key to ameliorating or preventing this debilitating condition for which conventional pharmaceutical treatments are largely ineffective. Results from small scale clinical studies indicate that dietary and lifestyle strategies may be effective for reversing dementia and cognitive impairment. Increased research efforts should be dedicated towards this promising avenue in the future.
Collapse
|
38
|
Fung J, Berger A. Hyperinsulinemia and Insulin Resistance: Scope of the Problem. JOURNAL OF INSULIN RESISTANCE 2016. [DOI: 10.4102/jir.v1i1.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
No abstract available.
Collapse
|
39
|
Noakes T. The 2012 University of Cape Town Faculty of Health Sciences centenary debate. SOUTH AFRICAN JOURNAL OF CLINICAL NUTRITION 2016. [DOI: 10.1080/16070658.2015.11734522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Dietary composition affects the development of cognitive deficits in WT and Tg AD model mice. Exp Gerontol 2016; 86:39-49. [PMID: 27167583 DOI: 10.1016/j.exger.2016.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 01/17/2023]
Abstract
Clinical and epidemiological evidence suggests that lifestyle factors, including nutrition, may influence the chances of developing of Alzheimer's disease (AD), and also likely affect the aging process. Whereas it is clear that high-fat diets are increasing both body weight and the risk of developing Alzheimer's disease, to date, there have been very few studies comparing diets high with different sources of calories (i.e., high fat versus high protein versus high carbohydrates) to determine whether dietary composition has importance beyond the known effect of high caloric intake to increase body weight, AD pathology and cognitive deficits. In the current study we examined the effects that different diets high in carbohydrate, protein or fat content, but similar in caloric value, have on the development of cognitive impairment and brain pathology in wild-type and Tg AD model mice. The results demonstrate that long term feeding with balanced diets similar in caloric content but with significant changes in the source of calories, all negatively influence cognition compared to the control diet, and that this effect is more pronounced in Tg animals with AD pathology.
Collapse
|
41
|
Puthiyedth N, Riveros C, Berretta R, Moscato P. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer's Disease Affected Brain Regions. PLoS One 2016; 11:e0152342. [PMID: 27050411 PMCID: PMC4822961 DOI: 10.1371/journal.pone.0152342] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/11/2016] [Indexed: 11/28/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation. Methods The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets. Results We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD. In addition, we identified the presence of 23 non-coding features, including four miRNA precursors (miR-7, miR570, miR-1229 and miR-6821), dysregulated across the brain regions. Furthermore, we compared our results with two popular meta-analysis methods RankProd and GeneMeta to validate our findings and performed a sensitivity analysis by removing one dataset at a time to assess the robustness of our results. These new findings may provide new insights into the disease mechanisms and thus make a significant contribution in the near future towards understanding, prevention and cure of AD.
Collapse
Affiliation(s)
- Nisha Puthiyedth
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
| | - Carlos Riveros
- Clinical Research Design, Information Technology and Statistics Suport Unit, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
| | - Regina Berretta
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
| | - Pablo Moscato
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
- * E-mail:
| |
Collapse
|
42
|
Yusufov M, Weyandt LL, Piryatinsky I. Alzheimer's disease and diet: a systematic review. Int J Neurosci 2016; 127:161-175. [DOI: 10.3109/00207454.2016.1155572] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Miryam Yusufov
- Department of Psychology, University of Rhode Island, Kingston, RI, USA
| | - Lisa L. Weyandt
- Department of Psychology, University of Rhode Island, Kingston, RI, USA
| | - Irene Piryatinsky
- Department of Psychiatry and Human Behavior, Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
43
|
Mastrocola R, Nigro D, Cento AS, Chiazza F, Collino M, Aragno M. High-fructose intake as risk factor for neurodegeneration: Key role for carboxy methyllysine accumulation in mice hippocampal neurons. Neurobiol Dis 2016; 89:65-75. [PMID: 26851500 DOI: 10.1016/j.nbd.2016.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/19/2016] [Accepted: 02/02/2016] [Indexed: 12/21/2022] Open
Abstract
Several studies indicate the involvement of advanced glycation end-products (AGEs) in neurodegenerative diseases. Moreover, the rising consumption of fructose in industrialized countries has been related to cognitive impairment, but the impact of fructose-derived AGEs on hippocampus has never been investigated. The present study aimed to evaluate in the hippocampus of C57Bl/6 mice fed a standard (SD) or a 60% fructose (HFRT) diet for 12 weeks the production of the most studied AGEs, carboxy methyllysine (CML), focusing on the role of the glutathione-dependent enzyme glyoxalase (Glo-1), the main AGEs-detoxifying system, in relation to early signs of neuronal impairment. HFRT diet evoked CML accumulation in the cell body of pyramidal neurons, followed by RAGE/NFkB signaling activation. A widespread reactive gliosis and altered mitochondrial respiratory complexes activity have been evidenced in HFRT hippocampi, paralleled by oxidative stress increase due to impaired activity of Nrf2 signaling. In addition, a translocation of Glo-1 from axons toward cell body of pyramidal neurons has been observed in HFRT mice, in relation to CML accumulation. Despite increased expression of dimeric Glo-1, its enzymatic activity was not upregulated in HFRT hippocampi, due to reduced glutathione availability, thus failing to prevent CML accumulation. The prevention of CML production by administration of the specific inhibitor pyridoxamine was able to prevent all the fructose-induced hippocampal alterations. In conclusion, a high-fructose consumption, through CML accumulation and Glo-1 impairment, induces in the hippocampus the same molecular and metabolic alterations observed in early phases of neurodegenerative diseases, and can thus represent a risk factor for their onset.
Collapse
Affiliation(s)
- Raffaella Mastrocola
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| | - Debora Nigro
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia S Cento
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Fausto Chiazza
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Manuela Aragno
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
44
|
Yang HJ, Kwon DY, Kim MJ, Kang S, Moon NR, Daily JW, Park S. Red peppers with moderate and severe pungency prevent the memory deficit and hepatic insulin resistance in diabetic rats with Alzheimer's disease. Nutr Metab (Lond) 2015; 12:9. [PMID: 25755673 PMCID: PMC4353669 DOI: 10.1186/s12986-015-0005-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/12/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Dementia induced by β-amyloid accumulation impairs peripheral glucose homeostasis, but red pepper extract improves glucose homeostasis. We therefore evaluated whether long-term oral consumption of different red pepper extracts improves cognitive dysfunction and glucose homeostasis in type 2 diabetic rats with β-amyloid-induced dementia. METHODS Male diabetic rats received hippocampal CA1 infusions of β-amyloid (25-35) (AD) or β-amyloid (35-25, non-plaque forming), at a rate of 3.6 nmol/day for 14 days (Non-AD). AD rats were divided into four dietary groups receiving either 1% lyophilized 70% ethanol extracts of either low, moderate and severe pungency red peppers (AD-LP, AD-MP, and AD-SP) or 1% dextrin (AD-CON) in Western diets (43% energy as fat). RESULTS The ascending order of control < LSP < MSP and SSP potentiated the phosphorylation of CREB and GSK and inhibited Tau phosphorylation in the hippocampus which in turn inhibited β-amyloid accumulation. The inhibition by MP and SP reduced the memory deficit measured by passive avoidance test and water maze test. Furthermore, the accumulation of β-amyloid induced glucose intolerance, although serum insulin levels were elevated during the late phase of oral glucose tolerance test (OGTT). All of the red pepper extracts prevented the glucose intolerance in AD rats. Consistent with OGTT results, during euglycemic hyperinulinemic clamp glucose infusion rates were lower in AD-CON than Non-AD-CON with no difference in whole body glucose uptake. Hepatic glucose output at the hyperinsulinemic state was increased in AD-CON. β-amyloid accumulation exacerbated hepatic insulin resistance, but all red pepper extract treatments reversed the insulin resistance in AD rats. CONCLUSIONS The extracts of moderate and severe red peppers were found to prevent the memory deficit and exacerbation of insulin resistance by blocking tau phosphorylation and β-amyloid accumulation in diabetic rats with experimentally induced Alzheimer's-like dementia. These results suggest that red pepper consumption might be an effective intervention for preventing age-related memory deficit.
Collapse
Affiliation(s)
- Hye Jeong Yang
- />Division of Metabolism and Functionality Research, Korean Food Research Institutes, Sungnam, South Korea
| | - Dae Young Kwon
- />Division of Metabolism and Functionality Research, Korean Food Research Institutes, Sungnam, South Korea
| | - Min Jung Kim
- />Division of Metabolism and Functionality Research, Korean Food Research Institutes, Sungnam, South Korea
| | - Suna Kang
- />Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do 336-795 South Korea
| | - Na Rang Moon
- />Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do 336-795 South Korea
| | | | - Sunmin Park
- />Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, BaeBang-Yup, Asan-Si, ChungNam-Do 336-795 South Korea
| |
Collapse
|
45
|
Morley WA, Seneff S. Diminished brain resilience syndrome: A modern day neurological pathology of increased susceptibility to mild brain trauma, concussion, and downstream neurodegeneration. Surg Neurol Int 2014; 5:97. [PMID: 25024897 PMCID: PMC4093745 DOI: 10.4103/2152-7806.134731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/31/2014] [Indexed: 12/11/2022] Open
Abstract
The number of sports-related concussions has been steadily rising in recent years. Diminished brain resilience syndrome is a term coined by the lead author to describe a particular physiological state of nutrient functional deficiency and disrupted homeostatic mechanisms leading to increased susceptibility to previously considered innocuous concussion. We discuss how modern day environmental toxicant exposure, along with major changes in our food supply and lifestyle practices, profoundly reduce the bioavailability of neuro-critical nutrients such that the normal processes of homeostatic balance and resilience are no longer functional. Their diminished capacity triggers physiological and biochemical 'work around' processes that result in undesirable downstream consequences. Exposure to certain environmental chemicals, particularly glyphosate, the active ingredient in the herbicide, Roundup(®), may disrupt the body's innate switching mechanism, which normally turns off the immune response to brain injury once danger has been removed. Deficiencies in serotonin, due to disruption of the shikimate pathway, may lead to impaired melatonin supply, which reduces the resiliency of the brain through reduced antioxidant capacity and alterations in the cerebrospinal fluid, reducing critical protective buffering mechanisms in impact trauma. Depletion of certain rare minerals, overuse of sunscreen and/or overprotection from sun exposure, as well as overindulgence in heavily processed, nutrient deficient foods, further compromise the brain's resilience. Modifications to lifestyle practices, if widely implemented, could significantly reduce this trend of neurological damage.
Collapse
Affiliation(s)
| | - Stephanie Seneff
- Spoken Language Systems Group, Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge MA 02139, USA
| |
Collapse
|
46
|
Telmisartan protects central neurons against nutrient deprivation-induced apoptosis in vitro through activation of PPARγ and the Akt/GSK-3β pathway. Acta Pharmacol Sin 2014; 35:727-37. [PMID: 24793312 DOI: 10.1038/aps.2013.199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/30/2013] [Indexed: 12/15/2022]
Abstract
AIM To determine whether angiotensin II receptor blockers (ARBs) could protect central neurons against nutrient deprivation-induced apoptosis in vitro and to elucidate the underlying mechanisms. METHODS Primary rat cerebellar granule cells (CGCs) underwent B27 (a serum substitute) deprivation for 24 h to induce neurotoxicity, and cell viability was analyzed using LDH assay and WST-1 assay. DNA laddering assay and TUNEL assay were used to detect cell apoptosis. The expression of caspase-3 and Bcl-2, and the phosphorylation of Akt and GSK-3β were detected using Western blot analysis. AT1a mRNA expression was determined using RT-PCR analysis. RESULTS B27 deprivation significantly increased the apoptosis of CGCs, as demonstrated by LDH release, DNA laddering, caspase-3 activation and positive TUNEL staining. Pretreatment with 10 μmol/L ARBs (telmisartan, candesartan or losartan) partially blocked B27 deprivation-induced apoptosis of CGCs with telmisartan being the most effective one. B27 deprivation markedly increased the expression of AT1a receptor in CGCs, inhibited Akt and GSK-3β activation, decreased Bcl-2 level, and activated caspase-3, which were reversed by pretreatment with 1 μmol/L telmisartan. In addition, pretreatment with 10 μmol/L PPARγ agonist pioglitazone was more effective in protecting CGCs against B27 deprivation-induced apoptosis, whereas pretreatment with 20 μmol/L PPARγ antagonist GW9662 abolished all the effects of telmisartan in CGCs deprived of B27. CONCLUSION ARBs, in particular telmisartan, can protect the nutrient deprivation-induced apoptosis of CGCs in vitro through activation of PPARγ and the Akt/GSK-3β pathway.
Collapse
|
47
|
Panza F, Solfrizzi V, Tortelli R, Resta F, Sabbà C, Logroscino G. Prevention of Late-life Cognitive Disorders: Diet-Related Factors, Dietary Patterns, and Frailty Models. Curr Nutr Rep 2014. [DOI: 10.1007/s13668-014-0080-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Lin H, Zhang T, Wu Y, Wang Y, Wang W, Wang Q. Related genes and potential biomarkers for early diagnosis of Alzheimer's disease: a preliminary study based on DNA microarray. Am J Alzheimers Dis Other Demen 2014; 29:90-5. [PMID: 24381135 PMCID: PMC11008138 DOI: 10.1177/1533317513506774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM The aim of this study is to extend our understanding of the molecular mechanism of Alzheimer's disease (AD). METHODS We downloaded the gene expression profile GSE18309 from Gene Expression Omnibus database, which includes 3 genechips from patients with mild cognitive impairment (MCI), 3 genechips from patients with AD, and 3 genechips from normal controls (NC). Linear Models for Microarray Data package was used to identify differentially expressed genes (DEGs) in MCI versus NC group and AD versus NC group. Then, we extracted the overlapping DEGs of 2 groups for functional and pathway enrichment analysis using FuncAssociate software accompanied by gene ontology and expressing analysis systematic explorer, respectively. Further, AutoDock4 (http://autodock.scripps.edu/) was used to predict the docking site between small molecule ligands and proteins of a key DEG. RESULTS A total of 60 DEGs were identified. Biological processes associated with nutrient response and muscle development were significantly dysregulated in AD and MCI. In addition, we identified 2 active binding sites (A5 and L30) on protein structure of cholecystokinin A receptor (CCKAR) for drug design. CONCLUSION The DEGs including CCKAR might be used as biomarkers for early diagnosis of AD. However, further experimental studies are needed to confirm our results.
Collapse
Affiliation(s)
- Hang Lin
- Department of Neurology, Chengdu General Military Hospital, Chengdu, China
| | - Tao Zhang
- Department of Oncology, Chengdu General Military Hospital, Chengdu, China
| | - Yuxian Wu
- Department of Neurology, Chengdu General Military Hospital, Chengdu, China
| | - Yunxia Wang
- Department of Neurology, Chengdu General Military Hospital, Chengdu, China
| | - Weiwen Wang
- Department of Neurology, Chengdu General Military Hospital, Chengdu, China
| | - Qingsong Wang
- Department of Neurology, Chengdu General Military Hospital, Chengdu, China
| |
Collapse
|
49
|
Nedić O, Rattan SIS, Grune T, Trougakos IP. Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radic Res 2013; 47 Suppl 1:28-38. [PMID: 23692178 DOI: 10.3109/10715762.2013.806798] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed by the Maillard chemical process of non- enzymatic glycation of free amino groups of proteins, lipids and nucleic acids. This chemical modification of biomolecules is triggered by endogeneous hyperglycaemic or oxidative stress-related processes. Additionally, AGEs can derive from exogenous, mostly diet-related, sources. Considering that AGE accumulation in tissues correlates with ageing and is a hallmark in several age-related diseases it is not surprising that the role of AGEs in ageing and pathology has become increasingly evident. The receptor for AGEs (RAGE) is a single transmembrane protein being expressed in a wide variety of human cells. RAGE binds a broad repertoire of extracellular ligands and mediates responses to stress conditions by activating multiple signal transduction pathways being mostly responsible for acute and/or chronic inflammation. RAGE activation has been implicated in ageing as well as in a number of age-related diseases, including atherosclerosis, neurodegeneration, arthritis, stoke, diabetes and cancer. Here we present a synopsis of findings that relate to AGEs-reported implication in cell signalling pathways and ageing, as well as in pathology. Potential implications and opportunities for translational research and the development of new therapies are also discussed.
Collapse
Affiliation(s)
- O Nedić
- Institute for the Application of Nuclear Energy, University of Belgrade, Serbia
| | | | | | | |
Collapse
|
50
|
Ghosh S, Pandey NK, Singha Roy A, Tripathy DR, Dinda AK, Dasgupta S. Prolonged glycation of hen egg white lysozyme generates non amyloidal structures. PLoS One 2013; 8:e74336. [PMID: 24066139 PMCID: PMC3774808 DOI: 10.1371/journal.pone.0074336] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/02/2013] [Indexed: 11/18/2022] Open
Abstract
Glycation causes severe damage to protein structure that could lead to amyloid formation in special cases. Here in this report, we have shown for the first time that hen egg white lysozyme (HEWL) does not undergo amyloid formation even after prolonged glycation in the presence of D-glucose, D-fructose and D-ribose. Cross-linked oligomers were formed in all the cases and ribose was found to be the most potent among the three sugars. Ribose mediated oligomers, however, exhibit Thioflavin T binding properties although microscopic images clearly show amorphous and globular morphology of the aggregates. Our study demonstrates that the structural damage of hen egg white lysozyme due to glycation generates unstructured aggregates.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Nitin Kumar Pandey
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Atanu Singha Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Debi Ranjan Tripathy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Amit Kumar Dinda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
- * E-mail:
| |
Collapse
|