1
|
Tao M, Wang S, Li S, Xu A, Tu Z, Cao Y, Liu Z. Identification and quantification of alkyloxazoles in roasted tea infusion (Camellia sinensis): Their thresholds, sensory impact, and related amino acids. Food Chem 2025; 478:143735. [PMID: 40056624 DOI: 10.1016/j.foodchem.2025.143735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Roasting significantly affects heterocyclic compound formation in tea. This study investigated and identified 9 rarely reported alkyloxazoles in tea infusion using SPME and SPE. Their concentrations increased with roasting temperature and time ranging from trace levels of a few μg/L to several tens of μg/L. Among these, 2,4,5-trimethyloxazole exhibited the highest concentration, reaching approximately 20 μg/L. Roasted tea leaves contained more alkyloxazoles than stems, particularly 2,4,5-trimethyl- and 4,5-dimethyloxazole. These compounds were widely detected in roasted teas. OAV analysis and addition tests confirmed the aroma contributions of 2,4,5-trimethyl-, 4,5-dimethyl-2-ethyl-, and 4,5-dimethyl-2-isopropyloxazole. Model reactions indicated their formation involved minor amino acids like glycine, alanine, threonine, valine, and leucine, while theanine played a minimal role. The findings expanded the chemical understanding of aroma compounds in tea, offering valuable insights into the complexity of roasted tea aroma and providing a theoretical foundation for optimizing aroma quality of roasted teas.
Collapse
Affiliation(s)
- Meng Tao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Shanshan Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Sixu Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; The College of Food and Health, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Anan Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zhen Tu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yanyan Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Zhengquan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
2
|
Wang BH, Huang PH, Lo CY, Chang WC. Metabolomic analysis elucidates the dynamic changes in aroma compounds and the milk aroma mechanism across various portions of tea leaves during different stages of Oolong tea processing. Food Res Int 2025; 209:116203. [PMID: 40253174 DOI: 10.1016/j.foodres.2025.116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/23/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
This study investigated the dynamics of aroma compounds in different locations of tea leaves at various stages of the Oolong tea-making process via metabolomics analysis and ribonucleic acid (RNA) gene transcriptome analysis of metabolism-related enzymes. In addition, this study focused on examining the composition and metabolic synthesis pathways of milk flavor compounds during the processing of Jin Xuan Oolong tea. This study showed that a total of 57 aroma compounds were identified, whereas the abundance of the heat map showed a decreasing abundance of these compounds from the first leaves to the stems. The milky aroma compounds were divided into two groups based on changes during the leaf-stirring process (shaking). Specifically, hexanal, 1-octen-3-ol, and trans-2-decanal decreased throughout this process. In contrast, heptanal, limonene, and jasmone increased, producing Oolong tea with a milky fragrance. Moreover, the results of this study on gene expressions of metabolic enzymes and fatty acid contents indicated the milky flavor compounds were derived from fatty acid metabolism. Therefore, this study provides theoretical support and information on the knowledge of Oolong tea processing, which potentially allows the tea industry to improve the quality of the tea to bring this fantastic flavor to consumers.
Collapse
Affiliation(s)
- Bi-Heng Wang
- Department of Food Sciences, National Chiayi University, No. 300, Syuefu Rd., Chiayi City 600355, Taiwan
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No. 4, Meicheng Road, Higher Education Park, Huai'an City, Jiangsu Province 223003, China
| | - Chih-Yu Lo
- Department of Food Sciences, National Chiayi University, No. 300, Syuefu Rd., Chiayi City 600355, Taiwan.
| | - Wen-Chang Chang
- Department of Food Sciences, National Chiayi University, No. 300, Syuefu Rd., Chiayi City 600355, Taiwan.
| |
Collapse
|
3
|
Tan J, Fang Z, Tian C, Zhou C, Zhang C, Jiang L, Zheng A, Yang N, Guo Y. Improving flavor of Wuyi rock tea processed from rain-soaked leaves by optimizing withering conditions. Food Chem 2025; 471:142762. [PMID: 39788012 DOI: 10.1016/j.foodchem.2025.142762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Rainy weather restricts the formation of high-quality Wuyi rock tea (WRT). Herein, an optimized withering process for rain-soaked leaves was developed using response surface methodology. Results showed that increasing the withering temperature, relative humidity, and withering time from 25 °C to 40 °C, 80 % to 97 %, and 3 to 6 h, respectively, effectively improved the sensory qualities of the optimized primary WRT (WRTO) prepared from rain-soaked leaves compared with those before optimization. The high content of soluble sugars, L-theanine, catechins, esters, alcohols, terpenoids, ketones, aldehydes and aromatics contributed significantly to the formation of the unique flavor of WRTO, which was significantly increased after optimizing the withering process. The flavor wheel of WRT-O was constructed, and its unique flavor was dominated by thickness and smoothness taste and floral, fruity, and sweet aroma. This study offers a theoretical reference for quality control of WRT produced from rain-soaked leaves.
Collapse
Affiliation(s)
- Jiayao Tan
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhou Fang
- Wuyishan Yongsheng Tea Industry Co., Ltd, Wuyishan City, Nanping 353000, China
| | - Caiyun Tian
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Zhang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lele Jiang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anru Zheng
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Niannian Yang
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- Anxi College of Tea Science, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Tea Green Cultivation and Processing Collaborative Innovation Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Li R, Varela C, Espinase Nandorfy D, Borneman AR, Hale LJ, Jeffery DW. Insight into how fermentation might contribute to the distinctiveness of Australian coffee. Food Chem 2025; 468:142433. [PMID: 39689494 DOI: 10.1016/j.foodchem.2024.142433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
With a view to modulating the flavour profiles of Australian coffee, this investigation focused on three estates in New South Wales. Coffee cherries were processed into beans with wet fermented and non-fermented methods to evaluate the effects of fermentation and terroir on microbial population dynamics, volatile composition, and sensory properties. Thirty-three volatiles were quantified in green and roasted coffee beans - 12 esters, 9 alcohols, 6 acids, 3 monoterpenes, 2 norisoprenoids, 1 aldehyde - and 5 thiols were quantified in roasted coffee brews. Sensory descriptive analysis defined appearance, aroma, and flavour attributes to describe the coffee brews. Fermented coffees were characterised by increased intensity of 'black tea leaves' and 'dark chocolate' aromas and 'burnt toast' flavour. Results suggested that wet fermentation of Australian coffee cherries could enhance the content of some volatile compounds known to convey "floral" and "fruity" aromas commonly ascribed to premium coffees from traditional producing regions.
Collapse
Affiliation(s)
- Ruomeng Li
- School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Cristian Varela
- School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Damian Espinase Nandorfy
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, SA 5064, Australia; Department of Food, Nutrition and Dietetics, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Victoria 3068, Australia
| | - Anthony R Borneman
- School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia; The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, SA 5064, Australia
| | - Laura J Hale
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, SA 5064, Australia
| | - David W Jeffery
- School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
5
|
Yang N, Simon J, Fang W, Ayed C, Zhang WE, Axell M, Viltoriano R, Fisk I. Development of analytical "aroma wheels" for Oolong tea infusions (Shuixian and Rougui) and prediction of dynamic aroma release and colour changes during "Chinese tea ceremony" with machine learning. Food Chem 2025; 464:141537. [PMID: 39396470 DOI: 10.1016/j.foodchem.2024.141537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
The flavour of tea as a worldwide popular beverage has been studied extensively. This study aimed to apply established flavour analysis techniques (GC-MS, GC-O-MS and APCI-MS/MS) in innovative ways to characterise the flavour profile of oolong tea infusions for two types of oolong tea (type A- Shuixian, type B- Rougui). GC-MS identified 48 aroma compounds, with type B having a higher abundance of most compounds. GC-O-MS analysis determined the noticeable aroma difference based on 20 key aroma compounds, facilitating the creation of an analytical "Aroma Wheel" with 8 key odour descriptors. APCI-MS/MS assessed real-time aroma release during successive brews linked with the "Chinese tea ceremony" (Gongfu Cha). Multivariate Polynomial Regression (MPR) and Long Short-Term Memory (LSTM) network approaches were applied to aroma and colour data from seven successive brews. The results revealed a progressive decline in both colour and aroma with seven repeated brews, particularly notable after the fourth brew.
Collapse
Affiliation(s)
- Ni Yang
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom..
| | - Juliette Simon
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom.; Graduate School of Materials, Food and Chemistry - ENSMAC in Bordeaux, France
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, China
| | - Charfedinne Ayed
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Wei Emma Zhang
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, Australia
| | - Matthew Axell
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, Australia
| | - Robin Viltoriano
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, Australia
| | - Ian Fisk
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, Australia; International Flavour Research Centre (Adelaide), School of Agriculture, Food and Wine and Waite Research Institute, University of Adelaide, Adelaide, Australia
| |
Collapse
|
6
|
Qin C, Han Z, Jiang Z, Ke JP, Li W, Zhang L, Li D. Chemical profile and in-vitro bioactivities of three types of yellow teas processed from different tenderness of young shoots of Huoshanjinjizhong ( Camellia sinensis var. sinensis). Food Chem X 2024; 24:101809. [PMID: 39310883 PMCID: PMC11414484 DOI: 10.1016/j.fochx.2024.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
In the present study, bud yellow tea (BYT), small-leaf yellow tea (SYT) and large-leaf yellow tea (LYT) were produced from the same local "population" variety Huoshanjinjizhong (Camellia sinensis var. sinensis), and the effects of raw material tenderness on the chemical profile and bioactivities of these teas were investigated. The results showed that 11 crucial compounds were screened by headspace solid-phase microextraction-gas chromatography-mass spectrometry from 64 volatiles in these yellow teas, among which the heterocyclic compounds showed the greatest variations. In addition, 43 key compounds including organic acids, flavan-3-ols, amino acids, saccharides, glycosides and other compounds were screened by liquid chromatography-mass spectrometry from 1781 non-volatile compounds. BYT showed the best α-glucosidase inhibitory activity and antioxidant capacity among the selected yellow teas, which might be contributed by the higher content of galloylated catechins. These findings provided a better understanding of the chemical profile and bioactivities of yellow teas.
Collapse
Affiliation(s)
- Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jia-Ping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Wen Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Liu Q, Huang W, Sheng C, Wu Y, Lu M, Li T, Zhang J, Wei Y, Wang Y, Ning J. Contribution of tea stems to large-leaf yellow tea aroma. Food Chem 2024; 460:140472. [PMID: 39032306 DOI: 10.1016/j.foodchem.2024.140472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Large-leaf yellow tea (LYT) is processed from both leaves and stems, resulting in a distinctive rice crust-like aroma. Tea stems may contribute differently to the aroma of LYT than leaves. This study aimed to clarify the specific contribution of stems to LYT. The volatile compounds in different components of LYT were extracted and analyzed using a combination of headspace solid-phase microextraction and stir bar sorptive extraction coupled with gas chromatography-olfactory-mass spectrometry. The results revealed high concentrations of compounds with roasty attributes in stems such as 2-ethyl-3,5-dimethylpyrazine (OAV 153-208) and 2-ethyl-3,6-dimethylpyrazine (OAV 111-140). Aroma recombination and addition experiments confirmed that the roasty aroma provided by stems plays a pivotal role in the formation of the distinctive flavor of LYT. This study offers novel insights into the contribution of stems to the aroma of LYT, which can be used for processing and quality enhancement of roasted tea.
Collapse
Affiliation(s)
- Qiuyan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wenjing Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Caiyan Sheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yida Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mingxia Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China..
| |
Collapse
|
8
|
Cui L, Wang X, He C, Liu Z, Liang J. Effect of puffing treatment on volatile components of green tea explored by gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Chem X 2024; 23:101746. [PMID: 39257491 PMCID: PMC11386056 DOI: 10.1016/j.fochx.2024.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
The effect of puffing treatment on the volatile components of green tea has been studied. A total of 155 volatile compounds were identified by using HS-SPME and SPE extraction methods, combined with gas chromatography-mass spectrometry (GC-MS). The total concentration of volatile compounds in puffed green tea increased by 2.25 times compared to that in before puffing. 12 key volatile compounds in green tea were identified before and after puffing using a combination of multivariate statistical analysis, GC-O, AEDA dilution analysis, and relative odor activity value (rOAV). The puffing process generates the Maillard reaction, where sugars react with amino acids to produce Maillard reaction products (such as pyrazine, pyrrole, furan, and their derivatives), giving them a unique baking aroma. The proportion of these compounds in the total volatile matter increased. The research results provided guidance and a theoretical basis for improving the aroma processing of green tea.
Collapse
Affiliation(s)
- Leyin Cui
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xin Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changxu He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jin Liang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High-Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
9
|
Wang H, Qi X, Gao S, Kan G, Damdindorj L, An Y, Lu F. Characterization of a novel multifunctional β-glucosidase/xylanase/feruloyl esterase and its effects on improving the quality of Longjing tea. Food Chem 2024; 453:139637. [PMID: 38781897 DOI: 10.1016/j.foodchem.2024.139637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/24/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Herein, a novel multifunctional enzyme β-glucosidase/xylanase/feruloyl esterase (GXF) was constructed by fusion of β-glucosidase and bifunctional xylanase/feruloyl esterase. The activities of β-glucosidase, xylanase, feruloyl esterase and acetyl xylan esterase displayed by GXF were 67.18 %, 49.54 %, 38.92 % and 23.54 %, respectively, higher than that of the corresponding single functional enzymes. Moreover, the GXF performed better in enhancing aroma and quality of Longjing tea than the single functional enzymes and their mixtures. After treatment with GXF, the grassy and floral odors of tea infusion were significantly improved. Moreover, GXF treatment could improve concentrations of flavonoid aglycones of myricetin, kaempferol and quercetin by 68.1-, 81.42- and 77.39-fold, respectively. In addition, GXF could accelerate the release of reducing sugars, ferulic acid and xylo-oligosaccharides by 9.48-, 8.25- and 4.11-fold, respectively. This multifunctional enzyme may have potential applications in other fields such as food production and biomass degradation.
Collapse
Affiliation(s)
- Hongling Wang
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Life Engineering, Shenyang Institute of Technology, Fushun, China.
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Guoshi Kan
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | | | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
10
|
Xiang L, Zhu C, Qian J, Zhou X, Wang M, Song Z, Chen C, Yu W, Chen L, Zeng L. Positive contributions of the stem to the formation of white tea quality-related metabolites during withering. Food Chem 2024; 449:139173. [PMID: 38593722 DOI: 10.1016/j.foodchem.2024.139173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Most teas, including white tea, are produced from tender shoots containing both leaf and stem. However, the effect of the stem on white tea quality remains unclear, especially during withering, an essential process. Therefore, this study investigated the withering-induced changes in the leaves and stems of Camellia sinensis cv. 'Fudingdabai' by multi-group analysis. During withering, the levels of catechin and theobromine (i.e., major flavor-related compounds) decreased slightly, mainly in the leaves. The abundance of some proteinaceous amino acids related to fresh taste increased in stems due to increased protein hydrolysis. In addition, changes in biosynthetic pathways caused a decrease in theanine (a major non-proteinaceous amino acid) and an increase in gamma-aminobutyric acid in stems. Terpenes, mainly in the stems, were partially affected by withering. Phenylacetaldehyde, a major contributor to white tea aroma, increased mainly in the stems. These findings reflect the positive contribution of the stem to white tea quality.
Collapse
Affiliation(s)
- Lihui Xiang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin'an District, Fuzhou 350012, China
| | - Chen Zhu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Jiajia Qian
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Miao Wang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Zhenshuo Song
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin'an District, Fuzhou 350012, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin'an District, Fuzhou 350012, China
| | - Wenquan Yu
- Fujian Academy of Agricultural Sciences, No. 247 Wusi Road, Gulou District, Fuzhou 350003, China.
| | - Lin Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, No. 104 Pudang Road, Xindian Town, Jin'an District, Fuzhou 350012, China.
| | - Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
11
|
Feng X, Wang H, Zhu Y, Ma J, Ke Y, Wang K, Liu Z, Ni L, Lin CC, Zhang Y, Liu Y. New Insights into the Umami and Sweet Taste of Oolong Tea: Formation of Enhancer N-(1-carboxyethyl)-6-(hydroxymethyl) pyridinium-3-ol (Alapyridaine) in Roasting Via Maillard Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8760-8773. [PMID: 38536213 DOI: 10.1021/acs.jafc.3c09011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Roasting is pivotal for enhancing the flavor of Wuyi rock tea (WRT). A study investigated a novel compound that enhances the umami taste of WRT. Metabolomics of Shuixian tea (SXT) and Rougui tea (RGT) under light roasting (LR), medium roasting (MR), and heavy roasting (HR) revealed significant differences in nonvolatiles compounds. Compared LR reducing sugars and amino acids notably decreased in MR and HR, with l-alanine declining by 69%. Taste-guided fractionation identified fraction II-B as having high umami and sweet intensities. A surprising taste enhancer, N-(1-carboxyethyl)-6-(hydroxymethyl) pyridinium-3-ol (alapyridaine), was discovered and identified. It formed via the Maillard reaction, positively correlated with roasting in SXT and RGT. Alapyridaine levels were highest in SXT among the five oolong teas. Roasting tea with glucose increased alapyridaine levels, while EGCG inhibited its formation. HR-WRT exhibited enhanced umami and sweet taste, highlighting alapyridaine's impact on WRT's flavor profile. The formation of alapyridaine during the roasting process provides new insights into the umami and sweet perception of oolong tea.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingke Ma
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Ke
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kequn Wang
- Wuyi Mountain Yuanshui Yuantea Tea Culture Co., Ltd., Wuyi Mountain 354300, Fujian, China
| | - Zhibin Liu
- Institute of Food Science &Technology, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Li Ni
- Institute of Food Science &Technology, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan, China
| | - Yin Zhang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Wang X, He C, Cui L, Liu Z, Liang J. Effects of Different Expansion Temperatures on the Non-Volatile Qualities of Tea Stems. Foods 2024; 13:398. [PMID: 38338533 PMCID: PMC10855559 DOI: 10.3390/foods13030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Tea stems are a type of tea by-product, and a considerable amount of them is discarded during picking, with their value often being overlooked. To enhance the utilization of tea stems, we investigated the effects of different expansion temperatures on the non-volatile compounds of tea stems. The results showed that the contents of EC, EGC, EGCG, tea polyphenols, and amino acids all decreased with the expansion temperature, while the contents of GA and C increased. The best effect was observed at 220 °C for 20 s. Additionally, as the temperature increased, the umami and aftertaste of astringency values of tea stems decreased, and the value of bitterness increased. Meanwhile, the value of sweetness decreased first and then increased. EGC was identified as the key differential compound of tea stems at different temperatures. In this investigation, determining the optimum expansion temperature was deemed advantageous for enhancing the flavor quality of tea stems, consequently elevating the utilization efficacy of tea stems and tea by-products.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changxu He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Leyin Cui
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jin Liang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
13
|
Ren A, Zhang Y, Bian Y, Liu YJ, Zhang YX, Ren CJ, Zhou Y, Zhang T, Feng XS. Pyrazines in food samples: Recent update on occurrence, formation, sampling, pretreatment and analysis methods. Food Chem 2024; 430:137086. [PMID: 37566982 DOI: 10.1016/j.foodchem.2023.137086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Pyrazines are a class of active aromatic substances existing in various foods. The accumulation of pyrazines has an impact on flavor and quality of food products. This review encompasses the formation mechanisms and control strategies of pyrazines via Maillard reaction (MR), including the new reactants and emerging techniques. Pyrazines characteristics are better understood through the developed sample pretreatments and detection methods. Herein, an in-depth review of pretreatments and analysis methods since 2010 is presented to explore the simple, fast, green, and effective strategies. Sample preparation methods include liquid phase extraction, solid phase extraction, supercritical fluid extraction, and microextraction methods such as liquid phase microextraction, and solid phase microextraction, etc. Detections are made by chromatographic methods, and sensors, etc. Advantages and limitations are discussed and compared for providing insights to further studies.
Collapse
Affiliation(s)
- Ai Ren
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Chen-Jie Ren
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
14
|
Tu Z, Liu Y, Lin J, Lv H, Zhou W, Zhou X, Qian Y, Zeng X, He W, Ye Y. Comparison of volatile and nonvolatile metabolites in green tea under hot-air drying and four heat-conduction drying patterns using widely targeted metabolomics. Food Chem X 2023; 19:100767. [PMID: 37780330 PMCID: PMC10534119 DOI: 10.1016/j.fochx.2023.100767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 10/03/2023] Open
Abstract
Hot-air and heat-conduction drying are the most common drying patterns in green tea production. However, the differences between them in terms of the resulting green tea chemical compounds have not been illustrated systematically. In this study, 515 volatile and 204 nonvolatile metabolites were selected to compare the differences between hot-air drying green tea (HAGT) and four heat-conduction drying green teas (HCDGTs) using widely targeted metabolomics. The results showed notable changes in volatile compounds; for example, two kinds of HCDGTs preferred to form chestnut-like and caramel-like key odorants. In addition, 14 flavonol glycosides, 10 catechins, 9 phenolic acids, 8 amino acids, 7 flavonols, and 3 sugars were significantly changed between HAGT and HCDGTs (p < 0.05), presenting a tremendous discrepancy in the transformation of nonvolatile compounds. Our results provide clear guidance for the precise manufacturing of green tea by four common heat-drying patterns and hot air-drying patterns.
Collapse
Affiliation(s)
- Zheng Tu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
| | - YueYun Liu
- Yibin Research Institute of Tea Industry, Yibin, Sichuan 644005, China
| | - JiaZheng Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
| | - HaoWei Lv
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
| | - Wei Zhou
- Tea Industry Development Center of Guiding County, No.47, Hong Road, Guiding, Guizhou 551300, China
| | - XiaoFeng Zhou
- Technology Service Station of Tea Science, Wuyi, Zhejiang 321200, China
| | - YuanFeng Qian
- Agricultural Bureau of Songyang County, Lishui, Zhejiang 323400, China
| | - Xu Zeng
- Yibin Research Institute of Tea Industry, Yibin, Sichuan 644005, China
| | - WeiZhong He
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang 323400, China
| | - Yang Ye
- Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008, China
| |
Collapse
|
15
|
Wang J, Bi H, Li M, Wang H, Xue M, Yu J, Ho CT, Zhang L, Zhuo Q, Jiang J, Wan X, Zhai X. Contribution of theanine to the temperature-induced changes in aroma profile of Wuyi rock tea. Food Res Int 2023; 169:112860. [PMID: 37254434 DOI: 10.1016/j.foodres.2023.112860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
Theanine is a distinctive amino acid in tea that plays a vital role in tea flavor during the roasting process. Model thermal reactions of total amino acids and sugars with different roasting conditions (low-fire, middle-fire, and high-fire) showed theanine competitively inhibited the formation of indole, skatole, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, and Strecker aldehydes, while greatly stimulated the production of roasty pyrazines. In addition, highest amounts of pyrazines were obtained under high-fire degree. Quantification of these reaction products in Wuyi rock tea (WRT) was realized in different roasted Dahongpao teas by means of sensomics approach. The quantitative data revealed the biggest influence of roasting temperatures on the formation of reaction products among indole, lipid oxidation products, and pyrazines, while other reaction products were only slightly affected. The findings of this study provide a fresh perspective on the impact of theanine on aroma formation during the roasting process, which will help to explore the formation of key odorants during tea production.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Haijun Bi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mengru Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Hui Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Manman Xue
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jieyao Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | | | | | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
16
|
Sasaki T, Ochiai N, Yamazaki Y, Sasamoto K. Solvent-assisted stir bar sorptive extraction and gas chromatography–mass spectrometry with simultaneous olfactometry for the characterization of aroma compounds in Japanese Yamahai-brewed sake. Food Chem 2023; 405:134640. [DOI: 10.1016/j.foodchem.2022.134640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022]
|
17
|
Song F, Xiang H, Li Z, Li J, Li L, Fang Song C. Monitoring the baking quality of Tieguanyin via electronic nose combined with GC-MS. Food Res Int 2023; 165:112513. [PMID: 36869452 DOI: 10.1016/j.foodres.2023.112513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Roasting is extremely important for Tieguanyin oolong tea production because it strongly affects its chemical composition and sensory quality. In addition, there were significant differences in the preference for roasted tea among different people. However, the effect of roasting degree on the aroma characteristics and flavor quality of Tieguanyin tea is still unclear. To further study this, an electronic nose combined with gas chromatography-mass spectrometry (GC-MS) was used to monitor the baking process of Tieguanyin. The physicochemical indexes, sensory quality, and odor characteristics of the tea leaves subjected to different roasting conditions were measured. The increase in the roasting degree caused a decrease in the amount of taste substances such as tea polyphenols, catechins, and amino acids and a sharp increase in the phenol to ammonia ratio. Sensory evaluation results showed that moderate roasting could help improve the quality of the tea leaves. The results obtained using the electronic nose and GC-MS showed that there were substantial differences in the volatile substances, and 103 flavor compounds were highly correlated with the aroma characteristics of roasted tea with different roasting degrees. In addition, the electronic nose combined with various classification models could better distinguish tea leaves with different roasting degrees. Among them, the accuracy of the RF training set and prediction set reached>98.44%. The results of this study will aid in comprehensively monitoring the effects of the baking process on the flavor, chemical composition, and aroma of Tieguanyin as well as in distinguishing Tieguanyin tea leaves with different qualities.
Collapse
Affiliation(s)
- Feihu Song
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Xiang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zhenfeng Li
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jing Li
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Luqing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China.
| | - Chun Fang Song
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
18
|
Yang Y, Xie J, Chen J, Deng Y, Shen S, Hua J, Wang J, Zhu J, Yuan H, Jiang Y. Characterization of N,O-heterocycles in green tea during the drying process and unraveling the formation mechanism. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Exploring the Quality and Application Potential of the Remaining Tea Stems after the Postharvest Tea Leaves: The Example of Lu'an Guapian Tea ( Camellia sinensis L.). Foods 2022; 11:foods11152357. [PMID: 35954125 PMCID: PMC9368606 DOI: 10.3390/foods11152357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Lu’an Guapian tea is produced through the processing of only leaves, with the stems and buds discarded, but stems constitute a large proportion of the tea harvest. To test the usability of tea stems, we compared the physicochemical properties of tea leaves and stems from the same growth period as well as the taste of their infusions. The leaves contained higher concentrations of polyphenols and caffeine and had a stronger taste. The tea stems contained higher concentrations of free amino acids and soluble sugars and were richer in umami and sweet flavors. In addition, more tender tea stems had higher concentrations of polyphenols, caffeine, and free amino acids, and their infusions had more refreshing and sweeter tastes. Furthermore, crude fiber content increased as stem tenderness decreased. In summary, tea stems are rich in phytochemical components and flavor, and these properties increased with tenderness. This provides a theoretical basis for the high-value utilization of tea stems.
Collapse
|
20
|
Hu W, Wang G, Lin S, Liu Z, Wang P, Li J, Zhang Q, He H. Digital Evaluation of Aroma Intensity and Odor Characteristics of Tea with Different Types-Based on OAV-Splitting Method. Foods 2022; 11:foods11152204. [PMID: 35892790 PMCID: PMC9329961 DOI: 10.3390/foods11152204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Aroma is one of the most important quality indicators of tea. However, this evaluation method is a subjective one. In this study, the volatiles of tea with 5 types were determined by headspace solid-phase micro-extraction (HS-SPME) combined with gas chromatography mass spectrometry (GC-MS). The aroma intensity and odor characteristics of teas were comparatively analyzed based on the OAV-splitting method. The results showed that OAV were green tea (492.02), red tea (471.88), oolong tea (302.74), white tea (68.10), and dark tea (55.98). The odor index I(o) indicated that green tea was strong-flavor tea with highlight green accompanied by fruity, woody and fatty odors; oolong tea was strong-flavor tea with fruity and fatty accompanied by woody, floral and green odors; red tea was strong-flavor tea with highlight fruity accompanied by woody, green and floral odors; white tea was a light-flavor tea with floral, woody and green odors; and dark tea was light-flavor tea with woody and floral notes accompanied by fatty and green odors. These results fitted perfectly with the people’s consensus on these teas, and proved that the OAV-splitting method is feasible to evaluate the aroma intensity and odor characteristics of tea aroma. We suggest that the digital evaluation of tea aroma can facilitate people’s communication.
Collapse
Affiliation(s)
- Wenwen Hu
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
| | - Gege Wang
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
| | - Shunxian Lin
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
| | - Zhijun Liu
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
| | - Peng Wang
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
| | - Jiayu Li
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
| | - Qi Zhang
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
- College of Tea and Food Science, Wuyi University, Wuyishan 353400, China
| | - Haibin He
- Key Laboratory of Agroecological Processing and Safety Monitoring of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.H.); (G.W.); (S.L.); (Z.L.); (P.W.); (J.L.); (Q.Z.)
- Correspondence:
| |
Collapse
|
21
|
Xiao Z, Zhang W, Guo W, Zhang L, Huang A, Tao M, Li M, Su R, Liu Z. Determining the effects of tencha-ro drying on key volatile compounds in tencha (Camellia sinensis) through gas chromatography-mass spectrometry. J Food Sci 2022; 87:3355-3365. [PMID: 35822303 DOI: 10.1111/1750-3841.16245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Drying is the key process through which the aroma of tencha forms. However, the effects of drying method on volatiles are unknown. We compared tencha-ro drying with regular drying. Volatiles in tencha infusions were extracted using headspace solid-phase microextraction and solvent-assisted flavor evaporation combined with gas chromatography-mass spectrometry. Partial least squares (PLS), odor activity value (OAV), and heat map analyses were performed to identify the optimal drying method for creating a seaweed-like aroma. Changes in the key volatile compounds of the samples were investigated. The tencha infusions contained 125 volatiles with nine chemical structures. According to the sensory evaluation, tencha-ro drying was the optimal method for producing high-quality tencha with an intense and consistent seaweed-like aroma. The PLS model accurately distinguished among the types of tencha. By combining OAVs with screening through multivariate statistical analysis, six volatile compounds were revealed to contribute substantially to tencha's seaweed-like aroma: 2-ethyl-3,5-dimethylpyrazine, 2-ethyl-6-methylpyrazine, 2-ethyl-5-methylpyrazine, dimethyl sulfide, β-ionone, and 2-formyl-1-methylpyrrole. The findings provide a theoretical basis and technical guidance for the processing of high-quality tencha with a strong seaweed-like aroma. PRACTICAL APPLICATION: This study demonstrated that tencha-ro drying contributes to the formation of a seaweed-like aroma in tencha and provides theoretical guidance for tea factories to use the appropriate drying methods for high-quality tencha.
Collapse
Affiliation(s)
- Zhipeng Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wenjun Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wenli Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lan Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ai Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Meng Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Meiqin Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Rui Su
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
22
|
Wang J, Shi J, Zhu Y, Ma W, Yan H, Shao C, Wang M, Zhang Y, Peng Q, Chen Y, Lin Z. Insights into crucial odourants dominating the characteristic flavour of citrus-white teas prepared from citrus reticulata Blanco 'Chachiensis' and Camellia sinensis 'Fudingdabai'. Food Chem 2022; 377:132048. [PMID: 35030339 DOI: 10.1016/j.foodchem.2022.132048] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 11/25/2022]
Abstract
Citrus-white teas (CWs), which possess a balanced flavour of tea and citrus, are becoming more popular worldwide; however, their characteristic flavour and odourants received limited research. Volatile components of two types of CWs prepared from Citrus reticulata Blanco 'Chachiensis' and Camellia sinensis 'Fudingdabai' were comprehensively investigated using a combination of stir bar sorptive extraction and gas chromatography-mass spectrometry (GC-MS). Ninety-nine crucial odourants in the CWs were quantified by applying GC-olfactometry/MS, significant differences were compared, and their odour activity values (OAVs) were calculated. Twenty-two odourants (in total 2628.09 and 1131.18 mg/kg respectively) were further confirmed as traditional CW (CW-A) and innovated CW (CW-B) characteristic flavour crucial contributors which all possessed > 1 OAVs, particularly limonene (72919 in CW-A) and trans-β-ionone (138953 in CW-B). The unravelling of CWs aroma composition will greatly expanding our understanding of tea aroma chemistry and the potential aroma interactions will offer insights into tea blending technologies.
Collapse
Affiliation(s)
- Jiatong Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China; Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China; Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China
| | - Wanjun Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Han Yan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Chenyang Shao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Mengqi Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China
| | - Yuqiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China.
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, No.9 Meiling South Road, Hangzhou, Zhejiang Province 310008, China.
| |
Collapse
|
23
|
Characterization analysis of flavor compounds in green teas at different drying temperature. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Cai H, Zhong Z, Li Z, Zhang X, Fu H, Yang B, Zhang L. Metabolomics in quality formation and characterisation of tea products: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongli Cai
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhuoheng Zhong
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Zhanming Li
- School of Grain Science and Technology Jiangsu University of Science and Technology Zhenjiang 212004 China
| | - Xiaojing Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Hongwei Fu
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Bingxian Yang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Lin Zhang
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou 310018 China
| |
Collapse
|
25
|
Application of a direct immersion—stir bar sorptive extraction (DI-SBSE) combined GC–MS method for fingerprinting alkylpyrazines in tea and tea-like infusions. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03954-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Cao QQ, Fu YQ, Wang JQ, Zhang L, Wang F, Yin JF, Xu YQ. Sensory and chemical characteristics of Tieguanyin oolong tea after roasting. Food Chem X 2021; 12:100178. [PMID: 34927052 PMCID: PMC8651997 DOI: 10.1016/j.fochx.2021.100178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022] Open
Abstract
Roasting, a critical process for oolong tea, has been applied to Tieguanyin tea to improve flavor attributes. To investigate the effects of the roasting on the flavor of Tieguanyin, the global metabolomics analysis on the non-volatile and volatile components were proceeded. The weakening of bitterness and astringency, caused by roasting, may be attributed to the decreasing of flavonoids glycosides and procyanidins, whereas the enhancing of sweet aftertaste to the increasing of gallic acid. Besides, l-theanine flavan-3-ols adducts (N-ehtyl-2-pyrrolidinone substituted flavan-3-ols) increased dramatically at 130 °C compared with 105 °C, with the reduction of l-theanine and flavan-3-ols. Meanwhile, high temperature hampered the volatiles' diversity and intensity, resulting from the lowering of floral volatiles, i.e., β-ionone, jasmine, and nerolidol, yet the nitrogen-containing heterocyclic compounds increased, e.g., pyrroles and pyrazines. The results can help to comprehensively understand the influences of roasting technology on the flavor and chemistry of oolong tea.
Collapse
Affiliation(s)
- Qing-Qing Cao
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan-Qing Fu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Jie-Qiong Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Fang Wang
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| |
Collapse
|
27
|
Liu B, Chang Y, Sui X, Wang R, Liu Z, Sun J, Chen H, Sun B, Zhang N, Xia J. Characterization of Predominant Aroma Components in Raw and Roasted Walnut (Juglans regia L.). FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Sasaki T, Ryuzaki H, Matsuura Y, Maeda K, Iwakiri T, Yamazaki Y, Michihata T, Enomoto T. Changes in the Flavor Compounds in Soy Sauce Stored in Antioxidation Containers. J JPN SOC FOOD SCI 2021. [DOI: 10.3136/nskkk.68.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Qi K, Xu M, Yin H, Wu L, Hu Y, Yang J, Liu C, Pan Y. Online Monitoring the Key Intermediates and Volatile Compounds Evolved from Green Tea Roasting by Synchrotron Radiation Photoionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1402-1411. [PMID: 33961425 DOI: 10.1021/jasms.1c00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Online monitoring of the volatile compounds during the tea roasting process is crucial to find the optimum roasting conditions and improve the quality of green tea. In this work, synchrotron radiation photoionization mass spectrometry (SR-PIMS) was utilized to online monitor the evolved gaseous compounds during the tea roasting process. By virtue of "soft" ionization and fast data acquisition characteristics of SR-PIMS, dozens of aroma compounds including alcohols, aldehydes, furans, and nitrogen- and sulfur-containing species were detected and identified in real time. Moreover, 5-hydroxymethylfurfural (5-HMF), the key intermediate of Maillard reactions, was found with high sensitivity. Evolution processes of all the products could be observed via the time- and temperature-resolved profiles in N2 and the air. Dehydration was found to be the first step during roasting. Oxygen in the air was found to accelerate the formation rate of various stable species and intermediates in the course of the thermal treatment of fresh green tea. The formation mechanisms of evolved compounds such as three sulfur-containing compounds, i.e., dimethyl sulfide, hydrogen sulfide, and methanethiol, could be proposed according to the step-by-step formation process. The time-resolved results were demonstrated to be applicable in the evaluation of different roasting processes by statistical analysis. The optimum tea roasting temperature and duration are proposed to be around 200 °C and 1000 s.
Collapse
Affiliation(s)
- Keke Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Minggao Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Hao Yin
- National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Liutian Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yonghua Hu
- Research and Development Centre, China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, P. R. China
| | - Jiuzhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|
30
|
A Machine Learning Method for the Fine-Grained Classification of Green Tea with Geographical Indication Using a MOS-Based Electronic Nose. Foods 2021; 10:foods10040795. [PMID: 33917735 PMCID: PMC8068162 DOI: 10.3390/foods10040795] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/20/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Chinese green tea is known for its health-functional properties. There are many green tea categories, which have sub-categories with geographical indications (GTSGI). Several high-quality GTSGI planted in specific areas are labeled as famous GTSGI (FGTSGI) and are expensive. However, the subtle differences between the categories complicate the fine-grained classification of the GTSGI. This study proposes a novel framework consisting of a convolutional neural network backbone (CNN backbone) and a support vector machine classifier (SVM classifier), namely, CNN-SVM for the classification of Maofeng green tea categories (six sub-categories) and Maojian green tea categories (six sub-categories) using electronic nose data. A multi-channel input matrix was constructed for the CNN backbone to extract deep features from different sensor signals. An SVM classifier was employed to improve the classification performance due to its high discrimination ability for small sample sizes. The effectiveness of this framework was verified by comparing it with four other machine learning models (SVM, CNN-Shi, CNN-SVM-Shi, and CNN). The proposed framework had the best performance for classifying the GTSGI and identifying the FGTSGI. The high accuracy and strong robustness of the CNN-SVM show its potential for the fine-grained classification of multiple highly similar teas.
Collapse
|
31
|
Aroma profile of Jinmudan tea produced using Camellia sinensis, cultivar Jinmudan using solid-phase microextraction, gas chromatography–mass spectrometry, and chemometrics. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03687-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Abstract
Herbal Teas prepared from leaves, roots, fruits, and flowers of different herbs contain
many useful nutrients that may be a good replacement for medicating certain diseases. These herbal
teas are very rich in poly-phenols, therefore are significant for their antioxidant, anti-inflammation,
anticancer, anticardiovascular, antimicrobial, antihyperglycemic, and antiobesity properties. Medical
chronic conditions, such as cardiovascular diseases, cancer, Alzheimer’s disease, Parkinson’s disease,
constipation, diabetes, and bed wetting in children can be easily cured by the use of these herbal
teas in regular and moderate amounts. This review focuses on the diverse constituents of herbal teas
due to which these can be an attractive alternative towards promoting human health.
Collapse
Affiliation(s)
- Tabinda Sattar
- Department of Chemistry, ICS, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
33
|
Samanta S. Potential Bioactive Components and Health Promotional Benefits of Tea (Camellia sinensis). J Am Coll Nutr 2020; 41:65-93. [DOI: 10.1080/07315724.2020.1827082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| |
Collapse
|
34
|
Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chem 2020; 341:128230. [PMID: 33038771 DOI: 10.1016/j.foodchem.2020.128230] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 01/19/2023]
Abstract
Wuyi rock tea (WRT), is one kind of oolong tea and widely appreciated for its typical 'rock flavor'. The odor characteristics of WRT during processing were comprehensive investigated by gas chromatography-mass spectrometry, sensory evaluation and odor activity value (OAV). Alcohols, alkenes and esters were the main volatiles formed during tea processes, but the WRT contained more heterocyclic compounds, among which 15 N-containing volatiles were newly identified in this study, accounting for 60.52% of total amounts of volatiles in WRT. In response, the original green and chemical odors converted to roasted and woody odors, and full fire processing was effective to enhance roasted, floral and woody odors, weaken chemical odor. 2-Ethyl-3,5-dimethylpyrazine (OAV 4.71) was confirmed as the aroma-active compound of WRT with roasted odor by aroma recombination experiment. In addition, strong roasted, floral and moderate woody odors were perceived as the outline of 'rock flavor' in WRT aroma. These results provide theoretical basis for processing and quality control of WRT.
Collapse
|
35
|
Yang Y, Hua J, Deng Y, Jiang Y, Qian MC, Wang J, Li J, Zhang M, Dong C, Yuan H. Aroma dynamic characteristics during the process of variable-temperature final firing of Congou black tea by electronic nose and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Food Res Int 2020; 137:109656. [PMID: 33233235 DOI: 10.1016/j.foodres.2020.109656] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Accepted: 08/29/2020] [Indexed: 11/29/2022]
Abstract
The drying technology is crucial to the quality of Congou black tea. In this study, the aroma dynamic characteristics during the variable-temperature final firing of Congou black tea was investigated by electronic nose (e-nose) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS). Varying drying temperatures and time obtained distinctly different types of aroma characteristics such as faint scent, floral aroma, and sweet fragrance. GC × GC-TOFMS identified a total of 243 volatile compounds. Clear discrimination among different variable-temperature final firing samples was achieved by using partial least squares discriminant analysis (R2Y = 0.95, Q2 = 0.727). Based on a dual criterion of variable importance in the projection value (VIP > 1.0) and one-way ANOVA (p < 0.05), ninety-one specific volatile biomarkers were identified, including 2,6-dimethyl-2,6-octadiene and 2,5-diethylpyrazine with VIP > 1.5. In addition, for the overall odor perception, e-nose was able to distinguish the subtle difference during the variable-temperature final firing process.
Collapse
Affiliation(s)
- Yanqin Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jinjie Hua
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Michael C Qian
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
| | - Jinjin Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingming Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chunwang Dong
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
36
|
Liu Y, Luo Y, Zhang L, Luo L, Xu T, Wang J, Ma M, Zeng L. Chemical composition, sensory qualities, and pharmacological properties of primary leaf hawk tea as affected using different processing methods. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Yang Y, Zhang M, Hua J, Deng Y, Jiang Y, Li J, Wang J, Yuan H, Dong C. Quantitation of pyrazines in roasted green tea by infrared-assisted extraction coupled to headspace solid-phase microextraction in combination with GC-QqQ-MS/MS. Food Res Int 2020; 134:109167. [DOI: 10.1016/j.foodres.2020.109167] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/03/2020] [Accepted: 03/15/2020] [Indexed: 11/16/2022]
|
38
|
Chen Y, Guo X, Gao T, Zhang N, Wan X, Schwab W, Song C. UGT74AF3 enzymes specifically catalyze the glucosylation of 4-hydroxy-2,5-dimethylfuran-3(2H)-one, an important volatile compound in Camellia sinensis. HORTICULTURE RESEARCH 2020; 7:25. [PMID: 32140234 PMCID: PMC7049299 DOI: 10.1038/s41438-020-0248-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/28/2019] [Accepted: 01/04/2020] [Indexed: 05/18/2023]
Abstract
4-Hydroxy-2,5-dimethylfuran-3(2H)-one (HDMF) is an important odorant in some fruits, and is proposed to play a crucial role in the caramel-like notes of some teas. However, its biosynthesis and metabolism in tea plants are still unknown. Here, HDMF glucoside was unambiguously identified as a native metabolite in tea plants. A novel glucosyltransferase UGT74AF3a and its allelic protein UGT74AF3b specifically catalyzed the glucosylation of HDMF and the commercially important structural homologues 2 (or 5)-ethyl-4-hydroxy-5 (or 2)-methylfuran-3(2H)-one (EHMF) and 4-hydroxy-5-methylfuran-3(2H)-one (HMF) to their corresponding β-D-glucosides. Site-directed mutagenesis of UGT74AF3b to introduce a single A456V mutation resulted in improved HDMF and EHMF glucosylation activity and affected the sugar donor preference compared with that of the wild-type control enzyme. The accumulation of HDMF glucoside was consistent with the transcript levels of UGT74AF3 in different tea cultivars. In addition, transient UGT74AF3a overexpression in tobacco significantly increased the HDMF glucoside contents, and downregulation of UGT74AF3 transcripts in tea leaves significantly reduced the concentration of HDMF glucoside compared with the levels in the controls. The identification of HDMF glucoside in the tea plant and the discovery of a novel-specific UDP-glucose:HDMF glucosyltransferase in tea plants provide the foundation for improvement of tea flavor and the biotechnological production of HDMF glucoside.
Collapse
Affiliation(s)
- Yongxian Chen
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui P. R. China
| | - Xiangyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui P. R. China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui P. R. China
| | - Na Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui P. R. China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui P. R. China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui P. R. China
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui P. R. China
| |
Collapse
|
39
|
Sasaki T, Ando S, Miyazawa T, Yamauchi D, Take H, Yamazaki Y, Enomoto T. Characterisation of ‘Ruby Roman’ Table Grapes ( Vitis Labruscana Bailey) by Sensory Evaluation and Analysis of Aroma and Taste Compounds. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tetsuya Sasaki
- Chemistry/Food Department, Industrial Research Institute of Ishikawa
| | | | | | - Daisuke Yamauchi
- Sand Dune Agricultural Research Center, Ishikawa Agriculture and Forestry Research Center
| | - Harumi Take
- Chemistry/Food Department, Industrial Research Institute of Ishikawa
| | - Yuya Yamazaki
- Chemistry/Food Department, Industrial Research Institute of Ishikawa
| | | |
Collapse
|
40
|
Sasaki T, Yuikawa N, Tanihiro N, Michihata T, Enomoto T. The Effects of Roasting Conditions on the Physical Appearance Traits and Aroma and Taste Components of Roasted Stem Tea. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tetsuya Sasaki
- Chemistry/Food Department, Industrial Research Institute of Ishikawa
| | | | - Nana Tanihiro
- Department of Food Science, Ishikawa Prefectural University
| | | | | |
Collapse
|
41
|
Wang MQ, Ma WJ, Shi J, Zhu Y, Lin Z, Lv HP. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination. Food Res Int 2019; 130:108908. [PMID: 32156355 DOI: 10.1016/j.foodres.2019.108908] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 01/07/2023]
Abstract
Longjing tea is the most famous premium green tea, and is regarded as the national tea in China, with its attractive aroma contributing as a prime factor for its general acceptability; however, its key aroma compounds are essentially unknown. In the present study, volatile compounds from Longjing tea were extracted and examined using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS). Data obtained from the present study revealed that 151 volatile compounds from 16 different chemical classes were identified by GC-MS analysis. Enols (8096 µg/kg), alkanes (6744 µg/kg), aldehydes (6442 µg/kg), and esters (6161 µg/kg) were the four major chemical classes and accounted for 54% of the total content of volatile compounds. Geraniol (6736 µg/kg) was the most abundant volatile compound in Longjing tea, followed by hexanal (1876 µg/kg) and β-ionone (1837 µg/kg). Moreover, 14 volatile compounds were distinguished as the key aroma compounds of Longjing tea based on gas chromatography-olfactometry (GC-O) analysis, odor activity value (OAV) calculations, and a preliminary aroma recombination experiment, including 2-methyl butyraldehyde, dimethyl sulfoxide, heptanal, benzaldehyde, 1-octen-3-ol, (E, E)-2,4-heptadienal, benzeneacetaldehyde, linalool oxide I, (E, E)-3,5-octadien-2-one, linalool, nonanal, methyl salicylate, geraniol, and β-ionone. This is the first comprehensive report describing the aroma characterizations and the key aroma compounds in Longjing tea using SBSE/GC-MS. The findings from this study contribute to the scientific elucidation of the chemical basis for the aromatic qualities of Longjing tea.
Collapse
Key Words
- 1-Octen-3-ol (PubChem, CID: 18827)
- 2-Methyl butanal (PubChem, CID: 7284)
- Aromatic compounds
- Benzaldehyde (PubChem, CID: 240)
- Benzeneacetaldehyde (PubChem, CID: 998)
- Concentration
- Geraniol (PubChem, CID: 637566), β-Ionone(PubChem, CID: 638014).
- Green tea
- Heptanal (PubChem, CID: 8130)
- Identification
- Key odorants
- Linalool (PubChem, CID: 6549)
- Methyl salicylate (PubChem, CID: 4133)
- Nonanal (PubChem, CID: 31289)
- Volatile composition
Collapse
Affiliation(s)
- Meng-Qi Wang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wan-Jun Ma
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Hai-Peng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
42
|
Zhang L, Ho CT, Zhou J, Santos JS, Armstrong L, Granato D. Chemistry and Biological Activities of Processed Camellia sinensis Teas: A Comprehensive Review. Compr Rev Food Sci Food Saf 2019; 18:1474-1495. [PMID: 33336903 DOI: 10.1111/1541-4337.12479] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
Abstract
Tea is a typical processed beverage from the fresh leaves of Camellia sinensis [Camellia sinensis (L.) O. Kuntze] or Camellia assamica [Camellia sinensis var. assamica (Mast.) Kitamura] through different manufacturing techniques. The secondary metabolites of fresh tea leaves are mainly flavan-3-ols, phenolic acids, purine alkaloids, condensed tannins, hydrolysable tannins, saponins, flavonols, and their glycoside forms. During the processing, tea leaves go through several steps, such as withering, rolling, fermentation, postfermentation, and roasting (drying) to produce different types of tea. After processing, theaflavins, thearubigins, and flavan-3-ols derivatives emerge as the newly formed compounds with a corresponding decrease in concentrations of catechins. Each type of tea has its own critical process and presents unique chemical composition and flavor. The components among different teas also cause significant changes in their biological activities both in vitro and in vivo. In the present review, the progress of tea chemistry and the effects of individual unit operation on components were comprehensively described. The health benefits of tea were also reviewed based on the human epidemiological and clinical studies. Although there have been multiple studies about the tea chemistry and biological activities, most of existing results are related to tea polyphenols, especially (-)-epigallocatechin gallate. Other compounds, including the novel compounds, as well as isomers of amino acids and catechins, have not been explored in depth.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Chi-Tang Ho
- Dept. of Food Science, Rutgers Univ., New Brunswick, 08901-8554, NJ, U.S.A
| | - Jie Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Jânio Sousa Santos
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Lorene Armstrong
- Graduation Program in Chemistry, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Daniel Granato
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil.,Innovative Food System Unit, Natural Resources Inst. Finland (LUKE), FI-02150, Espoo, Finland
| |
Collapse
|
43
|
Characterisation of key odourants in Japanese green tea using gas chromatography-olfactometry and gas chromatography-mass spectrometry. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Taniguchi M, Kuda T, Shibayama J, Sasaki T, Michihata T, Takahashi H, Kimura B. In vitro antioxidant, anti-glycation and immunomodulation activities of fermented blue-green algae Aphanizomenon flos-aquae. Mol Biol Rep 2019; 46:1775-1786. [PMID: 30694455 DOI: 10.1007/s11033-019-04628-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
To clarify the antioxidant, anti-glycation and immunomodulatory capacities of fermented blue-green algae Aphanizomenon flos-aquae (AFA), hot aqueous extract suspensions made from 10% AFA were fermented by Lactobacillus plantarum AN7 and Lactococcus lactis subsp. lactis Kushiro-L2 strains isolated from a coastal region of Japan. The DPPH and O2- radical scavenging capacities and Fe-reducing power were increased in the fermented AFA. The increased DPPH radical scavenging capacity of the fermented AFA was fractionated to mainly < 3 kDa and 30-100 kDa. The increased O2- radical scavenging capacities were fractionated to mainly < 3 kDa. Anti-glycation activity in BSA-fructose model rather than BSA-methylglyoxal model was increased by the fermentation. The increased anti-glycation activity was fractionated to mainly 30-100 kDa. The NO concentration in the murine macrophage RAW264.7 culture media was high with the fermented AFA. The increased immunomodulation capacity was also fractionated to mainly 30-100 kDa. These results suggest that the fermented AFA is a more useful material for health foods and supplements.
Collapse
Affiliation(s)
- Miyu Taniguchi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan.
| | - Junna Shibayama
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| | - Tetsuya Sasaki
- Chemistry and Food Department, Industrial Research Institute of Ishikawa, 2-1 Kuratsuki, Kanazawa, Ishikawa, 920-8203, Japan
| | - Toshihide Michihata
- Chemistry and Food Department, Industrial Research Institute of Ishikawa, 2-1 Kuratsuki, Kanazawa, Ishikawa, 920-8203, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| |
Collapse
|
45
|
Rapid profiling of volatile compounds in green teas using Micro-Chamber/Thermal Extractor combined with thermal desorption coupled to gas chromatography-mass spectrometry followed by multivariate statistical analysis. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.091] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Hattan JI, Shindo K, Sasaki T, Ohno F, Tokuda H, Ishikawa K, Misawa N. Identification of novel sesquiterpene synthase genes that mediate the biosynthesis of valerianol, which was an unknown ingredient of tea. Sci Rep 2018; 8:12474. [PMID: 30127518 PMCID: PMC6102311 DOI: 10.1038/s41598-018-30653-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/03/2018] [Indexed: 01/06/2023] Open
Abstract
Seven cDNA clones encoding terpene synthases (TPSs), their structures closely related to each other, were isolated from the flower of Camellia hiemalis (‘Kantsubaki’). Their putative TPS proteins were phylogenetically positioned in a sole clade with the TPSs of other Camellia species. The obtained Tps genes, one of which was designated ChTps1 (ChTps1a), were introduced into mevalonate-pathway-engineered Escherichia coli, which carried the genes for utilizing acetoacetate as a substrate, and cultured in a medium including lithium acetoacetate. Volatile products generated in the E. coli cells transformed with ChTps1 were purified from the cell suspension culture, and analyzed by NMR. Consequently, the predominant product with ChTPS1 was identified as valerianol, indicating that the ChTps1 gene codes for valerianol synthase. This is the first report on a gene that can mediate the synthesis of valerianol. We next synthesized a Tps ortholog encoding ChTPS1variant R477H (named CsiTPS8), whose sequence had been isolated from a tea tree (Camellia sinensis), carried out similar culture experiment with the E. coli transformant including CsiTps8, and consequently found valerianol production equally. Furthermore, GC-MS analysis of several teas revealed that valerianol had been an unknown ingredient in green tea and black tea.
Collapse
Affiliation(s)
- Jun-Ichiro Hattan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa, 921-8836, Japan
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Tetsuya Sasaki
- Industrial Research Institute of Ishikawa, 2-1 Kuratsuki, Kanazawa-shi, Ishikawa, 920-8203, Japan
| | - Fumina Ohno
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa, 921-8836, Japan
| | - Harukuni Tokuda
- Department of Complementary and Alternative Medicine, Clinical R&D, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa-shi, Ishikawa, 920-8640, Japan
| | - Kazuhiko Ishikawa
- National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda-shi, Osaka, 563-8577, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
47
|
Song H, Liu J. GC-O-MS technique and its applications in food flavor analysis. Food Res Int 2018; 114:187-198. [PMID: 30361015 DOI: 10.1016/j.foodres.2018.07.037] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/18/2018] [Accepted: 07/28/2018] [Indexed: 12/12/2022]
Abstract
Gas chromatography-olfactometry-mass spectrometry (GC-O-MS) is a combination of gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). GC-O-MS technique is a powerful tool to study food flavors and it has been widely applied for aroma and flavor analysis of various food items. In combination with different technologies, GC-O-MS can be applied to solve many flavor problems in the food industry such as quick mapping of aroma-active compounds, identification of key aroma-active compounds, cluster analysis based on the aroma-active compounds, relationship between odorants and sensory properties, and clarification of formation mechanism of important odorants. The newly proposed "molecular sensory science" concept (or sensory-directed flavor analysis) provides a much deeper research for the GC-O-MS application. Here, we have reviewed the operation, advantages and applications of GC-O-MS technique. Qualitative/quantitative analysis methods and sampling methods of aroma-active compounds have been described to introduce the different application areas of GC-O-MS. Case studies based on existing papers and our research have been discussed.
Collapse
Affiliation(s)
- Huanlu Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Laboratory of Molecular Sensory Science, Beijing Technology and Business University, Beijing 100048, China.
| | - Jianbin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Laboratory of Molecular Sensory Science, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
48
|
Mao A, Su H, Fang S, Chen X, Ning J, Ho C, Wan X. Effects of roasting treatment on non-volatile compounds and taste of green tea. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13853] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ajing Mao
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Agricultural University; 130 Changjiang Blvd West Hefei 230036 China
| | - Huan Su
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Agricultural University; 130 Changjiang Blvd West Hefei 230036 China
| | - Shimao Fang
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Agricultural University; 130 Changjiang Blvd West Hefei 230036 China
| | - Xu Chen
- School of Tea and Food Science and Technology; Anhui Agricultural University; 130 Changjiang Blvd West Hefei 230036 China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Agricultural University; 130 Changjiang Blvd West Hefei 230036 China
| | - Chitang Ho
- Department of Food Science; Rutgers University; New Brunswick NJ USA
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization; Anhui Agricultural University; 130 Changjiang Blvd West Hefei 230036 China
| |
Collapse
|
49
|
Polat A, Şat İG, Ilgaz Ş. Comparison of black tea volatiles depending on the grades and different drying temperatures. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atilla Polat
- Department of Tea Technology; Ataturk Tea Research Institute; Rize 53100 Turkey
| | - İhsan Güngör Şat
- Department of Food Engineering; Ataturk University; Erzurum 25240 Turkey
| | - Şaziye Ilgaz
- Department of Tea Technology; Ataturk Tea Research Institute; Rize 53100 Turkey
| |
Collapse
|
50
|
Sasaki T, Tanase Y, Yonezawa T, Michihata T, Kawamura-Konishi Y. Metabolomics Profiling of Roasted Stem Tea Using Gas Chromatography-Mass Spectrometry and a Sensory Test. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.1059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tetsuya Sasaki
- Chemistry/Food Department, Industrial Research Institute of Ishikawa
| | - Yuuki Tanase
- Department of Food Science, Ishikawa Prefectural University
| | | | | | - Yasuko Kawamura-Konishi
- Department of Food Science, Ishikawa Prefectural University
- Faculty of Food and Nutrition, Department of Home Economics, Tokyo Kasei University
| |
Collapse
|