1
|
Tan H, Qiu Y, Chen S, Chen X, Wu Y, He S, Li X, Chen H. A rapid immunomagnetic beads-based sELISA method for the detection of bovine αs1-casein based on specific epitopes. Food Chem 2024; 444:138565. [PMID: 38340505 DOI: 10.1016/j.foodchem.2024.138565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Although αs1-casein poses significant health risks to individuals with milk allergies, the availability of quantification methods for this allergen remains limited. In this study, we developed an immunomagnetic beads-based immunoassay (IMBs-ELISA) for the precise quantitative detection of bovine αs1-CN, specifically targeting epitope AA173-194. No cross-reactivity was observed with the other 7 food allergens including milk allergen. The linear detection range of the established IMBs-ELISA method was 0.125 μg/mL-2.000 μg/mL, with a limit of detection of 0.099 μg/mL. The accuracy of this method was 1.048 %, and the intra-plate and inter-plate precision achieved 4.100 % and 6.777 %, respectively. Notably, the entire IMBs-ELISA process could be completed within 75 min, representing a substantial time-saving advantage over traditional ELISA methods. These results proved the reliability and rapidity of the IMBs-ELISA method for detecting αs1-CN in real food.
Collapse
Affiliation(s)
- Hongkai Tan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yu Qiu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Siyi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xintong Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Provincial Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, PR China
| | - Shengfa He
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, PR China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Provincial Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, PR China.
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Provincial Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, PR China
| |
Collapse
|
2
|
Chen J, Chen L, Zhang Y, Xiang S, Zhang R, Shen Y, Liao J, Xie H, Yang J. Development of a Time-Resolved Fluorescent Microsphere Test Strip for Rapid, On-Site, and Sensitive Detection of Picoxystrobin in Vegetables. Foods 2024; 13:423. [PMID: 38338560 PMCID: PMC10855143 DOI: 10.3390/foods13030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Picoxystrobin (PIC) is a fungicide extensively used for disease control in both crops and vegetables. Residues of PIC in vegetables pose a potential threat to human health due to their accumulation in the food chain. In this study, a specific PIC monoclonal antibody (mAb) was developed by introducing a carboxylic acid arm into PIC and subsequently preparing a hapten and an artificial antigen. A sensitive and rapid time-resolved fluorescence immunochromatographic assay (TRFICA) was established based on the mAb. Subsequently, using a time-resolved fluorescent microsphere (TRFM) as signal probe, mAbs and microspheres were covalently coupled. The activated pH, the mAb diluents, the mAb amount, and the probe amount were optimized. Under optimized conditions, the quantitative limits of detection (qLOD) of PIC in cucumber, green pepper, and tomato using TRFICA were established at 0.61, 0.26, and 3.44 ng/mL, respectively; the 50% inhibiting concentrations (IC50) were 11.76, 5.29, and 37.68 ng/mL, respectively. The linear ranges were 1.81-76.71, 0.80-35.04, and 8.32-170.55 ng/mL, respectively. The average recovery in cucumber, green pepper, and tomato samples ranged from 79.8% to 105.0%, and the corresponding coefficients of variation (CV) were below 14.2%. In addition, 15 vegetable samples were selected and compared with the results obtained using ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). The results revealed a high degree of concordance between the proposed method and UPLC-MS/MS. In conclusion, the devised TRFICA method is a valuable tool for rapid, on-site, and highly sensitive detection of PIC residues in vegetables.
Collapse
Affiliation(s)
- Junjie Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.C.); (Y.Z.); (S.X.); (R.Z.); (Y.S.); (J.L.); (H.X.)
| | - Lidan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.C.); (Y.Z.); (S.X.); (R.Z.); (Y.S.); (J.L.); (H.X.)
| | - Yongyi Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.C.); (Y.Z.); (S.X.); (R.Z.); (Y.S.); (J.L.); (H.X.)
| | - Siyi Xiang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.C.); (Y.Z.); (S.X.); (R.Z.); (Y.S.); (J.L.); (H.X.)
| | - Ruizhou Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.C.); (Y.Z.); (S.X.); (R.Z.); (Y.S.); (J.L.); (H.X.)
| | - Yudong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.C.); (Y.Z.); (S.X.); (R.Z.); (Y.S.); (J.L.); (H.X.)
| | - Jiaming Liao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.C.); (Y.Z.); (S.X.); (R.Z.); (Y.S.); (J.L.); (H.X.)
| | - Huahui Xie
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.C.); (Y.Z.); (S.X.); (R.Z.); (Y.S.); (J.L.); (H.X.)
| | - Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (L.C.); (Y.Z.); (S.X.); (R.Z.); (Y.S.); (J.L.); (H.X.)
- Wens Institute, Wens Foodstuff Groups Co., Ltd., Yunfu 527400, China
| |
Collapse
|
3
|
Lai X, Zhang G, Deng S, Zhang G, Xiao X, He W, Su L, Liu C, Lai W. Triple strategy-enhanced immunochromatographic assay based on APCB and AIEFM for the ultrasensitive detection of AFM1. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132438. [PMID: 37666170 DOI: 10.1016/j.jhazmat.2023.132438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Aflatoxin M1 (AFM1) is highly toxic, widely distributed, and difficult to monitor, posing a serious threat to human health. Therefore, a highly sensitive, rapid, convenient, and low-cost detection method must be urgently established. In this study, a triple strategy-enhanced immunochromatographic assay (ICA) was developed to satisfy these detection requirements. First, a turn-on signal output mode of the fluorescence quenching ICA substituted the turn-off mode of the traditional ICA for sensitive response to trace AFM1, with the limit of detection (LOD) reduced by approximately 4.9-fold. Then, a novel Au and polydopamine (PDA) cogrowth chrysanthemum-like blackbody was prepared as the quenching probe to reduce the background signal. This probe combined the excellent properties of Au nanoparticles with PDA. Thus, its fluorescence quenching constant was higher than that of single Au and PDA nanoparticles by 25.8- and 4.9-fold, respectively. Furthermore, an aggregation-induced emission fluorescence microsphere with a 5.7-fold higher relative quantum yield than a commercial fluorescence microsphere was selected as the signal output carrier to improve the signal-to-noise ratio. The integration of the above triple strategies established a 53.4-fold sensitivity-enhanced fluorescence quenching ICA (LOD = 0.9 pg/mL) for detecting AFM1 in milk, providing a strong technical guarantee for the safety monitoring of milk products.
Collapse
Affiliation(s)
- Xiaocui Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ganggang Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Shengliang Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Gan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoyue Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Weihua He
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Liu Su
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Cong Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
4
|
Zou M, Yin Y, Guo L, Zhang Q, Li J, Zhang H, Song Q, Li Z, Wang L, Ao X, Liang X. A Europium Nanosphere-Based Time-Resolved Fluorescent Immunochromatographic Assay for the Rapid Screening of 4,4'-Dinitrocarbanilide: Aiming at Improving Strip Method Performance. BIOSENSORS 2023; 13:bios13050518. [PMID: 37232878 DOI: 10.3390/bios13050518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Considering that the strip method is simple and convenient for users, a Europium nanosphere-based time-resolved fluorescent immunochromatographic assay (TRFICA) for the rapid screening of 4,4'-dinitrocarbanilide (DNC) was developed to improve the performance of strip assays. After optimization, TRFICA showed IC50, the limit of detection, and cut-off values of 0.4, 0.07, and 5.0 ng mL-1, respectively. No significant cross-reactivity (CR < 0.1%) with 15 DNC analogs was observed in the developed method. TRFICA was validated for DNC detection in spiked chicken homogenates, and recoveries ranged from 77.3% to 92.7%, with coefficients of variation of <14.9%. Moreover, the time needed for the detection procedure, including the sample pre-treatment, was less than 30 min for TRFICA, which had never been achieved before in other immunoassays. The newly developed strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique for DNC analysis in chicken muscle.
Collapse
Affiliation(s)
- Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China
| | - Yongkang Yin
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China
| | - Liuchuan Guo
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China
| | - Qidi Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China
| | - Jinyan Li
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China
| | - Hong Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China
| | - Qian Song
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China
| | - Zhaojie Li
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China
| | - Li Wang
- College of Food Science and Engineering, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China
| | - Xiang Ao
- Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Xiao Liang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao 266109, China
- Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
5
|
Dang M, Li Z, Mao Y, Huang X, Song L, Li W, Ma R, Liu Y, Wang L, Yu X, Yang H, Zhang X. A highly sensitive lateral flow immunoassay based on a group-specific monoclonal antibody and amorphous carbon nanoparticles for detection of sulfonamides in milk. Mikrochim Acta 2023; 190:186. [PMID: 37071204 DOI: 10.1007/s00604-023-05766-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023]
Abstract
To meet high-throughput screening of the residues of sulfonamides (SAs) with high sensitivity toward sulfamethazine (SM2) in milk samples, a new highly sensitive lateral flow immunoassay (LFA) based on amorphous carbon nanoparticles (ACNs) was developed. First, a group-specific monoclonal antibody 10H7 (mAb 10H7) that could recognize 25 SAs with high sensitivity toward SM2 (IC50 value of 0.18 ng/mL) was prepared based on H1 as an immune hapten and H4 as a heterologous coating hapten. Then, mAb 10H7 was conjugated to ACNs as an immune probe for LFA development. Under the optimized conditions, the LFA could detect 25 SAs with the cut-off value toward SM2 of 2 ng/mL, which could meet the requirement for detection of SAs. In addition, the LFA developed was also used for screening SAs' residues in real milk samples, with results being consistent with HPLC-MS/MS. Thus, this LFA can be used as a high-throughput screening tool for detection of SAs.
Collapse
Affiliation(s)
- Meng Dang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Zizhe Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Yexuan Mao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Wenfeng Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Ruxiang Ma
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Yang Liu
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China
| | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang, 471934, Henan, China
| | - Xuezhi Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, 100193, China
| | - Huijuan Yang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, 100193, China.
| | - Xiya Zhang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
6
|
Compliance between Food and Feed Safety: Eight-Year Survey (2013–2021) of Aflatoxin M1 in Raw Milk and Aflatoxin B1 in Feed in Northern Italy. Toxins (Basel) 2023; 15:toxins15030168. [PMID: 36977059 PMCID: PMC10057617 DOI: 10.3390/toxins15030168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Aflatoxins (AFs) are fungal metabolites that are found in feed and food. When ruminants eat feed contaminated with aflatoxin B1 (AFB1), it is metabolised and aflatoxin M1 (AFM1) is excreted in the milk. Aflatoxins can result in hepatotoxic, carcinogenic, and immunosuppressive effects. The European Union thus set a low threshold limit (50 ng/L) for presence of AFM1 in milk. This was in view of its possible presence also in dairy products and that quantification of these toxins is mandatory for milk suppliers. In the present study, a total of 95,882 samples of whole raw milk, collected in northern Italy between 2013 and 2021, were evaluated for presence of AFM1 using an ELISA (enzyme-linked immunosorbent assay) method. The study also evaluated the relationship between feed materials collected from the same farms in the same area during the same period (2013–2021) and milk contamination. Only 667 milk samples out of 95,882 samples analysed (0.7%) showed AFM1 values higher than the EU threshold limit of 50 ng/L. A total of 390 samples (0.4%) showed values between 40 and 50 ng/L, thus requiring corrective action despite not surpassing the regulatory threshold. Combining feed contamination and milk contamination data, some feedingstuffs seem to be more effective in defying potential carryover of AFs from feed to milk. Combining the results, it can be concluded that a robust monitoring system that covers both feed, with a special focus on high risk/sentinel matrices, and milk is essential to guarantee high quality and safety standards of dairy products.
Collapse
|
7
|
Zhou C, Pan S, Liu P, Feng N, Lu P, Wang Z, Huang C, Wu L, Chen Y. Polystyrene microsphere-mediated optical sensing strategy for ultrasensitive determination of aflatoxin M 1 in milk. Talanta 2023; 258:124357. [PMID: 36870152 DOI: 10.1016/j.talanta.2023.124357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
Aflatoxin M1 (AFM1) contamination poses a serious threat to human health globally. Hence, it is necessary to develop reliable and ultrasensitive methods for the determination of AFM1 residue in food products at low levels. In this study, a novel polystyrene microsphere-mediated optical sensing (PSM-OS) strategy was constructed to solve the problems of low sensitivity and susceptibility to interference from the matrix in AFM1 determination. Polystyrene (PS) microspheres have the advantages of low cost, high stability, and controllable particle size. They can be useful optical signal probes for qualitative and quantitative analyses attributed to the fact that they have strong ultraviolet-visible (UV-vis) characteristic absorption peaks. Briefly, magnetic nanoparticles were modified with the complex of bovine serum protein and AFM1 (MNP150-BSA-AFM1), and biotinylated antibodies of AFM1 (AFM1-Ab-Bio). Meanwhile, PS microspheres were also functionalized with streptavidin (SA-PS950). In the presence of AFM1, a competitive immune reaction was triggered leading to the changes in AFM1-Ab-Bio concentrations on the surface of MNP150-BSA-AFM1. The complex of MNP150-BSA-AFM1-Ab-Bio binds with SA-PS950 to form the immune complexes due to the special binding of biotin and streptavidin. The remaining SA-PS950 in the supernatant was determined by UV-Vis spectrophotometer after magnetic separation, which positively correlated with the concentration of AFM1. This strategy allows for ultrasensitive determination of AFM1 with limits of detection as low as 3.2 pg/mL. It was also successfully validated for AFM1 determination in milk samples, and a high consistency was found with the chemiluminescence immunoassay. Overall, the proposed PSM-OS strategy can be used for the rapid, ultrasensitive, and convenient determination of AFM1, as well as other biochemical analytes.
Collapse
Affiliation(s)
- Cuiyun Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shixing Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Puyue Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Niu Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Peng Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhipan Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chenxi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University. Haikou, 570228, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China; Shenzhen Institute of Food Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
8
|
Tian Y, Hu X, Jiang J, Tang X, Tian Z, Zhang Z, Li P. Smartphone-Based Quantitative Detection of Ochratoxin A in Wheat via a Lateral Flow Assay. Foods 2023; 12:431. [PMID: 36765960 PMCID: PMC9914196 DOI: 10.3390/foods12030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Ochratoxin A (OTA) poses a severe health risk to livestock along the food chain. Moreover, according to the International Agency for Research on Cancer, it is also categorized as being possibly carcinogenic to humans. The lack of intelligent point-of-care test (POCT) methods restricts its early detection and prevention. This work establishes a smartphone-enabled point-of-care test for OTA detection via a fluorescent lateral flow assay within 6 min. By using a smartphone and portable reader, the assay allows for the recording and sharing of the detection results in a cloud database. This intelligent POCT provided (iPOCT) a linearity range of 0.1-3.0 ng/mL and a limit of detection (LOD) of 0.02 ng/mL (0.32 µg/kg in wheat). By spiking OTA in blank wheat samples, the recoveries were 89.1-120.4%, with a relative standard deviation (RSD) between 3.9-9.1%. The repeatability and reproducibility were 94.2-101.7% and 94.6-103.4%, respectively. This work provides a promising intelligent POCT method for food safety.
Collapse
Affiliation(s)
- Yunxin Tian
- College of Ecology and Environmental Sciences, Tibet University, Lhasa 850000, China
| | - Xiaofeng Hu
- Hubei Hongshan Laboratory, Wuhan 430070, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun Jiang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaoqian Tang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zhiquan Tian
- College of Ecology and Environmental Sciences, Tibet University, Lhasa 850000, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaowei Zhang
- Hubei Hongshan Laboratory, Wuhan 430070, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Peiwu Li
- Hubei Hongshan Laboratory, Wuhan 430070, China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
9
|
Chen J, Lin Q, Chen Y. Development of a time‐resolved fluorescent immunochromatographic test for simultaneous detection of norfloxacin and sulfamethazine in pork samples through green pretreatment. J Food Saf 2022. [DOI: 10.1111/jfs.13031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Junjun Chen
- National Engineering Laboratory for Deep Process of Rice and By‐products, Hunan Key Laboratory of Grain‐oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing College of Food Science and Technology, Central South University of Forestry and Technology Changsha China
| | - Qinlu Lin
- National Engineering Laboratory for Deep Process of Rice and By‐products, Hunan Key Laboratory of Grain‐oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing College of Food Science and Technology, Central South University of Forestry and Technology Changsha China
- Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning Hunan Provincial Institute of Product and Goods Quality Inspection Changsha China
| | - Yanni Chen
- National Engineering Laboratory for Deep Process of Rice and By‐products, Hunan Key Laboratory of Grain‐oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing College of Food Science and Technology, Central South University of Forestry and Technology Changsha China
- Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning Hunan Provincial Institute of Product and Goods Quality Inspection Changsha China
| |
Collapse
|
10
|
Zhai P, Liu C, Feng G, Cao Y, Xiang L, Zhou K, Guo P, Li J, Jiang W. Aggregation-Induced Emission Luminogens-Encoded Microspheres Preparation and Flow-Through Immunoaffinity Chromatographic Assay Development for Microcystin-LR Analysis. Food Chem 2022; 402:134398. [DOI: 10.1016/j.foodchem.2022.134398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
|
11
|
Wang J, Jiang C, Yuan J, Tong L, Wang Y, Zhuo D, Huang L, Ni W, Zhang J, Huang M, Li D, Su B, Hu J. Hue Recognition Competitive Fluorescent Lateral Flow Immunoassay for Aflatoxin M 1 Detection with Improved Visual and Quantitative Performance. Anal Chem 2022; 94:10865-10873. [DOI: 10.1021/acs.analchem.2c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chenxing Jiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jingrui Yuan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lu Tong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yang Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dinglv Zhuo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Weihong Ni
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, PR China
| | - Jiafeng Zhang
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, PR China
| | - Mei Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Daquan Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Jun Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
12
|
Qin K, Ding M, Zhang C, Zhang X, Mao Y, Dang M, Li Z, Wang Y, Zhang S, Sun Y, Zhang Z, Zhao G, Li Y, Li Q, Zhang X. Development of a sensitive monoclonal antibody-based immunochromatographic strip for neomycin detection in milk. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2070606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Kemeng Qin
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Mingyue Ding
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Chensi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Xijie Zhang
- The Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Yexuan Mao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Meng Dang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Zizhe Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Youyi Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Shaohui Zhang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Yuhang Sun
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Zhibin Zhang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Gaiming Zhao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Yu Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Qian Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Xiya Zhang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, People’s Republic of China
| |
Collapse
|
13
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
14
|
Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Development of a New Monoclonal Antibody against Brevetoxins in Oyster Samples Based on the Indirect Competitive Enzyme-Linked Immunosorbent Assay. Foods 2021; 10:foods10102398. [PMID: 34681447 PMCID: PMC8535115 DOI: 10.3390/foods10102398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 01/14/2023] Open
Abstract
The consumption of shellfish contaminated with brevetoxins, a family of ladder-frame polyether toxins formed during blooms of the marine dinoflagellate Karenia brevis, can cause neurotoxic poisoning, leading to gastroenteritis and neurotoxic effects. To rapidly monitor brevetoxin levels in oysters, we generated a broad-spectrum antibody against brevetoxin 2 (PbTx-2), 1 (PbTx-1), and 3 (PbTx-3) and developed a rapid indirect competitive enzyme-linked immunosorbent assay (icELISA). PbTx-2 was reacted with carboxymethoxylamine hemihydrochloride (CMO) to generate a PbTx-2-CMO hapten and reacted with succinic anhydride (HS) to generate the PbTx-2-HS hapten. These haptens were conjugated to keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA) to prepare immunogen and coating antigen reagents, respectively, using the active ester method. After immunization and cell fusion, a broad-spectrum monoclonal antibody (mAb) termed mAb 1D3 was prepared. The 50% inhibitory concentration (IC50) values of the icELISA for PbTx-2, PbTx-1, and PbTx-3 were 60.71, 52.61, and 51.83 μg/kg, respectively. Based on the broad-spectrum mAb 1D3, an icELISA was developed to determine brevetoxin levels. Using this approach, the limit of detection (LOD) for brevetoxin was 124.22 μg/kg and recoveries ranged between 89.08% and 115.00%, with a coefficient of variation below 4.25% in oyster samples. These results suggest that our icELISA is a useful tool for the rapid monitoring of brevetoxins in oyster samples.
Collapse
|
16
|
Lu X, Chen Y, Zou R, Si F, Zhang M, Zhao Y, Zhu G, Guo Y. Novel immunochromatographic strip assay based on up-conversion nanoparticles for sensitive detection of imidacloprid in agricultural and environmental samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49268-49277. [PMID: 33931813 DOI: 10.1007/s11356-021-14143-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoid insecticides are widely used in agriculture for pest control, but the pesticide residues in environmental and agricultural products were a big threat to the health of non-target organisms. In this study, a new immunochromatographic strip test was established for the rapid detection of imidacloprid residue, a neonicotinoid insecticide, based on up-conversion nanoparticles (UCNPs) coupled with the monoclonal antibody against imidacloprid. Under optimal conditions, the half inhibitory concentration (IC50), detection limit, and the linear range of this strip were 8.37 ng/mL, 0.45 ng/mL, and 0.97-250 ng/mL. The strip test could be completed in 30 min. The average recoveries of imidacloprid spiked in water, Chinese cabbages, cucumber, honey, and tea samples were 70.1~101.8%, with coefficient of variations less than 18.9%. The strip was used to test real samples and verified by UPLC-MS/MS method with the good agreement (R2 was 0.9825), indicating this novel strip immunoassay is accurate and reliable.
Collapse
Affiliation(s)
- Xinying Lu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yang Chen
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Rubing Zou
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Si
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Mingzhou Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Ying Zhao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Sun J, Wang L, Shao J, Yang D, Fu X, Sun X. One-step time-resolved fluorescence microsphere immunochromatographic test strip for quantitative and simultaneous detection of DON and ZEN. Anal Bioanal Chem 2021; 413:6489-6502. [PMID: 34430984 DOI: 10.1007/s00216-021-03612-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023]
Abstract
Deoxynivalenol (DON) and zearalenone (ZEN) are mycotoxins that contaminate a wide range of grains and crops. In this study, a one-step time-resolved single-channel immunochromatographic test strip based on europium ion polystyrene fluorescence microspheres was first developed for sensitive and quantitative detection of DON and ZEN. The concentration of the artificial antigen and the mass ratio of the monoclonal antibody to fluorescent microspheres for conjugation were optimized to simplify the sample addition process during immunochromatographic assay and improve the on-site detection efficiency. The limits of detection (LOD) of the single-channel immunochromatographic test strip for DON and ZEN detection were 0.17 and 0.54 μg/L, respectively. Meanwhile, the dual-channel immunochromatographic test strip was designed to simultaneously detect DON and ZEN, with LODs of 0.24 and 0.69 μg/L achieved for DON and ZEN, respectively. The developed test strips also yielded recovery results consistent with that obtained by LC-MS/MS for DON and ZEN detection in real samples of wheat and corn flour, confirming the practicability and reliability of the test strip. The developed immunochromatographic test strips realize quick and sensitive detection of DON and ZEN, exhibiting potential for broad applications in the point-of-care testing platform of multiple mycotoxins in agricultural products. Graphic abstract.
Collapse
Affiliation(s)
- Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Liangzhe Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jingdong Shao
- Comprehensive Technology Center of Zhangjiagang Customs, Zhangjiagang, Jiangsu, 215600, People's Republic of China
| | - Diaodiao Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xuran Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
18
|
Zhu J, Dou L, Mi J, Bai Y, Liu M, Shen J, Yu W, Zhang S, Yu X, Wang Z. Production of highly sensitive monoclonal antibody and development of lateral flow assays for phallotoxin detection in urine. Anal Bioanal Chem 2021; 413:4979-4987. [PMID: 34240228 DOI: 10.1007/s00216-021-03457-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 10/20/2022]
Abstract
Phallotoxins, toxic cyclopeptides found in wild poisonous mushrooms, are predominant causes of fatal food poisoning. For the early and rapid diagnosis mushroom toxin poisoning, a highly sensitive and robust monoclonal antibody (mAb) against phallotoxins was produced for the first time. The half-maximum inhibition concentration (IC50) values of the mAb-based indirect competitive ELISAs for phallacidin (PCD) and phalloidin (PHD) detection were 0.31 ng mL-1 and 0.35 ng mL-1, respectively. In response to the demand for rapid screening of the type of poisoning and accurate determination of the severity of poisoning, colloidal gold nanoparticle (GNP) and time-resolved fluorescent nanosphere (TRFN) based lateral flow assays (LFA) were developed. The GNP-LFA has a visual cut-off value of 3.0 ng mL-1 for phallotoxins in human urine sample. The TRFN-LFA provides a quantitative readout signal with detection limit of 0.1 ng mL-1 in human urine sample. In this study, urine samples without pretreatment were used directly for the LFA strip tests, and both two LFAs were able to accomplish analysis within 10 min. The results demonstrated that LFAs based on the newly produced, highly sensitive, and robust mAb were able to be used for both rapid qualitative screening of the type of poisoning and accurate quantitative determination of the severity of poisoning after accidental ingestion by patients of toxic mushrooms.
Collapse
Affiliation(s)
- Jianyu Zhu
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Leina Dou
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Jiafei Mi
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Yuchen Bai
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Minggang Liu
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Jianzhong Shen
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Wenbo Yu
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Suxia Zhang
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, 100193, Beijing, People's Republic of China.
| | - Xuezhi Yu
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, 100193, Beijing, People's Republic of China.
| | - Zhanhui Wang
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, 100193, Beijing, People's Republic of China
| |
Collapse
|
19
|
Zhu J, Li Q, Yu X, Zhang X, Li H, Wen K, Ke Y, Zhang S, Wang Z. Synthesis of hapten, production of monoclonal antibody, and development of immunoassay for ribavirin detection in chicken. J Food Sci 2021; 86:2851-2860. [PMID: 34146404 DOI: 10.1111/1750-3841.15789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/08/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
Ribavirin (RBV) is an effective antiviral drug, whose use is prohibited in animal husbandry worldwide. In this work, a novel immunizing hapten of RBV, named Hapten 4, was designed by comparing the conformational and electronic properties of RBV and haptens based on computational chemistry. Hapten 4 was synthesized and conjugated with carrier proteins to produce monoclonal antibody (mAb). The obtained mAb 4C3 for RBV exhibited an IC50 value of 6.24 ng/ml in an indirect competitive enzyme-linked immunosorbent assay (icELISA) and displayed no cross-reaction with five other antiviral drugs, including amantadine. The applicability of the developed icELISA was verified in chicken, with a calculated limit of detection of 4.23 µg/kg. The recoveries in spiked chicken were 79.2%-107.3% with a coefficient of variation less than 15.9%. The results indicated that the produced antibody from the new hapten was reliable and would be useful for RBV screening in chicken. PRACTICAL APPLICATION: RBV is a broad-spectrum antiviral drug, which is commonly used illegally in poultry farms. A high-affinity mAb 4C3 against RBV was produced and used to develop icELISA with acceptable sensitivity and accuracy. The constructed icELISA has excellent performance for detecting RBV residues in chicken.
Collapse
Affiliation(s)
- Jianyu Zhu
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, People's Republic of China
| | - Qiang Li
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, People's Republic of China
| | - Xuezhi Yu
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, People's Republic of China
| | - Xiya Zhang
- Henan Province Engineering Research Center for Food Safety Control of Processing and Circulation, College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China
| | - Hongfang Li
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, People's Republic of China
| | - Kai Wen
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, People's Republic of China
| | - Yuebin Ke
- Department of Genetic Toxicology, Shenzhen Center for Disease Control and Prevention, People's Republic of China
| | - Suxia Zhang
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
20
|
Sang P, Hu Z, Cheng Y, Yu H, Xie Y, Yao W, Guo Y, Qian H. Nucleic Acid Amplification Techniques in Immunoassay: An Integrated Approach with Hybrid Performance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5783-5797. [PMID: 34009975 DOI: 10.1021/acs.jafc.0c07980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An immunoassay is mostly employed for the direct detection of food contaminants, and a molecular assay for targeting nucleic acids employs amplification techniques for distinguishing genes. The integration of an immunoassay with nucleic acid amplification techniques inherits the direct and rapid performance of an immunoassay and the ultrasensitive merit of a molecular assay. Enthusiastic attention has been attracted in recent years on the utilization of isothermal amplification techniques in an immunoassay, as well as the employment of a lateral flow immunoassay in a molecular assay. Thus, this Review discussed these kinds of approaches from two categories: immuno-nucleic acid amplification (I-NAA) and nucleic acid amplification-immunoassay (NAA-I). The advantages, drawbacks, and future developments were discussed for a comprehensive understanding.
Collapse
Affiliation(s)
- Panting Sang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
21
|
Zhou S, Xu L, Kuang H, Xiao J, Xu C. Immunoassays for rapid mycotoxin detection: state of the art. Analyst 2021; 145:7088-7102. [PMID: 32990695 DOI: 10.1039/d0an01408g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The widespread presence of mycotoxins in nature not only poses a huge health risk to people in terms of food but also causes incalculable losses to the agricultural economy. As a rapidly developing technology in recent years, the mycotoxin immunoassay technology has approached or even surpassed the traditional chromatography technology in some aspects. Using this approach, the lateral flow immunoassay (LFIA) has attracted the interest of researchers due to its user-friendly operation, short time consumption, little interference, low cost, and ability to process a large number of samples at the same time. This paper provides an overview of the immunogens commonly used for mycotoxins, the development of antibodies, and the use of gold nanoparticles, quantum dots, carbon nanoparticles, enzymes, and fluorescent microsphere labeling materials for the construction of LFIAs to improve detection sensitivity. The analytical performance, detection substrates, detection limits or detection ranges of LFIA for mycotoxins have been listed in recent years. Finally, we describe the future outlook for the field, predicting that portable mobile detection devices and simultaneous quantitative detection of multiple mycotoxins is one of the important directions for future development.
Collapse
Affiliation(s)
- Shengyang Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, China.
| | | | | | | | | |
Collapse
|
22
|
Wang L, He K, Wang X, Wang Q, Quan H, Wang P, Xu X. Recent progress in visual methods for aflatoxin detection. Crit Rev Food Sci Nutr 2021; 62:7849-7865. [PMID: 33955294 DOI: 10.1080/10408398.2021.1919595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aflatoxins (AFs) contamination in food and agricultural products poses a significant threat to human health. Sensitive and accurate detection of AFs provides a strong guarantee for ensuring food safety. Conventional chromatographic-based or mass spectrum methods, which rely on bulky instrument and skilled personnel, are not suitable for on-site surveillance. By contrast, visual detections which possess the merits of rapidity and sophisticated instrument-free present an excellent potential for the on-site detection of AFs. This review intends to summarize the latest development of visual methods for AFs detection, including paper-based tests, chromogenic reactions, and luminescent methods. Emerging technologies, like nanotechnology, DNAzymes, and aptamers combined with these visual methods are introduced. The basic principles, features, and application advantages of each type of visual methods are discussed. The biggest challenges and perspectives on their future trends are also addressed.
Collapse
Affiliation(s)
- Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haoran Quan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
23
|
Zhou S, Xu L, Kuang H, Xiao J, Xu C. Fluorescent microsphere immunochromatographic sensor for ultrasensitive monitoring deoxynivalenol in agricultural products. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Zhou S, Xu X, Wang L, Guo L, Liu L, Kuang H, Xu C. A fluorescence based immunochromatographic sensor for monitoring chlorpheniramine and its comparison with a gold nanoparticle-based lateral-flow strip. Analyst 2021; 146:3589-3598. [PMID: 33928961 DOI: 10.1039/d1an00423a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chlorpheniramine (CPM) is an illegal additive found in herbal teas and health foods, and its excessive intake can cause health problems. In this study, a CPM monoclonal antibody (mAb) was developed based on a new type of hapten. The mAb was found to belong to the IgG2b subclass and showed high sensitivity and specificity when used in ELISA, with a half-maximal inhibitory concentration (IC50) of 0.98 ng mL-1 and cross-reactivity (CR) values below 1.8% when compared to antiallergic drugs. Based on the mAb produced, a fluorescent microsphere-based immunochromatographic strip assay (FM-ICS) and a gold nanoparticle-based immunochromatographic strip assay (GNP-ICS) were developed for the rapid and sensitive detection of CPM in herbal tea samples. Under optimal conditions, the cut-off values for the FM-ICS and GNP-ICS were 10 ng mL-1 and 100 ng mL-1, respectively, in herbal tea samples. The FM-ICS exhibited a higher sensitivity than GNP-ICS, but both could produce results within 15 min. In addition, a variety of high-throughput rapid immunoassay formats could be implemented based on this mAb for use as a convenient and reliable tool for the determination of CPM exposure in foods and the environment.
Collapse
Affiliation(s)
- Shengyang Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. and International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
25
|
Mari GM, Li H, Dong B, Yang H, Talpur A, Mi J, Guo L, Yu X, Ke Y, Han D, Wang Z. Hapten synthesis, monoclonal antibody production and immunoassay development for direct detection of 4-hydroxybenzehydrazide in chicken, the metabolite of nifuroxazide. Food Chem 2021; 355:129598. [PMID: 33765482 DOI: 10.1016/j.foodchem.2021.129598] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/13/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2023]
Abstract
Derivatization is usually employed in immunoassay for detection of metabolites of nitrofurans and avoiding derivatization could be preferable to achieve an efficient screening. In the study, we designed four haptens of 4-hydroxybenhydrazide (HBH), the nifuroxazide metabolite. The effect of hapten structures on antibody affinity were evaluated and one monoclonal antibody was produced by using the Hapten C with a linear alkalane spacer arm. After optimization, an enzyme linked-immunosorbent assay (ELISA) was established with an 50% inhibition concentration of 0.25 ng mL-1 for HBH, which could ensure the direct detection of HBH without derivatization. The limit of detection of the ELISA for HBH was 0.12 µg kg-1 with the recoveries of 90.1-96.2% and coefficient of variation (CV) values lower than 9.1%. In conclusion, we produced several high affinity antibodies to HBH with new designed hapten and developed an icELISA for the direct detection of HBH without derivatization in chicken.
Collapse
Affiliation(s)
- Ghulam Mujtaba Mari
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Hongfang Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Baolei Dong
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Huijuan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Aisha Talpur
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Jiafei Mi
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Liuchuan Guo
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Xuezhi Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yuebin Ke
- Department of Genetic Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518020, People's Republic of China
| | - Diangang Han
- Technology Center of Kunming Customs, Kunming 650299, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China.
| |
Collapse
|
26
|
Li G, Liu C, Zhang X, Luo P, Lin G, Jiang W. Highly photoluminescent carbon dots-based immunosensors for ultrasensitive detection of aflatoxin M 1 residues in milk. Food Chem 2021; 355:129443. [PMID: 33799265 DOI: 10.1016/j.foodchem.2021.129443] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 11/29/2022]
Abstract
Here, a facile hydrothermal method was used to synthesize highly photoluminescent N-doped carbon dots, and the quantum yields reached 97.1%. Then, a label-free immunosensor based on the inner filter effect of carbon dots was developed for ultrasensitive detection of aflatoxin M1 residues in milk. The detection limit was 0.0186 ng/mL (equivalents to 18.10 ng/kg), which satisfied the most stringent maximum tolerable limit value of 25 ng/kg. Besides, the immunosensor showed a good linear relationship from 0.003 ng/mL to 0.81 ng/mL, and the average recoveries ranged from 79.6% to 112.5% for spiked milk samples, with relative standard deviations ranging from 6.7% to 13.3%. Compared with other immunoassays, the inner filter effect-based immunosensor incorporating fluorescent detection into conventional enzymatic cascade amplification systems and could be a reliable on-site screening method for aflatoxin M1 residue analysis.
Collapse
Affiliation(s)
- Guangming Li
- Department of Nutrition and Food Hygiene, School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun 130022, China
| | - Chen Liu
- Shenzhen People's Hospital, Shenzhen 518020, China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Pengjie Luo
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guimiao Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wenxiao Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Health Science Center, Shenzhen University, Shenzhen 518060, China; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
27
|
Rapid, on-site, and sensitive detection of aflatoxin M1 in milk products by using time-resolved fluorescence microsphere test strip. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107616] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
An ultrasensitive, homogeneous fluorescence quenching immunoassay integrating separation and detection of aflatoxin M 1 based on magnetic graphene composites. Mikrochim Acta 2021; 188:59. [PMID: 33507410 DOI: 10.1007/s00604-021-04715-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/17/2021] [Indexed: 01/24/2023]
Abstract
A homogeneous fluorescence quenching immunoassay is described for simultaneous separation and detection of aflatoxin M1 (AFM1) in milk. The novel assay relies on monoclonal antibody (mAb) functionalized Fe3O4 decorated reduced-graphene oxide (rGO-Fe3O4-mAb) as both capture probe and energy acceptor, combined with tetramethylrhodamine cadaverine-labeled aflatoxin B1 (AFB1-TRCA) as the energy donor. In the assay, AFB1-TRCA binds to rGO-Fe3O4-mAb in the absence of AFM1, quenching the fluorescence of TRCA by resonance energy transfer. Significantly, the immunoassay integrates sample preparation and detection into a single step, by using magnetic graphene composites to avoid washing and centrifugation steps, and the assay can be completed within 10 min. Under optimized conditions, the visual and quantitative detection limits of the assay for AFM1 were 50 and 3.8 ng L-1, respectively, which were significantly lower than those obtained by fluorescence polarization immunoassay using the same immunoreagents. Owing to its operation and highly sensitivity, the proposed assay provides a powerful tool for the detection of AFM1.
Collapse
|
29
|
Determination of trace aflatoxin M1 (AFM1) residue in milk by an immunochromatographic assay based on (PEI/PSS) 4 red silica nanoparticles. Mikrochim Acta 2020; 187:658. [PMID: 33201356 DOI: 10.1007/s00604-020-04636-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/06/2020] [Indexed: 02/01/2023]
Abstract
Aflatoxin M1 (AFM1) residues in milk pose a major threat to human health, so there is an urgent need for a simple, rapid, and sensitive method for the determination of trace AFM1 in milk. In this study, a competitive immunochromatographic assay (ICA), using visual (PEI/PSS)4 red silica nanoparticles (SiNPs) as signal amplification probes, was used for the highly sensitive detection of AFM1. The (PEI/PSS)4 red SiNPs were used to label AFM1 monoclonal antibody (mAb) to prepare ICA for the detection of AFM1. After exploring the optimal conditions of mAb and immunoprobe dosage conditions, the lowest visual detection limit (VDL) of AFM1 in phosphate-buffered saline with Tween 20 (PBST, 10 mM, pH 7.4, containing 1% BSA, 3% sucrose, 1% trehalose, and 0.5% Tween 20) can reach 0.1 pg/mL. The intuitive visually visible value of AFM1 in both PBST and milk was 10 pg/mL. The results showed that the immunochromatographic system based on high chroma color (PEI/PSS)4 red SiNPs has high sensitivity and broad application prospects for the detection of trace AFM1 residues in milk. The high chroma (PEI/PSS)4 red SiNPs are expected to be a convenient biomarker for improving the sensitivity of immune chromatography bands. Graphical abstract The schematic diagram shows the detection principle. In this work, in the competitive experiment, (PEI/PSS)4 red SiNPs were selected as visual labeling materials, and the specific antibody combined with the labeled material was selected as an immune probe. The AFM1-BSA antigen coupled with the macromolecular BSA was fixed on the T line of the nitrocellulose (NC) membrane. The AFM1 in sample solution competes with AFM1-BSA for the specific binding site of immune probe. The detection sensitivity of this method for AFM1 is obtained by judging the change of the red signal intensity produced by the positive sample, compared with the color at the T line of the negative sample.
Collapse
|
30
|
Cui Z, Li Z, Jin Y, Ren T, Chen J, Wang X, Zhong K, Tang L, Tang Y, Cao M. Novel magnetic fluorescence probe based on carbon quantum dots-doped molecularly imprinted polymer for AHLs signaling molecules sensing in fish juice and milk. Food Chem 2020; 328:127063. [DOI: 10.1016/j.foodchem.2020.127063] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
|
31
|
Zhang SW, Sun YY, Sun YM, Wang H, Li ZF, Xu ZL. Visual upconversion nanoparticle-based immunochromatographic assay for the semi-quantitative detection of sibutramine. Anal Bioanal Chem 2020; 412:8135-8144. [PMID: 32914397 DOI: 10.1007/s00216-020-02944-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Immunochromatographic assay (ICA) has been used widely for the onsite monitoring of illegal additives due to its simplicity, speed, and low cost. However, a scanner is commonly required for ICA to achieve quantitative results. In this work, we developed a visual semi-quantitative ICA for sibutramine, a banned additive in diet foods, without the need for a scanner for measurement. Monoclonal antibodies specific for sibutramine were raised and conjugated with upconversion nanoparticles (UCNPs) as the luminescent tracer. ICA was developed by employing multiple test lines to achieve the semi-quantitative detection of sibutramine. Based on the optimal conditions, the cutoff levels (limit of quantitation, LOQ) of T1 line, T2 line, T3 line, and T4 line were 0.02 μg/mL, 0.15 μg/mL, 1.0 μg/mL, and 7.5 μg/mL, respectively, in buffer system. The ICA demonstrated a LOQ at 0.2 mg/kg for sibutramine in diet food samples. The assay (including pretreatment) can be finished within 30 min without the aid of other instruments, except a laser pen. No false positive or false negative results were observed. The results indicated that the proposed method was reliable, simple, and rapid for the screening of sibutramine abuse in diet food samples.
Collapse
Affiliation(s)
- Shi-Wei Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,National Nutrition Food Testing Center, Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, 518055, Guangdong, China
| | - Yan-Yan Sun
- Department of Anaesthesiology, Shenzhen University General Hospital, Shenzhen, 518055, Guangdong, China.
| | - Yuan-Ming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhen-Feng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, USA
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
32
|
Pimpitak U, Rengpipat S, Phutong S, Buakeaw A, Komolpis K. Development and validation of a lateral flow immunoassay for the detection of aflatoxin M1 in raw and commercialised milks. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Umaporn Pimpitak
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Sirirat Rengpipat
- Department of Microbiology Faculty of Science Chulalongkorn University Bangkok10330Thailand
| | - Songchan Phutong
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Anumart Buakeaw
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Kittinan Komolpis
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
- Food Risk Hub Research Unit of Chulalongkorn University Bangkok10330Thailand
| |
Collapse
|
33
|
Teepoo S, Wongtongdee U, Phapugrangkul P. Development of qualitative and quantitative immunochromatographic strip test assay for rapid and simple detection of leucomalachite green residual in aquatic animals. Food Chem 2020; 320:126613. [PMID: 32203833 DOI: 10.1016/j.foodchem.2020.126613] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/30/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
A rapid and simple immunochromatographic strip test assay based on competitive format was developed for leucomalachite green (LMG) detection. LMG-bovine serum albumin and rabbit anti-sheep IgG were immobilized on nitrocellulose membrane for the test line and control line, respectively. Anti-LMG-colloidal gold conjugate was immobilized onto the conjugate pad. For qualitative detection, the cut-off limit of the strip test was determined at 2 µg/L by the naked eye. For quantitative analysis, the working range of the LMG detection was 0.7-2 µg/L with LOD at 0.28 µg/L. A one-step immunochromatographic strip test for LMG detection can be completed within 5 min without any incubation, washing and blocking steps. Analysis results of LMG in aquatic animals obtained from the immunochromatographic strip test were in good agreement with those realized from enzyme-link immunosorbent assay. The developed the immunochromatographic strip test offered rapid detection as a simple (one-step), cost-effective, instrument-free assay and no need for handling reagents.
Collapse
Affiliation(s)
- Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani 12110, Thailand.
| | - Uraiwan Wongtongdee
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathum Thani 12110, Thailand
| | - Pongsathon Phapugrangkul
- Thailand Institute of Scientific and Technological Research, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
34
|
Zhang Y, Li S, Peng T, Zheng P, Wang Z, Ling Z, Jiang H. One-step icELISA developed with novel antibody for rapid and specific detection of diclazuril residue in animal-origin foods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1633-1639. [PMID: 32723014 DOI: 10.1080/19440049.2020.1787527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Diclazuril, a broad-spectrum anticoccidial drug, may be accumulated in edible tissues of animals through illegal use, which poses potential threats to human health through the food chain. In this study, an innovative hapten was designed and an immunogen of diclazuril was successfully synthesised with keyhole limpet haemocyanin as carrier protein; then a monoclonal antibody with high specificity was obtained. Furthermore, based on the novel antibody, a one-step indirect competitive enzyme-linked immunosorbent assay (icELISA) was established for rapid and specific detection of diclazuril residues. Compared with the traditional icELISA method, this method saves at least 0.5 hours and one washing step. Under the optimal conditions, the one-step icELISA for diclazuril exhibited good performance with a 50% inhibition concentration (IC50) value of 0.952 μg/kg. The average recoveries of the icELISA ranged from 73.1% to 115.5% with the coefficient of variation lower than 12.7%, which was evaluated by detecting spiked animal-origin food samples. Finally, the one-step icELISA shows a good correlation with an ultra-high liquid chromatography-tandem mass spectrometry method. Those results demonstrate that the one-step icELISA developed for diclazuril detection is time-saving, low-cost, specific, sensitive, and reliable. It shows good potential for social, environmental, and economic benefits in future use.
Collapse
Affiliation(s)
- Yanfang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing, PR China
| | - Shufang Li
- Products Development Department, Beijing WDWK Biotechnology Co. Ltd , Beijing, PR China
| | - Tao Peng
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology , Beijing, PR China
| | - Pimiao Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing, PR China
| | - Zile Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing, PR China
| | - Zhuoren Ling
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing, PR China
| | - Haiyang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing, PR China
| |
Collapse
|
35
|
Wang H, Guan J, Liu X, Shi Y, Wu Q, Luo M, Zhu Y, Wang Z, Wang L, Pan Y. Rapid detection of avian leukosis virus using a fluorescent microsphere immunochromatographic test strip assay. Poult Sci 2020; 98:6492-6496. [PMID: 31553793 PMCID: PMC8913972 DOI: 10.3382/ps/pez547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023] Open
Abstract
We developed a rapid fluorescent microsphere immunochromatographic test strip (FM-ICTS) assay for the quantitative detection of avian leukosis virus (ALV). A monoclonal antibody specific for the ALV major capsid protein encoded by the gag gene was coupled to label fluorescent microspheres. ALV antibodies were coated on a nitrocellulose membrane to prepare a test line for sample detection. The fluorescence signals of the test and control lines can be read either visually by exposure to UV light or using a fluorescence analyzer. ALV could be detected quantitatively using the ratio of fluorescence signals of the test and control lines (T/C). The assay threshold was determined as a T/C value of 0.0606. The fitting curve equation was established between 1 and 2,048 ng/mL P27 protein with an r2 value of 0.9998. The assay showed no cross reactivity with Newcastle disease virus, infectious laryngotracheitis virus, infectious bronchitis virus, Marek's disease virus, infectious bursal disease, Reoviridae virus, or avian influenza virus. The repeatability was satisfactory with an overall average CV of 8.65%. The Kappa coefficient between a commercial ELISA kit was 0.7031 using clinical chicken meconium samples. Thus, a simple, rapid, sensitive, and specific fluorescent microsphere immunochromatographic test strip was developed based on specific anti-capsid protein p27 monoclonal antibodies.
Collapse
Affiliation(s)
- Huanan Wang
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianchi Guan
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou 510640, China
| | - Xiangnan Liu
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou 510640, China.,Guangzhou Veterinary Biotechnology Co.Ltd, Guangzhou 510000, China
| | - Yue Shi
- Beijing Senkang Biotech Development Co., Ltd, Beijing 101400, China
| | - Qiwen Wu
- Guangzhou Veterinary Biotechnology Co.Ltd, Guangzhou 510000, China
| | - Mengzhen Luo
- Guangzhou Veterinary Biotechnology Co.Ltd, Guangzhou 510000, China
| | - Yujun Zhu
- Guangzhou Bozhi Biotechnology Co.Ltd, Guangzhou 510000, China
| | - Zizengchen Wang
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lefeng Wang
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Pan
- Guangzhou Veterinary Biotechnology Co.Ltd, Guangzhou 510000, China
| |
Collapse
|
36
|
Xing Y, Wu X, Liu L, Zhu J, Xu L, Kuang H. Development of a fluorescent immunoassay strip for the rapid quantitative detection of cadmium in rice. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1741518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yumei Xing
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’ s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’ s Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’ s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’ s Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’ s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’ s Republic of China
| | - Jianping Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’ s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’ s Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’ s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’ s Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People’ s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People’ s Republic of China
| |
Collapse
|
37
|
An anti-BSA antibody-based immunochromatographic assay for chloramphenicol and aflatoxin M1 by using carboxy-modified CdSe/ZnS core–shell nanoparticles as label. Mikrochim Acta 2019; 187:10. [DOI: 10.1007/s00604-019-4009-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/04/2019] [Indexed: 12/30/2022]
|
38
|
Yao K, Wang J, Ren Z, Zhang Y, Wen K, Shao B, Jiang H. Development of a Novel Monoclonal Antibody–Based Indirect Competitive ELISA with Immunoaffinity Cleanup for the Detection of Triclosan in Chickens. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01644-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Production of a specific monoclonal antibody and a sensitive immunoassay for the detection of diphacinone in biological samples. Anal Bioanal Chem 2019; 411:6755-6765. [DOI: 10.1007/s00216-019-02051-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022]
|
40
|
Novel hapten design, antibody recognition mechanism study, and a highly sensitive immunoassay for diethylstilbestrol in shrimp. Anal Bioanal Chem 2019; 411:5255-5265. [PMID: 31119346 DOI: 10.1007/s00216-019-01905-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/13/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Over the past few years, there has been a lack of progress in the quality of diethylstilbestrol (DES) antibodies used in immunoassay. In this study, a new immunizing hapten was designed for remarkably sensitive and specific antibody generation against diethylstilbestrol. By introducing a benzene ring instead of the traditional linear chain alkane as the hapten spacer, a more specific immune reaction was induced in the process of immunization. The developed polyclonal antibodies were characterized using the indirect competitive enzyme-linked immunosorbent assay (icELISA). Under optimized conditions, the half maximal inhibitory concentration (IC50) of the best polyclonal antibody was 0.14 ng/mL and it displayed low cross-reactions (CRs) with the structural analogs such as hexestrol (HEX) and dienestrol (DI). The molecular modeling and quantum chemical computation revealed that the lowest CR of the DES antibody to DI was mainly due to the huge three-dimensional conformational difference between DES and DI. Finally, a highly sensitive icELISA method based on the polyclonal antibody was developed for the determination of DES in shrimp tissue. The limit of detection (LOD) was as low as 0.2 μg/kg in shrimp and the recoveries in the spiked samples ranged from 83.4 to 90.8% with the coefficient of variation less than 13.8%. These results indicated that the use of an aromatic ring as the immunizing hapten spacer arm could be a potential strategy for the enhancement of anti-DES antibody sensitivity, and the established icELISA was applicable to the trace detection of DES in shrimp. Graphical abstract.
Collapse
|
41
|
Zong L, Jiao Y, Guo X, Zhu C, Gao L, Han Y, Li L, Zhang C, Liu Z, Liu J, Ju Q, Yu HD, Huang W. Paper-based fluorescent immunoassay for highly sensitive and selective detection of norfloxacin in milk at picogram level. Talanta 2019; 195:333-338. [DOI: 10.1016/j.talanta.2018.11.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022]
|
42
|
Liu Y, Zhao Y, Zhang T, Chang Y, Wang S, Zou R, Zhu G, Shen L, Guo Y. Quantum Dots-Based Immunochromatographic Strip for Rapid and Sensitive Detection of Acetamiprid in Agricultural Products. Front Chem 2019; 7:76. [PMID: 30873400 PMCID: PMC6403152 DOI: 10.3389/fchem.2019.00076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, a rapid and sensitive immunochromatographic strip (ICS) assay, based on quantum dots (QDs), was developed for the qualitative and quantitative detection of acetamiprid in agricultural samples. Acetamiprid-ovalbumin conjugates (ACE-OVA) and goat anti-mouse IgG were sprayed onto a nitrocellulose membrane as a test and control line. Two kinds of anti-acetamiprid monoclonal antibodies (mAb) obtained in our lab were characterized by the ELISA and surface plasmon resonance assay. The competitive immunoassay was established using a QDs-mAb conjugate probe. The visual detection limit of acetamiprid for a qualitative threshold was set as 1 ng/mL to the naked eye. In the quantitative test, the fluorescence intensity was measured by a portable strip reader and a standard curve was obtained with a linear range from 0.098 to 25 ng/mL, and the half maximal inhibitory concentration of 1.12 ng/mL. The developed method showed no evident cross-reactivities with other neonicotinoid insecticides except for thiacloprid (36.68%). The accuracy and precision of the developed QDs-ICS were further evaluated. Results showed that the average recoveries ranged from 78.38 to 126.97% in agricultural samples. Moreover, to test blind tea samples, the QDs-ICS showed comparable reliability and a high correlation with ultra-performance liquid chromatography-tandem mass spectrometry. The whole sample detection could be accomplished within 1 h. In brief, our data clearly manifested that QDs-ICS was quite qualified for the rapid and sensitive screening of acetamiprid residues in an agricultural product analysis and paves the way to point-of-care testing for other analytes.
Collapse
Affiliation(s)
- Ying Liu
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Ying Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Tianyi Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Yunyun Chang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Shuangjie Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Rubing Zou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Guonian Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Lirong Shen
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yirong Guo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Chen W, Huang Z, Hu S, Peng J, Liu D, Xiong Y, Xu H, Wei H, Lai W. Invited review: Advancements in lateral flow immunoassays for screening hazardous substances in milk and milk powder. J Dairy Sci 2019; 102:1887-1900. [PMID: 30660416 DOI: 10.3168/jds.2018-15462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022]
Abstract
Dairy-related food safety outbreaks, such as food-borne pathogen contamination, mycotoxin contamination, and veterinary drug contamination, sometimes happen and have been reported all over the world, affecting human health and, in some cases, leading to death. Thus, rapid yet robust detection methods are needed to monitor milk and milk powder for the presence of hazardous substances. The lateral flow immunoassay (LFI) is widely used in onsite testing because of its rapidity, simplicity, and convenience. In this review, we describe some traditional LFI used to detect hazardous substances in milk and milk powder. Furthermore, we discuss recent advances in LFI that aim to improve sensitivity or detection efficiency. These advances include the use of novel label materials, development of signal amplification systems, design of multiplex detection systems, and the use of nucleic acid-based LFI.
Collapse
Affiliation(s)
- Wenyao Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zheng Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Song Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Daofeng Liu
- Jiangxi Province Center for Disease Control and Prevention, Nanchang 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
44
|
Liu Y, Ji J, Cui F, Sun J, Wu H, Pi F, Zhang Y, Sun X. Development of a two-step immunochromatographic assay for microcystin-LR based on fluorescent microspheres. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.07.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
A novel hapten and monoclonal antibody-based indirect competitive ELISA for simultaneous analysis of alternariol and alternariol monomethyl ether in wheat. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.06.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Sun S, Zheng P, Zhao S, Liu H, Wang Z, Peng T, Wang J, Yao K, Wang S, Zeng Y, Jiang H. Time-resolved fluorescent immunochromatographic assay-based on three antibody labels for the simultaneous detection of aflatoxin B1 and zearalenone in Chinese herbal medicines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2434-2442. [DOI: 10.1080/19440049.2018.1539251] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shujuan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Pimiao Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Sijun Zhao
- China Animal Health and Epidemiology Center, Qingdao, People’s Republic of China
| | - Hebing Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Zhaopeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Tao Peng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Jianyi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Kai Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Sihan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Yuyang Zeng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| | - Haiyang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, People’s Republic of China
| |
Collapse
|
47
|
Li H, Ma S, Zhang X, Li C, Dong B, Mujtaba MG, Wei Y, Liang X, Yu X, Wen K, Yu W, Shen J, Wang Z. Generic Hapten Synthesis, Broad-Specificity Monoclonal Antibodies Preparation, and Ultrasensitive ELISA for Five Antibacterial Synergists in Chicken and Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11170-11179. [PMID: 30251847 DOI: 10.1021/acs.jafc.8b03834] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An antibody with broad specificity and principally depending on hapten structure and size is a key reagent for developing a class-selective immunoassay. In the present study, three new generic haptens of antibacterial synergists (ASGs) were proposed using trimethoprim as the starting molecule. These haptens contained carboxyl groups on the meta position of trimethoxybenzene for conjugating to protein, while, the common moiety of ASGs, i.e., diaminopyrimidine, was intentionally and maximally exposed to the immune system in animals in order to induce antibodies with broad specificity against ASGs. Five monoclonal antibodies (mAbs) were finally obtained, and 5C4 from the hapten with a short spacer arm, named Hapten A, showed not only uniform broad specificity but also high affinity to all five ASGs. We further determined the possible recognition mechanism of mAbs in terms of conformational and electronic aspects. An indirect competitive ELISA (icELISA)-based 5C4 was established and exhibited IC50 values of 0.067-0.139 μg L-1 with cross-reactivity of 48.2%-418.7% for the five ASGs in buffer under optimal conditions. The calculated limits of detection of the icELISA for chicken and milk were 0.06-0.8 μg kg-1 and 0.05-0.6 μg L-1, respectively. The recoveries in spiked chicken and milk samples were 75.2%-101.4% with a coefficient of variation less than 14.3%. In summary, we have developed, for the first time, a rapid and reliable icELISA for ASGs with significantly improved sensitivity and class selectivity.
Collapse
Affiliation(s)
- Hongfang Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Shaoqin Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Xiya Zhang
- College of Food Science and Technology , Henan Agricultural University , 450002 Zhengzhou , People's Republic of China
| | - Chenglong Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Baolei Dong
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Mari Ghulam Mujtaba
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Yujie Wei
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Xiao Liang
- College of Veterinary Medicine , Qingdao Agricultural University , 266109 Qingdao , People's Republic of China
| | - Xuezhi Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Kai Wen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety Beijing Laboratory for Food Quality and Safety, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine , China Agricultural University , 100193 Beijing , People's Republic of China
| |
Collapse
|
48
|
Aptamer-based fluorometric lateral flow assay for creatine kinase MB. Mikrochim Acta 2018; 185:364. [PMID: 29982871 DOI: 10.1007/s00604-018-2905-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022]
Abstract
A group of aptamers possessing high specificity and affinity for creatine kinase MB (CKMB) was obtained by magnetic systematic evolution of ligands by exponential enrichment. Two aptamers (referred to as C.Apt.21 and C.Apt.30) were found to possess adequately low Kd values. They form a well suited pair for CKMB binding. By using fluorescent microspheres, an aptamer-based lateral flow assay was developed. It is portable, economical, and sensitive. The limit of detection for CKMB is as low as 0.63 ng·mL-1, and the assay works in the 0.005 - 2 μg·mL-1 CKMB concentration range. The method is specific for CKMB, and biomarkers for AMI (such as cardiac troponin I and myoglobin) and serum do not interfere. The strip is highly accurate as shown by analysis of spiked serum samples which gave recoveries ranging between 88 and 117%. Graphical Abstract Schematic of the test strip and sandwich aptamer-based fluorometric lateral flow assay for creatine kinease. The detection is based on the specific affinity between CKMB and selected aptamers to form a sandwich structure.
Collapse
|
49
|
One-Step Core/Multishell Quantum Dots-Based Fluoroimmunoassay for Screening of Deoxynivalenol in Maize. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1198-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Schubert M, Spiegel H, Schillberg S, Nölke G. Aspergillus-specific antibodies - Targets and applications. Biotechnol Adv 2018; 36:1167-1184. [PMID: 29608951 DOI: 10.1016/j.biotechadv.2018.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
Aspergillus is a fungal genus comprising several hundred species, many of which can damage the health of plants, animals and humans by direct infection and/or due to the production of toxic secondary metabolites known as mycotoxins. Aspergillus-specific antibodies have been generated against polypeptides, polysaccharides and secondary metabolites found in the cell wall or secretions, and these can be used to detect and monitor infections or to quantify mycotoxin contamination in food and feed. However, most Aspergillus-specific antibodies are generated against heterogeneous antigen preparations and the specific target remains unknown. Target identification is important because this can help to characterize fungal morphology, confirm host penetration by opportunistic pathogens, detect specific disease-related biomarkers, identify new candidate targets for antifungal drug design, and qualify antibodies for diagnostic and therapeutic applications. In this review, we discuss how antibodies are raised against heterogeneous Aspergillus antigen preparations and how they can be characterized, focusing on strategies to identify their specific antigens and epitopes. We also discuss the therapeutic, diagnostic and biotechnological applications of Aspergillus-specific antibodies.
Collapse
Affiliation(s)
- Max Schubert
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; Justus-Liebig University Giessen, Institute for Phytopathology and Applied Zoology, Phytopathology Department, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Greta Nölke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| |
Collapse
|