1
|
Felicianna, Lo EKK, Chen C, Ismaiah MJ, Zhang F, Leung HKM, El-Nezami H. Alpha-aminobutyric acid ameliorates diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) progression in mice via enhancing AMPK/SIRT1 pathway and modulating the gut-liver axis. J Nutr Biochem 2025; 140:109885. [PMID: 40015656 DOI: 10.1016/j.jnutbio.2025.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Alpha-aminobutyric acid (ABA) is a nonproteinogenic amino acid, a metabolite which could be generated from the metabolism of methionine, threonine, serine and glycine or as a gut-microbiome-derived metabolite. Changes in ABA levels have been embroiled in metabolic dysfunction-associated steatotic liver disease (MASLD) intervention studies, but their relation to MASLD pathogenesis remains unclear. Hence, this present study aimed to investigate the effect of oral ABA supplementation on the progression of a high fat/high cholesterol diet (HFD) induced MASLD mice model. ABA was found to remodel the gut microbiome composition and ameliorate MASLD parameters in HFD-fed mice. ABA mitigated HFD-induced gain in liver weight, hepatic steatosis, insulin resistance, serum and hepatic triglyceride levels, and liver cholesterol levels. Modulation of lipid metabolism was observed in the liver, in which expression of proteins and/or genes involved in de novo lipogenesis were suppressed, while those involved in fatty acid oxidation and autophagy were upregulated together with cellular antioxidant capacity, in addition to the enhancement of the AMPK/SIRT1 pathway. ABA reshaped the gut composition by enriching nine bacterial species, including Helicobacter hepaticus, Desulfovibrio sp. G11, Parabacteroides distasonis, and Bacteroides fragilis, while diminishing the abundance of 16 species, which included four Helicobacter species. KEGG pathway analysis of microbial functions found that ABA impeded secondary bile acid biosynthesis - which was reflected in the faecal BA composition analysis. Notably, ABA also inhibited ileal FXR-Fgf15 signaling, allowing for increased hepatic Cyp7a1 expression to eliminate cholesterol buildup in the liver. Overall, our findings indicate that ABA could be used as a promising therapeutic approach for the intervention of MASLD.
Collapse
Affiliation(s)
- Felicianna
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Fangfei Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
2
|
Balanyà-Segura M, Polishchuk A, Just-Borràs L, Cilleros-Mañé V, Silvera C, Jami-ElHirchi M, Pinent M, Ardévol A, Tomàs M, Lanuza MA, Hurtado E, Tomàs J. Protective effects of grape seed procyanidin extract on neurotrophic and muscarinic signaling pathways in the aging neuromuscular junction. Food Funct 2025. [PMID: 40231589 DOI: 10.1039/d5fo00286a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
At the neuromuscular junction (NMJ), which coordinates movement, postsynaptic-derived neurotrophic factors have neuroprotective functions and retrogradely regulate the exocytotic machinery involved in neurotransmitter release. In parallel, presynaptic autocrine muscarinic signaling plays a fundamental modulatory role in this synapse. We previously found that these signaling pathways are impaired in the aged neuromuscular system. In this follow-up study, we investigated an anti-aging strategy using grape seed procyanidin extract (GSPE), a common dietary antioxidant known for its neuroprotective properties in various pathologies, but its effects on the aged neuromuscular system remain unexplored. This study analyses whether GSPE can mitigate age-associated impairments in neurotrophic and muscarinic signaling within the neuromuscular system. We assessed the expression (protein levels) and activation (phosphorylation) of the key proteins in the brain-derived-neurotrophic-factor (BDNF)/neurotrophin 4 (NT-4) and muscarinic pathways in the extensor digitorum longus (EDL) muscles of aged rats, with comparisons to GSPE-treated aged rats and young controls. The results demonstrate that GSPE treatment prevents the most relevant aging-induced changes in neurotrophic and muscarinic receptor isoforms, downstream protein kinases, and their targets in the neurotransmitter exocytotic machinery. Nevertheless, GSPE was less effective at preventing alterations in some other proteins within these pathways, such as calcium channels, and did not modify several other molecules involved in these pathways, which remain unchanged during aging. Overall, this study highlights the neuroprotective potential of GSPE in preventing fundamental age-related molecular changes at the NMJ, which helps improve functionality and may increase the quality of life and lifespan in aged individuals.
Collapse
Affiliation(s)
- Marta Balanyà-Segura
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Aleksandra Polishchuk
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Laia Just-Borràs
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Víctor Cilleros-Mañé
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Carolina Silvera
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Meryem Jami-ElHirchi
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Montserrat Pinent
- Universitat Rovira i Virgili, MoBioFood Research Group, Campus Sescelades, Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Anna Ardévol
- Universitat Rovira i Virgili, MoBioFood Research Group, Campus Sescelades, Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Marta Tomàs
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Maria A Lanuza
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Erica Hurtado
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Josep Tomàs
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| |
Collapse
|
3
|
Mehrabi A, Nuori R, Gaeini A, Amirazodi M, Mehrtash M, Esfahlani MA, Bahrami M, Bejeshk MA, Rajizadeh MA. The Antiaging and Antioxidative Effects of a Combination of Resveratrol and High-Intensity Interval Training on the Frontal Lobe in Aged Rats: The Role of SIRTS 4, SIRTS 5, SOD1, and SOD2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2025; 2025:8251896. [PMID: 39959582 PMCID: PMC11824298 DOI: 10.1155/omcl/8251896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/23/2024] [Indexed: 02/18/2025]
Abstract
Introduction: High-intensity interval training (HIIT) is a form of interval exercise that enhances capacity and benefits well-being. Resveratrol is a naturally occurring polyphenol prevalent in grapes and red wine, demonstrating significant health effects on the body. This study sought to evaluate the synergistic effects of swimming HIIT and resveratrol intake on the expression of SIRTs 4, SIRTs 5, and superoxide dismutases (SOD1 and SOD2) in the frontal lobe of elderly rats. Materials and Methods: Forty-five male Wistar rats, aged 22 months, were categorized into five groups: the control group (CTL), the swimming HIIT group (Ex: Exercise), the swimming HIIT with resveratrol group (R + Ex), the resveratrol group (R), and the solvent control group (vehicle). The R + Ex group engaged in high-intensity interval swimming and ingested resveratrol (10 mg/kg/day via gavage) for 6 weeks. During the initial and final sessions of each week, blood samples from the rats in the Ex and R + Ex groups were collected for lactate analysis. The proteins SIRTs 4 and 5, as well as SODs 1 and 2, were quantified using the western blot approach. Results: Integrating HIIT with resveratrol markedly enhanced the expression of SIRT4, SIRT5, and antioxidant enzymes in the frontal lobe of elderly rats. Conclusion: Resveratrol and HIIT, particularly their synergistic effects, provide antioxidant and antiaging benefits on the frontal lobe of aged rats.
Collapse
Affiliation(s)
- Amin Mehrabi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Exercise Physiology, Kish International Campus, University of Tehran, Kish, Iran
| | - Reza Nuori
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - Abbasali Gaeini
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - Maryam Amirazodi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Shiraz University International Division, Shiraz University, Shiraz, Iran
| | - Mohammad Mehrtash
- Faculty of Sport Science, Department of Exercise Physiology, Shahid Bahonar University, Kerman, Iran
| | - Mohsen Abedini Esfahlani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Bahrami
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, Kerman Shahid Bahonar University, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Ma W, Zhou S. Metabolic Rewiring in the Face of Genomic Assault: Integrating DNA Damage Response and Cellular Metabolism. Biomolecules 2025; 15:168. [PMID: 40001471 PMCID: PMC11852599 DOI: 10.3390/biom15020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
The DNA damage response (DDR) and cellular metabolism exhibit a complex, bidirectional relationship crucial for maintaining genomic integrity. Studies across multiple organisms, from yeast to humans, have revealed how cells rewire their metabolism in response to DNA damage, supporting repair processes and cellular homeostasis. We discuss immediate metabolic shifts upon damage detection and long-term reprogramming for sustained genomic stability, highlighting key signaling pathways and participating molecules. Importantly, we examine how DNA repair processes can conversely induce metabolic changes and oxidative stress through specific mechanisms, including the histone H2A variant X (H2AX)/ataxia telangiectasia mutated (ATM)/NADPH oxidase 1 (Nox1) pathway and repair-specific ROS signatures. The review covers organelle-specific responses and metabolic adaptations associated with different DNA repair mechanisms, with a primary focus on human cells. We explore the implications of this DDR-metabolism crosstalk in cancer, aging, and neurodegenerative diseases, and discuss emerging therapeutic opportunities. By integrating recent findings, this review provides a comprehensive overview of the intricate interplay between DDR and cellular metabolism, offering new perspectives on cellular resilience and potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Wenjian Ma
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Sa Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
| |
Collapse
|
5
|
Ahmed M, Riaz U, Lv H, Yang L. A Molecular Perspective and Role of NAD + in Ovarian Aging. Int J Mol Sci 2024; 25:4680. [PMID: 38731898 PMCID: PMC11083308 DOI: 10.3390/ijms25094680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The decline in female fecundity is linked to advancing chronological age. The ovarian reserve diminishes in quantity and quality as women age, impacting reproductive efficiency and the aging process in the rest of the body. NAD+ is an essential coenzyme in cellular energy production, metabolism, cell signaling, and survival. It is involved in aging and is linked to various age-related conditions. Hallmarks associated with aging, diseases, and metabolic dysfunctions can significantly affect fertility by disturbing the delicate relationship between energy metabolism and female reproduction. Enzymes such as sirtuins, PARPs, and CD38 play essential roles in NAD+ biology, which actively consume NAD+ in their enzymatic activities. In recent years, NAD+ has gained much attention for its role in aging and age-related diseases like cancer, Alzheimer's, cardiovascular diseases, and neurodegenerative disorders, highlighting its involvement in various pathophysiological processes. However, its impact on female reproduction is not well understood. This review aims to bridge this knowledge gap by comprehensively exploring the complex interplay between NAD+ biology and female reproductive aging and providing valuable information that could help develop plans to improve women's reproductive health and prevent fertility issues.
Collapse
Affiliation(s)
- Mehboob Ahmed
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Umair Riaz
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haimiao Lv
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Hubei Hongshan Laboratory, Wuhan 430070, China; (M.A.); (U.R.); (H.L.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
García-Giménez JL, Cánovas-Cervera I, Pallardó FV. Oxidative stress and metabolism meet epigenetic modulation in physical exercise. Free Radic Biol Med 2024; 213:123-137. [PMID: 38199289 DOI: 10.1016/j.freeradbiomed.2024.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Physical exercise is established as an important factor of health and generally is recommended for its positive effects on several tissues, organs, and systems. These positive effects come from metabolic adaptations that also include oxidative eustress, in which physical activity increases ROS production and antioxidant mechanisms, although this depends on the intensity of the exercise. Muscle metabolism through mechanisms such as aerobic and anaerobic glycolysis, tricarboxylic acid cycle, and oxidative lipid metabolism can produce metabolites and co-factors which directly impact the epigenetic machinery. In this review, we clearly reinforce the evidence that exercise regulates several epigenetic mechanisms and explain how these mechanisms can be regulated by metabolic products and co-factors produced during exercise. In fact, recent evidence has demonstrated the importance of epigenetics in the gene expression changes implicated in metabolic adaptation after exercise. Importantly, intermediates of the metabolism generated by continuous, acute, moderate, or strenuous exercise control the activity of epigenetic enzymes, therefore turning on or turning off the gene expression of specific programs which can lead to physiological adaptations after exercise.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Irene Cánovas-Cervera
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain.
| | - Federico V Pallardó
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
7
|
Rashid H, Jali A, Akhter MS, Abdi SAH. Molecular Mechanisms of Oxidative Stress in Acute Kidney Injury: Targeting the Loci by Resveratrol. Int J Mol Sci 2023; 25:3. [PMID: 38203174 PMCID: PMC10779152 DOI: 10.3390/ijms25010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/12/2024] Open
Abstract
Reactive oxygen species are a group of cellular molecules that stand as double-edged swords, their good and bad being discriminated by a precise balance. Several metabolic reactions in the biological system generate these molecules that interact with cellular atoms to regulate functions ranging from cell homeostasis to cell death. A prooxidative state of the cell concomitant with decreased clearance of such molecules leads to oxidative stress, which contributes as a prime pathophysiological mechanism in various diseases including renal disorders, such as acute kidney injury. However, targeting the generation of oxidative stress in renal disorders by an antioxidant, resveratrol, is gaining considerable therapeutic importance and is known to improve the condition in preclinical studies. This review aims to discuss molecular mechanisms of oxidative stress in acute kidney injury and its amelioration by resveratrol. The major sources of data were PubMed and Google Scholar, with studies from the last five years primarily included, with significant earlier data also considered. Mitochondrial dysfunction, various enzymatic reactions, and protein misfolding are the major sources of reactive oxygen species in acute kidney injury, and interrupting these loci of generation or intersection with other cellular components by resveratrol can mitigate the severity of the condition.
Collapse
Affiliation(s)
- Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Abdulmajeed Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Mohammad Suhail Akhter
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jizan 45142, Saudi Arabia
| | - Sayed Aliul Hasan Abdi
- Department of Pharmacy, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65711, Saudi Arabia
| |
Collapse
|
8
|
You Y, Liang W. SIRT1 and SIRT6: The role in aging-related diseases. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166815. [PMID: 37499928 DOI: 10.1016/j.bbadis.2023.166815] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Aging is characterized by progressive functional deterioration with increased risk of mortality. It is a complex biological process driven by a multitude of intertwined mechanisms such as increased DNA damage, chronic inflammation, and metabolic dysfunction. Sirtuins (SIRTs) are a family of NAD+-dependent enzymes that regulate fundamental biological functions from genomic stability and lifespan to energy metabolism and tumorigenesis. Of the seven mammalian SIRT isotypes (SIRT1-7), SIRT1 and SIRT6 are well-recognized for regulating signaling pathways related to aging. Herein, we review the protective role of SIRT1 and SIRT6 in aging-related diseases at molecular, cellular, tissue, and whole-organism levels. We also discuss the therapeutic potential of SIRT1 and SIRT6 modulators in the treatment of these diseases and challenges thereof.
Collapse
Affiliation(s)
- Yuzi You
- Department of General Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Wei Liang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
9
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Zhou L, Pinho R, Gu Y, Radak Z. The Role of SIRT3 in Exercise and Aging. Cells 2022; 11:cells11162596. [PMID: 36010672 PMCID: PMC9406297 DOI: 10.3390/cells11162596] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The health benefits of regular exercise are well established. Nonetheless, the molecular mechanism(s) responsible for exercise-induced health benefits remain a topic of debate. One of the key cell-signaling candidates proposed to provide exercise-induced benefits is sirtuin 3 (SIRT3). SIRT3, an NAD+ dependent mitochondrial deacetylase, positively modulates many cellular processes, including energy metabolism, mitochondrial biogenesis, and protection against oxidative stress. Although the exercise-induced change in SIRT3 signaling is a potential mechanism contributing to the health advantages of exercise on aging, studies investigating the impact of exercise on SIRT3 abundance in cells provide conflicting results. To resolve this conundrum, this narrative review provides a detailed analysis of the role that exercise-induced changes in SIRT3 play in providing the health and aging benefits associated with regular physical activity. We begin with an overview of SIRT3 function in cells followed by a comprehensive review of the impact of exercise on SIRT3 expression in humans and other mammalians. We then discuss the impact of SIRT3 on aging, followed by a thorough analysis of the cell-signaling links between SIRT3 and exercise-induced adaptation. Notably, to stimulate future research, we conclude with a discussion of key unanswered questions related to exercise, aging, and SIRT3 expression.
Collapse
Affiliation(s)
- Lei Zhou
- Research Institute of Molecular Exercise Science, Hungarian University of Sport Science, H-1123 Budapest, Hungary
| | - Ricardo Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| | - Zsolt Radak
- Research Institute of Molecular Exercise Science, Hungarian University of Sport Science, H-1123 Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: ; Tel.: +36-304918224
| |
Collapse
|
11
|
Ruszkiewicz JA, Bürkle A, Mangerich A. Fueling genome maintenance: On the versatile roles of NAD + in preserving DNA integrity. J Biol Chem 2022; 298:102037. [PMID: 35595095 PMCID: PMC9194868 DOI: 10.1016/j.jbc.2022.102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
NAD+ is a versatile biomolecule acting as a master regulator and substrate in various cellular processes, including redox regulation, metabolism, and various signaling pathways. In this article, we concisely and critically review the role of NAD+ in mechanisms promoting genome maintenance. Numerous NAD+-dependent reactions are involved in the preservation of genome stability, the cellular DNA damage response, and other pathways regulating nucleic acid metabolism, such as gene expression and cell proliferation pathways. Of note, NAD+ serves as a substrate to ADP-ribosyltransferases, sirtuins, and potentially also eukaryotic DNA ligases, all of which regulate various aspects of DNA integrity, damage repair, and gene expression. Finally, we critically analyze recent developments in the field as well as discuss challenges associated with therapeutic actions intended to raise NAD+ levels.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
12
|
Abstract
Trainability is an adaptive response to given exercise loads and must be localized to the targeted physiological function since exercise-induced acute and chronic adaptations are systemic. Lack of adaptation or moderate level of adaptation in one organ or one physiological function would not mean that other organs or functions would not benefit from exercise training. The most beneficial training load could easily be different for skeletal muscle, brain, the gastro-intestinal track, or the immune systems. Hence, the term of non-responders should be used with caution and just referred to a given organ, cell type, molecular signaling, or function. The present paper aims to highlight some, certainly not all, issues on trainability especially related to muscle and cardiovascular system. The specificity of trainability and the systemic nature of exercise-induced adaptation are discussed, and the paper aims to provide suggestions on how to improve performance when faced with non-responders.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- *Correspondence: Zsolt Radak,
| | - Albert W. Taylor
- Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
13
|
Gandhirajan A, Roychowdhury S, Vachharajani V. Sirtuins and Sepsis: Cross Talk between Redox and Epigenetic Pathways. Antioxidants (Basel) 2021; 11:antiox11010003. [PMID: 35052507 PMCID: PMC8772830 DOI: 10.3390/antiox11010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis and septic shock are the leading causes of death among hospitalized patients in the US. The immune response in sepsis transitions from a pro-inflammatory and pro-oxidant hyper-inflammation to an anti-inflammatory and cytoprotective hypo-inflammatory phase. While 1/3rd sepsis-related deaths occur during hyper-, a vast majority of sepsis-mortality occurs during the hypo-inflammation. Hyper-inflammation is cytotoxic for the immune cells and cannot be sustained. As a compensatory mechanism, the immune cells transition from cytotoxic hyper-inflammation to a cytoprotective hypo-inflammation with anti-inflammatory/immunosuppressive phase. However, the hypo-inflammation is associated with an inability to clear invading pathogens, leaving the host susceptible to secondary infections. Thus, the maladaptive immune response leads to a marked departure from homeostasis during sepsis-phases. The transition from hyper- to hypo-inflammation occurs via epigenetic programming. Sirtuins, a highly conserved family of histone deacetylators and guardians of homeostasis, are integral to the epigenetic programming in sepsis. Through their anti-inflammatory and anti-oxidant properties, the sirtuins modulate the immune response in sepsis. We review the role of sirtuins in orchestrating the interplay between the oxidative stress and epigenetic programming during sepsis.
Collapse
Affiliation(s)
- Anugraha Gandhirajan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
| | - Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
| | - Vidula Vachharajani
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (A.G.); (S.R.)
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
14
|
Brito VB, Nascimento LVM, Moura DJ, Saffi J. Cardioprotective Effect of Maternal Supplementation with Resveratrol on Toxicity Induced by Doxorubicin in Offspring Cardiomyocytes. Arq Bras Cardiol 2021; 117:1147-1158. [PMID: 34644787 PMCID: PMC8757151 DOI: 10.36660/abc.20200752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 11/28/2022] Open
Abstract
Fundamento A doxorrubicina (DOX) é frequentemente usada para tratar muitos tipos de cânceres, apesar da cardiotoxicidade dose-dependente. Como alternativa, o resveratrol é um polifenol que tem demonstrado efeitos cardioprotetores em vários modelos de disfunção cardíaca. Objetivo Este estudo investigou se o tratamento com resveratrol em ratas gestantes protege contra toxicidade induzida por doxorrubicina em cardiomiócitos da ninhada. Métodos Ratas Wistar (n-8) receberam sresveratrol como suplemento alimentar durante a gestação. No nascimento da ninhada, os corações (9-11) foram usados para se obter a cultura primária de cardiomiócitos. A cardiotoxicidade induzida por DOX e os efeitos da suplementação com resveratrol foram avaliados por marcadores de stress oxidativo, tais como oxidação da diclorofluoresceína diacetato, diminuição da atividade de enzimas antioxidantes, e oxidação do teor total de grupos sulfidrila, além da avaliação da viabilidade celular, geração de danos ao DNA, bem como a resposta de reparo aos danos ao DNA. Um valor de p <0,05 foi considerado estatisticamente significativo. Resultados Os cardiomiócitos de neonatos de ratas que receberam suplemento resveratrol apresentaram um aumento (p <0,01) na viabilidade das células, e diminuição (p <0,0001) de células apoptóticas/necróticas após o tratamento com DOX, o que está correlacionado às atividades de enzimas antioxidantes e produção de diclorofluoresceína. Além disso, o resveratrol protegeu os cardiomiócitos de danos ao DNA induzidos por DOX, apresentando uma diminuição (p <0,05) nas quebras de DNA induzidas por stress oxidativo, avaliadas pela atividade de enzimas reparadoras do DNA endonuclease III e formamidopirimidina glicosilase. A suplementação com resveratrol aumentou (p <0,05) a expressão da proteína reparadora Sirt6 nos cardiomiócitos dos filhotes. Conclusão Essa pesquisa indica que a suplementação com resveratrol durante o período gestacional tem um efeito cardioprotetor no coração da ninhada contra a toxicidade induzida por DOX, o que pode se dever a sua função antioxidante, e o aumento na resposta de danos ao DNA.
Collapse
Affiliation(s)
- Verônica Bidinotto Brito
- Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre , RS - Brasil.,Faculdades Integradas de Taquara , Taquara , RS - Brasil
| | | | | | - Jenifer Saffi
- Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre , RS - Brasil
| |
Collapse
|
15
|
Sirtuins and Renal Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10081198. [PMID: 34439446 PMCID: PMC8388938 DOI: 10.3390/antiox10081198] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure is a major health problem that is increasing worldwide. To improve clinical outcomes, we need to understand the basic mechanisms of kidney disease. Aging is a risk factor for the development and progression of kidney disease. Cells develop an imbalance of oxidants and antioxidants as they age, resulting in oxidative stress and the development of kidney damage. Calorie restriction (CR) is recognized as a dietary approach that promotes longevity, reduces oxidative stress, and delays the onset of age-related diseases. Sirtuins, a type of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, are considered to be anti-aging molecules, and CR induces their expression. The sirtuin family consists of seven enzymes (Sirt1–7) that are involved in processes and functions related to antioxidant and oxidative stress, such as DNA damage repair and metabolism through histone and protein deacetylation. In fact, a role for sirtuins in the regulation of antioxidants and redox substances has been suggested. Therefore, the activation of sirtuins in the kidney may represent a novel therapeutic strategy to enhancing resistance to many causative factors in kidney disease through the reduction of oxidative stress. In this review, we discuss the relationship between sirtuins and oxidative stress in renal disease.
Collapse
|
16
|
Gombos Z, Koltai E, Torma F, Bakonyi P, Kolonics A, Aczel D, Ditroi T, Nagy P, Kawamura T, Radak Z. Hypertrophy of Rat Skeletal Muscle Is Associated with Increased SIRT1/Akt/mTOR/S6 and Suppressed Sestrin2/SIRT3/FOXO1 Levels. Int J Mol Sci 2021; 22:ijms22147588. [PMID: 34299206 PMCID: PMC8305659 DOI: 10.3390/ijms22147588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the intensive investigation of the molecular mechanism of skeletal muscle hypertrophy, the underlying signaling processes are not completely understood. Therefore, we used an overload model, in which the main synergist muscles (gastrocnemius, soleus) of the plantaris muscle were surgically removed, to cause a significant overload in the remaining plantaris muscle of 8-month-old Wistar male rats. SIRT1-associated pro-anabolic, pro-catabolic molecular signaling pathways, NAD and H2S levels of this overload-induced hypertrophy were studied. Fourteen days of overload resulted in a significant 43% (p < 0.01) increase in the mass of plantaris muscle compared to sham operated animals. Cystathionine-β-synthase (CBS) activities and bioavailable H2S levels were not modified by overload. On the other hand, overload-induced hypertrophy of skeletal muscle was associated with increased SIRT1 (p < 0.01), Akt (p < 0.01), mTOR, S6 (p < 0.01) and suppressed sestrin 2 levels (p < 0.01), which are mostly responsible for anabolic signaling. Decreased FOXO1 and SIRT3 signaling (p < 0.01) suggest downregulation of protein breakdown and mitophagy. Decreased levels of NAD+, sestrin2, OGG1 (p < 0.01) indicate that the redox milieu of skeletal muscle after 14 days of overloading is reduced. The present investigation revealed novel cellular interactions that regulate anabolic and catabolic processes in the hypertrophy of skeletal muscle.
Collapse
Affiliation(s)
- Zoltan Gombos
- Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.)
| | - Erika Koltai
- Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.)
| | - Ferenc Torma
- Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.)
| | - Peter Bakonyi
- Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.)
| | - Attila Kolonics
- Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.)
| | - Dora Aczel
- Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.)
| | - Tamas Ditroi
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, H-1122 Budapest, Hungary; (T.D.); (P.N.)
| | - Peter Nagy
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, H-1122 Budapest, Hungary; (T.D.); (P.N.)
- Department of Anatomy and Histology, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Takuji Kawamura
- Faculty of Sport Sciences, Waseda University, Tokorozawa 2-579-15, Japan;
| | - Zsolt Radak
- Research Center of Molecular Exercise Science, University of Physical Education, H-1123 Budapest, Hungary; (Z.G.); (E.K.); (F.T.); (P.B.); (A.K.); (D.A.)
- Faculty of Sport Sciences, Waseda University, Tokorozawa 2-579-15, Japan;
- Correspondence: ; Tel.: +36-1-3565764; Fax: +36-1-3566337
| |
Collapse
|
17
|
Xue Y, Yu X, Zhang X, Yu P, Li Y, Fu W, Yu J, Sui D. Protective effects of ginsenoside Rc against acute cold exposure-induced myocardial injury in rats. J Food Sci 2021; 86:3252-3264. [PMID: 34146399 DOI: 10.1111/1750-3841.15757] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022]
Abstract
Ginsenoside Rc is one of the cardinal bioactive components of Panax ginseng. The present study aimed to investigate whether ginsenoside Rc exerted protective effects against acute cold exposure-induced myocardial injury in rats. Forty rats were randomly assigned into four groups: Control, model, ginsenoside Rc 10 mg/kg, and 20 mg/kg groups. Rats were intragastrically administrated with ginsenoside Rc (10, 20 mg/kg) or vehicle daily for 7 days. On the seventh day, all rats except the control group were exposed to low temperature. Cardiac function, myocardial enzyme activities, hemorheology, and inflammatory response were detected. Histopathological examination and apoptosis of cardiac tissues were performed. The expressions of silent information regulator 1 (SIRT1), B-cell lymphoma (Bcl-2), Bcl-2-associated X (Bax), procaspase-3, and the mRNA (messenger RNA) level of SIRT1 were measured by western blot and real-time quantitative polymerase chain reaction (PCR) analysis. Ginsenoside Rc significantly improved cardiac function, diminished the activities of lactate dehydrogenase (LDH), aspartate aminotransferase, and creatine kinase isoenzyme (CK-MB), and regulated abnormal hemorheology in acute cold-exposed rats (p < 0.05 or p < 0.01). Furthermore, ginsenoside Rc could attenuate myocardial histological changes and structural abnormalities, decrease apoptotic cells and reduce the mRNA levels and activity of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 (p < 0.01). In addition, ginsenoside Rc upregulated the expressions of SIRT1, Bcl-2, and procaspase-3 and downregulated that of Bax (p < 0.01). The changes in both the mRNA and protein expression levels of SIRT1 were similar. The results of the current study suggested that ginsenoside Rc could alleviate acute cold exposure-induced myocardial injury in rats by inhibiting cardiomyocyte apoptosis via regulating SIRT1 expression and attenuating the inflammatory responses. PRACTICAL APPLICATION: The current study indicated that ginsenoside Rc could alleviate acute cold exposure-induced myocardial injury in rats. Ginsenoside Rc could be potentially used as a bioactive ingredient in processed functional food products or food supplements to prevent from acute cold exposure-induced myocardial injury.
Collapse
Affiliation(s)
- Yan Xue
- The Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, PR China.,The Department of Burn Surgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Xiaofeng Yu
- The Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Xiuhang Zhang
- The Department of Burn Surgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Ping Yu
- The Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Yuangeng Li
- The Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Wenwen Fu
- The Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Jiaao Yu
- The Department of Burn Surgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Dayun Sui
- The Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
18
|
Mladenovic Djordjevic A, Loncarevic-Vasiljkovic N, Gonos ES. Dietary Restriction and Oxidative Stress: Friends or Enemies? Antioxid Redox Signal 2021; 34:421-438. [PMID: 32242468 DOI: 10.1089/ars.2019.7959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Significance: It is well established that lifestyle and dietary habits have a tremendous impact on life span, the rate of aging, and the onset/progression of age-related diseases. Specifically, dietary restriction (DR) and other healthy dietary patterns are usually accompanied by physical activity and differ from Western diet that is rich in fat and sugars. Moreover, as the generation of reactive oxidative species is the major causative factor of aging, while DR could modify the level of oxidative stress, it has been proposed that DR increases both survival and longevity. Recent Advances: Despite the documented links between DR, aging, and oxidative stress, many issues remain to be addressed. For instance, the free radical theory of aging is under "re-evaluation," while DR as a golden standard for prolonging life span and ameliorating the effects of aging is also under debate. Critical Issues: This review article pays special attention to highlight the link between DR and oxidative stress in both aging and age-related diseases. We discuss in particular DR's capability to counteract the consequences of oxidative stress and the molecular mechanisms involved in these processes. Future Directions: Although DR is undoubtedly beneficial, several considerations must be taken into account when designing the best dietary intervention. Use of intermittent fasting, daily food reduction, or DR mimetics? Future research should unravel the pros and cons of all these processes. Antioxid. Redox Signal. 34, 421-438.
Collapse
Affiliation(s)
- Aleksandra Mladenovic Djordjevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natasa Loncarevic-Vasiljkovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
19
|
Nikroo H, Hosseini SRA, Fathi M, Sardar MA, Khazaei M. The effect of aerobic, resistance, and combined training on PPAR-α, SIRT1 gene expression, and insulin resistance in high-fat diet-induced NAFLD male rats. Physiol Behav 2020; 227:113149. [DOI: 10.1016/j.physbeh.2020.113149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
|
20
|
Torma F, Gombos Z, Jokai M, Berkes I, Takeda M, Mimura T, Radak Z, Gyori F. The roles of microRNA in redox metabolism and exercise-mediated adaptation. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:405-414. [PMID: 32780693 PMCID: PMC7498669 DOI: 10.1016/j.jshs.2020.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/03/2020] [Accepted: 02/10/2020] [Indexed: 05/10/2023]
Abstract
MicroRNAs (miRs) are small regulatory RNA transcripts capable of post-transcriptional silencing of mRNA messages by entering a cellular bimolecular apparatus called RNA-induced silencing complex. miRs are involved in the regulation of cellular processes producing, eliminating or repairing the damage caused by reactive oxygen species, and they are active players in redox homeostasis. Increased mitochondrial biogenesis, function and hypertrophy of skeletal muscle are important adaptive responses to regular exercise. In the present review, we highlight some of the redox-sensitive regulatory roles of miRs.
Collapse
Affiliation(s)
- Ferenc Torma
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Zoltan Gombos
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Matyas Jokai
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Istvan Berkes
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary
| | - Masaki Takeda
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe 610-0394, Japan
| | - Tatsuya Mimura
- Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka 573-1004, Japan
| | - Zsolt Radak
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest 1123, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan; Institute of Physical Education and Sport Science, JGYPK, University of Szeged, Szeged 6726, Hungary.
| | - Ferenc Gyori
- Institute of Physical Education and Sport Science, JGYPK, University of Szeged, Szeged 6726, Hungary
| |
Collapse
|
21
|
Budbazar E, Rodriguez F, Sanchez JM, Seta F. The Role of Sirtuin-1 in the Vasculature: Focus on Aortic Aneurysm. Front Physiol 2020; 11:1047. [PMID: 32982786 PMCID: PMC7477329 DOI: 10.3389/fphys.2020.01047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Sirtuin-1 (SirT1) is a nicotinamide adenine dinucleotide-dependent deacetylase and the best characterized member of the sirtuins family in mammalians. Sirtuin-1 shuttles between the cytoplasm and the nucleus, where it deacetylates histones and non-histone proteins involved in a plethora of cellular processes, including survival, growth, metabolism, senescence, and stress resistance. In this brief review, we summarize the current knowledge on the anti-oxidant, anti-inflammatory, anti-apoptotic, and anti-senescence effects of SirT1 with an emphasis on vascular diseases. Specifically, we describe recent research advances on SirT1-mediated molecular mechanisms in aortic aneurysm (AA), and how these processes relate to oxidant stress and the heme-oxygenase (HO) system. HO-1 and HO-2 catalyze the rate-limiting step of cellular heme degradation and, similar to SirT1, HO-1 exerts beneficial effects in the vasculature through the activation of anti-oxidant, anti-inflammatory, anti-apoptotic, and anti-proliferative signaling pathways. SirT1 and HO-1 are part of an integrated system for cellular stress tolerance, and may positively interact to regulate vascular function. We further discuss sex differences in HO-1 and SirT1 activity or expression, and the potential interactions between the two proteins, in relation to the progression and severity of AA, as well as the ongoing efforts for translational applications of SirT1 activation and HO-1 induction in the treatment of cardiovascular diseases including AA.
Collapse
Affiliation(s)
- Enkhjargal Budbazar
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, United States
| | - Francisca Rodriguez
- Department of Physiology, University of Murcia and Biomedical Research Institute in Murcia (IMIB), Murcia, Spain
| | - José M Sanchez
- Department of Physiology, University of Murcia and Biomedical Research Institute in Murcia (IMIB), Murcia, Spain
| | - Francesca Seta
- Vascular Biology Section, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
22
|
Dimauro I, Paronetto MP, Caporossi D. Exercise, redox homeostasis and the epigenetic landscape. Redox Biol 2020; 35:101477. [PMID: 32127290 PMCID: PMC7284912 DOI: 10.1016/j.redox.2020.101477] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023] Open
Abstract
Physical exercise represents one of the strongest physiological stimuli capable to induce functional and structural modifications in all biological systems. Indeed, beside the traditional genetic mechanisms, physical exercise can modulate gene expression through epigenetic modifications, namely DNA methylation, post-translational histone modification and non-coding RNA transcripts. Initially considered as merely damaging molecules, it is now well recognized that both reactive oxygen (ROS) and nitrogen species (RNS) produced under voluntary exercise play an important role as regulatory mediators in signaling processes. While robust scientific evidences highlight the role of exercise-associated redox modifications in modulating gene expression through the genetic machinery, the understanding of their specific impact on epigenomic profile is still at an early stage. This review will provide an overview of the role of ROS and RNS in modulating the epigenetic landscape in the context of exercise-related adaptations. Physical exercise can modulate gene expression through epigenetic modifications. Epigenetic regulation of ROS/RNS generating, sensing and neutralizing enzymes can impact the cellular levels of ROS and RNS. ROS might act as modulators of epigenetic machinery, interfering with DNA methylation, hPTMs and ncRNAs expression. Redox homeostasis might hold a relevant role in the epigenetic landscape modulating exercise-related adaptations.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Maria Paola Paronetto
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy; Laboratory of Cellular and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy.
| |
Collapse
|
23
|
Radak Z, Suzuki K, Posa A, Petrovszky Z, Koltai E, Boldogh I. The systemic role of SIRT1 in exercise mediated adaptation. Redox Biol 2020; 35:101467. [PMID: 32086007 PMCID: PMC7284913 DOI: 10.1016/j.redox.2020.101467] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022] Open
Abstract
Cellular energy demands are readily changed during physical exercise resulting in adaptive responses by signaling proteins of metabolic processes, including the NAD+ dependent lysine deacetylase SIRT1. Regular exercise results in systemic adaptation that restores the level of SIRT1 in the kidney, liver, and brain in patients with neurodegenerative diseases, and thereby normalizes cellular metabolic processes to attenuate the severity of these diseases. In skeletal muscle, over-expression of SIRT1 results in enhanced numbers of myonuclei improves the repair process after injury and is actively involved in muscle hypertrophy by up-regulating anabolic and downregulating catabolic processes. The present review discusses the different views of SIRT1 dependent deacetylation of PGC-α.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan; University of Szeged, Szeged, Hungary.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Saitama, 359-1192, Japan
| | | | | | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| |
Collapse
|
24
|
Gilani N, Haghshenas R, Esmaeili M. Application of multivariate longitudinal models in SIRT6, FBS, and BMI analysis of the elderly. Aging Male 2019; 22:260-265. [PMID: 29901417 DOI: 10.1080/13685538.2018.1477933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective: SIRT6 is a main regulator of metabolism and lifespan and its importance has been implicated in the prevention against aging-related diseases. The objective of this study was to examine the application of multivariate longitudinal models in SIRT6, FBS, and BMI analysis in the elderly men after eight weeks concurrent training with supplementation of l-arginine (l-Arg). Methods: Thirty two elderly men with mean age of 63.09 ± 3.71 years were randomly divided into four equal-sized groups (each n = 8); Exercise + supplement (ES) group; exercise + placebo (EP) group; supplement (S) group and control (C) group. The ES and EP groups performed the eight weeks of concurrent training, three sessions per week. Group ES and group S consumed 1000 mg of l-Arg per day at 8:00 pm. Measurements of biochemical variables were done by ELISA Reader method. For analytical purposes, we used the paired sample t-test and multivariate longitudinal modeling with generalized estimating equation (GEE) methodology. All analyses have been implemented in R-3.4.1. p Values less than .05 were considered statistically significant. Results: With respect to significant association between sirt6, FBS, and BMI, this study showed that synergy effect of training and supplementation was greater than the sum of their individual effects on SIRT6 (β = 0.79, p < .001), FBS (β = -5.56, p = .022), and BMI (β = -3.89; p = .041). Also exercise alone had a significantly larger effect than supplementation alone on responses. Conclusions: It can be concluded that the joint usage of concurrent training and supplement of l-Arg for elderly men could improve the metabolism and body composition.
Collapse
Affiliation(s)
- Neda Gilani
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Rouhollah Haghshenas
- Department of Sport Sciences, Faculty of Humanities, Semnan University , Semnan , Iran
| | - Mahmoud Esmaeili
- Department of Sport Sciences, Faculty of Humanities, Semnan University , Semnan , Iran
| |
Collapse
|
25
|
|
26
|
Han Y, Zhou S, Coetzee S, Chen A. SIRT4 and Its Roles in Energy and Redox Metabolism in Health, Disease and During Exercise. Front Physiol 2019; 10:1006. [PMID: 31447696 PMCID: PMC6695564 DOI: 10.3389/fphys.2019.01006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/22/2019] [Indexed: 01/25/2023] Open
Abstract
NAD+-dependent SIRT4 has been reported to be a key regulator of metabolic enzymes and antioxidant defense mechanisms in mitochondria. It also plays an important role in regulation of mitochondrial metabolism in response to exercise. Recent studies have shown that SIRT4 is involved in a wide range of mitochondrial metabolic processes, including depressing insulin secretion in pancreatic beta cells, promoting lipid synthesis, regulating mitochondrial adenosine triphosphate (ATP) homeostasis, controlling apoptosis and regulating redox. SIRT4 also appears to have enzymatic functions involved in posttranslational modifications such as ADP-ribosylation, lysine deacetylation and lipoamidation. However, the effects on SIRT4 by metabolic diseases and changes in metabolic homeostasis such as during exercise, along with the roles of SIRT4 in the regulation of metabolism during disease, are not well understood. The main goal of this review is to critically analyse and summarise the current research evidence on the significance of the SIRT4 as a metabolic regulator and in mitochondrial function and its putative roles in relation to metabolic diseases and exercise.
Collapse
Affiliation(s)
- Yumei Han
- School of Physical Education, Shanxi University, Taiyuan, China
| | - Shi Zhou
- School of Health and Human Sciences, Southern Cross University, Lismore, NSW, Australia
| | - Sonja Coetzee
- School of Health and Human Sciences, Southern Cross University, Lismore, NSW, Australia
| | - Anping Chen
- School of Physical Education, Shanxi University, Taiyuan, China
| |
Collapse
|
27
|
Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants (Basel) 2019; 8:antiox8070235. [PMID: 31336672 PMCID: PMC6680731 DOI: 10.3390/antiox8070235] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Poultry in commercial settings are exposed to a range of stressors. A growing body of information clearly indicates that excess ROS/RNS production and oxidative stress are major detrimental consequences of the most common commercial stressors in poultry production. During evolution, antioxidant defence systems were developed in poultry to survive in an oxygenated atmosphere. They include a complex network of internally synthesised (e.g., antioxidant enzymes, (glutathione) GSH, (coenzyme Q) CoQ) and externally supplied (vitamin E, carotenoids, etc.) antioxidants. In fact, all antioxidants in the body work cooperatively as a team to maintain optimal redox balance in the cell/body. This balance is a key element in providing the necessary conditions for cell signalling, a vital process for regulation of the expression of various genes, stress adaptation and homeostasis maintenance in the body. Since ROS/RNS are considered to be important signalling molecules, their concentration is strictly regulated by the antioxidant defence network in conjunction with various transcription factors and vitagenes. In fact, activation of vitagenes via such transcription factors as Nrf2 leads to an additional synthesis of an array of protective molecules which can deal with increased ROS/RNS production. Therefore, it is a challenging task to develop a system of optimal antioxidant supplementation to help growing/productive birds maintain effective antioxidant defences and redox balance in the body. On the one hand, antioxidants, such as vitamin E, or minerals (e.g., Se, Mn, Cu and Zn) are a compulsory part of the commercial pre-mixes for poultry, and, in most cases, are adequate to meet the physiological requirements in these elements. On the other hand, due to the aforementioned commercially relevant stressors, there is a need for additional support for the antioxidant system in poultry. This new direction in improving antioxidant defences for poultry in stress conditions is related to an opportunity to activate a range of vitagenes (via Nrf2-related mechanisms: superoxide dismutase, SOD; heme oxygenase-1, HO-1; GSH and thioredoxin, or other mechanisms: Heat shock protein (HSP)/heat shock factor (HSP), sirtuins, etc.) to maximise internal AO protection and redox balance maintenance. Therefore, the development of vitagene-regulating nutritional supplements is on the agenda of many commercial companies worldwide.
Collapse
|
28
|
Zhang J, Zhang W, Gao X, Zhao Y, Chen D, Xu N, Pu H, Stetler RA, Gao Y. Preconditioning with partial caloric restriction confers long-term protection against grey and white matter injury after transient focal ischemia. J Cereb Blood Flow Metab 2019; 39:1394-1409. [PMID: 29972653 PMCID: PMC6668518 DOI: 10.1177/0271678x18785480] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) has been extensively examined as a preventative strategy against aging and various diseases, but CR effects on cerebral ischemia are largely unknown. We subjected C57BL6/J mice to ad libitum food access (LF) or a diet restricted to 70% of ad libitum food access (RF) for two to four weeks followed by 60 min of transient focal ischemia (tFCI). RF for four weeks protected against subsequent tFCI-induced infarct. RF improved sensorimotor function after stroke in the foot fault and corner tests, as well as performance in the Morris water maze test. In addition, RF preserved ischemic white matter tract integrity assessed by histology and compound action potential. Sirt1 and Sirt3 were both upregulated in RF ischemic brain, but heterozygous deletion of Sirt1 or knockout of Sirt3 did not alter the protection induced by RF against ischemic injury. RF induced significant release of adiponectin, a hormone related to glucose metabolism. Knockout of adiponectin decreased RF-induced protection after tFCI. These data demonstrate the novel finding that white matter, as well as neurons, benefit from CR prior to cerebral ischemic injury, and that adiponectin may contribute to these protective effects.
Collapse
Affiliation(s)
- Jia Zhang
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wenting Zhang
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xuguang Gao
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yongfang Zhao
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Di Chen
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Na Xu
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,2 Pittsburgh Institute for Brain Disease and Recovery (PIBDR) and the Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA
| | - Hongjian Pu
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,2 Pittsburgh Institute for Brain Disease and Recovery (PIBDR) and the Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA
| | - R Anne Stetler
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- 1 State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,2 Pittsburgh Institute for Brain Disease and Recovery (PIBDR) and the Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
29
|
Abdolvahabi Z, Nourbakhsh M, Hosseinkhani S, Hesari Z, Alipour M, Jafarzadeh M, Ghorbanhosseini SS, Seiri P, Yousefi Z, Yarahmadi S, Golpour P. MicroRNA-590-3P suppresses cell survival and triggers breast cancer cell apoptosis via targeting sirtuin-1 and deacetylation of p53. J Cell Biochem 2019; 120:9356-9368. [PMID: 30520099 DOI: 10.1002/jcb.28211] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/15/2018] [Indexed: 12/29/2022]
Abstract
Downregulation of microRNA-590-3p (miR-590-3p) is a frequently occurring, nonphysiological event which is observed in several human cancers, especially breast cancer. However, the significance of miR-590-3p still remain unclear in the progression of this disease. This study explored the role of miR-590-3p in apoptosis of breast cancer cells. Gene expression of miR-590-3p, Sirtuin-1 (SIRT1), Bcl-2 associated X protein (BAX), and p21 was evaluated with real-time polymerase chain reaction (PCR) and SIRT1 protein expression was assessed by Western blot analysis in breast cancer cell lines. Bioinformatics analysis and luciferase reporter assay were used to evaluate targeting of SIRT1 messenger RNA (mRNA) by miR-590-3p. Cells were transfected with miR-590-3p mimic and inhibitor and their effects on the expression and activity of SIRT1 were evaluated. The effects of miR-590-3p upregulation on the acetylation of p53 as well as cell viability and apoptosis were assessed by Western blot analysis, WST-1 assay, and flow cytometry, respectively. miR-590-3p expression was considerably downregulated in breast cancer cells which was accompanied by upregulation of SIRT1 expression. SIRT1 was recognized as a direct target for miR-590-3p in breast cancer cells and its protein expression and activity was dramatically inhibited by the miR-590-3p. In addition, there was an increase in p53 and its acetylated form that ultimately led to upregulation of BAX and p21 expression, suppression of cell survival, and considerable induction of apoptosis in breast cancer cells. These findings suggest that miR-590-3p exerts tumor-suppressing effects through targeting SIRT1 in breast cancer cells, which makes it a potential therapeutic target for developing more efficient treatments for breast cancer.
Collapse
Affiliation(s)
- Zohreh Abdolvahabi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Hesari
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Alipour
- Department of Nano Biotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Meisam Jafarzadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Parvaneh Seiri
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeynab Yousefi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Yarahmadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Golpour
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Lin C, Liu M, Zhu X, Zhang M, Xu S, Wang D, Zhao Y. Cloning and expression of the lifespan-associated protein Sir2 from Daphnia pulex. Comp Biochem Physiol B Biochem Mol Biol 2019; 231:1-10. [DOI: 10.1016/j.cbpb.2019.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 11/15/2022]
|
31
|
Herrera T EA, Contreras LE, Suárez AG, Diaz GJ, Ramírez MH. GlSir2.1 of Giardia lamblia is a NAD +-dependent cytoplasmic deacetylase. Heliyon 2019; 5:e01520. [PMID: 31025022 PMCID: PMC6476225 DOI: 10.1016/j.heliyon.2019.e01520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/07/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
The sirtuins are a group of well-conserved proteins widely distributed across all domains of life. These proteins are clustered in the class III of histone deacetylases and are distinctly characterized by their dependence upon NAD+ to carry out the deacetylation of lysine residues in histone proteins (H3 and H4) and non-histones such as the transcription factor p53. The requirement of NAD+ for sirtuin activity makes this group of proteins metabolic sensors, which are favored during caloric stress. Currently, it is known that these proteins are involved in numerous cellular processes that are fundamental for the proper functioning of cells, including control of the cell cycle and cellular survival. In spite of the importance of sirtuins in cell functions, the role that these proteins play in protozoan parasites is not completely understood. In this study, bioinformatic modeling and experimental characterization of the candidate G1Sir2.1 present in the genome of Giardia lamblia were carried out. Consequently, cloning, expression, purification, and in vitro evaluation of the recombinant GlSir2.1 protein's capacity for deacetylation were performed. This allowed for the identification of the NAD+-dependent deacetylase activity of the identified candidate. Production of anti-rHis-GlSir2.1 polyclonal antibodies enabled the observation of a cytoplasmic localization for the endogenous protein in trophozoites, which exhibited a perinuclear aggregation and co-localization with acetylated cytoskeleton structures such as the flagella and median body. Currently, GlSir2.1 is the second sirtuin family member identified in G. lambia, with a demonstrated cytoplasmic localization in the parasite.
Collapse
Affiliation(s)
- Edian A Herrera T
- Laboratorio de Investigaciones Básicas en Bioquímica, Facultad de Ciencias, Universidad Nacional de Colombia, 111321, Bogotá, Colombia
| | - Luis E Contreras
- Laboratorio de Investigaciones Básicas en Bioquímica, Facultad de Ciencias, Universidad Nacional de Colombia, 111321, Bogotá, Colombia
| | - Aravy G Suárez
- Laboratorio de Investigaciones Básicas en Bioquímica, Facultad de Ciencias, Universidad Nacional de Colombia, 111321, Bogotá, Colombia
| | - Gonzalo J Diaz
- Laboratorio de Toxicología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, 111321, Bogotá, Colombia
| | - María H Ramírez
- Laboratorio de Investigaciones Básicas en Bioquímica, Facultad de Ciencias, Universidad Nacional de Colombia, 111321, Bogotá, Colombia.,Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, 111321, Bogotá, Colombia
| |
Collapse
|
32
|
Young D, Pedre B, Ezeriņa D, De Smet B, Lewandowska A, Tossounian MA, Bodra N, Huang J, Astolfi Rosado L, Van Breusegem F, Messens J. Protein Promiscuity in H 2O 2 Signaling. Antioxid Redox Signal 2019; 30:1285-1324. [PMID: 29635930 DOI: 10.1089/ars.2017.7013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Decrypting the cellular response to oxidative stress relies on a comprehensive understanding of the redox signaling pathways stimulated under oxidizing conditions. Redox signaling events can be divided into upstream sensing of oxidants, midstream redox signaling of protein function, and downstream transcriptional redox regulation. Recent Advances: A more and more accepted theory of hydrogen peroxide (H2O2) signaling is that of a thiol peroxidase redox relay, whereby protein thiols with low reactivity toward H2O2 are instead oxidized through an oxidative relay with thiol peroxidases. CRITICAL ISSUES These ultrareactive thiol peroxidases are the upstream redox sensors, which form the first cellular port of call for H2O2. Not all redox-regulated interactions between thiol peroxidases and cellular proteins involve a transfer of oxidative equivalents, and the nature of redox signaling is further complicated through promiscuous functions of redox-regulated "moonlighting" proteins, of which the precise cellular role under oxidative stress can frequently be obscured by "polygamous" interactions. An ultimate goal of redox signaling is to initiate a rapid response, and in contrast to prokaryotic oxidant-responsive transcription factors, mammalian systems have developed redox signaling pathways, which intersect both with kinase-dependent activation of transcription factors, as well as direct oxidative regulation of transcription factors through peroxiredoxin (Prx) redox relays. FUTURE DIRECTIONS We highlight that both transcriptional regulation and cell fate can be modulated either through oxidative regulation of kinase pathways, or through distinct redox-dependent associations involving either Prxs or redox-responsive moonlighting proteins with functional promiscuity. These protein associations form systems of crossregulatory networks with multiple nodes of potential oxidative regulation for H2O2-mediated signaling.
Collapse
Affiliation(s)
- David Young
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brandan Pedre
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daria Ezeriņa
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Barbara De Smet
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Aleksandra Lewandowska
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Maria-Armineh Tossounian
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nandita Bodra
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jingjing Huang
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Leonardo Astolfi Rosado
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frank Van Breusegem
- 2 Brussels Center for Redox Biology, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Joris Messens
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
33
|
Radak Z, Torma F, Berkes I, Goto S, Mimura T, Posa A, Balogh L, Boldogh I, Suzuki K, Higuchi M, Koltai E. Exercise effects on physiological function during aging. Free Radic Biol Med 2019; 132:33-41. [PMID: 30389495 DOI: 10.1016/j.freeradbiomed.2018.10.444] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023]
Abstract
The decrease in cognitive/motor functions and physical abilities severely affects the aging population in carrying out daily activities. These disabilities become a burden on individuals, families and society in general. It is known that aging conditions are ameliorated with regular exercise, which attenuates the age-associated decline in maximal oxygen uptake (VO2max), production of reactive oxygen species (ROS), decreases in oxidative damage to molecules, and functional impairment in various organs. While benefits of physical exercise are well-documented, the molecular mechanisms responsible for functional improvement and increases in health span are not well understood. Recent findings imply that exercise training attenuates the age-related deterioration in the cellular housekeeping system, which includes the proteasome, Lon protease, autophagy, mitophagy, and DNA repair systems, which beneficially impacts multiple organ functions. Accumulating evidence suggests that exercise lessens the deleterious effects of aging. However, it seems unlikely that systemic effects are mediated through a specific biomarker. Rather, complex multifactorial mechanisms are involved to maintain homeostatic functions that tend to decline with age.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan.
| | - Ferenc Torma
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Istvan Berkes
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Sataro Goto
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan, Hungary
| | - Tatsuya Mimura
- Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka, Japan
| | - Aniko Posa
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Laszlo Balogh
- Institute of Sport Science, University of Debrecen, Debrecen, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| |
Collapse
|
34
|
Bae UJ, Park EO, Park J, Jung SJ, Ham H, Yu KW, Park YJ, Chae SW, Park BH. Gypenoside UL4-RichGynostemma pentaphyllumExtract Exerts a Hepatoprotective Effect on Diet-Induced Nonalcoholic Fatty Liver Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1315-1332. [DOI: 10.1142/s0192415x18500696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) arises from nonalcoholic fatty liver disease (NAFLD) as a consequence of oxidative stress. Gynostemma pentaphyllum extract (GPE) is proven to be beneficial for patients suffering from NAFLD. However, the precise mechanism by which GPE confers these benefits remains largely unknown. The purpose of this study was to investigate the underlying mechanism and to determine whether supplementation with the newly discovered GPE gypenoside UL4 mitigates NASH progression. Male c57BL/6 mice were fed a normal chow diet, a methionine choline-deficient (MCD) diet, or an MCD diet supplemented with various doses of UL4-rich GPE for eight weeks. GPE supplementation suppressed oxidative stress induced by the MCD diet by increasing levels of sirtuin 6 and phase 2 anti-oxidant enzymes in mouse liver and HepG2 cells. Additionally, GPE supplementation prevented diet-induced hepatic fat accumulation, hepatocellular injury, inflammation, and fibrosis in mice fed the MCD diet. These results indicate the possible therapeutic potential of dietary supplementation of UL4-rich GPE in preventing the development of fatty liver and its progression to NASH.
Collapse
Affiliation(s)
- Ui-Jin Bae
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Eun-Ock Park
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - John Park
- Department of Chemistry, Chonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Hyeonmi Ham
- Celltrion Chemical Research Institute, Yongin, Gyeonggi 17015, Republic of Korea
| | - Kee-Won Yu
- Celltrion Chemical Research Institute, Yongin, Gyeonggi 17015, Republic of Korea
| | - Young-Jun Park
- Celltrion Chemical Research Institute, Yongin, Gyeonggi 17015, Republic of Korea
| | - Soo-Wan Chae
- Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
35
|
Koltai E, Bori Z, Osvath P, Ihasz F, Peter S, Toth G, Degens H, Rittweger J, Boldogh I, Radak Z. Master athletes have higher miR-7, SIRT3 and SOD2 expression in skeletal muscle than age-matched sedentary controls. Redox Biol 2018; 19:46-51. [PMID: 30107294 PMCID: PMC6092475 DOI: 10.1016/j.redox.2018.07.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Regular physical exercise has health benefits and can prevent some of the ageing-associated muscle deteriorations. However, the biochemical mechanisms underlying this exercise benefit, especially in human tissues, are not well known. To investigate, we assessed this using miRNA profiling, mRNA and protein levels of anti-oxidant and metabolic proteins in the vastus lateralis muscle of master athletes aged over 65 years and age-matched controls. Master athletes had lower levels of miR-7, while mRNA or protein levels of SIRT3, SIRT1, SOD2, and FOXO1 levels were significantly higher in the vastus lateralis muscle of master athletes compared to muscles of age-matched controls. These results suggest that regular exercise results in better cellular metabolism and antioxidant capacity via maintaining physiological state of mitochondria and efficient ATP production and decreasing ageing-related inflammation as indicated by the lower level of miR-7 in master athletes.
Collapse
Affiliation(s)
- Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Zoltan Bori
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Peter Osvath
- Department of Health Sciences and Sports Medicine, University of Physical Education, Budapest, Hungary
| | - Ferenc Ihasz
- Hungary Institute of Sport Science, Faculty of Education and Psychology, Eotvos University, Szombathely, Hungary
| | - Szablics Peter
- Institute of Physical Education and Sport Science, JGYPK, University of Szeged, Szeged, Hungary
| | - Geza Toth
- Affidea Diagnostic Center, Budapest, Hungary
| | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University, UK; Institute of Sport Science and Innovations, Lithuanian Sports University, Lithuania
| | - Jörn Rittweger
- Division Space Physiology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Istvan Boldogh
- University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary.
| |
Collapse
|
36
|
Bae UJ, Park J, Park IW, Chae BM, Oh MR, Jung SJ, Ryu GS, Chae SW, Park BH. Epigallocatechin-3-Gallate-Rich Green Tea Extract Ameliorates Fatty Liver and Weight Gain in Mice Fed a High Fat Diet by Activating the Sirtuin 1 and AMP Activating Protein Kinase Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:617-632. [PMID: 29595075 DOI: 10.1142/s0192415x18500325] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prevalence of metabolic diseases has risen globally in parallel with the obesity epidemic over the past few decades. Green tea has been reported to have metabolically beneficial effects on obesity; however, the mechanism by which green tea regulates lipid metabolism is not clearly understood. Male c57BL/6 mice were fed a normal chow diet, a high-fat diet (HFD), or an HFD supplemented with various doses of epigallocatechin gallate-rich green tea extract (GTE) for 12 weeks. GTE supplementation reduced body weight gain, prevented hepatic fat accumulation, decreased hypertriglyceridemia, and improved hyperglycemia and insulin resistance in HFD-fed mice. The underlying mechanisms of these beneficial effects of GTE might involve the upregulation of sirtuin 1 and AMP activated protein kinase (AMPK) and the downregulation of enzymes related to de novo lipogenesis. Consistent with the in vivo findings, GTE increased the expression and activity of sirtuin 1, enhanced the binding of sirtuin 1 to liver kinase B1 (LKB1) and subsequent deacetylation of LKB1, and reduced triglyceride accumulation in HepG2 cells. These results suggest the possible therapeutic potential of dietary epigallocatechin gallate-rich GTE supplementation for preventing the development and progression of hepatic steatosis and obesity.
Collapse
Affiliation(s)
- Ui-Jin Bae
- * Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea.,‡ Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, South Korea
| | - John Park
- § Department of Chemistry, Chonbuk National University, Jeonju, Jeonbuk 54896, South Korea
| | - Il Woon Park
- ¶ Department of Cognitive Science, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Byung Min Chae
- ∥ Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Mi-Ra Oh
- ‡ Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, South Korea
| | - Su-Jin Jung
- ‡ Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, South Korea
| | | | - Soo-Wan Chae
- † Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea.,‡ Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, South Korea
| | - Byung-Hyun Park
- * Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, South Korea
| |
Collapse
|
37
|
Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The Role of Sirtuins in Antioxidant and Redox Signaling. Antioxid Redox Signal 2018; 28:643-661. [PMID: 28891317 PMCID: PMC5824489 DOI: 10.1089/ars.2017.7290] [Citation(s) in RCA: 547] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Antioxidant and redox signaling (ARS) events are regulated by critical molecules that modulate antioxidants, reactive oxygen species (ROS) or reactive nitrogen species (RNS), and/or oxidative stress within the cell. Imbalances in these molecules can disturb cellular functions to become pathogenic. Sirtuins serve as important regulators of ARS in cells. Recent Advances: Sirtuins (SIRTs 1-7) are a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases with the ability to deacetylate histone and nonhistone targets. Recent studies show that sirtuins modulate the regulation of a variety of cellular processes associated with ARS. SIRT1, SIRT3, and SIRT5 protect the cell from ROS, and SIRT2, SIRT6, and SIRT7 modulate key oxidative stress genes and mechanisms. Interestingly, SIRT4 has been shown to induce ROS production and has antioxidative roles as well. CRITICAL ISSUES A complete understanding of the roles of sirtuins in redox homeostasis of the cell is very important to understand the normal functioning as well as pathological manifestations. In this review, we have provided a critical discussion on the role of sirtuins in the regulation of ARS. We have also discussed mechanistic interactions among different sirtuins. Indeed, a complete understanding of sirtuin biology could be critical at multiple fronts. FUTURE DIRECTIONS Sirtuins are emerging to be important in normal mammalian physiology and in a variety of oxidative stress-mediated pathological situations. Studies are needed to dissect the mechanisms of sirtuins in maintaining redox homeostasis. Efforts are also required to assess the targetability of sirtuins in the management of redox-regulated diseases. Antioxid. Redox Signal. 28, 643-661.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | | | - Nicholas J Mack
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin , Madison, Wisconsin
| |
Collapse
|
38
|
Tanshindiol C inhibits oxidized low-density lipoprotein induced macrophage foam cell formation via a peroxiredoxin 1 dependent pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:882-890. [DOI: 10.1016/j.bbadis.2017.12.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/04/2017] [Accepted: 12/23/2017] [Indexed: 12/16/2022]
|
39
|
Beckervordersandforth R. Mitochondrial Metabolism-Mediated Regulation of Adult Neurogenesis. Brain Plast 2017; 3:73-87. [PMID: 29765861 PMCID: PMC5928529 DOI: 10.3233/bpl-170044] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The life-long generation of new neurons from radial glia-like neural stem cells (NSCs) is achieved through a stereotypic developmental sequence that requires precise regulatory mechanisms to prevent exhaustion or uncontrolled growth of the stem cell pool. Cellular metabolism is the new kid on the block of adult neurogenesis research and the identity of stage-specific metabolic programs and their impact on neurogenesis turns out to be an emerging research topic in the field. Mitochondrial metabolism is best known for energy production but it contains a great deal more. Mitochondria are key players in a variety of cellular processes including ATP synthesis through functional coupling of the electron transport chain and oxidative phosphorylation, recycling of hydrogen carriers, biosynthesis of cellular building blocks, and generation of reactive oxygen species that can modulate signaling pathways in a redox-dependent fashion. In this review, I will discuss recent findings describing stage-specific modulations of mitochondrial metabolism within the adult NSC lineage, emphasizing its importance for NSC self-renewal, proliferation of neural stem and progenitor cells (NSPCs), cell fate decisions, and differentiation and maturation of newborn neurons. I will furthermore summarize the important role of mitochondrial dysfunction in tissue regeneration and ageing, suggesting it as a potential therapeutic target for regenerative medicine practice.
Collapse
Affiliation(s)
- Ruth Beckervordersandforth
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
40
|
Zhang X, Li Y, Wang D, Wei X. miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1. Biol Res 2017; 50:27. [PMID: 28882183 PMCID: PMC5590131 DOI: 10.1186/s40659-017-0133-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
Background miR-22 has been shown to be frequently downregulated and act as a tumor suppressor in multiple cancers including breast cancers. However, the role of miR-22 in regulating the radioresistance of breast cancer cells, as well as its underlying mechanism is still not well understood. Methods The expressions of miR-22 and sirt1 at mRNA and protein levels were examined by qRT-PCR and Western Blot. The effects of miR-22 overexpression and sirt1 knockdown on cell viability, apoptosis, radiosensitivity, γ-H2AX foci formation were evaluated by CCK-8 assay, flow cytometry, colony formation assay, and γ-H2AX foci formation assay, respectively. Luciferase reporter assay and qRT-PCR analysis were performed to confirm the interaction between miR-22 and sirt1. Results miR-22 was downregulated and sirt1 was upregulated at both mRNA and protein levels in breast cancer cells. miR-22 overexpression or sirt1 knockdown significantly suppressed viability, induced apoptosis, reduced survival fraction, and increased the number of γ-H2AX foci in breast cancer cells. Sirt1 was identified as a target of miR-22 and miR-22 negatively regulated sirt1 expression. Ectopic expression of sirt1 dramatically reversed the inhibitory effect of miR-22 on cell viability and promotive effect on apoptotic rates and radiosensitivity in breast cancer cells. Conclusions miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting sirt1, providing a promising therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yi Shan Road, Shanghai, 200233, China
| | - Yuehua Li
- Department of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yi Shan Road, Shanghai, 200233, China.
| | - Dan Wang
- Department of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yi Shan Road, Shanghai, 200233, China
| | - Xiaoer Wei
- Department of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yi Shan Road, Shanghai, 200233, China
| |
Collapse
|
41
|
Navas-Enamorado I, Bernier M, Brea-Calvo G, de Cabo R. Influence of anaerobic and aerobic exercise on age-related pathways in skeletal muscle. Ageing Res Rev 2017; 37:39-52. [PMID: 28487241 PMCID: PMC5549001 DOI: 10.1016/j.arr.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Ignacio Navas-Enamorado
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla 41013, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
42
|
Pajk M, Cselko A, Varga C, Posa A, Tokodi M, Boldogh I, Goto S, Radak Z. Exogenous nicotinamide supplementation and moderate physical exercise can attenuate the aging process in skeletal muscle of rats. Biogerontology 2017; 18:593-600. [PMID: 28477081 DOI: 10.1007/s10522-017-9705-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
Abstract
Nicotinamide (NAM) could enhance the availability of NAD+ and be beneficial to cell function. However, NAM can inhibit the activities of SIRT1 and PARP. The effect of NAM supplementation on the aging process is not well known. In the present study exogenous NAM (1-0.5% in drinking water) was supplemented for 5 weeks and in the last 4 weeks moderate treadmill running was given to 5 mo and 28 mo old rats. The content of SIRT1 was not effected by NAM treatment alone. However, the activity of SIRT1, judged from the acetylated p53/p53 ratio, increased in both NAM treated age groups, suggesting beneficial effects of exogenous NAM. This was confirmed by the finding of increased PGC-1α and pCREB/CREB ratio in the gastrocnemius muscle of old but not young NAM treated animals. Our data suggest NAM administration can attenuate the aging process in skeletal muscle of rats, but NAM administration together with exercise training might be too great challenge to cope with in the old animals, since it leads to decreased levels of SIRT1.
Collapse
Affiliation(s)
- Melitta Pajk
- Research Institute of Sport Science, University of Physical Education, Alkotas u. 44, Budapest, 1123, Hungary
| | - Alexandra Cselko
- Institute of Sport Sciences and Physical Education, University of Pecs, Pecs, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Aniko Posa
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Margareta Tokodi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sataro Goto
- Department of Exercise Physiology, Graduate School of Health and Sports Science & Medicine, Juntendo University, Tokyo, Japan
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Alkotas u. 44, Budapest, 1123, Hungary.
- Institute of Sport Sciences and Physical Education, University of Pecs, Pecs, Hungary.
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary.
| |
Collapse
|
43
|
Ding RB, Bao J, Deng CX. Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci 2017; 13:852-867. [PMID: 28808418 PMCID: PMC5555103 DOI: 10.7150/ijbs.19370] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
Fatty liver diseases, which are commonly associated with high-fat/calorie diet, heavy alcohol consumption and/or other metabolic disorder causes, lead to serious medical concerns worldwide in recent years. It has been demonstrated that metabolic homeostasis disruption is most likely to be responsible for this global epidemic. Sirtuins are a group of conserved nicotinamide adenine dinucleotide (NAD+) dependent histone and/or protein deacetylases belonging to the silent information regulator 2 (Sir2) family. Among seven mammalian sirtuins, sirtuin 1 (SIRT 1) is the most extensively studied one and is involved in both alcoholic and nonalcoholic fatty liver diseases. SIRT1 plays beneficial roles in regulating hepatic lipid metabolism, controlling hepatic oxidative stress and mediating hepatic inflammation through deacetylating some transcriptional regulators against the progression of fatty liver diseases. Here we summarize the latest advances of the biological roles of SIRT1 in regulating lipid metabolism, oxidative stress and inflammation in the liver, and discuss the potential of SIRT1 as a therapeutic target for treating alcoholic and nonalcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Ren-Bo Ding
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Jiaolin Bao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| |
Collapse
|
44
|
Takahashi K, Yanai S, Shimokado K, Ishigami A. Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels. Nutrition 2017; 38:1-8. [DOI: 10.1016/j.nut.2016.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 12/14/2016] [Accepted: 12/26/2016] [Indexed: 12/26/2022]
|
45
|
Ka SO, Bang IH, Bae EJ, Park BH. Hepatocyte-specific sirtuin 6 deletion predisposes to nonalcoholic steatohepatitis by up-regulation of Bach1, an Nrf2 repressor. FASEB J 2017; 31:3999-4010. [PMID: 28536120 DOI: 10.1096/fj.201700098rr] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/01/2017] [Indexed: 12/20/2022]
Abstract
Sirtuin (Sirt)6 has been implicated in negative regulation of inflammation and lipid metabolism, although its function in the progression from simple steatosis to nonalcoholic steatohepatitis (NASH) remains to be defined. To explore the role of hepatocyte Sirt6 in NASH development, we generated hepatocyte-specific Sirt6-knockout (KO) mice that were fed a high-fat and high-fructose (HFHF) diet for 16 wk. HFHF-fed KO mice had increased hepatic steatosis and inflammation and aggravated glucose intolerance and insulin resistance compared with wild-type mice. HFHF-induced liver fibrosis and oxidative stress and related gene expression were significantly elevated in KO mice. In the livers of KO mice, nuclear factor erythroid 2-related factor 2 (Nrf2) was down-regulated; conversely, BTB domain and CNC homolog 1 (Bach1), a nuclear repressor of Nrf2, were up-regulated. We discovered that Sirt6, which interacts with Bach1 under basal condition, induces its detachment from the antioxidant response element (ARE) region of heme oxygenase 1 promoter. Furthermore, we found that Sirt6 promotes Nrf2 binding to ARE in response to oxidative stimuli, which leads to the expression of phase II/antioxidant enzymes. Finally, we showed that HFHF-induced steatosis, inflammation, and fibrosis were ameliorated by adenoviral Sirt6 overexpression. Sirt6 may be a useful therapeutic target for amelioration of NASH by curbing inflammation and oxidative stress.-Ka, S.-O, Bang, I. H., Bae, E. J., Park, B.-H. Hepatocyte-specific sirtuin 6 deletion predisposes to nonalcoholic steatohepatitis by up-regulation of Bach1, an Nrf2 repressor.
Collapse
Affiliation(s)
- Sun-O Ka
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, South Korea
| | - In Hyuk Bang
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, South Korea
| | - Eun Ju Bae
- College of Pharmacy, Woosuk University, Wanju, South Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, South Korea;
| |
Collapse
|
46
|
Radak Z, Ishihara K, Tekus E, Varga C, Posa A, Balogh L, Boldogh I, Koltai E. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biol 2017; 12:285-290. [PMID: 28285189 PMCID: PMC5345970 DOI: 10.1016/j.redox.2017.02.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 12/24/2022] Open
Abstract
It is debated whether exercise-induced ROS production is obligatory to cause adaptive response. It is also claimed that antioxidant treatment could eliminate the adaptive response, which appears to be systemic and reportedly reduces the incidence of a wide range of diseases. Here we suggest that if the antioxidant treatment occurs before the physiological function-ROS dose-response curve reaches peak level, the antioxidants can attenuate function. On the other hand, if the antioxidant treatment takes place after the summit of the bell-shaped dose response curve, antioxidant treatment would have beneficial effects on function. We suggest that the effects of antioxidant treatment are dependent on the intensity of exercise, since the adaptive response, which is multi pathway dependent, is strongly influenced by exercise intensity. It is further suggested that levels of ROS concentration are associated with peak physiological function and can be extended by physical fitness level and this could be the basis for exercise pre-conditioning. Physical inactivity, aging or pathological disorders increase the sensitivity to oxidative stress by altering the bell-shaped dose response curve.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary.
| | - Kazunari Ishihara
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Eva Tekus
- Institute of Sport Science and Physical Education, University of Pecs, Pecs, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Aniko Posa
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Laszlo Balogh
- Institute of Sport Science, University of Debrecen, Debrecen, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| |
Collapse
|
47
|
Forced Treadmill Exercise Prevents Spatial Memory Deficits in Aged Rats Probably Through the Activation of Na+, K+-ATPase in the Hippocampus. Neurochem Res 2017; 42:1422-1429. [DOI: 10.1007/s11064-017-2196-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/24/2017] [Accepted: 01/28/2017] [Indexed: 01/13/2023]
|
48
|
Wang J, Koh H, Zhou L, Bae U, Lee H, Bang IH, Ka S, Oh S, Bae EJ, Park B. Sirtuin 2 aggravates postischemic liver injury by deacetylating mitogen-activated protein kinase phosphatase-1. Hepatology 2017; 65:225-236. [PMID: 27532371 PMCID: PMC5215544 DOI: 10.1002/hep.28777] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/27/2016] [Indexed: 12/20/2022]
Abstract
UNLABELLED Sirtuin 2 (Sirt2) is known to negatively regulate anoxia-reoxygenation injury in myoblasts. Because protein levels of Sirt2 are increased in ischemia-reperfusion (I/R)-injured liver tissues, we examined whether Sirt2 is protective or detrimental against hepatic I/R injury. We overexpressed Sirt2 in the liver of C57BL/6 mice using a Sirt2 adenovirus. Wild-type and Sirt2 knockout mice were subjected to a partial (70%) hepatic ischemia for 45 minutes, followed by various periods of reperfusion. In another set of experiments, wild-type mice were pretreated intraperitoneally with AGK2, a Sirt2 inhibitor. Isolated hepatocytes and Kupffer cells from wild-type and Sirt2 knockout mice were subjected to hypoxia-reoxygenation injury to determine the in vitro effects of Sirt2. Mice subjected to I/R injury showed typical patterns of hepatocellular damage. Prior injection with Sirt2 adenovirus aggravated liver injury, as demonstrated by increases in serum aminotransferases, prothrombin time, proinflammatory cytokines, hepatocellular necrosis and apoptosis, and neutrophil infiltration relative to control virus-injected mice. Pretreatment with AGK2 resulted in significant improvements in serum aminotransferase levels and histopathologic findings. Similarly, experiments with Sirt2 knockout mice also revealed reduced hepatocellular injury. The molecular mechanism of Sirt2's involvement in this aggravation of hepatic I/R injury includes the deacetylation and inhibition of mitogen-activated protein kinase phosphatase-1 and consequent activation of mitogen-activated protein kinases. CONCLUSION Sirt2 is an aggravating factor during hepatic I/R injury. (Hepatology 2017;65:225-236).
Collapse
Affiliation(s)
- Jie Wang
- Department of BiochemistryChonbuk National University Medical SchoolJeonjuJeonbukRepublic of Korea
| | - Hyoung‐Won Koh
- Department of BiochemistryChonbuk National University Medical SchoolJeonjuJeonbukRepublic of Korea
| | - Lu Zhou
- Department of Sports MedicineTaishan Medical UniversityTaianShandongChina
| | - Ui‐Jin Bae
- Department of BiochemistryChonbuk National University Medical SchoolJeonjuJeonbukRepublic of Korea
| | - Hwa‐Suk Lee
- Department of BiochemistryChonbuk National University Medical SchoolJeonjuJeonbukRepublic of Korea
| | - In Hyuk Bang
- Department of BiochemistryChonbuk National University Medical SchoolJeonjuJeonbukRepublic of Korea
| | - Sun‐O Ka
- Department of BiochemistryChonbuk National University Medical SchoolJeonjuJeonbukRepublic of Korea
| | - Seon‐Hee Oh
- Department of Premedics, School of MedicineChosun UniversityGwangjuRepublic of Korea
| | - Eun Ju Bae
- College of PharmacyWoosuk UniversityWanjuJeonbukRepublic of Korea
| | - Byung‐Hyun Park
- Department of BiochemistryChonbuk National University Medical SchoolJeonjuJeonbukRepublic of Korea
| |
Collapse
|
49
|
Ziaaldini MM, Hosseini SR, Fathi M. Mitochondrial adaptations in aged skeletal muscle: effect of exercise training. Physiol Res 2016; 66:1-14. [PMID: 27982690 DOI: 10.33549/physiolres.933329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aging process is associated with a decline in mitochondrial functions. Mitochondria dysfunction is involved in initiation and progression of many health problems including neuromuscular, metabolic and cardiovascular diseases. It is well known that endurance exercise improves mitochondrial function, especially in the elderly. However, recent studies have demonstrated that resistance training lead also to substantial increases in mitochondrial function in skeletal muscle. A comprehensive understanding of the cellular mechanisms involved in the skeletal muscle mitochondrial adaptations to exercise training in healthy elderly subjects, can help practitioners to design and prescribe more effective exercise trainings.
Collapse
Affiliation(s)
- M M Ziaaldini
- Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | | |
Collapse
|
50
|
Abstract
Individuals age >65 years old are the fastest expanding population demographic throughout the developed world. Consequently, more aged patients than before are receiving diagnoses of impaired renal function and nephrosclerosis-age-associated histologic changes in the kidneys. Recent studies have shown that the aged kidney undergoes a range of structural changes and has altered transcriptomic, hemodynamic, and physiologic behavior at rest and in response to renal insults. These changes impair the ability of the kidney to withstand and recover from injury, contributing to the high susceptibility of the aged population to AKI and their increased propensity to develop subsequent progressive CKD. In this review, we examine these features of the aged kidney and explore the various validated and putative pathways contributing to the changes observed with aging in both experimental animal models and humans. We also discuss the potential for additional study to increase understanding of the aged kidney and lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Eoin D O'Sullivan
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom;
| | - Jeremy Hughes
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - David A Ferenbach
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and.,Renal and.,Biomedical Engineering Divisions, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|