1
|
Contreras L, Rodríguez-Gil A, Muntané J, de la Cruz J. Sorafenib-associated translation reprogramming in hepatocellular carcinoma cells. RNA Biol 2025; 22:1-11. [PMID: 40116042 PMCID: PMC11934173 DOI: 10.1080/15476286.2025.2483484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Sorafenib (Sfb) is a multikinase inhibitor regularly used for the management of patients with advanced hepatocellular carcinoma (HCC) that has been shown to increase very modestly life expectancy. We have shown that Sfb inhibits protein synthesis at the level of initiation in cancer cells. However, the global snapshot of mRNA translation following Sorafenib-treatment has not been explored so far. In this study, we performed a genome-wide polysome profiling analysis in Sfb-treated HCC cells and demonstrated that, despite global translation repression, a set of different genes remain efficiently translated or are even translationally induced. We reveal that, in response to Sfb inhibition, translation is tuned, which strongly correlates with the presence of established mRNA cis-acting elements and the corresponding protein factors that recognize them, including DAP5 and ARE-binding proteins. At the level of biological processes, Sfb leads to the translational down-regulation of key cellular activities, such as those related to the mitochondrial metabolism and the collagen synthesis, and the translational up-regulation of pathways associated with the adaptation and survival of cells in response to the Sfb-induced stress. Our findings indicate that Sfb induces an adaptive reprogramming of translation and provides valuable information that can facilitate the analysis of other drugs for the development of novel combined treatment strategies based on Sfb therapy.
Collapse
Affiliation(s)
- Laura Contreras
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Jordi Muntané
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Osnaya VG, Gómez-Romero L, Moreno-Hagelsieb G, Hernández G. AUGcontext DB: a comprehensive catalog of the mRNA AUG initiator codon context across eukaryotes. RNA Biol 2025; 22:1-5. [PMID: 39936323 PMCID: PMC11834415 DOI: 10.1080/15476286.2025.2465196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
The mRNA translation defines the composition of the cell proteome in all forms of life and diseases. In this process, precise selection of the mRNA translation initiation site (TIS) is crucial, as it establishes the correct open reading frame for triplet decoding. We have gathered and curated all published TIS consensus context sequences. We also included the TIS consensus context from novel 538 fungal genomes available from NCBI's RefSeq database. To do so, we wrote ad hoc programs in PERL to find and extract the TIS for each annotated gene, plus ten bases upstream and three downstream. For each genome, the sequences around the TIS of each gene were obtained, and the consensus was further calculated according to the Cavener rules and by the LOGOS algorithm. We created AUGcontext DB, a portal with a comprehensive collection of TIS context sequences across eukaryotes in a range from -10 to + 6. The compilation covers species of 30 vertebrates, 17 invertebrates, 25 plants, 14 fungi, and 11 protists studied in silico; 23 experimental studies; data on biotechnology; and the discovery of 8 diseases associated with specific mutations. Additionally, TIS context sequences of cellular IRESs were included. AUGcontext DB belongs to the National Institute of Cancer (Instituto Nacional de Cancerología, INCan), Mexico, and is freely available at http://108.161.138.77:8096/. Our catalogue allows us to do comparative studies between species, may help improve the diagnosis of certain diseases, and will be key to maximize the production of recombinant proteins.
Collapse
Affiliation(s)
- Vincent G. Osnaya
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City, Mexico
| | - Laura Gómez-Romero
- Bioinformatics Department, National Institute of Genomic Medicine, Mexico City, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | | | - Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (INCan), Mexico City, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| |
Collapse
|
3
|
Martin-Geary AC, Blakes AJM, Dawes R, Findlay SD, Lord J, Dong S, Walker S, Talbot-Martin J, Wieder N, D'Souza EN, Fernandes M, Hilton S, Lahiri N, Campbell C, Jenkinson S, DeGoede CGEL, Anderson ER, Candler T, Firth H, Burge CB, Sanders SJ, Ellingford J, Baralle D, Banka S, Whiffin N. Systematic identification of disease-causing promoter and untranslated region variants in 8040 undiagnosed individuals with rare disease. Genome Med 2025; 17:40. [PMID: 40229884 PMCID: PMC11998461 DOI: 10.1186/s13073-025-01464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Both promoters and untranslated regions (UTRs) have critical regulatory roles, yet variants in these regions are largely excluded from clinical genetic testing due to difficulty in interpreting pathogenicity. The extent to which these regions may harbour diagnoses for individuals with rare disease is currently unknown. METHODS We present a framework for the identification and annotation of potentially deleterious proximal promoter and UTR variants in known dominant disease genes. We use this framework to annotate de novo variants (DNVs) in 8040 undiagnosed individuals in the Genomics England 100,000 genomes project, which were subject to strict region-based filtering, clinical review, and validation studies where possible. In addition, we performed region and variant annotation-based burden testing in 7862 unrelated probands against matched unaffected controls. RESULTS We prioritised eleven DNVs and identified an additional variant overlapping one of the eleven. Ten of these twelve variants (82%) are in genes that are a strong match to the individual's phenotype and six had not previously been identified. Through burden testing, we did not observe a significant enrichment of potentially deleterious promoter and/or UTR variants in individuals with rare disease collectively across any of our region or variant annotations. CONCLUSIONS Whilst screening promoters and UTRs can uncover additional diagnoses for individuals with rare disease, including these regions in diagnostic pipelines is not likely to dramatically increase diagnostic yield. Nevertheless, we provide a framework to aid identification of these variants.
Collapse
Affiliation(s)
- Alexandra C Martin-Geary
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| | - Alexander J M Blakes
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9WL, UK
| | - Ruebena Dawes
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Scott D Findlay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Shan Dong
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Susan Walker
- Genomics England, Level 21, One Canada Square, Canada Square, Canary Wharf, London, E14 5AB, UK
| | | | - Nechama Wieder
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Elston N D'Souza
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Maria Fernandes
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Sarah Hilton
- Manchester Centre for Genomic Medicine, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Nayana Lahiri
- Institute of Molecular and Clinical Sciences, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, SW17 0QT, UK
| | - Christopher Campbell
- Manchester Centre for Genomic Medicine, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Sarah Jenkinson
- Manchester Centre for Genomic Medicine, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Christian G E L DeGoede
- Department of Paediatric Neurology, Clinical research Facility, Lancashire Teaching Hospitals NHS Trust, Lancashire, PR2 9HT, UK
- Manchester Metropolitan University, Manchester, M15 6BH, UK
| | - Emily R Anderson
- Liverpool Centre for Genomic Medicine, Liverpool Women's Hospital, Liverpool, L8 7SS, UK
| | - Toby Candler
- Department of Paediatric Endocrinology and Diabetes, Education Centre, Bristol Royal Hospital for Children, Level 6 Upper Maudlin Street, Bristol, BS2 8BJ, UK
- Clinical Diet and Physical Activity Theme, NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, BS8 2BN, UK
| | - Helen Firth
- Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- University of Cambridge, Cambridge, CB2 1TN, UK
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephan J Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- New York Genome Center, New York, NY, NY 10013, USA
| | - Jamie Ellingford
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9WL, UK
- Manchester Centre for Genomic Medicine, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Diana Baralle
- Genomics England, Level 21, One Canada Square, Canada Square, Canary Wharf, London, E14 5AB, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9WL, UK
- Manchester Centre for Genomic Medicine, Health Innovation Manchester, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Nicola Whiffin
- Big Data Institute, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, MA 02142, USA.
| |
Collapse
|
4
|
Liu X, Wang S, Sun Y, Liao Y, Jiang G, Sun BY, Yu J, Zhao D. Unlocking the potential of circular RNA vaccines: a bioinformatics and computational biology perspective. EBioMedicine 2025; 114:105638. [PMID: 40112741 PMCID: PMC11979485 DOI: 10.1016/j.ebiom.2025.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Bioinformatics has significantly advanced RNA-based therapeutics, particularly circular RNAs (circRNAs), which outperform mRNA vaccines, by offering superior stability, sustained expression, and enhanced immunogenicity due to their covalently closed structure. This review highlights how bioinformatics and computational biology optimise circRNA vaccine design, elucidates internal ribosome entry sites (IRES) selection, open reading frame (ORF) optimisation, codon usage, RNA secondary structure prediction, and delivery system development. While circRNA vaccines may not always surpass traditional vaccines in stability, their production efficiency and therapeutic efficacy can be enhanced through computational strategies. The discussion also addresses challenges and future prospects, emphasizing the need for innovative solutions to overcome current limitations and advance circRNA vaccine applications.
Collapse
Affiliation(s)
- Xuyuan Liu
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Siqi Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yunan Sun
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yunxi Liao
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Guangzhen Jiang
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong 510005, China
| | - Bryan-Yu Sun
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jingyou Yu
- Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| |
Collapse
|
5
|
Yamamura K, Asai K, Iwakiri J. Consistent features observed in structural probing data of eukaryotic RNAs. NAR Genom Bioinform 2025; 7:lqaf001. [PMID: 39885881 PMCID: PMC11780854 DOI: 10.1093/nargab/lqaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Understanding RNA structure is crucial for elucidating its regulatory mechanisms. With the recent commercialization of messenger RNA vaccines, the profound impact of RNA structure on stability and translation efficiency has become increasingly evident, underscoring the importance of understanding RNA structure. Chemical probing of RNA has emerged as a powerful technique for investigating RNA structure in living cells. This approach utilizes chemical probes that selectively react with accessible regions of RNA, and by measuring reactivity, the openness and potential of RNA for protein binding or base pairing can be inferred. Extensive experimental data generated using RNA chemical probing have significantly contributed to our understanding of RNA structure in cells. However, it is crucial to acknowledge potential biases in chemical probing data to ensure an accurate interpretation. In this study, we comprehensively analyzed transcriptome-scale RNA chemical probing data in eukaryotes and report common features. Notably, in all experiments, the number of bases modified in probing was small, the bases showing the top 10% reactivity well reflected the known secondary structure, bases with high reactivity were more likely to be exposed to solvent and low reactivity did not reflect solvent exposure, which is important information for the analysis of RNA chemical probing data.
Collapse
Affiliation(s)
- Kazuteru Yamamura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan
| | - Kiyoshi Asai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan
| | - Junichi Iwakiri
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
6
|
Razumova E, Makariuk A, Dontsova O, Shepelev N, Rubtsova M. Structural Features of 5' Untranslated Region in Translational Control of Eukaryotes. Int J Mol Sci 2025; 26:1979. [PMID: 40076602 PMCID: PMC11900008 DOI: 10.3390/ijms26051979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Gene expression is a complex process regulated at multiple levels in eukaryotic cells. Translation frequently represents a pivotal step in the control of gene expression. Among the stages of translation, initiation is particularly important, as it governs ribosome recruitment and the efficiency of protein synthesis. The 5' untranslated region (5' UTR) of mRNA plays a key role in this process, often exhibiting a complicated and structured landscape. Numerous eukaryotic mRNAs possess long 5' UTRs that contain diverse regulatory elements, including RNA secondary structures, specific nucleotide motifs, and chemical modifications. These structural features can independently modulate translation through their intrinsic properties or by serving as platforms for trans-acting factors such as RNA-binding proteins. The dynamic nature of 5' UTR elements allows cells to fine-tune translation in response to environmental and cellular signals. Understanding these mechanisms is not only fundamental to molecular biology but also holds significant biomedical potential. Insights into 5' UTR-mediated regulation could drive advancements in synthetic biology and mRNA-based targeted therapies. This review outlines the current knowledge of the structural elements of the 5' UTR, the interplay between them, and their combined functional impact on translation.
Collapse
Affiliation(s)
- Elizaveta Razumova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (O.D.); (N.S.)
| | - Aleksandr Makariuk
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia;
| | - Olga Dontsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (O.D.); (N.S.)
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Nikita Shepelev
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (O.D.); (N.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Maria Rubtsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (O.D.); (N.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| |
Collapse
|
7
|
Li Y, Gu B, Ma L, He LN, Bao X, Huang Y, Yang R, Wang L, Yang Q, Yang H, Zuo Z, Gao S, Zhao X, Chen K. m6A2Circ: A comprehensive database for decoding the regulatory relationship between m6A modification and circular RNA. Comput Struct Biotechnol J 2025; 27:813-820. [PMID: 40103610 PMCID: PMC11914901 DOI: 10.1016/j.csbj.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Circular RNA (circRNA) is a class of noncoding RNAs derived from back-splicing of pre-mRNAs. Recent studies have increasingly highlighted the pivotal roles of N6-methyladenosine (m6A) in regulating various aspects of circRNA metabolism, including biogenesis, localization, stability, and translation. Despite the importance of m6A in circRNA metabolism, there remains a substantial gap in comprehensive resources dedicated to exploring m6A modification in circRNA. To bridge this significant gap, we present m6A2Circ (http://m6a2circ.canceromics.org/), a pioneering database designed to systematically explore the regulatory interactions between m6A modification and circRNA. The m6A2Circ database encompasses 198,804 m6A-circRNA associations derived from diverse human and mouse tissues. These associations are meticulously categorized into four levels of evidence supported either by experimental data or by high-throughput sequencing data. Moreover, the database offers extensive annotations, facilitating research into circRNA function and its potential disease implications. Overall, m6A2Circ aims to benefit the research community and bolster novel discoveries in terms of crosstalk between m6A and circRNA.
Collapse
Affiliation(s)
- Yongtian Li
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Bianli Gu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, China
| | - Lixia Ma
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, China
| | - Li-Na He
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaoqiong Bao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuantai Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Rui Yang
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical, University, Chongqing 400016, China
| | - Qingtao Yang
- Information Center of Chongqing Medical University, Chongqing 400016, China
| | - Haibo Yang
- Information Center of Chongqing Medical University, Chongqing 400016, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and Technology, Luoyang, China
| | - Xueya Zhao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| |
Collapse
|
8
|
Chen S, Liu M, Yi W, Li H, Yu Q. Micropeptides derived from long non-coding RNAs: Computational analysis and functional roles in breast cancer and other diseases. Gene 2025; 935:149019. [PMID: 39461573 DOI: 10.1016/j.gene.2024.149019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Long non-coding RNAs (lncRNAs), once thought to be mere transcriptional noise, are now revealing a hidden code. Recent advancements like ribosome sequencing have unveiled that many lncRNAs harbor small open reading frames and can potentially encode functional micropeptides. Emerging research suggests these micropeptides, not the lncRNAs themselves, play crucial roles in regulating homeostasis, inflammation, metabolism, and especially in breast cancer progression. This review delves into the rapidly evolving computational tools used to predict and validate lncRNA-encoded micropeptides. We then explore the diverse functions and mechanisms of action of these micropeptides in breast cancer pathogenesis, with a focus on their roles in various species. Ultimately, this review aims to illuminate the functional landscape of lncRNA-encoded micropeptides and their potential as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Saisai Chen
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Mengru Liu
- Department of Infection, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Weizhen Yi
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Huagang Li
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Qingsheng Yu
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
9
|
Zhou X, Qin Y, Li J, Fan L, Zhang S, Zhang B, Wu L, Gao A, Yang Y, Lv X, Guo B, Sun L. LncPepAtlas: a comprehensive resource for exploring the translational landscape of long non-coding RNAs. Nucleic Acids Res 2025; 53:D468-D476. [PMID: 39435995 PMCID: PMC11701525 DOI: 10.1093/nar/gkae905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Long non-coding RNAs were commonly viewed as non-coding elements. However, they are increasingly recognized for their ability to be translated into proteins, thereby playing a significant role in various cellular processes and diseases. With developments in biotechnology and computational algorithms, a range of novel approaches are being applied to investigate the translation of long non-coding RNA (lncRNAs). Herein, we developed the LncPepAtlas database (http://www.cnitbiotool.net/LncPepAtlas/), which aims to compile multiple evidences for the translation of lncRNAs and annotations for the upstream regulation of lncRNAs across various species. LncPepAtlas integrated compelling evidence from nine distinct sources for the translation of lncRNAs. These include a dataset comprising 2631 publicly available Ribo-seq samples from nine species, which has been collected and analysed. LncPepAtlas offers extensive annotation for lncRNA upstream regulation and expression profiles across various cancers, tissues or cell lines at transcriptional and translational levels. Importantly, it enables novel antigen predictions for lncRNA-encoded peptides. By identifying numerous peptide candidates that could potentially bind to major histocompatibility complex class I and II molecules, this work may provide new insights into cancer immunotherapy. The function of peptides were inferred by aligning them with experimentally detected proteins. LncPepAtlas aims to become a convenient resource for exploring translatable lncRNAs.
Collapse
Affiliation(s)
- Xinyuan Zhou
- Binzhou People’s Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yanxia Qin
- Binzhou People’s Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jiangxue Li
- Binzhou People’s Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Linyuan Fan
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250000, China
| | - Shun Zhang
- School of Information Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Bing Zhang
- School of Mathematical Sciences, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Luoxuan Wu
- College of Ophthalmology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anwei Gao
- Binzhou People’s Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yongsan Yang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueqin Lv
- School of Mathematical Sciences, Harbin Normal University, Harbin, Heilongjiang 150025, China
- College of Basic Science, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
| | - Bingzhou Guo
- Binzhou People’s Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Liang Sun
- Binzhou People’s Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
10
|
Lord J, Oquendo CJ, Wai HA, Holloway JG, Martin-Geary A, Blakes AJM, Arciero E, Domcke S, Childs AM, Low K, Rankin J, Baralle D, Martin HC, Whiffin N. Noncoding variants are a rare cause of recessive developmental disorders in trans with coding variants. Genet Med 2024; 26:101249. [PMID: 39243181 DOI: 10.1016/j.gim.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
PURPOSE Identifying pathogenic noncoding variants is challenging. A single protein-altering variant is often identified in a recessive gene in individuals with developmental disorders (DD), but the prevalence of pathogenic noncoding "second hits" in trans with these is unknown. METHODS In 4073 genetically undiagnosed rare-disease trio probands from the 100,000 Genomes project, we identified rare heterozygous protein-altering variants in recessive DD-associated genes. We identified rare noncoding variants on the other haplotype in introns, untranslated regions, promoters, and candidate enhancer regions. We clinically evaluated the top candidates for phenotypic fit and performed functional testing where possible. RESULTS We identified 3761 rare heterozygous loss-of-function or ClinVar pathogenic variants in recessive DD-associated genes in 2430 probands. For 1366 (36.3%) of these, we identified at least 1 rare noncoding variant in trans. Bioinformatic filtering and clinical review, revealed 7 to be a good clinical fit. After detailed characterization, we identified likely diagnoses for 3 probands (in GAA, NPHP3, and PKHD1) and candidate diagnoses in a further 3 (PAH, LAMA2, and IGHMBP2). CONCLUSION We developed a systematic approach to uncover new diagnoses involving compound heterozygous coding/noncoding variants and conclude that this mechanism is likely to be a rare cause of DDs.
Collapse
Affiliation(s)
- Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Sheffield Institute for Translational Neuroscience (SITraN), The University of Sheffield, Sheffield, United Kingdom.
| | - Carolina J Oquendo
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Htoo A Wai
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John G Holloway
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alexandra Martin-Geary
- Big Data Institute, University of Oxford, United Kingdom; Wellcome Centre for Human Genetics, University of Oxford, United Kingdom
| | - Alexander J M Blakes
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Elena Arciero
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Silvia Domcke
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Anne-Marie Childs
- Department of Paediatric Neurology, Leeds teaching Hospitals, United Kingdom
| | - Karen Low
- Department of Clinical Genetics, UHBW NHS Trust, Bristol, United Kingdom; Department of Academic Child Health, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Julia Rankin
- Peninsula Clinical Genetics Service, Royal Devon University Hospital, Exeter, United Kingdom
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust, University of Southampton, Southampton, United Kingdom
| | - Hilary C Martin
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nicola Whiffin
- Big Data Institute, University of Oxford, United Kingdom; Wellcome Centre for Human Genetics, University of Oxford, United Kingdom; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA.
| |
Collapse
|
11
|
Williams TD, Rousseau A. Translation regulation in response to stress. FEBS J 2024; 291:5102-5122. [PMID: 38308808 PMCID: PMC11616006 DOI: 10.1111/febs.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Cell stresses occur in a wide variety of settings: in disease, during industrial processes, and as part of normal day-to-day rhythms. Adaptation to these stresses requires cells to alter their proteome. Cells modify the proteins they synthesize to aid proteome adaptation. Changes in both mRNA transcription and translation contribute to altered protein synthesis. Here, we discuss the changes in translational mechanisms that occur following the onset of stress, and the impact these have on stress adaptation.
Collapse
Affiliation(s)
- Thomas D. Williams
- MRC‐PPU, School of Life SciencesUniversity of DundeeUK
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | | |
Collapse
|
12
|
Xiao Y, Ren Y, Hu W, Paliouras AR, Zhang W, Zhong L, Yang K, Su L, Wang P, Li Y, Ma M, Shi L. Long non-coding RNA-encoded micropeptides: functions, mechanisms and implications. Cell Death Discov 2024; 10:450. [PMID: 39443468 PMCID: PMC11499885 DOI: 10.1038/s41420-024-02175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are typically described as RNA transcripts exceeding 200 nucleotides in length, which do not code for proteins. Recent advancements in technology, including ribosome RNA sequencing and ribosome nascent-chain complex sequencing, have demonstrated that many lncRNAs retain small open reading frames and can potentially encode micropeptides. Emerging studies have revealed that these micropeptides, rather than lncRNAs themselves, are responsible for vital functions, including but not limited to regulating homeostasis, managing inflammation and the immune system, moderating metabolism, and influencing tumor progression. In this review, we initially outline the rapidly advancing computational analytical methods and public tools to predict and validate the potential encoding of lncRNAs. We then focus on the diverse functions of micropeptides and their underlying mechanisms in the pathogenesis of disease. This review aims to elucidate the functions of lncRNA-encoded micropeptides and explore their potential applications as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yinan Xiao
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Yaru Ren
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenteng Hu
- Thoracic surgery department, The First Hospital, Lanzhou University, Lanzhou, 730000, PR China
| | | | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Linghui Zhong
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Kaixin Yang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Li Su
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China
| | - Peng Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, PR China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Minjie Ma
- Thoracic surgery department, The First Hospital, Lanzhou University, Lanzhou, 730000, PR China
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
13
|
Li M, Lou L, Ren L, Li C, Han R, Jiang J, Qi L, Jiang Y. EIF4G2 Promotes Hepatocellular Carcinoma Progression via IRES-dependent PLEKHA1 Translation Regulation. J Proteome Res 2024; 23:4553-4566. [PMID: 39213495 DOI: 10.1021/acs.jproteome.4c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal cancer, and proteomic studies have shown increased protein diversity and abundance in HCC tissues, whereas the role of protein translation has not been extensively explored in HCC. Our research focused on key molecules in the translation process to identify a potential contributor in HCC. We discovered that EIF4G2, a crucial translation initiation factor, is significantly upregulated in HCC tissues and associated with poor prognosis. This study uniquely highlights the impact of EIF4G2 deletion, which suppresses tumor growth and metastasis both in vitro and in vivo. Furthermore, polysome analysis and nascent protein synthesis assays revealed EIF4G2's role in regulating protein translation, specifically identifying PLEKHA1 as a key translational product. This represents a novel mechanistic insight into HCC malignancy. RNA immunoprecipitation (RIP) and Dual-luciferase reporter assays further revealed that EIF4G2 facilitates PLEKHA1 translation via an IRES-dependent manner. Importantly, the synergistic effects of EIF4G2 depletion and PLEKHA1 reduction in inhibiting cell migration and invasion underscore the therapeutic potential of targeting this axis. This study not only advances our understanding of translational regulation in HCC but also identifies the EIF4G2-PLEKHA1 axis as a promising therapeutic target, offering new avenues for intervention in HCC treatment.
Collapse
Affiliation(s)
- Manman Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lijuan Lou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Liangliang Ren
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chaoying Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Rui Han
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Junyi Jiang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Lihui Qi
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ying Jiang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
- Anhui Medical University, Hefei 230032, China
| |
Collapse
|
14
|
Deng X, Yu YV, Jin YN. Non-canonical translation in cancer: significance and therapeutic potential of non-canonical ORFs, m 6A-modification, and circular RNAs. Cell Death Discov 2024; 10:412. [PMID: 39333489 PMCID: PMC11437038 DOI: 10.1038/s41420-024-02185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Translation is a decoding process that synthesizes proteins from RNA, typically mRNA. The conventional translation process consists of four stages: initiation, elongation, termination, and ribosome recycling. Precise control over the translation mechanism is crucial, as dysregulation in this process is often linked to human diseases such as cancer. Recent discoveries have unveiled translation mechanisms that extend beyond typical well-characterized components like the m7G cap, poly(A)-tail, or translation factors like eIFs. These mechanisms instead utilize atypical elements, such as non-canonical ORF, m6A-modification, and circular RNA, as key components for protein synthesis. Collectively, these mechanisms are classified as non-canonical translations. It is increasingly clear that non-canonical translation mechanisms significantly impact the various regulatory pathways of cancer, including proliferation, tumorigenicity, and the behavior of cancer stem cells. This review explores the involvement of a variety of non-canonical translation mechanisms in cancer biology and provides insights into potential therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Xiaoyi Deng
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yanxun V Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China
| | - Youngnam N Jin
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Khalil NN, Rexius-Hall ML, Escopete S, Parker SJ, McCain ML. Distinct phenotypes induced by acute hypoxia and TGF-β1 in human adult cardiac fibroblasts. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100080. [PMID: 39329164 PMCID: PMC11423773 DOI: 10.1016/j.jmccpl.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 09/28/2024]
Abstract
Myocardial infarction (MI) causes hypoxic injury to downstream myocardial tissue, which initiates a wound healing response that replaces injured myocardial tissue with a scar. Wound healing is a complex process that consists of multiple phases, in which many different stimuli induce cardiac fibroblasts to differentiate into myofibroblasts and deposit new matrix. While this process is necessary to replace necrotic tissue, excessive and unresolved fibrosis is common post-MI and correlated with heart failure. Therefore, defining how cardiac fibroblast phenotypes are distinctly regulated by stimuli that are prevalent in the post-MI microenvironment, such as hypoxia and transforming growth factor-beta (TGF-β), is essential for understanding and ultimately mitigating pathological fibrosis. In this study, we acutely treated primary human adult cardiac fibroblasts with TGF-β1 or hypoxia and then characterized their phenotype through immunofluorescence, quantitative RT-PCR, and proteomic analysis. We found that fibroblasts responded to low oxygen with increased localization of hypoxia inducible factor 1 (HIF-1) to the nuclei after 4h, which was followed by increased gene expression of vascular endothelial growth factor A (VEGFA), a known target of HIF-1, by 24h. Both TGF-β1 and hypoxia inhibited proliferation after 24h. TGF-β1 treatment also upregulated various fibrotic pathways. In contrast, hypoxia caused a reduction in several protein synthesis pathways, including collagen biosynthesis. Collectively, these data suggest that TGF-β1, but not acute hypoxia, robustly induces the differentiation of human cardiac fibroblasts into myofibroblasts. Discerning the overlapping and distinctive outcomes of TGF-β1 and hypoxia treatment is important for elucidating their roles in fibrotic remodeling post-MI and provides insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Natalie N. Khalil
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L. Rexius-Hall
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Sean Escopete
- Department of Cardiology and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sarah J. Parker
- Department of Cardiology and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Megan L. McCain
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
16
|
Zuo Y, Liu W, Jin Y, Pan Y, Fan T, Fu X, Guo J, Tan S, He J, Yang Y, Li Z, Yang C, Peng Y. C2CDB: an advanced platform integrating comprehensive information and analysis tools of cancer-related circRNAs. BIOINFORMATICS ADVANCES 2024; 4:vbae112. [PMID: 39246384 PMCID: PMC11379471 DOI: 10.1093/bioadv/vbae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Motivation Circular RNAs (circRNAs) play important roles in gene expression and their involvement in tumorigenesis is emerging. circRNA-related database is a powerful tool for researchers to investigate circRNAs. However, existing databases lack advanced platform integrating comprehensive information and analysis tools of cancer-related circRNAs. Results We developed a comprehensive platform called CircRNA to Cancer Database (C2CDB), encompassing 318 158 cancer-related circRNAs expressed in tumors and adjacent tissues across 30 types of cancers. C2CDB provides basic details such as sequence and expression levels of circRNAs, as well as crucial insights into biological mechanisms, including miRNA binding, RNA-binding protein interaction, coding potential, base modification, mutation, and secondary structure. Moreover, C2CDB collects an extensive compilation of published literature on cancer circRNAs, extracting and presenting pivotal content encompassing biological functions, underlying mechanisms, and molecular tools in these studies. Additionally, C2CDB offers integrated tools to analyse three potential mechanisms: circRNA-miRNA ceRNA interaction, circRNA encoding, and circRNA biogenesis, facilitating investigators with convenient access to highly reliable information. To enhance clarity and organization, C2CDB has meticulously curated and integrated the previously chaotic nomenclature of circRNAs, addressing the prevailing confusion and ambiguity surrounding their designations. Availability and implementation C2CDB is freely available at http://pengyonglab.com/c2cdb.
Collapse
Affiliation(s)
- Yuanli Zuo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yang Jin
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yitong Pan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Ting Fan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xin Fu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jiawei Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Shuangyan Tan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Juan He
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yang Yang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zhang Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Chenyu Yang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
17
|
Wess J, Liu L. A novel function of the M 2 muscarinic receptor. Trends Pharmacol Sci 2024; 45:663-665. [PMID: 38853101 PMCID: PMC11316642 DOI: 10.1016/j.tips.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The M2 muscarinic receptor (M2R) is a prototypic class A G protein-coupled receptor (GPCR). Interestingly, Fasciani et al. recently identified an internal translation start site within the M2 receptor mRNA, directing the expression of a C-terminal receptor fragment. Elevated during cellular stress, this polypeptide localizes to mitochondria where it inhibits oxidative phosphorylation.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, 8 Center Drive MSC 0810, Bethesda, MD 20892, USA.
| | - Liu Liu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, 8 Center Drive MSC 0810, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Zhang R, Zhang W, Wang C, Wen CK. Arabidopsis Fhit-like tumor suppressor resumes early terminated constitutive triple response1-10 mRNA translation. PLANT PHYSIOLOGY 2024; 195:2073-2093. [PMID: 38563472 DOI: 10.1093/plphys/kiae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
The Arabidopsis (Arabidopsis thaliana) constitutive triple response1-10 (ctr1-10) mutant produces a reduced level of CTR1 protein and exhibits a weak ctr1 mutant phenotype. Sequence analysis revealed highly active translation of the upstream open reading frame (uORF) at the extended 5'-UTR of the ctr1-10 mRNA, resulting from T-DNA insertion. Enhancer screening for ctr1-10 isolated the fragile histidine triad-1 (fhit-1) mutation. The fhit-1 ctr1-10 mutant phenotypically resembled strong ctr1 mutants and barely produced CTR1, and the fhit-1 mutation reduced the translation efficiency of ctr1-10 but not that of CTR1 mRNA. The human (Homo sapiens) Fhit that involves tumorigenesis and genome instability has the in vitro dinucleotide 5',5'″-P1, P3-triphosphate hydrolase activity, and expression of the human HsFHIT or the hydrolase-defective HsFHITH96N transgene reversed the fhit-1 ctr1-10 mutant phenotype and restored CTR1 levels. Genetic editing that in situ disrupts individual upstream ATG codons proximal to the ctr1-10 mORF elevated CTR1 levels in ctr1-10 plants independent of FHIT. EUKARYOTIC INITIATION FACTOR3G (eIF3G), which is involved in translation and reinitiation, interacted with FHIT, and both were associated with the polysome. We propose that FHIT resumes early terminated ctr1-10 mORF translation in the face of active and complex uORF translation. Our study unveils a niche that may lead to investigations on the molecular mechanism of Fhit-like proteins in translation reinitiation. The biological significance of FHIT-regulated translation is discussed.
Collapse
Affiliation(s)
- Ranran Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenrunshu Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
19
|
Hwang HJ, Kim YK. Molecular mechanisms of circular RNA translation. Exp Mol Med 2024; 56:1272-1280. [PMID: 38871818 PMCID: PMC11263353 DOI: 10.1038/s12276-024-01220-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/15/2024] Open
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs without a 5' cap structure and a 3' poly(A) tail typically present in linear mRNAs of eukaryotic cells. CircRNAs are predominantly generated through a back-splicing process within the nucleus. CircRNAs have long been considered non-coding RNAs seemingly devoid of protein-coding potential. However, many recent studies have challenged this idea and have provided substantial evidence that a subset of circRNAs can associate with polysomes and indeed be translated. Therefore, in this review, we primarily highlight the 5' cap-independent internal initiation of translation that occurs on circular RNAs. Several molecular features of circRNAs, including the internal ribosome entry site, N6-methyladenosine modification, and the exon junction complex deposited around the back-splicing junction after back-splicing event, play pivotal roles in their efficient internal translation. We also propose a possible relationship between the translatability of circRNAs and their stability, with a focus on nonsense-mediated mRNA decay and nonstop decay, both of which are well-characterized mRNA surveillance mechanisms. An in-depth understanding of circRNA translation will reshape and expand our current knowledge of proteomics.
Collapse
Affiliation(s)
- Hyun Jung Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
20
|
Chu Y, Yu D, Li Y, Huang K, Shen Y, Cong L, Zhang J, Wang M. A 5' UTR Language Model for Decoding Untranslated Regions of mRNA and Function Predictions. NAT MACH INTELL 2024; 6:449-460. [PMID: 38855263 PMCID: PMC11155392 DOI: 10.1038/s42256-024-00823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/07/2024] [Indexed: 06/11/2024]
Abstract
The 5' UTR, a regulatory region at the beginning of an mRNA molecule, plays a crucial role in regulating the translation process and impacts the protein expression level. Language models have showcased their effectiveness in decoding the functions of protein and genome sequences. Here, we introduced a language model for 5' UTR, which we refer to as the UTR-LM. The UTR-LM is pre-trained on endogenous 5' UTRs from multiple species and is further augmented with supervised information including secondary structure and minimum free energy. We fine-tuned the UTR-LM in a variety of downstream tasks. The model outperformed the best known benchmark by up to 5% for predicting the Mean Ribosome Loading, and by up to 8% for predicting the Translation Efficiency and the mRNA Expression Level. The model also applies to identifying unannotated Internal Ribosome Entry Sites within the untranslated region and improves the AUPR from 0.37 to 0.52 compared to the best baseline. Further, we designed a library of 211 novel 5' UTRs with high predicted values of translation efficiency and evaluated them via a wet-lab assay. Experiment results confirmed that our top designs achieved a 32.5% increase in protein production level relative to well-established 5' UTR optimized for therapeutics.
Collapse
Affiliation(s)
- Yanyi Chu
- Center for Statistics and Machine Learning and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dan Yu
- RVAC Medicines, Waltham, MA 02451, USA
| | - Yupeng Li
- RVAC Medicines, Waltham, MA 02451, USA
| | - Kaixuan Huang
- Center for Statistics and Machine Learning and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yue Shen
- RVAC Medicines, Waltham, MA 02451, USA
| | - Le Cong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Mengdi Wang
- Center for Statistics and Machine Learning and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
21
|
Khan D, Fox PL. Host-like RNA Elements Regulate Virus Translation. Viruses 2024; 16:468. [PMID: 38543832 PMCID: PMC10976276 DOI: 10.3390/v16030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/01/2024] Open
Abstract
Viruses are obligate, intracellular parasites that co-opt host cell machineries for propagation. Critical among these machineries are those that translate RNA into protein and their mechanisms of control. Most regulatory mechanisms effectuate their activity by targeting sequence or structural features at the RNA termini, i.e., at the 5' or 3' ends, including the untranslated regions (UTRs). Translation of most eukaryotic mRNAs is initiated by 5' cap-dependent scanning. In contrast, many viruses initiate translation at internal RNA regions at internal ribosome entry sites (IRESs). Eukaryotic mRNAs often contain upstream open reading frames (uORFs) that permit condition-dependent control of downstream major ORFs. To offset genome compression and increase coding capacity, some viruses take advantage of out-of-frame overlapping uORFs (oORFs). Lacking the essential machinery of protein synthesis, for example, ribosomes and other translation factors, all viruses utilize the host apparatus to generate virus protein. In addition, some viruses exhibit RNA elements that bind host regulatory factors that are not essential components of the translation machinery. SARS-CoV-2 is a paradigm example of a virus taking advantage of multiple features of eukaryotic host translation control: the virus mimics the established human GAIT regulatory element and co-opts four host aminoacyl tRNA synthetases to form a stimulatory binding complex. Utilizing discontinuous transcription, the elements are present and identical in all SARS-CoV-2 subgenomic RNAs (and the genomic RNA). Thus, the virus exhibits a post-transcriptional regulon that improves upon analogous eukaryotic regulons, in which a family of functionally related mRNA targets contain elements that are structurally similar but lacking sequence identity. This "thrifty" virus strategy can be exploited against the virus since targeting the element can suppress the expression of all subgenomic RNAs as well as the genomic RNA. Other 3' end viral elements include 3'-cap-independent translation elements (3'-CITEs) and 3'-tRNA-like structures. Elucidation of virus translation control elements, their binding proteins, and their mechanisms can lead to novel therapeutic approaches to reduce virus replication and pathogenicity.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
22
|
Zhang L, Gao H, Li X, Yu F, Li P. The important regulatory roles of circRNA‑encoded proteins or peptides in cancer pathogenesis (Review). Int J Oncol 2024; 64:19. [PMID: 38186313 PMCID: PMC10783939 DOI: 10.3892/ijo.2023.5607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Circular RNAs (circRNAs) represent a class of RNA molecules characterized by their covalently closed structures. There are three types of circRNAs, namely exonic circRNAs, exon‑intron circRNAs and circular intronic RNAs. To date, four distinct mechanisms have been unveiled through which circRNAs exert their functional influence, including serving as microRNA (miRNA) sponges, interacting with RNA binding proteins (RBPs), modulating parental gene transcription and acting as templates for translation. Of note, among these mechanisms, the miRNA/RBP sponge function has been the most investigated one. Recent research has uncovered the presence of various proteins or peptides encoded by circRNA. CircRNAs are translated independent of the 5' cap and 3' polyA tail, which are typical elements for linear RNA translation. Some unique elements, such as internal ribosome entry sites and N‑methyladenosine modifications, facilitate the initiation of translation. These circRNA‑encoded proteins or peptides participate in diverse signalling pathways and act as important regulators in carcinogenesis by influencing cell proliferation, migration, apoptosis and other key processes. Consequently, circRNA‑encoded proteins or peptides have great potential as therapeutic targets for anticancer drugs. The present comprehensive review aimed to systematically summarize the current understanding of circRNA‑encoded proteins or peptides and to unveil their roles in carcinogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Huijuan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Xin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266021, P.R. China
| |
Collapse
|
23
|
Chiang TW, Jhong SE, Chen YC, Chen CY, Wu WS, Chuang TJ. FL-circAS: an integrative resource and analysis for full-length sequences and alternative splicing of circular RNAs with nanopore sequencing. Nucleic Acids Res 2024; 52:D115-D123. [PMID: 37823705 PMCID: PMC10767854 DOI: 10.1093/nar/gkad829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Circular RNAs (circRNAs) are RNA molecules with a continuous loop structure characterized by back-splice junctions (BSJs). While analyses of short-read RNA sequencing have identified millions of BSJ events, it is inherently challenging to determine exact full-length sequences and alternatively spliced (AS) isoforms of circRNAs. Recent advances in nanopore long-read sequencing with circRNA enrichment bring an unprecedented opportunity for investigating the issues. Here, we developed FL-circAS (https://cosbi.ee.ncku.edu.tw/FL-circAS/), which collected such long-read sequencing data of 20 cell lines/tissues and thereby identified 884 636 BSJs with 1 853 692 full-length circRNA isoforms in human and 115 173 BSJs with 135 617 full-length circRNA isoforms in mouse. FL-circAS also provides multiple circRNA features. For circRNA expression, FL-circAS calculates expression levels for each circRNA isoform, cell line/tissue specificity at both the BSJ and isoform levels, and AS entropy for each BSJ across samples. For circRNA biogenesis, FL-circAS identifies reverse complementary sequences and RNA binding protein (RBP) binding sites residing in flanking sequences of BSJs. For functional patterns, FL-circAS identifies potential microRNA/RBP binding sites and several types of evidence for circRNA translation on each full-length circRNA isoform. FL-circAS provides user-friendly interfaces for browsing, searching, analyzing, and downloading data, serving as the first resource for discovering full-length circRNAs at the isoform level.
Collapse
Affiliation(s)
- Tai-Wei Chiang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Song-En Jhong
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | | |
Collapse
|
24
|
Villanueva E, Smith T, Pizzinga M, Elzek M, Queiroz RML, Harvey RF, Breckels LM, Crook OM, Monti M, Dezi V, Willis AE, Lilley KS. System-wide analysis of RNA and protein subcellular localization dynamics. Nat Methods 2024; 21:60-71. [PMID: 38036857 PMCID: PMC10776395 DOI: 10.1038/s41592-023-02101-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Although the subcellular dynamics of RNA and proteins are key determinants of cell homeostasis, their characterization is still challenging. Here we present an integrative framework to simultaneously interrogate the dynamics of the transcriptome and proteome at subcellular resolution by combining two methods: localization of RNA (LoRNA) and a streamlined density-based localization of proteins by isotope tagging (dLOPIT) to map RNA and protein to organelles (nucleus, endoplasmic reticulum and mitochondria) and membraneless compartments (cytosol, nucleolus and cytosolic granules). Interrogating all RNA subcellular locations at once enables system-wide quantification of the proportional distribution of RNA. We obtain a cell-wide overview of localization dynamics for 31,839 transcripts and 5,314 proteins during the unfolded protein response, revealing that endoplasmic reticulum-localized transcripts are more efficiently recruited to cytosolic granules than cytosolic RNAs, and that the translation initiation factor eIF3d is key to sustaining cytoskeletal function. Overall, we provide the most comprehensive overview so far of RNA and protein subcellular localization dynamics.
Collapse
Affiliation(s)
- Eneko Villanueva
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Smith
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Mariavittoria Pizzinga
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Structural Biology Research Centre, Human Technopole, Milan, Italy
| | - Mohamed Elzek
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Rayner M L Queiroz
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Lisa M Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Oliver M Crook
- Department of Statistics, University of Oxford, Oxford, UK
| | - Mie Monti
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Veronica Dezi
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK.
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
25
|
Wang L, Song Y, Yan X, Xu T. A novel protein encoded by circVPS13D attenuates antiviral innate immunity by targeting MAVS in teleost fish. J Virol 2023; 97:e0088623. [PMID: 37843373 PMCID: PMC10688384 DOI: 10.1128/jvi.00886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE The expression of circVPS13D was upregulated with SCRV invasion, which proved that circVPS13D was involved in the regulation of the antiviral immune response. Our study revealed that the existence of circVPS13D promoted the replication of SCRV. Functionally, circVPS13D negatively regulates the antiviral responses of fish. Mechanistically, we confirmed that circVPS13D inhibited RLRs antiviral signaling pathway via the encoded protein VPS13D-170aa by targeting MAVS. Our study provided novel insights into the roles of protein-coding circRNAs and supported VPS13D-170aa as a negative regulator in the antiviral immune responses of teleost fish.
Collapse
Affiliation(s)
- Linchao Wang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanhong Song
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
26
|
Pfeifer BA, Beitelshees M, Hill A, Bassett J, Jones CH. Harnessing synthetic biology for advancing RNA therapeutics and vaccine design. NPJ Syst Biol Appl 2023; 9:60. [PMID: 38036580 PMCID: PMC10689799 DOI: 10.1038/s41540-023-00323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Recent global events have drawn into focus the diversity of options for combatting disease across a spectrum of prophylactic and therapeutic approaches. The recent success of the mRNA-based COVID-19 vaccines has paved the way for RNA-based treatments to revolutionize the pharmaceutical industry. However, historical treatment options are continuously updated and reimagined in the context of novel technical developments, such as those facilitated through the application of synthetic biology. When it comes to the development of genetic forms of therapies and vaccines, synthetic biology offers diverse tools and approaches to influence the content, dosage, and breadth of treatment with the prospect of economic advantage provided in time and cost benefits. This can be achieved by utilizing the broad tools within this discipline to enhance the functionality and efficacy of pharmaceutical agent sequences. This review will describe how synthetic biology principles can augment RNA-based treatments through optimizing not only the vaccine antigen, therapeutic construct, therapeutic activity, and delivery vector. The enhancement of RNA vaccine technology through implementing synthetic biology has the potential to shape the next generation of vaccines and therapeutics.
Collapse
Affiliation(s)
- Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | | | - Andrew Hill
- Pfizer, 66 Hudson Boulevard, New York, NY, 10001, USA
| | - Justin Bassett
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | | |
Collapse
|
27
|
Wang L, Cui X, Jiang F, Hu Y, Wan W, Li G, Lin Y, Xiao J. Circular RNA Translation in Cardiovascular Diseases. Curr Genomics 2023; 24:66-71. [PMID: 37994328 PMCID: PMC10662380 DOI: 10.2174/1389202924666230911121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/08/2023] [Accepted: 08/09/2023] [Indexed: 11/24/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous functional RNA generated by back-splicing. Recently, circRNAs have been found to have certain coding potential. Proteins/peptides translated from circRNAs play essential roles in various diseases. Here, we briefly summarize the basic knowledge and technologies that are usually applied to study circRNA translation. Then, we focus on the research progress of circRNA translation in cardiovascular diseases and discuss the perspective and future direction of translatable circRNA study in cardiovascular diseases.
Collapse
Affiliation(s)
- Lijun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinxin Cui
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Fei Jiang
- Department of Nursing, Union Hospital, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Provincial Special Reserve Talents Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yuxue Hu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Wensi Wan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yanjuan Lin
- Department of Nursing, Union Hospital, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Provincial Special Reserve Talents Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
28
|
Martin-Geary AC, Blakes AJM, Dawes R, Findlay SD, Lord J, Walker S, Talbot-Martin J, Wieder N, D’Souza EN, Fernandes M, Hilton S, Lahiri N, Campbell C, Jenkinson S, DeGoede CGEL, Anderson ER, Burge CB, Sanders SJ, Ellingford J, Baralle D, Banka S, Whiffin N. Systematic identification of disease-causing promoter and untranslated region variants in 8,040 undiagnosed individuals with rare disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295416. [PMID: 37745552 PMCID: PMC10516070 DOI: 10.1101/2023.09.12.23295416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Both promoters and untranslated regions (UTRs) have critical regulatory roles, yet variants in these regions are largely excluded from clinical genetic testing due to difficulty in interpreting pathogenicity. The extent to which these regions may harbour diagnoses for individuals with rare disease is currently unknown. Methods We present a framework for the identification and annotation of potentially deleterious proximal promoter and UTR variants in known dominant disease genes. We use this framework to annotate de novo variants (DNVs) in 8,040 undiagnosed individuals in the Genomics England 100,000 genomes project, which were subject to strict region-based filtering, clinical review, and validation studies where possible. In addition, we performed region and variant annotation-based burden testing in 7,862 unrelated probands against matched unaffected controls. Results We prioritised eleven DNVs and identified an additional variant overlapping one of the eleven. Ten of these twelve variants (82%) are in genes that are a strong match to the individual's phenotype and six had not previously been identified. Through burden testing, we did not observe a significant enrichment of potentially deleterious promoter and/or UTR variants in individuals with rare disease collectively across any of our region or variant annotations. Conclusions Overall, we demonstrate the value of screening promoters and UTRs to uncover additional diagnoses for previously undiagnosed individuals with rare disease and provide a framework for doing so without dramatically increasing interpretation burden.
Collapse
Affiliation(s)
- Alexandra C Martin-Geary
- Big Data Institute, University of Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Alexander J M Blakes
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ruebena Dawes
- Big Data Institute, University of Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Scott D Findlay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, USA
| | | | | | | | - Nechama Wieder
- Big Data Institute, University of Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Elston N D’Souza
- Big Data Institute, University of Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Maria Fernandes
- Big Data Institute, University of Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Sarah Hilton
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Nayana Lahiri
- St George’s, University of London & St George’s University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, London, SW17 0QT, UK
| | - Christopher Campbell
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Sarah Jenkinson
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Christian G E L DeGoede
- Department of Paediatric Neurology, Clinical research Facility, Lancashire Teaching Hospitals NHS Trust
- Manchester Metropolitan University
| | - Emily R Anderson
- Liverpool Centre for Genomic Medicine, Liverpool Women’s Hospital, Liverpool, UK
| | | | - Stephan J Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- New York Genome Center, New York, NY, USA
| | - Jamie Ellingford
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Nicola Whiffin
- Big Data Institute, University of Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, UK
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
29
|
Papaspyropoulos A, Hazapis O, Altulea A, Polyzou A, Verginis P, Evangelou K, Fousteri M, Papantonis A, Demaria M, Gorgoulis V. Decoding of translation-regulating entities reveals heterogeneous translation deficiency patterns in cellular senescence. Aging Cell 2023; 22:e13893. [PMID: 37547972 PMCID: PMC10497830 DOI: 10.1111/acel.13893] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 08/08/2023] Open
Abstract
Cellular senescence constitutes a generally irreversible proliferation barrier, accompanied by macromolecular damage and metabolic rewiring. Several senescence types have been identified based on the initiating stimulus, such as replicative (RS), stress-induced (SIS) and oncogene-induced senescence (OIS). These senescence subtypes are heterogeneous and often develop subset-specific phenotypes. Reduced protein synthesis is considered a senescence hallmark, but whether this trait pertains to various senescence subtypes and if distinct molecular mechanisms are involved remain largely unknown. Here, we analyze large published or experimentally produced RNA-seq and Ribo-seq datasets to determine whether major translation-regulating entities such as ribosome stalling, the presence of uORFs/dORFs and IRES elements may differentially contribute to translation deficiency in senescence subsets. We show that translation-regulating mechanisms may not be directly relevant to RS, however uORFs are significantly enriched in SIS. Interestingly, ribosome stalling, uORF/dORF patterns and IRES elements comprise predominant mechanisms upon OIS, strongly correlating with Notch pathway activation. Our study provides for the first time evidence that major translation dysregulation mechanisms/patterns occur during cellular senescence, but at different rates depending on the stimulus type. The degree at which those mechanisms accumulate directly correlates with translation deficiency levels. Our thorough analysis contributes to elucidating crucial and so far unknown differences in the translation machinery between senescence subsets.
Collapse
Affiliation(s)
- Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
- Biomedical Research FoundationAcademy of AthensAthensGreece
| | - Orsalia Hazapis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
| | - Abdullah Altulea
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center GroningenGroningenThe Netherlands
| | - Aikaterini Polyzou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
| | | | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
| | - Maria Fousteri
- Institute for Fundamental Biomedical ResearchBiomedical Sciences Research Center “Alexander Fleming”VariGreece
| | - Argyris Papantonis
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
- Center for Molecular Medicine CologneUniversity of CologneCologneGermany
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center GroningenGroningenThe Netherlands
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
- Biomedical Research FoundationAcademy of AthensAthensGreece
- Clinical Molecular PathologyMedical School, University of DundeeDundeeUK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
- Center for New Biotechnologies and Precision MedicineMedical School, National and Kapodistrian University of AthensAthensGreece
- Faculty of Health and Medical SciencesUniversity of SurreySurreyUK
| |
Collapse
|
30
|
Cheng J, Li G, Wang W, Stovall DB, Sui G, Li D. Circular RNAs with protein-coding ability in oncogenesis. Biochim Biophys Acta Rev Cancer 2023; 1878:188909. [PMID: 37172651 DOI: 10.1016/j.bbcan.2023.188909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
As ubiquitously expressed transcripts in eukaryotes, circular RNAs (circRNAs) are covalently closed and lack a 5'-cap and 3'-polyadenylation (poly (A)) tail. Initially, circRNAs were considered non-coding RNA (ncRNA), and their roles as sponging molecules to adsorb microRNAs have been extensively reported. However, in recent years, accumulating evidence has demonstrated that circRNAs could encode functional polypeptides through the initiation of translation mediated by internal ribosomal entry sites (IRESs) or N6-methyladenosine (m6A). In this review, we collectively discuss the biogenesis, cognate mRNA products, regulatory mechanisms, aberrant expression and biological phenotypes or clinical relevance of all currently reported, cancer-relevant protein-coding circRNAs. Overall, we provide a comprehensive overview of circRNA-encoded proteins and their physiological and pathological functions.
Collapse
Affiliation(s)
- Jiahui Cheng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wenmeng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Daniel B Stovall
- College of Arts and Sciences, Winthrop University, Rock Hill, SC 29733, United States
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
31
|
Siculella L, Giannotti L, Di Chiara Stanca B, Spedicato F, Calcagnile M, Quarta S, Massaro M, Damiano F. A comprehensive understanding of hnRNP A1 role in cancer: new perspectives on binding with noncoding RNA. Cancer Gene Ther 2023; 30:394-403. [PMID: 36460805 DOI: 10.1038/s41417-022-00571-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is the most abundant and ubiquitously expressed member of the heterogeneous nuclear ribonucleoproteins family (hnRNPs). hnRNP A1 is an RNA-binding protein associated with complexes active in diverse biological processes such as RNA splicing, transactivation of gene expression, and modulation of protein translation. It is overexpressed in several cancers, where it actively promotes the expression and translation of several key proteins and regulators associated with tumorigenesis and cancer progression. Interesting recent studies have focused on the RNA-binding property of hnRNP A1 and revealed previously under-explored functions of hnRNP A1 in the processing of miRNAs, and loading non-coding RNAs into exosomes. Here, we will report the recent advancements in our knowledge of the role of hnRNP A1 in the biological processes underlying cancer proliferation and growth, with a particular focus on metabolic reprogramming.
Collapse
Affiliation(s)
- Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Benedetta Di Chiara Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Francesco Spedicato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Stefano Quarta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
32
|
Wu YL, Lou XJ, Fan YJ. Role of circRNAs in gastric cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:85-91. [DOI: 10.11569/wcjd.v31.i3.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs) are a large class of non-coding RNAs with single-strand covalently closed loops, formed by reverse splicing, which widely exist in many cell lines and diverse species. Some circRNAs have highly evolutionarily conserved sequences, or tissue-specific or cell-specific expression patterns, and many circRNAs are extremely stable. In the past decades, accumulating evidence has indicated that circRNAs participate in the mechanisms associated with the development of many kinds of tumors, exert important biological functions by acting as microRNA or protein ‘sponges’, transcriptional regulatory factors, and protein translation templates, and play key roles in the occurrence and development of gastric cancer. This review comprehensively summarizes the biogenesis, characteristics, and biological functions of circRNAs, and the molecular mechanisms underlying the role of circRNAs in the carcinogenesis and progression of gastric cancer.
Collapse
Affiliation(s)
- Yu-Lin Wu
- The Fourth Clinical College of Zhejiang Chinese Medicine University, Hangzhou 310053, Zhejiang Province, China
| | - Xiao-Jun Lou
- Jiaxing Hospital of T.C.M, Jiaxing 314000, Zhejiang Province, China
| | - Yi-Jing Fan
- The Fourth Clinical College of Zhejiang Chinese Medicine University, Hangzhou 310053, Zhejiang Province, China
| |
Collapse
|
33
|
Affiliation(s)
- Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
34
|
Ruan H, Wang PC, Han L. Characterization of circular RNAs with advanced sequencing technologies in human complex diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1759. [PMID: 36164985 DOI: 10.1002/wrna.1759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/09/2022] [Accepted: 08/02/2022] [Indexed: 01/31/2023]
Abstract
Circular RNAs (circRNAs) are one category of non-coding RNAs that do not possess 5' caps and 3' free ends. Instead, they are derived in closed circle forms from pre-mRNAs by a non-canonical splicing mechanism named "back-splicing." CircRNAs were discovered four decades ago, initially called "scrambled exons." Compared to linear RNAs, the expression levels of circRNAs are considerably lower, and it is challenging to identify circRNAs specifically. Thus, the biological relevance of circRNAs has been underappreciated until the advancement of next generation sequencing (NGS) technology. The biological insights of circRNAs, such as their tissue-specific expression patterns, biogenesis factors, and functional effects in complex diseases, namely human cancers, have been extensively explored in the last decade. With the invention of the third generation sequencing (TGS) with longer sequencing reads and newly designed strategies to characterize full-length circRNAs, the panorama of circRNAs in human complex diseases could be further unveiled. In this review, we first introduce the history of circular RNA detection. Next, we describe widely adopted NGS-based methods and the recently established TGS-based approaches capable of characterizing circRNAs in full-length. We then summarize data resources and representative circRNA functional studies related to human complex diseases. In the last section, we reviewed computational tools and discuss the potential advantages of utilizing advanced sequencing approaches to a functional interpretation of full-length circRNAs in complex diseases. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Hang Ruan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Peng-Cheng Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, USA
| |
Collapse
|
35
|
5′ Untranslated mRNA Regions Allow Bypass of Host Cell Translation Inhibition by Legionella pneumophila. Infect Immun 2022; 90:e0017922. [DOI: 10.1128/iai.00179-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila
grows within membrane-bound vacuoles in alveolar macrophages during human disease. Pathogen manipulation of the host cell is driven by bacterial proteins translocated through a type IV secretion system (T4SS).
Collapse
|
36
|
Alkan F, Wilkins OG, Hernández-Pérez S, Ramalho S, Silva J, Ule J, Faller WJ. Identifying ribosome heterogeneity using ribosome profiling. Nucleic Acids Res 2022; 50:e95. [PMID: 35687114 PMCID: PMC9458444 DOI: 10.1093/nar/gkac484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
Recent studies have revealed multiple mechanisms that can lead to heterogeneity in ribosomal composition. This heterogeneity can lead to preferential translation of specific panels of mRNAs, and is defined in large part by the ribosomal protein (RP) content, amongst other things. However, it is currently unknown to what extent ribosomal composition is heterogeneous across tissues, which is compounded by a lack of tools available to study it. Here we present dripARF, a method for detecting differential RP incorporation into the ribosome using Ribosome Profiling (Ribo-seq) data. We combine the 'waste' rRNA fragment data generated in Ribo-seq with the known 3D structure of the human ribosome to predict differences in the composition of ribosomes in the material being studied. We have validated this approach using publicly available data, and have revealed a potential role for eS25/RPS25 in development. Our results indicate that ribosome heterogeneity can be detected in Ribo-seq data, providing a new method to study this phenomenon. Furthermore, with dripARF, previously published Ribo-seq data provides a wealth of new information, allowing the identification of RPs of interest in many disease and normal contexts. dripARF is available as part of the ARF R package and can be accessed through https://github.com/fallerlab/ARF.
Collapse
Affiliation(s)
- Ferhat Alkan
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Oscar G Wilkins
- The Francis Crick Institute, London, UK.,UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Sofia Ramalho
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joana Silva
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jernej Ule
- The Francis Crick Institute, London, UK.,UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK.,UK Dementia Research Institute Centre, King's College London, London, UK
| | - William J Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Wen SY, Qadir J, Yang BB. Circular RNA translation: novel protein isoforms and clinical significance. Trends Mol Med 2022; 28:405-420. [DOI: 10.1016/j.molmed.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
|
38
|
Li Y, Zhang Y, Pan T, Zhou P, Zhou W, Gao Y, Zheng S, Xu J. Shedding light on the hidden human proteome expands immunopeptidome in cancer. Brief Bioinform 2022; 23:6533503. [PMID: 35189633 DOI: 10.1093/bib/bbac034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 01/04/2023] Open
Abstract
Unrestrained cellular growth and immune escape of a tumor are associated with the incidental errors of the genome and transcriptome. Advances in next-generation sequencing have identified thousands of genomic and transcriptomic aberrations that generate variant peptides that assemble the hidden proteome, further expanding the immunopeptidome. Emerging next-generation sequencing technologies and a number of computational methods estimated the abundance of immune infiltration from bulk transcriptome have advanced our understanding of tumor microenvironments. Here, we will characterize several major types of tumor-specific antigens arising from single-nucleotide variants, insertions and deletions, gene fusion, alternative splicing, RNA editing and non-coding RNAs. Finally, we summarize the current state-of-the-art computational and experimental approaches or resources and provide an integrative pipeline for the identification of candidate tumor antigens. Together, the systematic investigation of the hidden proteome in cancer will help facilitate the development of effective and durable immunotherapy targets for cancer.
Collapse
Affiliation(s)
- Yongsheng Li
- College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou 571199, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Tao Pan
- College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou 571199, China
| | - Ping Zhou
- Department of Radiotherapy, the First Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Weiwei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yueying Gao
- College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou 571199, China
| | - Shaojiang Zheng
- Key Laboratory of Emergency and Trauma of Ministry of Education, Tumor Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
39
|
Hoque ME, Mahendran T, Basu S. Reversal of G-Quadruplexes' Role in Translation Control When Present in the Context of an IRES. Biomolecules 2022; 12:314. [PMID: 35204814 PMCID: PMC8869680 DOI: 10.3390/biom12020314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
G-quadruplexes (GQs) are secondary nucleic acid structures that play regulatory roles in various cellular processes. G-quadruplex-forming sequences present within the 5' UTR of mRNAs can function not only as repressors of translation but also as elements required for optimum function. Based upon previous reports, the majority of the 5' UTR GQ structures inhibit translation, presumably by blocking the ribosome scanning process that is essential for detection of the initiation codon. However, there are certain mRNAs containing GQs that have been identified as positive regulators of translation, as they are needed for translation initiation. While most cellular mRNAs utilize the 5' cap structure to undergo cap-dependent translation initiation, many rely on cap-independent translation under certain conditions in which the cap-dependent initiation mechanism is not viable or slowed down, for example, during development, under stress and in many diseases. Cap-independent translation mainly occurs via Internal Ribosomal Entry Sites (IRESs) that are located in the 5' UTR of mRNAs and are equipped with structural features that can recruit the ribosome or other factors to initiate translation without the need for a 5' cap. In this review, we will focus only on the role of RNA GQs present in the 5' UTR of mRNAs, where they play a critical role in translation initiation, and discuss the potential mechanism of this phenomenon, which is yet to be fully delineated.
Collapse
Affiliation(s)
| | | | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (M.E.H.); (T.M.)
| |
Collapse
|
40
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
41
|
Xu R, Yu SS, Yao RR, Tang RC, Liang JW, Pang X, Zhang J. Interferon-Inducible LINC02605 Promotes Antiviral Innate Responses by Strengthening IRF3 Nuclear Translocation. Front Immunol 2021; 12:755512. [PMID: 34804040 PMCID: PMC8602795 DOI: 10.3389/fimmu.2021.755512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022] Open
Abstract
Non-coding RNAs represent a class of important regulators in immune response. Previously, LINC02605 was identified as a candidate regulator in innate immune response by lncRNA microarray assays. In this study, we systematically analyzed the functions and the acting mechanisms of LINC02605 in antiviral innate immune response. LINC02605 was up-regulated by RNA virus, DNA virus, and type I IFNs in NF-κB and Jak-stat dependent manner. Overexpression of LINC02605 promotes RNA virus-induced type I interferon production and inhibited viral replication. Consistently, knockdown of LINC02605 resulted in reduced antiviral immune response and increased viral replication. Mechanistically, LINC02605 released the inhibition of hsa-miR-107 on the expression of phosphatase and tensin homolog (PTEN). By microRNA mimics and inhibitors, hsa-miR-107 was demonstrated to not only inhibit PTEN’s expression but also negatively regulate the antiviral immune response. Knockdown of LINC02605 led to the reduction of PTEN expression both in mRNA and protein levels. Overexpression of LINC02605 had an opposite impact. Moreover, LINC02605 attenuated the serine 97 phosphorylation level of interferon regulatory factor 3 (IRF3) by promoting PTEN expression. Nucleoplasmic fragmentation assay showed that knocking down LINC02605 inhibited the nuclear translocation of IRF3, rendering the host cells more susceptible to viral invasion, while overexpression showed opposite effects. Therefore, LINC02605 is an induced lncRNA by viral infection and plays a positive feedback in antiviral immune response through modulating the nuclear translocation of IRF3.
Collapse
Affiliation(s)
- Rui Xu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Shuang-Shuang Yu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Ran-Ran Yao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Rong-Chun Tang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Jia-Wei Liang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Xuewen Pang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| |
Collapse
|
42
|
Nahalka J. Theoretical Analysis of S, M and N Structural Proteins by the Protein-RNA Recognition Code Leads to Genes/proteins that Are Relevant to the SARS-CoV-2 Life Cycle and Pathogenesis. Front Genet 2021; 12:763995. [PMID: 34659373 PMCID: PMC8511677 DOI: 10.3389/fgene.2021.763995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
In this conceptual review, based on the protein-RNA recognition code, some theoretical sequences were detected in the spike (S), membrane (M) and capsid (N) proteins that may post-transcriptionally regulate the host genes/proteins in immune homeostasis, pulmonary epithelial tissue homeostasis, and lipid homeostasis. According to the review of literature, the spectrum of identified genes/proteins shows that the virus promotes IL1α/β-IL1R1 signaling (type 1 immunity) and immunity defense against helminths and venoms (type 2 immunity). In the alteration of homeostasis in the pulmonary epithelial tissue, the virus blocks the function of cilia and the molecular programs that are involved in wound healing (EMT and MET). Additionally, the protein-RNA recognition method described here identifies compatible sequences in the S1A-domain for the post-transcriptional promotion of PIKFYVE, which is one of the critical factors for SARS-CoV-2 entry to the host cell, and for the post-transcriptional repression of xylulokinase XYLB. A decrease in XYLB product (Xu5P) in plasma was proposed as one of the potential metabolomics biomarkers of COVID-19. In summary, the protein-RNA recognition code leads to protein genes relevant to the SARS-CoV-2 life cycle and pathogenesis.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
43
|
Lv D, Chang Z, Cai Y, Li J, Wang L, Jiang Q, Xu K, Ding N, Li X, Xu J, Li Y. TransLnc: a comprehensive resource for translatable lncRNAs extends immunopeptidome. Nucleic Acids Res 2021; 50:D413-D420. [PMID: 34570220 PMCID: PMC8728190 DOI: 10.1093/nar/gkab847] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
LncRNAs are not only well-known as non-coding elements, but also serve as templates for peptide translation, playing important roles in fundamental cellular processes and diseases. Here, we describe a database, TransLnc (http://bio-bigdata.hrbmu.edu.cn/TransLnc/), which aims to provide comprehensive experimentally supported and predicted lncRNA peptides in multiple species. TransLnc currently documents approximate 583 840 peptides encoded by 33 094 lncRNAs. Six types of direct and indirect evidences supporting the coding potential of lncRNAs were integrated, and 65.28% peptides entries were with at least one type of evidence. Considering the strong tissue-specific expression of lncRNAs, TransLnc allows users to access lncRNA peptides in any of the 34 tissues involved in. In addition, both the unique characteristic and homology relationship were also predicted and provided. Importantly, TransLnc provides computationally predicted tumour neoantigens from peptides encoded by lncRNAs, which would provide novel insights into cancer immunotherapy. There were 220 791 and 237 915 candidate neoantigens binding by major histocompatibility complex (MHC) class I or II molecules, respectively. Several flexible tools were developed to aid retrieve and analyse, particularly lncRNAs tissue expression patterns, clinical relevance across cancer types. TransLnc will serve as a valuable resource for investigating the translation capacity of lncRNAs and greatly extends the cancer immunopeptidome.
Collapse
Affiliation(s)
- Dezhong Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Zhenghong Chang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Yangyang Cai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Junyi Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Liping Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qiushuang Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Kang Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
| | - Yongsheng Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
| |
Collapse
|
44
|
Zhang W, Liu Y, Min Z, Liang G, Mo J, Ju Z, Zeng B, Guan W, Zhang Y, Chen J, Zhang Q, Li H, Zeng C, Wei Y, Chan GCF. circMine: a comprehensive database to integrate, analyze and visualize human disease-related circRNA transcriptome. Nucleic Acids Res 2021; 50:D83-D92. [PMID: 34530446 PMCID: PMC8728235 DOI: 10.1093/nar/gkab809] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Many circRNA transcriptome data were deposited in public resources, but these data show great heterogeneity. Researchers without bioinformatics skills have difficulty in investigating these invaluable data or their own data. Here, we specifically designed circMine (http://hpcc.siat.ac.cn/circmine and http://www.biomedical-web.com/circmine/) that provides 1 821 448 entries formed by 136 871 circRNAs, 87 diseases and 120 circRNA transcriptome datasets of 1107 samples across 31 human body sites. circMine further provides 13 online analytical functions to comprehensively investigate these datasets to evaluate the clinical and biological significance of circRNA. To improve the data applicability, each dataset was standardized and annotated with relevant clinical information. All of the 13 analytic functions allow users to group samples based on their clinical data and assign different parameters for different analyses, and enable them to perform these analyses using their own circRNA transcriptomes. Moreover, three additional tools were developed in circMine to systematically discover the circRNA-miRNA interaction and circRNA translatability. For example, we systematically discovered five potential translatable circRNAs associated with prostate cancer progression using circMine. In summary, circMine provides user-friendly web interfaces to browse, search, analyze and download data freely, and submit new data for further integration, and it can be an important resource to discover significant circRNA in different diseases.
Collapse
Affiliation(s)
- Wenliang Zhang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518053, China
| | - Yang Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Department of Gastroenterology and Hepatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China.,Experimental Training Management Center, Jilin Business and Technology, Jilin Province 130507, China
| | - Zhuochao Min
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Guodong Liang
- Department of Colorectal and Stomach Cancer Surgery, Jilin Cancer Hospital, Changchun, Jilin 130000, China
| | - Jing Mo
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518053, China
| | - Zhen Ju
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Binghui Zeng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.,Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518053, China
| | - Wen Guan
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518053, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Yan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jianliang Chen
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China
| | - Qianshen Zhang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China
| | - Hanguang Li
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China
| | - Chunxia Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yanjie Wei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China.,Department of Pediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong 999077, China
| |
Collapse
|
45
|
Sinha T, Panigrahi C, Das D, Chandra Panda A. Circular RNA translation, a path to hidden proteome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1685. [PMID: 34342387 DOI: 10.1002/wrna.1685] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/06/2022]
Abstract
Functional proteins in the cell are translated from the messenger RNA (mRNA) molecules, constituting less than 5% of the cellular transcriptome. The majority of the RNA molecules in the cell are noncoding RNAs, including rRNA, tRNA, snRNA, piRNA, lncRNA, microRNA, and poorly characterized circular RNAs (circRNAs). Recent studies established that circRNAs regulate gene expression by associating with RNA-binding proteins and microRNAs. With the growing understanding of circRNA functions, a subset of circRNAs has been reported to translate into proteins. Interestingly, the presence of Open Reading Frames (ORFs), N6-methyladenosine (m6A) modifications, and internal ribosomal entry sites (IRES) in the circRNA sequences indicate their coding potential through the cap-independent translation initiation mechanism. The purpose of this review is to highlight the mechanism of circRNA translation and the importance of circRNA-encoded proteins (circ-proteins) in cellular physiology and pathology. Here, we discuss the computational and molecular methods currently utilized to systematically identify translatable circRNAs and the functional characterization of the circ-proteins. We foresee that the ongoing and future studies on circRNA translation will uncover the hidden proteome and their therapeutic implications in human health. This article is categorized under: RNA Methods > RNA Analyses in Cells Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Translation > Mechanisms.
Collapse
Affiliation(s)
- Tanvi Sinha
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Chirag Panigrahi
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Debojyoti Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | |
Collapse
|
46
|
Radanova M, Mihaylova G, Nazifova-Tasinova N, Levkova M, Tasinov O, Ivanova D, Mihaylova Z, Donev I. Oncogenic Functions and Clinical Significance of Circular RNAs in Colorectal Cancer. Cancers (Basel) 2021; 13:3395. [PMID: 34298612 PMCID: PMC8303601 DOI: 10.3390/cancers13143395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is ranked as the second most commonly diagnosed disease in females and the third in males worldwide. Therefore, the finding of new more reliable biomarkers for early diagnosis, for prediction of metastasis, and resistance to conventional therapies is an important challenge in overcoming the disease. The current review presents circular RNAs (circRNAs) with their unique features as potential prognostic and diagnostic biomarkers in CRC. The review highlights the mechanism of action and the role of circRNAs with oncogenic functions in the CRC as well as the association between their expression and clinicopathological characteristics of CRC patients. The comprehension of the role of oncogenic circRNAs in CRC pathogenesis is growing rapidly and the next step is using them as suitable new drug targets in the personalized treatment of CRC patients.
Collapse
Affiliation(s)
- Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
- Laboratory of Molecular Pathology, University Hospital “St. Marina”, 9000 Varna, Bulgaria
| | - Galya Mihaylova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Neshe Nazifova-Tasinova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Mariya Levkova
- Department of Medical Genetics, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Oskan Tasinov
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Desislava Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Zhasmina Mihaylova
- Clinic of Medical Oncology, Military Medical Academy, 1000 Sofia, Bulgaria;
| | - Ivan Donev
- Clinic of Medical Oncology, Hospital Nadezhda, 1000 Sofia, Bulgaria
| |
Collapse
|
47
|
Lu Y, Li Z, Lin C, Zhang J, Shen Z. Translation role of circRNAs in cancers. J Clin Lab Anal 2021; 35:e23866. [PMID: 34097315 PMCID: PMC8275004 DOI: 10.1002/jcla.23866] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) constitute a class of covalently closed RNA molecules. With the continuous advancement of high‐throughput sequencing technology and bioinformatics tools, many circRNAs have been identified in various human tissues and cell lines. Notably, recent studies have indicated that some circRNAs have translational functions. Internal ribosome entry sites and the N6‐methyladenosine modification mediate cap‐independent translation. This review describes these two translation mechanisms and verification methods at the molecular level. Databases (including ORF Finder, Pfam, BLASTp, CircRNADb, CircBase, CircPro, CircCode, IRESite, IRESbase) were used to analyze whether circRNAs have the structural characteristic of translation. CircRNA minigene reporter system containing green fluorescent protein (GFP) confirmed the translation potential of circRNAs. Also, we briefly summarize the roles of proteins/peptides encoded by circRNAs (circFBXW7, circFNDC3B, circLgr4, circPPP1R12A, circMAPK1, circβ‐catenin, circGprc5a, circ‐SHPRH, circPINTexon2, circAKT3) that have been verified thus far in human cancers (triple‐negative breast cancer, colon cancer, gastric cancer, hepatocellular carcinoma, bladder cancer, glioblastoma). Those findings suggest circRNAs have a great implication in translation of the human genome.
Collapse
Affiliation(s)
- Yaqin Lu
- Ningbo University School of MedicineNingboChina
| | - Zhe Li
- Ningbo University School of MedicineNingboChina
| | - Chen Lin
- Ningbo University School of MedicineNingboChina
| | - Jian Zhang
- Li Huili Hospital Affiliated to Ningbo University SchoolNingboChina
| | - Zhisen Shen
- Li Huili Hospital Affiliated to Ningbo University SchoolNingboChina
| |
Collapse
|
48
|
Unconventional viral gene expression mechanisms as therapeutic targets. Nature 2021; 593:362-371. [PMID: 34012080 DOI: 10.1038/s41586-021-03511-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Unlike the human genome that comprises mostly noncoding and regulatory sequences, viruses have evolved under the constraints of maintaining a small genome size while expanding the efficiency of their coding and regulatory sequences. As a result, viruses use strategies of transcription and translation in which one or more of the steps in the conventional gene-protein production line are altered. These alternative strategies of viral gene expression (also known as gene recoding) can be uniquely brought about by dedicated viral enzymes or by co-opting host factors (known as host dependencies). Targeting these unique enzymatic activities and host factors exposes vulnerabilities of a virus and provides a paradigm for the design of novel antiviral therapies. In this Review, we describe the types and mechanisms of unconventional gene and protein expression in viruses, and provide a perspective on how future basic mechanistic work could inform translational efforts that are aimed at viral eradication.
Collapse
|
49
|
Yang TH, Wang CY, Tsai HC, Liu CT. Human IRES Atlas: an integrative platform for studying IRES-driven translational regulation in humans. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6263636. [PMID: 33942874 PMCID: PMC8094437 DOI: 10.1093/database/baab025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022]
Abstract
It is now known that cap-independent translation initiation facilitated by internal ribosome entry sites (IRESs) is vital in selective cellular protein synthesis under stress and different physiological conditions. However, three problems make it hard to understand transcriptome-wide cellular IRES-mediated translation initiation mechanisms: (i) complex interplay between IRESs and other translation initiation–related information, (ii) reliability issue of in silico cellular IRES investigation and (iii) labor-intensive in vivo IRES identification. In this research, we constructed the Human IRES Atlas database for a comprehensive understanding of cellular IRESs in humans. First, currently available and suitable IRES prediction tools (IRESfinder, PatSearch and IRESpy) were used to obtain transcriptome-wide human IRESs. Then, we collected eight genres of translation initiation–related features to help study the potential molecular mechanisms of each of the putative IRESs. Three functional tests (conservation, structural RNA–protein scores and conditional translation efficiency) were devised to evaluate the functionality of the identified putative IRESs. Moreover, an easy-to-use interface and an IRES–translation initiation interaction map for each gene transcript were implemented to help understand the interactions between IRESs and translation initiation–related features. Researchers can easily search/browse an IRES of interest using the web interface and deduce testable mechanism hypotheses of human IRES-driven translation initiation based on the integrated results. In summary, Human IRES Atlas integrates putative IRES elements and translation initiation–related experiments for better usage of these data and deduction of mechanism hypotheses. Database URL: http://cobishss0.im.nuk.edu.tw/Human_IRES_Atlas/
Collapse
Affiliation(s)
- Tzu-Hsien Yang
- Department of Information Management, National University of Kaohsiung, 700, Kaohsiung University Rd., Nanzih District, Kaohsiung, Taiwan 811, Republic of China
| | - Chung-Yu Wang
- Department of Information Management, National University of Kaohsiung, 700, Kaohsiung University Rd., Nanzih District, Kaohsiung, Taiwan 811, Republic of China
| | - Hsiu-Chun Tsai
- Department of Information Management, National University of Kaohsiung, 700, Kaohsiung University Rd., Nanzih District, Kaohsiung, Taiwan 811, Republic of China
| | - Cheng-Tse Liu
- Department of Information Management, National University of Kaohsiung, 700, Kaohsiung University Rd., Nanzih District, Kaohsiung, Taiwan 811, Republic of China
| |
Collapse
|
50
|
A PRC2-independent function for EZH2 in regulating rRNA 2'-O methylation and IRES-dependent translation. Nat Cell Biol 2021; 23:341-354. [PMID: 33795875 DOI: 10.1038/s41556-021-00653-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022]
Abstract
Dysregulated translation is a common feature of cancer. Uncovering its governing factors and underlying mechanism are important for cancer therapy. Here, we report that enhancer of zeste homologue 2 (EZH2), previously known as a transcription repressor and lysine methyltransferase, can directly interact with fibrillarin (FBL) to exert its role in translational regulation. We demonstrate that EZH2 enhances rRNA 2'-O methylation via its direct interaction with FBL. Mechanistically, EZH2 strengthens the FBL-NOP56 interaction and facilitates the assembly of box C/D small nucleolar ribonucleoprotein. Strikingly, EZH2 deficiency impairs the translation process globally and reduces internal ribosome entry site (IRES)-dependent translation initiation in cancer cells. Our findings reveal a previously unrecognized role of EZH2 in cancer-related translational regulation.
Collapse
|