1
|
Xu J, Li T, Li F, Qiang H, Wei X, Zhan R, Chen Y. The applications and mechanisms of Rosmarinus officinalis L. in the management of different wounds and UV-irradiated skin. Front Pharmacol 2025; 15:1461790. [PMID: 39840083 PMCID: PMC11747526 DOI: 10.3389/fphar.2024.1461790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Chronic wounds, especially non-healing wounds, significantly affect patients' quality of life and raise the costs of therapy. Wound healing is a complicated process involving interdependent stages, which may be impaired and delayed by infections with multi-drug resistant pathogens. Current medical strategies for wound healing, especially the treatment of non-healing wounds, exert limited therapeutic effects, thus become a dramatic challenge for modern medicine. There has been growing interest in exploring complementary approaches to enhance the wound healing process, and complementary therapy using herbs and their related products has gained increasing attention. Apart from skin wounds, dermal pathological changes caused by UV irradiation, may also benefit from such complementary therapy. The antimicrobial, anti-inflammatory, antioxidant, analgesic and collagen-promoting properties of extract from Rosmarinus officinalis L. (rosemary) have all been considered to contribute to the beneficial effects on different stages and multiple aspects of skin recovery after various wounds or UV irradiation. This review aims to summarize the applications and their underlying mechanisms of rosemary as part of the complementary therapy for injured and UV-irradiated skin based on the currently available evidence. The medicinal properties of rosemary and its application in wound dressing are first discussed, followed by summarization of its application in different types of wounds. A conclusion is reached and future directions are discussed. As research in this area continue to evolve, rosemary-derived products may become an integral part of holistic wound care strategies, offering a complementary approach to conventional treatments.
Collapse
Affiliation(s)
- Jianwen Xu
- Department of Nursing, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Ting Li
- Department of Nursing, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Fei Li
- Department of Neurology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Hong Qiang
- Department of Nursing, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaoxiao Wei
- Department of Nursing, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiwen Zhan
- Special Committee of Scientific Research, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yun Chen
- Wound Clinic, Department of General Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Bin Rubaian NF, Alzamami HFA, Amir BA. An Overview of Commonly Used Natural Alternatives for the Treatment of Androgenetic Alopecia, with Special Emphasis on Rosemary Oil. Clin Cosmet Investig Dermatol 2024; 17:2495-2503. [PMID: 39524109 PMCID: PMC11549889 DOI: 10.2147/ccid.s470989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Androgenetic alopecia is a chronic dermatological condition in which genetically predisposed individuals undergo progressive hair loss secondary to the effects of circulating androgens. It has been well documented that dihydrotestosterone binds to the androgenic receptors prevalent in the scalp, thus inducing miniaturization of the hair follicle. To date, the only FDA approved medications for the treatment of androgenetic alopecia are finasteride and minoxidil. A plethora of studies have been conducted testing the efficacy of various herbal compounds, but additional research is needed to further establish the concrete efficacy of such natural remedies in treating androgenetic alopecia. Of late, rosemary oil has gained mass popularity as a promising natural alternative. This review article will not only provide a detailed background on this ancient herbal component but will additionally overview all other major herbal alternatives including peppermint oil, tea tree oil, green tea, pumpkin seed oil, saw palmetto, and lavender oil and will summarize the latest clinical studies, which have tested their efficacy for the management of androgenetic alopecia.
Collapse
Affiliation(s)
- Nouf F Bin Rubaian
- Dermatology Department of King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Al Khobar, Saudi Arabia
| | - Haya Fahad Abdulaziz Alzamami
- Dermatology Department of King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Al Khobar, Saudi Arabia
| | - Baraa Abdulrazack Amir
- College of Medicine, Department of Medicine, Imam Abdulrahman Bin Faisal University, Al Khobar, Saudi Arabia
| |
Collapse
|
3
|
Zheng S, Deng R, Huang G, Ou Z, Shen Z. Screening the active ingredients of plants via molecular docking technology and evaluating their ability to reduce skin photoaging. Biogerontology 2024; 25:1115-1143. [PMID: 39312047 DOI: 10.1007/s10522-024-10125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 10/18/2024]
Abstract
The active ingredients of plants were screened by molecular docking technology and the result were verified. According to the verification results of molecular docking, the five active ingredients were combined in equal proportions to form a compound drug. In the HaCaT photoaging model, the effects of the compound drug on antioxidant and senescence-associated secretory phenotype (SASP) factors of the NF-κB and MAPK pathways were studied via SOD and MDA kits, DCFH-DA fluorescent probes and ELISA. In the skin photoaging model, the effects of the compound drug on antioxidants and the SASP factors of the NF-κB and MAPK pathways were studied via SOD, MDA, and CAT kits and ELISA. The results revealed that the compound drug increased SOD activity, decreased the MDA content and intracellular ROS, inhibited IL-6 in the NF-κB pathway, and inhibited MMP-1 and collagen I in the MAPK pathway. The results of HE, Masson and Victoria blue skin staining revealed that the compound drug inhibited abnormal thickening of the epidermis, abnormal breaking and accumulation of collagen fibers and elastic fibers, and maintained their orderly arrangement. Moreover, the results revealed that the compound drug increased SOD, CAT and collagen I, and reduced the MDA content, the SASP factors IL-6 and TNF-α of the NF-κB pathway, and the SASP factors MMP-1 of the MAPK pathway. The above results indicate that the active ingredients of the compound drug screened by molecular docking have the potential to reduce skin photoaging.
Collapse
Affiliation(s)
- Shiqian Zheng
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Rongrong Deng
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Gengjiu Huang
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Zhiwen Ou
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China
| | - Zhibin Shen
- Guangdong Botanical Beauty Care Biotechnology Co., Ltd, Guangzhou, China.
| |
Collapse
|
4
|
Calvo MJ, Navarro C, Durán P, Galan-Freyle NJ, Parra Hernández LA, Pacheco-Londoño LC, Castelanich D, Bermúdez V, Chacin M. Antioxidants in Photoaging: From Molecular Insights to Clinical Applications. Int J Mol Sci 2024; 25:2403. [PMID: 38397077 PMCID: PMC10889126 DOI: 10.3390/ijms25042403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Photoaging (PA) is considered a silent disease affecting millions of people globally and is defined as skin damage due to prolonged exposure to ultraviolet radiation (UVR) from the sun. Physiologically, the skin is in a state of renewal and synthesis of components of the extracellular matrix (ECM). However, exposure to UVR affects the production of the ECM, and the functioning and response of skin cells to UVR begins to change, thus expressing clinical and phenotypic characteristics of PA. The primary mechanisms involved in PA are direct damage to the DNA of skin cells, increases in oxidative stress, the activation of cell signaling pathways responsible for the loss of skin integrity, and cytotoxicity. The medical and scientific community has been researching new therapeutic tools that counteract PA, considering that the damage caused by UVR exceeds the antioxidant defense mechanisms of the skin. Thus, in recent years, certain nutraceuticals and phytochemicals have been found to exhibit potential antioxidant and photoprotective effects. Therefore, the main objective of this review is to elucidate the molecular bases of PA and the latest pharmaceutical industry findings on antioxidant treatment against the progression of PA.
Collapse
Affiliation(s)
- María José Calvo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela (C.N.); (P.D.)
| | - Carolina Navarro
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela (C.N.); (P.D.)
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4001, Venezuela (C.N.); (P.D.)
| | - Nataly J. Galan-Freyle
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla 080003, Colombia; (N.J.G.-F.); (L.C.P.-L.); (V.B.)
| | - Luis Alberto Parra Hernández
- International Society for Non-Surgical Facial Rejuvenation (SIRF), Barranquilla 080003, Colombia; (L.A.P.H.); (D.C.)
| | - Leonardo C Pacheco-Londoño
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla 080003, Colombia; (N.J.G.-F.); (L.C.P.-L.); (V.B.)
| | - Desiree Castelanich
- International Society for Non-Surgical Facial Rejuvenation (SIRF), Barranquilla 080003, Colombia; (L.A.P.H.); (D.C.)
- Argentine Society of Dermatology, Buenos Aires B1228, Argentina
| | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla 080003, Colombia; (N.J.G.-F.); (L.C.P.-L.); (V.B.)
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080003, Colombia
| | - Maricarmen Chacin
- Centro de Investigaciones en Ciencias de la Vida (CICV), Universidad Simón Bolívar, Barranquilla 080003, Colombia; (N.J.G.-F.); (L.C.P.-L.); (V.B.)
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080003, Colombia
| |
Collapse
|
5
|
Tremêa GTF, Kleibert KRU, Krause LS, Fell APW, Scapini AR, Marschall KW, Baiotto CS, da Silva MHT, da Silva JAG, Colet CDF. Aesthetic Radiofrequency Associated with Rosmarinus officinalis Supplementation is Safe and Reduces Oxidative Stress in Women: Randomized, and Double-Blind Clinical Trial. J Evid Based Integr Med 2024; 29:2515690X241246293. [PMID: 39135397 PMCID: PMC11320689 DOI: 10.1177/2515690x241246293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/17/2023] [Accepted: 03/05/2024] [Indexed: 08/15/2024] Open
Abstract
The objective were to evaluate the effects of supplementation of standardized dry extract of Rosmarinus officinalis (RO) and the application of aesthetic radiofrequency on the oxidative stress markers catalase (CAT), superoxide dismutase (SOD), non-protein thiols (NP-SH), and thiobarbituric acid reactive species (TBARS) and the biochemical markers triglycerides, total cholesterol, high density lipoprotein (HDL) cholesterol, glutamic-oxaloacetic transaminase (TGO/AST), pyruvic-glutamic transaminase (TGP/ALT), gamma glutamyl transpeptidase (gamma-GT), and creatinine. This study included 32 women received the aesthetic therapy to reduce localized fat. They were divided into the control group (n = 8) receiving placebo capsules and the intervention group (n = 24) subdivided into Group A, B, and C, each with eight members receiving supplementation with 100, 500, and 1000 mg/day of standardized dry extract of RO, respectively. The Universal Trial Number (UTN) - U1111-1274-6255. Supplementation with RO (500 mg/day) demonstrated a reduction in oxidative stress (quantified with through a significant increase in NP-SH and a reduction in SOD and CAT enzymes). The radiofrequency aesthetic treatment did not promote an increase in oxidative stress; however, it caused significant changes in total cholesterol, HDL cholesterol, and creatinine. RO is a plant with antioxidant effects and its oral consumption is safe in selected women subjects in hepatic and renal markers.
Collapse
Affiliation(s)
| | | | | | - Ana Paula Weber Fell
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul – UNIJUÍ, Ijui, Brazil
| | - Anais Regina Scapini
- Universidade Regional do Noroeste do Estado do Rio Grande do Sul – UNIJUÍ, Ijui, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Townsend JR, Kirby TO, Sapp PA, Gonzalez AM, Marshall TM, Esposito R. Nutrient synergy: definition, evidence, and future directions. Front Nutr 2023; 10:1279925. [PMID: 37899823 PMCID: PMC10600480 DOI: 10.3389/fnut.2023.1279925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Nutrient synergy refers to the concept that the combined effects of two or more nutrients working together have a greater physiological impact on the body than when each nutrient is consumed individually. While nutrition science traditionally focuses on isolating single nutrients to study their effects, it is recognized that nutrients interact in complex ways, and their combined consumption can lead to additive effects. Additionally, the Dietary Reference Intakes (DRIs) provide guidelines to prevent nutrient deficiencies and excessive intake but are not designed to assess the potential synergistic effects of consuming nutrients together. Even the term synergy is often applied in different manners depending on the scientific discipline. Considering these issues, the aim of this narrative review is to investigate the potential health benefits of consuming different nutrients and nutrient supplements in combination, a concept we define as nutrient synergy, which has gained considerable attention for its impact on overall well-being. We will examine how nutrient synergy affects major bodily systems, influencing systemic health. Additionally, we will address the challenges associated with promoting and conducting research on this topic, while proposing potential solutions to enhance the quality and quantity of scientific literature on nutrient synergy.
Collapse
Affiliation(s)
- Jeremy R. Townsend
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
- Health & Human Performance, Concordia University Chicago, River Forest, IL, United States
| | - Trevor O. Kirby
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
| | - Philip A. Sapp
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
| | - Adam M. Gonzalez
- Department of Allied Health and Kinesiology, Hofstra University, Hempstead, NY, United States
| | - Tess M. Marshall
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
| | - Ralph Esposito
- Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
- Department of Nutrition, Food Studies, and Public Health, New York University-Steinhardt, New York, NY, United States
| |
Collapse
|
7
|
Wang X, Zhang Y, Wang D, Su N, Yang L, Fu H, Zhang J, Li M, Wang C. Protective effects of Aureobasidium pullulans lysate on UV-damaged human skin fibroblasts and HaCaT cells. BIORESOUR BIOPROCESS 2023; 10:55. [PMID: 38647892 PMCID: PMC10992526 DOI: 10.1186/s40643-023-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/16/2023] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Aureobasidium pullulans (A. pullulans) has a wide range of applications. Ultraviolet (UV) rays from the sun can cause skin photoaging. In order to explore the protective effect and application potential of A. pullulans lysate on UV-damaged human skin fibroblasts (HSF) and HaCaT Cells, this study investigates the anti-aging and anti-inflammatory effects of A. pullulans lysate as well as the mechanism of anti-oxidative stress at the cellular and molecular levels through cytotoxicity experiments, enzyme-linked immunosorbent assays (ELISA), and real-time quantitative PCR (RT-qPCR). RESULTS The experimental results have shown that the A. pullulans lysate can effectively reduce the loss of extracellular matrix components (EMC), such as collagen and hyaluronic acid (HA). It is also capable of scavenging excess reactive oxygen species (ROS) from the body, thereby increasing the activity of catalase, decreasing the overexpression of intracellular matrix metalloproteinases (MMPs), enhancing the gene expression of metalloproteinase inhibitors (TIMPs), and decreasing the level of inflammatory factors, reducing UV-induced apoptosis of HaCaT cells. Meanwhile, oxidative stress homeostasis is also regulated through the Nrf2/Keap1 and MAPK signaling pathways. CONCLUSIONS This study shows that the A. pullulans lysate has the potential to resist photoaging.
Collapse
Affiliation(s)
- Xin Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yongtao Zhang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Dongdong Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Ning Su
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Li Yang
- Beijing Sino-German Union Cosmetic Institute Co., Ltd, Beijing, People's Republic of China
| | - Hao Fu
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Jiachan Zhang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Meng Li
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China.
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China.
| | - Changtao Wang
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, People's Republic of China
- Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, People's Republic of China
| |
Collapse
|
8
|
Li Pomi F, Papa V, Borgia F, Vaccaro M, Allegra A, Cicero N, Gangemi S. Rosmarinus officinalis and Skin: Antioxidant Activity and Possible Therapeutical Role in Cutaneous Diseases. Antioxidants (Basel) 2023; 12:antiox12030680. [PMID: 36978928 PMCID: PMC10045493 DOI: 10.3390/antiox12030680] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The rosemary plant, Rosmarinus officinalis L., one of the main members of the Lamiaceae family, is currently one of the most promising herbal medicines due to its pharmaceutical properties. This research aimed to evaluate the antioxidant role of Rosmarinus officinalis and its bioactive compounds on the skin, with a focus on the newly emerging molecular mechanisms involved, providing extensive scientific evidence of its anti-inflammatory, antimicrobial, wound-healing and anticancer activity in dermatological practice. The search was conducted on articles concerning in vitro and in vivo studies in both animals and humans. The results obtained confirm the antioxidant role of R. officinalis. This assumption derives the possibility of using R. officinalis or its bioactive elements for the treatment of inflammatory and infectious skin pathologies. However, although the use of rosemary in the treatment of skin diseases represents a fascinating line of research, future perspectives still require large and controlled clinical trials in order to definitively elucidate the real impact of this plant and its components in clinical practice.
Collapse
Affiliation(s)
- Federica Li Pomi
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
9
|
Anbualakan K, Tajul Urus NQ, Makpol S, Jamil A, Mohd Ramli ES, Md Pauzi SH, Muhammad N. A Scoping Review on the Effects of Carotenoids and Flavonoids on Skin Damage Due to Ultraviolet Radiation. Nutrients 2022; 15:92. [PMID: 36615749 PMCID: PMC9824837 DOI: 10.3390/nu15010092] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Skin exposure to ultraviolet (UV) rays in the sun causes premature ageing and may predispose to skin cancers. UV radiation generates excessive free radical species, resulting in oxidative stress, which is responsible for cellular and DNA damage. There is growing evidence that phytonutrients such as flavonoids and carotenoids may impede oxidative stress and prevent photodamage. We conducted a systematic review of the literature to explore the effects of certain phytonutrients in preventing skin photodamage. We searched the electronic Medline (Ovid) and Pubmed databases for relevant studies published between 2002 and 2022. The main inclusion criteria were articles written in English, and studies reporting the effects of phytonutrient-containing plants of interest on the skin or skin cells exposed to UV radiation. We focused on tea, blueberries, lemon, carrot, tomato, and grapes, which are rich in flavonoids and/or carotenoids. Out of 434 articles retrieved, 40 were identified as potentially relevant. Based on our inclusion criteria, nine articles were included in the review. The review comprises three combined in vitro and animal studies, four human studies, one in vitro research, and one mixed in vitro and human study. All the studies reported positive effects of flavonoids and carotenoid-containing plant extract on UV-induced skin damage. This evidence-based review highlights the potential use of flavonoids and carotenoids found in plants in preventing the deleterious effects of UV radiation on the skin. These compounds may have a role in clinical and aesthetic applications for the prevention and treatment of sunburn and photoaging, and may potentially be used against UV-related skin cancers.
Collapse
Affiliation(s)
- Kirushmita Anbualakan
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nur Qisti Tajul Urus
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adawiyah Jamil
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Suria Hayati Md Pauzi
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Paradoxical Radiosensitizing Effect of Carnosic Acid on B16F10 Metastatic Melanoma Cells: A New Treatment Strategy. Antioxidants (Basel) 2022; 11:antiox11112166. [PMID: 36358539 PMCID: PMC9686564 DOI: 10.3390/antiox11112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Carnosic acid (CA) is a phenolic diterpene characterized by its high antioxidant activity; it is used in industrial, cosmetic, and nutritional applications. We evaluated the radioprotective capacity of CA on cells directly exposed to X-rays and non-irradiated cells that received signals from X-ray treated cells (radiation induced bystander effect, RIBE). The genoprotective capacity was studied by in vivo and in vitro micronucleus assays. Radioprotective capacity was evaluated by clonogenic cell survival, MTT, apoptosis and intracellular glutathione assays comparing radiosensitive cells (human prostate epithelium, PNT2) with radioresistant cells (murine metastatic melanoma, B16F10). CA was found to exhibit a genoprotective capacity in cells exposed to radiation (p < 0.001) and in RIBE (p < 0.01). In PNT2 cells, considered as normal cells in our study, CA achieved 97% cell survival after exposure to 20 Gy of X-rays, eliminating 67% of radiation-induced cell death (p < 0.001), decreasing apoptosis (p < 0.001), and increasing the GSH/GSSH ratio (p < 0.01). However, the administration of CA to B16F10 cells decreased cell survival by 32%, increased cell death by 200% (p < 0.001) compared to irradiated cells, and increased cell death by 100% (p < 0.001) in RIBE bystander cells (p < 0.01). Furthermore, it increased apoptosis (p < 0.001) and decreased the GSH/GSSG ratio (p < 0.01), expressing a paradoxical radiosensitizing effect in these cells. Knowing the potential mechanisms of action of substances such as CA could help to create new applications that would protect healthy cells and exclusively damage neoplastic cells, thus presenting a new desirable strategy for cancer patients in need of radiotherapy.
Collapse
|
11
|
Photoprotective effect of 18β-glycyrrhetinic acid derivatives against ultra violet (UV)-B-Induced skin aging. Bioorg Med Chem Lett 2022; 76:128984. [PMID: 36167293 DOI: 10.1016/j.bmcl.2022.128984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/07/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Excessive exposure to sun can harm the skin, causing sunburn, photo-aging, and even skin cancer. Different benzylidene derivatives (A02-A18 and A19-A34) of 18β-Glycyrrhetinic acid (A01) were designed and synthesized in an effort to discover photo-protective compounds against UV-B -induced skin aging. The synthesized derivatives were subjected to cellular viability test using MTT assay in primary Human Dermal Fibroblasts (HDFs). The results indicate A01, A05, A15, A22, A23, A25, A26, A28, A29, A32, A33, and A34 significantly enhanced cell viability of HDFs. Compound A33 at 10 and 25 μM showed a significant photo-protective effect against UV-B (10 mJ/cm2) -induced damage in HDFs. A33 at 25 μM significantly restored the UV-B -induced damage via its potent anti-oxidant, anti-apoptotic effects and ability to prevent collagen degradation. These findings pave the way for further development of A33 as a photo-protective skin agent.
Collapse
|
12
|
Beyond aroma: A review on advanced extraction processes from rosemary (Rosmarinus officinalis) and sage (Salvia officinalis) to produce phenolic acids and diterpenes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Siddiqui SA, Bahmid NA, Taha A, Khalifa I, Khan S, Rostamabadi H, Jafari SM. Recent advances in food applications of phenolic-loaded micro/nanodelivery systems. Crit Rev Food Sci Nutr 2022; 63:8939-8959. [PMID: 35426751 DOI: 10.1080/10408398.2022.2056870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current relevance of a healthy diet in well-being has led to a surging interest in designing novel functional food products enriched by biologically active molecules. As nature-inspired bioactive components, several lines of research have revealed the capability of polyphenolic compounds (phenolics) in the medical intervention of different ailments, i.e., tumors, cardiovascular and inflammatory diseases. Phenolics typically possess antioxidant and antibacterial properties and, due to their unique molecular structure, can offer superior platforms for designing functional products. They can protect food ingredients from oxidation and promote the physicochemical attributes of proteins and carbohydrate-based materials. Even though these properties contribute to the inherent benefits of bioactive phenolics as important functional ingredients in the food industry, the in vitro/in vivo instability, poor solubility, and low bioavailability are the main factors restricting their food/pharma applicability. Recent advances in the encapsulation realm are now offering efficient platforms to overcome these limitations. The application of encapsulation field may offer protection and controlled delivery of phenolics in food formulations. Here, we review recent advances in micro/nanoencapsulation of phenolics and highlight efficient carriers from this decade, which have been utilized successfully in food applications. Although further development of phenolic-containing formulations promises to design novel functional food formulations, and revolutionize the food industry, most of the strategies found in the scientific literature are not commercially applicable. Moreover, in vivo experiments are extremely crucial to corroborate the efficiency of such products.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Nur Alim Bahmid
- National Research and Innovation Agency, Jakarta, Indonesia
- Agricultural Product Technology Department, Sulawesi Barat University, Majene, Indonesia
| | - Ahmed Taha
- Center for Physical Sciences and Technology, State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Hadis Rostamabadi
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Mahdi Jafari
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
14
|
Shukla S, Chopra D, Patel SK, Negi S, Srivastav AK, Ch R, Bala L, Dwivedi A, Ray RS. Superoxide anion radical induced phototoxicity of 2,4,5,6-Tetraminopyrimidine sulfate via mitochondrial-mediated apoptosis in human skin keratinocytes at ambient UVR exposure. Food Chem Toxicol 2022; 164:112990. [PMID: 35398180 DOI: 10.1016/j.fct.2022.112990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
2,4,5,6-Tetraaminopyrimidine sulfate (TAPS) is worldwide the most commonly used developer in hair dyes. As skin is the major organ, which is directly exposed to these permanent hair dyes, a comprehensive dermal safety assessment is needed. Hereto, we studied the photosensitization potential and mechanism involved in dermal phototoxicity of TAPS exposed to the dark and UVA/UVB/Sunlight by using different in-chemico and mammalian (HaCaT) cells, as test systems. Our experimental outcomes illustrate that TAPS get photodegraded (LC-MS/MS) and specifically generated superoxide anion radical (O2•-) under UVA and UVB via type-I photodynamic reaction. The phototoxic potential of TAPS is measured through MTT, NRU, and LDH assays that depicted a significant reduction in cell viability at the concentration of 25 μg/ml and higher. Different cellular stainings (PI uptake, AO/EB, JC-1, NR uptake) suggested the role of mitochondrial-mediated apoptosis. Further, the transcriptomics study revealed upregulation of Apaf-1, Bax, Caspase 3, Caspase 9, Cytochrome c and downregulation of Bcl-2 and Catalase by TAPS treated cells that strengthen our findings. Thus, the above findings suggest that chronic application of TAPS may be hazardous for human skin and promote various skin diseases.
Collapse
Affiliation(s)
- Saumya Shukla
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Deepti Chopra
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Sandeep Negi
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Ajeet K Srivastav
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Ratnasekhar Ch
- CSIR-Central Institute of Medicinal and Aromatic Plants, Kukrail, Picnic Spot Road, Lucknow, 226015, Uttar Pradesh, India
| | - Lakshmi Bala
- Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226028, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
15
|
Dietary Supplements and the Skin: Focus on Photoprotection and Antioxidant Activity—A Review. Nutrients 2022; 14:nu14061248. [PMID: 35334905 PMCID: PMC8953599 DOI: 10.3390/nu14061248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
Skin health is not only significantly affected by ageing, but also by other lifestyle-related factors, such as sun exposure, exercise and eating habits, smoking or alcohol intake. It is known that the cutaneous tissue can exhibit visible signs of senescence, in the form of, for example, dull complexion, loss of firmness, or changes in pigmentation. Consumers attempt to improve skin health and appearance not only by cosmetic products, but also with the consumption of food supplements. Recently, there has been an increase in the amount of food supplements with claims that are related to skin and hair health. Nevertheless, the literature is still scarce in evidence of the efficacy of this type of products. Considering this scenario, we aim in this review to assemble studies and methodologies that are directed at the substantiation of the cutaneous health claims of food supplements. For example, we reviewed those that were indicative of antioxidant properties, improvement in pigmentation disorders, increased hydration or protection against the damages caused by ultraviolet radiation.
Collapse
|
16
|
Ghazi S. Do the polyphenolic compounds from natural products can protect the skin from ultraviolet rays? RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Darawsha A, Trachtenberg A, Levy J, Sharoni Y. The Protective Effect of Carotenoids, Polyphenols, and Estradiol on Dermal Fibroblasts under Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10122023. [PMID: 34943127 PMCID: PMC8698602 DOI: 10.3390/antiox10122023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Skin ageing is influenced by several factors including environmental exposure and hormonal changes. Reactive oxygen species (ROS), which mediate many of the effects of these factors, induce inflammatory processes in the skin and increase the production of matrix metalloproteinases (MMPs) in dermal fibroblasts, which leads to collagen degradation. Several studies have shown the protective role of estrogens and a diet rich in fruits and vegetables on skin physiology. Previous studies have shown that dietary carotenoids and polyphenols activate the cell’s antioxidant defense system by increasing antioxidant response element/Nrf2 (ARE/Nrf2) transcriptional activity and reducing the inflammatory response. The aim of the current study was to examine the protective effect of such dietary-derived compounds and estradiol on dermal fibroblasts under oxidative stress induced by H2O2. Human dermal fibroblasts were used to study the effect of H2O2 on cell number and apoptosis, MMP-1, and pro-collagen secretion as markers of skin damage. Treatment of cells with H2O2 led to cell death, increased secretion of MMP-1, and decreased pro-collagen secretion. Pre-treatment with tomato and rosemary extracts, and with estradiol, reversed the effects of the oxidative stress. This was associated with a reduction in intracellular ROS levels, probably through the measured increased activity of ARE/Nrf2. Conclusions: This study indicates that carotenoids, polyphenols, and estradiol protect dermal fibroblasts from oxidative stress-induced damage through a reduction in ROS levels.
Collapse
|
18
|
Rasoolijazi H, Norouzi Ofogh S, Ababzadeh S, Mehdizadeh M, Shabkhiz F. Comparing the Effects of Rosemary Extract and Treadmill Exercise on the Hippocampal Function and Antioxidant Capacity in Old Rats. Basic Clin Neurosci 2021; 12:361-372. [PMID: 34917295 PMCID: PMC8666924 DOI: 10.32598/bcn.12.3.2139.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/15/2019] [Accepted: 04/07/2020] [Indexed: 11/27/2022] Open
Abstract
Introduction: A sequence of time-dependent changes can affect the brain’s functional capacity. This study aimed at investigating the effects of Forced Aerobic Exercise (FAE) versus the Rosemary Extract (RE) on the learning abilities and oxidative stress modulation in rats. Methods: Young and old rats received daily FAE and RE for 3 months. Using the Passive Avoidance (PA) test, we evaluated the learning and memory of the rats by Step-Through Latency (STL) score. We measured the Superoxide Dismutase (SOD), Glutathione Peroxidase (GPx), Catalase (CATA), Malondialdehyde (MDA) enzymes levels, and Total Antioxidant Capacity (TAC) in the hippocampus Results: FAE could significantly increase the STL score (P<0.001) among old rats similar to the rosemary extract consumption. The SOD, GPx, and CATA enzyme activities and the level of TAC significantly increased by the treatments (exercise: P<0.001 for SOD and TAC and P<0.05 for CATA, exercise/rosemary: P<0.001 for all enzymes, and rosemary: P<0.01 for SOD and TAC). Furthermore, the MDA level significantly decreased by the treatments (exercise and exercise/rosemary: P<0.001, rosemary: P<0.01). The partial Pearson test revealed the significant positive correlations between the score of STL (day 2) with the SOD (P<0.01) and TAC (P<0.05) levels and negative correlations between the MDA level and STL score in both days (P<0.05 for the first day and P<0.001 for the second day). Conclusion: Similar to the rosemary extract, FAE could increase the working memory and antioxidants activity in old rats in 3 months.
Collapse
Affiliation(s)
- Homa Rasoolijazi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sattar Norouzi Ofogh
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Ababzadeh
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shabkhiz
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
19
|
Huerta-Madroñal M, Caro-León J, Espinosa-Cano E, Aguilar MR, Vázquez-Lasa B. Chitosan - Rosmarinic acid conjugates with antioxidant, anti-inflammatory and photoprotective properties. Carbohydr Polym 2021; 273:118619. [PMID: 34561015 DOI: 10.1016/j.carbpol.2021.118619] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022]
Abstract
Rosmarinic acid is an attractive candidate for skin applications because of its antioxidant, anti-inflammatory, and photoprotective functions, however, its poor bioavailability hampers its therapeutic outcome. In this context, synthesis of polymer conjugates is an alternative to enlarge its applications. This work describes the synthesis of novel water-soluble chitosan - rosmarinic acid conjugates (CSRA) that have great potential for skin applications. Chitosan was functionalized with different contents of rosmarinic acid as confirmed by ATR-FTIR, 1H NMR and UV spectroscopies. CSRA conjugates presented three-fold radical scavenger capacity compared to the free phenolic compound. Films were prepared by solvent-casting procedure and the biological activity of the lixiviates was studied in vitro. Results revealed that lixiviates reduced activation of inflamed macrophages, improved antibacterial capacity against E. coli with respect to native chitosan and free rosmarinic acid, and also attenuated UVB-induced cellular damage and reactive oxygen species production in fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Miguel Huerta-Madroñal
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain.
| | - Javier Caro-León
- Grupo de Investigación en Biopolímeros, Centro de Investigación en Alimentación y Desarrollo A.C., Sonora, Mexico.
| | - Eva Espinosa-Cano
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain.
| | - María Rosa Aguilar
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain.
| | - Blanca Vázquez-Lasa
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
20
|
Farjadmand F, Karimpour-Razkenari E, Nabavi SM, Ardekani MRS, Saeedi M. Plant Polyphenols: Natural and Potent UV-Protective Agents for the Prevention and Treatment of Skin Disorders. Mini Rev Med Chem 2021; 21:576-585. [PMID: 33167833 DOI: 10.2174/1389557520666201109121246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
Nowadays, destructive and immunosuppressive effects from long-term exposure to UV radiation have been fully investigated and documented in the literature. UV radiation is known as the main cause of skin aging and carcinogenesis. Hence, skin protection against anti-oxidative and immunosuppressive processes is highly in demand. Now, plant polyphenols have been found as a versatile and natural tool for the prevention and treatment of various skin diseases. The presence of a large number of hydroxyl groups in the cyclic structure of polyphenols has induced valuable biological activities. Among them, their UV protective activity has attracted lots of attention due to promising efficacy and simple instruction to use.
Collapse
Affiliation(s)
- Fatemeh Farjadmand
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Karimpour-Razkenari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Sutkowska J, Hupert N, Gawron K, Strawa JW, Tomczyk M, Forlino A, Galicka A. The Stimulating Effect of Rosmarinic Acid and Extracts from Rosemary and Lemon Balm on Collagen Type I Biosynthesis in Osteogenesis Imperfecta Type I Skin Fibroblasts. Pharmaceutics 2021; 13:pharmaceutics13070938. [PMID: 34201872 PMCID: PMC8308967 DOI: 10.3390/pharmaceutics13070938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023] Open
Abstract
Rosemary extract (RE) and lemon balm extract (LBE) attract particular attention of pharmacists due to their high therapeutic potential. Osteogenesis imperfecta (OI) type I is a heritable disease caused by mutations in type I collagen and characterized by its reduced amount. The aim of the study was to evaluate the effect of the extracts and rosmarinic acid (RA) on collagen type I level in OI skin fibroblasts. Phytochemical analysis of RE and LBE was carried out by liquid chromatography–photodiode array detection–mass spectrometry. The expression of collagen type I at transcript and protein levels was analyzed by qPCR, ELISA, SDS-urea PAGE, and Western blot. In OI patient’s fibroblasts the exposure to the extracts (0.1–100 µg/mL) and RA (0.1–100 µM) significantly increased collagen type I and the best results were obtained with 0.1–10 µM RA and 0.1–10 µg/mL of the extracts. LBE showed a greater stimulating effect than RE, likely due to a higher RA content. Moreover, collagen type III expression and matrix metalloproteinase (MMP-1, -2, -9) activity remained unchanged or decreased. The obtained data support the clinical potential of RA-rich extracts and RA itself in modulating the quantitative defect of type I collagen in type I OI.
Collapse
Affiliation(s)
- Joanna Sutkowska
- Department of Medical Chemistry, Medical University of Bialystok, ul. Mickiewicza 2A, 15-222 Bialystok, Poland;
| | - Natalia Hupert
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (N.H.); (K.G.)
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (N.H.); (K.G.)
| | - Jakub W. Strawa
- Department of Pharmacognosy, Medical University of Bialystok, ul. Mickiewicza 2A, 15-230 Bialystok, Poland; (J.W.S.); (M.T.)
| | - Michał Tomczyk
- Department of Pharmacognosy, Medical University of Bialystok, ul. Mickiewicza 2A, 15-230 Bialystok, Poland; (J.W.S.); (M.T.)
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy;
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Bialystok, ul. Mickiewicza 2A, 15-222 Bialystok, Poland;
- Correspondence:
| |
Collapse
|
22
|
Therapeutic Effects of Dipterocarpus tuberculatus with High Antioxidative Activity Against UV-Induced Photoaging of NHDF Cells and Nude Mice. Antioxidants (Basel) 2021; 10:antiox10050791. [PMID: 34067673 PMCID: PMC8157063 DOI: 10.3390/antiox10050791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
To investigate the therapeutic effects of methanol extracts of Dipterocarpus tuberculatus Roxb. (MED) against UV-induced photoaging, we assessed for alterations in the antioxidant activity, anti-apoptotic effects, ECM modulation, skin appearances, and anti-inflammatory response in normal human dermal fibroblast (NHDF) cells and nude mice orally treated with MED. High levels of tannin content and high free radical scavenging activity to DPPH were determined in MED, while seven active components, namely, gallic acid, bergenin, ellagic acid, ε-viniferin, asiatic acid, oleanolic acid, and 2α-hydroxyursolic acid, were identified using LC–MS analyses. UV-induced alterations in the NO concentration, SOD activity, and Nrf2 expression were remarkably recovered in MED-treated NHDF cells. Moreover, the decreased number of apoptotic cells and G2/M phase arrest were observed in the UV + MED-treated groups. Similar recoveries were detected for β-galactosidase, MMP-2/9 expression, and intracellular elastase activity. Furthermore, MED treatment induced suppression of the COX-2-induced iNOS mediated pathway, expression of inflammatory cytokines, and inflammasome activation in UV-radiated NHDF cells. The anti-photoaging effects observed in NHDF cells were subsequently evaluated and validated in UV + MED-treated nude mice through skin phenotypes and histopathological structure analyses. Taken together, these results indicate that MED exerts therapeutic effects against UV-induced photoaging and has the potential for future development as a treatment for photoaging.
Collapse
|
23
|
Lecci RM, D’Antuono I, Cardinali A, Garbetta A, Linsalata V, Logrieco AF, Leone A. Antioxidant and Pro-Oxidant Capacities as Mechanisms of Photoprotection of Olive Polyphenols on UVA-Damaged Human Keratinocytes. Molecules 2021; 26:molecules26082153. [PMID: 33917980 PMCID: PMC8068360 DOI: 10.3390/molecules26082153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
A wide variety of polyphenols are reported to have considerable antioxidant and skin photoprotective effects, although the mechanisms of action are not fully known. Environmentally friendly and inexpensive sources of natural bioactive compounds, such as olive mill wastewater (OMWW), the by-product of olive-oil processing, can be considered an economic source of bioactive polyphenols, with a range of biological activities, useful as chemotherapeutic or cosmeceutical agents. Green strategies, such as the process based on membrane technologies, allow to recover active polyphenols from this complex matrix. This study aims to evaluate the antioxidant, pro-oxidant, and photoprotective effects, including the underlying action mechanism(s), of the ultra-filtered (UF) OMWW fractions, in order to substantiate their use as natural cosmeceutical ingredient. Six chemically characterized UF-OMWW fractions, from Italian and Greek olive cultivar processing, were investigated for their antioxidant activities, measured by Trolox Equivalent Antioxidant Capacity (TEAC), LDL oxidation inhibition, and ROS-quenching ability in UVA-irradiated HEKa (Human Epidermal Keratinocytes adult) cultures. The photoprotective properties of UF-OMWW were assayed as a pro-oxidant-mediated pro-apoptotic effect on the UVA-damaged HEKa cells, which can be potentially involved in the carcinogenesis process. All the UF-OMWW fractions exerted an effective antioxidant activity in vitro and in cells when administered together with UV-radiation on HEKa. A pro-oxidative and pro-apoptotic effect on the UVA-damaged HEKa cells were observed, suggesting some protective actions of polyphenol fraction on keratinocyte cell cultures.
Collapse
Affiliation(s)
- Raffaella Marina Lecci
- National Research Council, Institute of Sciences of Food Production, (CNR-ISPA, Lecce), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| | - Isabella D’Antuono
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Angela Cardinali
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
- Correspondence: (A.C.); (A.L.); Tel.: +39-080-5929303 (A.C.); +39-0832-422615 (A.L.); Fax: +39-0832-422620 (A.L.)
| | - Antonella Garbetta
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Vito Linsalata
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Antonio F. Logrieco
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Antonella Leone
- National Research Council, Institute of Sciences of Food Production, (CNR-ISPA, Lecce), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
- Correspondence: (A.C.); (A.L.); Tel.: +39-080-5929303 (A.C.); +39-0832-422615 (A.L.); Fax: +39-0832-422620 (A.L.)
| |
Collapse
|
24
|
Antioxidant and anticholinesterase effects of rosemary (Salvia rosmarinus) extract: A double-blind randomized controlled trial. ADVANCES IN INTEGRATIVE MEDICINE 2021. [DOI: 10.1016/j.aimed.2021.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Potential antiviral agents of Rosmarinus officinalis extract against herpes viruses 1 and 2. Biosci Rep 2021; 40:225081. [PMID: 32469389 PMCID: PMC7286877 DOI: 10.1042/bsr20200992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/15/2020] [Accepted: 05/29/2020] [Indexed: 12/04/2022] Open
Abstract
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) belong to the herpesviridae family and cause neurological disorders by infecting the nervous system. The present study aimed to investigate the effects of Rosmarinus officinalis L. (rosemary) extract against HSV-1 and HSV-2 in vitro. The antioxidant activity of this extract was investigated by superoxide anion and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical assays. Rosemary extract was evaluated by an HSV-1 antiviral assay, in which viral replication in Vero cells was determined and quantified using a cytopathic effect assay. The present study showed that rosemary extract at 30 µg/ml caused 55% inhibition of HSV-1 plaques, whereas 40 µg/ml rosemary extract caused 65% inhibition of HSV-2 plaques. The extracts completely inhibited HSV-1 and HSV-2 plaque formation at 50 µg/ml. Scavenging activity of the superoxide anion radical was observed at 65.74 mg/ml, whereas 50% scavenging activity of the DPPH radical was observed at 67.34 mg/ml. These data suggest that rosemary extract may be suitable as a topical prophylactic or therapeutic agent for herpes viral infections. However, further research is required to elucidate the plant’s active constituents, which may be useful in drug development.
Collapse
|
26
|
Gromkowska-Kępka KJ, Puścion-Jakubik A, Markiewicz-Żukowska R, Socha K. The impact of ultraviolet radiation on skin photoaging - review of in vitro studies. J Cosmet Dermatol 2021; 20:3427-3431. [PMID: 33655657 PMCID: PMC8597149 DOI: 10.1111/jocd.14033] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Background Photoaging, ultra violet (UV) induced skin aging is a gradual process that depends on the time and intensity of solar radiation. Aim The aim of this paper was to review of the literature focused on in vitro studies explaining the mechanisms of photoaging. Methods Electronic databases, including PubMed and MEDLINE, were searched for in vitro studies on the importance of UV radiation in the skin photoaging process of peer‐reviewed scientific journals. Only articles available in English and full version publications were considered for this review. Results Three main modes of UV radiation action on skin cells which lead to photoaging, there are changes in cell metabolism, induction of oxidative stress due to the change in enzyme activity. Conclusion The information gathered in this publication will help to better understand the complex and multidirectional mechanism of skin photoaging, which will contribute to the development of research on potential cosmetic products that provide effective and safe sun protection or repair damage caused by UV radiation.
Collapse
Affiliation(s)
| | | | | | - Katarzyna Socha
- Department of Bromatology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
27
|
Mallamaci R, Budriesi R, Clodoveo ML, Biotti G, Micucci M, Ragusa A, Curci F, Muraglia M, Corbo F, Franchini C. Olive Tree in Circular Economy as a Source of Secondary Metabolites Active for Human and Animal Health Beyond Oxidative Stress and Inflammation. Molecules 2021; 26:molecules26041072. [PMID: 33670606 PMCID: PMC7922482 DOI: 10.3390/molecules26041072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
Extra-virgin olive oil (EVOO) contains many bioactive compounds with multiple biological activities that make it one of the most important functional foods. Both the constituents of the lipid fraction and that of the unsaponifiable fraction show a clear action in reducing oxidative stress by acting on various body components, at concentrations established by the European Food Safety Authority's claims. In addition to the main product obtained by the mechanical pressing of the fruit, i.e., the EVOO, the residual by-products of the process also contain significant amounts of antioxidant molecules, thus potentially making the Olea europea L. an excellent example of the circular economy. In fact, the olive mill wastewaters, the leaves, the pomace, and the pits discharged from the EVOO production process are partially recycled in the nutraceutical and cosmeceutical fields also because of their antioxidant effect. This work presents an overview of the biological activities of these by-products, as shown by in vitro and in vivo assays, and also from clinical trials, as well as their main formulations currently available on the market.
Collapse
Affiliation(s)
- Rosanna Mallamaci
- Department of Bioscience, Biotechnology and Biopharmaceutics, University Aldo Moro Bari, 70125 Bari, Italy;
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry & Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (R.B.); (G.B.); (M.M.)
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University Aldo Moro Bari, 702125 Bari, Italy;
| | - Giulia Biotti
- Department of Pharmacy and Biotechnology, Food Chemistry & Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (R.B.); (G.B.); (M.M.)
| | - Matteo Micucci
- Department of Pharmacy and Biotechnology, Food Chemistry & Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (R.B.); (G.B.); (M.M.)
| | - Andrea Ragusa
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, 73100 Lecce, Italy;
| | - Francesca Curci
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
| | - Marilena Muraglia
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
- Correspondence: ; Tel.: +39-0805442746
| | - Carlo Franchini
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
| |
Collapse
|
28
|
Auh JH, Madhavan J. Protective effect of a mixture of marigold and rosemary extracts on UV-induced photoaging in mice. Biomed Pharmacother 2020; 135:111178. [PMID: 33388598 DOI: 10.1016/j.biopha.2020.111178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 12/26/2020] [Indexed: 12/20/2022] Open
Abstract
UV irradiation exposure may induce photoaging of the skin tissue. Various plant extracts have been recognized as effective protectants against UV-induced damage. Here, a mixture of marigold and rosemary extracts was evaluated for its anti-photoaging effects as a potential nutraceutical product for skin health. Hexane extract of marigold and ethanolic extract of rosemary were prepared, and the formulated mixture was investigated. A UV-induced photoaged mouse model was prepared, and the protective effects of the extract mixture were compared with those of hyaluronic acid (positive control). Expression of various photoaging-related biomarkers such as matrix metalloproteinases (MMPs), interleukins, tumor necrosis factor-alpha, procollagen type I, 8-hydroxy-deoxyguanosine, superoxide dismutase, glutathione peroxidase, and catalase were determined. UV irradiation significantly enhanced the expression of these biomarkers through an inflammatory response, however, the mixture of marigold and rosemary extracts exerted inhibitory effects and protected from UV-induced damage. Suppression of inflammatory response were the mechanisms underlying this protective function of the mixture of marigold and rosemary extracts. Histological evaluation also supported these protective effects against photoaging.
Collapse
Affiliation(s)
- Joong-Hyuck Auh
- Department of Food Science and Technology, Chung-Ang University, Ansung, 17546, South Korea.
| | | |
Collapse
|
29
|
Effect of Rosmarinic Acid and Ionizing Radiation on Glutathione in Melanoma B16F10 Cells: A Translational Opportunity. Antioxidants (Basel) 2020; 9:antiox9121291. [PMID: 33339425 PMCID: PMC7767074 DOI: 10.3390/antiox9121291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
To explain a paradoxical radiosensitizing effect of rosmarinic acid (RA) on the melanoma B16F10 cells, we analyzed the glutathione (GSH) intracellular production on this cell (traditionally considered radioresistant) in comparison with human prostate epithelial cells (PNT2) (considered to be radiosensitive). In PNT2 cells, the administration of RA increased the total GSH content during the first 3 h (p < 0.01) as well as increased the GSH/oxidized glutathione (GSSG) ratio in all irradiated cultures during all periods studied (1h and 3h) (p < 0.001), portraying an increase in the radioprotective capacity. However, in B16F10 cells, administration of RA had no effect on the total intracellular GSH levels, decreasing the GSH/GSSG ratio (p < 0.01); in addition, it caused a significant reduction in the GSH/GSSG ratio in irradiated cells (p < 0.001), an expression of radioinduced cell damage. In B16F10 cells, the administration of RA possibly activates the metabolic pathway of eumelanin synthesis that would consume intracellular GSH, thereby reducing its possible use as a protector against oxidative stress. The administration of this type of substance during radiotherapy could potentially protect healthy cells for which RA is a powerful radioprotector, and at the same time, cause significant damage to melanoma cells for which it could act as a radiosensitive agent.
Collapse
|
30
|
Diniyah N, Alam MB, Choi HJ, Lee SH. Lablab Purpureus Protects HaCaT Cells from Oxidative Stress-Induced Cell Death through Nrf2-Mediated Heme Oxygenase-1 Expression via the Activation of p38 and ERK1/2. Int J Mol Sci 2020; 21:8583. [PMID: 33202535 PMCID: PMC7697790 DOI: 10.3390/ijms21228583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Ultraviolet B (UV-B) radiation induces the extreme production of either reactive oxygen species (ROS) or inflammatory mediators. The aim of this study was to evaluate the antioxidant activities of 70% ethanolic extract of Lablab purpureus (LPE) and the underlying mechanisms using HaCaT cells exposed to UV-B. High-performance liquid chromatography (HPLC) confirmed the presence of gallic acid, catechin, and epicatechin in LPE. LPE was shown to have a very potent capacity to scavenge free radicals. The results showed that LPE prevented DNA damage and inhibited the generation of ROS in HaCaT cells without causing any toxicity. LPE increased the expression of endogenous antioxidant enzymes such as superoxide dismutase-1 and catalase. Furthermore, LPE treatment facilitates the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), boosting the phase II detoxifying enzyme heme oxygenase-1 (HO-1) leading to the combatting of oxidative stress. However, pretreatment of LPE also caused the phosphorylation of mitogen-activated protein kinases (MAPK kinase) (p38 kinase) and extracellular signal-regulated kinase (ERK), whereas treatment with p38 and ERK inhibitors substantially suppressed LPE-induced Nrf2 and heme oxygenase (HO)-1 expression. These findings suggest that LPE exhibits antioxidant activity via Nrf-2-mediated HO-1 signaling through the activation of p38 and ERK, indicating that LPE can potentially be used as a remedy to combat oxidative stress-induced disorder.
Collapse
Affiliation(s)
- Nurud Diniyah
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (N.D.); (M.B.A.); (H.-J.C.)
- Faculty of Agricultural Technology, University of Jember, Jember 68121, East Java, Indonesia
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (N.D.); (M.B.A.); (H.-J.C.)
- Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea
| | - Hee-Jeong Choi
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (N.D.); (M.B.A.); (H.-J.C.)
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (N.D.); (M.B.A.); (H.-J.C.)
- Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
31
|
Rosmarinus officinalis L. (Rosemary): An Ancient Plant with Uses in Personal Healthcare and Cosmetics. COSMETICS 2020. [DOI: 10.3390/cosmetics7040077] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This work is a bibliographical review of rosemary (Rosmarinus officinalis) that focuses on the application of derivatives of this plant for cosmetic products, an application which has been recognized and valued since Ancient Egyptian times. Rosemary is a plant of Mediterranean origin that has been distributed throughout different areas of the world. It has many medicinal properties, and its extracts have been used (mainly orally) in folk medicine. It belongs to the Labiatae family, which contains several genera—such as Salvia, Lavandula, and Thymus—that are commonly used in cosmetics, due to their high prevalence of antioxidant molecules. Rosemary is a perennial shrub that grows in the wild or is cultivated. It has glandular hairs that emit fragrant volatile essential oils (mainly monoterpenes) in response to drought conditions in the Mediterranean climate. It also contains diterpenes such as carnosic acid and other polyphenolic molecules. Herein, the botanical and ecological characteristics of the plant are discussed, as well as the main bioactive compounds found in its volatile essential oil and in leaf extracts. Afterward, we review the applications of rosemary in cosmetics, considering its preservative power, the kinds of products in which it is used, and its toxicological safety, as well as its current uses or future applications in topical preparations, according to recent and ongoing studies.
Collapse
|
32
|
Salem MA, Radwan RA, Mostafa ES, Alseekh S, Fernie AR, Ezzat SM. Using an UPLC/MS-based untargeted metabolomics approach for assessing the antioxidant capacity and anti-aging potential of selected herbs. RSC Adv 2020; 10:31511-31524. [PMID: 35520633 PMCID: PMC9056420 DOI: 10.1039/d0ra06047j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/13/2020] [Indexed: 01/12/2023] Open
Abstract
Aging is an unavoidable fate that afflicts all life, during this process in mammals reactive oxygen species (ROS) are generated which stimulate tyrosinase, elastase and collagenase activities that actively participate in skin aging. Therefore, the maintenance of antioxidant homeostasis is an important anti-aging strategy for skin. Nature has excellent anti-aging remedies that act externally as well as internally to delay the visual signs of aging. In view of this fact, the present study investigates the in vitro anti-aging activity of five medicinal plants belonging to phenolic rich families namely Rosmarinus officinalis, Lavandula officinalis, Matricaria chamomilla, Camellia sinensis and Pelargonium graveolens. The selected plants are those most frequently used in the preparation of ethnomedicinal recipes for the prevention or treatment of aging. The inhibitory effects of the ethanolic and aqueous extracts of the five selected plants on the activity of tyrosinase, elastase, and collagenase enzymes were investigated. Furthermore, the chemical composition of the plants and the antioxidant capacity of their extracts were assessed. The results showed that R. officinalis had the highest total phenolics content which was correlated with its potent antioxidant and anti-aging activities. To pinpoint the active metabolites in the tested extracts, we evaluated the metabolite variations using ultra-performance liquid chromatography coupled with high resolution electrospray ionization-tandem mass spectrometry (UPLC-HR-ESI-MS/MS). Multivariate data analysis (MVDA) revealed that R. officinalis significantly accumulated metabolites from the aromatic diterpenoid, flavonoid and phenolic acid classes. These results indicate that rosemary can be used for further development of topical preparations with anti-aging properties. Aging is an unavoidable fate that afflicts all life, during this process in mammals, reactive oxygen species (ROS) are generated which stimulate tyrosinase, elastase and collagenase activities that actively participate in skin aging.![]()
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University Gamal Abd El Nasr St. Shibin Elkom 32511 Menoufia Egypt
| | - Rasha Ali Radwan
- Biochemistry Department, Faculty of Pharmacy, Sinai University East Kantara Branch New City El Ismailia 41611 Egypt
| | - Eman Sherien Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) Giza 12451 Egypt +20-120-000-4301
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology Am Mühlenberg 1 14476 Potsdam-Golm Germany .,Center for Plant Systems Biology and Biotechnology 4000 Plovdiv Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology Am Mühlenberg 1 14476 Potsdam-Golm Germany .,Center for Plant Systems Biology and Biotechnology 4000 Plovdiv Bulgaria
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) Giza 12451 Egypt +20-120-000-4301.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| |
Collapse
|
33
|
Ngo HTT, Hwang E, Seo SA, Yang JE, Nguyen QTN, Do NQ, Yi TH. Mixture of enzyme-processed Panax ginseng and Gastrodia elata extract prevents UVB-induced decrease of procollagen type 1 and increase of MMP-1 and IL-6 in human dermal fibroblasts. Biosci Biotechnol Biochem 2020; 84:2327-2336. [PMID: 32698696 DOI: 10.1080/09168451.2020.1793657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
According to the previously described anti-photoaging effect of the enzyme-processed Panax ginseng extract and Gastrodia elata extract, we hypothesized that the combination of the two extracts would have superior effect to protect human skin from UVB radiation. Besides, the mixture of active components isolated from herbal extracts, ginsenoside F2, and α-gastrodin was investigated on the photo-protective capability. The expression of aging-related markers including matrix metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), and procollagen type 1 was evaluated using ELISA kits. It was reported that the herbal extract at a Panax ginseng extract to Gastrodia elata extract ratio of 1:10 (w/w) and the compound mixture with equal proportion of ginsenoside F2 and α-gastrodin exhibited significant inhibition of MMP-1 and IL-6 production, and marked upregulation of procollagen type 1 formation. Thus, the combination of either the enzyme-processed herbal extracts or their active components would enhance the properties of prevention and treatment of UVB-induced skin damage.
Collapse
Affiliation(s)
- Hien T T Ngo
- Graduate School of Biotechnology, Kyung Hee University , Yongin-si, Republic of Korea
| | - Eunson Hwang
- Graduate School of Biotechnology, Kyung Hee University , Yongin-si, Republic of Korea
| | - Seul A Seo
- Graduate School of Biotechnology, Kyung Hee University , Yongin-si, Republic of Korea
| | - Jung-Eun Yang
- Graduate School of Biotechnology, Kyung Hee University , Yongin-si, Republic of Korea
| | - Quynh T N Nguyen
- Graduate School of Biotechnology, Kyung Hee University , Yongin-si, Republic of Korea
| | - Nhung Quynh Do
- Graduate School of Biotechnology, Kyung Hee University , Yongin-si, Republic of Korea
| | - Tae Hoo Yi
- Graduate School of Biotechnology, Kyung Hee University , Yongin-si, Republic of Korea
| |
Collapse
|
34
|
Boo YC. Emerging Strategies to Protect the Skin from Ultraviolet Rays Using Plant-Derived Materials. Antioxidants (Basel) 2020; 9:E637. [PMID: 32708455 PMCID: PMC7402153 DOI: 10.3390/antiox9070637] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sunlight contains a significant amount of ultraviolet (UV) ray, which leads to various effects on homeostasis in the body. Defense strategies to protect from UV rays have been extensively studied, as sunburn, photoaging, and photocarcinogenesis are caused by excessive UV exposure. The primary lines of defense against UV damage are melanin and trans-urocanic acid, which are distributed in the stratum corneum. UV rays that pass beyond these lines of defense can lead to oxidative damage. However, cells detect changes due to UV rays as early as possible and initiate cell signaling processes to prevent the occurrence of damage and repair the already occurred damage. Cosmetic and dermatology experts recommend using a sunscreen product to prevent UV-induced damage. A variety of strategies using antioxidants and anti-inflammatory agents have also been developed to complement the skin's defenses against UV rays. Researchers have examined the use of plant-derived materials to alleviate the occurrence of skin aging, diseases, and cancer caused by UV rays. Furthermore, studies are also underway to determine how to promote melanin production to protect from UV-induced skin damage. This review provides discussion of the damage that occurs in the skin due to UV light and describes potential defense strategies using plant-derived materials. This review aims to assist researchers in understanding the current research in this area and to potentially plan future studies.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, BK21 Plus KNU Biomedical Convergence Program, Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
35
|
|
36
|
Kim J, Lee SH, Cho M, Lee JY, Choi DH, Lee HY, Cho S, Min KJ, Suh Y. Small Molecule from Natural Phytochemical Mimics Dietary Restriction by Modulating FoxO3a and Metabolic Reprogramming. ACTA ACUST UNITED AC 2020; 4:e1900248. [PMID: 32558394 DOI: 10.1002/adbi.201900248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/08/2020] [Indexed: 01/10/2023]
Abstract
Many studies utilizing animal models have revealed the genetic and pharmacogenetic modulators of the rate of organismal aging. However, finding routes for healthy aging during extended life remains one of the largest questions. With regards to an antiaging reagent, it has been shown that natural phytochemical syringaresinol (SYR) delays cellular senescence by activating sirtuin1 (SIRT1). Here, it is found that SYR treatment results in metabolic changes similar to those observed during dietary restriction (DR). The DR mimetic effects are mediated by FoxO3a-dependent SIRT1 activation and insulin/insuline growth factor-1 signaling modulation. The direct binding of SYR-FoxO3a is identified and this could partially explain the DR-like phenotype. The report gives a clue as to how the longevity gene involves the DR pathway and suggests that natural phytochemicals applied as a geroprotector mimics DR effects.
Collapse
Affiliation(s)
- Juewon Kim
- Bioscience Research Lab, R&D Unit, Amorepacific Corporation, Yongin, 17074, South Korea
| | - Shin-Hae Lee
- Department of Biological Sciences, Inha University, Incheon, 22201, South Korea
| | - Miook Cho
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jee-Young Lee
- Molecular Design Team, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea
| | - Dong-Hwa Choi
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon, 16229, South Korea
| | - Hye-Yeon Lee
- Department of Biological Sciences, Inha University, Incheon, 22201, South Korea
| | - Siyoung Cho
- Bioscience Research Lab, R&D Unit, Amorepacific Corporation, Yongin, 17074, South Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon, 22201, South Korea
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
37
|
Dietary immature Citrus unshiu alleviates UVB- induced photoaging by suppressing degradation of basement membrane in hairless mice. Heliyon 2020; 6:e04218. [PMID: 32577577 PMCID: PMC7303560 DOI: 10.1016/j.heliyon.2020.e04218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/25/2020] [Accepted: 06/11/2020] [Indexed: 01/16/2023] Open
Abstract
Ultraviolet (UV) irradiation induces physiological and morphological skin damage, resulting in skin dryness, wrinkle formation, and loss of elasticity. The basement membrane (BM) has been shown to play crucial roles in binding epidermis to dermis tightly, regulating cell differentiation and proliferation, and signaling protein production. Dietary flavonoids have been revealed to improve the damage caused by UV exposure. Immature Citrus unshiu is known to contain high concentrations of flavonoids such as hesperidin and narirutin. In this study, the effects of immature Citrus unshiu powder (ICP) on photoaged skin were demonstrated using UVB irradiated hairless mice. Oral administration of ICP improved loss of skin hydration and increase of transepidermal water loss. The histological analyses of hairless mice dorsal skin revealed that oral administration of ICP improved UVB-induced overgrowth of epidermal cell, suppressed epidermal cell mortality and BM destruction. Therefore, the administration of ICP could improve photoaging by protecting the tissues around BM.
Collapse
|
38
|
de Macedo LM, dos Santos ÉM, Militão L, Tundisi LL, Ataide JA, Souto EB, Mazzola PG. Rosemary ( Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.) and Its Topical Applications: A Review. PLANTS 2020; 9:plants9050651. [PMID: 32455585 PMCID: PMC7284349 DOI: 10.3390/plants9050651] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
Topical application is an important administration route for drugs requiring local action on the skin, thereby avoiding their systemic absorption and adverse side effects. Rosmarinus officinalis L. (syn. Salvia rosmarinus Spenn.), popularly known as rosemary, is an aromatic plant with needle-like leaves belonging to the Lamiaceae family. Rosemary has therapeutic properties and has been used in the folk medicine, pharmaceutical, and cosmetics industries, mainly for its antioxidant and anti-inflammatory properties, which are attributed to the presence of carnosol/carnosic and ursolic acids. The therapeutic use of rosemary has been explored for the treatment of inflammatory diseases; however, other uses have been studied, such as wound healing and skin cancer and mycoses treatments, among others. Besides it therapeutic uses, rosemary has potential applications in cosmetic formulations and in the treatment of pathological and non-pathological conditions, such as cellulite, alopecia, ultraviolet damage, and aging. This review aims to critically discuss the topical applications of rosemary found in the literature while also offering relevant information for the development of topical formulations of its bioactive compounds.
Collapse
Affiliation(s)
| | | | - Lucas Militão
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas 13083-871, Brazil; (L.M.); (L.L.T.)
| | - Louise Lacalendola Tundisi
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas 13083-871, Brazil; (L.M.); (L.L.T.)
| | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas 13083-871, Brazil; (L.M.); (L.L.T.)
- Correspondence: (J.A.A.); (P.G.M.)
| | - Eliana Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), 3000-548 Coimbra, Portugal;
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas 13083-871, Brazil; (L.M.); (L.L.T.)
- Correspondence: (J.A.A.); (P.G.M.)
| |
Collapse
|
39
|
Agulló-Chazarra L, Borrás-Linares I, Lozano-Sánchez J, Segura-Carretero A, Micol V, Herranz-López M, Barrajón-Catalán E. Sweet Cherry Byproducts Processed by Green Extraction Techniques as a Source of Bioactive Compounds with Antiaging Properties. Antioxidants (Basel) 2020; 9:antiox9050418. [PMID: 32414056 PMCID: PMC7278782 DOI: 10.3390/antiox9050418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022] Open
Abstract
In the cosmetic industry, there is a continuous demand for new and innovative ingredients for product development. In the context of continual renovation, both cosmetic companies and customers are particularly interested in compounds derived from natural sources due to their multiple benefits. In this study, novel and green-extractive techniques (pressurized solvent, supercritical CO2, and subcritical water extractions) were used to obtain three new extracts from sweet cherry stems, a byproduct generated by the food industry. The extracts were characterized by high-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS), and 57 compounds, mainly flavonoids but also organic and phenolic acids, fatty acids, and terpenes, were identified. After analytical characterization, a multistep screening approach, including antioxidant, enzymatic, and photoprotective cellular studies, was used to select the best extract according to its benefits of interest to the cosmetics industry. The extract obtained with supercritical CO2 presented the best characteristics, including a wide antioxidant capacity, especially against lipid peroxyl and •OH free radicals, as well as relevant photoprotective action and antiaging properties, making it a potential new ingredient for consideration in the development of new cosmetics.
Collapse
Affiliation(s)
- Luz Agulló-Chazarra
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (L.A.-C.); (V.M.); (E.B.-C.)
| | - Isabel Borrás-Linares
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, BioRegión Building, 18016 Granada, Spain; (I.B.-L.); (J.L.-S.); (A.S.-C.)
| | - Jesús Lozano-Sánchez
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, BioRegión Building, 18016 Granada, Spain; (I.B.-L.); (J.L.-S.); (A.S.-C.)
- Department of Food Science and Nutrition, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Antonio Segura-Carretero
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, BioRegión Building, 18016 Granada, Spain; (I.B.-L.); (J.L.-S.); (A.S.-C.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (L.A.-C.); (V.M.); (E.B.-C.)
- CIBER: CB12/03/30038 Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III, 07122 Palma de Mallorca, Spain
| | - María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (L.A.-C.); (V.M.); (E.B.-C.)
- Correspondence: ; Tel.: +34-965222586
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández (UMH), 03202 Elche, Spain; (L.A.-C.); (V.M.); (E.B.-C.)
| |
Collapse
|
40
|
Dias R, Oliveira H, Fernandes I, Simal-Gandara J, Perez-Gregorio R. Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Crit Rev Food Sci Nutr 2020; 61:1130-1151. [PMID: 32338035 DOI: 10.1080/10408398.2020.1754162] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phenolic compounds in plants are essential components of human nutrition, which provide various health benefits. However, some missing links became the research in phenolic compounds structures and potential applications in a challenging work. Despite universal extraction methods with mixtures of different organic solvents are generally adopted in the analysis of phenolic compounds, a need for establish a specific procedure is still open. The great heterogeneity in food and food by-products matrices and the lack of standardized methods which combine chromatographic with spectrophotometric techniques to calculate the amount of phenolic compounds joined with the absence of specific standards hamper to accurate know the real amount of phenolic compounds. Indeed, the high complexity in nature and chemistry of phenolic compounds clearly difficult to establish a daily intake to obtain certain healthy outcomes. Hence, despite the potential of phenolic compounds to use them in cosmetic and healthy applications have been widely analyzed, some concerns must be considered. The chemical complexity, the interactions between phenolic compounds and other food components and the structural changes induced by food processing joined with the lack in the understanding of phenolic compounds metabolism and bioavailability undergo the need to conduct a comprehensive review of each factors influencing the final activity of phenolic compounds. This paper summarizes the potential of phenolic compounds for disease prevention and cosmetics production, as well as their many other uses derived from their antioxidant activity. This paper illustrates the potential of phenolic compounds for disease prevention and cosmetics production, as well as their many other uses derived from their antioxidant activity.
Collapse
Affiliation(s)
- Ricardo Dias
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Helder Oliveira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Rosa Perez-Gregorio
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
41
|
Rosemary Diterpenes and Flavanone Aglycones Provide Improved Genoprotection against UV-Induced DNA Damage in a Human Skin Cell Model. Antioxidants (Basel) 2020; 9:antiox9030255. [PMID: 32245070 PMCID: PMC7139908 DOI: 10.3390/antiox9030255] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022] Open
Abstract
Overexposure to solar ultraviolet (UV) radiation is the major cause of a variety of cutaneous disorders, including sunburn, photoaging, and skin cancers. UVB radiation (290–320 nm) causes multiple forms of DNA damage, p53 induction, protein and lipid oxidation, and the generation of harmful reactive oxygen species (ROS). In recent years, botanicals containing polyphenols with antioxidant and anti-inflammatory properties as skin photoprotective agents have emerged. This study evaluated the protective effects of two formulations against UVB-induced damage in a skin cell model. One of the formulations (F2) contained a combination of citrus and olive extracts and the other one (F1) also contained a rosemary extract. The antioxidant capacity of both formulations was estimated by different in vitro methods, and the cell viability, intracellular ROS generation, mitochondrial depolarization, and DNA damage were studied in UVB-irradiated human keratinocytes. Both formulations exerted photoprotective effects on skin cells and decreased mitochondrial depolarization and DNA damage. F1 which contained iridoids, rosemary diterpenes, glycosides and aglycones of citrus flavanones, and monohydroxylated flavones exhibited higher cellular photoprotective effects and mitochondrial membrane potential restoration, as well as an enhanced capacity to decrease DNA double strand breaks and the DNA damage response. In contrast, F2, which contained mostly iridoids, citrus flavanone aglycones, and mono- and dihydroxylated flavones, exhibited a higher capacity to decrease intracellular ROS generation and radical scavenging capacity related to metal ion chelation. Both formulations showed a similar capability to decrease the number of apoptotic cells upon UVB radiation. Based on our results and those of others, we postulate that the stronger capacity of F1 to protect against UVB-induced DNA damage in human keratinocytes is related to the presence of rosemary diterpenes and citrus flavanone aglycones. Nevertheless, the presence of the dihydroxylated flavones in F2 may contribute to inhibiting the generation of metal-related free radicals. To confirm the efficacy of these formulations as potential candidates for oral/topical photoprotection, human trials are required to circumvent the limitations of the cellular model.
Collapse
|
42
|
Sharifi-Rad J, Ezzat SM, El Bishbishy MH, Mnayer D, Sharopov F, Kılıç CS, Neagu M, Constantin C, Sharifi-Rad M, Atanassova M, Nicola S, Pignata G, Salehi B, Fokou PVT, Martins N. Rosmarinus plants: Key farm concepts towards food applications. Phytother Res 2020; 34:1474-1518. [PMID: 32058653 DOI: 10.1002/ptr.6622] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
Rosmarinus species are aromatic plants that mainly grow in the Mediterranean region. They are widely used in folk medicine, food, and flavor industries and represent a valuable source of biologically active compounds (e.g., terpenoids, flavonoids, and phenolic acids). The extraction of rosemary essential oil is being done using three main methods: carbon dioxide supercritical extraction, steam distillation, and hydrodistillation. Furthermore, interesting antioxidant, antibacterial, antifungal, antileishmanial, anthelmintic, anticancer, anti-inflammatory, antidepressant, and antiamnesic effects have also been broadly recognized for rosemary plant extracts. Thus the present review summarized data on economically important Rosmarinus officinalis species, including isolation, extraction techniques, chemical composition, pharmaceutical, and food applications.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Mahitab H El Bishbishy
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Dima Mnayer
- Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Dushanbe, Tajikistan
| | - Ceyda S Kılıç
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania.,Doctoral School, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, UCTM, Sofia, Bulgaria
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Giuseppe Pignata
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Patrick V T Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
43
|
Kim J, Kang Y, Choi D, Cho Y, Cho S, Choi H, Kim H. The natural phytochemical trans‐communic acid inhibits cellular senescence and pigmentation through FoxO3a activation. Exp Dermatol 2019; 28:1270-1278. [DOI: 10.1111/exd.14025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/11/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Dong‐hwa Choi
- Biocenter, Gyeonggido Business & Science Accelerator Suwon Korea
| | | | | | | | | |
Collapse
|
44
|
Uchiyama T, Tsunenaga M, Miyanaga M, Ueda O, Ogo M. Oral intake of lingonberry and amla fruit extract improves skin conditions in healthy female subjects: A randomized, double-blind, placebo-controlled clinical trial. Biotechnol Appl Biochem 2019; 66:870-879. [PMID: 31342566 DOI: 10.1002/bab.1800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/20/2019] [Indexed: 11/11/2022]
Abstract
In this study, we examined the effect of ingestion of lingonberry and amla fruit extract (LAE) on several human skin conditions. To conduct a randomized, double-blinded, placebo-controlled study, we randomly divided 99 healthy female subjects into three groups; the first group received a drink containing 25 mg of lingonberry extract and 30 mg of amla fruit extract; the second group received a drink containing double the volume of extracts received by the first group; and the third group received a placebo drink. Each participant drank 50 mL of their assigned drink once daily for 12 weeks. The primary endpoint was skin elasticity, and the secondary endpoints included skin thickness, stratum corneum water content, and degree of wrinkles around the eyes. After 12 weeks of LAE drink intake, skin elasticity showed significant, dose-dependent improvements (P < 0.01). Skin thickness, stratum corneum water content, and the degree of wrinkles also significantly improved (P < 0.001) in a dose-dependent manner. The improvements in skin elasticity and thickness, as well as in the stratum corneum water content and the degree of wrinkles, observed upon oral intake of LAE indicate that LAE may be considered a candidate anti-aging agent for preventing skin weakening.
Collapse
Affiliation(s)
- Taro Uchiyama
- Shiseido Global Innovation Center, Yokohama, Kanagawa-ken, Japan
| | - Makoto Tsunenaga
- Shiseido Global Innovation Center, Yokohama, Kanagawa-ken, Japan
| | - Miho Miyanaga
- Shiseido Global Innovation Center, Yokohama, Kanagawa-ken, Japan
| | - Osamu Ueda
- Shiseido Global Innovation Center, Yokohama, Kanagawa-ken, Japan
| | - Masashi Ogo
- Shiseido Global Innovation Center, Yokohama, Kanagawa-ken, Japan
| |
Collapse
|
45
|
Antioxidant and Photoprotective Activity of Apigenin and its Potassium Salt Derivative in Human Keratinocytes and Absorption in Caco-2 Cell Monolayers. Int J Mol Sci 2019; 20:ijms20092148. [PMID: 31052292 PMCID: PMC6539602 DOI: 10.3390/ijms20092148] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 02/01/2023] Open
Abstract
Ultraviolet (UV) radiation, especially types A (UVA) and B (UVB), is one of the main causes of skin disorders, including photoaging and skin cancer. Ultraviolent radiation causes oxidative stress, inflammation, p53 induction, DNA damage, mutagenesis, and oxidation of various molecules such as lipids and proteins. In recent decades, the use of polyphenols as molecules with an antioxidant and anti-inflammatory capacity has increased. However, some of these compounds are poorly soluble, and information regarding their absorption and bioavailability is scarce. The main objective of this study was to compare the intestinal absorption and biological activity of apigenin and its more soluble potassium salt (apigenin-K) in terms of antioxidant and photoprotective capacity. Photoprotective effects against UVA and UVB radiation were studied in human keratinocytes, and antioxidant capacity was determined by different methods, including trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Finally, the intestinal absorption of both apigenins was determined using an in vitro Caco-2 cell model. Apigenin showed a slightly higher antioxidant capacity in antioxidant activity assays when compared with apigenin-K. However, no significant differences were obtained for their photoprotective capacities against UVA or UVB. Results indicated that both apigenins protected cell viability in approximately 50% at 5 J/m2 of UVA and 90% at 500 J/m2 of UVB radiation. Regarding intestinal absorption, both apigenins showed similar apparent permeabilities (Papp), 1.81 × 10-5 cm/s and 1.78 × 10-5 cm/s, respectively. Taken together, these results suggest that both apigenins may be interesting candidates for the development of oral (nutraceutical) and topical photoprotective ingredients against UVA and UVB-induced skin damage, but the increased water solubility of apigenin-K makes it the best candidate for further development.
Collapse
|
46
|
Antioxidant Peptide AOP-P1 Derived from Odorous Frog Showed Protective Effects Against UVB-Induced Skin Damages. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09862-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Wang G, Fu L, Walker A, Chen X, Lovejoy DB, Hao M, Lee A, Chung R, Rizos H, Irvine M, Zheng M, Liu X, Lu Y, Shi B. Label-Free Fluorescent Poly(amidoamine) Dendrimer for Traceable and Controlled Drug Delivery. Biomacromolecules 2019; 20:2148-2158. [PMID: 30995832 DOI: 10.1021/acs.biomac.9b00494] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly(amidoamine) dendrimer (PAMAM) is well-known for its high efficiency as a drug delivery vehicle. However, the intrinsic cytotoxicity and lack of a detectable signal to facilitate tracking have impeded its practical applications. Herein, we have developed a novel label-free fluorescent and biocompatible PAMAM derivative by simple surface modification of PAMAM using acetaldehyde. The modified PAMAM possessed a strong green fluorescence, which was generated by the C=N bonds of the resulting Schiff Bases via n-π* transition, while the intrinsic cytotoxicity of PAMAM was simultaneously ameliorated. Through further PEGylation, the fluorescent PAMAM demonstrated excellent intracellular tracking in human melanoma SKMEL28 cells. In addition, our PEGylated fluorescent PAMAM derivative achieved enhanced loading and delivery efficiency of the anticancer drug doxorubicin (DOX) compared to the original PAMAM. Importantly, the accelerated kinetics of DOX-encapsulated fluorescent PAMAM nanocomposites in an acidic environment facilitated intracellular drug release, which demonstrated comparable cytotoxicity to that of the free-form doxorubicin hydrochloride (DOX·HCl) against melanoma cells. Overall, our label free fluorescent PAMAM derivative offers a new opportunity of traceable and controlled delivery for DOX and other drugs of potential clinical importance.
Collapse
Affiliation(s)
- Guoying Wang
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences , Macquarie University , Sydney , New South Wales 2109 , Australia
| | - Libing Fu
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences , Macquarie University , Sydney , New South Wales 2109 , Australia
| | - Adam Walker
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences , Macquarie University , Sydney , New South Wales 2109 , Australia.,Queensland Brain Institute , The University of Queensland , Saint Lucia , Queensland 4072 , Australia
| | - Xianfeng Chen
- School of Engineering, Institute of Bioengineering , The University of Edinburgh , King's Buildings, Mayfield Road , Edinburgh EH93JL , United Kingdom
| | - David B Lovejoy
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences , Macquarie University , Sydney , New South Wales 2109 , Australia
| | | | - Albert Lee
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences , Macquarie University , Sydney , New South Wales 2109 , Australia
| | - Roger Chung
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences , Macquarie University , Sydney , New South Wales 2109 , Australia
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences , Macquarie University , Sydney , New South Wales 2109 , Australia
| | - Mal Irvine
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences , Macquarie University , Sydney , New South Wales 2109 , Australia
| | | | | | - Yiqing Lu
- Department of Physics and Astronomy, Faculty of Sciences & Engineering , Macquarie University , Sydney , New South Wales 2109 , Australia
| | - Bingyang Shi
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences , Macquarie University , Sydney , New South Wales 2109 , Australia
| |
Collapse
|
48
|
Takshak S, Agrawal SB. Defense potential of secondary metabolites in medicinal plants under UV-B stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:51-88. [PMID: 30818154 DOI: 10.1016/j.jphotobiol.2019.02.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/13/2023]
Abstract
Ultraviolet-B (UV-B) radiation has, for many decades now, been widely studied with respect to its consequences on plant and animal health. Though according to NASA, the ozone hole is on its way to recovery, it will still be a considerable time before UV-B levels reach pre-industrial limits. Thus, for the present, excessive UV-B reaching the Earth is a cause for concern, and UV-B related human ailments are on the rise. Plants produce various secondary metabolites as one of the defense strategies under UV-B. They provide photoprotection via their UV-B screening effects and by quenching the reactive oxygen- and nitrogen species produced under UV-B influence. These properties of plant secondary metabolites (PSMs) are being increasingly recognized and made use of in sunscreens and cosmetics, and pharma- and nutraceuticals are gradually becoming a part of the regular diet. Secondary metabolites derived from medicinal plants (alkaloids, terpenoids, and phenolics) are a source of pharmaceuticals, nutraceuticals, as well as more rigorously tested and regulated drugs. These metabolites have been implicated in providing protection not only to plants under the influence of UV-B, but also to animals/animal cell lines, when the innate defenses in the latter are not adequate under UV-B-induced damage. The present review focuses on the defense potential of secondary metabolites derived from medicinal plants in both plants and animals. In plants, the concentrations of the alkaloids, terpenes/terpenoids, and phenolics have been discussed under UV-B irradiation as well as the fate of the genes and enzymes involved in their biosynthetic pathways. Their role in providing protection to animal models subjected to UV-B has been subsequently elucidated. Finally, we discuss the possible futuristic scenarios and implications for plant, animal, and human health pertaining to the defense potential of these secondary metabolites under UV-B radiation-mediated damages.
Collapse
Affiliation(s)
- Swabha Takshak
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
49
|
Rosemary (Rosmarinus officinalis) extract causes ROS-induced necrotic cell death and inhibits tumor growth in vivo. Sci Rep 2019; 9:808. [PMID: 30692565 PMCID: PMC6349921 DOI: 10.1038/s41598-018-37173-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/29/2018] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer is the third most common diagnosed cancer globally. Although substantial advances have been obtained both in treatment and survival rates, there is still a need for new therapeutical approaches. Natural compounds are a realistic source of new bioactive compounds with anticancer activity. Among them, rosemary polyphenols have shown a vast antiproliferative capacity against colon cancer cells in vitro and in animal models. We have investigated the antitumor activity of a rosemary extract (RE) obtained by using supercritical fluid extraction through its capacity to inhibit various signatures of cancer progression and metastasis such as proliferation, migration, invasion and clonogenic survival. RE strongly inhibited proliferation, migration and colony formation of colon cancer cells regardless their phenotype. Treatment with RE led to a sharp increase of intracellular ROS that resulted in necrosis cell death. Nrf2 gene silencing increased RE cytotoxic effects, thus suggesting that this pathway was involved in cell survival. These in vitro results were in line with a reduction of tumor growth by oral administration of RE in a xenograft model of colon cancer cells using athymic nude mice. These findings indicate that targeting colon cancer cells by increasing intracellular ROS and decreasing cell survival mechanisms may suppose a therapeutic option in colon cancer through the combination of rosemary compounds and chemotherapeutic drugs.
Collapse
|
50
|
López-Romero D, Izquierdo-Vega JA, Morales-González JA, Madrigal-Bujaidar E, Chamorro-Cevallos G, Sánchez-Gutiérrez M, Betanzos-Cabrera G, Alvarez-Gonzalez I, Morales-González Á, Madrigal-Santillán E. Evidence of Some Natural Products with Antigenotoxic Effects. Part 2: Plants, Vegetables, and Natural Resin. Nutrients 2018; 10:1954. [PMID: 30544726 PMCID: PMC6316078 DOI: 10.3390/nu10121954] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. The agents capable of causing damage to genetic material are known as genotoxins and, according to their mode of action, are classified into mutagens, carcinogens, or teratogens. Genotoxins are also involved in the pathogenesis of several chronic degenerative diseases, including hepatic, neurodegenerative, and cardiovascular disorders; diabetes; arthritis; cancer; chronic inflammation; and ageing. In recent decades, researchers have found novel bioactive phytocompounds able to counteract the effects of physical and chemical mutagens. Several studies have shown the antigenotoxic potential of different fruits and plants (Part 1). In this review (Part 2), we present a research overview conducted on some plants and vegetables (spirulina, broccoli, chamomile, cocoa, ginger, laurel, marigold, roselle, and rosemary), which are frequently consumed by humans. In addition, an analysis of some phytochemicals extracted from those vegetables and the analysis of a resin (propolis),whose antigenotoxic power has been demonstrated in various tests, including the Ames assay, sister chromatid exchange, chromosomal aberrations, micronucleus, and comet assay, was also performed.
Collapse
Affiliation(s)
- David López-Romero
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - Jeannett A Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - José Antonio Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, "Unidad Casco de Santo Tomas". Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, Mexico.
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Germán Chamorro-Cevallos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - Gabriel Betanzos-Cabrera
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hgo, Mexico.
| | - Isela Alvarez-Gonzalez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Wilfrido Massieu. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, "Unidad Profesional A. López Mateos". Av. Juan de Dios Bátiz. Col., Lindavista, Ciudad de México 07738, Mexico.
| | - Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, "Unidad Casco de Santo Tomas". Plan de San Luis y Díaz Mirón s/n, Ciudad de México 11340, Mexico.
| |
Collapse
|