1
|
Ida T, Matsui K, Nagata S, Nakamachi T, Shiimura Y, Sato T, Kojima M. Discovery of Feeding Regulatory Peptides and The Importance of Peptide Discovery Research. Kurume Med J 2025:MS7134001. [PMID: 40254448 DOI: 10.2739/kurumemedj.ms7134001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Bioactive peptides consist of multiple linked amino acids that are secreted from cells and act on specific receptors in order to transmit information from one cell to another. Through signal transduction, bioactive peptides regulate various physiological functions in the body, and the discovery of new bioactive peptides is therefore likely to lead to the development of various diagnostic and therapeutic agents. In this article, we have focused on the bioactive peptides that are known as feeding regulatory peptides. They are among the bioactive peptides discovered as ligands for G protein-coupled receptors (GPCRs), and we have reviewed their diverse functions. In addition, the status of structural analysis of GPCRs, which is necessary in the drug discovery process, and research on orphan GPCRs, for which new ligands are expected to be discovered in the future, is introduced to systematize modern peptide research and discuss future developments in bioactive peptide research.
Collapse
Affiliation(s)
- Takanori Ida
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki
| | - Kazuma Matsui
- Division of Molecular Genetics, Institute of Life Science, Kurume University
| | - Sayaka Nagata
- Department of Food Science and Technology, Faculty of Health and Nutrition, Minami Kyushu University
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Faculty of Science, Academic Assembly, University of Toyama
| | - Yuki Shiimura
- Division of Molecular Genetics, Institute of Life Science, Kurume University
- Department of Cell Biology, Graduate School of Medicine, Kyoto University
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Science, Kurume University
| | - Masayasu Kojima
- Division of Molecular Genetics, Institute of Life Science, Kurume University
| |
Collapse
|
2
|
Russell IC, Lee D, Wootten D, Sexton PM, Bumbak F. Cryoelectron microscopy as a tool for illuminating activation mechanisms of human class A orphan G protein-coupled receptors. Pharmacol Rev 2025; 77:100056. [PMID: 40286430 DOI: 10.1016/j.pharmr.2025.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are critically important medicinal targets, and the cryogenic electron microscopy (cryo-EM) revolution is providing novel high-resolution GPCR structures at a rapid pace. Orphan G protein-coupled receptors (oGPCRs) are a group of approximately 100 nonolfactory GPCRs for which endogenous ligands are unknown or not validated. The absence of modulating ligands adds difficulties to understanding the physiologic significance of oGPCRs and in the determination of high-resolution structures of isolated receptors that could facilitate drug discovery. Despite the challenges, cryo-EM structures of oGPCR-G protein complexes are emerging. This is being facilitated by numerous developments to stabilize GPCR-G protein complexes such as the use of dominant-negative G proteins, mini-G proteins, complex-stabilizing nanobodies or antibody fragments, and protein tethering methods. Moreover, many oGPCRs are constitutively active, which can facilitate complex formation in the absence of a known activating ligand. Consequently, in addition to providing templates for drug discovery, active oGPCR structures shed light on constitutive GPCR activation mechanisms. These comprise self-activation, whereby mobile extracellular portions of the receptor act as tethered agonists by occupying a canonical orthosteric-binding site in the transmembrane core, constitutive activity due to alterations to conserved molecular switches that stabilize inactive states of GPCRs, as well as receptors activated by cryptic ligands that are copurified with the receptor. Cryo-EM structures of oGPCRs are now being determined at a rapid pace and are expected to be invaluable tools for oGPCR drug discovery. SIGNIFICANCE STATEMENT: Orphan G protein-coupled receptors (GPCRs) provide large untapped potential for development of new medicines. Many of these receptors display constitutive activity, enabling structure determination and insights into observed GPCR constitutive activity including (1) self-activation by mobile receptor extracellular portions that function as tethered agonists, (2) modification of conserved motifs canonically involved in receptor quiescence and/or activation, and (3) activation by cryptic lipid ligands. Collectively, these studies advance fundamental understanding of GPCR function and provide opportunities for novel drug discovery.
Collapse
Affiliation(s)
- Isabella C Russell
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dongju Lee
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Denise Wootten
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Patrick M Sexton
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Fabian Bumbak
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Ahmad R, Luka M, Journe A, Gallet S, Hegron A, Do Cruzeiro M, Millan MJ, Delagrange P, Masri B, Dam J, Prevot V, Jockers R. Orphan GPR50 Restrains Neurite Outgrowth and Cell Migration by Activating the G 12/13 Protein-RhoA Pathway in Neural Progenitor Cells and Tanycytes. J Pineal Res 2025; 77:e70041. [PMID: 40091563 PMCID: PMC11911906 DOI: 10.1111/jpi.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Human genetic variants of the orphan G protein-coupled receptor GPR50 are suggested risk factors for neuropsychiatric disorders. However, the function of GPR50 in the central nervous system (CNS) and its link to CNS disorders remain poorly defined. Here, we generated GPR50 knockout (GPR50-KO) mice and show that the absence of GPR50 increases neurite outgrowth, cell motility and migration of isolated neural progenitor cells (NPCs) and hypothalamic radial glial cells (tanycytes). These observations were phenocopied in NPCs and tanycytes from wild-type mice treated with neutralizing antibodies the against the prototypical neurite growth inhibitor Nogo-A. Treatment of NPCs and tanycytes from GPR50-KO cells with neutralizing antibodies had no further, additive, effect. Inhibition of neurite growth by GPR50 occurs through activation of the G12/13 protein-RhoA pathway in a manner similar to, but independent of Nogo-A and its receptors. Collectively, we show that GPR50 acts as an inhibitor of neurite growth and cell migration in the brain by activating the G12/13 protein-RhoA pathway.
Collapse
Affiliation(s)
- Raise Ahmad
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | - Marine Luka
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | | | - Sarah Gallet
- University Lille, Inserm, CHU Lille, Lille Neuroscience and CognitionLilleFrance
| | - Alan Hegron
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | | | | | | | - Bernard Masri
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | - Julie Dam
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Lille Neuroscience and CognitionLilleFrance
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRSParisFrance
| |
Collapse
|
4
|
Birgül Iyison N, Abboud C, Abboud D, Abdulrahman AO, Bondar AN, Dam J, Georgoussi Z, Giraldo J, Horvat A, Karoussiotis C, Paz-Castro A, Scarpa M, Schihada H, Scholz N, Güvenc Tuna B, Vardjan N. ERNEST COST action overview on the (patho)physiology of GPCRs and orphan GPCRs in the nervous system. Br J Pharmacol 2024. [PMID: 38825750 DOI: 10.1111/bph.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 06/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.
Collapse
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics, University of Bogazici, Istanbul, Turkey
| | - Clauda Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | | | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Magurele, Romania
- Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), Jülich, Germany
| | - Julie Dam
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Christos Karoussiotis
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Alba Paz-Castro
- Molecular Pharmacology of GPCRs research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bilge Güvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
5
|
Shirsath KR, Patil VK, Awathale SN, Goyal SN, Nakhate KT. Pathophysiological and therapeutic implications of neuropeptide S system in neurological disorders. Peptides 2024; 175:171167. [PMID: 38325715 DOI: 10.1016/j.peptides.2024.171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neuropeptide S (NPS) is a 20 amino acids-containing neuroactive molecule discovered by the reverse pharmacology method. NPS is detected in specific brain regions like the brainstem, amygdala, and hypothalamus, while its receptor (NPSR) is ubiquitously expressed in the central nervous system (CNS). Besides CNS, NPS and NPSR are also expressed in the peripheral nervous system. NPSR is a G-protein coupled receptor that primarily uses Gq and Gs signaling pathways to mediate the actions of NPS. In animal models of Parkinsonism and Alzheimer's disease, NPS exerts neuroprotective effects. NPS suppresses oxidative stress, anxiety, food intake, and pain, and promotes arousal. NPSR facilitates reward, reinforcement, and addiction-related behaviors. Genetic variation and single nucleotide polymorphism in NPSR are associated with depression, schizophrenia, rheumatoid arthritis, and asthma. NPS interacts with several neurotransmitters including glutamate, noradrenaline, serotonin, corticotropin-releasing factor, and gamma-aminobutyric acid. It also modulates the immune system via augmenting pro-inflammatory cytokines and plays an important role in the pathogenesis of rheumatoid arthritis and asthma. In the present review, we discussed the distribution profile of NPS and NPSR, signaling pathways, and their importance in the pathophysiology of various neurological disorders. We have also proposed the areas where further investigations on the NPS system are warranted.
Collapse
Affiliation(s)
- Kamini R Shirsath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Vaishnavi K Patil
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| |
Collapse
|
6
|
Hoppe N, Harrison S, Hwang SH, Chen Z, Karelina M, Deshpande I, Suomivuori CM, Palicharla VR, Berry SP, Tschaikner P, Regele D, Covey DF, Stefan E, Marks DS, Reiter JF, Dror RO, Evers AS, Mukhopadhyay S, Manglik A. GPR161 structure uncovers the redundant role of sterol-regulated ciliary cAMP signaling in the Hedgehog pathway. Nat Struct Mol Biol 2024; 31:667-677. [PMID: 38326651 PMCID: PMC11221913 DOI: 10.1038/s41594-024-01223-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
The orphan G protein-coupled receptor (GPCR) GPR161 plays a central role in development by suppressing Hedgehog signaling. The fundamental basis of how GPR161 is activated remains unclear. Here, we determined a cryogenic-electron microscopy structure of active human GPR161 bound to heterotrimeric Gs. This structure revealed an extracellular loop 2 that occupies the canonical GPCR orthosteric ligand pocket. Furthermore, a sterol that binds adjacent to transmembrane helices 6 and 7 stabilizes a GPR161 conformation required for Gs coupling. Mutations that prevent sterol binding to GPR161 suppress Gs-mediated signaling. These mutants retain the ability to suppress GLI2 transcription factor accumulation in primary cilia, a key function of ciliary GPR161. By contrast, a protein kinase A-binding site in the GPR161 C terminus is critical in suppressing GLI2 ciliary accumulation. Our work highlights how structural features of GPR161 interface with the Hedgehog pathway and sets a foundation to understand the role of GPR161 function in other signaling pathways.
Collapse
Affiliation(s)
- Nicholas Hoppe
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Simone Harrison
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ziwei Chen
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Taylor Institute for Innovative Psychiatric Research, St Louis, MO, USA
| | - Masha Karelina
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ishan Deshpande
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Vivek R Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel P Berry
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Philipp Tschaikner
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Dominik Regele
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Douglas F Covey
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Taylor Institute for Innovative Psychiatric Research, St Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Eduard Stefan
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Debora S Marks
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ron O Dror
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Alex S Evers
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
- Taylor Institute for Innovative Psychiatric Research, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
7
|
Jobe A, Vijayan R. Orphan G protein-coupled receptors: the ongoing search for a home. Front Pharmacol 2024; 15:1349097. [PMID: 38495099 PMCID: PMC10941346 DOI: 10.3389/fphar.2024.1349097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
G protein-coupled receptors (GPCRs) make up the largest receptor superfamily, accounting for 4% of protein-coding genes. Despite the prevalence of such transmembrane receptors, a significant number remain orphans, lacking identified endogenous ligands. Since their conception, the reverse pharmacology approach has been used to characterize such receptors. However, the multifaceted and nuanced nature of GPCR signaling poses a great challenge to their pharmacological elucidation. Considering their therapeutic relevance, the search for native orphan GPCR ligands continues. Despite limited structural input in terms of 3D crystallized structures, with advances in machine-learning approaches, there has been great progress with respect to accurate ligand prediction. Though such an approach proves valuable given that ligand scarcity is the greatest hurdle to orphan GPCR deorphanization, the future pairings of the remaining orphan GPCRs may not necessarily take a one-size-fits-all approach but should be more comprehensive in accounting for numerous nuanced possibilities to cover the full spectrum of GPCR signaling.
Collapse
Affiliation(s)
- Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Tao Q, Zhang ZD, Lu XR, Qin Z, Liu XW, Li SH, Bai LX, Ge BW, Li JY, Yang YJ. Multi-omics reveals aspirin eugenol ester alleviates neurological disease. Biomed Pharmacother 2023; 166:115311. [PMID: 37572635 DOI: 10.1016/j.biopha.2023.115311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Exosomes play an essential role in maintaining normal brain function due to their ability to cross the blood-brain barrier. Aspirin eugenol ester (AEE) is a new medicinal compound synthesized by the esterification of aspirin with eugenol using the prodrug principle. Aspirin has been reported to have neuroprotective effects and may be effective against neurodegenerative diseases. PURPOSE This study wanted to investigate how AEE affected neurological diseases in vivo and in vitro. EXPERIMENTAL APPROACH A multi-omics approach was used to explore the effects of AEE on the nervous system. Gene and protein expression changes of BDNF and NEFM in SY5Y cells after AEE treatment were detected using RT-qPCR and Western Blot. KEY RESULTS The multi-omics results showed that AEE could regulate neuronal synapses, neuronal axons, neuronal migration, and neuropeptide signaling by affecting transport, inflammatory response, and regulating apoptosis. Exosomes secreted by AEE-treated Caco-2 cells could promote the growth of neurofilaments in SY5Y cells and increased the expression of BDNF and NEFM proteins in SY5Y cells. miRNAs in the exosomes of AEE-treated Caco-2 cells may play an important role in the activation of SY5Y neuronal cells. CONCLUSIONS In conclusion, AEE could play positive effects on neurological-related diseases.
Collapse
Affiliation(s)
- Qi Tao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xiao-Rong Lu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Li-Xia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Bo-Wen Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| |
Collapse
|
9
|
Hoppe N, Harrison S, Hwang SH, Chen Z, Karelina M, Deshpande I, Suomivuori CM, Palicharla VR, Berry SP, Tschaikner P, Regele D, Covey DF, Stefan E, Marks DS, Reiter J, Dror RO, Evers AS, Mukhopadhyay S, Manglik A. GPR161 structure uncovers the redundant role of sterol-regulated ciliary cAMP signaling in the Hedgehog pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.540554. [PMID: 37292845 PMCID: PMC10245861 DOI: 10.1101/2023.05.23.540554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The orphan G protein-coupled receptor (GPCR) GPR161 is enriched in primary cilia, where it plays a central role in suppressing Hedgehog signaling1. GPR161 mutations lead to developmental defects and cancers2,3,4. The fundamental basis of how GPR161 is activated, including potential endogenous activators and pathway-relevant signal transducers, remains unclear. To elucidate GPR161 function, we determined a cryogenic-electron microscopy structure of active GPR161 bound to the heterotrimeric G protein complex Gs. This structure revealed an extracellular loop 2 that occupies the canonical GPCR orthosteric ligand pocket. Furthermore, we identify a sterol that binds to a conserved extrahelical site adjacent to transmembrane helices 6 and 7 and stabilizes a GPR161 conformation required for Gs coupling. Mutations that prevent sterol binding to GPR161 suppress cAMP pathway activation. Surprisingly, these mutants retain the ability to suppress GLI2 transcription factor accumulation in cilia, a key function of ciliary GPR161 in Hedgehog pathway suppression. By contrast, a protein kinase A-binding site in the GPR161 C-terminus is critical in suppressing GLI2 ciliary accumulation. Our work highlights how unique structural features of GPR161 interface with the Hedgehog pathway and sets a foundation to understand the broader role of GPR161 function in other signaling pathways.
Collapse
Affiliation(s)
- Nicholas Hoppe
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Simone Harrison
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics Graduate Program, University of California, San Francisco, CA, USA
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ziwei Chen
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Taylor Institute for Innovative Psychiatric Research, St. Louis, MO 63110, USA
| | - Masha Karelina
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ishan Deshpande
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Carl-Mikael Suomivuori
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Vivek R. Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel P. Berry
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Philipp Tschaikner
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck; Tyrolean Cancer Research Institute (TKFI), Innsbruck 6020, Austria
| | - Dominik Regele
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
| | - Douglas F. Covey
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Taylor Institute for Innovative Psychiatric Research, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eduard Stefan
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck; Tyrolean Cancer Research Institute (TKFI), Innsbruck 6020, Austria
| | - Debora S. Marks
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeremy Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158
| | - Ron O. Dror
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Alex S. Evers
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Taylor Institute for Innovative Psychiatric Research, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
10
|
Roy N, Parhar I. Habenula orphan G-protein coupled receptors in the pathophysiology of fear and anxiety. Neurosci Biobehav Rev 2021; 132:870-883. [PMID: 34801259 DOI: 10.1016/j.neubiorev.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The phasic emotion, fear, and the tonic emotion, anxiety, have been conventionally inspected in clinical frameworks to epitomize memory acquisition, storage, and retrieval. However, inappropriate expression of learned fear in a safe environment and its resistance to suppression is a cardinal feature of various fear-related disorders. A significant body of literature suggests the involvement of extra-amygdala circuitry in fear disorders. Consistent with this view, the present review underlies incentives for the association between the habenula and fear memory. G protein-coupled receptors (GPCRs) are important to understand the molecular mechanisms central to fear learning due to their neuromodulatory role. The efficacy of a pharmacological strategy aimed at exploiting habenular-GPCR desensitization machinery can serve as a therapeutic target combating the pathophysiology of fear disorders. Originating from this milieu, the conserved nature of orphan GPCRs in the brain, with some having the highest expression in the habenula can lead to recent endeavors in understanding its functionality in fear circuitry.
Collapse
Affiliation(s)
- Nisa Roy
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Ishwar Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
11
|
Reinscheid RK, Ruzza C. Pharmacology, Physiology and Genetics of the Neuropeptide S System. Pharmaceuticals (Basel) 2021; 14:ph14050401. [PMID: 33922620 PMCID: PMC8146834 DOI: 10.3390/ph14050401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
The Neuropeptide S (NPS) system is a rather ‘young’ transmitter system that was discovered and functionally described less than 20 years ago. This review highlights the progress that has been made in elucidating its pharmacology, anatomical distribution, and functional involvement in a variety of physiological effects, including behavior and immune functions. Early on, genetic variations of the human NPS receptor (NPSR1) have attracted attention and we summarize current hypotheses of genetic linkage with disease and human behaviors. Finally, we review the therapeutic potential of future drugs modulating NPS signaling. This review serves as an introduction to the broad collection of original research papers and reviews from experts in the field that are presented in this Special Issue.
Collapse
Affiliation(s)
- Rainer K. Reinscheid
- Institute of Pharmacology & Toxicology, University Hospital Jena, Friedrich-Schiller University, 07747 Jena, Germany
- Institute of Physiology I, University Hospital Münster, Westfälische-Wilhelms University, 48149 Münster, Germany
- Correspondence: (R.K.R.); (C.R.)
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (R.K.R.); (C.R.)
| |
Collapse
|
12
|
The N-terminus of GPR37L1 is proteolytically processed by matrix metalloproteases. Sci Rep 2020; 10:19995. [PMID: 33203955 PMCID: PMC7673139 DOI: 10.1038/s41598-020-76384-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
GPR37L1 is an orphan G protein-coupled receptor expressed exclusively in the brain and linked to seizures, neuroprotection and cardiovascular disease. Based upon the observation that fragments of the GPR37L1 N-terminus are found in human cerebrospinal fluid, we hypothesized that GPR37L1 was subject to post-translational modification. Heterologous expression of GPR37L1-eYFP in either HEK293 or U87 glioblastoma cells yielded two cell surface species of approximately equivalent abundance, the larger of which is N-glycosylated at Asn105. The smaller species is produced by matrix metalloprotease/ADAM-mediated proteolysis (shown by the use of pharmacological inhibitors) and has a molecular weight identical to that of a mutant lacking the entire N-terminus, Δ122 GPR37L1. Serial truncation of the N-terminus prevented GPR37L1 expression except when the entire N-terminus was removed, narrowing the predicted site of N-terminal proteolysis to residues 105–122. Using yeast expressing different G protein chimeras, we found that wild type GPR37L1, but not Δ122 GPR37L1, coupled constitutively to Gpa1/Gαs and Gpa1/Gα16 chimeras, in contrast to previous studies. We tested the peptides identified in cerebrospinal fluid as well as their putative newly-generated N-terminal ‘tethered’ counterparts in both wild type and Δ122 GPR37L1 Gpa1/Gαs strains but saw no effect, suggesting that GPR37L1 does not signal in a manner akin to the protease-activated receptor family. We also saw no evidence of receptor activation or regulation by the reported GPR37L1 ligand, prosaptide/TX14A. Finally, the proteolytically processed species predominated both in vivo and ex vivo in organotypic cerebellar slice preparations, suggesting that GPR37L1 is rapidly processed to a signaling-inactive form. Our data indicate that the function of GPR37L1 in vivo is tightly regulated by metalloprotease-dependent N-terminal cleavage.
Collapse
|
13
|
Mendel HC, Kaas Q, Muttenthaler M. Neuropeptide signalling systems - An underexplored target for venom drug discovery. Biochem Pharmacol 2020; 181:114129. [PMID: 32619425 PMCID: PMC7116218 DOI: 10.1016/j.bcp.2020.114129] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
Neuropeptides are signalling molecules mainly secreted from neurons that act as neurotransmitters or peptide hormones to affect physiological processes and modulate behaviours. In humans, neuropeptides are implicated in numerous diseases and understanding their role in physiological processes and pathologies is important for therapeutic development. Teasing apart the (patho)physiology of neuropeptides remains difficult due to ligand and receptor promiscuity and the complexity of the signalling pathways. The current approach relies on a pharmacological toolbox of agonists and antagonists displaying high selectivity for independent receptor subtypes, with the caveat that only few selective ligands have been discovered or developed. Animal venoms represent an underexplored source for novel receptor subtype-selective ligands that could aid in dissecting human neuropeptide signalling systems. Multiple endogenous-like neuropeptides as well as peptides acting on neuropeptide receptors are present in venoms. In this review, we summarise current knowledge on neuropeptides and discuss venoms as a source for ligands targeting neuropeptide signalling systems.
Collapse
Affiliation(s)
- Helen C Mendel
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria.
| |
Collapse
|
14
|
Virtual Screening of Human Class-A GPCRs Using Ligand Profiles Built on Multiple Ligand-Receptor Interactions. J Mol Biol 2020; 432:4872-4890. [PMID: 32652079 DOI: 10.1016/j.jmb.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large family of integral membrane proteins responsible for cellular signal transductions. Identification of therapeutic compounds to regulate physiological processes is an important first step of drug discovery. We proposed MAGELLAN, a novel hierarchical virtual-screening (VS) pipeline, which starts with low-resolution protein structure prediction and structure-based binding-site identification, followed by homologous GPCR detections through structure and orthosteric binding-site comparisons. Ligand profiles constructed from the homologous ligand-GPCR complexes are then used to thread through compound databases for VS. The pipeline was first tested in a large-scale retrospective screening experiment against 224 human Class A GPCRs, where MAGELLAN achieved a median enrichment factor (EF) of 14.38, significantly higher than that using individual ligand profiles. Next, MAGELLAN was examined on 5 and 20 GPCRs from two public VS databases (DUD-E and GPCR-Bench) and resulted in an average EF of 9.75 and 13.70, respectively, which compare favorably with other state-of-the-art docking- and ligand-based methods, including AutoDock Vina (with EF = 1.48/3.16 in DUD-E and GPCR-Bench), DOCK 6 (2.12/3.47 in DUD-E and GPCR-Bench), PoLi (2.2 in DUD-E), and FINDSITECcomb2.0 (2.90 in DUD-E). Detailed data analyses show that the major advantage of MAGELLAN is attributed to the power of ligand profiling, which integrates complementary methods for ligand-GPCR interaction recognition and thus significantly improves the coverage and sensitivity of VS models. Finally, cases studies on opioid and motilin receptors show that new connections between functionally related GPCRs can be visualized in the minimum spanning tree built on the similarities of predicted ligand-binding ensembles, suggesting a novel use of MAGELLAN for GPCR deorphanization.
Collapse
|
15
|
Tang H, Shu C, Chen H, Zhang X, Zang Z, Deng C. Constitutively active BRS3 is a genuinely orphan GPCR in placental mammals. PLoS Biol 2019; 17:e3000175. [PMID: 30840614 PMCID: PMC6422423 DOI: 10.1371/journal.pbio.3000175] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/18/2019] [Accepted: 02/19/2019] [Indexed: 11/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) play an important role in physiology and disease and represent the most productive drug targets. Orphan GPCRs, with their endogenous ligands unknown, were considered a source of drug targets and consequently attract great interest to identify their endogenous cognate ligands for deorphanization. However, a contrary view to the ubiquitous existence of endogenous ligands for every GPCR is that there might be a significant overlooked fraction of orphan GPCRs that function constitutively in a ligand-independent manner only. Here, we investigated the evolution of the bombesin receptor-ligand family in vertebrates in which one member-bombesin receptor subtype-3 (BRS3)-is a potential orphan GPCR. With analysis of 17 vertebrate BRS3 structures and 10 vertebrate BRS3 functional data, our results demonstrated that nonplacental vertebrate BRS3 still connects to the original ligands-neuromedin B (NMB) and gastrin-releasing peptide (GRP)-because of adaptive evolution, with significantly changed protein structure, especially in three altered key residues (Q127R, P205S, and R294H) originally involved in ligand binding/activation, whereas the placental mammalian BRS3 lost the binding affinity to NMB/GRP and constitutively activates Gs/Gq/G12 signaling in a ligand-independent manner. Moreover, the N terminus of placental mammalian BRS3 underwent positive selection, exhibiting significant structural differences compared to nonplacental vertebrate BRS3, and this domain plays an important role in constitutive activity of placental mammalian BRS3. In conclusion, constitutively active BRS3 is a genuinely orphan GPCR in placental mammals, including human. To our knowledge, this study identified the first example that might represent a new group of genuinely orphan GPCRs that will never be deorphanized by the discovery of a natural ligand and provided new perspectives in addition to the current ligand-driven GPCR deorphanization.
Collapse
Affiliation(s)
- Huihao Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chuanjun Shu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Department of Bioinformatics, College of Biomedical Engineering and Information, Nanjing Medical University, Nanjing, China
| | - Haidi Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaojing Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhuqing Zang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
16
|
Shichiri M, Nonaka D, Lee LJ, Tanaka K. Identification of the salusin-β receptor using proteoliposomes embedded with endogenous membrane proteins. Sci Rep 2018; 8:17865. [PMID: 30552345 PMCID: PMC6294790 DOI: 10.1038/s41598-018-35740-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023] Open
Abstract
Although orphan G protein-coupled receptors (GPCRs) have been used as targets to discover unidentified natural ligands, increasing numbers of non-GPCRs have been found to mediate important biological functions. Bioinformatics of genome and cDNA resources predict putative bioactive peptides, demanding an alternative approach to efficiently unravel cell surface targets. In silico analysis of a full-length cDNA library previously allowed us to identify salusin-β, a parasympathomimetic/pro-atherosclerotic peptide with unique physicochemical properties. Here, we show that the β-chain of ATP synthase is a cell surface receptor for salusin-β by utilizing artificial liposomes embedded with endogenous membrane proteins directly transferred from animal tissues while retaining the ligand-binding capability. Conventional techniques using detergents identified a β-actin-profilin complex as membrane-associated salusin-β-binding proteins, but failed to identify the cell surface receptor. Since the α-chain of ATP synthase is a principal cell surface target for angiostatin, a potent endogenous angiogenesis inhibitor, we investigated whether salusin-β modulates angiogenesis. Salusin-β inhibited cell surface ATP synthase activity and prevented sarcoma cell-induced angiogenesis in an in vivo mouse air sac model. Therefore, salusin-β binds to membrane-bound ATP synthase and acts as an angiogenesis inhibitor. The current methodology allows the identification of novel cell surface targets, irrespective of the receptor structure.
Collapse
Affiliation(s)
- Masayoshi Shichiri
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Daisuke Nonaka
- Protosera Inc., 4-3-22 Nishinakajima, Yodogawa-ku, Osaka, 532-0011, Japan
| | - Lyang-Ja Lee
- Protosera Inc., 4-3-22 Nishinakajima, Yodogawa-ku, Osaka, 532-0011, Japan
| | - Kenji Tanaka
- Protosera Inc., 4-3-22 Nishinakajima, Yodogawa-ku, Osaka, 532-0011, Japan
| |
Collapse
|
17
|
Grund T, Neumann ID. Brain neuropeptide S: via GPCR activation to a powerful neuromodulator of socio-emotional behaviors. Cell Tissue Res 2018; 375:123-132. [PMID: 30112573 DOI: 10.1007/s00441-018-2902-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/21/2018] [Indexed: 12/19/2022]
Abstract
Neuropeptide S (NPS) has attracted the attention of the scientific community due to its potent anxiolytic-like and fear-attenuating effects studied in rodents. Therefore, NPS might represent a treatment option for neuropsychiatric disorders, such as anxiety disorders, even more so as single nucleotide polymorphisms in the human NPS receptor gene have been associated with increased anxiety traits that contribute to the pathogenesis of fear- and anxiety-related disorders. However, the signaling mechanisms underlying the behavioral effects of NPS and the interaction with other brain neuropeptides are still rather unknown. To illuminate how NPS modulates the expression of selected emotional and social behaviors, the present review focuses on neuroanatomical and electrophysiological studies, as well as intracellular signaling mechanisms following NPS receptor stimulation in rodents. We will also discuss interactions of the NPS system with two well-described neuropeptides, namely corticotropin-releasing factor and oxytocin, which may contribute to the fear- and anxiety-reducing effects.
Collapse
Affiliation(s)
- Thomas Grund
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93040, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
18
|
Abstract
Neuropeptides are evolutionarily ancient mediators of neuronal signalling that regulate a wide range of physiological processes and behaviours in animals. Neuropeptide signalling has been investigated extensively in vertebrates and protostomian invertebrates, which include the ecdysozoans Drosophila melanogaster (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda). However, until recently, an understanding of evolutionary relationships between neuropeptide signalling systems in vertebrates and protostomes has been impaired by a lack of genome/transcriptome sequence data from non-ecdysozoan invertebrates. The echinoderms—a deuterostomian phylum that includes sea urchins, sea cucumbers and starfish—have been particularly important in providing new insights into neuropeptide evolution. Sequencing of the genome of the sea urchin Strongylocentrotus purpuratus (Class Echinoidea) enabled discovery of (i) the first invertebrate thyrotropin-releasing hormone-type precursor, (ii) the first deuterostomian pedal peptide/orcokinin-type precursors and (iii) NG peptides—the ‘missing link’ between neuropeptide S in tetrapod vertebrates and crustacean cardioactive peptide in protostomes. More recently, sequencing of the neural transcriptome of the starfish Asterias rubens (Class Asteroidea) enabled identification of 40 neuropeptide precursors, including the first kisspeptin and melanin-concentrating hormone-type precursors to be identified outside of the chordates. Furthermore, the characterization of a corazonin-type neuropeptide signalling system in A. rubens has provided important new insights into the evolution of gonadotropin-releasing hormone-related neuropeptides. Looking forward, the discovery of multiple neuropeptide signalling systems in echinoderms provides opportunities to investigate how these systems are used to regulate physiological and behavioural processes in the unique context of a decentralized, pentaradial bauplan.
Collapse
|
19
|
Abstract
Neuropeptides are the largest class of intercellular signaling molecules, contributing to a wide variety of physiological processes. Neuropeptide receptors are therapeutic targets for a broad range of drugs, including medications to treat pain, addiction, sleep disorders, and nausea. In addition to >100 peptides with known functions, many peptides have been identified in mammalian brain for which the cognate receptors have not been identified. Similarly, dozens of "orphan" G protein-coupled receptors have been identified in the mammalian genome. While it would seem straightforward to match the orphan peptides and receptors, this is not always easily accomplished. In this review we focus on peptides named PEN and big LEN, which are among the most abundant neuropeptides in mouse brain, and their recently identified receptors: GPR83 and GPR171. These receptors are co-expressed in some brain regions and are able to interact. Because PEN and big LEN are produced from the same precursor protein and co-secreted, the interaction of GPR83 and GPR171 is physiologically relevant. In addition to interactions of these two peptides/receptors, PEN and LEN are co-localized with neuropeptide Y and Agouti-related peptide in neurons that regulate feeding. In this review, using these peptide receptors as an example, we highlight the multiple modes of regulation of receptors and present the emerging view that neuropeptides function combinatorially to generate a network of signaling messages. The complexity of neuropeptides, receptors, and their signaling pathways is important to consider both in the initial deorphanization of peptides and receptors, and in the subsequent development of therapeutic applications.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
20
|
Wang D. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity. Immunopharmacol Immunotoxicol 2018; 40:187-192. [PMID: 29433403 DOI: 10.1080/08923973.2018.1434792] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIM The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. METHODS The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. RESULTS GPCR signaling plays an important role in T cell activation, homeostasis and function. CONCLUSION GPCR signaling is critical in regulating T cell immunity.
Collapse
Affiliation(s)
- Dashan Wang
- a Molecular Biology Research Center, Key Medical Health Laboratory for Laboratory Medicine of Shandong Province, Department of Laboratory Medicine , Shandong Medical College , Linyi , Shandong , China
| |
Collapse
|
21
|
Abstract
Despite tremendous efforts, approximately 120 GPCRs remain orphan. Their physiological functions and their potential roles in diseases are poorly understood. Orphan GPCRs are extremely important because they may provide novel therapeutic targets for unmet medical needs. As a complement to experimental approaches, molecular modeling and virtual screening are efficient techniques to discover synthetic surrogate ligands which can help to elucidate the role of oGPCRs. Constitutively activated mutants and recently published active structures of GPCRs provide stimulating opportunities for building active molecular models for oGPCRs and identifying activators using virtual screening of compound libraries. We describe the molecular modeling and virtual screening process we have applied in the discovery of surrogate ligands, and provide examples for CCKA, a simulated oGPCR, and for two oGPCRs, GPR52 and GPR34.
Collapse
Affiliation(s)
- Constantino Diaz
- Research Informatics, Evotec (France) SAS, 195 Route d'Espagne, 31036, Toulouse, France.
| | | | - Emilie Pihan
- Research Informatics, Evotec (France) SAS, 195 Route d'Espagne, 31036, Toulouse, France
| |
Collapse
|
22
|
Kaushik AC, Sahi S. Insights into unbound-bound states of GPR142 receptor in a membrane-aqueous system using molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:1788-1805. [PMID: 28571491 DOI: 10.1080/07391102.2017.1335234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
G protein coupled receptors (GPCRs) are source machinery in signal transduction pathways and being one of the major therapeutic targets play a significant in drug discovery. GPR142, an orphan GPCR, has been implicated in the regulation of insulin, thereby having a crucial role in Type II diabetes management. Deciphering of the structures of orphan, GPCRs (O-GPCRs) offer better prospects for advancements in research in ion translocation and transduction of extracellular signals. As the crystallographic structure of GPR142 is not available in PDB, therefore, threading and ab initio-based approaches were used for 3D modeling of GPR142. Molecular dynamic simulations (900 ns) were performed on the 3D model of GPR142 and complexes of GPR142 with top five hits, obtained through virtual screening, embedded in lipid bilayer with aqueous system using OPLS force field. Compound 1, 3, and 4 may act as scaffolds for designing potential lead agonists for GPR142. The finding of GPR142 MD simulation study provides more comprehensive representation of the functional properties. The concern for Type II diabetes is increasing worldwide and successful treatment of this disease demands novel drugs with better efficacy.
Collapse
Affiliation(s)
- Aman Chandra Kaushik
- a School of Biotechnology , Gautam Buddha University , Greater Noida , Uttar Pradesh , India
| | - Shakti Sahi
- a School of Biotechnology , Gautam Buddha University , Greater Noida , Uttar Pradesh , India
| |
Collapse
|
23
|
Zhuo T, Zhou S, Zhang W, Lambertucci C, Volpini R. Synthesis and Ability of New Ligands for G Protein-Coupled Receptors 17 (GPR17). Med Sci Monit 2017; 23:953-959. [PMID: 28223679 PMCID: PMC5333714 DOI: 10.12659/msm.902048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background GPR17 is believed to be a novel target for the development of new therapeutic approaches to human stroke and multiple sclerosis. Hence, the selection of GPR17 ligands may be a potent way to reduce the progression of ischemic damage. Material/Methods New potential ligands for GPR17, mono-, di-, and triphosphate adenosine nucleotides substituted at N6-position with a methyl and a cyclopentyl group were synthesized. The ability of new ligands to bind GPR17 was evaluated using frontal affinity chromatography-mass spectrometry (FAC-MS) method. Cangrelor, MRS2179, and uridine diphosphate were selected as the reference compounds. Results The new triphosphate derivatives 9 and 10 were considered as the new GPR17 ligands. The compound 10 was eluted with breakthrough time (bt) between cangrelor and MRS 2179 (compound 10, bt=12.25; cangrelor, bt=24.55, and MRS 2179, bt=7.10), while the breakthrough volume of compound 9 was similar to that of MRS 2179 (compound 9, bt=7.53 and MRS 2179, bt=7.10). Conclusions N6-cyclopentyATP 10 is medium-high affinity ligand of GPR17, while the corresponding N6-methyl derivative 9 is a medium affinity ligand similar to MRS 2179. Hence, the new N6-cyclopentylATP 10 might be a good candidate for the pharmacological characterization of GPR17.
Collapse
Affiliation(s)
- Tongyou Zhuo
- School of Food Technology, Jilin Agricultural Science and Technology College, Jilin City, Jilin, China (mainland)
| | - Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin City, Jilin, China (mainland)
| | - Wei Zhang
- Changchun Beihua Pharmaceutical Co., Jilin City, Jilin, China (mainland)
| | | | | |
Collapse
|
24
|
Szabolcsi V, Albisetti GW, Celio MR. Parvalbumin-Neurons of the Ventrolateral Hypothalamic Parvafox Nucleus Receive a Glycinergic Input: A Gene-Microarray Study. Front Mol Neurosci 2017; 10:8. [PMID: 28167900 PMCID: PMC5253383 DOI: 10.3389/fnmol.2017.00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/06/2017] [Indexed: 12/30/2022] Open
Abstract
The ventrolateral hypothalamic parvafox (formerly called PV1-Foxb1) nucleus is an anatomical entity of recent discovery and unknown function. With a view to gaining an insight into its putative functional role(s), we conducted a gene-microarray analysis and, armed with the forthcoming data, controlled the results with the Allen databases and the murine BrainStars (B*) database. The parvafox nucleus was specifically sampled by laser-capture microdissection and the transcriptome was subjected to a microarray analysis on Affymetrix chips. Eighty-two relevant genes were found to be potentially more expressed in this brain region than in either the cerebral cortex or the hippocampus. When the expression patterns of these genes were counterchecked in the Allen-Database of in-situ hybridizations and in the B*-microarray database, their localization in the parvafox region was confirmed for thirteen. For nine novel genes, which are particularly interesting because of their possible involvement in neuromodulation, the expression was verified by quantitative real time-PCR. Of particular functional importance may be the occurrence of glycine receptors, the presence of which indicates that the activity of the parvafox nucleus is under ascending inhibitory control.
Collapse
Affiliation(s)
- Viktoria Szabolcsi
- Anatomy and Program in Neuroscience, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Gioele W Albisetti
- Anatomy and Program in Neuroscience, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Marco R Celio
- Anatomy and Program in Neuroscience, Department of Medicine, University of Fribourg Fribourg, Switzerland
| |
Collapse
|
25
|
Gajjar S, Patel BM. Neuromedin: An insight into its types, receptors and therapeutic opportunities. Pharmacol Rep 2017; 69:438-447. [PMID: 31994106 DOI: 10.1016/j.pharep.2017.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/26/2016] [Accepted: 01/18/2017] [Indexed: 12/17/2022]
Abstract
Neuropeptides are small protein used by neurons in signal communications. Neuromedin U was the first neuropeptide discovered from the porcine spinal and showed its potent constricting activities on uterus hence was entitled with neuromedin U. Following neuromedin U another of its isoform was discovered neuromedin S which was observed in suprachiasmatic nucleus hence was entitled neuromedin S. Neuromedin K and neuromedin L are of kanassin class which belong to tachykinin family. Bombesin family consists of neuromedin B and neuromedin C. All these different neuromedins have various physiological roles like constrictive effects on the smooth muscles, control of blood pressure, pain sensations, hunger, bone metastasis and release and regulation of hormones. Over the years various newer physiological roles have been observed thus opening ways for various novel therapeutic treatments. This review aims to provide an overview of important different types of neuromedin, their receptors, signal transduction mechanism and implications for various diseases.
Collapse
|
26
|
Furlong M, Seong JY. Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors. Biomol Ther (Seoul) 2017; 25:57-68. [PMID: 28035082 PMCID: PMC5207463 DOI: 10.4062/biomolther.2016.199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022] Open
Abstract
Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples.
Collapse
Affiliation(s)
- Michael Furlong
- Graduate School of Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jae Young Seong
- Graduate School of Biomedical Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
27
|
Coleman JLJ, Ngo T, Schmidt J, Mrad N, Liew CK, Jones NM, Graham RM, Smith NJ. Metalloprotease cleavage of the N terminus of the orphan G protein-coupled receptor GPR37L1 reduces its constitutive activity. Sci Signal 2016; 9:ra36. [PMID: 27072655 DOI: 10.1126/scisignal.aad1089] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Little is known about the pharmacology or physiology of GPR37L1, a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor that is abundant in the cerebellum. Mice deficient in this receptor exhibit precocious cerebellar development and hypertension. We showed that GPR37L1 coupled to the G protein Gα(s) when heterologously expressed in cultured cells in the absence of any added ligand, whereas a mutant receptor that lacked the amino terminus was inactive. Conversely, inhibition of ADAMs (a disintegrin and metalloproteases) enhanced receptor activity, indicating that the presence of the amino terminus is necessary for GPR37L1 signaling. Metalloprotease-dependent processing of GPR37L1 was evident in rodent cerebellum, where we detected predominantly the cleaved, inactive form. However, comparison of the accumulation of cAMP (adenosine 3',5'-monophosphate) in response to phosphodiesterase inhibition in cerebellar slice preparations from wild-type and GPR37L1-null mice showed that some constitutive signaling remained in the wild-type mice. In reporter assays of Gα(s) or Gα(i) signaling, the synthetic, prosaposin-derived peptide prosaptide (TX14A) did not increase GPR37L1 activity. Our data indicate that GPR37L1 may be a constitutively active receptor, or perhaps its ligand is present under the conditions that we used for analysis, and that the activity of this receptor is instead controlled by signals that regulate metalloprotease activity in the tissue.
Collapse
Affiliation(s)
- James L J Coleman
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia. St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Tony Ngo
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia. St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Johannes Schmidt
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Nadine Mrad
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Chu Kong Liew
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Nicole M Jones
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Robert M Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia. St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Nicola J Smith
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia. St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia.
| |
Collapse
|
28
|
Yun S, Furlong M, Sim M, Cho M, Park S, Cho EB, Reyes-Alcaraz A, Hwang JI, Kim J, Seong JY. Prevertebrate Local Gene Duplication Facilitated Expansion of the Neuropeptide GPCR Superfamily. Mol Biol Evol 2015; 32:2803-17. [DOI: 10.1093/molbev/msv179] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
29
|
Abstract
After the discovery in 1996 of the GH secretagogue-receptor type-1a (GHS-R1a) as an orphan G-protein coupled receptor, many research groups attempted to identify the endogenous ligand. Finally, Kojima and colleagues successfully isolated the peptide ligand from rat stomach extracts, determined its structure, and named it ghrelin. The GHS-R1a is now accepted to be the ghrelin receptor. The existence of the ghrelin system has been demonstrated in many animal classes through biochemical and molecular biological strategies as well as through genome projects. Our work, focused on identifying the ghrelin receptor and its ligand ghrelin in laboratory animals, particularly nonmammalian vertebrates, has provided new insights into the molecular evolution of the ghrelin receptor. In mammals, it is assumed that the ghrelin receptor evolution is in line with the plate tectonics theory. In contrast, the evolution of the ghrelin receptor in nonmammalian vertebrates differs from that of mammals: multiplicity of the ghrelin receptor isoforms is observed in nonmammalian vertebrates only. This multiplicity is due to genome duplication and polyploidization events that particularly occurred in Teleostei. Furthermore, it is likely that the evolution of the ghrelin receptor is distinct from that of its ligand, ghrelin, because only one ghrelin isoform has been detected in all species examined so far. In this review, we summarize current knowledge related to the molecular evolution of the ghrelin receptor in mammalian and nonmammalian vertebrates.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of BiochemistryNational Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Kenji Kangawa
- Department of BiochemistryNational Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Mikiya Miyazato
- Department of BiochemistryNational Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| |
Collapse
|
30
|
Bioinformatics tools for predicting GPCR gene functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:205-24. [PMID: 24158807 DOI: 10.1007/978-94-007-7423-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The automatic classification of GPCRs by bioinformatics methodology can provide functional information for new GPCRs in the whole 'GPCR proteome' and this information is important for the development of novel drugs. Since GPCR proteome is classified hierarchically, general ways for GPCR function prediction are based on hierarchical classification. Various computational tools have been developed to predict GPCR functions; those tools use not simple sequence searches but more powerful methods, such as alignment-free methods, statistical model methods, and machine learning methods used in protein sequence analysis, based on learning datasets. The first stage of hierarchical function prediction involves the discrimination of GPCRs from non-GPCRs and the second stage involves the classification of the predicted GPCR candidates into family, subfamily, and sub-subfamily levels. Then, further classification is performed according to their protein-protein interaction type: binding G-protein type, oligomerized partner type, etc. Those methods have achieved predictive accuracies of around 90 %. Finally, I described the future subject of research of the bioinformatics technique about functional prediction of GPCR.
Collapse
|
31
|
Cutando A, López-Valverde A, DE Vicente J, Gimenez JL, Carcía IA, DE Diego RG. Action of melatonin on squamous cell carcinoma and other tumors of the oral cavity (Review). Oncol Lett 2014; 7:923-926. [PMID: 24944644 PMCID: PMC3961399 DOI: 10.3892/ol.2014.1813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/03/2013] [Indexed: 12/31/2022] Open
Abstract
Melatonin (MLT; N-acetyl-5-metoxy-tryptamine) is a hormone that is principally synthesized in the pineal gland. MLT has been shown to exhibit a variety of functions. The hormone, which is a free radical scavenger, plays an immunomodulatory role, stimulates the proliferation and synthesis of type I collagen and promotes bone formation. Moreover, MLT exerts oncostatic activity through several biological mechanisms, including antiproliferative functions, stimulation of anticancer immunity, modulation of oncogene expression and anti-inflammatory, antioxidant and antiangiogenic effects. In addition, MLT inhibits human cancer cell growth in culture, and previous clinical studies have also confirmed its anticancer properties in vivo. With regard to the underlying mechanisms of MLT in tumor processes, including oral cavity tumors such as epidermoid carcinoma, knowledge of the role played by the MT1 and 2 membrane receptors, MT3 and the calmodulin cytosolic binding sites, as well as the nuclear receptors of the RZR/ROR family, is increasing. It has been hypothesized that exogenous restoration of MT1 (MTNR1A) expression inhibits the growth of oral squamous cell carcinoma cells lacking the expression of the receptor. The tumor suppressing functions of MLT and the presence of the MT1 receptor in various tumors indicate that the receptor may play a pivotal role in oral carcinogenesis. The current review discusses the clinical significance of MLT in oral cancer.
Collapse
Affiliation(s)
- Antonio Cutando
- Department of Special Care in Dentistry, School of Dentistry, University of Granada, Granada 18071, Spain
| | - Antonio López-Valverde
- Department of Surgery, School of Dentistry, Faculty of Medicine, University of Salamanca, Salamanca 37007, Spain
| | - Joaquin DE Vicente
- Department of Surgery, School of Dentistry, Faculty of Medicine, University of Salamanca, Salamanca 37007, Spain
| | - Julian López Gimenez
- Department of Special Care in Dentistry, School of Dentistry, University of Granada, Granada 18071, Spain
| | - Isaac Alias Carcía
- Department of Special Care in Dentistry, School of Dentistry, University of Granada, Granada 18071, Spain
| | - Rafael Gomez DE Diego
- Department of Surgery, School of Dentistry, University Alfonso X, Madrid 28691, Spain
| |
Collapse
|
32
|
The complexity of G-protein coupled receptor-ligand interactions. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Mirabeau O, Joly JS. Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci U S A 2013; 110:E2028-37. [PMID: 23671109 PMCID: PMC3670399 DOI: 10.1073/pnas.1219956110] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peptide hormones and their receptors are widespread in metazoans, but the knowledge we have of their evolutionary relationships remains unclear. Recently, accumulating genome sequences from many different species have offered the opportunity to reassess the relationships between protostomian and deuterostomian peptidergic systems (PSs). Here we used sequences of all human rhodopsin and secretin-type G protein-coupled receptors as bait to retrieve potential homologs in the genomes of 15 bilaterian species, including nonchordate deuterostomian and lophotrochozoan species. Our phylogenetic analysis of these receptors revealed 29 well-supported subtrees containing mixed sets of protostomian and deuterostomian sequences. This indicated that many vertebrate and arthropod PSs that were previously thought to be phyla specific are in fact of bilaterian origin. By screening sequence databases for potential peptides, we then reconstructed entire bilaterian peptide families and showed that protostomian and deuterostomian peptides that are ligands of orthologous receptors displayed some similarity at the level of their primary sequence, suggesting an ancient coevolution between peptide and receptor genes. In addition to shedding light on the function of human G protein-coupled receptor PSs, this work presents orthology markers to study ancestral neuron types that were probably present in the last common bilaterian ancestor.
Collapse
Affiliation(s)
- Olivier Mirabeau
- Unité propre de Recherche 3294, Centre National de la Recherche Scientifique and Institut National de la Recherche Agronomique, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
34
|
GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin. Proc Natl Acad Sci U S A 2013; 110:9529-34. [PMID: 23690594 DOI: 10.1073/pnas.1219004110] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
GPR37 (also known as Pael-R) and GPR37L1 are orphan G protein-coupled receptors that are almost exclusively expressed in the nervous system. We screened these receptors for potential activation by various orphan neuropeptides, and these screens yielded a single positive hit: prosaptide, which promoted the endocytosis of GPR37 and GPR37L1, bound to both receptors and activated signaling in a GPR37- and GPR37L1-dependent manner. Prosaptide stimulation of cells transfected with GPR37 or GPR37L1 induced the phosphorylation of ERK in a pertussis toxin-sensitive manner, stimulated (35)S-GTPγS binding, and promoted the inhibition of forskolin-stimulated cAMP production. Because prosaptide is the active fragment of the secreted neuroprotective and glioprotective factor prosaposin (also known as sulfated glycoprotein-1), we purified full-length prosaposin and found that it also stimulated GPR37 and GPR37L1 signaling. Moreover, both prosaptide and prosaposin were found to protect primary astrocytes against oxidative stress, with these protective effects being attenuated by siRNA-mediated knockdown of endogenous astrocytic GPR37 or GPR37L1. These data reveal that GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin.
Collapse
|
35
|
Diaz C, Labit-Le Bouteiller C, Yvon S, Cambon-Kernëis A, Roasio A, Jamme MF, Aries A, Feuillerat C, Perret E, Guette F, Dieu P, Miloux B, Albène D, Hasel N, Kaghad M, Ferran E, Lupker J, Ferrara P. A Strategy Combining Differential Low-Throughput Screening and Virtual Screening (DLS-VS) Accelerating the Discovery of new Modulators for the Orphan GPR34 Receptor. Mol Inform 2013; 32:213-29. [PMID: 27481282 DOI: 10.1002/minf.201200047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 01/05/2012] [Indexed: 12/21/2022]
Abstract
The DLS-VS strategy was developed as an integrated method for identifying chemical modulators for orphan GPCRs. It combines differential low-throughput screening (DLS) and virtual screening (VS). The two cascaded techniques offer complementary advantages and allow the experimental testing of a minimal number of compounds. First, DLS identifies modulators specific for the considered receptor among a set of receptors, through the screening of a small library with diverse chemical compounds. Then, an active molecular model of the receptor is built by homology to a validated template, and it is progressively refined by rotamers modification for key side-chains, by VS of the already screened library, and by iterative selection of the model generating the best enrichment. The refined active model is finally used for the VS of a large chemical library and the selection of a small set of compounds for experimental testing. Applied to the orphan receptor GPR34, the DLS-VS strategy combined the experimental screening of 20 000 compounds and the virtual screening of 1 250 000 compounds. It identified one agonist and eight inverse agonists, showing a high chemical diversity. We describe the method. The strategy can be applied to other GPCRs.
Collapse
Affiliation(s)
- Constantino Diaz
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156.
| | - Christine Labit-Le Bouteiller
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Stéphane Yvon
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Aimée Cambon-Kernëis
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Annette Roasio
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Marie-Françoise Jamme
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Amélie Aries
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Claude Feuillerat
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Eric Perret
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Fréderique Guette
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Pierre Dieu
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Brigitte Miloux
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Danielle Albène
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Nathalie Hasel
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Mourad Kaghad
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Edgardo Ferran
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Jan Lupker
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| | - Pascual Ferrara
- Sanofi-Aventis Recherche & Développement, Centre de Toulouse, 195 Route d'Espagne, 31036 Toulouse, France fax: +33534632156
| |
Collapse
|
36
|
Calo’ G, Guerrini R. Medicinal Chemistry, Pharmacology, and Biological Actions of Peptide Ligands Selective for the Nociceptin/Orphanin FQ Receptor. ACS SYMPOSIUM SERIES 2013. [DOI: 10.1021/bk-2013-1131.ch015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Girolamo Calo’
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, Italy
- Department of Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Italy
| | - Remo Guerrini
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, Italy
- Department of Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Italy
| |
Collapse
|
37
|
Abstract
Most G protein-coupled receptors (GPCRs) started as orphan GPCRs. Matching them to known neuromodulators led to the elucidation of the broad diversity of the neuroreceptor families. Moreover, orphan GPCRs have also been used as targets to discover novel neuromodulators. These discoveries have had profound impact on our understanding of brain function. Here, I present an overview of how some of the novel neuropeptides have enlarged our comprehension of responses that direct sleep/wakefulness, the onset of obesity and the feeding response. I also discuss other advances gained from orphan GPCR studies such as the concept of specificity in neuromodulation or of receptors acting as sensors instead of synaptic transmitters. Finally, I suggest that the recently discovered neuromodulators may hold the keys to our understanding of higher brain functions and psychiatric disorders.
Collapse
Affiliation(s)
- Olivier Civelli
- Department of Pharmacology, University of California, Irvine, Irvine, CA 92697-4625, USA.
| |
Collapse
|
38
|
Civelli O, Reinscheid RK, Zhang Y, Wang Z, Fredriksson R, Schiöth HB. G protein-coupled receptor deorphanizations. Annu Rev Pharmacol Toxicol 2012; 53:127-46. [PMID: 23020293 PMCID: PMC5828024 DOI: 10.1146/annurev-pharmtox-010611-134548] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
G protein-coupled receptors (GPCRs) are major regulators of intercellular interactions. They initiate these actions by being activated by a wide variety of natural ligands. Historically, ligands were discovered first, but the advent of molecular biology reversed this trend. Most GPCRs are identified on the basis of their DNA sequences and thus are initially unmatched to known natural ligands. They are termed orphan GPCRs. Discovering their ligands-i.e., "deorphanizing" the GPCRs-gave birth to the field of reverse pharmacology. This review discusses the present status of GPCR deorphanization, presents a few examples of successes and surprises, and highlights difficulties encountered in these efforts.
Collapse
Affiliation(s)
- Olivier Civelli
- Department of Pharmacology, University of California, Irvine, Irvine, California 92617, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Doi N, Yamakawa N, Matsumoto H, Yamamoto Y, Nagano T, Matsumura N, Horisawa K, Yanagawa H. DNA display selection of peptide ligands for a full-length human G protein-coupled receptor on CHO-K1 cells. PLoS One 2012; 7:e30084. [PMID: 22253889 PMCID: PMC3254644 DOI: 10.1371/journal.pone.0030084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 12/09/2011] [Indexed: 12/25/2022] Open
Abstract
The G protein-coupled receptors (GPCRs), which form the largest group of transmembrane proteins involved in signal transduction, are major targets of currently available drugs. Thus, the search for cognate and surrogate peptide ligands for GPCRs is of both basic and therapeutic interest. Here we describe the application of an in vitro DNA display technology to screening libraries of peptide ligands for full-length GPCRs expressed on whole cells. We used human angiotensin II (Ang II) type-1 receptor (hAT1R) as a model GPCR. Under improved selection conditions using hAT1R-expressing Chinese hamster ovary (CHO)-K1 cells as bait, we confirmed that Ang II gene could be enriched more than 10,000-fold after four rounds of selection. Further, we successfully selected diverse Ang II-like peptides from randomized peptide libraries. The results provide more precise information on the sequence-function relationships of hAT1R ligands than can be obtained by conventional alanine-scanning mutagenesis. Completely in vitro DNA display can overcome the limitations of current display technologies and is expected to prove widely useful for screening diverse libraries of mutant peptide and protein ligands for receptors that can be expressed functionally on the surface of CHO-K1 cells.
Collapse
Affiliation(s)
- Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Purification of Rat and Human Ghrelins. Methods Enzymol 2012. [DOI: 10.1016/b978-0-12-381272-8.00003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Soft X-ray Laser Microscopy of Lipid Rafts towards GPCR-Based Drug Discovery Using Time-Resolved FRET Spectroscopy. Pharmaceuticals (Basel) 2011. [PMCID: PMC4053801 DOI: 10.3390/ph4030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Many signaling molecules involved in G protein-mediated signal transduction, which are present in the lipid rafts and believed to be controlled spatially and temporally, influence the potency and efficacy of neurotransmitter receptors and transporters. This has focus interest on lipid rafts and the notion that these microdomains acts as a kind of signaling platform and thus have an important role in the expression of membrane receptor-mediated signal transduction, cancer, immune responses, neurotransmission, viral infections and various other phenomena due to specific and efficient signaling according to extracellular stimuli. However, the real structure of lipid rafts has not been observed so far due to its small size and a lack of sufficiently sophisticated observation systems. A soft X-ray microscope using a coherent soft X-ray laser in the water window region (2.3–4.4 nm) should prove to be a most powerful tool to observe the dynamic structure of lipid rafts of several tens of nanometers in size in living cells. We have developed for the X-ray microscope a new compact soft X-ray laser using strongly induced plasma high harmonic resonance. We have also developed a time-resolved highly sensitive fluorescence resonance energy transfer (FRET) system and confirmed protein-protein interactions coupled with ligands. The simultaneous use of these new tools for observation of localization of G-protein coupled receptors (GPCRs) in rafts has become an important and optimum tool system to analyze the dynamics of signal transduction through rafts as signaling platform. New technology to visualize rafts is expected to lead to the understanding of those dynamics and innovative development of drug discovery that targets GPCRs localized in lipid rafts.
Collapse
|
42
|
Gruber CW, Muttenthaler M, Freissmuth M. Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr Pharm Des 2011; 16:3071-88. [PMID: 20687879 DOI: 10.2174/138161210793292474] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 01/20/2023]
Abstract
G protein-coupled receptors (GPCRs) are considered to represent the most promising drug targets; it has been repeatedly said that a large fraction of the currently marketed drugs elicit their actions by binding to GPCRs (with cited numbers varying from 30-50%). Closer scrutiny, however, shows that only a modest fraction of (≈60) GPCRs are, in fact, exploited as drug targets, only ≈20 of which are peptide-binding receptors. The vast majority of receptors in the humane genome have not yet been explored as sites of action for drugs. Given the drugability of this receptor class, it appears that opportunities for drug discovery abound. In addition, GPCRs provide for binding sites other than the ligand binding sites (referred to as the "orthosteric site"). These additional sites include (i) binding sites for ligands (referred to as "allosteric ligands") that modulate the affinity and efficacy of orthosteric ligands, (ii) the interaction surface that recruits G proteins and arrestins, (iii) the interaction sites of additional proteins (GIPs, GPCR interacting proteins that regulate G protein signaling or give rise to G protein-independent signals). These sites can also be targeted by peptides. Combinatorial and natural peptide libraries are therefore likely to play a major role in identifying new GPCR ligands at each of these sites. In particular the diverse natural peptide libraries such as the venom peptides from marine cone-snails and plant cyclotides have been established as a rich source of drug leads. High-throughput screening and combinatorial chemistry approaches allow for progressing from these starting points to potential drug candidates. This will be illustrated by focusing on the ligand-based drug design of oxytocin (OT) and vasopressin (AVP) receptor ligands using natural peptide leads as starting points.
Collapse
Affiliation(s)
- Christian W Gruber
- Institute of Pharmacology, Center of Biomolecular Medicine & Pharmacology, Medical University of Vienna, Waehringer Str. 13a, A-1090 Vienna, Austria
| | | | | |
Collapse
|
43
|
Guerrini R, Salvadori S, Rizzi A, Regoli D, Calo' G. Neurobiology, pharmacology, and medicinal chemistry of neuropeptide S and its receptor. Med Res Rev 2011; 30:751-77. [PMID: 19824051 DOI: 10.1002/med.20180] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuropeptide S (NPS) is the last neuropeptide identified via reverse pharmacology techniques. NPS selectively binds and activates a previous orphan GPCR, now named NPSR, producing intracellular calcium mobilization and increases in cAMP levels. Biological functions modulated by the NPS/NPSR system include anxiety, arousal, locomotion, food intake, memory, and drug addiction. The primary sequence of NPS (in humans SFRNGVGTGMKKTSFQRAKS) is highly conserved among vertebrates especially at the N-terminus. Ala- and D-scan studies demonstrated that this part of the molecule is crucial for biological activity. Focused structure-activity studies performed on Phe(2), Arg(3), and Asn(4) confirmed this indication and revealed the chemical requirements of these positions for NPSR binding and activation. The sequence Gly(5)-Val(6)-Gly(7) seems to be important for shaping the bioactive conformation of the peptide. Structure-activity studies on Gly(5) enabled identification of the first generation of peptidergic NPSR pure antagonists including [D-Cys(tBu)(5)]NPS and [D-Val(5)]NPS whose antagonist properties were confirmed in vivo. Finally, the pharmacological features of substituted bicyclic piperazine molecules (e.g. SHA 68 (3-oxo-1,1-diphenyl-tetrahydro-oxazolo[3,4-a]pyrazine-7-carboxylic acid 4-fluoro-benzylamide) were recently published making available the first generation of nonpeptide NPSR antagonists. The use in future studies of NPSR antagonists will be of paramount importance for understanding which biological functions are controlled by the NPS/NPSR system and for defining the therapeutic potential of selective NPSR ligands.
Collapse
Affiliation(s)
- Remo Guerrini
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, Ferrara, Italy.
| | | | | | | | | |
Collapse
|
44
|
Hudson B, Smith NJ, Milligan G. Experimental Challenges to Targeting Poorly Characterized GPCRs: Uncovering the Therapeutic Potential for Free Fatty Acid Receptors. PHARMACOLOGY OF G PROTEIN COUPLED RECEPTORS 2011; 62:175-218. [DOI: 10.1016/b978-0-12-385952-5.00006-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Development of a FLIPR assay for the simultaneous identification of MrgD agonists and antagonists from a single screen. J Biomed Biotechnol 2010; 2010. [PMID: 20936132 PMCID: PMC2947157 DOI: 10.1155/2010/326020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/08/2010] [Accepted: 08/06/2010] [Indexed: 11/18/2022] Open
Abstract
MrgD, a member of the Mas-related gene family, is expressed exclusively in small diameter IB4+
neurons in the dorsal root ganglion. This unique expression pattern, the presence of a single copy of MrgD in rodents and humans, and the identification of a putative ligand, beta-alanine, make it an experimentally attractive therapeutic target for pain with limited likelihood of side effects. We have devised a high throughput calcium mobilization assay that enables identification of both agonists and antagonists from a single screen for MrgD. Screening of the Library of Pharmacologically Active Compounds (LOPAC) validated this assay approach, and we identified both agonists and antagonists active at micromolar concentrations in MrgD expressing but not in parental CHO-DUKX cell line. Further characterization was performed using a subset of these screening hits. Our results demonstrated that the dual agonist/antagonist assay format is feasible and likely can be extended to most GPCRs with known agonist.
Collapse
|
46
|
Jassal B, Jupe S, Caudy M, Birney E, Stein L, Hermjakob H, D'Eustachio P. The systematic annotation of the three main GPCR families in Reactome. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2010; 2010:baq018. [PMID: 20671204 PMCID: PMC2945921 DOI: 10.1093/database/baq018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reactome is an open-source, freely available database of human biological pathways and processes. A major goal of our work is to provide an integrated view of cellular signalling processes that spans from ligand–receptor interactions to molecular readouts at the level of metabolic and transcriptional events. To this end, we have built the first catalogue of all human G protein-coupled receptors (GPCRs) known to bind endogenous or natural ligands. The UniProt database has records for 797 proteins classified as GPCRs and sorted into families A/1, B/2 and C/3 on the basis of amino accid sequence. To these records we have added details from the IUPHAR database and our own manual curation of relevant literature to create reactions in which 563 GPCRs bind ligands and also interact with specific G-proteins to initiate signalling cascades. We believe the remaining 234 GPCRs are true orphans. The Reactome GPCR pathway can be viewed as a detailed interactive diagram and can be exported in many forms. It provides a template for the orthology-based inference of GPCR reactions for diverse model organism species, and can be overlaid with protein–protein interaction and gene expression datasets to facilitate overrepresentation studies and other forms of pathway analysis. Database URL:http://www.reactome.org
Collapse
Affiliation(s)
- Bijay Jassal
- European Bioinformatics Institute, Hinxton, Cambridge CB101SD, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Ozawa A, Lindberg I, Roth B, Kroeze WK. Deorphanization of novel peptides and their receptors. AAPS JOURNAL 2010; 12:378-84. [PMID: 20446073 DOI: 10.1208/s12248-010-9198-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/14/2010] [Indexed: 12/31/2022]
Abstract
Peptide hormones and neuropeptides play important roles in endocrine and neural signaling, often using G protein-coupled receptor (GPCR)-mediated signaling pathways. However, the rate of novel peptide discovery has slowed dramatically in recent years. Genomic sequencing efforts have yielded a large number of cDNA sequences that potentially encode novel candidate peptide precursors, as well as hundreds of orphan GPCRs with no known cognate ligands. The complexity of peptide signaling is further highlighted by the requirement for specific posttranslational processing steps, and these must be accomplished in vitro prior to testing newly discovered peptide precursor candidates in receptor assays. In this review, we present historic as well as current approaches to peptide discovery and GPCR deorphanization. We conclude that parallel and combinatorial discovery methods are likely to represent the most fruitful avenues for both peptide discovery as well as for matching the remaining GPCRs with their peptide ligands.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Department of Anatomy and Neurobiology, University of Maryland-Baltimore, 20 Penn St. HSFII Rm S251, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
48
|
Ribeiro P, Geary TG. Neuronal signaling in schistosomes: current status and prospects for postgenomicsThe present review is one of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board. CAN J ZOOL 2010. [DOI: 10.1139/z09-126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Parasitic platyhelminths of the genus Schistosoma Weinland, 1858 (Trematoda, Digenea) are the etiological agents of human schistosomiasis, one of the most prevalent and debilitating parasitic diseases worldwide. Praziquantel is the only drug treatment available in most parts of the world and the effectiveness of the drug is threatened by the prospect of drug resistance. There is a pressing need to learn more about the basic biology of this organism and to identify molecular targets for new therapeutic drugs. The nervous system of schistosomes coordinates many activities that are essential for parasite survival, and as such is an attractive target for chemotherapeutic intervention. Until recently, very little was known about the molecular mechanisms of neuronal signaling in these organisms, but this is rapidly changing following the completion of the genome sequence and several recent developments in schistosome transgenesis and gene silencing. Here we review the current status of schistosome neurobiology and discuss prospects for future research as the field moves into a postgenomics era. One of the themes that will emerge from this discussion is that schistosomes have a rich diversity of neurotransmitters and receptors, indicating a more sophisticated system of neuronal communication than might be expected of a parasitic flatworm. Moreover, many of these transmitter receptors share little sequence homology with those of the human host, making them ideally suited for selective drug targeting. Strategies for characterization of these important parasite proteins will be discussed.
Collapse
Affiliation(s)
- Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, QC H9X 3V9, Canada
| | - Timothy G. Geary
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
49
|
Hu LA, Tang PM, Eslahi NK, Zhou T, Barbosa J, Liu Q. Identification of surrogate agonists and antagonists for orphan G-protein-coupled receptor GPR139. ACTA ACUST UNITED AC 2009; 14:789-97. [PMID: 19525486 DOI: 10.1177/1087057109335744] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
GPR139 is an orphan G-protein-coupled receptor (GPCR) that is expressed nearly exclusively in the central nervous system and may play a role in the control of locomotor activity. The signal transduction pathway and pharmacological function of GPR139, however, are still controversial due to the lack of natural or synthetic ligands. The authors report the characterization of human GPR139 signaling pathway and identification of surrogate agonists and antagonists. In both transient and stable transfections of HEK293F cells, overexpression of GPR139 increased basal intracellular cAMP concentrations compared to control cells. Furthermore, forskolin and isoproterenol-stimulated cAMP responses were enhanced in GPR139-expressing cells, suggesting that GPR139 is predominantly coupled to Galpha(s). The authors screened a large library of small molecules for compounds that increase cAMP levels in GPR139-expressing cells and identified a compound with GPR139 agonist activity. This compound increased cAMP production specifically in cells expressing GPR139 but not in cells expressing its highly homologous receptor GPR142. Furthermore, this compound did not induce calcium mobilization in GPR139 cells, indicating no Galpha(q)-mediated response. In addition, antagonist screening with the identified agonist yielded 2 classes of compounds as antagonists. The identification of surrogate agonists and antagonists of human GPR139 provides important tools for further study of this orphan GPCR.
Collapse
Affiliation(s)
- Liaoyuan A Hu
- Department of Pharmaceutical Discovery, Lexicon Pharmaceuticals, The Woodlands, Texas 77381, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Sonmez K, Zaveri NT, Kerman IA, Burke S, Neal CR, Xie X, Watson SJ, Toll L. Evolutionary sequence modeling for discovery of peptide hormones. PLoS Comput Biol 2009; 5:e1000258. [PMID: 19132080 PMCID: PMC2603333 DOI: 10.1371/journal.pcbi.1000258] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 11/21/2008] [Indexed: 01/05/2023] Open
Abstract
There are currently a large number of "orphan" G-protein-coupled receptors (GPCRs) whose endogenous ligands (peptide hormones) are unknown. Identification of these peptide hormones is a difficult and important problem. We describe a computational framework that models spatial structure along the genomic sequence simultaneously with the temporal evolutionary path structure across species and show how such models can be used to discover new functional molecules, in particular peptide hormones, via cross-genomic sequence comparisons. The computational framework incorporates a priori high-level knowledge of structural and evolutionary constraints into a hierarchical grammar of evolutionary probabilistic models. This computational method was used for identifying novel prohormones and the processed peptide sites by producing sequence alignments across many species at the functional-element level. Experimental results with an initial implementation of the algorithm were used to identify potential prohormones by comparing the human and non-human proteins in the Swiss-Prot database of known annotated proteins. In this proof of concept, we identified 45 out of 54 prohormones with only 44 false positives. The comparison of known and hypothetical human and mouse proteins resulted in the identification of a novel putative prohormone with at least four potential neuropeptides. Finally, in order to validate the computational methodology, we present the basic molecular biological characterization of the novel putative peptide hormone, including its identification and regional localization in the brain. This species comparison, HMM-based computational approach succeeded in identifying a previously undiscovered neuropeptide from whole genome protein sequences. This novel putative peptide hormone is found in discreet brain regions as well as other organs. The success of this approach will have a great impact on our understanding of GPCRs and associated pathways and help to identify new targets for drug development.
Collapse
Affiliation(s)
- Kemal Sonmez
- SRI International, Menlo Park, California, United States of America
| | | | - Ilan A. Kerman
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sharon Burke
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charles R. Neal
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xinmin Xie
- AfaSci, Burlingame, California, United States of America
| | - Stanley J. Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lawrence Toll
- SRI International, Menlo Park, California, United States of America
- * E-mail:
| |
Collapse
|