1
|
Vacher CM, Tsompanidis A, Firestein MR, Penn AA. Neuroactive steroid exposure impacts neurodevelopment: Comparison of human and rodent placental contribution. J Neuroendocrinol 2025:e13489. [PMID: 39789736 DOI: 10.1111/jne.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
The placenta is a fetal endocrine organ that secretes many neuroactive factors, including steroids, that play critical roles in brain development. The study of the placenta-brain axis and the links between placental function and brain development represents an emerging research area dubbed "neuroplacentology." The placenta drives many circulating fetal steroids to very high levels during gestation. Recent studies have highlighted the critical role of placental steroids in shaping specific brain structures and behaviors. This review uses a cross-species framework to discuss the genomic factors, in-utero environmental changes, and placental conditions that alter placental steroidogenesis, leading to changes in early developmental trajectories relevant for psychiatric conditions such as autism, in a sex-linked manner.
Collapse
Affiliation(s)
- Claire-Marie Vacher
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Morgan R Firestein
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Anna A Penn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
- New York Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| |
Collapse
|
2
|
Angeloni E, Germelli L, Costa B, Martini C, Da Pozzo E. Neurosteroids and Translocator Protein (TSPO) in neuroinflammation. Neurochem Int 2025; 182:105916. [PMID: 39681140 DOI: 10.1016/j.neuint.2024.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Neurosteroids have a crucial role in physiological intrinsic regulations of the Central Nervous System functions. They are derived from peripheral steroidogenic sources and from the de novo neurosteroidogenic capacity of brain cells. Significant alterations of neurosteroid levels have been frequently observed in neuroinflammation and neurodegenerative diseases. Such level fluctuations may be useful for both diagnosis and treatment of these pathological conditions. Beyond steroid administration, enhancing the endogenous production by Translocator Protein (TSPO) targeting has been proposed to restore these altered pathological levels. However, the neurosteroid quantification and the prediction of their final effects are often troublesome, sometimes controversial and context dependent, due to the complexity of neurosteroid biosynthetic pathway and to the low produced amounts. The aim of this review is to report recent advances, and technical limitations, in neurosteroid-related strategies against neuroinflammation.
Collapse
Affiliation(s)
- Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy.
| |
Collapse
|
3
|
Curtis M, Flournoy JC, Kandala S, Sanders AFP, Harms MP, Omary A, Somerville LH, Barch DM. Disentangling the unique contributions of age, pubertal stage, and pubertal hormones to brain structure in childhood and adolescence. Dev Cogn Neurosci 2024; 70:101473. [PMID: 39546965 DOI: 10.1016/j.dcn.2024.101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Puberty and associated changes in pubertal hormones influence structural brain development. Hormones such as dehydroepiandrosterone (DHEA) and progesterone remain understudied, and it remains unclear how these aspects of puberty contribute uniquely to structural brain development. We used the Human Connectome Project in Development cross-sectional sample of 1304 youth (aged 5-21 years) to investigate unique contributions of sex, age, pubertal stage, DHEA, testosterone, estradiol, and progesterone to cortical thickness, surface area, and subcortical volume development within functionally-relevant networks. Sex and age explain the most unique variance in all three aspects of structural development. Pubertal stage and pubertal hormones uniquely contribute more to cortical surface area, compared to thickness. Among the pubertal hormones, progesterone contributed unique variance to surface area in the default mode network, as well as to thickness in the orbito-affective network. Pubertal mechanisms also contributed unique variance to subcortical volumes. This demonstrates unique relations of understudied pubertal hormones to brain structure development and may help understand risk for psychopathology.
Collapse
Affiliation(s)
- Mark Curtis
- Department of Psychological and Brain Sciences, Washington University in St. Louis, MO 63110, USA.
| | - John C Flournoy
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Sridhar Kandala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashley F P Sanders
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael P Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adam Omary
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Leah H Somerville
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Deanna M Barch
- Department of Psychological and Brain Sciences, Washington University in St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Bray KO, Durbin O, Hartanto S, Khetan M, Liontos D, Manuele SJ, Zwaan I, Ganella D, Herting MM, Kim JH, O'Connell M, Pozzi E, Schwartz O, Seal M, Simmons J, Vijayakumar N, Whittle S. Puberty and NeuroDevelopment in adolescents (PANDA): a study protocol. BMC Pediatr 2024; 24:768. [PMID: 39592982 PMCID: PMC11590350 DOI: 10.1186/s12887-024-05197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Biopsychosocial changes during adolescence are thought to confer risk for emotion dysregulation, and in particular, anxiety disorders. However, there are substantial gaps in our knowledge about the biological mechanisms underlying anxiety during adolescence, and whether this contributes to the higher prevalence in females. The Puberty and NeuroDevelopment in Adolescents (PANDA) study aims to examine links between biological (sex hormones, cortisol) and social environmental factors and brain function during adolescence, with a focus on key processes (emotion regulation, fear learning) identified as relevant for the development of anxiety disorders. METHODS PANDA is a cross-sectional study with an observational design that aims to recruit a total of 175 adolescents aged 11-16 (majority female) and their parents/guardians, from the community. Brain function will be examined using magnetic resonance imaging (MRI), including functional MRI tasks of emotion regulation and fear learning. Hormones will be measured from hair (i.e., cortisol) and weekly saliva samples (i.e., oestradiol, progesterone, five across a month in females). Questionnaires and semi-structured interviews will be used to assess mental health and social environmental factors such as parenting and adverse childhood experiences. An online study of 113 adolescents was also incorporated during the COVID-19 pandemic as a questionnaire-only sub-study. DISCUSSION Strengths of this study include the collection of multiple saliva samples to assess variability in hormone levels, examination of the timing of adverse childhood experiences, inclusion of both maternal and paternal parental factors, exploration of mechanisms through the examination of brain structure and function, and multi-method, multi-informant collection of mental health symptoms. This study addresses important gaps in the literature and will enhance knowledge of the biological and environmental contributors to emotion dysregulation and anxiety in adolescents.
Collapse
Affiliation(s)
- Katherine O Bray
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Olivia Durbin
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Stephanie Hartanto
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Muskan Khetan
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Daniel Liontos
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Sarah J Manuele
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Isabel Zwaan
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Despina Ganella
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jee Hyun Kim
- School of Medicine, Institute for Innovation in Physical and Mental Health and Clinical Translation, IMPACT, Geelong, VIC, Australia
| | - Michele O'Connell
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Department of Endocrinology and Diabetes, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Elena Pozzi
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Orli Schwartz
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Marc Seal
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Julian Simmons
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Nandita Vijayakumar
- Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Sarah Whittle
- Orygen, Parkville, VIC, Australia.
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Gonda X, Tarazi FI, Dome P. The emergence of antidepressant drugs targeting GABA A receptors: A concise review. Biochem Pharmacol 2024; 228:116481. [PMID: 39147329 DOI: 10.1016/j.bcp.2024.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Depression is among the most common psychiatric illnesses, which imposes a major socioeconomic burden on patients, caregivers, and the public health system. Treatment with classical antidepressants (e.g. tricyclic antidepressants and selective serotonine reuptake inhibitors), which primarily affect monoaminergic systems has several limitations, such as delayed onset of action and moderate efficacy in a relatively large proportion of depressed patients. Furthermore, depression is highly heterogeneus, and its different subtypes, including post-partum depression, involve distinct neurobiology, warranting a differential approach to pharmacotherapy. Given these shortcomings, the need for novel antidepressants that are superior in efficacy and faster in onset of action is fully justified. The development and market introduction of rapid-acting antidepressants has accelerated in recent years. Some of these new antidepressants act through the GABAergic system. In this review, we discuss the discovery, efficacy, and limitations of treatment with classic antidepressants. We provide a detailed discussion of GABAergic neurotransmission, with a special focus on GABAA receptors, and possible explanations for the mood-enhancing effects of GABAergic medications (in particular neurosteroids acting at GABAA receptors), and, ultimately, we present the most promising molecules belonging to this family which are currently used in clinical practice or are in late phases of clinical development.
Collapse
Affiliation(s)
- Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary.
| | - Frank I Tarazi
- Department of Psychiatry and Neurology, Harvard Medical School and McLean Hospital, Boston, MA, USA
| | - Peter Dome
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Nyiro Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary
| |
Collapse
|
6
|
Gray SL, Lam EK, Henao-Diaz LF, Jalabert C, Soma KK. Effect of a Territorial Challenge on the Steroid Profile of a Juvenile Songbird. Neuroscience 2024; 541:118-132. [PMID: 38301739 DOI: 10.1016/j.neuroscience.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Aggression is a social behavior that is critical for survival and reproduction. In adults, circulating gonadal hormones, such as androgens, act on neural circuits to modulate aggressive interactions, especially in reproductive contexts. In many species, individuals also demonstrate aggression before reaching gonadal maturation. Adult male song sparrows, Melospiza melodia, breed seasonally but maintain territories year-round. Juvenile (hatch-year) males aggressively compete for territory ownership during their first winter when circulating testosterone is low. Here, we characterized the relationship between the steroid milieu and aggressive behavior in free-living juvenile male song sparrows in winter. We investigated the effect of a 10 min simulated territorial intrusion (STI) on behavior and steroid levels in blood, 10 microdissected brain regions, and four peripheral tissues (liver, pectoral muscle, adrenal glands, and testes). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we quantified 12 steroids: pregnenolone, progesterone, corticosterone, 11-dehydrocorticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17β-estradiol, 17α-estradiol, estrone, and estriol. We found that juvenile males are robustly aggressive, like adult males. An STI increases progesterone and corticosterone levels in blood and brain and increases 11-dehydrocorticosterone levels in blood only. Pregnenolone, androgens, and estrogens are generally non-detectable and are not affected by an STI. In peripheral tissues, steroid concentrations are very high in the adrenals. These data suggest that adrenal steroids, such as progesterone and corticosterone, might promote juvenile aggression and that juvenile and adult songbirds might rely on distinct neuroendocrine mechanisms to support similar aggressive behaviors.
Collapse
Affiliation(s)
- Sofia L Gray
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Emma K Lam
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - L Francisco Henao-Diaz
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cecilia Jalabert
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Kalakh S, Mouihate A. The Effects of Neuroactive Steroids on Myelin in Health and Disease. Med Princ Pract 2024; 33:198-214. [PMID: 38350432 PMCID: PMC11175611 DOI: 10.1159/000537794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/12/2024] [Indexed: 02/15/2024] Open
Abstract
Myelin plays a pivotal role in the efficient transmission of nerve impulses. Disruptions in myelin integrity are associated with numerous neurological disorders, including multiple sclerosis. In the central nervous system (CNS), myelin is formed by oligodendrocytes. Remyelination refers to the re-formation of the damaged myelin sheath by newly formed oligodendrocytes. Steroids have gained attention for their potential modulatory effects on myelin in both health and disease. Steroids are traditionally associated with endocrine functions, but their local synthesis within the nervous system has generated significant interest. The term "neuroactive steroids" refers to steroids that can act on cells of the nervous system. In the healthy state, neuroactive steroids promote myelin formation, maintenance, and repair by enhancing oligodendrocyte differentiation and maturation. In pathological conditions, such as demyelination injury, multiple neuroactive steroids have shown promise in promoting remyelination. Understanding the effects of neuroactive steroids on myelin could lead to novel therapeutic approaches for demyelinating diseases and neurodegenerative disorders. This review highlights the potential therapeutic significance of neuroactive steroids in myelin-related health and diseases. We review the synthesis of steroids by neurons and glial cells and discuss the roles of neuroactive steroids on myelin structure and function in health and disease. We emphasize the potential promyelinating effects of the varying levels of neuroactive steroids during different female physiological states such as the menstrual cycle, pregnancy, lactation, and postmenopause.
Collapse
Affiliation(s)
- Samah Kalakh
- Department of Physiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
- School of Engineering and Computing, American International University, Kuwait City, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
8
|
Marecki R, Kałuska J, Kolanek A, Hakało D, Waszkiewicz N. Zuranolone - synthetic neurosteroid in treatment of mental disorders: narrative review. Front Psychiatry 2023; 14:1298359. [PMID: 38116383 PMCID: PMC10729607 DOI: 10.3389/fpsyt.2023.1298359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
With each passing year, the number of people suffering from mental disorders grows at a disturbing speed. Neuroactive steroids are a new promising group of drugs with the potential for use in many diseases like postpartum depression, postnatal psychosis, major depression, insomnia, bipolar disorder, and Parkinson's tremor, due to their ability to modulate the activity of GABAA receptor. Neurosteroids are progesterone metabolites that are synthesized from cholesterol or steroid hormones in various brain regions. They regulate neuronal development, regeneration, and neurotransmission. They are implicated in mood disorders, anxiety disorders, schizophrenia, PTSD, and impulsive aggression. Neurosteroids have been studied for their potential to prevent or treat neurodegenerative diseases such as Alzheimer's disease and HIV-associated dementia. They can promote neurogenesis, neuronal survival, myelination, and memory function. They can also affect the growth and sensitivity of hormone-dependent brain tumors such as gliomas. Zuranolone, a newly registered neurosteroid drug has shown huge flexibility in both clinical and ambulatory treatment thanks to its pharmacokinetic traits, especially the possibility for oral administration, unlike its predecessor Brexanolone. Zuranolone is a synthetic positive allosteric modulator of the GABAA receptor that can be taken orally. The review aims to summarize the current knowledge on zuranolone as a novel neurosteroid drug for various mental disorders, especially for postpartum mental disorders for which this drug was meant originally. It covers studies indexed in the PubMed, Scopus, and Web of Science databases published since 2017. Keywords used in the search, as well as inclusion and exclusion criteria, are given in the aims and methodology section. The review explains the evidence for the role of neurosteroids, especially allopregnanolone, in the pathophysiology and treatment of postpartum depression. It discusses the mechanisms of neurosteroid action, the changes in neurosteroid levels during pregnancy and postpartum, and the clinical trials of brexanolone and zuranolone, two synthetic analogs of allopregnanolone, for postpartum depression. It provides an overview of the biosynthesis and metabolism of neurosteroids in the central and peripheral nervous system. Furthermore, it explains the different sources and pathways of neurosteroid production and the factors that influence their synthesis and regulation, such as stress, hormones, drugs, and genetic variations. The review also explores the potential relevance of neurosteroids for other psychiatric disorders, such as major depression, bipolar disorder, post-traumatic stress disorder (PTSD), schizophrenia, and premenstrual dysphoric disorder. Finally, it highlights the associations between neurosteroid levels and symptom severity and the effects of neurosteroid modulation on mood, cognition, and neuroplasticity.
Collapse
|
9
|
Guo K, Mao M, Zhang S, Xu S, Zhao L, Wang X, Feng S. Research Trends and Hot Spots of Allopregnanolone Research in the Last 20 Years: A Bibliometric Analysis. Drug Des Devel Ther 2023; 17:3397-3408. [PMID: 38024537 PMCID: PMC10657548 DOI: 10.2147/dddt.s434364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background Allopregnanolone is a kind of neuroactive steroid or neurosteroid in the central nervous system that acts as an endogenenous GABAA receptor positive modulator. However, at present, no comprehensive bibliometric analysis regarding allopregnanolone research is available. In our study, we intend to analyze the research trends and hot spots related to allopregnanolone in the past 20 years. Methods We searched for allopregnanolone related articles and reviews between 2004 and 2023 from the Web of Science Core Collection database. Then, the bibliometric analysis was conducted using VOSviewer, CiteSpace, Microsoft Excel 2019, as well as the online bibliometric analysis platform (http://bibliometric.com/). Results A total of 1841 eligible publications were identified. The number of annual publications and citations was generally on the rise. Among countries, the United States ranked first in overall publications, citations, international cooperation, and the number of research institutions. The University of North Carolina was the most active institution, conducting numerous preclinical and clinical work that focusing on allopregnanolone treatment for diverse psychiatric or neurologic disorders. As for authors, Dr. Frye CA, Morrow AL, and Pinna G were identified as the top three prolific scholars due to their great publications and citations. Based on the publication clusters and citation bursts analysis, the keyword co-occurrence network, the strongest citation bursts, and co-cited references analysis, the hot spots in recent years included "depression", "postpartum depression", "GABAA receptor", and so on. Conclusion Allopregnanolone is still a popular area of research, and the United States leads the way in this area. Dr. Frye CA, Morrow AL, Pinna G, and their teams contributed greatly to the mechanism study and translation study of allopregnanolone. The use of allopregnanolone for the treatment of psychiatric or neurologic disorders, especially postpartum depression, is the current hot spot. However, the underlying mechanisms of anti-depression are still not clear, deserving more in-depth research.
Collapse
Affiliation(s)
- Kunlin Guo
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People’s Republic of China
| | - Mingjie Mao
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People’s Republic of China
| | - Susu Zhang
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People’s Republic of China
| | - Shiqin Xu
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People’s Republic of China
| | - Liping Zhao
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People’s Republic of China
| | - Xian Wang
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People’s Republic of China
| | - Shanwu Feng
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
10
|
Roy S, Roy S, Mahata B, Pramanik J, Hennrich ML, Gavin AC, Teichmann SA. CLICK-chemoproteomics and molecular dynamics simulation reveals pregnenolone targets and their binding conformations in Th2 cells. Front Immunol 2023; 14:1229703. [PMID: 38022565 PMCID: PMC10644475 DOI: 10.3389/fimmu.2023.1229703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Pregnenolone (P5) is synthesized as the first bioactive steroid in the mitochondria from cholesterol. Clusters of differentiation 4 (CD4+) and Clusters of differentiation 8 (CD8+) immune cells synthesize P5 de novo; P5, in turn, play important role in immune homeostasis and regulation. However, P5's biochemical mode of action in immune cells is still emerging. We envisage that revealing the complete spectrum of P5 target proteins in immune cells would have multifold applications, not only in basic understanding of steroids biochemistry in immune cells but also in developing new therapeutic applications. We employed a CLICK-enabled probe to capture P5-binding proteins in live T helper cell type 2 (Th2) cells. Subsequently, using high-throughput quantitative proteomics, we identified the P5 interactome in CD4+ Th2 cells. Our study revealed P5's mode of action in CD4+ immune cells. We identified novel proteins from mitochondrial and endoplasmic reticulum membranes to be the primary mediators of P5's biochemistry in CD4+ and to concur with our earlier finding in CD8+ immune cells. Applying advanced computational algorithms and molecular simulations, we were able to generate near-native maps of P5-protein key molecular interactions. We showed bonds and interactions between key amino acids and P5, which revealed the importance of ionic bond, hydrophobic interactions, and water channels. We point out that our results can lead to designing of novel molecular therapeutics strategies.
Collapse
Affiliation(s)
- Sougata Roy
- Department of Biology, Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana, India
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Bidesh Mahata
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jhuma Pramanik
- Division of Immunology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Marco L. Hennrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, EMBL, Heidelberg, Germany
- Cellzome, a GlaxoSmithKline (GSK) company, Genomic Sciences, Pharma R&D, Heidelberg, Germany
| | - Anne-Claude Gavin
- Department for Cell Physiology and Metabolism, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sarah A. Teichmann
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, United Kingdom
- Theory of Condensed Matter, Cavendish Laboratory, Cambridge, United Kingdom
| |
Collapse
|
11
|
Park SB, Koh B, Kwon HS, Kim YE, Kim SS, Cho SH, Kim TY, Bae MA, Kang D, Kim CH, Kim KY. Quantitative and Qualitative Analysis of Neurotransmitter and Neurosteroid Production in Cerebral Organoids during Differentiation. ACS Chem Neurosci 2023; 14:3761-3771. [PMID: 37796021 PMCID: PMC10587864 DOI: 10.1021/acschemneuro.3c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
In the human brain, neurophysiological activity is modulated by the movement of neurotransmitters and neurosteroids. To date, the similarity between cerebral organoids and actual human brains has been evaluated using comprehensive multiomics approaches. However, a systematic analysis of both neurotransmitters and neurosteroids from cerebral organoids has not yet been reported. Here, we performed quantitative and qualitative assessments of neurotransmitters and neurosteroids over the course of cerebral organoid differentiation. Our multiomics approaches revealed that the expression levels of neurotransmitter-related proteins and RNA, including neurosteroids, increase as cerebral organoids mature. We also found that the electrophysiological activity of human cerebral organoids increases in tandem with the expression levels of both neurotransmitters and neurosteroids. Our study demonstrates that the expression levels of neurotransmitters and neurosteroids can serve as key factors in evaluating the maturity and functionality of human cerebral organoids.
Collapse
Affiliation(s)
- Sung Bum Park
- Therapeutics
and Biotechnology Division, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Byumseok Koh
- Therapeutics
and Biotechnology Division, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Hyun Soo Kwon
- Group
for Biometrology, Korea Research Institute
of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic
of Korea
- School
of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Young Eun Kim
- Group
for Biometrology, Korea Research Institute
of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic
of Korea
- School
of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seong Soon Kim
- Therapeutics
and Biotechnology Division, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sung-Hee Cho
- Chemical
Platform Technology Division, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Tae-Young Kim
- School
of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Myung Ae Bae
- Therapeutics
and Biotechnology Division, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Dukjin Kang
- Group
for Biometrology, Korea Research Institute
of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic
of Korea
| | - Chul Hoon Kim
- Department
of Pharmacology, College of Medicine, Yonsei
University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic
of Korea
| | - Ki Young Kim
- Therapeutics
and Biotechnology Division, Korea Research
Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
12
|
Walton NL, Antonoudiou P, Maguire JL. Neurosteroid influence on affective tone. Neurosci Biobehav Rev 2023; 152:105327. [PMID: 37499891 PMCID: PMC10528596 DOI: 10.1016/j.neubiorev.2023.105327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/07/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Affective disorders such as depression and anxiety are among the most prevalent psychiatric illnesses and causes of disability worldwide. The recent FDA-approval of a novel antidepressant treatment, ZULRESSO® (Brexanolone), a synthetic neurosteroid has fueled interest into the role of neurosteroids in the pathophysiology of depression as well as the mechanisms mediating the antidepressant effects of these compounds. The majority of studies examining the impact of neurosteroids on affective states have relied on the administration of exogenous neurosteroids; however, neurosteroids can also be synthesized endogenously from cholesterol or steroid hormone precursors. Despite the well-established influence of exogenous neurosteroids on affective states, we still lack an understanding of the role of endogenous neurosteroids in modulating affective tone. This review aims to summarize the current literature supporting the influence of neurosteroids on affective states in clinical and preclinical studies, as well as recent evidence suggesting that endogenous neurosteroids may set a baseline affective tone.
Collapse
Affiliation(s)
- Najah L Walton
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Pantelis Antonoudiou
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Jamie L Maguire
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
13
|
Sivcev S, Kudova E, Zemkova H. Neurosteroids as positive and negative allosteric modulators of ligand-gated ion channels: P2X receptor perspective. Neuropharmacology 2023; 234:109542. [PMID: 37040816 DOI: 10.1016/j.neuropharm.2023.109542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
Neurosteroids are steroids synthesized de novo in the brain from cholesterol in an independent manner from peripheral steroid sources. The term "neuroactive steroid" includes all steroids independent of their origin, and newly synthesized analogs of neurosteroids that modify neuronal activities. In vivo application of neuroactive steroids induces potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the γ-aminobutyric acid type-A receptor (GABAAR). However, neuroactive steroids also act as positive or negative allosteric regulators on several ligand-gated channels including N-methyl-d-aspartate receptors (NMDARs), nicotinic acetylcholine receptors (nAChRs) and ATP-gated purinergic P2X receptors. Seven different P2X subunits (P2X1-7) can assemble to form homotrimeric or heterotrimeric ion channels permeable for monovalent cations and calcium. Among them, P2X2, P2X4, and P2X7 are the most abundant within the brain and can be regulated by neurosteroids. Transmembrane domains are necessary for neurosteroid binding, however, no generic motif of amino acids can accurately predict the neurosteroid binding site for any of the ligand-gated ion channels including P2X. Here, we will review what is currently known about the modulation of rat and human P2X by neuroactive steroids and the possible structural determinants underlying neurosteroid-induced potentiation and inhibition of the P2X2 and P2X4 receptors.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
14
|
Wang D, Tang Y, Wang Z. Role of sphingolipid metabolites in the homeostasis of steroid hormones and the maintenance of testicular functions. Front Endocrinol (Lausanne) 2023; 14:1170023. [PMID: 37008929 PMCID: PMC10065405 DOI: 10.3389/fendo.2023.1170023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
With the acceleration of life pace and the increase of work pressure, the problem of male infertility has become a social problem of general concern. Sphingolipids are important regulators of many cellular processes like cell differentiation and apoptosis, which are ubiquitously expressed in all mammalian cells. Various sphingolipid catabolic enzymes can generate multiple sphingolipids like sphingosine-1-phosphate and sphingomyelin. Present studies have already demonstrated the role of steroid hormones in the physiological processes of reproduction and development through hypothalamus-pituitary-gonad axis, while recent researches also found not only sphingolipids can modulate steroid hormone secretion, but also steroid hormones can control sphingolipid metabolites, indicating the role of sphingolipid metabolites in the homeostasis of steroid hormones. Furthermore, sphingolipid metabolites not only contribute to the regulation of gametogenesis, but also mediate damage-induced germ apoptosis, implying the role of sphingolipid metabolites in the maintenance of testicular functions. Together, sphingolipid metabolites are involved in impaired gonadal function and infertility in males, and further understanding of these bioactive sphingolipids will help us develop new therapeutics for male infertility in the future.
Collapse
Affiliation(s)
- Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Yedong Tang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhengchao Wang
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
15
|
Gender and Neurosteroids: Implications for Brain Function, Neuroplasticity and Rehabilitation. Int J Mol Sci 2023; 24:ijms24054758. [PMID: 36902197 PMCID: PMC10003563 DOI: 10.3390/ijms24054758] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Neurosteroids are synthesized de novo in the nervous system; they mainly moderate neuronal excitability, and reach target cells via the extracellular pathway. The synthesis of neurosteroids occurs in peripheral tissues such as gonads tissues, liver, and skin; then, because of their high lipophilia, they cross the blood-brain barrier and are stored in the brain structure. Neurosteroidogenesis occurs in brain regions such as the cortex, hippocampus, and amygdala by enzymes necessary for the in situ synthesis of progesterone from cholesterol. Neurosteroids could be considered the main players in both sexual steroid-induced hippocampal synaptic plasticity and normal transmission in the hippocampus. Moreover, they show a double function of increasing spine density and enhancing long term potentiation, and have been related to the memory-enhancing effects of sexual steroids. Estrogen and progesterone affect neuronal plasticity differently in males and females, especially regarding changes in the structure and function of neurons in different regions of the brain. Estradiol administration in postmenopausal women allowed for improving cognitive performance, and the combination with aerobic motor exercise seems to enhance this effect. The paired association between rehabilitation and neurosteroids treatment could provide a boosting effect in order to promote neuroplasticity and therefore functional recovery in neurological patients. The aim of this review is to investigate the mechanisms of action of neurosteroids as well as their sex-dependent differences in brain function and their role in neuroplasticity and rehabilitation.
Collapse
|
16
|
Antonelli A, Giannini A, Chedraui P, Monteleone P, Caretto M, Genazzani AD, Mannella P, Simoncini T, Genazzani AR. Mood disorders and hormonal status across women's life: a narrative review. Gynecol Endocrinol 2022; 38:1019-1027. [PMID: 36433781 DOI: 10.1080/09513590.2022.2149730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Depressive disorders and anxiety states represent one of the most frequent psychiatric pathologies occurring transiently in vulnerable women throughout their life, from puberty to menopause. It is now known that sex hormones play a key role on the nervous system, interfering with neuronal plasticity and enhancing the processes of learning, memory, cognition, and mood. Numerous mechanisms are at the base of these processes, displaying interactions between estrogen and serotoninergic, dopaminergic, and GABAergic receptors at the central level. Therefore, given the sexual steroids fluctuations throughout the entire female lifespan, and considering the role played by sex hormones at the central level, it is not surprising to observe the onset of mood or neurodegenerative disorders over time. This is especially true for women in hormonal transition phase, such as puberty, postpartum and the menopausal transition. Moreover, all these conditions are characterized by hormone withdrawal, imbalance, or modifications due to menopausal hormone therapies or contraceptives which could prompt to a deterioration of mood and cognition impairment or to an improvement in the quality of life. More studies are needed to better understand the hormone-related effects on the nervous system, and the underlying pathways involved in transitional or chronic mood disorders, to promote new patient-specific therapeutic strategies more effective than the current ones and tailored according to the individual need and women's life period.
Collapse
Affiliation(s)
- Alice Antonelli
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Giannini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Peter Chedraui
- Instituto de Investigación e Innovación en Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
- Facultad de Ciencias de la Salud, Universidad Católica "Nuestra Señora de la Asunción", Asunción, Paraguay
| | - Patrizia Monteleone
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marta Caretto
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro D Genazzani
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Mannella
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Tommaso Simoncini
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea R Genazzani
- Division of Obstetrics and Gynecology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Bakalar D, O’Reilly JJ, Lacaille H, Salzbank J, Ellegood J, Lerch JP, Sasaki T, Imamura Y, Hashimoto-Torii K, Vacher CM, Penn AA. Lack of placental neurosteroid alters cortical development and female somatosensory function. Front Endocrinol (Lausanne) 2022; 13:972033. [PMID: 36313771 PMCID: PMC9606442 DOI: 10.3389/fendo.2022.972033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 01/24/2023] Open
Abstract
Placental endocrine function is essential to fetal brain development. Placental hormones include neurosteroids such as allopregnanolone (ALLO), a regulator of neurodevelopmental processes via positive allosteric modulation of the GABAA receptor (GABAA-R). Using a mouse model (plKO) in which the gene encoding the ALLO synthesis enzyme is specifically deleted in trophoblasts, we previously showed that placental ALLO insufficiency alters cerebellar white matter development and leads to male-specific autistic-like behavior. We now demonstrate that the lack of placental ALLO causes female-predominant alterations of cortical development and function. Placental ALLO insufficiency disrupts cell proliferation in the primary somatosensory cortex (S1) in a sex-linked manner. Early changes are seen in plKO embryos of both sexes, but persist primarily in female offspring after birth. Adolescent plKO females show significant reduction in pyramidal neuron density, as well as somatosensory behavioral deficits as compared with plKO males and control littermates. Assessment of layer-specific markers in human postmortem cortices suggests that preterm infants may also have female-biased abnormalities in cortical layer specification as compared with term infants. This study establishes a novel and fundamental link between placental function and sex-linked long-term neurological outcomes, emphasizing the importance of the growing field of neuroplacentology.
Collapse
Affiliation(s)
- Dana Bakalar
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Health System, Washington, DC, United States
| | - Jiaqi J. O’Reilly
- Division of Neonatology, Department of Pediatrics, NewYork-Presbyterian Morgan Stanley Children’s Hospital, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Helene Lacaille
- Division of Neonatology, Department of Pediatrics, NewYork-Presbyterian Morgan Stanley Children’s Hospital, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Jacquelyn Salzbank
- Division of Neonatology, Department of Pediatrics, NewYork-Presbyterian Morgan Stanley Children’s Hospital, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON, Canada
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Toru Sasaki
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Health System, Washington, DC, United States
| | - Yuka Imamura
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Health System, Washington, DC, United States
| | - Claire-Marie Vacher
- Division of Neonatology, Department of Pediatrics, NewYork-Presbyterian Morgan Stanley Children’s Hospital, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Anna A. Penn
- Division of Neonatology, Department of Pediatrics, NewYork-Presbyterian Morgan Stanley Children’s Hospital, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
18
|
Mishra S, Chaube R. Impact of ovariectomy and estradiol-17β (E2) replacement on the brain steroid levels of the Indian stinging catfish Heteropneustes fossilis. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Rossetti MF, Varayoud J, Ramos JG. Steroidogenic enzymes in the hippocampus: Transcriptional regulation aspects. VITAMINS AND HORMONES 2022; 118:171-198. [PMID: 35180926 DOI: 10.1016/bs.vh.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neurosteroids are steroids synthesized de novo from cholesterol in brain regions, and regulate processes associated with the development and functioning of the nervous system. Enzymes and proteins involved in the synthesis of these steroids have been detected in several brain regions, including hippocampus, hypothalamus, and cerebral cortex. Hippocampus has long been associated with learning and memory functions, while the loss of its functionality has been linked to neurodegenerative pathologies. In this sense, neurosteroids are critical for the maintenance of hippocampal functions and neuroprotective effects. Moreover, several factors have been shown to deregulate expression of steroidogenic enzymes in the rodent brain, including aging, enrichment experiences, diet habits, drug/alcohol consumption, hormone fluctuations, neurodegenerative processes and other diseases. These transcriptional deregulations are mediated mainly by transcription factors and epigenetic mechanisms. An epigenetic modification of chromatin involves changes in bases and associated proteins in the absence of changes in the DNA sequence. One of the most well-studied mechanisms related to gene silencing is DNA methylation, which involves a reversible addition of methyl groups in a cytosine base. Importantly, these epigenetic marks could be maintained over time and could be transmitted transgenerationally. The aim of this chapter is to present the most relevant steroidogenic enzymes described in rodent hippocampus; to discuss about their transcriptional regulation under different conditions; to show the main gene control regions and to propose DNA methylation as an epigenetic mechanism through which the expression of these enzymes could be controlled.
Collapse
Affiliation(s)
- María Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
20
|
Peart DR, Andrade AK, Logan CN, Knackstedt LA, Murray JE. Regulation of Cocaine-related Behaviors by Estrogen and Progesterone. Neurosci Biobehav Rev 2022; 135:104584. [DOI: 10.1016/j.neubiorev.2022.104584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
|
21
|
Abstract
Adrenarche is the maturational increase in adrenal androgen production that normally begins in early childhood. It results from changes in the secretory response to adrenocorticotropin (ACTH) that are best indexed by dehydroepiandrosterone sulfate (DHEAS) rise. These changes are related to the development of the zona reticularis (ZR) and its unique gene/enzyme expression pattern of low 3ß-hydroxysteroid dehydrogenase type 2 with high cytochrome b5A, sulfotransferase 2A1, and 17ß-hydroxysteroid dehydrogenase type 5. Recently 11-ketotestosterone was identified as an important bioactive adrenarchal androgen. Birth weight, body growth, obesity, and prolactin are related to ZR development. Adrenarchal androgens normally contribute to the onset of sexual pubic hair (pubarche) and sebaceous and apocrine gland development. Premature adrenarche causes ≥90% of premature pubarche (PP). Its cause is unknown. Affected children have a significantly increased growth rate with proportionate bone age advancement that typically does not compromise growth potential. Serum DHEAS and testosterone levels increase to levels normal for early female puberty. It is associated with mildly increased risks for obesity, insulin resistance, and possibly mood disorder and polycystic ovary syndrome. Between 5% and 10% of PP is due to virilizing disorders, which are usually characterized by more rapid advancement of pubarche and compromise of adult height potential than premature adrenarche. Most cases are due to nonclassic congenital adrenal hyperplasia. Algorithms are presented for the differential diagnosis of PP. This review highlights recent advances in molecular genetic and developmental biologic understanding of ZR development and insights into adrenarche emanating from mass spectrometric steroid assays.
Collapse
Affiliation(s)
- Robert L Rosenfield
- University of Chicago Pritzker School of Medicine, Section of Adult and Pediatric Endocrinology, Metabolism, and Diabetes, Chicago, IL, USA.,Department of Pediatrics, University of California, San Francisco, CA, USA
| |
Collapse
|
22
|
Ohkoda T, Yoshida K, Ijiri D, Ohtsuka A. Effect of mixed rearing of barrows and gilts on backfat thickness and serum metabolite profiles of the Kagoshima-Kurobuta (Berkshire) pig. Anim Sci J 2021; 92:e13655. [PMID: 34738692 PMCID: PMC9285486 DOI: 10.1111/asj.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 11/27/2022]
Abstract
We investigated the effect of mixed rearing of barrows and gilts on the backfat thickness and the serum metabolite profiles of Kagoshima‐Kurobuta (Berkshire) pigs. A total of 149 pigs with an average body weight of 35 kg were divided into the following groups: 100%, 90%, 70%, 50%, 30%, 10%, and 0% groups consisting of 10 barrows (1 pen), 9 barrows + 1 gilt (3 pens), 7 barrows + 3 gilts (2 pens), 5 barrows + 5 gilts (3 pens), 3 barrows + 7 gilts (2 pens), 1 barrow + 9 gilts (3 pens), and 9 gilts (1 pen), respectively. All pigs were raised to a shipping weight of 120 kg. Mixed rearing significantly reduced (p < 0.001) backfat thickness, and the optimum mixing ratio of barrows and gilts was 7:3 (the 70% group). Four types of circulating sex steroids were found in both the barrows and gilts in the 50% group but were not detected in barrows from the 100% group. These results indicated that mixed rearing of barrows and gilts was effective for reducing the backfat thickness of barrows, and induced sex steroid hormones may influence the backfat thickness of barrows in mixed‐reared groups.
Collapse
Affiliation(s)
- Tsutomu Ohkoda
- Livestock Research Institute, Kagoshima Prefectural Institute for Agricultural Development, Kirishima, Japan
| | - Katsunori Yoshida
- Economic and Agricultural Cooperative Association of Kagoshima Prefecture, Kagoshima, Japan
| | - Daichi Ijiri
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Akira Ohtsuka
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
23
|
Development and validation of an LC-MS/MS assay for the quantification of allopregnanolone and its progesterone-derived isomers, precursors, and cortisol/cortisone in pregnancy. Anal Bioanal Chem 2021; 413:5427-5438. [PMID: 34279681 DOI: 10.1007/s00216-021-03523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Neuroactive steroids are potent neuromodulators that play a critical role in both maternal and fetal health during pregnancy. These stress-responsive compounds are reportedly low in women with perinatal depression and may be associated with poor pregnancy outcomes in animal models. Chronic stress is a risk factor for adverse birth outcomes. Simultaneous quantification of neuroactive steroids, in combination with stress hormones cortisol/cortisone, provides an opportunity to investigate the synergistic relationship of these analytes within the convenience of one assay. A simple, reliable, and sensitive method for quantifying these endogenous compounds is necessary for further research with the potential to advance clinical diagnostic tools during pregnancy. Analytes were extracted from serum with a simple protein precipitation using methanol and then separated and quantified using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). After online extraction, analytes were separated using an Agilent Poroschell 120, 50 × 4.6 mm, 2.7 μm particle size, EC-C18 analytical column. The reliable quantification range was from 0.78 to 1000 ng/mL. QC sample inter- and intraday trueness was between 90 and 110% while inter- and intraday imprecision was less than 10%. Extracted samples were stable up to 7 days at 4 °C and extraction recovery was above 95%. Serum samples from 54 women in pregnancy were analyzed using this method. Here, we provide a validated, fast, and specific assay with sufficient sensitivity that allows for simultaneous quantification of blood serum concentrations of allopregnanolone (3α-hydroxy-5α-pregnan-20-one), pregnanolone (3α-hydroxy-5β-pregnan-20-one), epipregnanolone (3β-hydroxy-5β-pregnan-20-one), pregnenolone, progesterone, cortisol, and cortisone in pregnancy for clinical study samples and clinical diagnostics.
Collapse
|
24
|
Roy S, Sipthorp J, Mahata B, Pramanik J, Hennrich ML, Gavin AC, Ley SV, Teichmann SA. CLICK-enabled analogues reveal pregnenolone interactomes in cancer and immune cells. iScience 2021; 24:102485. [PMID: 34036248 PMCID: PMC8138728 DOI: 10.1016/j.isci.2021.102485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/27/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022] Open
Abstract
Pregnenolone (P5) promotes prostate cancer cell growth, and de novo synthesis of intratumoural P5 is a potential cause of development of castration resistance. Immune cells can also synthesize P5 de novo. Despite its biological importance, little is known about P5's mode of actions, which appears to be context dependent and pleiotropic. A comprehensive proteome-wide spectrum of P5-binding proteins that are involved in its trafficking and functionality remains unknown. Here, we describe an approach that integrates chemical biology for probe synthesis with chemoproteomics to map P5-protein interactions in live prostate cancer cells and murine CD8+ T cells. We subsequently identified P5-binding proteins potentially involved in P5-trafficking and in P5's non-genomic action that may drive the promotion of castrate-resistance prostate cancer and regulate CD8+ T cell function. We envisage that this methodology could be employed for other steroids to map their interactomes directly in a broad range of living cells, tissues, and organisms. Developed four functional click-enabled analogues of pregnenolone (P5) Chemoproteomics prioritizes 62 P5 target proteins in live cancer and immune cells These include shared and distinct biochemical role of P5 in cancer and immune cells P5 activity in cancer and immune cells is mediated through non-genomic pathways
Collapse
Affiliation(s)
- Sougata Roy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.,Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana 131029, India
| | - James Sipthorp
- The Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Bidesh Mahata
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.,Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Jhuma Pramanik
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Division of Immunology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Marco L Hennrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, EMBL, Heidelberg, Germany
| | - Anne-Claude Gavin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, EMBL, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, EMBL, Heidelberg, Germany.,University of Geneva, Department for Cell Physiology and Metabolism, Centre Medical Universitaire, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Steven V Ley
- The Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Theory of Condensed Matter, Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
25
|
Key hepatic metabolic pathways are altered in germ-free mice during pregnancy. PLoS One 2021; 16:e0248351. [PMID: 33711049 PMCID: PMC7954286 DOI: 10.1371/journal.pone.0248351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Pregnancy is associated with metabolic changes to accommodate the mother and her growing fetus. The microbiome has been shown to modulate host metabolism of endogenous and exogenous substances. However, the combined effects of pregnancy and the microbiome on host metabolism have not been investigated. The objective of this study was to investigate how the microbiome affects overall hepatic metabolic processes during pregnancy. We assessed these changes within 4 groups of C57BL/6 mice: conventional non-pregnant, conventional pregnant, germ-free non-pregnant, and germ-free pregnant mice. We performed RNA-seq analysis on liver tissues and LC-MS/MS analysis of the plasma to assess the effects of pregnancy and the microbiome on hepatic transcriptome and untargeted plasma metabolome to describe metabolic changes as results of both pregnancy and lack of microbiome. By integrating transcriptomics and metabolomics data, we identified eight metabolic pathways that were significantly enriched for differentially expressed genes associated with pregnancy in both conventional and germ-free mice. Notably, of the eight pathways, 4 pathways (retinol metabolism, arachidonic acid metabolism, linoleic acid metabolism, and steroid hormone biosynthesis) which are all critical for normal pregnancy and fetal development were affected by the germ-free status in pregnant mice, but not at all in non-pregnant mice, indicating that the alterations in these four pathways caused by the lack of microbiome are unique for pregnancy. These results provide novel insight into the role of the microbiome in modulating host metabolic processes critical for maternal health and fetal development during pregnancy.
Collapse
|
26
|
Kalafatakis I, Patellis A, Charalampopoulos I, Gravanis A, Karagogeos D. The beneficial role of the synthetic microneurotrophin BNN20 in a focal demyelination model. J Neurosci Res 2021; 99:1474-1495. [PMID: 33583101 DOI: 10.1002/jnr.24809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/08/2022]
Abstract
BNN20, a C17-spiroepoxy derivative of the neurosteroid dehydroepiandrosterone, has been shown to exhibit strong neuroprotective properties but its role in glial populations has not been assessed. Our aim was to investigate the effect of BNN20 on glial populations by using in vitro and in vivo approaches, taking advantage of the well-established lysophosphatidylcholine (LPC)-induced focal demyelination mouse model. Our in vivo studies, performed in male mice, showed that BNN20 treatment leads to an increased number of mature oligodendrocytes (OLs) in this model. It diminishes astrocytic accumulation during the demyelination phase leading to a faster remyelination process, while it does not affect oligodendrocyte precursor cell recruitment or microglia/macrophage accumulation. Additionally, our in vitro studies showed that BNN20 acts directly to OLs and enhances their maturation even after they were treated with LPC. This beneficial effect of BNN20 is mediated, primarily, through the neurotrophin receptor TrkA. In addition, BNN20 reduces microglial activation and their transition to their pro-inflammatory state upon lipopolysaccharides stimulation in vitro. Taken together our results suggest that BNN20 could serve as an important molecule to develop blood-brain barrier-permeable synthetic agonists of neurotrophin receptors that could reduce inflammation, protect and increase the number of functional OLs by promoting their differentiation/maturation.
Collapse
Affiliation(s)
- Ilias Kalafatakis
- Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece.,Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| | | | - Ioannis Charalampopoulos
- Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece.,Department of Pharmacology, Faculty of Medicine, University of Crete, Crete, Greece
| | - Achille Gravanis
- Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece.,Department of Pharmacology, Faculty of Medicine, University of Crete, Crete, Greece
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece.,Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| |
Collapse
|
27
|
Mouton JC, Duckworth RA. Maternally derived hormones, neurosteroids and the development of behaviour. Proc Biol Sci 2021; 288:20202467. [PMID: 33499795 DOI: 10.1098/rspb.2020.2467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In a wide range of taxa, there is evidence that mothers adaptively shape the development of offspring behaviour by exposing them to steroids. These maternal effects have major implications for fitness because, by shaping early development, they can permanently alter how offspring interact with their environment. However, theory on parent-offspring conflict and recent physiological studies showing that embryos rapidly metabolize maternal steroids have placed doubt on the adaptive significance of these hormone-mediated maternal effects. Reconciling these disparate perspectives requires a mechanistic understanding of the pathways by which maternal steroids can influence neural development. Here, we highlight recent advances in developmental neurobiology and psychiatric pharmacology to show that maternal steroid metabolites can have direct neuro-modulatory effects potentially shaping the development of neural circuitry underlying ecologically relevant behavioural traits. The recognition that maternal steroids can act through a neurosteroid pathway has critical implications for our understanding of the ecology and evolution of steroid-based maternal effects. Overall, compared to the classic view, a neurosteroid mechanism may reduce the evolutionary lability of hormone-mediated maternal effects owing to increased pleiotropic constraints and frequently influence long-term behavioural phenotypes in offspring.
Collapse
Affiliation(s)
- James C Mouton
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.,Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, MRC 5503, Washington, DC 20013-7012, USA
| | - Renée A Duckworth
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
28
|
Chew L, Sun KL, Sun W, Wang Z, Rajadas J, Flores RE, Arnold E, Jo B, Fung LK. Association of serum allopregnanolone with restricted and repetitive behaviors in adult males with autism. Psychoneuroendocrinology 2021; 123:105039. [PMID: 33161257 PMCID: PMC8428554 DOI: 10.1016/j.psyneuen.2020.105039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022]
Abstract
Autism spectrum disorder (ASD) has been associated with imbalance between excitatory and inhibitory (E/I) neurotransmission systems, as well as with neuroinflammation. Sitting at the crossroads between E/I imbalance and neuroinflammation is a class of endogenous hormones known as neurosteroids. Current literature points to dysregulated steroid metabolism and atypical neurosteroid levels in ASD as early as in utero. However, due to the complexity of neurosteroid metabolomics, including possible sex differences, the impact of neurosteroids on ASD symptomatology remains unclear. In this study, we assessed neurosteroid levels and ASD symptom severity of 21 males with ASD and 20 full-scale-IQ-matched typically developing (TD) males, all aged 18-39. Using liquid chromatography-tandem mass spectrometry, concentrations of allopregnanolone, cortisol, dehydroepiandrosterone, progesterone, and testosterone were measured in saliva and serum. With the exception of cortisol's, all neurosteroids' concentrations were found to have ASD vs. TD group differences in distribution, where one group was normally distributed and the other non-normally distributed. Serum allopregnanolone levels in males with ASD were found to negatively correlate with clinician-rated measures of restricted and repetitive behavior measures (ADOS-2 RRB and ADI-R RRSB domain scores). Additionally, lower serum allopregnanolone levels were found to predict more negative camouflaging scores, which represent greater differences in self- and clinician-rated symptom severity, of both ASD symptomatology overall and repetitive behaviors in particular. Taken together, our findings demonstrate that in adult males with ASD, decreased serum allopregnanolone levels are associated with more severe restricted and repetitive behaviors and with less insight into the severity of these behaviors.
Collapse
Affiliation(s)
- Leila Chew
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA; David Geffen School of Medicine, University of California at Los Angeles, California, USA
| | - Kevin L Sun
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA
| | - Wenchao Sun
- Biomaterial and Advanced Drug Delivery Lab, Stanford University, California, USA
| | - Zhe Wang
- Biomaterial and Advanced Drug Delivery Lab, Stanford University, California, USA
| | - Jayakumar Rajadas
- Biomaterial and Advanced Drug Delivery Lab, Stanford University, California, USA
| | - Ryan E Flores
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA; Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Emily Arnold
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA
| | - Booil Jo
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA
| | - Lawrence K Fung
- Department of Psychiatry & Behavioral Sciences, Stanford University, California, USA.
| |
Collapse
|
29
|
Hernandez GD, Solinsky CM, Mack WJ, Kono N, Rodgers KE, Wu C, Mollo AR, Lopez CM, Pawluczyk S, Bauer G, Matthews D, Shi Y, Law M, Rogawski MA, Schneider LS, Brinton RD. Safety, tolerability, and pharmacokinetics of allopregnanolone as a regenerative therapeutic for Alzheimer's disease: A single and multiple ascending dose phase 1b/2a clinical trial. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12107. [PMID: 33344752 PMCID: PMC7744018 DOI: 10.1002/trc2.12107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Allopregnanolone is an endogenous neurosteroid with the potential to be a novel regenerative therapeutic for Alzheimer's disease (AD). Foundations of mechanistic understanding and well-established preclinical safety efficacy make it a viable candidate. METHODS A randomized, double-blinded, placebo-controlled, single and multiple ascending dose trial was conducted. Intravenous allopregnanolone or placebo was administered once-per-week for 12 weeks with a 1-month follow-up. Participants with early AD (mild cognitive impairment due to AD or mild AD), a Mini-Mental State Examination score of 20-26 inclusive, and age ≥55 years were randomized (6:2 to three allopregnanolone dosing cohorts or one placebo cohort). Primary endpoint was safety and tolerability. Secondary endpoints included pharmacokinetic (PK) parameters and maximally tolerated dose (MTD). Exploratory endpoints included cognitive and imaging biomarkers. RESULTS A total of 24 participants completed the trial. Allopregnanolone was safe and well tolerated in all study participants. No differences were observed between treatment arms in the occurrence and severity of adverse events (AE). Most common AE were mild to moderate in severity and included rash (n = 4 [22%]) and fatigue (n = 3 [17%]). A single non-serious AE, dizziness, was attributable to treatment. There was one serious AE not related to treatment. Pharmacokinetics indicated a predictable linear dose-response in plasma concentration of allopregnanolone after intravenous administration over 30 minutes. The maximum plasma concentrations for the 2 mg, 4 mg, 6 mg, and 10 mg dosages were 14.53 ng/mL (+/-7.31), 42.05 ng/mL (+/-14.55), 60.07 ng/mL (+/-12.8), and 137.48 ng/mL (+/-38.69), respectively. The MTD was established based on evidence of allopregnanolone-induced mild sedation at the highest doses; a sex difference in the threshold for sedation was observed (males 10 mg; females 14 mg). No adverse outcomes on cognition or magnetic resonance imaging-based imaging outcomes were evident. CONCLUSIONS Allopregnanolone was well tolerated and safe across all doses in persons with early AD. Safety, MTD, and PK profiles support advancement of allopregnanolone as a regenerative therapeutic for AD to a phase 2 efficacy trial. TRIAL REGISTRATION ClinicalTrials.gov-NCT02221622.
Collapse
Affiliation(s)
| | | | - Wendy J. Mack
- Keck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Naoko Kono
- Keck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Chun‐Yi Wu
- Bioanalysis and Pharmacokinetics Core FacilityUniversity of California DavisSacramentoCaliforniaUSA
- TOMO Pharmacometrics LLCSan MateoCaliforniaUSA
| | | | - Claudia M. Lopez
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
| | - Sonia Pawluczyk
- Keck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Gerhard Bauer
- School of MedicineUniversity of California DavisSacramentoCaliforniaUSA
| | | | - Yonggang Shi
- USC Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Meng Law
- Keck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Lon S. Schneider
- Keck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Roberta D. Brinton
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
30
|
Advances in Knowledge of Androgens: How Intentional and Accidental Neurosteroid Changes Inform Us of Their Action and Role. CURRENT SEXUAL HEALTH REPORTS 2020. [DOI: 10.1007/s11930-020-00276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purpose of Review
Here, we summarize current knowledge of androgens’ action gained over the recent years.
Recent Findings
Neurosteroids are produced in the brain and peripheral nerves, independent of endocrine glands have been investigated for how they are regulated, and have actions via non-steroid receptor targets to mediate social, affective, and cognitive behavior and to protect the brain. Androgens’ organizing actions in the peri-natal period have effects throughout the lifetime that may be recapitulated later in life during critical periods and at times of challenge. Developmental changes in androgens occur during mid-childhood, adrenarche, puberty, adolescence, young adulthood, middle age, and andropause. Changes in androgens with a 5α-reductase inhibitor, such as finasteride, result in disruptions in organizational and activational functions of androgens that can be unremitting.
Summary
Normal developmental or perturbation in androgens through other means can cause changes in androgen-sensitive phenotypes throughout the lifespan, in part through actions of neurosteroids.
Collapse
|
31
|
Bartolomé I, Llidó A, Darbra S, Pallarès M. Early postnatal neuroactive steroid manipulation differentially affects recognition memory and passive avoidance performance in male rats. Behav Brain Res 2020; 394:112833. [PMID: 32726667 DOI: 10.1016/j.bbr.2020.112833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023]
Abstract
Early postnatal neuroactive steroids (NAS) play a significant role in the neurodevelopment. Their alteration can modify adult behavior, such as anxiety or learning. For this reason, we set out to observe if neonatal NAS levels alteration affects two types of learning implying low or high levels of emotional content, such as recognition memory and aversive learning respectively. Thus, we tested allopregnanolone or finasteride administered from postnatal days 5-9. In adulthood, recognition memory was assessed using the object recognition test, as well as aversive learning throughout the passive avoidance test (PA). Because of the important emotional component of PA, which can be influencing learning, we evaluated anxiety-like behavior by means of the open field test (OF). The results indicated that those animals administered with finasteride showed higher recognition levels of a familiar object. On the other hand, they showed an impairment in a stressful learning, such as PA. However, no effects of finasteride were observed on anxiety-like behavior in OF, despite it has been reported that neonatal finasteride treatment can promote an anxiety-like profile in the elevated plus-maze test in adulthood. Regarding neonatal allopregnanolone, animals showed higher levels in OF exploration only when they were already familiar with the apparatus. Furthermore, neonatal allopregnanolone did not affect recognition memory or aversive learning. In conclusion, the neonatal NAS manipulation by means of finasteride differently affected two types of learning implying distinct stress levels. Altogether, the results show the importance of the emotional content to explain the effects of neonatal NAS manipulation on learning.
Collapse
Affiliation(s)
- Iris Bartolomé
- Institut de Neurociències, Departament de Psicobiologia i Metodologia en Ciències de la Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Anna Llidó
- Institut de Neurociències, Departament de Psicobiologia i Metodologia en Ciències de la Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Sònia Darbra
- Institut de Neurociències, Departament de Psicobiologia i Metodologia en Ciències de la Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marc Pallarès
- Institut de Neurociències, Departament de Psicobiologia i Metodologia en Ciències de la Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
32
|
Sun J, He F, Gao Y, Zhou Y, Zhang H, Huang M, Bi H. Lipidomics-based study on the neuroprotective effect of geissoschizine methyl ether against oxidative stress-induced cytotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112636. [PMID: 32004630 DOI: 10.1016/j.jep.2020.112636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/24/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lipid homoeostasis is important for neurodevelopment, cell signaling and neurotransmission. Alteration of lipid metabolism has been demonstrated in many neurological disorders and neurodegenerative diseases. Geissoschizine methyl ether (GM) is an active alkaloid ingredient in the traditional Chinese medicine Uncaria hook. It has been shown that GM has strong potency in neuroprotective activity and GM reduces the production of reactive oxygen species by regulating glucose metabolism, which protects neurons against oxidative stress-induced cell death. However, it is unknown whether GM could regulate neuronal lipid metabolism during oxidative challenge. AIM OF THE STUDY The current study aimed to explore whether GM regulates lipid metabolism in oxidative damaged neurons and to determine the underlying mechanism involved in this neuro-protection. MATERIALS AND METHODS Using a glutamate-induced oxidative toxicity model in mouse hippocampal neuronal cell line (HT-22 cells), we investigated the effect of GM on glutamate-induced lipid peroxidation, lipotoxicity and mitochondrial dysfunction. In order to clarify the mechanism underlying the neuroprotection by GM, lipid metabolomics was performed to investigate whether GM prevent oxidative stress-induced lipid metabolism disruption. Furthermore, the expression of lipid metabolism-related genes was measured. RESULTS The results show the protective effect of GM against oxidative stress through blocking glutamate-induced lipid peroxidation and lipotoxicity. Overall, lipidomics analysis revealed that glutamate treatment resulted in different extents of changes in a wide range of lipid classes such as fatty acids (FA), triacylglycerol (TG), sphingomyelin (SM), cardiolipin (CL), lysophosphatidylcholines (LPC). However, GM treatment can significantly reverse glutamate-induced lipids disorder to the homeostasis level. GM prevented the disruption of lipid metabolism by regulating the expression of lipid homeostasis related genes, which contributes to preserve mitochondrial function under oxidative damage. CONCLUSION These findings clearly demonstrated a novel protective mechanism of GM against glutamate-induced oxidative toxicity in neurons via regulating lipid metabolism. GM may provide an effective approach for the prevention and treatment of oxidative damaged neurons.
Collapse
Affiliation(s)
- Jiahong Sun
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Fajing He
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Huizhen Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
33
|
Strac DS, Konjevod M, Perkovic MN, Tudor L, Erjavec GN, Pivac N. Dehydroepiandrosterone (DHEA) and its Sulphate (DHEAS) in Alzheimer's Disease. Curr Alzheimer Res 2020; 17:141-157. [PMID: 32183671 DOI: 10.2174/1567205017666200317092310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Neurosteroids Dehydroepiandrosterone (DHEA) and Dehydroepiandrosterone Sulphate (DHEAS) are involved in many important brain functions, including neuronal plasticity and survival, cognition and behavior, demonstrating preventive and therapeutic potential in different neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease. OBJECTIVE The aim of the article was to provide a comprehensive overview of the literature on the involvement of DHEA and DHEAS in Alzheimer's disease. METHODS PubMed and MEDLINE databases were searched for relevant literature. The articles were selected considering their titles and abstracts. In the selected full texts, lists of references were searched manually for additional articles. RESULTS We performed a systematic review of the studies investigating the role of DHEA and DHEAS in various in vitro and animal models, as well as in patients with Alzheimer's disease, and provided a comprehensive discussion on their potential preventive and therapeutic applications. CONCLUSION Despite mixed results, the findings of various preclinical studies are generally supportive of the involvement of DHEA and DHEAS in the pathophysiology of Alzheimer's disease, showing some promise for potential benefits of these neurosteroids in the prevention and treatment. However, so far small clinical trials brought little evidence to support their therapy in AD. Therefore, large-scale human studies are needed to elucidate the specific effects of DHEA and DHEAS and their mechanisms of action, prior to their applications in clinical practice.
Collapse
Affiliation(s)
- Dubravka S Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Matea N Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gordana N Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
34
|
Cáceres ARR, Vega Orozco AS, Cabrera RJ, Laconi MR. "Rapid actions of the neurosteroid allopregnanolone on ovarian and hypothalamic steroidogenesis: Central and peripheral modulation". J Neuroendocrinol 2020; 32:e12836. [PMID: 32062869 DOI: 10.1111/jne.12836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/28/2022]
Abstract
The present study aimed to determine whether an i.c.v. administration of allopregnanolone (ALLO) rapidly modifies the hypothalamic and ovarian 3β-hydroxysteroid dehydrogenase (3β-HSD) enzymatic activity and gene expression in in vivo and ex vivo systems in pro-oestrus (PE) and dioestrus I (DI) rats. Animals were injected with vehicle, ALLO, bicuculline or bicuculline plus ALLO and were then killed. In the in vivo experiment, the hypothalamus, ovaries and serum were extracted and analysed. In the ex vivo experiment, the superior mesenteric ganglion - ovarian nerve plexus - ovary system was extracted and incubated during 120 minutes at 37 ºC. The serum and ovarian compartment fluids were used to determine progesterone by radioimmunoanalysis. In the in vivo experiments, ALLO caused a decrease in hypothalamic and ovarian 3β-HSD enzymatic activity during PE. During DI, ALLO increased hypothalamic and ovarian 3β-HSD activity and gene expression. The ovarian 3β-HSD activity increased in both stages in the ex vivo system; gene expression increased only during DI. ALLO induced an increase in serum progesterone only in D1 and in the ovarian incubation liquids in both stages. All findings were reversed by an injection of bicuculline before ALLO. Ovarian steroidogenic changes could be attributed to signals coming from ganglion neurones, which are affected by the acute central neurosteroid stimulation. The i.c.v. administration of ALLO via the GABAergic system altered 3β-HSD activity and gene expression, modulating the neuroendocrine axis. The present study reveals the action that ALLO exerts on the GABAA receptor in both the central and peripheral nervous system and its relationship with hormonal variations. ALLO is involved in the "fine tuning" of neurosecretory functions as a potent modulator of reproductive processes in female rats.
Collapse
Affiliation(s)
- Antonella Rosario Ramona Cáceres
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Mendoza, Argentina
- Facultad de Ingeniería y Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Adriana Soledad Vega Orozco
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- Facultad de Ciencias de la Salud, Instituto de Investigaciones Biomédicas, Universidad de Mendoza (INBIOMED-IMBECU - CONICET), Mendoza, Argentina
| | - Ricardo Jorge Cabrera
- Facultad de Ciencias de la Salud, Instituto de Investigaciones Biomédicas, Universidad de Mendoza (INBIOMED-IMBECU - CONICET), Mendoza, Argentina
| | - Myriam Raquel Laconi
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET Mendoza), Mendoza, Argentina
- Facultad de Ingeniería y Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| |
Collapse
|
35
|
Hong J, Bang M. Anti-inflammatory Strategies for Schizophrenia: A Review of Evidence for Therapeutic Applications and Drug Repurposing. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:10-24. [PMID: 31958901 PMCID: PMC7006977 DOI: 10.9758/cpn.2020.18.1.10] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/12/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder with a substantial socioeconomic and humanistic burden. Currently available treatment strategies mostly rely on antipsychotic drugs, which block dopaminergic effects in the mesolimbic pathway of the brain. Although antipsychotic drugs help relieve psychotic symptoms, a definitive cure for schizophrenia has yet to be achieved. Recent advances in neuroinflammation research suggest that proinflammatory processes in the brain could cause alterations in neurobehavioral development and increase vulnerability to schizophrenia. With a growing need for novel strategies in the treatment of schizophrenia, it would be meaningful to review the current evidence supporting the therapeutic potential of anti-inflammatory strategies. This review details the key findings of clinical trials that investigate the efficacy of anti-inflammatory agents as adjuvants to antipsychotic treatment. We further discuss the possibilities of repurposing anti-inflammatory agents and developing novel strategies for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Jonghee Hong
- CHA University School of Medicine, Seongnam, Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
36
|
Pubertal hormones predict sex-specific trajectories of pituitary gland volume during the transition from childhood to adolescence. Neuroimage 2020; 204:116256. [PMID: 31605824 DOI: 10.1016/j.neuroimage.2019.116256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022] Open
Abstract
Pituitary gland volume (PGV) increases during childhood and adolescence in a sex-specific manner, and previous research suggests that puberty may be associated with PGV development. However, existing research to date has focused on sex hormones associated with gonadarche. Given the role of the pituitary gland in hypothalamic-pituitary-adrenal (HPA) axis function, the present study investigated associations between PGV development and HPA hormones that play a role in the earlier pubertal phase of adrenarche. Participants were a community sample of 249 children and early adolescents who participated in longitudinal brain imaging and pubertal assessments. Each participant provided data at one or two waves 1.5-3 years apart, resulting in 409 datasets that covered the age range 8-13 years. PGV was estimated from T1-weighted Magnetic Resonance Imaging (MRI) scans, and dehydroepiandrosterone (DHEA), its sulfate (DHEA-S) and testosterone were measured from saliva. Estradiol was measured for a subset of females. Parents reported on physical pubertal development. Linear mixed modeling was used to investigate associations between age, pubertal measures and PGV development. DHEA, DHEA-S and testosterone (in addition to physical maturation) explained variance in PGV development over and above age, and in a sex-dependent fashion. In all cases, associations were stronger, or only present in females. Estradiol was associated with PGV in females, but this did not appear to account for adrenarcheal hormone effects. Our findings suggest a key role for the hormones of adrenarche, the first biochemical phase of puberty, in PGV development. Further research is required to understand the sex-specific role of adrenarcheal and gonadarcheal hormones on the PGV across development.
Collapse
|
37
|
Progestogen profiling in plasma during the estrous cycle in cattle using an LC-MS based approach. Theriogenology 2019; 142:376-383. [PMID: 31708192 DOI: 10.1016/j.theriogenology.2019.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 11/23/2022]
Abstract
In many mammalian species, corpus luteum derived progesterone (P4) is the main functional gestagen during the estrous cycle and pregnancy. P4 can be metabolized into various metabolites, of which some are biologically active. While some metabolites target the classical nuclear progesterone receptor (PR), neurosteroids bind the receptors of type A γ-aminobutyric acid (GABAA-r) in the brain. According to the position of reduction within the molecule, metabolites of P4 can be characterized into C20-reduced progestogens (20α-dihydroprogesterone (20α-DHP) and 20β-dihydroprogesterone (20β-DHP)), C3-reduced progestogens (3α-dihydroprogesterone (3α-DHP) and 3β-dihydroprogesterone (3β-DHP)), 5α-reduced progestogens (5α-dihydroprogesterone (5α-DHP), allopregnanolone and isopregnanolone) and 5β-reduced progestogens (5β-dihydroprogesterone (5β-DHP), pregnanolone and epipregnanolone). We questioned whether the reduced progestogens are present in bovine plasma during the estrous cycle and whether their profiles differed from the profile of the common precursor P4 around the time of luteolysis. The analytes were monitored in plasma samples using liquid chromatography mass spectrometry (LC-MS). While progestogens lagged behind the drop of P4 at luteolysis, they followed the profile of P4 during the estrous cycle. The abundance of P4 was predominant followed by allopregnanolone, pregnanolone, epipregnanolone and 20β-DHP. Further studies will need to focus particularly on the period around luteolysis.
Collapse
|
38
|
Lin HY, Ko CY, Kao TJ, Yang WB, Tsai YT, Chuang JY, Hu SL, Yang PY, Lo WL, Hsu TI. CYP17A1 Maintains the Survival of Glioblastomas by Regulating SAR1-Mediated Endoplasmic Reticulum Health and Redox Homeostasis. Cancers (Basel) 2019; 11:cancers11091378. [PMID: 31527549 PMCID: PMC6770831 DOI: 10.3390/cancers11091378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/30/2022] Open
Abstract
Cytochrome P450 (CYP) 17A1 is an important steroidogenic enzyme harboring 17α-hydroxylase and performing 17,20 lyase activities in multiple steps of steroid hormone synthesis, including dehydroepiandrosterone (DHEA) biosynthesis. Previously, we showed that CYP17A1-mediated DHEA production clearly protects glioblastomas from temozolomide-induced apoptosis, leading to drug resistance. Herein, we attempt to clarify whether the inhibition of CYP17A1 has a tumor-suppressive effect, and to determine the steroidogenesis-independent functions of CYP17A1 in glioblastomas. Abiraterone, an inhibitor of CYP17A1, significantly inhibits the proliferation of A172, T98G, and PT#3 (the primary glioblastoma cells) by inducing apoptosis. In parallel, abiraterone potently suppresses tumor growth in mouse models through transplantation of PT#3 cells to the back or to the brain. Based on evidence that abiraterone induces endoplasmic reticulum (ER) stress, followed by the accumulation of reactive oxygen species (ROS), CYP17A1 is important for ER health and redox homeostasis. To confirm our hypothesis, we showed that CYP17A1 overexpression prevents the initiation of ER stress and attenuates ROS production by regulating SAR1a/b expression. Abiraterone dissociates SAR1a/b from ER-localized CYP17A1, and induces SAR1a/b ubiquitination, leading to degradation. Furthermore, SAR1 overexpression rescues abiraterone-induced apoptosis and impairs redox homeostasis. In addition to steroid hormone synthesis, CYP17A1 associates with SAR1a/b to regulate protein processing and maintain ER health in glioblastomas.
Collapse
Affiliation(s)
- Hong-Yi Lin
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
| | - Chiung-Yuan Ko
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Tzu-Jen Kao
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
| | - Wen-Bin Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Ting Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Siou-Lian Hu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
| | - Pei-Yu Yang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Lun Lo
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- Division of Neurosurgery, Taipei Medical University-Shuang-Ho Hospital, New Taipei City 23561, Taiwan.
| | - Tsung-I Hsu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
39
|
Mouro FM, Miranda-Lourenço C, Sebastião AM, Diógenes MJ. From Cannabinoids and Neurosteroids to Statins and the Ketogenic Diet: New Therapeutic Avenues in Rett Syndrome? Front Neurosci 2019; 13:680. [PMID: 31333401 PMCID: PMC6614559 DOI: 10.3389/fnins.2019.00680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene, being one of the leading causes of mental disability in females. Mutations in the MECP2 gene are responsible for 95% of the diagnosed RTT cases and the mechanisms through which these mutations relate with symptomatology are still elusive. Children with RTT present a period of apparent normal development followed by a rapid regression in speech and behavior and a progressive deterioration of motor abilities. Epilepsy is one of the most common symptoms in RTT, occurring in 60 to 80% of RTT cases, being associated with worsening of other symptoms. At this point, no cure for RTT is available and there is a pressing need for the discovery of new drug candidates to treat its severe symptoms. However, despite being a rare disease, in the last decade research in RTT has grown exponentially. New and exciting evidence has been gathered and the etiopathogenesis of this complex, severe and untreatable disease is slowly being unfolded. Advances in gene editing techniques have prompted cure-oriented research in RTT. Nonetheless, at this point, finding a cure is a distant reality, highlighting the importance of further investigating the basic pathological mechanisms of this disease. In this review, we focus our attention in some of the newest evidence on RTT clinical and preclinical research, evaluating their impact in RTT symptomatology control, and pinpointing possible directions for future research.
Collapse
Affiliation(s)
- Francisco Melo Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
40
|
Rossetti MF, Schumacher R, Lazzarino GP, Gomez AL, Varayoud J, Ramos JG. The impact of sensory and motor enrichment on the epigenetic control of steroidogenic-related genes in rat hippocampus. Mol Cell Endocrinol 2019; 485:44-53. [PMID: 30721712 DOI: 10.1016/j.mce.2019.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
In the present study, we analyzed the effects of a short-term environmental enrichment on the mRNA expression and DNA methylation of steroidogenic enzymes in the hippocampus. Thus, young adult (80-day-old) and middle-aged (350-day-old) Wistar female rats were exposed to sensory (SE) or motor (ME) enrichment during 10 days and compared to animals housed under standard conditions. SE was provided by an assortment of objects that included plastic tubes and toys; for ME, rodent wheels were provided. In young adult animals, SE and ME increased the mRNA expression of cytochrome P450 17α-hydroxylase/c17,20-lyase, steroid 5α-reductase type 1 (5αR-1) and 3α-hydroxysteroid dehydrogenase and decreased the methylation levels of 5αR-1 gene. In middle-aged rats, ME and SE upregulated the gene expression of aldosterone synthase and decreased the methylation state of its promoter. These results propose that SE and ME differentially regulate the transcription of neurosteroidogenic enzymes through epigenetic mechanisms in young and aged rats.
Collapse
Affiliation(s)
- Maria Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Rocio Schumacher
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Gisela Paola Lazzarino
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| | - Ayelen Luciana Gomez
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Jorge Guillermo Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral(ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina.
| |
Collapse
|
41
|
Pluchino N, Ansaldi Y, Genazzani AR. Brain intracrinology of allopregnanolone during pregnancy and hormonal contraception. Horm Mol Biol Clin Investig 2019; 37:hmbci-2018-0032. [PMID: 30739099 DOI: 10.1515/hmbci-2018-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/20/2019] [Indexed: 02/01/2023]
Abstract
Allopregnanolone (ALLO) has a crucial role in brain development and remodeling. Reproductive transitions associated with endocrine changes affect synthesis and activity of ALLO with behavioral/affective consequences. Pregnancy is characterized by an increased synthesis of progesterone/ALLO by the placenta, maternal and fetal brains. This suggests the critical role of these steroids in maternal brain adaptation during pregnancy and the development of the fetal brain. ALLO is brain protective during complications of pregnancy, such as preterm delivery or intrauterine growth restriction (IUGR), reducing the impact of hypoxia, and excitotoxic brain damage. Negative behavioral consequences of altered progesterone/ALLO maternal brain adaptation have been also hypothesized in the post-partum and targeting ALLO is a promising treatment. Hormonal contraception may alter ALLO action, although the effects are mostly related to a specific class of progestins. Understanding the interactions between ALLO and the endocrine environment is crucial for more effective and tailored hormonal treatments.
Collapse
Affiliation(s)
- Nicola Pluchino
- University Hospital of Geneva, Division of Gynecology and Obstetrics, Genéve, Switzerland
| | - Yveline Ansaldi
- University Hospital of Geneva, Division of Gynecology and Obstetrics, Genéve, Switzerland
| | | |
Collapse
|
42
|
Walker DI, Perry-Walker K, Finnell RH, Pennell KD, Tran V, May RC, McElrath TF, Meador KJ, Pennell PB, Jones DP. Metabolome-wide association study of anti-epileptic drug treatment during pregnancy. Toxicol Appl Pharmacol 2019; 363:122-130. [PMID: 30521819 PMCID: PMC7172934 DOI: 10.1016/j.taap.2018.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/29/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022]
Abstract
Pregnant women with epilepsy (PWWE) require continuous anti-epileptic drug (AED) treatment to avoid risk to themselves and fetal risks secondary to maternal seizures, resulting in prolonged AED exposure to the developing embryo and fetus. The objectives of this study were to determine whether high-resolution metabolomics is able to link the metabolite profile of PWWE receiving lamotrigine or levetiracetam for seizure control to associated pharmacodynamic (PD) biological responses. Untargeted metabolomic analysis of plasma obtained from 82 PWWE was completed using high-resolution mass spectrometry. Biological alterations due to lamotrigine or levetiracetam monotherapy were determined by a metabolome-wide association study that compared patients taking either drug to those who did not require AED treatment. Metabolic changes associated with AED use were then evaluated by testing for drug-dose associated metabolic variations and pathway enrichment. AED therapy resulted in drug-associated metabolic profiles recognizable within maternal plasma. Both the parent compounds and major metabolites were detected, and each AED was correlated with other metabolic features and pathways. Changes in metabolites and metabolic pathways important to maternal health and linked to fetal neurodevelopment were detected for both drugs, including changes in one‑carbon metabolism, neurotransmitter biosynthesis and steroid metabolism. In addition, decreased levels of 5-methyltetrahydrofolate and tetrahydrofolate were detected in women taking lamotrigine, which is consistent with recent findings showing increased risk of autism spectrum disorder traits in PWWE using AED. These results represent a first step in development of pharmacometabolomic framework with potential to detect adverse AED-related metabolic changes during pregnancy.
Collapse
Affiliation(s)
- Douglas I Walker
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, United States; Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Kayla Perry-Walker
- Department of Obstetrics-Gynecology, Pennsylvania Hospital, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, United States
| | - Vilinh Tran
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Ryan C May
- The Emmes Corporation, Rockville, MD, United States
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Department of Obstetrics-Gynecology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kimford J Meador
- Department of Neurology, Stanford University, Stanford, CA, United States
| | - Page B Pennell
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
43
|
Progesterone, 5a-dihydropogesterone and allopregnanolone's effects on seizures: A review of animal and clinical studies. Seizure 2018; 63:26-36. [DOI: 10.1016/j.seizure.2018.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023] Open
|
44
|
Schverer M, Lanfumey L, Baulieu EE, Froger N, Villey I. Neurosteroids: non-genomic pathways in neuroplasticity and involvement in neurological diseases. Pharmacol Ther 2018; 191:190-206. [PMID: 29953900 DOI: 10.1016/j.pharmthera.2018.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurosteroids are neuroactive brain-born steroids. They can act through non-genomic and/or through genomic pathways. Genomic pathways are largely described for steroid hormones: the binding to nuclear receptors leads to transcription regulation. Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone have no corresponding nuclear receptor identified so far whereas some of their non-genomic targets have been identified. Neuroplasticity is the capacity that neuronal networks have to change their structure and function in response to biological and/or environmental signals; it is regulated by several mechanisms, including those that involve neurosteroids. In this review, after a description of their biosynthesis, the effects of Pregnenolone, Dehydroepiandrosterone, their respective sulfate esters and Allopregnanolone on their targets will be exposed. We then shall highlight that neurosteroids, by acting on these targets, can regulate neurogenesis, structural and functional plasticity. Finally, we will discuss the therapeutic potential of neurosteroids in the pathophysiology of neurological diseases in which alterations of neuroplasticity are associated with changes in neurosteroid levels.
Collapse
Affiliation(s)
- Marina Schverer
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France
| | - Laurence Lanfumey
- Inserm U894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014 Paris, France.
| | - Etienne-Emile Baulieu
- MAPREG SAS, Le Kremlin-Bicêtre, France; Inserm UMR 1195, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | | | | |
Collapse
|
45
|
Arbo BD, Ribeiro FS, Ribeiro MF. Astrocyte Neuroprotection and Dehydroepiandrosterone. VITAMINS AND HORMONES 2018; 108:175-203. [PMID: 30029726 DOI: 10.1016/bs.vh.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) are the most abundant steroid hormones in the systemic circulation of humans. Due to their abundance and reduced production during aging, these hormones have been suggested to play a role in many aspects of health and have been used as drugs for a multiple range of therapeutic actions, including hormonal replacement and the improvement of aging-related diseases. In addition, several studies have shown that DHEA and DHEAS are neuroprotective under different experimental conditions, including models of ischemia, traumatic brain injury, spinal cord injury, glutamate excitotoxicity, and neurodegenerative diseases. Since astrocytes are responsible for the maintenance of neural tissue homeostasis and the control of neuronal energy supply, changes in astrocytic function have been associated with neuronal damage and the progression of different pathologies. Therefore, the aim of this chapter is to discuss the neuroprotective effects of DHEA against different types of brain and spinal cord injuries and how the modulation of astrocytic function by DHEA could represent an interesting therapeutic approach for the treatment of these conditions.
Collapse
Affiliation(s)
- Bruno D Arbo
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Felipe S Ribeiro
- Laboratório de Interação Neuro-Humoral, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria F Ribeiro
- Laboratório de Interação Neuro-Humoral, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
46
|
Moraga‐Amaro R, van Waarde A, Doorduin J, de Vries EFJ. Sex steroid hormones and brain function: PET imaging as a tool for research. J Neuroendocrinol 2018; 30:e12565. [PMID: 29237239 PMCID: PMC5838537 DOI: 10.1111/jne.12565] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/26/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
Sex steroid hormones are major regulators of sexual characteristic among species. These hormones, however, are also produced in the brain. Steroidal hormone-mediated signalling via the corresponding hormone receptors can influence brain function at the cellular level and thus affect behaviour and higher brain functions. Altered steroid hormone signalling has been associated with psychiatric disorders, such as anxiety and depression. Neurosteroids are also considered to have a neuroprotective effect in neurodegenerative diseases. So far, the role of steroid hormone receptors in physiological and pathological conditions has mainly been investigated post mortem on animal or human brain tissues. To study the dynamic interplay between sex steroids, their receptors, brain function and behaviour in psychiatric and neurological disorders in a longitudinal manner, however, non-invasive techniques are needed. Positron emission tomography (PET) is a non-invasive imaging tool that is used to quantitatively investigate a variety of physiological and biochemical parameters in vivo. PET uses radiotracers aimed at a specific target (eg, receptor, enzyme, transporter) to visualise the processes of interest. In this review, we discuss the current status of the use of PET imaging for studying sex steroid hormones in the brain. So far, PET has mainly been investigated as a tool to measure (changes in) sex hormone receptor expression in the brain, to measure a key enzyme in the steroid synthesis pathway (aromatase) and to evaluate the effects of hormonal treatment by imaging specific downstream processes in the brain. Although validated radiotracers for a number of targets are still warranted, PET can already be a useful technique for steroid hormone research and facilitate the translation of interesting findings in animal studies to clinical trials in patients.
Collapse
Affiliation(s)
- R. Moraga‐Amaro
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - A. van Waarde
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - J. Doorduin
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - E. F. J. de Vries
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
47
|
TSPO mutations in rats and a human polymorphism impair the rate of steroid synthesis. Biochem J 2017; 474:3985-3999. [PMID: 29074640 PMCID: PMC5697202 DOI: 10.1042/bcj20170648] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 01/08/2023]
Abstract
The 18 kDa translocator protein (TSPO) is a ubiquitous conserved outer mitochondrial membrane protein implicated in numerous cell and tissue functions, including steroid hormone biosynthesis, respiration, cell proliferation, and apoptosis. TSPO binds with high affinity to cholesterol and numerous compounds, is expressed at high levels in steroid-synthesizing tissues, and mediates cholesterol import into mitochondria, which is the rate-limiting step in steroid formation. In humans, the rs6971 polymorphism on the TSPO gene leads to an amino acid substitution in the fifth transmembrane loop of the protein, which is where the cholesterol-binding domain of TSPO is located, and this polymorphism has been associated with anxiety-related disorders. However, recent knockout mouse models have provided inconsistent conclusions of whether TSPO is directly involved in steroid synthesis. In this report, we show that TSPO deletion mutations in rat and its corresponding rs6971 polymorphism in humans alter adrenocorticotropic hormone-induced plasma corticosteroid concentrations. Rat tissues examined show increased cholesteryl ester accumulation, and neurosteroid formation was undetectable in homozygous rats. These results also support a role for TSPO ligands in diseases with steroid-dependent stress and anxiety elements.
Collapse
|
48
|
Miller WL. Steroidogenesis: Unanswered Questions. Trends Endocrinol Metab 2017; 28:771-793. [PMID: 29031608 DOI: 10.1016/j.tem.2017.09.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/06/2023]
Abstract
Until the mid-1980s studies of steroidogenesis largely depended on identifying steroid structures and measuring steroid concentrations in body fluids. The molecular biology revolution radically revolutionized studies of steroidogenesis with the cloning of known steroidogenic enzymes, by identifying novel factors, and delineating the genetic basis of known and newly discovered diseases. Unfortunately, this dramatic success has led many young research-oriented endocrinologists to regard steroidogenesis as a 'solved area'. However, many important and exciting questions remain, especially concerning the mechanisms of cholesterol delivery to the steroidogenic machinery, the biochemistry of androgen synthesis, the regulation and biological role of adrenarche, fetal adrenal development and involution, the roles of steroids made in 'extraglandular' cells, and the search for genetic disorders. This review outlines some of these questions, but this list is necessarily incomplete.
Collapse
Affiliation(s)
- Walter L Miller
- Center for Reproductive Sciences, University of California, San Francisco (UCSF), San Francisco, CA 94143-0556, USA.
| |
Collapse
|
49
|
Child neurodevelopmental outcomes following preterm and term birth: What can the placenta tell us? Placenta 2017; 57:79-86. [DOI: 10.1016/j.placenta.2017.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/17/2017] [Accepted: 06/12/2017] [Indexed: 11/21/2022]
|
50
|
Yawno T, Miller SL, Bennet L, Wong F, Hirst JJ, Fahey M, Walker DW. Ganaxolone: A New Treatment for Neonatal Seizures. Front Cell Neurosci 2017; 11:246. [PMID: 28878622 PMCID: PMC5572234 DOI: 10.3389/fncel.2017.00246] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal seizures are amongst the most common neurologic conditions managed by a neonatal care service. Seizures can exacerbate existing brain injury, induce “de novo” injury, and are associated with neurodevelopmental disabilities in post-neonatal life. In this mini-review, we present evidence in support of the use of ganaxolone, a GABAA agonist neurosteroid, as a novel neonatal therapy. We discuss evidence that ganaxolone can provide both seizure control and neuroprotection with a high safety profile when administered early following birth-related hypoxia, and show evidence that it is likely to prevent or reduce the incidence of the enduring disabilities associated with preterm birth, cerebral palsy, and epilepsy. We suggest that ganaxolone is an ideal anti-seizure treatment because it can be safely used prospectively, with minimal or no adverse effects on the neonatal brain.
Collapse
Affiliation(s)
- Tamara Yawno
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| | - Suzie L Miller
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash UniversityClayton, VIC, Australia
| | - Laura Bennet
- Department of Physiology, The University of AucklandAuckland, New Zealand
| | - Flora Wong
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Paediatrics, Monash UniversityClayton, VIC, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of NewcastleCallaghan, NSW, Australia
| | - Michael Fahey
- Department of Paediatrics, Monash UniversityClayton, VIC, Australia
| | - David W Walker
- Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,School of Health and Biomedical Sciences, RMIT UniversityBundoora, VIC, Australia
| |
Collapse
|