1
|
Arias-Carrión O, Guerra-Crespo M, Padilla-Godínez FJ, Soto-Rojas LO, Manjarrez E. α-Synuclein Pathology in Synucleinopathies: Mechanisms, Biomarkers, and Therapeutic Challenges. Int J Mol Sci 2025; 26:5405. [PMID: 40508212 PMCID: PMC12155115 DOI: 10.3390/ijms26115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2025] [Revised: 05/29/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025] Open
Abstract
Parkinson's disease and related synucleinopathies, including dementia with Lewy bodies and multiple system atrophy, are characterised by the pathological aggregation of the α-synuclein (aSyn) protein in neuronal and glial cells, leading to cellular dysfunction and neurodegeneration. This review synthesizes knowledge of aSyn biology, including its structure, aggregation mechanisms, cellular interactions, and systemic influences. We highlight the structural diversity of aSyn aggregates, ranging from oligomers to fibrils, their strain-like properties, and their prion-like propagation. While the role of prion-like mechanisms in disease progression remains a topic of ongoing debate, these processes may contribute to the clinical heterogeneity of synucleinopathies. Dysregulation of protein clearance pathways, including chaperone-mediated autophagy and the ubiquitin-proteasome system, exacerbates aSyn accumulation, while post-translational modifications influence its toxicity and aggregation propensity. Emerging evidence suggests that immune responses and alterations in the gut microbiome are key modulators of aSyn pathology, linking peripheral processes-particularly those of intestinal origin-to central neurodegeneration. Advances in biomarker development, such as cerebrospinal fluid assays, post-translationally modified aSyn, and real-time quaking-induced conversion technology, hold promise for early diagnosis and disease monitoring. Furthermore, positron emission tomography imaging and conformation-specific antibodies offer innovative tools for visualising and targeting aSyn pathology in vivo. Despite significant progress, challenges remain in accurately modelling human synucleinopathies, as existing animal and cellular models capture only specific aspects of the disease. This review underscores the need for more reliable aSyn biomarkers to facilitate the development of effective treatments. Achieving this goal requires an interdisciplinary approach integrating genetic, epigenetic, and environmental insights.
Collapse
Affiliation(s)
- Oscar Arias-Carrión
- Experimental Neurology, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City 14380, Mexico
| | - Magdalena Guerra-Crespo
- Laboratory of Regenerative Medicine, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico; (M.G.-C.); (F.J.P.-G.)
| | - Francisco J. Padilla-Godínez
- Laboratory of Regenerative Medicine, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico; (M.G.-C.); (F.J.P.-G.)
- Department of Mathematics and Physics, Western Institute of Technology and Higher Education, San Pedro Tlaquepaque 45604, Mexico
| | - Luis O. Soto-Rojas
- Laboratory of Molecular Pathogenesis, Building A4, Medical Surgeon Career, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Mexico City 54090, Mexico;
| | - Elías Manjarrez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Col. San Manuel, Apartado Postal 406, Puebla 72570, Mexico;
| |
Collapse
|
2
|
Barker RA, Saarma M, Svendsen CN, Morgan C, Whone A, Fiandaca MS, Luz M, Bankiewicz KS, Fiske B, Isaacs L, Roach A, Phipps T, Kordower JH, Lane EL, Huttunen HJ, Sullivan A, O'Keeffe G, Yartseva V, Federoff H. Neurotrophic factors for Parkinson's disease: Current status, progress, and remaining questions. Conclusions from a 2023 workshop. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1659-1676. [PMID: 39957193 DOI: 10.1177/1877718x241301041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
In 2023, a workshop was organized by the UK charity Cure Parkinson's with The Michael J Fox Foundation for Parkinson's Research and Parkinson's UK to review the field of growth factors (GFs) for Parkinson's disease (PD). This was a follow up to a previous meeting held in 2019.1 This 2023 workshop reviewed new relevant data that has emerged in the intervening 4 years around the development of new GFs and better models for studying them including the merit of combining treatments as well as therapies that can be modulated. We also discussed new insights into GF delivery and trial design that have emerged from the analyses of completed GDNF trials, including the patient voice, as well as the recently completed CDNF trial.2 We then concluded with our recommendations on how GF studies in PD should develop going forward.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neurosciences and Cambridge Stem Cell Institute, John van Geest Centre for Brain Repair, Forvie Site, Cambridge, UK
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Catherine Morgan
- Movement Disorders Group, Bristol Brain Centre, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Bristol, UK
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Alan Whone
- Movement Disorders Group, Bristol Brain Centre, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Bristol, UK
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Massimo S Fiandaca
- Asklepios BioPharmaceutical, Inc. (AskBio), Research Triangle Park, NC, USA
| | - Matthias Luz
- Asklepios BioPharmaceutical, Inc. (AskBio), Research Triangle Park, NC, USA
| | - Krystof S Bankiewicz
- Asklepios BioPharmaceutical, Inc. (AskBio), Research Triangle Park, NC, USA
- The Ohio State University, College of Medicine, Pelotonia Research Center, Columbus, OH, USA
| | - Brian Fiske
- The Michael J Fox Foundation for Parkinson's Research, Grand Central Station, New York, NY, USA
| | | | | | | | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Emma L Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Aideen Sullivan
- Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, Cork, Ireland
| | - Gerard O'Keeffe
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| | | | - Howard Federoff
- Kenai Therapeutics, San Diego, CA, USA
- Neurology, School of Medicine, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
3
|
Bérard M, Martínez-Drudis L, Sheta R, El-Agnaf OMA, Oueslati A. Non-invasive systemic viral delivery of human alpha-synuclein mimics selective and progressive neuropathology of Parkinson's disease in rodent brains. Mol Neurodegener 2023; 18:91. [PMID: 38012703 PMCID: PMC10683293 DOI: 10.1186/s13024-023-00683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Alpha-synuclein (α-syn) aggregation into proteinaceous intraneuronal inclusions, called Lewy bodies (LBs), is the neuropathological hallmark of Parkinson's disease (PD) and related synucleinopathies. However, the exact role of α-syn inclusions in PD pathogenesis remains elusive. This lack of knowledge is mainly due to the absence of optimal α-syn-based animal models that recapitulate the different stages of neurodegeneration. METHODS Here we describe a novel approach for a systemic delivery of viral particles carrying human α-syn allowing for a large-scale overexpression of this protein in the mouse brain. This approach is based on the use of a new generation of adeno-associated virus (AAV), AAV-PHP.eB, with an increased capacity to cross the blood-brain barrier, thus offering a viable tool for a non-invasive and large-scale gene delivery in the central nervous system. RESULTS Using this model, we report that widespread overexpression of human α-syn induced selective degeneration of dopaminergic (DA) neurons, an exacerbated neuroinflammatory response in the substantia nigra and a progressive manifestation of PD-like motor impairments. Interestingly, biochemical analysis revealed the presence of insoluble α-syn oligomers in the midbrain. Together, our data demonstrate that a single non-invasive systemic delivery of viral particles overexpressing α-syn prompted selective and progressive neuropathology resembling the early stages of PD. CONCLUSIONS Our new in vivo model represents a valuable tool to study the role of α-syn in PD pathogenesis and in the selective vulnerability of nigral DA neurons; and offers the opportunity to test new strategies targeting α-syn toxicity for the development of disease-modifying therapies for PD and related disorders.
Collapse
Affiliation(s)
- Morgan Bérard
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Laura Martínez-Drudis
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada.
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
4
|
Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta Iii MR, Lévesque M. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. Transl Neurodegener 2023; 12:36. [PMID: 37468944 PMCID: PMC10354932 DOI: 10.1186/s40035-023-00368-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. More than 200 years after its first clinical description, PD remains a serious affliction that affects a growing proportion of the population. Prevailing treatments only alleviate symptoms; there is still neither a cure that targets the neurodegenerative processes nor therapies that modify the course of the disease. Over the past decades, several animal models have been developed to study PD. Although no model precisely recapitulates the pathology, they still provide valuable information that contributes to our understanding of the disease and the limitations of our treatment options. This review comprehensively summarizes the different animal models available for Parkinson's research, with a focus on those induced by drugs, neurotoxins, pesticides, genetic alterations, α-synuclein inoculation, and viral vector injections. We highlight their characteristics and ability to reproduce PD-like phenotypes. It is essential to realize that the strengths and weaknesses of each model and the induction technique at our disposal are determined by the research question being asked. Our review, therefore, seeks to better aid researchers by ensuring a concrete discernment of classical and novel animal models in PD research.
Collapse
Affiliation(s)
- Axelle Dovonou
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Cyril Bolduc
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Victoria Soto Linan
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Charles Gora
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Modesto R Peralta Iii
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
5
|
Campos LJ, Arokiaraj CM, Chuapoco MR, Chen X, Goeden N, Gradinaru V, Fox AS. Advances in AAV technology for delivering genetically encoded cargo to the nonhuman primate nervous system. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100086. [PMID: 37397806 PMCID: PMC10313870 DOI: 10.1016/j.crneur.2023.100086] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 07/04/2023] Open
Abstract
Modern neuroscience approaches including optogenetics, calcium imaging, and other genetic manipulations have facilitated our ability to dissect specific circuits in rodent models to study their role in neurological disease. These approaches regularly use viral vectors to deliver genetic cargo (e.g., opsins) to specific tissues and genetically-engineered rodents to achieve cell-type specificity. However, the translatability of these rodent models, cross-species validation of identified targets, and translational efficacy of potential therapeutics in larger animal models like nonhuman primates remains difficult due to the lack of efficient primate viral vectors. A refined understanding of the nonhuman primate nervous system promises to deliver insights that can guide the development of treatments for neurological and neurodegenerative diseases. Here, we outline recent advances in the development of adeno-associated viral vectors for optimized use in nonhuman primates. These tools promise to help open new avenues for study in translational neuroscience and further our understanding of the primate brain.
Collapse
Affiliation(s)
- Lillian J. Campos
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Cynthia M. Arokiaraj
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Miguel R. Chuapoco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Xinhong Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nick Goeden
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Capsida Biotherapeutics, Thousand Oaks, CA, 91320, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Andrew S. Fox
- Department of Psychology and the California National Primate Research Center, University of California, Davis, CA, 05616, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
6
|
Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G, Ghiglieri V. Alpha-synuclein in Parkinson's disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis 2023; 14:176. [PMID: 36859484 PMCID: PMC9977911 DOI: 10.1038/s41419-023-05672-9] [Citation(s) in RCA: 250] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023]
Abstract
Although the discovery of the critical role of α-synuclein (α-syn) in the pathogenesis of Parkinson's disease (PD) is now twenty-five years old, it still represents a milestone in PD research. Abnormal forms of α-syn trigger selective and progressive neuronal death through mitochondrial impairment, lysosomal dysfunction, and alteration of calcium homeostasis not only in PD but also in other α-syn-related neurodegenerative disorders such as dementia with Lewy bodies, multiple system atrophy, pure autonomic failure, and REM sleep behavior disorder. Furthermore, α-syn-dependent early synaptic and plastic alterations and the underlying mechanisms preceding overt neurodegeneration have attracted great interest. In particular, the presence of early inflammation in experimental models and PD patients, occurring before deposition and spreading of α-syn, suggests a mechanistic link between inflammation and synaptic dysfunction. The knowledge of these early mechanisms is of seminal importance to support the research on reliable biomarkers to precociously identify the disease and possible disease-modifying therapies targeting α-syn. In this review, we will discuss these critical issues, providing a state of the art of the role of this protein in early PD and other synucleinopathies.
Collapse
Affiliation(s)
- Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy. .,Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy.
| | - Alessandro Mechelli
- Dipartimento di Scienze Mediche e Chirurgiche, Istituto di Neurologia, Università "Magna Graecia", Catanzaro, Italy
| | - Giuseppina Natale
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Giulia Di Lazzaro
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Veronica Ghiglieri
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy.,Università Telematica San Raffaele, Rome, 00166, Italy
| |
Collapse
|
7
|
Lelos MJ. Investigating cell therapies in animal models of Parkinson's and Huntington's disease: Current challenges and considerations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:159-189. [PMID: 36424091 DOI: 10.1016/bs.irn.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell therapeutics have entered into an exciting era, with first-in-person clinical trials underway for Parkinson's disease and novel cell therapies in development for other neurodegenerative diseases. In the hope of ensuring successful translation of these novel cell products to the clinic, a significant amount of preclinical work continues to be undertaken. Rodent models of neural transplantation are required to thoroughly assess the survival, safety and efficacy of novel therapeutics. It is critical to produce robust and reliable preclinical data, in order to increase the likelihood of clinical success. As a result, significant effort has been driven into generating ever more relevant model systems, from genetically modified disease models to mice with humanized immune systems. Despite this, several challenges remain in the quest to assess human cells in the rodent brain long-term. Here, with a focus on models of Parkinson's and Huntington's disease, we discuss key considerations for choosing an appropriate rodent model for neural transplantation. We also consider the challenges associated with long-term survival and assessment of functional efficacy in these models, as well as the need to consider the clinical relevance of the model. While the choice of model will be dependent on the scientific question, by considering the caveats associated with each model, we identify opportunities to optimize the preclinical assessment and generate reliable data on our novel cell therapeutics.
Collapse
Affiliation(s)
- Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
8
|
Stein CS, McLendon JM, Witmer NH, Boudreau RL. Modulation of miR-181 influences dopaminergic neuronal degeneration in a mouse model of Parkinson's disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:1-15. [PMID: 35280925 PMCID: PMC8899134 DOI: 10.1016/j.omtn.2022.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is caused by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Although PD pathogenesis is not fully understood, studies implicate perturbations in gene regulation, mitochondrial function, and neuronal activity. MicroRNAs (miRs) are small gene regulatory RNAs that inhibit diverse subsets of target mRNAs, and several studies have noted miR expression alterations in PD brains. For example, miR-181a is abundant in the brain and is increased in PD patient brain samples; however, the disease relevance of this remains unclear. Here, we show that miR-181 target mRNAs are broadly downregulated in aging and PD brains. To address whether the miR-181 family plays a role in PD pathogenesis, we generated adeno-associated viruses (AAVs) to overexpress and inhibit the miR-181 isoforms. After co-injection with AAV overexpressing alpha-synuclein (aSyn) into mouse SN (PD model), we found that moderate miR-181a/b overexpression exacerbated aSyn-induced DA neuronal loss, whereas miR-181 inhibition was neuroprotective relative to controls (GFP alone and/or scrambled RNA). Also, prolonged miR-181 overexpression in SN alone elicited measurable neurotoxicity that is coincident with an increased immune response. mRNA-seq analyses revealed that miR-181a/b inhibits genes involved in synaptic transmission, neurite outgrowth, and mitochondrial respiration, along with several genes having known protective roles and genetic links in PD.
Collapse
Affiliation(s)
- Colleen S. Stein
- Department of Internal Medicine, Iowa Neuroscience Institute, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jared M. McLendon
- Department of Internal Medicine, Iowa Neuroscience Institute, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan H. Witmer
- Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ryan L. Boudreau
- Department of Internal Medicine, Iowa Neuroscience Institute, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
9
|
Lateralized deficits after unilateral AAV-vector based overexpression of alpha-synuclein in the midbrain of rats on drug-free behavioural tests. Behav Brain Res 2022; 429:113887. [DOI: 10.1016/j.bbr.2022.113887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
|
10
|
Merino-Galan L, Jimenez-Urbieta H, Zamarbide M, Rodríguez-Chinchilla T, Belloso-Iguerategui A, Santamaria E, Fernández-Irigoyen J, Aiastui A, Doudnikoff E, Bézard E, Ouro A, Knafo S, Gago B, Quiroga-Varela A, Rodríguez-Oroz MC. Striatal synaptic bioenergetic and autophagic decline in premotor experimental parkinsonism. Brain 2022; 145:2092-2107. [PMID: 35245368 PMCID: PMC9460676 DOI: 10.1093/brain/awac087] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/20/2022] [Indexed: 12/02/2022] Open
Abstract
Synaptic impairment might precede neuronal degeneration in Parkinson’s disease. However, the intimate mechanisms altering synaptic function by the accumulation of presynaptic α-synuclein in striatal dopaminergic terminals before dopaminergic death occurs, have not been elucidated. Our aim is to unravel the sequence of synaptic functional and structural changes preceding symptomatic dopaminergic cell death. As such, we evaluated the temporal sequence of functional and structural changes at striatal synapses before parkinsonian motor features appear in a rat model of progressive dopaminergic death induced by overexpression of the human mutated A53T α-synuclein in the substantia nigra pars compacta, a protein transported to these synapses. Sequential window acquisition of all theoretical mass spectra proteomics identified deregulated proteins involved first in energy metabolism and later, in vesicle cycling and autophagy. After protein deregulation and when α-synuclein accumulated at striatal synapses, alterations to mitochondrial bioenergetics were observed using a Seahorse XF96 analyser. Sustained dysfunctional mitochondrial bioenergetics was followed by a decrease in the number of dopaminergic terminals, morphological and ultrastructural alterations, and an abnormal accumulation of autophagic/endocytic vesicles inside the remaining dopaminergic fibres was evident by electron microscopy. The total mitochondrial population remained unchanged whereas the number of ultrastructurally damaged mitochondria increases as the pathological process evolved. We also observed ultrastructural signs of plasticity within glutamatergic synapses before the expression of motor abnormalities, such as a reduction in axospinous synapses and an increase in perforated postsynaptic densities. Overall, we found that a synaptic energetic failure and accumulation of dysfunctional organelles occur sequentially at the dopaminergic terminals as the earliest events preceding structural changes and cell death. We also identify key proteins involved in these earliest functional abnormalities that may be modulated and serve as therapeutic targets to counterbalance the degeneration of dopaminergic cells to delay or prevent the development of Parkinson’s disease.
Collapse
Affiliation(s)
- Leyre Merino-Galan
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Neuroscience Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Haritz Jimenez-Urbieta
- Cell culture Platform, Biodonostia Health Research Institute, San Sebastian, 20014 Donostia, Spain
| | - Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | | | | | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ana Aiastui
- Cell culture Platform, Biodonostia Health Research Institute, San Sebastian, 20014 Donostia, Spain
| | - Evelyne Doudnikoff
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Erwan Bézard
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Alberto Ouro
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Shira Knafo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Basque Foundation for Science, IKERBASQUE, 48940 Leioa, Spain
| | - Belén Gago
- Faculty of Medicine, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29016 Málaga, Spain
| | - Ana Quiroga-Varela
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Neurology Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| |
Collapse
|
11
|
Van Den Berge N, Ulusoy A. Animal models of brain-first and body-first Parkinson's disease. Neurobiol Dis 2022; 163:105599. [DOI: 10.1016/j.nbd.2021.105599] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
|
12
|
Negrini M, Tomasello G, Davidsson M, Fenyi A, Adant C, Hauser S, Espa E, Gubinelli F, Manfredsson FP, Melki R, Heuer A. Sequential or Simultaneous Injection of Preformed Fibrils and AAV Overexpression of Alpha-Synuclein Are Equipotent in Producing Relevant Pathology and Behavioral Deficits. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1133-1153. [PMID: 35213388 PMCID: PMC9198765 DOI: 10.3233/jpd-212555] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Preclinical rodent models for Parkinson's disease (PD) based on viral human alpha-synuclein (h-αSyn) overexpression recapitulate some of the pathological hallmarks as it presents in humans, such as progressive cell loss and additional synucleinopathy in cortical and subcortical structures. Recent studies have combined viral vector-based overexpression of human wild-type αSyn with the sequential or simultaneous inoculation of preformed fibrils (PFFs) derived from human αSyn. OBJECTIVE The goal of the study was to investigate whether sequential or combined delivery of the AAV vector and the PFFs are equipotent in inducing stable neurodegeneration and behavioral deficits. METHODS Here we compare between four experimental paradigms (PFFs only, AAV-h-αSyn only, AAV-h-αSyn with simultaneous PFFs, and AAV-h-αSyn with sequential PFFs) and their respective GFP control groups. RESULTS We observed reduction of TH expression and loss of neurons in the midbrain in all AAV (h-αSyn or GFP) injected groups, with or without additional PFFs inoculation. The overexpression of either h-αSyn or GFP alone induced motor deficits and dysfunctional dopamine release/reuptake in electrochemical recordings in the ipsilateral striatum. However, we observed a substantial formation of insoluble h-αSyn aggregates and inflammatory response only when h-αSyn and PFFs were combined. Moreover, the presence of h-αSyn induced higher axonal pathology compared to control groups. CONCLUSION Simultaneous AAV and PFFs injections are equipotent in the presented experimental setup in inducing histopathological and behavioral changes. This model provides new and interesting possibilities for characterizing PD pathology in preclinical models and means to assess future therapeutic interventions.
Collapse
Affiliation(s)
- Matilde Negrini
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Giuseppe Tomasello
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Marcus Davidsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
- Molecular Neuromodulation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Alexis Fenyi
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Cécile Adant
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Swantje Hauser
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elena Espa
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Francesco Gubinelli
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Fredric P. Manfredsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Brain regions susceptible to alpha-synuclein spreading. Mol Psychiatry 2022; 27:758-770. [PMID: 34561613 DOI: 10.1038/s41380-021-01296-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
The spreading of misfolded alpha-synuclein (α-syn) protein has been observed in animal models of Parkinson's disease (PD) and other α-synucleinopathies that mimic human PD pathologies. In animal models, the spreading of α-syn has been associated with motor dysfunction and neuronal death. However, variability in both susceptible brain regions and cellular populations limits our understanding of the consequences of α-syn spreading and the development of associated therapies. Here, we have reviewed the physiological and pathological functions of α-syn and summarized the susceptible brain regions and cell types identified from human postmortem studies and exogenous α-syn injection-based animal models. We have reviewed the methods for inducing α-syn aggregation, the specific hosts, the inoculation sites, the routes of propagation, and other experimental settings that may affect the spreading pattern of α-syn, as reported in current studies. Understanding the spread of α-syn to produce a consistent PD animal model is vital for future drug discovery.
Collapse
|
14
|
Ferrer-Lorente R, Lozano-Cruz T, Fernández-Carasa I, Miłowska K, de la Mata FJ, Bryszewska M, Consiglio A, Ortega P, Gómez R, Raya A. Cationic Carbosilane Dendrimers Prevent Abnormal α-Synuclein Accumulation in Parkinson's Disease Patient-Specific Dopamine Neurons. Biomacromolecules 2021; 22:4582-4591. [PMID: 34613701 PMCID: PMC8906628 DOI: 10.1021/acs.biomac.1c00884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Accumulation
of misfolded α-synuclein (α-syn) is a
hallmark of Parkinson’s disease (PD) thought to play important
roles in the pathophysiology of the disease. Dendritic systems, able
to modulate the folding of proteins, have emerged as promising new
therapeutic strategies for PD treatment. Dendrimers have been shown
to be effective at inhibiting α-syn aggregation in cell-free
systems and in cell lines. Here, we set out to investigate the effects
of dendrimers on endogenous α-syn accumulation in disease-relevant
cell types from PD patients. For this purpose, we chose cationic carbosilane
dendrimers of bow-tie topology based on their performance at inhibiting
α-syn aggregation in vitro. Dopamine neurons
were differentiated from induced pluripotent stem cell (iPSC) lines
generated from PD patients carrying the LRRK2G2019S mutation, which reportedly display
abnormal accumulation of α-syn, and from healthy individuals
as controls. Treatment of PD dopamine neurons with non-cytotoxic concentrations
of dendrimers was effective at preventing abnormal accumulation and
aggregation of α-syn. Our results in a genuinely human experimental
model of PD highlight the therapeutic potential of dendritic systems
and open the way to developing safe and efficient therapies for delaying
or even halting PD progression.
Collapse
Affiliation(s)
- Raquel Ferrer-Lorente
- Regenerative Medicine Program, and Program for Clinical Translation of Regenerative Medicine in Catalonia─P-CMR[C], L'Hospitalet de Llobregat (Barcelona), Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Tania Lozano-Cruz
- University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Irene Fernández-Carasa
- Department of Pathology and Experimental Therapeutics, Hospitalet de Llobregat (Barcelona), Universitat de Barcelona and Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Francisco Javier de la Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Hospitalet de Llobregat (Barcelona), Universitat de Barcelona and Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain.,Department of Molecular and Translational Medicine, University of Brescia, Brescia 25121, Italy
| | - Paula Ortega
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Rafael Gómez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,University of Alcalá, Department of Organic Chemistry and Inorganic Chemistry and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid 28805, Spain
| | - Angel Raya
- Regenerative Medicine Program, and Program for Clinical Translation of Regenerative Medicine in Catalonia─P-CMR[C], L'Hospitalet de Llobregat (Barcelona), Institut d'Investigació Biomèdica de Bellvitge─IDIBELL, Barcelona 08907, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08907, Spain
| |
Collapse
|
15
|
Becker G, Michel A, Bahri MA, Mairet-Coello G, Lemaire C, Deprez T, Freyssin A, Jacquin L, Hustadt F, De Wolf C, Caruso M, Frequin JM, Gillent E, Bezard E, Garraux G, Luxen A, Citron M, Downey P, Plenevaux A. Monitoring of a progressive functional dopaminergic deficit in the A53T-AAV synuclein rats by combining 6-[ 18F]fluoro-L-m-tyrosine imaging and motor performances analysis. Neurobiol Aging 2021; 107:142-152. [PMID: 34433125 DOI: 10.1016/j.neurobiolaging.2021.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/28/2022]
Abstract
With the emergence of disease-modifying therapies for Parkinson's disease, reliable longitudinal markers are needed to quantify pathology and demonstrate disease progression. We developed the A53T-AAV rat model of synucleinopathy by combining longitudinal measures over 12 weeks. We first characterized the progression of the motor and dopaminergic deficits. Then, we monitored the disease progression using the [18F]FMT Positron Emission Tomography (PET) radiotracer. The nigral injection of A53T-AAV led to an increase in phosphorylated α-synuclein on S129, a progressive accumulation of α-synuclein aggregates, and a decrease of dopaminergic function associated with a deterioration of motor activity. The longitudinal monitoring of A53T-AAV rats with [18F]FMT PET showed a progressive reduction of the Kc outcome parameter in the caudate putamen from the lesioned side. Interestingly, the progressive reduction in the [18F]FMT PET signal correlated with defects in the stepping test. In conclusion, we established a progressive rat model of α-synuclein pathology which monitors the deficit longitudinally using both the [18F]FMT PET tracer and behavioral parameters, 2 features that have strong relevance for translational approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France; Motac Neuroscience, Manchester, UK
| | - Gaetan Garraux
- GIGA - CRC In vivo Imaging, University of Liège, Liège, Belgium
| | - André Luxen
- GIGA - CRC In vivo Imaging, University of Liège, Liège, Belgium
| | | | | | - Alain Plenevaux
- GIGA - CRC In vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
16
|
Shan FY, Fung KM, Zieneldien T, Kim J, Cao C, Huang JH. Examining the Toxicity of α-Synuclein in Neurodegenerative Disorders. Life (Basel) 2021; 11:life11111126. [PMID: 34833002 PMCID: PMC8621244 DOI: 10.3390/life11111126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Neurodegenerative disorders are complex disorders that display a variety of clinical manifestations. The second-most common neurodegenerative disorder is Parkinson’s disease, and the leading pathological protein of the disorder is considered to be α-synuclein. Nonetheless, α-synuclein accumulation also seems to result in multiple system atrophy and dementia with Lewy bodies. In order to obtain a more proficient understanding in the pathological progression of these synucleinopathies, it is crucial to observe the post-translational modifications of α-synuclein and the conformations of α-synuclein, as well as its role in the dysfunction of cellular pathways. Abstract α-synuclein is considered the main pathological protein in a variety of neurodegenerative disorders, such as Parkinson’s disease, multiple system atrophy, and dementia with Lewy bodies. As of now, numerous studies have been aimed at examining the post-translational modifications of α-synuclein to determine their effects on α-synuclein aggregation, propagation, and oligomerization, as well as the potential cellular pathway dysfunctions caused by α-synuclein, to determine the role of the protein in disease progression. Furthermore, α-synuclein also appears to contribute to the fibrilization of tau and amyloid beta, which are crucial proteins in Alzheimer’s disease, advocating for α-synuclein’s preeminent role in neurodegeneration. Due to this, investigating the mechanisms of toxicity of α-synuclein in neurodegeneration may lead to a more proficient understanding of the timeline progression in neurodegenerative synucleinopathies and could thereby lead to the development of potent targeted therapies.
Collapse
Affiliation(s)
- Frank Y. Shan
- Department of Anatomic Pathology, Baylor Scott & White Medical Center, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Correspondence: (F.Y.S.); (T.Z.)
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Medical Center, University of Oklahoma, Norman, OK 73019, USA;
| | - Tarek Zieneldien
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
- Correspondence: (F.Y.S.); (T.Z.)
| | - Janice Kim
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott & White Medical Center, College of Medicine, Texas A&M University, Temple, TX 76508, USA;
| |
Collapse
|
17
|
Tanguay W, Ducrot C, Giguère N, Bourque MJ, Trudeau LE. Neonatal 6-OHDA lesion of the SNc induces striatal compensatory sprouting from surviving SNc dopaminergic neurons without VTA contribution. Eur J Neurosci 2021; 54:6618-6632. [PMID: 34470083 DOI: 10.1111/ejn.15437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022]
Abstract
Dopamine (DA) neurons of the substantia nigra pars compacta (SNc) are uniquely vulnerable to neurodegeneration in Parkinson's disease (PD). We hypothesize that their large axonal arbor is a key factor underlying their vulnerability, due to increased bioenergetic, proteostatic and oxidative stress. In keeping with this model, other DAergic populations with smaller axonal arbors are mostly spared during the course of PD and are more resistant to experimental lesions in animal models. Aiming to improve mouse PD models, we examined if neonatal partial SNc lesions could lead to adult mice with fewer SNc DA neurons that are endowed with larger axonal arbors because of compensatory mechanisms. We injected 6-hydroxydopamine (6-OHDA) unilaterally in the SNc at an early postnatal stage at a dose selected to induce loss of approximately 50% of SNc DA neurons. We find that at 10 and 90 days after the lesion, the axons of SNc DA neurons show massive compensatory sprouting, as revealed by the proportionally smaller decrease in tyrosine hydroxylase (TH) in the striatum compared with the loss of SNc DA neuron cell bodies. The extent and origin of this axonal sprouting was further investigated by AAV-mediated expression of eYFP in SNc or ventral tegmental area (VTA) DA neurons of adult mice. Our results reveal that SNc DA neurons have the capacity to substantially increase their axonal arbor size and suggest that mice designed to have reduced numbers of SNc DA neurons could potentially be used to develop better mouse models of PD, with elevated neuronal vulnerability.
Collapse
Affiliation(s)
- William Tanguay
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Charles Ducrot
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Giguère
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Milanese C, Gabriels S, Barnhoorn S, Cerri S, Ulusoy A, Gornati SV, Wallace DF, Blandini F, Di Monte DA, Subramaniam VN, Mastroberardino PG. Gender biased neuroprotective effect of Transferrin Receptor 2 deletion in multiple models of Parkinson's disease. Cell Death Differ 2021; 28:1720-1732. [PMID: 33323945 PMCID: PMC8166951 DOI: 10.1038/s41418-020-00698-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/28/2023] Open
Abstract
Alterations in the metabolism of iron and its accumulation in the substantia nigra pars compacta accompany the pathogenesis of Parkinson's disease (PD). Changes in iron homeostasis also occur during aging, which constitutes a PD major risk factor. As such, mitigation of iron overload via chelation strategies has been considered a plausible disease modifying approach. Iron chelation, however, is imperfect because of general undesired side effects and lack of specificity; more effective approaches would rely on targeting distinctive pathways responsible for iron overload in brain regions relevant to PD and, in particular, the substantia nigra. We have previously demonstrated that the Transferrin/Transferrin Receptor 2 (TfR2) iron import mechanism functions in nigral dopaminergic neurons, is perturbed in PD models and patients, and therefore constitutes a potential therapeutic target to halt iron accumulation. To validate this hypothesis, we generated mice with targeted deletion of TfR2 in dopaminergic neurons. In these animals, we modeled PD with multiple approaches, based either on neurotoxin exposure or alpha-synuclein proteotoxic mechanisms. We found that TfR2 deletion can provide neuroprotection against dopaminergic degeneration, and against PD- and aging-related iron overload. The effects, however, were significantly more pronounced in females rather than in males. Our data indicate that the TfR2 iron import pathway represents an amenable strategy to hamper PD progression. Data also suggest, however, that therapeutic strategies targeting TfR2 should consider a potential sexual dimorphism in neuroprotective response.
Collapse
Affiliation(s)
- Chiara Milanese
- Department of Molecular Genetics, Rotterdam, the Netherlands ,grid.7678.e0000 0004 1757 7797IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Sylvia Gabriels
- Department of Molecular Genetics, Rotterdam, the Netherlands
| | | | | | - Ayse Ulusoy
- grid.424247.30000 0004 0438 0426German Centre for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - S. V. Gornati
- grid.5645.2000000040459992XDepartment of Neuroscience Erasmus MC, Rotterdam, the Netherlands
| | - Daniel F. Wallace
- grid.1024.70000000089150953School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD Australia
| | - Fabio Blandini
- IRCCS Mondino Foundation, 27100 Pavia, Italy ,grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Donato A. Di Monte
- grid.424247.30000 0004 0438 0426German Centre for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - V. Nathan Subramaniam
- grid.1024.70000000089150953School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD Australia
| | - Pier G. Mastroberardino
- Department of Molecular Genetics, Rotterdam, the Netherlands ,grid.7678.e0000 0004 1757 7797IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy ,grid.158820.60000 0004 1757 2611Department of Life, Health, and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
19
|
Shrigley S, Nilsson F, Mattsson B, Fiorenzano A, Mudannayake J, Bruzelius A, Ottosson DR, Björklund A, Hoban DB, Parmar M. Grafts Derived from an α-Synuclein Triplication Patient Mediate Functional Recovery but Develop Disease-Associated Pathology in the 6-OHDA Model of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:515-528. [PMID: 33361611 PMCID: PMC8150478 DOI: 10.3233/jpd-202366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Human induced pluripotent stem cells (hiPSCs) have been proposed as an alternative source for cell replacement therapy for Parkinson's disease (PD) and they provide the option of using the patient's own cells. A few studies have investigated transplantation of patient-derived dopaminergic (DA) neurons in preclinical models; however, little is known about the long-term integrity and function of grafts derived from patients with PD. OBJECTIVE To assess the viability and function of DA neuron grafts derived from a patient hiPSC line with an α-synuclein gene triplication (AST18), using a clinical grade human embryonic stem cell (hESC) line (RC17) as a reference control. METHODS Cells were differentiated into ventral mesencephalic (VM)-patterned DA progenitors using an established GMP protocol. The progenitors were then either terminally differentiated to mature DA neurons in vitro or transplanted into 6-hydroxydopamine (6-OHDA) lesioned rats and their survival, maturation, function, and propensity to develop α-synuclein related pathology, were assessed in vivo. RESULTS Both cell lines generated functional neurons with DA properties in vitro. AST18-derived VM progenitor cells survived transplantation and matured into neuron-rich grafts similar to the RC17 cells. After 24 weeks, both cell lines produced DA-rich grafts that mediated full functional recovery; however, pathological changes were only observed in grafts derived from the α-synuclein triplication patient line. CONCLUSION This data shows proof-of-principle for survival and functional recovery with familial PD patient-derived cells in the 6-OHDA model of PD. However, signs of slowly developing pathology warrants further investigation before use of autologous grafts in patients.
Collapse
Affiliation(s)
- Shelby Shrigley
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Fredrik Nilsson
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Bengt Mattsson
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alessandro Fiorenzano
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Janitha Mudannayake
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Andreas Bruzelius
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Daniella Rylander Ottosson
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anders Björklund
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Deirdre B Hoban
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Malin Parmar
- Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Filippini A, Mutti V, Faustini G, Longhena F, Ramazzina I, Rizzi F, Kaganovich A, Roosen DA, Landeck N, Duffy M, Tessari I, Bono F, Fiorentini C, Greggio E, Bubacco L, Bellucci A, Missale M, Cookson MR, Gennarelli M, Russo I. Extracellular clusterin limits the uptake of α-synuclein fibrils by murine and human astrocytes. Glia 2021; 69:681-696. [PMID: 33045109 PMCID: PMC7821254 DOI: 10.1002/glia.23920] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022]
Abstract
The progressive neuropathological damage seen in Parkinson's disease (PD) is thought to be related to the spreading of aggregated forms of α-synuclein. Clearance of extracellular α-synuclein released by degenerating neurons may be therefore a key mechanism to control the concentration of α-synuclein in the extracellular space. Several molecular chaperones control misfolded protein accumulation in the extracellular compartment. Among these, clusterin, a glycoprotein associated with Alzheimer's disease, binds α-synuclein aggregated species and is present in Lewy bodies, intraneuronal aggregates mainly composed by fibrillary α-synuclein. In this study, using murine primary astrocytes with clusterin genetic deletion, human-induced pluripotent stem cell (iPSC)-derived astrocytes with clusterin silencing and two animal models relevant for PD we explore how clusterin affects the clearance of α-synuclein aggregates by astrocytes. Our findings showed that astrocytes take up α-synuclein preformed fibrils (pffs) through dynamin-dependent endocytosis and that clusterin levels are modulated in the culture media of cells upon α-synuclein pffs exposure. Specifically, we found that clusterin interacts with α-synuclein pffs in the extracellular compartment and the clusterin/α-synuclein complex can be internalized by astrocytes. Mechanistically, using clusterin knock-out primary astrocytes and clusterin knock-down hiPSC-derived astrocytes we observed that clusterin limits the uptake of α-synuclein pffs by cells. Interestingly, we detected increased levels of clusterin in the adeno-associated virus- and the α-synuclein pffs- injected mouse model, suggesting a crucial role of this chaperone in the pathogenesis of PD. Overall, our observations indicate that clusterin can limit the uptake of extracellular α-synuclein aggregates by astrocytes and, hence, contribute to the spreading of Parkinson pathology.
Collapse
Affiliation(s)
- Alice Filippini
- Unit of Biology and Genetics, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Present address:
Genetics UnitIRCCS Istituto Centro S. Giovanni di Dio FatebenefratelliBresciaItaly
| | - Veronica Mutti
- Unit of Pharmacology, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Gaia Faustini
- Unit of Pharmacology, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Francesca Longhena
- Unit of Pharmacology, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | | | - Federica Rizzi
- Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Alice Kaganovich
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Dorien A. Roosen
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Natalie Landeck
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Megan Duffy
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | | | - Federica Bono
- Laboratory of Personalized and Preventive MedicineUniversity of BresciaBresciaItaly
| | - Chiara Fiorentini
- Unit of Pharmacology, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Elisa Greggio
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Luigi Bubacco
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Arianna Bellucci
- Laboratory of Personalized and Preventive MedicineUniversity of BresciaBresciaItaly
| | - Mariacristina Missale
- Unit of Pharmacology, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Mark R. Cookson
- Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Massimo Gennarelli
- Unit of Biology and Genetics, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Genetics UnitIRCCS Istituto Centro S. Giovanni di Dio FatebenefratelliBresciaItaly
| | - Isabella Russo
- Unit of Biology and Genetics, Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Genetics UnitIRCCS Istituto Centro S. Giovanni di Dio FatebenefratelliBresciaItaly
| |
Collapse
|
21
|
Dues DJ, Moore DJ. LRRK2 and Protein Aggregation in Parkinson's Disease: Insights From Animal Models. Front Neurosci 2020; 14:719. [PMID: 32733200 PMCID: PMC7360724 DOI: 10.3389/fnins.2020.00719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) instigate an autosomal dominant form of Parkinson’s disease (PD). Despite the neuropathological heterogeneity observed in LRRK2-PD, accumulating evidence suggests that alpha-synuclein and tau pathology are observed in a vast majority of cases. Intriguingly, the presence of protein aggregates spans both LRRK2-PD and idiopathic disease, supportive of a common pathologic mechanism. Thus, it is important to consider how LRRK2 mutations give rise to such pathology, and whether targeting LRRK2 might modify the accumulation, transmission, or toxicity of protein aggregates. Likewise, it is not clear how LRRK2 mutations drive PD pathogenesis, and whether protein aggregates are implicated in LRRK2-dependent neurodegeneration. While animal models have been instrumental in furthering our understanding of a potential interaction between LRRK2 and protein aggregation, the biology is far from clear. We aim to provide a thoughtful overview of the evidence linking LRRK2 to protein aggregation in animal models.
Collapse
Affiliation(s)
- Dylan J Dues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| |
Collapse
|
22
|
Björklund A, Dunnett SB. The Amphetamine Induced Rotation Test: A Re-Assessment of Its Use as a Tool to Monitor Motor Impairment and Functional Recovery in Rodent Models of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:17-29. [PMID: 30741691 PMCID: PMC6398560 DOI: 10.3233/jpd-181525] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rats and mice with unilateral damage to the nigrostriatal dopamine system—induced by neurotoxins, such as 6-hydroxydopamine, overexpression of α-synuclein, or injections of toxic synuclein protofibrils—are widely used as experimental models to mimic the loss of dopamine neurons seen in Parkinson’s disease. The amphetamine rotation test is commonly used to monitor the extent of motor impairment induced by the lesion, and this test has also become the standard tool to demonstrate transplant-induced functional recovery or the efficacy of neuroprotective interventions aimed to preserve or restore DA neuron function. Although the amphetamine-induced rotation test is highly useful for this purpose it has some important pitfalls and the interpretation of the data may not always be straightforward. Unless the test is applied properly and the data are displayed and interpreted appropriately the conclusions may be misleading or simply totally wrong. The purpose of this review is to draw attention to the potential problems and pitfalls involved in the use of drug-induced rotation tests, and to provide recommendations and advice on how to avoid them.
Collapse
Affiliation(s)
- Anders Björklund
- Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Sweden
| | | |
Collapse
|
23
|
Cinar E, Yalcin-Cakmakli G, Saka E, Ulusoy A, Yuruker S, Elibol B, Tel BC. Modelling cognitive deficits in Parkinson's disease: Is CA2 a gateway for hippocampal synucleinopathy? Exp Neurol 2020; 330:113357. [PMID: 32437708 DOI: 10.1016/j.expneurol.2020.113357] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/01/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cognitive dysfunction is one of the most disabling non-motor symptoms of Parkinson's disease (PD), though its pathological correlates still remain elusive. Hippocampal Lewy pathology has recently been correlated by compelling evidence from post-mortem and imaging studies. Animal models recapitulating cognitive impairment in PD are essential to better understand the underlying pathophysiology. To investigate the hippocampal involvement in cognitive dysfunction of PD, we generated an experimental model by inducing midbrain and hippocampal α-synuclein pathology simultaneously. METHODS Rats were injected either with human α-synuclein or green fluorescent protein (GFP) expressing adeno-associated viral vectors (AAV), or saline bilaterally into substantia nigra (SN) and dentate gyrus (DG). A group of untreated animals were used as naïve controls. Cognitive and behavioral changes were evaluated with tests probing for spatial learning, short-term memory, anxiety and hedonistic behavior. Immunohistochemical staining, immunoblotting and stereological analysis were performed for pathological characterization. RESULTS Bilateral α-synuclein overexpression in SN and DG led to mild but significant motor impairment as well as dysfunctions in short-term memory and spatial learning. There was no hedonistic deficit, whereas a hypo-anxious state was induced. While stereological analysis revealed no significant neuronal loss in any sectors of cornu ammonis, there was considerable decrease (43%) in TH+-neurons in SN pars compacta supporting the well-known vulnerability of nigral dopaminergic neurons to α-synuclein mediated neurodegeneration. On the other hand, synaptophysin levels decreased in similar amounts both in striatum and hippocampus, suggesting comparable synaptic loss in target areas. Interestingly, phosphorylated-S129-α-synuclein staining revealed significant expression in CA2 characterized by more mature and dense cellular accumulations compared to CA1-CA3 sub-regions displaying more diffuse grain-like aggregates, suggesting preferential susceptibility of CA2 to produce α-synuclein induced pathology. CONCLUSION Bilateral α-synuclein overexpression in DG and SN reproduced partial motor and hippocampus related cognitive deficits. Using this model, we showed a predisposition of CA2 for pathological α-synuclein accumulation, which may provide further insights for future experimental and clinical studies.
Collapse
Affiliation(s)
- Elif Cinar
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | | | - Esen Saka
- Department of Neurology, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Sinan Yuruker
- Usak University Faculty of Medicine, Department of Histology and Embryology, Usak, Turkey
| | - Bulent Elibol
- Department of Neurology, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Banu C Tel
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
24
|
Advances in modelling alpha-synuclein-induced Parkinson’s diseases in rodents: Virus-based models versus inoculation of exogenous preformed toxic species. J Neurosci Methods 2020; 338:108685. [DOI: 10.1016/j.jneumeth.2020.108685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 11/22/2022]
|
25
|
Cenci MA, Björklund A. Animal models for preclinical Parkinson's research: An update and critical appraisal. PROGRESS IN BRAIN RESEARCH 2020; 252:27-59. [PMID: 32247366 DOI: 10.1016/bs.pbr.2020.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animal models of Parkinson's disease (PD) are essential to investigate pathogenic pathways at the whole-organism level. Moreover, they are necessary for a preclinical investigation of potential new therapies. Different pathological features of PD can be induced in a variety of invertebrate and vertebrate species using toxins, drugs, or genetic perturbations. Each model has a particular utility and range of applicability. Invertebrate PD models are particularly useful for high throughput-screening applications, whereas mammalian models are needed to explore complex motor and non-motor features of the human disease. Here, we provide a comprehensive review and critical appraisal of the most commonly used mammalian models of PD, which are produced in rats and mice. A substantial loss of nigrostriatal dopamine neurons is necessary for the animal to exhibit a hypokinetic motor phenotype responsive to dopaminergic agents, thus resembling clinical PD. This level of dopaminergic neurodegeneration can be induced using specific neurotoxins, environmental toxicants, or proteasome inhibitors. Alternatively, nigrostriatal dopamine degeneration can be induced via overexpression of α-synuclein using viral vectors or transgenic techniques. In addition, protein aggregation pathology can be triggered by inoculating preformed fibrils of α-synuclein in the substantia nigra or the striatum. Thanks to the conceptual and technical progress made in the past few years a vast repertoire of well-characterized animal models are currently available to address different aspects of PD in the laboratory.
Collapse
Affiliation(s)
- M Angela Cenci
- Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden.
| | - Anders Björklund
- Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Mahul-Mellier AL, Burtscher J, Maharjan N, Weerens L, Croisier M, Kuttler F, Leleu M, Knott GW, Lashuel HA. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc Natl Acad Sci U S A 2020; 117:4971-4982. [PMID: 32075919 DOI: 10.1101/751891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the accumulation of misfolded and aggregated α-synuclein (α-syn) into intraneuronal inclusions named Lewy bodies (LBs). Although it is widely believed that α-syn plays a central role in the pathogenesis of PD, the processes that govern α-syn fibrillization and LB formation remain poorly understood. In this work, we sought to dissect the spatiotemporal events involved in the biogenesis of the LBs at the genetic, molecular, biochemical, structural, and cellular levels. Toward this goal, we further developed a seeding-based model of α-syn fibrillization to generate a neuronal model that reproduces the key events leading to LB formation, including seeding, fibrillization, and the formation of inclusions that recapitulate many of the biochemical, structural, and organizational features of bona fide LBs. Using an integrative omics, biochemical and imaging approach, we dissected the molecular events associated with the different stages of LB formation and their contribution to neuronal dysfunction and degeneration. In addition, we demonstrate that LB formation involves a complex interplay between α-syn fibrillization, posttranslational modifications, and interactions between α-syn aggregates and membranous organelles, including mitochondria, the autophagosome, and endolysosome. Finally, we show that the process of LB formation, rather than simply fibril formation, is one of the major drivers of neurodegeneration through disruption of cellular functions and inducing mitochondria damage and deficits, and synaptic dysfunctions. We believe that this model represents a powerful platform to further investigate the mechanisms of LB formation and clearance and to screen and evaluate therapeutics targeting α-syn aggregation and LB formation.
Collapse
Affiliation(s)
- Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johannes Burtscher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Niran Maharjan
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laura Weerens
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marie Croisier
- BioEM Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Fabien Kuttler
- Biomolecular Screening Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marion Leleu
- Gene Expression Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Graham W Knott
- BioEM Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
27
|
The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc Natl Acad Sci U S A 2020; 117:4971-4982. [PMID: 32075919 PMCID: PMC7060668 DOI: 10.1073/pnas.1913904117] [Citation(s) in RCA: 439] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although converging evidence point to α-synuclein aggregation and Lewy body (LB) formation as central events in Parkinson’s disease, the molecular mechanisms that regulate these processes and their role in disease pathogenesis remain elusive. Herein, we describe a neuronal model that reproduces the key events leading to the formation of inclusions that recapitulate the biochemical, structural, and organizational features of bona fide LBs. This model allowed us to dissect the molecular events associated with the different stages of LB formation and how they contribute to neuronal dysfunctions and degeneration, thus providing a powerful platform for evaluating therapeutics targeting α-synuclein aggregation and LB formation and to identify and validate therapeutic targets for the treatment of Parkinson’s disease. Parkinson’s disease (PD) is characterized by the accumulation of misfolded and aggregated α-synuclein (α-syn) into intraneuronal inclusions named Lewy bodies (LBs). Although it is widely believed that α-syn plays a central role in the pathogenesis of PD, the processes that govern α-syn fibrillization and LB formation remain poorly understood. In this work, we sought to dissect the spatiotemporal events involved in the biogenesis of the LBs at the genetic, molecular, biochemical, structural, and cellular levels. Toward this goal, we further developed a seeding-based model of α-syn fibrillization to generate a neuronal model that reproduces the key events leading to LB formation, including seeding, fibrillization, and the formation of inclusions that recapitulate many of the biochemical, structural, and organizational features of bona fide LBs. Using an integrative omics, biochemical and imaging approach, we dissected the molecular events associated with the different stages of LB formation and their contribution to neuronal dysfunction and degeneration. In addition, we demonstrate that LB formation involves a complex interplay between α-syn fibrillization, posttranslational modifications, and interactions between α-syn aggregates and membranous organelles, including mitochondria, the autophagosome, and endolysosome. Finally, we show that the process of LB formation, rather than simply fibril formation, is one of the major drivers of neurodegeneration through disruption of cellular functions and inducing mitochondria damage and deficits, and synaptic dysfunctions. We believe that this model represents a powerful platform to further investigate the mechanisms of LB formation and clearance and to screen and evaluate therapeutics targeting α-syn aggregation and LB formation.
Collapse
|
28
|
Dujardin K, Sgambato V. Neuropsychiatric Disorders in Parkinson's Disease: What Do We Know About the Role of Dopaminergic and Non-dopaminergic Systems? Front Neurosci 2020; 14:25. [PMID: 32063833 PMCID: PMC7000525 DOI: 10.3389/fnins.2020.00025] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Besides the hallmark motor symptoms (rest tremor, hypokinesia, rigidity, and postural instability), patients with Parkinson’s disease (PD) have non-motor symptoms, namely neuropsychiatric disorders. They are frequent and may influence the other symptoms of the disease. They have also a negative impact on the quality of life of patients and their caregivers. In this article, we will describe the clinical manifestations of the main PD-related behavioral disorders (depression, anxiety disorders, apathy, psychosis, and impulse control disorders). We will also provide an overview of the clinical and preclinical literature regarding the underlying mechanisms with a focus on the role of the dopaminergic and non-dopaminergic systems.
Collapse
Affiliation(s)
- Kathy Dujardin
- Inserm U1171 Degenerative and Vascular Cognitive Disorders, Lille University Medical Center, Lille, France
| | - Véronique Sgambato
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Lyon University, Bron, France
| |
Collapse
|
29
|
Di Maio R, Hoffman EK, Rocha EM, Keeney MT, Sanders LH, De Miranda BR, Zharikov A, Van Laar A, Stepan AF, Lanz TA, Kofler JK, Burton EA, Alessi DR, Hastings TG, Greenamyre JT. LRRK2 activation in idiopathic Parkinson's disease. Sci Transl Med 2019; 10:10/451/eaar5429. [PMID: 30045977 DOI: 10.1126/scitranslmed.aar5429] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/22/2018] [Indexed: 11/02/2022]
Abstract
Missense mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson's disease (PD). However, a potential role of wild-type LRRK2 in idiopathic PD (iPD) remains unclear. Here, we developed proximity ligation assays to assess Ser1292 phosphorylation of LRRK2 and, separately, the dissociation of 14-3-3 proteins from LRRK2. Using these proximity ligation assays, we show that wild-type LRRK2 kinase activity was selectively enhanced in substantia nigra dopamine neurons in postmortem brain tissue from patients with iPD and in two different rat models of the disease. We show that this occurred through an oxidative mechanism, resulting in phosphorylation of the LRRK2 substrate Rab10 and other downstream consequences including abnormalities in mitochondrial protein import and lysosomal function. Our study suggests that, independent of mutations, wild-type LRRK2 plays a role in iPD. LRRK2 kinase inhibitors may therefore be useful for treating patients with iPD who do not carry LRRK2 mutations.
Collapse
Affiliation(s)
- Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Ri.MED Foundation, Palermo, Italy
| | - Eric K Hoffman
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Laurie H Sanders
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, Duke University, Durham, NC 27710, USA
| | - Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alevtina Zharikov
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amber Van Laar
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Antonia F Stepan
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA
| | - Thomas A Lanz
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Cambridge, MA 02139, USA
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Units, University of Dundee, Dundee, Scotland
| | - Teresa G Hastings
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA. .,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
30
|
Hallett PJ, Engelender S, Isacson O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson's disease. J Neuroinflammation 2019; 16:153. [PMID: 31331333 PMCID: PMC6647317 DOI: 10.1186/s12974-019-1532-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
This article describes pathogenic concepts and factors, in particular glycolipid abnormalities, that create cell dysfunction and synaptic loss in neurodegenerative diseases. By phenocopying lysosomal storage disorders, such as Gaucher disease and related disorders, age- and dose-dependent changes in glycolipid cell metabolism can lead to Parkinson's disease and related dementias. Recent results show that perturbation of sphingolipid metabolism can precede or is a part of abnormal protein handling in both genetic and idiopathic Parkinson's disease and Lewy body dementia. In aging and genetic predisposition with lipid disturbance, α-synuclein's normal vesicular and synaptic role may be detrimentally shifted toward accommodating and binding such lipids. Specific neuronal glycolipid, protein, and vesicular interactions create potential pathophysiology that is amplified by astroglial and microglial immune mechanisms resulting in neurodegeneration. This perspective provides a new logic for therapeutic interventions that do not focus on protein aggregation, but rather provides a guide to the complex biology and the common sequence of events that lead to age-dependent neurodegenerative disorders.
Collapse
Affiliation(s)
- Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA
| | - Simone Engelender
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA.,Present Address: Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA.
| |
Collapse
|
31
|
Patterson JR, Duffy MF, Kemp CJ, Howe JW, Collier TJ, Stoll AC, Miller KM, Patel P, Levine N, Moore DJ, Luk KC, Fleming SM, Kanaan NM, Paumier KL, El-Agnaf OMA, Sortwell CE. Time course and magnitude of alpha-synuclein inclusion formation and nigrostriatal degeneration in the rat model of synucleinopathy triggered by intrastriatal α-synuclein preformed fibrils. Neurobiol Dis 2019; 130:104525. [PMID: 31276792 DOI: 10.1016/j.nbd.2019.104525] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 01/22/2023] Open
Abstract
Animal models that accurately recapitulate the accumulation of alpha-synuclein (α-syn) inclusions, progressive neurodegeneration of the nigrostriatal system and motor deficits can be useful tools for Parkinson's disease (PD) research. The preformed fibril (PFF) synucleinopathy model in rodents generally displays these PD-relevant features, however, the magnitude and predictability of these events is far from established. We therefore sought to optimize the magnitude of α-syn accumulation and nigrostriatal degeneration, and to understand the time course of both. Rats were injected unilaterally with different quantities of α-syn PFFs (8 or 16 μg of total protein) into striatal sites selected to concentrate α-syn inclusion formation in the substantia nigra pars compacta (SNpc). Rats displayed an α-syn PFF quantity-dependent increase in the magnitude of ipsilateral SNpc inclusion formation at 2 months and bilateral loss of nigral dopamine neurons at 6 months. Unilateral 16 μg PFF injection also resulted in modest sensorimotor deficits in forelimb adjusting steps associated with degeneration at 6 months. Bilateral injection of 16 μg α-syn PFFs resulted in symmetric bilateral degeneration equivalent to the ipsilateral nigral degeneration observed following unilateral 16 μg PFF injection (~50% loss). Bilateral PFF injections additionally resulted in alterations in several gait analysis parameters. These α-syn PFF parameters can be applied to generate a reproducible synucleinopathy model in rats with which to study pathogenic mechanisms and vet potential disease-modifying therapies.
Collapse
Affiliation(s)
- Joseph R Patterson
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA.
| | - Megan F Duffy
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Christopher J Kemp
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Jacob W Howe
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Timothy J Collier
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA; Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Anna C Stoll
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Kathryn M Miller
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Pooja Patel
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Nathan Levine
- Center of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Darren J Moore
- Center of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sheila M Fleming
- College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA; Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Katrina L Paumier
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Omar M A El-Agnaf
- Neurological Disorders Researcher Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Caryl E Sortwell
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA; Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| |
Collapse
|
32
|
Paul G, Sullivan AM. Trophic factors for Parkinson's disease: Where are we and where do we go from here? Eur J Neurosci 2019; 49:440-452. [DOI: 10.1111/ejn.14102] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/25/2018] [Accepted: 07/22/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Gesine Paul
- Translational Neurology GroupDepartment of Clinical ScienceLund University Lund Sweden
- Wallenberg Center for Molecular MedicineLund University Lund Sweden
- Department of NeurologyScania University Hospital Lund Sweden
| | - Aideen M. Sullivan
- Department of Anatomy and NeuroscienceUniversity College Cork Cork Ireland
| |
Collapse
|
33
|
Faivre F, Joshi A, Bezard E, Barrot M. The hidden side of Parkinson’s disease: Studying pain, anxiety and depression in animal models. Neurosci Biobehav Rev 2019; 96:335-352. [DOI: 10.1016/j.neubiorev.2018.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/14/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022]
|
34
|
Grandi LC, Di Giovanni G, Galati S. Reprint of “Animal models of early-stage Parkinson's disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms”. J Neurosci Methods 2018; 310:75-88. [DOI: 10.1016/j.jneumeth.2018.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
|
35
|
Fischer DL, Sortwell CE. BDNF provides many routes toward STN DBS-mediated disease modification. Mov Disord 2018; 34:22-34. [PMID: 30440081 PMCID: PMC6587505 DOI: 10.1002/mds.27535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 01/05/2023] Open
Abstract
The concept that subthalamic nucleus deep brain stimulation (STN DBS) may be disease modifying in Parkinson's disease (PD) is controversial. Several clinical trials that enrolled subjects with late‐stage PD have come to disparate conclusions on this matter. In contrast, some clinical studies in early‐ to midstage subjects have suggested a disease‐modifying effect. Dopaminergic innervation of the putamen is essentially absent in PD subjects within 4 years after diagnosis, indicating that any neuroprotective therapy, including STN DBS, will require intervention within the immediate postdiagnosis interval. Preclinical prevention and early intervention paradigms support a neuroprotective effect of STN DBS on the nigrostriatal system via increased brain‐derived neurotrophic factor (BDNF). STN DBS‐induced increases in BDNF provide a multitude of mechanisms capable of ameliorating dysfunction and degeneration in the parkinsonian brain. A biomarker for measuring brain‐derived neurotrophic factor‐trkB signaling, though, is not available for clinical research. If a prospective clinical trial were to examine whether STN DBS is disease modifying, we contend the strongest rationale is not dependent on a preclinical neuroprotective effect per se, but on the myriad potential mechanisms whereby STN DBS‐elicited brain‐derived neurotrophic factor‐trkB signaling could provide disease modification. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- D Luke Fischer
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Caryl E Sortwell
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Hauenstein Neuroscience Center, Mercy Health St. Mary's, Grand Rapids, Michigan, USA
| |
Collapse
|
36
|
Sarno E, Robison AJ. Emerging role of viral vectors for circuit-specific gene interrogation and manipulation in rodent brain. Pharmacol Biochem Behav 2018; 174:2-8. [PMID: 29709585 PMCID: PMC6369584 DOI: 10.1016/j.pbb.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/10/2018] [Accepted: 04/24/2018] [Indexed: 01/11/2023]
Abstract
Over the past half century, novel tools have allowed the characterization of myriad molecular underpinnings of neural phenomena including synaptic function, neurogenesis and neurodegeneration, membrane excitability, and neurogenetics/epigenetics. More recently, transgenic mice have made possible cell type-specific explorations of these phenomena and have provided critical models of many neurological and psychiatric diseases. However, it has become clear that many critical areas of study require tools allowing the study and manipulation of individual neural circuits within the brain, and viral vectors have come to the forefront in driving these circuit-specific studies. Here, we present a surface-level review of the general classes of viral vectors used for study of the brain, along with their suitability for circuit-specific studies. We then cover in detail a new long-lasting, retrograde expressing form of herpes simplex virus termed LT-HSV that has become highly useful in circuit-based studies. We detail some of its current uses and propose a variety of future uses for this critical new tool, including circuit-based transgene overexpression, gene editing, and gene expression profiling.
Collapse
Affiliation(s)
- Erika Sarno
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
37
|
Lillethorup TP, Glud AN, Alstrup AKO, Noer O, Nielsen EHT, Schacht AC, Landeck N, Kirik D, Orlowski D, Sørensen JCH, Doudet DJ, Landau AM. Longitudinal monoaminergic PET imaging of chronic proteasome inhibition in minipigs. Sci Rep 2018; 8:15715. [PMID: 30356172 PMCID: PMC6200778 DOI: 10.1038/s41598-018-34084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023] Open
Abstract
Impairment of the ubiquitin proteasome system has been implicated in Parkinson’s disease. We used positron emission tomography to investigate longitudinal effects of chronic intracerebroventricular exposure to the proteasome inhibitor lactacystin on monoaminergic projections and neuroinflammation. Göttingen minipigs were implanted in the cisterna magna with a catheter connected to a subcutaneous injection port. Minipigs were imaged at baseline and after cumulative doses of 200 and 400 μg lactacystin, respectively. Main radioligands included [11C]-DTBZ (vesicular monoamine transporter type 2) and [11C]-yohimbine (α2-adrenoceptor). [11C]-DASB (serotonin transporter) and [11C]-PK11195 (activated microglia) became available later in the study and we present their results in a smaller subset of animals for information purposes only. Striatal [11C]-DTBZ binding potentials decreased significantly by 16% after 200 μg compared to baseline, but the decrease was not sustained after 400 μg (n = 6). [11C]-yohimbine volume of distribution increased by 18–25% in the pons, grey matter and the thalamus after 200 μg, which persisted at 400 μg (n = 6). In the later subset of minipigs, we observed decreased [11C]-DASB (n = 5) and increased [11C]-PK11195 (n = 3) uptake after 200 μg. These changes may mimic monoaminergic changes and compensatory responses in early Parkinson’s disease.
Collapse
Affiliation(s)
- Thea P Lillethorup
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Andreas N Glud
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Aage K O Alstrup
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Ove Noer
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Erik H T Nielsen
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Anna C Schacht
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Natalie Landeck
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Dariusz Orlowski
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Christian H Sørensen
- Center for Experimental Neuroscience (CENSE), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Doris J Doudet
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
| | - Anne M Landau
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark. .,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
38
|
Duffy MF, Collier TJ, Patterson JR, Kemp CJ, Fischer DL, Stoll AC, Sortwell CE. Quality Over Quantity: Advantages of Using Alpha-Synuclein Preformed Fibril Triggered Synucleinopathy to Model Idiopathic Parkinson's Disease. Front Neurosci 2018; 12:621. [PMID: 30233303 PMCID: PMC6132025 DOI: 10.3389/fnins.2018.00621] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Animal models have significantly advanced our understanding of Parkinson's disease (PD). Alpha-synuclein (α-syn) has taken center stage due to its genetic connection to familial PD and localization to Lewy bodies, one pathological hallmark of PD. Animal models developed on the premise of elevated alpha-synuclein via germline manipulation or viral vector-mediated overexpression are used to investigate PD pathophysiology and vet novel therapeutics. While these models represented a step forward compared to their neurotoxicant model predecessors, they rely on overexpression of supraphysiological levels of α-syn to trigger toxicity. However, whereas SNCA-linked familial PD is associated with elevated α-syn, elevated α-syn is not associated with idiopathic PD. Therefore, the defining feature of the α-syn overexpression models may fail to appropriately model idiopathic PD. In the last several years a new model has been developed in which α-syn preformed fibrils are injected intrastriatally and trigger normal endogenous levels of α-syn to misfold and accumulate into Lewy body-like inclusions. Following a defined period of inclusion accumulation, distinct phases of neuroinflammation and progressive degeneration can be detected in the nigrostriatal system. In this perspective, we highlight the fact that levels of α-syn achieved in overexpression models generally exceed those observed in idiopathic and even SNCA multiplication-linked PD. This raises the possibility that supraphysiological α-syn expression may drive pathophysiological mechanisms not relevant to idiopathic PD. We argue in this perspective that synucleinopathy triggered to form within the context of normal α-syn expression represents a more faithful animal model of idiopathic PD when examining the role of neuroinflammation or the relationship between a-syn aggregation and toxicity.
Collapse
Affiliation(s)
- Megan F. Duffy
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Timothy J. Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, United States
- Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, United States
| | - Joseph R. Patterson
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Christopher J. Kemp
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, United States
| | - D. Luke Fischer
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Anna C. Stoll
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Caryl E. Sortwell
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, United States
- Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, United States
| |
Collapse
|
39
|
Novello S, Arcuri L, Dovero S, Dutheil N, Shimshek DR, Bezard E, Morari M. G2019S LRRK2 mutation facilitates α-synuclein neuropathology in aged mice. Neurobiol Dis 2018; 120:21-33. [PMID: 30172844 DOI: 10.1016/j.nbd.2018.08.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Fibrillization of α-synuclein is instrumental for the development of Parkinson's disease (PD), thus modulating this process can have profound impact on disease initiation/progression. Here, the impact of the p.G2019S mutation of leucine-rich repeat kinase 2 (LRRK2), which is most frequently associated with familial and sporadic PD, on α-synuclein pathology was investigated. G2019S knock-in mice and wild-type controls were injected with a recombinant adeno-associated viral vector serotype 2/9 (AAV2/9) overexpressing human mutant p.A53T α-synuclein (AAV2/9-hα-syn). Control animals were injected with AAV2/9 carrying green fluorescent protein. Motor behavior, transgene expression, α-syn and pSer129 α-syn load, number of nigral dopamine neurons and density of striatal dopaminergic terminals were evaluated. To investigate the effect of aging, experiments were performed in 3- and 12-month-old mice, evaluated 20 and 12 weeks after virus injection, respectively. hα-syn overexpression induced progressive motor deficits, loss of nigral dopaminergic neurons and striatal terminals, and appearance of proteinase K-resistant aggregates of pSer129 α-syn in both young and old mice. Although no genotype difference was observed in 3-month-old mice, degeneration of nigral dopaminergic neurons was higher in 12-month-old G2019S knock-in mice compared with age-matched wild-type controls (-55% vs -39%, respectively). Consistently, a two-fold higher load of pSer129 α-syn aggregates was found in 12-month-old G2019S knock-in mice. We conclude that G2019S LRRK2 facilitates α-synucleinopathy and degeneration of nigral dopaminergic neurons, and that aging is a major determinant of this effect.
Collapse
Affiliation(s)
- Salvatore Novello
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy
| | - Ludovico Arcuri
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy
| | - Sandra Dovero
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Nathalie Dutheil
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Derya R Shimshek
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy.
| |
Collapse
|
40
|
Lillethorup TP, Glud AN, Landeck N, Alstrup AKO, Jakobsen S, Vang K, Doudet DJ, Brooks DJ, Kirik D, Hinz R, Sørensen JC, Landau AM. In vivo quantification of glial activation in minipigs overexpressing human α-synuclein. Synapse 2018; 72:e22060. [PMID: 30009467 DOI: 10.1002/syn.22060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022]
Abstract
Parkinson's disease is characterized by a progressive loss of substantia nigra (SN) dopaminergic neurons and the formation of Lewy bodies containing accumulated alpha-synuclein (α-syn). The pathology of Parkinson's disease is associated with neuroinflammatory microglial activation, which may contribute to the ongoing neurodegeneration. This study investigates the in vivo microglial and dopaminergic response to overexpression of α-syn. We used positron emission tomography (PET) and the 18 kDa translocator protein radioligand, [11 C](R)PK11195, to image brain microglial activation and (+)-α-[11 C]dihydrotetrabenazine ([11 C]DTBZ), to measure vesicular monoamine transporter 2 (VMAT2) availability in Göttingen minipigs following injection with recombinant adeno-associated virus (rAAV) vectors expressing either mutant A53T α-syn or green fluorescent protein (GFP) into the SN (4 rAAV-α-syn, 4 rAAV-GFP, 5 non-injected control minipigs). We performed motor symptom assessment and immunohistochemical examination of tyrosine hydroxylase (TH) and transgene expression. Expression of GFP and α-syn was observed at the SN injection site and in the striatum. We observed no motor symptoms or changes in striatal [11 C]DTBZ binding potential in vivo or striatal or SN TH staining in vitro between the groups. The mean [11 C](R)PK11195 total volume of distribution was significantly higher in the basal ganglia and cortical areas of the α-syn group than the control animals. We conclude that mutant α-syn expression in the SN resulted in microglial activation in multiple sub- and cortical regions, while it did not affect TH stains or VMAT2 availability. Our data suggest that microglial activation constitutes an early response to accumulation of α-syn in the absence of dopamine neuron degeneration.
Collapse
Affiliation(s)
- Thea Pinholt Lillethorup
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Andreas Nørgaard Glud
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Natalie Landeck
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Kim Vang
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Doris J Doudet
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark.,Department of Medicine/Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Brooks
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark.,Division of Neuroscience, Department of Medicine, Imperial College London, London, United Kingdom.,Division of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
| | - Jens Christian Sørensen
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark.,Translational Neuropsychiatry Unit, Institute of Clinical Medicine, Aarhus University, Risskov, Denmark
| |
Collapse
|
41
|
Grandi LC, Di Giovanni G, Galati S. Animal models of early-stage Parkinson's disease and acute dopamine deficiency to study compensatory neurodegenerative mechanisms. J Neurosci Methods 2018; 308:205-218. [PMID: 30107207 DOI: 10.1016/j.jneumeth.2018.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a common neurodegenerative disease characterized by a widely variety of motor and non-motor symptoms. While the motor deficits are only visible following a severe dopamine depletion, neurodegenerative process and some non-motor symptoms are manifested years before the motor deficits. Importantly, chronic degeneration of dopaminergic neurons leads to the development of compensatory mechanisms that play roles in the progression of the disease and the response to anti-parkinsonian therapies. The identification of these mechanisms will be of great importance for improving our understanding of factors with important contributions to the disease course and the underlying adaptive process. To date, most of the data obtained from animal models reflect the late, chronic, dopamine-depleted states, when compensatory mechanisms have already been established. Thus, adequate animal models with which researchers are able to dissect early- and late-phase mechanisms are necessary. Here, we reviewed the literature related to animal models of early-stage PD and pharmacological treatments capable of inducing acute dopamine impairments and/or depletion, such as reserpine, haloperidol and tetrodotoxin. We highlighted the advantages, limitations and the future prospective uses of these models, as well as their applications in the identification of novel agents for treating this neurological disorder.
Collapse
Affiliation(s)
- Laura Clara Grandi
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Switzerland
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Salvatore Galati
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Switzerland.
| |
Collapse
|
42
|
Milanese C, Cerri S, Ulusoy A, Gornati SV, Plat A, Gabriels S, Blandini F, Di Monte DA, Hoeijmakers JH, Mastroberardino PG. Activation of the DNA damage response in vivo in synucleinopathy models of Parkinson's disease. Cell Death Dis 2018; 9:818. [PMID: 30050065 PMCID: PMC6062587 DOI: 10.1038/s41419-018-0848-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/11/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
The involvement of DNA damage and repair in aging processes is well established. Aging is an unequivocal risk factor for chronic neurodegenerative diseases, underscoring the relevance of investigations into the role that DNA alterations may have in the pathogenesis of these diseases. Consistently, even moderate impairment of DNA repair systems facilitates the onset of pathological features typical of PD that include derangement of the dopaminergic system, mitochondrial dysfunction, and alpha-synuclein stress. The latter establishes a connection between reduced DNA repair capacity and a cardinal feature of PD, alpha-synuclein pathology. It remains to be determined, however, whether alpha-synuclein stress activates in vivo the canonical signaling cascade associated with DNA damage, which is centered on the kinase ATM and substrates such as γH2Ax and 53BP1. Addressing these issues would shed light on age-related mechanisms impinging upon PD pathogenesis and neurodegeneration in particular. We analyzed two different synucleinopathy PD mouse models based either on intranigral delivery of AAV-expressing human alpha-synuclein, or intrastriatal injection of human alpha-synuclein pre-formed fibrils. In both cases, we detected a significant increase in γH2AX and 53BP1 foci, and in phospho-ATM immunoreactivity in dopaminergic neurons, which collectively indicate DNA damage and activation of the DNA damage response. Mechanistic experiments in cell cultures indicate that activation of the DNA damage response is caused, at least in part, by pro-oxidant species because it is prevented by exogenous or endogenous antioxidants, which also rescue mitochondrial anomalies caused by proteotoxic alpha-synuclein. These in vivo and in vitro findings reveal that the cellular stress mediated by alpha-synuclein-a pathological hallmark in PD-elicits DNA damage and activates the DNA damage response. The toxic cascade leading to DNA damage involves oxidant stress and mitochondrial dysfunction The data underscore the importance of DNA quality control for preservation of neuronal integrity and protection against neurodegenerative processes.
Collapse
Affiliation(s)
- Chiara Milanese
- Department of Molecular Genetics, Rotterdam, The Netherlands
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Silvia Cerri
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Ayse Ulusoy
- German Centre for Neurodegenerative Diseases (DZNE), 53175, Bonn, Germany
| | - Simona V Gornati
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Audrey Plat
- Department of Molecular Genetics, Rotterdam, The Netherlands
| | - Sylvia Gabriels
- Department of Molecular Genetics, Rotterdam, The Netherlands
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Donato A Di Monte
- German Centre for Neurodegenerative Diseases (DZNE), 53175, Bonn, Germany
| | - Jan H Hoeijmakers
- Department of Molecular Genetics, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- CECAD, University of Cologne, Cologne, Germany
| | | |
Collapse
|
43
|
Duffy MF, Collier TJ, Patterson JR, Kemp CJ, Luk KC, Tansey MG, Paumier KL, Kanaan NM, Fischer DL, Polinski NK, Barth OL, Howe JW, Vaikath NN, Majbour NK, El-Agnaf OMA, Sortwell CE. Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. J Neuroinflammation 2018; 15:129. [PMID: 29716614 PMCID: PMC5930695 DOI: 10.1186/s12974-018-1171-z] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Converging evidence suggests a role for microglia-mediated neuroinflammation in Parkinson's disease (PD). Animal models of PD can serve as a platform to investigate the role of neuroinflammation in degeneration in PD. However, due to features of the previously available PD models, interpretations of the role of neuroinflammation as a contributor to or a consequence of neurodegeneration have remained elusive. In the present study, we investigated the temporal relationship of neuroinflammation in a model of synucleinopathy following intrastriatal injection of pre-formed alpha-synuclein fibrils (α-syn PFFS). METHODS Male Fischer 344 rats (N = 114) received unilateral intrastriatal injections of α-syn PFFs, PBS, or rat serum albumin with cohorts euthanized at monthly intervals up to 6 months. Quantification of dopamine neurons, total neurons, phosphorylated α-syn (pS129) aggregates, major histocompatibility complex-II (MHC-II) antigen-presenting microglia, and ionized calcium-binding adaptor molecule-1 (Iba-1) immunoreactive microglial soma size was performed in the substantia nigra. In addition, the cortex and striatum were also examined for the presence of pS129 aggregates and MHC-II antigen-presenting microglia to compare the temporal patterns of pSyn accumulation and reactive microgliosis. RESULTS Intrastriatal injection of α-syn PFFs to rats resulted in widespread accumulation of phosphorylated α-syn inclusions in several areas that innervate the striatum followed by significant loss (~ 35%) of substantia nigra pars compacta dopamine neurons within 5-6 months. The peak magnitudes of α-syn inclusion formation, MHC-II expression, and reactive microglial morphology were all observed in the SN 2 months following injection and 3 months prior to nigral dopamine neuron loss. Surprisingly, MHC-II immunoreactivity in α-syn PFF injected rats was relatively limited during the later interval of degeneration. Moreover, we observed a significant correlation between substantia nigra pSyn inclusion load and number of microglia expressing MHC-II. In addition, we observed a similar relationship between α-syn inclusion load and number of microglia expressing MHC-II in cortical regions, but not in the striatum. CONCLUSIONS Our results demonstrate that increases in microglia displaying a reactive morphology and MHC-II expression occur in the substantia nigra in close association with peak numbers of pSyn inclusions, months prior to nigral dopamine neuron degeneration, and suggest that reactive microglia may contribute to vulnerability of SNc neurons to degeneration. The rat α-syn PFF model provides an opportunity to examine the innate immune response to accumulation of pathological α-syn in the context of normal levels of endogenous α-syn and provides insight into the earliest neuroinflammatory events in PD.
Collapse
Affiliation(s)
- Megan F Duffy
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Training Program, Michigan State University, Grand Rapids, MI, USA
| | - Timothy J Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Joseph R Patterson
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
| | - Christopher J Kemp
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Malú G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Katrina L Paumier
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - D Luke Fischer
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Training Program, Michigan State University, Grand Rapids, MI, USA
- MD/PhD Program, Michigan State University, Grand Rapids, MI, USA
| | - Nicole K Polinski
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Training Program, Michigan State University, Grand Rapids, MI, USA
| | - Olivia L Barth
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
| | - Jacob W Howe
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
| | - Nishant N Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Nour K Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Omar M A El-Agnaf
- Life Sciences Division, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Caryl E Sortwell
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA.
- Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA.
| |
Collapse
|
44
|
Creed RB, Goldberg MS. New Developments in Genetic rat models of Parkinson's Disease. Mov Disord 2018; 33:717-729. [PMID: 29418019 DOI: 10.1002/mds.27296] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/04/2017] [Accepted: 12/10/2017] [Indexed: 12/12/2022] Open
Abstract
Preclinical research on Parkinson's disease has relied heavily on mouse and rat animal models. Initially, PD animal models were generated primarily by chemical neurotoxins that induce acute loss of dopaminergic neurons in the substantia nigra. On the discovery of genetic mutations causally linked to PD, mice were used more than rats to generate laboratory animals bearing PD-linked mutations because mutagenesis was more difficult in rats. Recent advances in technology for mammalian genome engineering and optimization of viral expression vectors have increased the use of genetic rat models of PD. Emerging research tools include "knockout" rats with disruption of genes in which mutations have been causally linked to PD, including LRRK2, α-synuclein, Parkin, PINK1, and DJ-1. Rats have also been increasingly used for transgenic and viral-mediated overexpression of genes relevant to PD, particularly α-synuclein. It may not be realistic to obtain a single animal model that completely reproduces every feature of a human disease as complex as PD. Nevertheless, compared with mice with the same mutations, many genetic rat animal models of PD better reproduce key aspects of PD including progressive loss of dopaminergic neurons in the substantia nigra, locomotor behavior deficits, and age-dependent formation of abnormal α-synuclein protein aggregates. Here we briefly review new developments in genetic rat models of PD that may have greater potential for identifying underlying mechanisms, for discovering novel therapeutic targets, and for developing greatly needed treatments to slow or halt disease progression. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rose B Creed
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew S Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
45
|
In vivo models of alpha-synuclein transmission and propagation. Cell Tissue Res 2017; 373:183-193. [DOI: 10.1007/s00441-017-2730-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
|
46
|
Subthalamic Nucleus Deep Brain Stimulation Does Not Modify the Functional Deficits or Axonopathy Induced by Nigrostriatal α-Synuclein Overexpression. Sci Rep 2017; 7:16356. [PMID: 29180681 PMCID: PMC5703955 DOI: 10.1038/s41598-017-16690-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN DBS) protects dopaminergic neurons of the substantia nigra pars compacta (SNpc) against 6-OHDA and MPTP. We evaluated STN DBS in a parkinsonian model that displays α-synuclein pathology using unilateral, intranigral injections of recombinant adeno-associated virus pseudotype 2/5 to overexpress wildtype human α-synuclein (rAAV2/5 α-syn). A low titer of rAAV2/5 α-syn results in progressive forelimb asymmetry, loss of striatal dopaminergic terminal density and modest loss of SNpc dopamine neurons after eight weeks, corresponding to robust human-Snca expression and no effect on rat-Snca, Th, Bdnf or Trk2. α-syn overexpression increased phosphorylation of ribosomal protein S6 (p-rpS6) in SNpc neurons, a readout of trkB activation. Rats received intranigral injections of rAAV2/5 α-syn and three weeks later received four weeks of STN DBS or electrode implantation that remained inactive. STN DBS did not protect against α-syn-mediated deficits in forelimb akinesia, striatal denervation or loss of SNpc neuron, nor did STN DBS elevate p-rpS6 levels further. ON stimulation, forelimb asymmetry was exacerbated, indicating α-syn overexpression-mediated neurotransmission deficits. These results demonstrate that STN DBS does not protect the nigrostriatal system against α-syn overexpression-mediated toxicity. Whether STN DBS can be protective in other models of synucleinopathy is unknown.
Collapse
|
47
|
Delenclos M, Faroqi AH, Yue M, Kurti A, Castanedes-Casey M, Rousseau L, Phillips V, Dickson DW, Fryer JD, McLean PJ. Neonatal AAV delivery of alpha-synuclein induces pathology in the adult mouse brain. Acta Neuropathol Commun 2017. [PMID: 28645308 PMCID: PMC5481919 DOI: 10.1186/s40478-017-0455-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abnormal accumulation of alpha-synuclein (αsyn) is a pathological hallmark of Lewy body related disorders such as Parkinson's disease and Dementia with Lewy body disease. During the past two decades, a myriad of animal models have been developed to mimic pathological features of synucleinopathies by over-expressing human αsyn. Although different strategies have been used, most models have little or no reliable and predictive phenotype. Novel animal models are a valuable tool for understanding neuronal pathology and to facilitate development of new therapeutics for these diseases. Here, we report the development and characterization of a novel model in which mice rapidly express wild-type αsyn via somatic brain transgenesis mediated by adeno-associated virus (AAV). At 1, 3, and 6 months of age following intracerebroventricular (ICV) injection, mice were subjected to a battery of behavioral tests followed by pathological analyses of the brains. Remarkably, significant levels of αsyn expression are detected throughout the brain as early as 1 month old, including olfactory bulb, hippocampus, thalamic regions and midbrain. Immunostaining with a phospho-αsyn (pS129) specific antibody reveals abundant pS129 expression in specific regions. Also, pathologic αsyn is detected using the disease specific antibody 5G4. However, this model did not recapitulate behavioral phenotypes characteristic of rodent models of synucleinopathies. In fact no deficits in motor function or cognition were observed at 3 or 6 months of age. Taken together, these findings show that transduction of neonatal mouse with AAV-αsyn can successfully lead to rapid, whole brain transduction of wild-type human αsyn, but increased levels of wildtype αsyn do not induce behavior changes at an early time point (6 months), despite pathological changes in several neurons populations as early as 1 month.
Collapse
|
48
|
Mandel RJ, Marmion DJ, Kirik D, Chu Y, Heindel C, McCown T, Gray SJ, Kordower JH. Novel oligodendroglial alpha synuclein viral vector models of multiple system atrophy: studies in rodents and nonhuman primates. Acta Neuropathol Commun 2017; 5:47. [PMID: 28619074 PMCID: PMC5473003 DOI: 10.1186/s40478-017-0451-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Multiple system atrophy (MSA) is a horrible and unrelenting neurodegenerative disorder with an uncertain etiology and pathophysiology. MSA is a unique proteinopathy in which alpha-synuclein (α-syn) accumulates preferentially in oligodendroglia rather than neurons. Glial cytoplasmic inclusions (GCIs) of α-syn are thought to elicit changes in oligodendrocyte function, such as reduced neurotrophic support and demyelination, leading to neurodegeneration. To date, only a murine model using one of three promoters exist to study this disease. We sought to develop novel rat and nonhuman primate (NHP) models of MSA by overexpressing α-syn in oligodendroglia using a novel oligotrophic adeno-associated virus (AAV) vector, Olig001. To establish tropism, rats received intrastriatal injections of Olig001 expressing GFP. Histological analysis showed widespread expression of GFP throughout the striatum and corpus callosum with >95% of GFP+ cells co-localizing with oligodendroglia and little to no expression in neurons or astrocytes. We next tested the efficacy of this vector in rhesus macaques with intrastriatal injections of Olig001 expressing GFP. As in rats, we observed a large number of GFP+ cells in gray matter and white matter tracts of the striatum and the corpus callosum, with 90–94% of GFP+ cells co-localizing with an oligodendroglial marker. To evaluate the potential of our vector to elicit MSA-like pathology in NHPs, we injected rhesus macaques intrastriatally with Olig001 expressing the α-syn transgene. Histological analysis 3-months after injection demonstrated widespread α-syn expression throughout the striatum as determined by LB509 and phosphorylated serine-129 α-syn immunoreactivity, all of which displayed as tropism similar to that seen with GFP. As in MSA, Olig001-α-syn GCIs in our model were resistant to proteinase K digestion and caused microglial activation. Critically, demyelination was observed in the white matter tracts of the corpus callosum and striatum of Olig001-α-syn but not Olig001-GFP injected animals, similar to the human disease. These data support the concept that this vector can provide novel rodent and nonhuman primate models of MSA.
Collapse
|
49
|
Bassil F, Guerin PA, Dutheil N, Li Q, Klugmann M, Meissner WG, Bezard E, Fernagut PO. Viral-mediated oligodendroglial alpha-synuclein expression models multiple system atrophy. Mov Disord 2017; 32:1230-1239. [PMID: 28556404 DOI: 10.1002/mds.27041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/21/2017] [Accepted: 04/07/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND MSA is a fatal neurodegenerative disorder characterized by a combination of autonomic dysfunction, cerebellar ataxia, and l-dopa unresponsive parkinsonism. The hallmark of MSA is the accumulation of α-synuclein, forming cytoplasmic inclusions in oligodendrocytes. Adeno-associated viruses allow efficient targeting of disease-associated genes in selected cellular ensembles and have proven efficient for the neuronal overexpression of α-synuclein in the substantia nigra in the context of PD. OBJECTIVES We aimed to develop viral-based models of MSA. METHODS Chimeric viral vectors expressing either human wild-type α-synuclein or green fluorescent protein under the control of mouse myelin basic protein were injected in the striatum of rats and monkeys. Rats underwent a longitudinal motor assessment before histopathological analysis at 3 and 6 months. RESULTS Injection of vectors expressing α-synuclein in the striatum resulted in >80% oligodendroglial selectivity in rats and >60% in monkeys. Rats developed progressive motor deficits that were l-dopa unresponsive when assessed at 6 months. Significant loss of dopaminergic neurons occurred at 3 months, further progressing at 6 months, together with a loss of striatal neurons. Prominent α-synuclein accumulation, including phosphorylated and proteinase-K-resistant α-synuclein, was detected in the striatum and substantia nigra. CONCLUSIONS Viral-mediated oligodendroglial expression of α-synuclein allows replicating some of the key features of MSA. This flexible strategy can be used to investigate, in several species, how α-synuclein accumulation in selected oligodendroglial populations contributes to the pathophysiology of MSA and offers a new framework for preclinical validation of therapeutic strategies. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Fares Bassil
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Paul A Guerin
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Nathalie Dutheil
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Qin Li
- China Academy of Medical Sciences, Institute of Lab Animal Sciences, Beijing, China.,Motac neuroscience Ltd, Manchester, United Kingdom
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Wassilios G Meissner
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Service de Neurologie, CHU de Bordeaux, Bordeaux, France.,Centre de référence atrophie multisystématisée, CHU de Bordeaux, Bordeaux, France
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,China Academy of Medical Sciences, Institute of Lab Animal Sciences, Beijing, China.,Motac neuroscience Ltd, Manchester, United Kingdom
| | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
50
|
Nigral injection of a proteasomal inhibitor, lactacystin, induces widespread glial cell activation and shows various phenotypes of Parkinson's disease in young and adult mouse. Exp Brain Res 2017; 235:2189-2202. [PMID: 28439627 DOI: 10.1007/s00221-017-4962-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
Proteinaceous inclusions, called Lewy bodies, are used as a pathological hallmark for Parkinson's disease (PD). Lewy bodies contain insoluble α-synuclein (aSyn) and many other ubiquitinated proteins, suggesting a role for protein degradation system failure in the PD pathogenesis. Indeed, proteasomal dysfunction has been linked to PD but commonly used in vivo toxin models, such as 6-OHDA or MPTP, do not have a significant effect on the proteasomal system or protein aggregation. Therefore, we wanted to study the characteristics of a proteasomal inhibitor, lactacystin, as a PD model on young and adult mice. To study this, we performed stereotactic microinjection of lactacystin above the substantia nigra pars compacta in young (2 month old) and adult (12-14 month old) C57Bl/6 mice. Motor behavior was measured by locomotor activity and cylinder tests, and the markers of neuroinflammation, aSyn, and dopaminergic system were assessed by immunohistochemistry and HPLC. We found that lactacystin induced a Parkinson's disease-like motor phenotype 5-7 days after injection in young and adult mice, and this was associated with widespread neuroinflammation based on glial cell markers, aSyn accumulation in substantia nigra, striatal dopamine decrease, and loss of dopaminergic cell bodies in the substantia nigra and terminals in the striatum. When comparing young and adult mice, adult mice were more sensitive for dopaminergic degeneration after lactacystin injection that further supports the use of adult mice instead of young when modeling neurodegeneration. Our data showed that lactacystin is useful in modeling various aspects of Parkinson's disease, and taken together, our findings emphasize the role of a protein degradation deficit in Parkinson's disease pathology, and support the use of proteasomal inhibitors as Parkinson's disease models.
Collapse
|