1
|
Borowiak C, Lorut F, Mattei JG. Comprehensive study of corrosion mechanisms in Integrated Circuit (IC) copper metal lines within TEM lamellae. Micron 2025; 195:103838. [PMID: 40253881 DOI: 10.1016/j.micron.2025.103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Corrosion of copper circuitry features embedded in a Transmission Electron Microscope (TEM) lamella prepared from semiconductor devices can be a significant issue for process monitoring, as it can cause the observed patterns to be either masked or distorted, and also as it may modify the structure and composition of samples. Impacted TEM lamellae have been tracked for several months, with no correlation from sample preparation equipments nor human behavior. To understand corrosion mechanisms, in-depth studies were performed to evidence elements responsible for copper segregation using Energy-Dispersive X-Ray Spectroscopy (EDS) or Electron Energy Loss spectroscopy (EELS), revealing the presence of chlorine, sulfur and oxygen elements. Specific tracking of air composition of the laboratory indicated no excess of contaminant species. The use of protective coatings and structure grounding during Focused Ion Beam (FIB) preparation of the TEM lamella have been tested and revealed to be efficient to eradicate corrosion.
Collapse
Affiliation(s)
- Céline Borowiak
- STMicroelectronics Crolles, 850 Rue Jean-Monnet, Crolles 38920, France.
| | - Fréderic Lorut
- STMicroelectronics Crolles, 850 Rue Jean-Monnet, Crolles 38920, France
| | | |
Collapse
|
2
|
Zhong Z, Zhang E, Yan P, Jiang H, Ma Y. Atomic-Level Electron Crystallography of Metal-Organic Frameworks Via Resin-Peeled Ultramicrotomy. J Am Chem Soc 2025; 147:16798-16803. [PMID: 40353804 DOI: 10.1021/jacs.5c05117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Electron crystallography offers the potential for ultra-high-resolution diffraction and imaging of materials. However, challenges remain, particularly regarding beam/mechanical sensitivity, severe electron multiple scattering, and the low contrast of light elements in fragile porous organic crystals that often cannot be thinned without compromising their crystallinity. Herein, we develop a method, named resin-peeled ultramicrotomy, to prepare high-crystalline lamella free of embedding resin. By applying crystalline lamellas for 3D electron diffraction, we improve data quality and achieve resolutions up to 0.39 Å. This improvement allows for single-crystal structure determinations of metal-organic frameworks (MOFs) with large unit cells and giant pores─previously unsolved by X-ray and electron diffraction─and resolves ordered/disordered positions of (hydro)oxyl bridging atoms. Moreover, resin-peeled ultramicrotomy enables thinning of 3D MOFs along multiple crystallographic orientations. The further combination with electron ptychography reveals the local structures of 3D MOFs with high resolution and contrast. This advancement opens new avenues for resolving atomic and local structures in soft functional materials.
Collapse
Affiliation(s)
- Zhiye Zhong
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Enci Zhang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Pu Yan
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Huaidong Jiang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Schwarz TM, Dumont M, Garcia-Giner V, Jung C, Porter AE, Gault B. Advancing atom probe tomography capabilities to understand bone microstructures at near-atomic scale. Acta Biomater 2025; 198:319-333. [PMID: 40157698 DOI: 10.1016/j.actbio.2025.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Bone structure is generally hierarchically organized into organic (collagen, proteins, ...), inorganic (hydroxyapatite (HAP)) components. However, many fundamental mechanisms of the biomineralization processes such as HAP formation, the influence of trace elements, the mineral-collagen arrangement, etc., are not clearly understood. This is partly due to the analytical challenge of simultaneously characterizing the three-dimensional (3D) structure and chemical composition of biominerals in general at the nanometer scale, which can, in principle be achieved by atom probe tomography (APT). Yet, the hierarchical structures of bone represent a critical hurdle for APT analysis in terms of sample yield and analytical resolution, particularly for trace elements, and organic components from the collagen appear to systematically get lost from the analysis. Here, we applied in-situ metallic coating of APT specimens within the focused ion beam (FIB) used for preparing specimens, and demonstrate that the sample yield and chemical sensitivity are tremendously improved, allowing the analysis of individual collagen fibrils and trace elements such as Mg and Na. We explored a range of measurement parameters with and without coating, in terms of analytical resolution performance and determined the best practice parameters for analyzing bone samples in APT. To decipher the complex mass spectra of the bone specimens, reference spectra from pure HAP and collagen were acquired to unambiguously identify the signals, allowing us to analyze entire collagen fibrils and interfaces at the near-atomic scale. Our results open new possibilities for understanding the hierarchical structure and chemical heterogeneity of bone structures at the near-atomic level and demonstrate the potential of this new method to provide new, unexplored insights into biomineralization processes in the future. STATEMENT OF SIGNIFICANCE: Atom probe tomography (APT) is a relatively new technique for the analysis of bones, teeth or biominerals in general. APT can characterize the microstructure of materials in 3D down to the near-atomic level, combined with a high elemental sensitivity, down to parts per million. APT application to study biomineralization phenomena is plagued by low sample yield and poorer analytical performance compared to metals. Here we have overcome these limitations by in-situ metal coating of APT specimens. This can unlock future APT analysis to gain insights into fundamental biomineralization processes, e.g. collagen/hydroxyapatite interaction, influence of trace elements and a better understanding of bone diseases or bone biomineralization in general.
Collapse
Affiliation(s)
- Tim M Schwarz
- Max-Planck-Institute for Sustainable Materials, Max-Planck-Str. 1, Düsseldorf 40237, Germany.
| | - Maïtena Dumont
- Max-Planck-Institute for Sustainable Materials, Max-Planck-Str. 1, Düsseldorf 40237, Germany; now at Groupe Physique des Matériaux, Université de Rouen, Saint Etienne du Rouvray, Normandie 76800, France
| | - Victoria Garcia-Giner
- Department of Materials, Imperial College London, London SW7 2AZ, UK; now at Rosalind Franklin Institute, Harwell Campus, Didcot, Oxfordshire OX11 0QX, England
| | - Chanwon Jung
- Max-Planck-Institute for Sustainable Materials, Max-Planck-Str. 1, Düsseldorf 40237, Germany; now at Department of Materials Science and Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, 48513 Busan, Republic of Korea
| | | | - Baptiste Gault
- Max-Planck-Institute for Sustainable Materials, Max-Planck-Str. 1, Düsseldorf 40237, Germany; Department of Materials, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
4
|
Liu Z, Bai S, Burke S, Burrow JN, Geurts R, Huang CJ, Jiao C, Lee HB, Meng YS, Novák L, Winiarski B, Wang J, Wu K, Zhang M. FIB-SEM: Emerging Multimodal/Multiscale Characterization Techniques for Advanced Battery Development. Chem Rev 2025. [PMID: 40311073 DOI: 10.1021/acs.chemrev.4c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The advancement of battery technology necessitates a profound understanding of the physical, chemical, and electrochemical processes at various scales. Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) has emerged as an indispensable tool for battery research, enabling high-resolution imaging and multiscale analysis from macroscopic structures to nanoscale features at multiple dimensions. This review starts with introducing the fundamentals of focused beam and matter interaction under the framework of FIB-SEM instrumentation and then explores the application of FIB-SEM characterization on rechargeable batteries (lithium-ion batteries and beyond), with a focus on cathode and anode materials, as well as solid-state batteries. Analytical techniques such as Energy Dispersive X-ray Spectroscopy, Electron Backscatter Diffraction, and Secondary Ion Mass Spectrometry are discussed in the context of their ability to provide detailed morphological, crystallographic, and chemical insights. The review also highlights several emerging applications in FIB-SEM including workflow to maintain sample integrity, in-operando characterization, and correlative microscopy. The integration of Artificial Intelligence for enhanced data analysis and predictive modeling, which significantly improves the accuracy and efficiency of material characterization, is also discussed. Through comprehensive multimodal and multiscale analysis, FIB-SEM is poised to significantly advance the understanding and development of high-performance battery materials, paving the way for future innovations in battery technology.
Collapse
Affiliation(s)
- Zhao Liu
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, Oregon 97124, United States
- Materials Science and Engineering Department, University of Washington, Seattle, Washington 98195, United States
| | - Shuang Bai
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Energy Storage Research Alliance, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- University of California San Diego, La Jolla, California 92093, United States
| | - Sven Burke
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James N Burrow
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Energy Storage Research Alliance, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Remco Geurts
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, Oregon 97124, United States
| | - Chen-Jui Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Chengge Jiao
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, Oregon 97124, United States
| | - Hee-Beom Lee
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, Oregon 97124, United States
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ying Shirley Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Energy Storage Research Alliance, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- University of California San Diego, La Jolla, California 92093, United States
| | - Libor Novák
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, Oregon 97124, United States
| | - Bartłomiej Winiarski
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, Oregon 97124, United States
| | - Jing Wang
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, Oregon 97124, United States
| | - Ken Wu
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, Oregon 97124, United States
| | - Minghao Zhang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Energy Storage Research Alliance, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
5
|
Wang X, Taylor SD, Sassi M, Xue S, Yang Z, Liu J, Liu L, Li X, Du Y, Rosso KM, Zhang X. Impacts of Focused Ion Beam Processing on the Fabrication of Nanoscale Functionalized Probes. Inorg Chem 2025; 64:7388-7396. [PMID: 40186567 DOI: 10.1021/acs.inorgchem.4c05458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Herein, we examine the impact of Ga+ ion kinetic energy and the target material type on the extent of ion implantation and structural damage in atomic force microscopy probes made of Al2O3 and ZnO manufactured by focused ion beam using scanning transmission electron microscopy and energy-dispersive X-ray mapping. Penetration of Ga into the Al2O3 lattice induced structural distortions and amorphization. For the ZnO probes, Ga is uniformly dispersed across the surface, resulting in the formation of distinct clusters. Atom probe tomography further validates the Ga distributions in Al2O3 and ZnO nanoprobes. Complementary Monte Carlo simulations with the transport of ions in the matter program indicated that the introduction of Ga+ prompts the generation of cation and anion vacancies, an occurrence more pronounced in Al2O3 compared to ZnO. This study not only enriches the knowledge of ion-matter interactions but also serves as a practical guide for the fabrication of nanoscale functionalized atomic force microscopy probes.
Collapse
Affiliation(s)
- Xiang Wang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United State
| | - Sandra D Taylor
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United State
| | - Michel Sassi
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United State
| | - Sichuang Xue
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United State
| | - Zhenzhong Yang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United State
| | - Jia Liu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United State
| | - Lili Liu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United State
| | - Xiaoxu Li
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United State
| | - Yingge Du
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United State
| | - Kevin M Rosso
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United State
| | - Xin Zhang
- Physical & Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United State
| |
Collapse
|
6
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
7
|
Ghosh S, Liu F, Nair S, Raj R, Jalan B, Mkhoyan KA. Site-specific plan-view (S)TEM sample preparation from thin films using a dual-beam FIB-SEM. Ultramicroscopy 2025; 270:114104. [PMID: 39826330 DOI: 10.1016/j.ultramic.2025.114104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/25/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
To fully evaluate the atomic structure, and associated properties of materials using transmission electron microscopy, examination of samples from three non-collinear orientations is needed. This is particularly challenging for thin films and nanoscale devices built on substrates due to limitations with plan-view sample preparation. In this work, a new method for preparation of high-quality, site-specific, plan-view TEM samples from thin-films grown on substrates, is presented and discussed. It is based on using a dual-beam focused ion beam scanning electron microscope (FIB-SEM) system. To demonstrate the method, the samples were prepared from thin films of perovskite oxide BaSnO3 grown on a SrTiO3 substrate and metal oxide IrO2 on a TiO2 substrate, ranging from 20-80 nm in thicknesses using molecular beam epitaxy. While the method is optimized for the thin films, it can be extended to other site-specific plan-view samples and devices build on wafers. Aberration-corrected STEM was used to evaluate the quality of the samples and their applicability for atomic-resolution imaging and analysis.
Collapse
Affiliation(s)
- Supriya Ghosh
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Fengdeng Liu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sreejith Nair
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rishi Raj
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - K Andre Mkhoyan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Lou L, Li J, Luo X, Zhang T, Li X, Zhu Q, Du Y, Bi Z, Sun X, Cheng Q, Xiao Y, Zhao S, Wen B, Zhang X, Zhang HT. Unlocking property constraints through a multi-level ordered structure strategy. Nat Commun 2025; 16:3094. [PMID: 40164622 PMCID: PMC11958831 DOI: 10.1038/s41467-025-58376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
Materials with unprecedented and exotic properties are crucial for addressing energy and environmental crisis. However, many existing materials are approaching performance limits due to inherent physical constraints. Here, we report a multi-level ordered structure (MOS) strategy to address these challenges. Using magnetic material as a proof of concept, we demonstrate a resistive magnetic metal with high thermal stability, which is challenging due to the abundant free electrons in metals and inherent instability of the magnetized state, but highly sought after for future high-frequency and high-power applications. The obtained MOS material features multiple ordered characteristics across different levels, exhibiting large electrical resistivity surpassing its constituents by 2600%, while achieving an over 100% improvement in magnetic thermal stability that outperforms state-of-the-art commercial counterparts. Furthermore, it also achieves enhancements in coercivity, corrosion resistance and stiffness. The MOS strategy manipulates functional processes to simultaneously overcome multiple physical constraints and transcend performance bottlenecks.
Collapse
Affiliation(s)
- Li Lou
- School of Materials Science and Engineering, Beihang University, Beijing, China
- Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
| | - Jiaxu Li
- School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Xiang Luo
- School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Tao Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Xinzhou Li
- Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
| | - Qianyong Zhu
- School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Yun Du
- Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
| | - Zhiwen Bi
- Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
| | - Xiaohua Sun
- School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Qiwei Cheng
- School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Yuting Xiao
- Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
| | - Shiteng Zhao
- School of Materials Science and Engineering, Beihang University, Beijing, China
- Tianmushan Laboratory, Hangzhou, China
| | - Bin Wen
- Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
| | - Xiangyi Zhang
- Center for Extreme Deformation Research, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China.
| | - Hai-Tian Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, China.
| |
Collapse
|
9
|
Ghosh S, Mkhoyan KA. Quantifying Patterned Features on Material Surfaces Created using Ga Ion Beam in FIB-SEM. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozaf001. [PMID: 40095907 DOI: 10.1093/mam/ozaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 03/19/2025]
Abstract
We introduced and applied a set of parameters to quantify surface modifications and pattern resolutions made by a Ga ion beam in a focused ion beam instrument using two material systems, Si and SrTiO3. A combination of top-view scanning electron microscopy and cross-sectional scanning transmission electron microscopy imaging and energy-dispersive X-ray spectroscopy was used to study the structure, composition and measure dimensions of the patterned lines. The total ion dose was identified as the key parameter governing the line characteristics, which can be controlled by the degree of overlap among adjacent spots, beam dwell time at each spot, and number of beam passes for given beam size and current. At higher ion doses (>1015 ions/cm2), the Ga ions remove part of the material in the exposed area creating "channels" surrounded with amorphized regions, whereas at lower ion doses only amorphization occurs, creating "ridges" on the wafer surface. To pattern lines with similar sizes, an order of magnitude different ion doses was required for Si and SrTiO3 indicating strong material dependence. Quantification revealed that lines as fine as 10 nm can be reproducibly patterned and characterized on the surfaces of materials.
Collapse
Affiliation(s)
- Supriya Ghosh
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., Minneapolis, MN 55455, USA
| | - K Andre Mkhoyan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Ghosh A, Gupta A, Jena S, Kirti A, Choudhury A, Saha U, Sinha A, Kumari S, Kujawska M, Kaushik A, Verma SK. Advances in posterity of visualization in paradigm of nano‐level ultra‐structures for nano–bio interaction studies. VIEW 2025; 6. [DOI: 10.1002/viw.20240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025] Open
Abstract
AbstractThe progression in contemporary scientific field is facilitated by a multitude of sophisticated and cutting‐edge methodologies that are employed for various research purposes. Among these methodologies, microscopy stands out as a fundamental and essential technique utilized in scientific investigations. Moreover, due to the continuous evolution and enhancement of microscopic methodologies, nanotechnology has reached a highly developed stage within modern scientific realm, particularly renowned for its wide‐ranging applications in the fields of biomedicine and environmental science. When it comes to conducting comprehensive and in‐depth experimental analyses to explore the nanotechnological aspects relevant to biological applications, the concept of nano–biological interaction emerges as the focal point of any research initiative. Nonetheless, this particular study necessitates a meticulous approach toward imaging and visualization at diverse magnification levels to ensure accurate observations and interpretations. It is widely acknowledged that modern microscopy has emerged as a sophisticated and invaluable instrument in this regard. This review aims to provide a comprehensive discussion on the progress made in microscopic techniques specifically tailored for visualizing the interactions between nanostructures and biological entities, thereby facilitating the exploration of the practical applications of nanotechnology in the realm of biological sciences.
Collapse
Affiliation(s)
- Aishee Ghosh
- School of Biotechnology KIIT University Bhubaneswar Odisha India
- Department of Physics and Astronomy Uppsala University Uppsala Sweden
| | - Abha Gupta
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Snehasmita Jena
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Apoorv Kirti
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Anmol Choudhury
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Utsa Saha
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Adrija Sinha
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| | - Shalini Kumari
- Markham College of Commerce Vinoba Bhave University Hazaribagh Jharkhand India
| | - Małgorzata Kujawska
- Department of Toxicology Poznan University of Medical Sciences Poznan Poland
| | - Ajeet Kaushik
- NanoBioTech Laboratory Department of Environmental Engineering Florida Polytechnic University Lakeland Florida USA
| | - Suresh K. Verma
- School of Biotechnology KIIT University Bhubaneswar Odisha India
| |
Collapse
|
11
|
Wang Y, Yan X, Liu JZ, Wang Y. Directional Droplet Wetting on Cellulose Surfaces with Physical Modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:739-744. [PMID: 39757483 DOI: 10.1021/acs.langmuir.4c04031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Directional wetting of liquids on solid surfaces is crucial for numerous applications. However, the impact of physical modifications on near-superhydrophilic cellulose has received limited attention as it is widely considered unfeasible. In this study, we present a previously unreported and simple but effective mechanism of directional wetting induced purely by physical modifications on pristine cellulose surfaces. By using molecular dynamics simulations, we unveil that a wedge-like surface roughness drives anisotropic water spreading, contrasting with the conventional understanding of uniform wetting on strong hydrophilic cellulose surfaces. This wedge-induced directional wetting occurs without any chemical alterations, showcasing the ability of the physical topography alone to control liquid dynamics. Our findings not only provide new fundamental insights into manipulating wetting behavior on naturally hydrophilic surfaces but also highlight a transformative approach to designing cellulose-based materials with tailored fluid flow properties for diverse applications.
Collapse
Affiliation(s)
- Yulei Wang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Xue Yan
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yuxiang Wang
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
12
|
Treves SK, Ukleev V, Apseros A, Massey JR, Wagner K, Lehmann P, Kitaori A, Kanazawa N, Brock JA, Finizio S, Reuteler J, Tokura Y, Maletinsky P, Scagnoli V. Investigating skyrmion stability and core polarity reversal in NdMn 2Ge 2. Sci Rep 2025; 15:461. [PMID: 39747993 PMCID: PMC11697451 DOI: 10.1038/s41598-024-82114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K. Furthermore, the skyrmion bubbles can be distorted, deformed, and recovered by varying strength and orientation of the applied magnetic field. We have used nitrogen-vacancy nanoscale magnetic imaging to estimate and map the magnetic stray fields originating from our [Formula: see text] lamella samples and find stray field magnitudes on the order of a few mT near the sample surface. Micromagnetic simulations show an overall agreement with the observed behaviour of the sample under different magnetic field protocols. We also find that the presence of the Dzyaloshinskii-Moriya interaction is not required to reproduce our experimental results. Its inclusion in the simulation leads to a reversal of the skyrmionic object core polarity, which is not experimentally observed. Our results further corroborate the stability and robustness of the skyrmion bubbles formed in [Formula: see text] and their potential for future spintronic applications.
Collapse
Affiliation(s)
- Samuel K Treves
- Department of Physics, University of Basel, 4056, Basel, Switzerland
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
- PSI Center for Neutron and Muon Sciences, 5232, Villigen PSI, Switzerland
| | - Victor Ukleev
- PSI Center for Neutron and Muon Sciences, 5232, Villigen PSI, Switzerland
- Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109, Berlin, Germany
| | - Andreas Apseros
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
- PSI Center for Neutron and Muon Sciences, 5232, Villigen PSI, Switzerland
| | - Jamie Robert Massey
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
- PSI Center for Neutron and Muon Sciences, 5232, Villigen PSI, Switzerland
| | - Kai Wagner
- Department of Physics, University of Basel, 4056, Basel, Switzerland
| | - Paul Lehmann
- Department of Physics, University of Basel, 4056, Basel, Switzerland
| | - Aki Kitaori
- Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Naoya Kanazawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo, 153-8505, Japan
| | - Jeffrey A Brock
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
- PSI Center for Neutron and Muon Sciences, 5232, Villigen PSI, Switzerland
| | - Simone Finizio
- PSI Center for Photon Science, 5232, Villigen PSI, Switzerland
| | | | - Yoshinori Tokura
- Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
- Tokyo College, University of Tokyo, Tokyo, 113-8656, Japan
| | | | - Valerio Scagnoli
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
- PSI Center for Neutron and Muon Sciences, 5232, Villigen PSI, Switzerland.
| |
Collapse
|
13
|
Schiøtz OH, Klumpe S, Plitzko JM, Kaiser CJO. Cryo-electron tomography: en route to the molecular anatomy of organisms and tissues. Biochem Soc Trans 2024; 52:2415-2425. [PMID: 39641594 PMCID: PMC11668301 DOI: 10.1042/bst20240173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Cryo-electron tomography (cryo-ET) has become a key technique for obtaining structures of macromolecular complexes in their native environment, assessing their local organization and describing the molecular sociology of the cell. While microorganisms and adherent mammalian cells are common targets for tomography studies, appropriate sample preparation and data acquisition strategies for larger cellular assemblies such as tissues, organoids or small model organisms have only recently become sufficiently practical to allow for in-depth structural characterization of such samples in situ. These advances include tailored lift-out approaches using focused ion beam (FIB) milling, and improved data acquisition schemes. Consequently, cryo-ET of FIB lamellae from large volume samples can complement ultrastructural analysis with another level of information: molecular anatomy. This review highlights the recent developments towards molecular anatomy studies using cryo-ET, and briefly outlines what can be expected in the near future.
Collapse
Affiliation(s)
- Oda Helene Schiøtz
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sven Klumpe
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Juergen M. Plitzko
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christoph J. O. Kaiser
- Research Group CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
14
|
Winkler LV, Neijts G, Bastiaens HMJ, Goodwin MJ, van Rees A, Schrinner PPJ, Hoekman M, Dekker R, do Nascimento AR, van der Slot PJM, Nölleke C, Boller KJ. Chip-integrated extended-cavity mode-locked laser in the visible. OPTICS LETTERS 2024; 49:6916-6919. [PMID: 39671603 DOI: 10.1364/ol.540675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/26/2024] [Indexed: 12/15/2024]
Abstract
Mode-locked lasers are of interest for applications such as biological imaging, nonlinear frequency conversion, and single-photon generation. In the infrared, chip-integrated mode-locked lasers have been demonstrated through integration of laser diodes with low-loss photonic circuits. However, additional challenges, such as a higher propagation loss and smaller alignment tolerances, have prevented the realization of such lasers in the visible range. Here, we demonstrate the first, to the best of our knowledge, chip-integrated mode-locked diode laser in the visible using an integrated photonic circuit for cavity extension. Based on a gallium arsenide gain chip and a low-loss silicon nitride feedback circuit, the laser is passively mode-locked using a saturable absorber (SA) implemented by focused ion beam (FIB) milling. At a center wavelength of 642 nm, the laser shows an average output power of 3.4 mW, with a spectral bandwidth of 1.5 nm at a repetition rate of 7.84 GHz.
Collapse
|
15
|
Prikhodko AS, Zallo E, Calarco R, Borgardt NI. A refined plan-view specimen preparation technique for high-quality electron microscopy studies of epitaxially grown atomically thin 2D layers. Ultramicroscopy 2024; 267:114063. [PMID: 39490054 DOI: 10.1016/j.ultramic.2024.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
The structural studies of two-dimensional (2D) van der Waals heterostructures and understanding of their relationship with the orientation of crystalline substrates using transmission electron microscopy (TEM) presents a challenge in developing an easy-to-use plan-view specimen preparation technique. In this report, we introduce a simple approach for high-quality plan-view specimen preparation utilizing a dual beam system comprising focused ion beam and scanning electron microscopy. To protect the atomically thin 2D heterostructure during the preparation process, we employ an epoxy layer. This layer serves as a protective barrier and enables the creation of a TEM specimen comprising a thin substrate fragment with an overgrown 2D structure covered by a thin, electron-transparent epoxy layer. The coexistence of both 2D layers and substrate is essential for investigating the relative crystallographic orientations between the grown 2D structures and the substrates. The thickness of the specimen is monitored using low-voltage scanning electron microscopy. We apply this technique to prepare plan-view specimens of 2D germanium-antimony-telluride (GST) on Si and hexagonal boron nitride (h-BN)/epitaxial graphene (EG) heterostructures grown on 6H-SiC substrates. The grain-like atomic structure observed in the 2.2 nm thick GST layer on Si substrate provides evidence of the mosaicity of GST during the early stages of epitaxial growth. H-BN/EG on 6H-SiC structural studies indicate a rotation of h-BN/EG around the 6H-SiC[0001] axis by an angle of 30°. The observed BN particles with sizes in the nanometer range on top of the sample have the wurtzite lattice type and random orientation. The developed specimen preparation technique offers a powerful tool for TEM studies of atomically thin layers on crystals. Its simplicity and ability to provide valuable insights into the in-plane relationships between 2D structures and crystalline substrates make it a promising complement to grazing incident X-ray diffraction.
Collapse
Affiliation(s)
- A S Prikhodko
- National Research University of Electron Technology (MIET), Zelenograd 124498, Moscow, Russia.
| | - E Zallo
- Walter-Schottky-Institut and TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - R Calarco
- Institute for Microelectronics and Microsystems (IMM), Consiglio nazionale delle ricerche (CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - N I Borgardt
- National Research University of Electron Technology (MIET), Zelenograd 124498, Moscow, Russia
| |
Collapse
|
16
|
Sikora M, Wojcieszak D. Impact of carbon and platinum protective layers on EDS accuracy in FIB cross-sectional analysis of W/Hf/W thin-film multilayers. Micron 2024; 186:103689. [PMID: 39116575 DOI: 10.1016/j.micron.2024.103689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Achieving high-quality cross sections is essential for accurate analysis of multilayer coatings. One method of performing such cross sections is focused ion beam, where sample protection from ion damage in the form of protective layers applied by FEBID and FIBID methods is used. Due to the lack of comparative summaries of different layers applied by these methods, especially in the context of cross-sectional analysis and elemental analysis of the cross-section, it was decided to address the effect of the protective layer on the reliability of EDS analysis. This study compares the effectiveness of platinum and carbon protective layers in creating cross sections for W/Hf/W samples. The effect of protective layers on elemental mapping and elemental analysis accuracy was evaluated. This study highlights the importance of protective layer selection in providing reliable EDS analysis of cross sections.
Collapse
Affiliation(s)
- M Sikora
- Nanores Company, Bierutowska 57-59, Wroclaw 51-317, Poland; Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, Wroclaw 50-372, Poland.
| | - D Wojcieszak
- Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, Wroclaw 50-372, Poland
| |
Collapse
|
17
|
Uzuhashi J, Ohkubo T. Systematic study of FIB-induced damage for the high-quality TEM sample preparation. Ultramicroscopy 2024; 262:113980. [PMID: 38701660 DOI: 10.1016/j.ultramic.2024.113980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/27/2023] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Nowadays, a focused Ga ion beam (FIB) with a scanning electron microscopy (SEM) system has been widely used to prepare the thin-foil sample for transmission electron microscopy (TEM) or scanning TEM (STEM) observation. An establishment of a solid strategy for a reproducible high-quality sample preparation process is essential to carry out high-quality (S)TEM analysis. In this work, the FIB damages introduced by Ga+ beam were investigated both experimentally and stopping and range of ions in matter (SRIM) simulation for silicon (Si), gallium nitride (GaN), indium phosphide (InP), and gallium arsenide (GaAs) semiconductors. It has been revealed that experimental investigations of the FIB-induced damage are in good agreement with SRIM simulation by defining the damage as not only "amorphization" but also "crystal distortion". The systematic evaluation of FIB damages shown in this paper should be indispensable guidance for reliable (S)TEM sample preparation.
Collapse
Affiliation(s)
- Jun Uzuhashi
- National Institute for Materials Science, Tsukuba, 305-0047, Japan.
| | - Tadakatsu Ohkubo
- National Institute for Materials Science, Tsukuba, 305-0047, Japan
| |
Collapse
|
18
|
Hunnestad KA, Das H, Hatzoglou C, Holtz M, Brooks CM, van Helvoort ATJ, Muller DA, Schlom DG, Mundy JA, Meier D. 3D oxygen vacancy distribution and defect-property relations in an oxide heterostructure. Nat Commun 2024; 15:5400. [PMID: 38926403 PMCID: PMC11208508 DOI: 10.1038/s41467-024-49437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Oxide heterostructures exhibit a vast variety of unique physical properties. Examples are unconventional superconductivity in layered nickelates and topological polar order in (PbTiO3)n/(SrTiO3)n superlattices. Although it is clear that variations in oxygen content are crucial for the electronic correlation phenomena in oxides, it remains a major challenge to quantify their impact. Here, we measure the chemical composition in multiferroic (LuFeO3)9/(LuFe2O4)1 superlattices, mapping correlations between the distribution of oxygen vacancies and the electric and magnetic properties. Using atom probe tomography, we observe oxygen vacancies arranging in a layered three-dimensional structure with a local density on the order of 1014 cm-2, congruent with the formula-unit-thick ferrimagnetic LuFe2O4 layers. The vacancy order is promoted by the locally reduced formation energy and plays a key role in stabilizing the ferroelectric domains and ferrimagnetism in the LuFeO3 and LuFe2O4 layers, respectively. The results demonstrate pronounced interactions between oxygen vacancies and the multiferroic order in this system and establish an approach for quantifying the oxygen defects with atomic-scale precision in 3D, giving new opportunities for deterministic defect-enabled property control in oxide heterostructures.
Collapse
Affiliation(s)
- Kasper A Hunnestad
- Department of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Trondheim, 7491, Norway
- Acoustics Group, Department of Electronic Systems, NTNU Norwegian University of Science and Technology, Trondheim, 7491, Norway
- Centre for Geophysical Forecasting, NTNU Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Hena Das
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Constantinos Hatzoglou
- Department of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Megan Holtz
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Charles M Brooks
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscience, Ithaca, NY, 14853, USA
| | - Darrell G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscience, Ithaca, NY, 14853, USA
- Leibniz-Institut für Kristallzüchtung, Max-Born-Str. 2, Berlin, 12489, Germany
| | - Julia A Mundy
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Dennis Meier
- Department of Materials Science and Engineering, NTNU Norwegian University of Science and Technology, Trondheim, 7491, Norway.
| |
Collapse
|
19
|
Galaz-Montoya JG. The advent of preventive high-resolution structural histopathology by artificial-intelligence-powered cryogenic electron tomography. Front Mol Biosci 2024; 11:1390858. [PMID: 38868297 PMCID: PMC11167099 DOI: 10.3389/fmolb.2024.1390858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
Advances in cryogenic electron microscopy (cryoEM) single particle analysis have revolutionized structural biology by facilitating the in vitro determination of atomic- and near-atomic-resolution structures for fully hydrated macromolecular complexes exhibiting compositional and conformational heterogeneity across a wide range of sizes. Cryogenic electron tomography (cryoET) and subtomogram averaging are rapidly progressing toward delivering similar insights for macromolecular complexes in situ, without requiring tags or harsh biochemical purification. Furthermore, cryoET enables the visualization of cellular and tissue phenotypes directly at molecular, nanometric resolution without chemical fixation or staining artifacts. This forward-looking review covers recent developments in cryoEM/ET and related technologies such as cryogenic focused ion beam milling scanning electron microscopy and correlative light microscopy, increasingly enhanced and supported by artificial intelligence algorithms. Their potential application to emerging concepts is discussed, primarily the prospect of complementing medical histopathology analysis. Machine learning solutions are poised to address current challenges posed by "big data" in cryoET of tissues, cells, and macromolecules, offering the promise of enabling novel, quantitative insights into disease processes, which may translate into the clinic and lead to improved diagnostics and targeted therapeutics.
Collapse
Affiliation(s)
- Jesús G. Galaz-Montoya
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, United States
| |
Collapse
|
20
|
Zhang Z, Wang T, Jiang H, Qi R, Li Y, Wang J, Sheng S, Li N, Shi R, Wei J, Liu F, Zhang S, Huo X, Du J, Zhang J, Xu J, Rong X, Gao P, Shen B, Wang X. Probing Hyperbolic Shear Polaritons in β-Ga 2O 3 Nanostructures Using STEM-EELS. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2204884. [PMID: 38374724 DOI: 10.1002/adma.202204884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/23/2024] [Indexed: 02/21/2024]
Abstract
Phonon polaritons, quasiparticles arising from strong coupling between electromagnetic waves and optical phonons, have potential for applications in subdiffraction imaging, sensing, thermal conduction enhancement, and spectroscopy signal enhancement. A new class of phonon polaritons in low-symmetry monoclinic crystals, hyperbolic shear polaritons (HShPs), have been verified recently in β-Ga2O3 by free electron laser (FEL) measurements. However, detailed behaviors of HShPs in β-Ga2O3 nanostructures still remain unknown. Here, by using monochromatic electron energy loss spectroscopy in conjunction with scanning transmission electron microscopy, the experimental observation of multiple HShPs in β-Ga2O3 in the mid-infrared (MIR) and far-infrared (FIR) ranges is reported. HShPs in various β-Ga2O3 nanorods and a β-Ga2O3 nanodisk are excited. The frequency-dependent rotation and shear effect of HShPs reflect on the distribution of EELS signals. The propagation and reflection of HShPs in nanostructures are clarified by simulations of electric field distribution. These findings suggest that, with its tunable broad spectral HShPs, β-Ga2O3 is an excellent candidate for nanophotonic applications.
Collapse
Affiliation(s)
- Zhenyu Zhang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Tao Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Hailing Jiang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Ruishi Qi
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Yuehui Li
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Jinlin Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Shanshan Sheng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Ning Li
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Ruochen Shi
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Jiaqi Wei
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Fang Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Shengnan Zhang
- The 46th Research Institute, China Electronics Technology Group Corporation (CETC), Tianjin, 300220, China
| | - Xiaoqing Huo
- The 46th Research Institute, China Electronics Technology Group Corporation (CETC), Tianjin, 300220, China
| | - Jinlong Du
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Jingmin Zhang
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Jun Xu
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Xin Rong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Peng Gao
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
| | - Bo Shen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
| | - Xinqiang Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
| |
Collapse
|
21
|
Choi JH, Lee HH, Jeon S, Sarker S, Kim DS, Stach EA, Cho HK. Photoilluminated Redox-Processed Rh 2P Nanoparticles on Photocathodes for Stable Hydrogen Production in Acidic Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21953-21964. [PMID: 38629409 DOI: 10.1021/acsami.4c02147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
While photoelectrochemical (PEC) cells show promise for solar-driven green hydrogen production, exploration of various light-absorbing multilayer coatings has yet to significantly enhance their hydrogen generation efficiency. Acidic conditions can enhance the hydrogen evolution reaction (HER) kinetics and reduce overpotential losses. However, prolonged acidic exposure deactivates noble metal electrocatalysts, hindering their long-term stability. Progress requires addressing catalyst degradation to enable stable, efficient, and acidic PEC cells. Here, we proposed a process design based on the photoilluminated redox deposition (PRoD) approach. We use this to grow crystalline Rh2P nanoparticles (NPs) with a size of 5-10 on 30 nm-thick TiO2, without annealing. Atomically precise reaction control was performed by using several cyclic voltammetry cycles coincident with light irradiation to create a system with optimal catalytic activity. The optimized photocathode, composed of Rh2P/TiO2/Al-ZnO/Cu2O/Sb-Cu2O/ITO, achieved an excellent photocurrent density of 8.2 mA cm-2 at 0 VRHE and a durable water-splitting reaction in a strong acidic solution. Specifically, the Rh2P-loaded photocathode exhibited a 5.3-fold enhancement in mass activity compared to that utilizing just a Rh catalyst. Furthermore, in situ scanning transmission electron microscopy (STEM) was performed to observe the real-time growth process of Rh2P NPs in a liquid cell.
Collapse
Affiliation(s)
- Ji Hoon Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hak Hyeon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Sungho Jeon
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Swagotom Sarker
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Dong Su Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hyung Koun Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
22
|
Tuijtel MW, Cruz-León S, Kreysing JP, Welsch S, Hummer G, Beck M, Turoňová B. Thinner is not always better: Optimizing cryo-lamellae for subtomogram averaging. SCIENCE ADVANCES 2024; 10:eadk6285. [PMID: 38669330 PMCID: PMC11051657 DOI: 10.1126/sciadv.adk6285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Cryo-electron tomography (cryo-ET) is a powerful method to elucidate subcellular architecture and to structurally analyze biomolecules in situ by subtomogram averaging, yet data quality critically depends on specimen thickness. Cells that are too thick for transmission imaging can be thinned into lamellae by cryo-focused ion beam (cryo-FIB) milling. Despite being a crucial parameter directly affecting attainable resolution, optimal lamella thickness has not been systematically investigated nor the extent of structural damage caused by gallium ions used for FIB milling. We thus systematically determined how resolution is affected by these parameters. We find that ion-induced damage does not affect regions more than 30 nanometers from either lamella surface and that up to ~180-nanometer lamella thickness does not negatively affect resolution. This shows that there is no need to generate very thin lamellae and lamella thickness can be chosen such that it captures cellular features of interest, thereby opening cryo-ET also for studies of large complexes.
Collapse
Affiliation(s)
- Maarten W. Tuijtel
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Sergio Cruz-León
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Jan Philipp Kreysing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
- Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
23
|
Pauls A, Radford MJ, Taylor AK, Gates BD. Atomic-Scale Characterization of Microscale Battery Particles Enabled by a High-Throughput Focused Ion Beam Milling Technique. ACS OMEGA 2024; 9:17467-17480. [PMID: 38645341 PMCID: PMC11025079 DOI: 10.1021/acsomega.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Abstract
The cathode materials in lithium-ion batteries (LIBs) require improvements to address issues such as surface degradation, short-circuiting, and the formation of dendrites. One such method for addressing these issues is using surface coatings. Coatings can be sought to improve the durability of cathode materials, but the characterization of the uniformity and stability of the coating is important to assess the performance and lifetime of these materials. For microscale particles, there are, however, challenges associated with characterizing their surface modifications by transmission electron microscopy (TEM) techniques due to the size of these particles. Often, techniques such as focused ion beam (FIB)-assisted lift-out can be used to prepare thin cross sections to enable TEM analysis, but these techniques are very time-consuming and have a relatively low throughput. The work outlined herein demonstrates a FIB technique with direct support of microscale cathode materials on a TEM grid that increases sample throughput and reduces the processing time by 60-80% (i.e., from >5 to ∼1.5 h). The demonstrated workflow incorporates an air-liquid particle assembly followed by direct particle transfer to a TEM grid, FIB milling, and subsequent TEM analysis, which was illustrated with lithium nickel cobalt aluminum oxide particles and lithium manganese nickel oxide particles. These TEM analyses included mapping the elemental composition of cross sections of the microscale particles using energy-dispersive X-ray spectroscopy. The methods developed in this study can be extended to high-throughput characterization of additional LIB cathode materials (e.g., new compositions, coating, end-of-life studies), as well as to other microparticles and their coatings as prepared for a variety of applications.
Collapse
Affiliation(s)
- Alexi
L. Pauls
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Melissa J. Radford
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | | | - Byron D. Gates
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
24
|
Zorro F, Carbo-Argibay E, Ferreira PJ. Novel Method for the Preparation of Lamellas From Porous and Brittle Materials for In Situ TEM Heating/Biasing. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:41-48. [PMID: 38321710 DOI: 10.1093/micmic/ozad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024]
Abstract
A novel method for the preparation of lamellas made from porous and brittle compressed green powder using a focused ion beam (FIB) is described. One of the main purposes for the development of this methodology is to use this type of samples in micro-electromechanical systems (MEMS) chips for in situ transmission electron microscopy heating/biasing experiments, concomitant with maintaining the mechanical integrity and the absence of contamination of samples. This is accomplished through a modification of the standard FIB procedure for the preparation of lamellas, the adaptation of conventional chips, as well as the specific transfer of the lamella onto the chips. This method is versatile enough to be implemented in most commercially available FIB systems and MEMS chips.
Collapse
Affiliation(s)
- Fátima Zorro
- Mechanical Engineering Department and IDMEC, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Enrique Carbo-Argibay
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Paulo J Ferreira
- Mechanical Engineering Department and IDMEC, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
- Materials Science and Engineering Program, University of Texas at Austin, 204 E. Dean Keeton Street, Austin, TX 78712, USA
| |
Collapse
|
25
|
Liu S, Dong J, Ma Z, Hu W, Deng Y, Shi Y, Wang X, Qiu Y, Walther T. The evolution of indium precipitation in gallium focused ion beam prepared samples of InGaAs/InAlAs quantum wells under electron beam irradiation. J Microsc 2024; 293:169-176. [PMID: 38112123 DOI: 10.1111/jmi.13251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Gallium ion (Ga+ ) beam damage induced indium (In) precipitation in indium gallium arsenide (InGaAs)/indium aluminium arsenide (InAlAs) multiple quantum wells and its corresponding evolution under electron beam irradiation was investigated by valence electron energy loss spectroscopy (VEELS) and high-angle annular dark-field imaging (HAADF) in scanning transmission electron microscopy (STEM). Compared with argon ion milling for sample preparation, the heavier projectiles of Ga+ ions pose a risk to trigger In formation in the form of tiny metallic In clusters. These are shown to be sensitive to electron irradiation and can increase in number and size under the electron beam, deteriorating the structure. Our finding reveals the potential risk of formation of In clusters during focused ion beam (FIB) preparation of InGaAs/InAlAs quantum well samples and their subsequent growth under STEM-HAADF imaging, where initially invisible In clusters of a few atoms can move and swell during electron beam exposure.
Collapse
Affiliation(s)
- Shuo Liu
- College of Electronic and Information, Southwest Minzu University, State Ethnic Affairs Commission, Chengdu, China
| | - Jiawei Dong
- College of Electronic and Information, Southwest Minzu University, State Ethnic Affairs Commission, Chengdu, China
| | - Zhenyu Ma
- College of Electronic and Information, Southwest Minzu University, State Ethnic Affairs Commission, Chengdu, China
| | - Wenyu Hu
- Pico Center, SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, China
| | - Yong Deng
- College of Electronic and Information, Southwest Minzu University, State Ethnic Affairs Commission, Chengdu, China
- Pico Center, SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, China
| | - Yuechun Shi
- Photon Technology Research Center, Yongjiang Laboratory, Ningbo, China
| | - Xiaoyi Wang
- College of Electronic and Information, Southwest Minzu University, State Ethnic Affairs Commission, Chengdu, China
| | - Yang Qiu
- Pico Center, SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, China
| | - Thomas Walther
- Department Electronic & Electrical Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
26
|
Gholinia A, Donoghue J, Garner A, Curd M, Lawson MJ, Winiarski B, Geurts R, Withers PJ, Burnett TL. Exploration of fs-laser ablation parameter space for 2D/3D imaging of soft and hard materials by tri-beam microscopy. Ultramicroscopy 2024; 257:113903. [PMID: 38101083 DOI: 10.1016/j.ultramic.2023.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Tri-beam microscopes comprising a fs-laser beam, a Xe+ plasma focused ion beam (PFIB) and an electron beam all in one chamber open up exciting opportunities for site-specific correlative microscopy. They offer the possibility of rapid ablation and material removal by fs-laser, subsequent polishing by Xe-PFIB milling and electron imaging of the same area. While tri-beam systems are capable of probing large (mm) volumes providing high resolution microscopical characterisation of 2D and 3D images across exceptionally wide range of materials and biomaterials applications, presenting high quality/low damage surfaces to the electron beam can present a significant challenge, especially given the large parameter space for optimisation. Here the optimal conditions and artefacts associated with large scale volume milling, mini test piece manufacture, serial sectioning and surface polishing are investigated, both in terms of surface roughness and surface quality for metallic, ceramic, mixed complex phase, carbonaceous, and biological materials. This provides a good starting place for those wishing to examine large areas or volumes by tri-beam microscopy across a range of materials.
Collapse
Affiliation(s)
- A Gholinia
- Department of Materials, Henry Royce Institute, The University of Manchester, M13 9PL, UK.
| | - J Donoghue
- Department of Materials, Henry Royce Institute, The University of Manchester, M13 9PL, UK
| | - A Garner
- Department of Materials, Henry Royce Institute, The University of Manchester, M13 9PL, UK
| | - M Curd
- Department of Materials, Henry Royce Institute, The University of Manchester, M13 9PL, UK
| | - M J Lawson
- Department of Materials, Henry Royce Institute, The University of Manchester, M13 9PL, UK
| | - B Winiarski
- Thermo Fisher Scientific, Pecha 1282/12, Brno 62700, Czech Republic
| | - R Geurts
- Thermo Fisher Scientific, Achtseweg Noord 5, Eindhoven 5651GG, The Netherlands
| | - P J Withers
- Department of Materials, Henry Royce Institute, The University of Manchester, M13 9PL, UK
| | - T L Burnett
- Department of Materials, Henry Royce Institute, The University of Manchester, M13 9PL, UK
| |
Collapse
|
27
|
Demuth T, Fuchs T, Beyer A, Janek J, Volz K. "Depo-all-around": A novel FIB-based TEM specimen preparation technique for solid state battery composites and other loosely bound samples. Ultramicroscopy 2024; 257:113904. [PMID: 38061278 DOI: 10.1016/j.ultramic.2023.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/09/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Interfacial phenomena between active cathode materials and solid electrolytes play an important role in the function of solid-state batteries. (S)TEM imaging can give valuable insight into the atomic structure and composition at the various interfaces, yet the preparation of TEM specimen by FIB (focused ion beam) is challenging for loosely bound samples like composites, as they easily break apart during conventional preparation routines. We propose a novel preparation method that uses a frame made of deposition layers from the FIB's gas injection system to prevent the sample from breaking apart. This technique can of course be also applied to other loosely bound samples, not only those in the field of batteries.
Collapse
Affiliation(s)
- Thomas Demuth
- Materials Science Center and Faculty of Physics, Philipps University Marburg, Hans-Meerweinstraße 6, Marburg 35043, Germany
| | - Till Fuchs
- Institute of Physical Chemistry and Center for Materials Research, Justus-Liebig-University, Heinrich-Buff-Ring 17, Gießen 35392, Germany
| | - Andreas Beyer
- Materials Science Center and Faculty of Physics, Philipps University Marburg, Hans-Meerweinstraße 6, Marburg 35043, Germany
| | - Jürgen Janek
- Institute of Physical Chemistry and Center for Materials Research, Justus-Liebig-University, Heinrich-Buff-Ring 17, Gießen 35392, Germany
| | - Kerstin Volz
- Materials Science Center and Faculty of Physics, Philipps University Marburg, Hans-Meerweinstraße 6, Marburg 35043, Germany.
| |
Collapse
|
28
|
Paysen E, Capellini G, Talamas Simola E, Di Gaspare L, De Seta M, Virgilio M, Trampert A. Three-Dimensional Reconstruction of Interface Roughness and Alloy Disorder in Ge/GeSi Asymmetric Coupled Quantum Wells Using Electron Tomography. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4189-4198. [PMID: 38190284 DOI: 10.1021/acsami.3c15546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Interfaces play an essential role in the performance of ever-shrinking semiconductor devices, making comprehensive determination of their three-dimensional (3D) structural properties increasingly important. This becomes even more relevant in compositional interfaces, as is the case for Ge/GeSi heterostructures, where chemical intermixing is pronounced in addition to their morphology. We use the electron tomography method to reconstruct buried interfaces and layers of asymmetric coupled Ge/Ge0.8Si0.2 multiquantum wells, which are considered a potential building block in THz quantum cascade lasers. The three-dimensional reconstruction is based on a series of high-angle annular dark-field scanning transmission electron microscopy images. It allows chemically sensitive investigation of a relatively large interfacial area of about (80 × 80) nm2 with subnanometer resolution as well as the analysis of several interfaces within the multiquantum well stack. Representing the interfaces as iso-concentration surfaces in the tomogram and converting them to topographic height maps allows the determination of their morphological roughness as well as layer thicknesses, reflecting low variations in either case. Simulation of the reconstructed tomogram intensities using a sigmoidal function provides in-plane-resolved maps of the chemical interface widths showing a relatively large spatial variation. The more detailed analysis of the intermixed region using thin slices from the reconstruction and additional iso-concentration surfaces provides an accurate picture of the chemical disorder of the alloy at the interface. Our comprehensive three-dimensional image of Ge/Ge0.8Si0.2 interfaces reveals that in the case of morphologically very smooth interfaces─depending on the scale considered─the interface alloy disorder itself determines the overall characteristics, a result that is fundamental for highly miscible material systems.
Collapse
Affiliation(s)
- Ekaterina Paysen
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., 10117 Berlin, Germany
| | - Giovanni Capellini
- Dipartimento di Scienze, Università degli Studi Roma Tre, 00146 Roma, Italy
- IHP─Leibniz-Institut für innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany
| | | | - Luciana Di Gaspare
- Dipartimento di Scienze, Università degli Studi Roma Tre, 00146 Roma, Italy
| | - Monica De Seta
- Dipartimento di Scienze, Università degli Studi Roma Tre, 00146 Roma, Italy
| | - Michele Virgilio
- Dipartimento di Fisica "Enrico Fermi", Università di Pisa, I-56127 Pisa, Italy
| | - Achim Trampert
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., 10117 Berlin, Germany
| |
Collapse
|
29
|
Arranz R, Chichón FJ, Cuervo A, Conesa JJ. 3D Cryo-Correlative Methods to Study Virus Structure and Dynamics Within Cells. Subcell Biochem 2024; 105:299-327. [PMID: 39738950 DOI: 10.1007/978-3-031-65187-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Understanding the dynamic processes involving virus structural components within host cells is crucial for comprehending viral infection, as viruses rely entirely on host cells for replication. Viral infection involves various intracellular stages, including cell entry, genome uncoating, replication, transcription and translation, assembly of new virus particles in a complex morphogenetic process, and the release of new virions from the host cell. These events are dynamic and scarce and can be obscured by other cellular processes, necessitating novel approaches for their in situ characterization. Among these methods, correlative microscopy integrates the labeling, localization, and functional characterization of events of interest through visible light microscopy, complemented by the structural insights provided by high-resolution imaging techniques. This correlative approach enables a comprehensive exploration of subcellular events within the cellular context, including those related to viral morphogenesis. This chapter provides an introduction to correlative three-dimensional imaging methods, specifically designed to study viral morphogenesis and other intracellular stages of the viral cycle under conditions closely resembling their native environment. The integration of whole-cell imaging and high-resolution structural biology techniques is emphasized as essential for unraveling the mechanisms by which viruses generate and disseminate their progeny.
Collapse
Affiliation(s)
- Rocío Arranz
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Francisco Javier Chichón
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ana Cuervo
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José Javier Conesa
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
30
|
Woods EV, Singh MP, Kim SH, Schwarz TM, Douglas JO, El-Zoka AA, Giulani F, Gault B. A Versatile and Reproducible Cryo-sample Preparation Methodology for Atom Probe Studies. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1992-2003. [PMID: 37856778 DOI: 10.1093/micmic/ozad120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/14/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
Repeatable and reliable site-specific preparation of specimens for atom probe tomography (APT) at cryogenic temperatures has proven challenging. A generalized workflow is required for cryogenic specimen preparation including lift-out via focused ion beam and in situ deposition of capping layers, to strengthen specimens that will be exposed to high electric field and stresses during field evaporation in APT and protect them from environment during transfer into the atom probe. Here, we build on existing protocols and showcase preparation and analysis of a variety of metals, oxides, and supported frozen liquids and battery materials. We demonstrate reliable in situ deposition of a metallic capping layer that significantly improves the atom probe data quality for challenging material systems, particularly battery cathode materials which are subjected to delithiation during the atom probe analysis itself. Our workflow design is versatile and transferable widely to other instruments.
Collapse
Affiliation(s)
- Eric V Woods
- Mikrostrukturphysik und Legierungsdesign, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf 40237, Germany
| | - Mahander P Singh
- Mikrostrukturphysik und Legierungsdesign, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf 40237, Germany
| | - Se-Ho Kim
- Mikrostrukturphysik und Legierungsdesign, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf 40237, Germany
| | - Tim M Schwarz
- Mikrostrukturphysik und Legierungsdesign, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf 40237, Germany
| | - James O Douglas
- Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP, UK
| | - Ayman A El-Zoka
- Mikrostrukturphysik und Legierungsdesign, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf 40237, Germany
- Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP, UK
| | - Finn Giulani
- Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP, UK
| | - Baptiste Gault
- Mikrostrukturphysik und Legierungsdesign, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, Düsseldorf 40237, Germany
- Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP, UK
| |
Collapse
|
31
|
Stokes K, Clark K, Odetade D, Hardy M, Goldberg Oppenheimer P. Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications. DISCOVER NANO 2023; 18:153. [PMID: 38082047 PMCID: PMC10713959 DOI: 10.1186/s11671-023-03938-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024]
Abstract
Nano-fabrication techniques have demonstrated their vital importance in technological innovation. However, low-throughput, high-cost and intrinsic resolution limits pose significant restrictions, it is, therefore, paramount to continue improving existing methods as well as developing new techniques to overcome these challenges. This is particularly applicable within the area of biomedical research, which focuses on sensing, increasingly at the point-of-care, as a way to improve patient outcomes. Within this context, this review focuses on the latest advances in the main emerging patterning methods including the two-photon, stereo, electrohydrodynamic, near-field electrospinning-assisted, magneto, magnetorheological drawing, nanoimprint, capillary force, nanosphere, edge, nano transfer printing and block copolymer lithographic technologies for micro- and nanofabrication. Emerging methods enabling structural and chemical nano fabrication are categorised along with prospective chemical and physical patterning techniques. Established lithographic techniques are briefly outlined and the novel lithographic technologies are compared to these, summarising the specific advantages and shortfalls alongside the current lateral resolution limits and the amenability to mass production, evaluated in terms of process scalability and cost. Particular attention is drawn to the potential breakthrough application areas, predominantly within biomedical studies, laying the platform for the tangible paths towards the adoption of alternative developing lithographic technologies or their combination with the established patterning techniques, which depends on the needs of the end-user including, for instance, tolerance of inherent limits, fidelity and reproducibility.
Collapse
Affiliation(s)
- Kate Stokes
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kieran Clark
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - David Odetade
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mike Hardy
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5DL, UK
- Centre for Quantum Materials and Technology, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK
| | - Pola Goldberg Oppenheimer
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
32
|
Patil PP, Kundale SS, Patil SV, Sutar SS, Bae J, Kadam SJ, More KV, Patil PB, Kamat RK, Lee S, Dongale TD. Self-Assembled Lanthanum Oxide Nanoflakes by Electrodeposition Technique for Resistive Switching Memory and Artificial Synaptic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303862. [PMID: 37452406 DOI: 10.1002/smll.202303862] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Indexed: 07/18/2023]
Abstract
In recent years, many metal oxides have been rigorously studied to be employed as solid electrolytes for resistive switching (RS) devices. Among these solid electrolytes, lanthanum oxide (La2 O3 ) is comparatively less explored for RS applications. Given this, the present work focuses on the electrodeposition of La2 O3 switching layers and the investigation of their RS properties for memory and neuromorphic computing applications. Initially, the electrodeposited La2 O3 switching layers are thoroughly characterized by various analytical techniques. The electrochemical impedance spectroscopy (EIS) and Mott-Schottky techniques are probed to understand the in situ electrodeposition, RS mechanism, and n-type semiconducting nature of the fabricated La2 O3 switching layers. All the fabricated devices exhibit bipolar RS characteristics with excellent endurance and stable retention. Moreover, the device mimics the various bio-synaptic properties such as potentiation-depression, excitatory post-synaptic currents, and paired-pulse facilitation. It is demonstrated that the fabricated devices are non-ideal memristors based on double-valued charge-flux characteristics. The switching variation of the device is studied using the Weibull distribution technique and modeled and predicted by the time series analysis technique. Based on electrical and EIS results, a possible filamentary-based RS mechanism is suggested. The present results assert that La2 O3 is a promising solid electrolyte for memory and brain-inspired applications.
Collapse
Affiliation(s)
- Pradnya P Patil
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| | - Somnath S Kundale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| | - Shubham V Patil
- Department of Electronic Engineering, Kyung Hee University, Yongin, 17107, Republic of Korea
| | - Santosh S Sutar
- Yashwantrao Chavan School of Rural Development, Shivaji University, Kolhapur, 416004, India
| | - Junseong Bae
- Department of Electronic Engineering, Kyung Hee University, Yongin, 17107, Republic of Korea
| | - Sunil J Kadam
- Department of Mechanical Engineering, Bharati Vidyapeeth's College of Engineering, Kolhapur, 416013, India
| | - Krantiveer V More
- Department of Chemistry, Shivaji University, Kolhapur, 416012, India
| | - Prashant B Patil
- Department of Physics, The New College, Shivaji University, Kolhapur, 416012, India
| | - Rajanish K Kamat
- Department of Electronics, Shivaji University, Kolhapur, 416004, India
- Institute of Science, Dr. Homi Bhabha State University, 15, Madam Cama Road, Mumbai, 400032, India
| | - Seunghyun Lee
- Department of Electronic Engineering, Kyung Hee University, Yongin, 17107, Republic of Korea
| | - Tukaram D Dongale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| |
Collapse
|
33
|
Zudhistira D, Ho MY, Narang V. In-Situ Orthogonal TEM Lamella Conversion for Catching Subtle Defects in 3D Transistors of Microprocessor Devices. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:161-162. [PMID: 37613041 DOI: 10.1093/micmic/ozad067.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
| | - Mun-Yee Ho
- Advanced Micro Devices, Device Analysis Lab, Singapore
| | - Vinod Narang
- Advanced Micro Devices, Device Analysis Lab, Singapore
| |
Collapse
|
34
|
Vitale SM, Sugar JD. Lessons Learned from Failed TEM Sample Preparation Attempts Using a Focused Ion Beam. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:428-429. [PMID: 37613193 DOI: 10.1093/micmic/ozad067.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Suzy M Vitale
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington DC, USA
| | | |
Collapse
|
35
|
Zhao L, Cui Y, Li J, Xie Y, Li W, Zhang J. The 3D Controllable Fabrication of Nanomaterials with FIB-SEM Synchronization Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1839. [PMID: 37368269 DOI: 10.3390/nano13121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Nanomaterials with unique structures and functions have been widely used in the fields of microelectronics, biology, medicine, and aerospace, etc. With advantages of high resolution and multi functions (e.g., milling, deposition, and implantation), focused ion beam (FIB) technology has been widely developed due to urgent demands for the 3D fabrication of nanomaterials in recent years. In this paper, FIB technology is illustrated in detail, including ion optical systems, operating modes, and combining equipment with other systems. Together with the in situ and real-time monitoring of scanning electron microscopy (SEM) imaging, a FIB-SEM synchronization system achieved 3D controllable fabrication from conductive to semiconductive and insulative nanomaterials. The controllable FIB-SEM processing of conductive nanomaterials with a high precision is studied, especially for the FIB-induced deposition (FIBID) 3D nano-patterning and nano-origami. As for semiconductive nanomaterials, the realization of high resolution and controllability is focused on nano-origami and 3D milling with a high aspect ratio. The parameters of FIB-SEM and its working modes are analyzed and optimized to achieve the high aspect ratio fabrication and 3D reconstruction of insulative nanomaterials. Furthermore, the current challenges and future outlooks are prospected for the 3D controllable processing of flexible insulative materials with high resolution.
Collapse
Affiliation(s)
- Lirong Zhao
- School of Physics, Beihang University, Beijing 100191, China
| | - Yimin Cui
- School of Physics, Beihang University, Beijing 100191, China
| | - Junyi Li
- School of Physics, Beihang University, Beijing 100191, China
| | - Yuxi Xie
- School of Physics, Beihang University, Beijing 100191, China
| | - Wenping Li
- School of Physics, Beihang University, Beijing 100191, China
| | - Junying Zhang
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
36
|
Ando M, Hamaguchi D, Watanabe Y, Nozawa T. Irradiation hardening and void swelling behaviors of F82H IEA by using dual-ion irradiation. J NUCL SCI TECHNOL 2023. [DOI: 10.1080/00223131.2023.2180452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Masami Ando
- Department of Fusion Reactor Materials Research, National Institutes for Quantum Science and Technology, Rokkasho, Aomori, Japan
| | - Dai Hamaguchi
- Department of Fusion Reactor Materials Research, National Institutes for Quantum Science and Technology, Rokkasho, Aomori, Japan
| | - Yoshiyuki Watanabe
- Department of Fusion Reactor Materials Research, National Institutes for Quantum Science and Technology, Rokkasho, Aomori, Japan
| | - Takashi Nozawa
- Department of Fusion Reactor Materials Research, National Institutes for Quantum Science and Technology, Rokkasho, Aomori, Japan
| |
Collapse
|
37
|
Priebe A, Michler J. Review of Recent Advances in Gas-Assisted Focused Ion Beam Time-of-Flight Secondary Ion Mass Spectrometry (FIB-TOF-SIMS). MATERIALS (BASEL, SWITZERLAND) 2023; 16:2090. [PMID: 36903205 PMCID: PMC10003971 DOI: 10.3390/ma16052090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a powerful chemical characterization technique allowing for the distribution of all material components (including light and heavy elements and molecules) to be analyzed in 3D with nanoscale resolution. Furthermore, the sample's surface can be probed over a wide analytical area range (usually between 1 µm2 and 104 µm2) providing insights into local variations in sample composition, as well as giving a general overview of the sample's structure. Finally, as long as the sample's surface is flat and conductive, no additional sample preparation is needed prior to TOF-SIMS measurements. Despite many advantages, TOF-SIMS analysis can be challenging, especially in the case of weakly ionizing elements. Furthermore, mass interference, different component polarity of complex samples, and matrix effect are the main drawbacks of this technique. This implies a strong need for developing new methods, which could help improve TOF-SIMS signal quality and facilitate data interpretation. In this review, we primarily focus on gas-assisted TOF-SIMS, which has proven to have potential for overcoming most of the aforementioned difficulties. In particular, the recently proposed use of XeF2 during sample bombardment with a Ga+ primary ion beam exhibits outstanding properties, which can lead to significant positive secondary ion yield enhancement, separation of mass interference, and inversion of secondary ion charge polarity from negative to positive. The implementation of the presented experimental protocols can be easily achieved by upgrading commonly used focused ion beam/scanning electron microscopes (FIB/SEM) with a high vacuum (HV)-compatible TOF-SIMS detector and a commercial gas injection system (GIS), making it an attractive solution for both academic centers and the industrial sectors.
Collapse
|
38
|
Berger C, Dumoux M, Glen T, Yee NBY, Mitchels JM, Patáková Z, Darrow MC, Naismith JH, Grange M. Plasma FIB milling for the determination of structures in situ. Nat Commun 2023; 14:629. [PMID: 36746945 PMCID: PMC9902539 DOI: 10.1038/s41467-023-36372-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Structural biology studies inside cells and tissues require methods to thin vitrified specimens to electron transparency. Until now, focused ion beams based on gallium have been used. However, ion implantation, changes to surface chemistry and an inability to access high currents limit gallium application. Here, we show that plasma-coupled ion sources can produce cryogenic lamellae of vitrified human cells in a robust and automated manner, with quality sufficient for pseudo-atomic structure determination. Lamellae were produced in a prototype microscope equipped for long cryogenic run times (> 1 week) and with multi-specimen support fully compatible with modern-day transmission electron microscopes. We demonstrate that plasma ion sources can be used for structural biology within cells, determining a structure in situ to 4.9 Å, and characterise the resolution dependence on particle distance from the lamella edge. We describe a workflow upon which different plasmas can be examined to further streamline lamella fabrication.
Collapse
Affiliation(s)
- Casper Berger
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, Oxford, United Kingdom
| | - Maud Dumoux
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom
| | - Thomas Glen
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom
| | - Neville B-Y Yee
- Artificial Intelligence & Informatics, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom
| | - John M Mitchels
- Thermo Fisher Scientific Brno s.r.o, Brno, 627 00, Czech Republic
| | - Zuzana Patáková
- Thermo Fisher Scientific Brno s.r.o, Brno, 627 00, Czech Republic
| | - Michele C Darrow
- Artificial Intelligence & Informatics, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom
| | - James H Naismith
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, Oxford, United Kingdom
| | - Michael Grange
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom. .,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, Oxford, United Kingdom.
| |
Collapse
|
39
|
He R, Li M, Han X, Feng W, Zhang H, Xie H, Liu Z. Experimental Study of As-Cast and Heat-Treated Single-Crystal Ni-Based Superalloy Interface Using TEM. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:608. [PMID: 36770569 PMCID: PMC9918974 DOI: 10.3390/nano13030608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The interface plays an important role in determining strength and toughness in multiphase systems and the accurate measurement of the interface structure in single crystal (SX) Ni-based superalloy is also essential. In this work, the γ and γ' lattice constant, γ/γ' interface width at dendritic and interdendritic region of casting and solution treatment SX Ni-based superalloy is measured. Various advanced equipment is used to characterize γ/γ' interface nanostructure. A typical correlation between interface width and γ/γ' misfit is also summarized. The interface width in the dendritic region of the as-cast sample is larger than that in the interdendritic region. The misfit in the dendritic region is larger than that in the interdendritic region, which has a trend of negative development. There is a common law of the as-cast interdendritic and dendrite interface sample, where the absolute value of the misfit between the two phases is increasing with the phase interface broadening. The comparison of the as-cast and heat-treated interdendritic sample shows that after heat treatment, the phase interface width increases, the misfit decreases, the lattice constant of γ phase increases, and the lattice constant of the γ' phase decreases. By comparing the as-cast and heat treated dendrites, the absolute value of the misfit of the as-cast dendrite sample is significantly smaller than that of the heat-treated sample, and the misfit increases with the interface broadening. The comparison between interdendritic and dendritic heat-treated samples shows that the absolute value of the misfit between the two phases is smaller than that of the dendritic as-cast samples, and the absolute value of the misfit also increases with the phase interface broadening. In conclusion, property heat treatment can significantly increase the lattice constants of the γ and γ' phases, reduce the lattice mismatch at the interface of the two phases, and improve the high temperature stability of the alloy. A better understanding of the microstructure of Ni-based single crystal superalloys will provide guidance for the subsequent design of more advanced nickel-based single-crystal superalloys.
Collapse
Affiliation(s)
- Runjun He
- AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
| | - Miao Li
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Han
- AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
| | - Wei Feng
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hongye Zhang
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Huimin Xie
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zhanwei Liu
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
40
|
Sigloch F, Sangiao S, Orús P, de Teresa JM. Direct-write of tungsten-carbide nanoSQUIDs based on focused ion beam induced deposition. NANOSCALE ADVANCES 2022; 4:4628-4634. [PMID: 36341293 PMCID: PMC9595190 DOI: 10.1039/d2na00602b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
NanoSQUIDs are quantum sensors that excel in detecting a small change in magnetic flux with high sensitivity and high spatial resolution. Here, we employ resist-free direct-write Ga+ Focused Ion Beam Induced Deposition (FIBID) techniques to grow W-C nanoSQUIDs, and we investigate their electrical response to changes in the magnetic flux. Remarkably, FIBID allows the fast (3 min) growth of 700 nm × 300 nm nanoSQUIDs based on narrow nanobridges (50 nm wide) that act as Josephson junctions. Albeit the SQUIDs exhibit a comparatively low modulation depth and obtain a high inductance, the observed transfer coefficient (output voltage to magnetic flux change) is comparable to other SQUIDs (up to 1300 μV/Φ 0), which correlates with the high resistivity of W-C in the normal state. We discuss here the potential of this approach to reduce the active area of the nanoSQUIDs to gain spatial resolution as well as their integration on cantilevers for scanning-SQUID applications.
Collapse
Affiliation(s)
- Fabian Sigloch
- Instituto de Nanociencia y Materiales de Aragon (INMA), Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Soraya Sangiao
- Instituto de Nanociencia y Materiales de Aragon (INMA), Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza 50018 Spain
| | - Pablo Orús
- Instituto de Nanociencia y Materiales de Aragon (INMA), Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - José M de Teresa
- Instituto de Nanociencia y Materiales de Aragon (INMA), Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza 50018 Spain
| |
Collapse
|
41
|
Zhang H, Wen H, Peng R, He R, Li M, Feng W, Zhao Y, Liu Z. Experimental Study at the Phase Interface of a Single-Crystal Ni-Based Superalloy Using TEM. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196915. [PMID: 36234255 PMCID: PMC9571046 DOI: 10.3390/ma15196915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/01/2023]
Abstract
The single-crystal Ni-based superalloys, which have excellent mechanical properties at high temperatures, are commonly used for turbine blades in a variety of aero engines and industrial gas turbines. Focusing on the phase interface of a second-generation single-crystal Ni-based superalloy, in-situ TEM observation was conducted at room temperature and high temperatures. Intensity ratio analysis was conducted for the measurement of two-phase interface width. The improved geometric phase analysis method, where the adaptive mask selection method is introduced, was used for the measurement of the strain field near the phase interface. The strained irregular transition region is consistent with the calculated interface width using intensity ratio analysis. An intensity ratio analysis and strain measurement near the interface can corroborate and complement each other, contributing to the interface structure evaluation. Using TEM in-situ heating and Fourier transform, the change of dislocation density in the γ phase near the two-phase interface of the single-crystal Ni-based superalloy was analyzed. The dislocation density decreases first with the increase in temperature, consistent with the characteristics of metal quenching, and increases sharply at 450 °C. The correlation between the variation of dislocation density at high temperatures and the intermediate temperature brittleness was also investigated.
Collapse
Affiliation(s)
- Hongye Zhang
- School of Technology, Beijing Forestry University, Beijing 100083, China
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huihui Wen
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Electrical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Runlai Peng
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Ruijun He
- AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
| | - Miao Li
- School of Technology, Beijing Forestry University, Beijing 100083, China
| | - Wei Feng
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yao Zhao
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhanwei Liu
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
42
|
Madison AC, Villarrubia JS, Liao KT, Copeland CR, Schumacher J, Siebein K, Ilic BR, Liddle JA, Stavis SM. Unmasking the Resolution-Throughput Tradespace of Focused-Ion-Beam Machining. ADVANCED FUNCTIONAL MATERIALS 2022; 32:10.1002/adfm.202111840. [PMID: 36824209 PMCID: PMC9945459 DOI: 10.1002/adfm.202111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 06/18/2023]
Abstract
Focused-ion-beam machining is a powerful process to fabricate complex nanostructures, often through a sacrificial mask that enables milling beyond the resolution limit of the ion beam. However, current understanding of this super-resolution effect is empirical in the spatial domain and nonexistent in the temporal domain. This article reports the primary study of this fundamental tradespace of resolution and throughput. Chromia functions well as a masking material due to its smooth, uniform, and amorphous structure. An efficient method of in-line metrology enables characterization of ion-beam focus by scanning electron microscopy. Fabrication and characterization of complex test structures through chromia and into silica probe the response of the bilayer to a focused beam of gallium cations, demonstrating super-resolution factors of up to 6 ± 2 and improvements to volume throughput of at least factors of 42 ± 2, with uncertainties denoting 95% coverage intervals. Tractable theory models the essential aspects of the super-resolution effect for various nanostructures. Application of the new tradespace increases the volume throughput of machining Fresnel lenses by a factor of 75, enabling the introduction of projection standards for optical microscopy. These results enable paradigm shifts of sacrificial masking from empirical to engineering design and from prototyping to manufacturing.
Collapse
Affiliation(s)
- Andrew C Madison
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - John S Villarrubia
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Kuo-Tang Liao
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Maryland Nanocenter, College Park, MD 20740, USA
| | - Craig R Copeland
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Joshua Schumacher
- CNST NanoFab, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Kerry Siebein
- CNST NanoFab, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - B Robert Ilic
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- CNST NanoFab, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - J Alexander Liddle
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Samuel M Stavis
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
43
|
Mei H, Koch A, Wan C, Rensberg J, Zhang Z, Salman J, Hafermann M, Schaal M, Xiao Y, Wambold R, Ramanathan S, Ronning C, Kats MA. Tuning carrier density and phase transitions in oxide semiconductors using focused ion beams. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3923-3932. [PMID: 39635167 PMCID: PMC11501530 DOI: 10.1515/nanoph-2022-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/03/2022] [Indexed: 12/07/2024]
Abstract
We demonstrate spatial modification of the optical properties of thin-film metal oxides, zinc oxide (ZnO) and vanadium dioxide (VO2) as representatives, using a commercial focused ion beam (FIB) system. Using a Ga+ FIB and thermal annealing, we demonstrated variable doping of a wide-bandgap semiconductor, ZnO, achieving carrier concentrations from 1018 cm-3 to 1020 cm-3. Using the same FIB without subsequent thermal annealing, we defect-engineered a correlated semiconductor, VO2, locally modifying its insulator-to-metal transition (IMT) temperature by up to ∼25 °C. Such area-selective modification of metal oxides by direct writing using a FIB provides a simple, mask-less route to the fabrication of optical structures, especially when multiple or continuous levels of doping or defect density are required.
Collapse
Affiliation(s)
- Hongyan Mei
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
| | - Alexander Koch
- Institute of Solid State Physics, Friedrich Schiller University Jena, Jena, 07743, Germany,
| | - Chenghao Wan
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
| | - Jura Rensberg
- Institute of Solid State Physics, Friedrich Schiller University Jena, Jena, 07743, Germany,
| | - Zhen Zhang
- School of Materials Engineering, Purdue University, West Lafayette, IN47907, USA
| | - Jad Salman
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
| | - Martin Hafermann
- Institute of Solid State Physics, Friedrich Schiller University Jena, Jena, 07743, Germany,
| | - Maximilian Schaal
- Institute of Solid State Physics, Friedrich Schiller University Jena, Jena, 07743, Germany,
| | - Yuzhe Xiao
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
| | - Raymond Wambold
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
| | - Shriram Ramanathan
- School of Materials Engineering, Purdue University, West Lafayette, IN47907, USA
| | - Carsten Ronning
- Institute of Solid State Physics, Friedrich Schiller University Jena, Jena, 07743, Germany,
| | - Mikhail A. Kats
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin53706, USA
| |
Collapse
|
44
|
Holsgrove KM, O’Reilly TI, Varo S, Gocalinska A, Juska G, Kepaptsoglou DM, Pelucchi E, Arredondo M. Towards 3D characterisation of site-controlled InGaAs pyramidal QDs at the nanoscale. JOURNAL OF MATERIALS SCIENCE 2022; 57:16383-16396. [PMID: 36101839 PMCID: PMC9463298 DOI: 10.1007/s10853-022-07654-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In this work, we report an extensive investigation via transmission electron microscopy (TEM) techniques of InGaAs/GaAs pyramidal quantum dots (PQDs), a unique site-controlled family of quantum emitters that have proven to be excellent sources of single and entangled photons. The most striking features of this system, originating from their peculiar fabrication process, include their inherently 3-dimensional nature and their interconnection to a series of nanostructures that are formed alongside them, such as quantum wells and quantum wires. We present structural and chemical data from cross-sectional and plan view samples of both single and stacked PQDs structures. Our findings identify (i) the shape of the dot, being hexagonal and not triangular as previously assumed, (ii) the chemical distribution at the facets and QD area, displaying clear Indium diffusion, and (iii) a near absence of Aluminium (from the AlAs marker) at the bottom of the growth profile. Our results shed light on previously unreported structural and chemical features of PQDs, which is of extreme relevance for further development of this family of quantum emitters. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10853-022-07654-2.
Collapse
Affiliation(s)
| | - Tamsin I. O’Reilly
- School of Mathematics and Physics, Queen’s University, Belfast, UK
- University of Glasgow, Glasgow, G12 8QQ UK
| | - Simone Varo
- Tyndall National Institute, “Lee Maltings”, University College Cork, Cork, Ireland
| | - Agnieszka Gocalinska
- Tyndall National Institute, “Lee Maltings”, University College Cork, Cork, Ireland
| | - Gediminas Juska
- Tyndall National Institute, “Lee Maltings”, University College Cork, Cork, Ireland
| | - Demie M. Kepaptsoglou
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury, WA4 4AD UK
- Department of Physics, University of York, York, YO10 5DD UK
| | - Emanuele Pelucchi
- Tyndall National Institute, “Lee Maltings”, University College Cork, Cork, Ireland
| | - Miryam Arredondo
- School of Mathematics and Physics, Queen’s University, Belfast, UK
| |
Collapse
|
45
|
Essani M, Mevellec JY, Charbonnier B, Moreau P, Moussi H, Weiss P, Bideau JL, Bayle M, Humbert B, Abellan P. Application of a Cryo-FIB-SEM-μRaman Instrument to Probe the Depth of Vitreous Ice in a Frozen Sample. Anal Chem 2022; 94:8120-8125. [PMID: 35648814 DOI: 10.1021/acs.analchem.2c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of instruments combining multiple characterization and imaging tools drove huge advances in material science, engineering, biology, and other related fields. Notably, the coupling of SEM with micro-Raman spectrometry (μRaman) provides the means for the correlation between structural and physicochemical properties at the surface, while dual focused ion beam (FIB)-scanning electron microscopes (SEMs) operating under cryogenic conditions (cryo-FIB-SEM) allow for the analysis of the ultrastructure of materials in situ and in their native environment. In cryo-FIB-SEM, rapid and efficient methods for assessing vitrification conditions in situ are required for the accurate investigation of the original structure of hydrated samples. This work reports for the first time the use of a cryo-FIB-SEM-μRaman instrument to efficiently assess the accuracy of cryo-fixation methods. Analyses were performed on plunge-freezed highly hydrated calcium phosphate cement (CPC) and a gelatin composite. By making a trench of a defined thickness with FIB, μRaman analyses were carried out at a specific depth within the frozen material. Results show that the μRaman signal is sensitive to the changes in the molecular structures of the aqueous phase and can be used to examine the depth of vitreous ice in frozen samples. The method presented in this work provides a reliable way to avoid imaging artifacts in cryo-FIB-SEM that are related to cryo-fixation and therefore constitutes great interest in the study of vitreous materials exhibiting high water content, regardless of the sample preparation method (i.e., by HPF, plunge freezing, and so on).
Collapse
Affiliation(s)
- Mouad Essani
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel (IMN), F-44000 Nantes, France
| | - Jean-Yves Mevellec
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel (IMN), F-44000 Nantes, France
| | - Baptiste Charbonnier
- Nantes Université, INSERM, UMR 1229 RMeS/ONIRIS, Regenerative Medicine and Skelton Laboratory, F-44042 Nantes, France
| | - Philippe Moreau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel (IMN), F-44000 Nantes, France
| | - Hilel Moussi
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel (IMN), F-44000 Nantes, France.,Nantes Université, INSERM, UMR 1229 RMeS/ONIRIS, Regenerative Medicine and Skelton Laboratory, F-44042 Nantes, France
| | - Pierre Weiss
- Nantes Université, INSERM, CHU Nantes, UMR 1229 RMeS/ONIRIS, Regenerative Medicine and Skeleton Laboratory, F-44042 Nantes, France
| | - Jean Le Bideau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel (IMN), F-44000 Nantes, France
| | - Maxime Bayle
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel (IMN), F-44000 Nantes, France
| | - Bernard Humbert
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel (IMN), F-44000 Nantes, France
| | - Patricia Abellan
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel (IMN), F-44000 Nantes, France
| |
Collapse
|
46
|
Hower JC, Fiket Ž, Henke KR, Hiett JK, Thorson JS, Kharel M, Dai S, Silva LFO, Oliveira MLS. Soils and spoils: mineralogy and geochemistry of mining and processing wastes from lead and zinc mining at the Gratz Mine, Owen County, Kentucky. JOURNAL OF SOILS AND SEDIMENTS 2022; 22:1773-1786. [PMID: 37475891 PMCID: PMC10358743 DOI: 10.1007/s11368-022-03171-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/18/2022] [Indexed: 07/22/2023]
Abstract
Purpose Mineralogical and geochemical features of mining and processing wastes collected in Owen County, part of the Central Kentucky Lead-Zinc district, were investigated. The Gratz mine, abandoned in the 1940s, is on a dairy farm. Aside from discerning the nature of mining refuse at the site, the investigation was part of the University of Kentucky College of Pharmacy's mission to explore unusual environments in the search for unique microbiological communities. Materials and methods Four samples of a soil-plus-spoils mix were collected from spoil piles and two samples, the sluice and coarse samples, were closely associated with the site of the ore processing. Optical petrology (polarized reflected-light, oil-immersion optics at a final magnification of 500 ×), X-ray diffraction, X-ray fluorescence, inductively coupled plasma mass spectrometry, field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscope (HR-TEM) with selected area electron diffraction (SAED) and/or microbeam diffraction (MBD), scanning transmission electron microscopy (STEM), and energy-dispersive X-ray spectrometer (EDS) analyses were employed to characterize the samples. Results and discussion Calcite is the main mineral in most samples, followed by near equal amounts of quartz and dolomite. Sphalerite and galena are the principal sulfides and barite is the dominant sulfate. Geochemistry of major elements reflected the mineralogy, whereas trace elements showed different groupings between the minerals. Scandium, Cu, Ga, Ge, Cd, and Sb were found predominantly associated with Zn and Pb and sulfide minerals; Bi, Hf, In, Sn, and Zr with heavy mineral fraction; while the remaining trace elements, including the rare earths, were mostly distributed among other present phases, i.e., oxyhalides, oxides, silicates, and carbonaceous material. The data were used to illustrate the processes and conditions that control the sulfide-mineral oxidation and its potential for the environmental release of associated reaction products. Conclusions The wastes represent a potential source of environmentally disruptive concentrations of Zn, Pb, and other sulfide-associated elements. The high share of carbonates suggests near-neutral conditions in deposited wastes, restricting sulfide weathering and further limiting the oxidant activity of Fe. The low-Fe content and its predominant presence in highly resistant hematite also constrain sulfide weathering. Consequently, the spoils have a low potential for generation of acidity and release of heavy metal(loid)s in the surrounding environment.
Collapse
Affiliation(s)
- James C. Hower
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511, USA
- Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Željka Fiket
- Division for Marine and Environmental Research, Laboratory of Inorganic Environmental Geochemistry and Chemodynamics of Nanoparticles, Ruđer Bošković Institute, Zagreb, Croatia
| | - Kevin R. Henke
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511, USA
- Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - John K. Hiett
- Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511, USA
- Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506, USA
- Kentucky Ofce of Mine Safety and Licensing, 1025 Capital Center Drive, Frankfort, KY 40601, USA
| | - Jon S. Thorson
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Madan Kharel
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506, USA
- School of Pharmacy, University of Maryland – Eastern Shore, Princess Anne, MD 21853, USA
| | - Shifeng Dai
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing, China
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
| | - Luis F. O. Silva
- Department of Civil and Environmental, Universidad de La Costa, CUC, Universitaria de La Costa, Calle 58 # 55e66, Soledad, Barranquilla, Atlático, Colombia
| | - Marcos L. S. Oliveira
- Department of Civil and Environmental, Universidad de La Costa, CUC, Universitaria de La Costa, Calle 58 # 55e66, Soledad, Barranquilla, Atlático, Colombia
- Faculdade Meridional IMED, Passo Fundo, RS 99070-220, Brazil
| |
Collapse
|
47
|
Mikheev E, Zimmerling T, Estry A, Moll PJW, Goldhaber-Gordon D. Ionic Liquid Gating of SrTiO 3 Lamellas Fabricated with a Focused Ion Beam. NANO LETTERS 2022; 22:3872-3878. [PMID: 35576585 DOI: 10.1021/acs.nanolett.1c04447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we combine two previously incompatible techniques for defining electronic devices: shaping three-dimensional crystals by focused ion beam (FIB), and two-dimensional electrostatic accumulation of charge carriers. The principal challenge for this integration is nanometer-scale surface damage inherent to any FIB-based fabrication. We address this by using a sacrificial protective layer to preserve a selected pristine surface. The test case presented here is accumulation of 2D carriers by ionic liquid gating at the surface of a micron-scale SrTiO3 lamella. Preservation of surface quality is reflected in superconductivity of the accumulated carriers. This technique opens new avenues for realizing electrostatic charge tuning in materials that are not available as large or exfoliatable single crystals, and for patterning the geometry of the accumulated carriers.
Collapse
Affiliation(s)
- Evgeny Mikheev
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Tino Zimmerling
- Max-Planck-Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - Amelia Estry
- Max-Planck-Institute for Chemical Physics of Solids, 01187 Dresden, Germany
- Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Philip J W Moll
- Max-Planck-Institute for Chemical Physics of Solids, 01187 Dresden, Germany
- Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - David Goldhaber-Gordon
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
48
|
Chen Y, Rice KP, Prosa TJ, Reed RC, Marquis EA. Al 2O 3 Grain Boundary Segregation in a Thermal Barrier Coating on a Ni-Based Superalloy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-10. [PMID: 35549785 DOI: 10.1017/s1431927622000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The segregation of reactive elements (REs) along thermally grown oxide (TGO) grain boundaries has been associated to slower oxide growth kinetics and improved creep properties. However, the incorporation and diffusion of these elements into the TGO during oxidation of Ni alloys remains an open question. In this work, electron backscatter diffraction in transmission mode (t-EBSD) was used to investigate the microstructure of TGO within the thermal barrier coating on a Ni-based superalloy, and atom probe tomography (APT) was used to quantify the segregation behavior of REs to α-Al2O3 grain boundaries. Integrating the two techniques enables a higher level of site-specific analysis compared to the routine focused ion beam lift-out sample preparation method without t-EBSD. Needle-shaped APT specimens readily meet the thickness criterion for electron diffraction analysis. Transmission EBSD provides an immediate feedback on grain orientation and grain boundary location within the APT specimens to help target grain boundaries in the TGO. Segregation behavior of REs is discussed in terms of the grain boundary character and relative location in TGO.
Collapse
Affiliation(s)
- Yimeng Chen
- CAMECA Instruments, Inc., Madison, WI53711, USA
| | | | - Ty J Prosa
- CAMECA Instruments, Inc., Madison, WI53711, USA
| | - Roger C Reed
- Department of Materials, University of Oxford, OxfordOX1 3PH, UK
| | - Emmanuelle A Marquis
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI48109, USA
| |
Collapse
|
49
|
Li M, Zhu W, Li X, Xu H, Fan X, Wu H, Ye F, Xue J, Li X, Cheng L, Zhang L. Ti 3 C 2 T x /MoS 2 Self-Rolling Rod-Based Foam Boosts Interfacial Polarization for Electromagnetic Wave Absorption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201118. [PMID: 35481671 PMCID: PMC9165497 DOI: 10.1002/advs.202201118] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Indexed: 05/19/2023]
Abstract
Heterogeneous interface design to boost interfacial polarization has become a feasible way to realize high electromagnetic wave absorbing (EMA) performance of dielectric materials. However, interfacial polarization in simple structures such as particles, rods, and flakes is weak and usually plays a secondary role. In order to enhance the interfacial polarization and simultaneously reduce the electronic conductivity to avoid reflection of electromagnetic wave, a more rational geometric structure for dielectric materials is desired. Herein, a Ti3 C2 Tx /MoS2 self-rolling rod-based foam is proposed to realize excellent interfacial polarization and achieve high EMA performance at ultralow density. Different surface tensions of Ti3 C2 Tx and ammonium tetrathiomolybdate are utilized to induce the self-rolling of Ti3 C2 Tx sheets. The rods with a high aspect ratio not only remarkably improve the polarization loss but also are beneficial to the construction of Ti3 C2 Tx /MoS2 foam, leading to enhanced EMA capability. As a result, the effective absorption bandwidth of Ti3 C2 Tx /MoS2 foam covers the whole X band (8.2-12.4 GHz) with a density of only 0.009 g cm-3 , at a thickness of 3.3 mm. The advantages of rod structures are verified through simulations in the CST microwave studio. This work inspires the rational geometric design of micro/nanostructures for new-generation EMA materials.
Collapse
Affiliation(s)
- Minghang Li
- Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Wenjie Zhu
- Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Xin Li
- Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Hailong Xu
- Institute of Textiles and ClothingThe Hong Kong Polytechnic UniversityHong Kong SAR999077P. R. China
| | - Xiaomeng Fan
- Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary School of Physical Science and TechnologyNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Fang Ye
- Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Jimei Xue
- Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Xiaoqiang Li
- Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Laifei Cheng
- Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Litong Zhang
- Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi'an710072P. R. China
| |
Collapse
|
50
|
Vitale SM, Sugar JD. Using Xe Plasma FIB for High-Quality TEM Sample Preparation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-13. [PMID: 35289261 DOI: 10.1017/s1431927622000344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A direct comparison between electron transparent transmission electron microscope (TEM) samples prepared with gallium (Ga) and xenon (Xe) focused ion beams (FIBs) is performed to determine if equivalent quality samples can be prepared with both ion species. We prepared samples using Ga FIB and Xe plasma focused ion beam (PFIB) while altering a variety of different deposition and milling parameters. The samples’ final thicknesses were evaluated using STEM-EELS t/λ data. Using the Ga FIB sample as a standard, we compared the Xe PFIB samples to the standard and to each other. We show that although the Xe PFIB sample preparation technique is quite different from the Ga FIB technique, it is possible to produce high-quality, large area TEM samples with Xe PFIB. We also describe best practices for a Xe PFIB TEM sample preparation workflow to enable consistent success for any thoughtful FIB operator. For Xe PFIB, we show that a decision must be made between the ultimate sample thickness and the size of the electron transparent region.
Collapse
Affiliation(s)
- Suzy M Vitale
- Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Rd NW, Washington, DC20015, USA
| | | |
Collapse
|