1
|
Zhang D, Gan Y, Le L, Pu L. Epigenetic variation in maize agronomical traits for breeding and trait improvement. J Genet Genomics 2025; 52:307-318. [PMID: 38310944 DOI: 10.1016/j.jgg.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Epigenetics-mediated breeding (epibreeding) involves engineering crop traits and stress responses through the targeted manipulation of key epigenetic features to enhance agricultural productivity. While conventional breeding methods raise concerns about reduced genetic diversity, epibreeding propels crop improvement through epigenetic variations that regulate gene expression, ultimately impacting crop yield. Epigenetic regulation in crops encompasses various modes, including histone modification, DNA modification, RNA modification, non-coding RNA, and chromatin remodeling. This review summarizes the epigenetic mechanisms underlying major agronomic traits in maize and identifies candidate epigenetic landmarks in the maize breeding process. We propose a valuable strategy for improving maize yield through epibreeding, combining CRISPR/Cas-based epigenome editing technology and Synthetic Epigenetics (SynEpi). Finally, we discuss the challenges and opportunities associated with maize trait improvement through epibreeding.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
| | - Yujun Gan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Naderi S, Maali-Amiri R, Sadeghi L, Hamidi A. Physio-biochemical and DNA methylation analysis of the defense response network of wheat to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108516. [PMID: 38537384 DOI: 10.1016/j.plaphy.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
In the present work, physio-biochemical and DNA methylation analysis were conducted in wheat (Triticum aestivum L.) cultivars "Bolani" (drought-tolerant) and "Sistan" (drought-sensitive) during drought treatments: well-watered (at 90% field capacity (FC)), mild stress (at 50% FC, and severe stress (at 25% FC). During severe stress, O2•- and H2O2 content in cultivar Sistan showed significant increase (by 1.3 and 2.5-fold, respectively) relative to cultivar Bolani. In Bolani, the increased levels of radical scavenging activity (by 32%), glycine betaine (GB) (by 11.44%), proline (4-fold), abscisic acid (by 63.76%), and more stability of relative water content (RWC) (2-fold) were observed against drought-induced oxidative stress. Methylation level significantly decreased from 70.26% to 60.64% in Bolani and from 69.06% to 59.85% in Sistan during stress, and higher decreased tendency was related to CG and CHG in Bolani but CG in Sistan under severe stress. Methylation patterns showed that the highest polymorphism in Bolani was mainly as CG. As the intensity of stress increased, the enhanced physio-biochemical responses of Bolani cultivar were accompanied by a more decrease in the number of unchanged bands. According to heat map analysis, the highest difference (84.38%) in methylation patterns was observed between control and severe stress. Multivariate analysis using principal component analysis (PCA) showed a cultivar-specific methylation during stress and that methylation changes between cultivars are much higher than that of within a cultivar. Higher methylation to demethylation in Bolani (30.06 vs. 22.12%) compared to that of cultivar Sistan (23.21 vs. 30.15%) indicated more demethylation did not induce tolerance responses in Sistan. Sequencing differentially methylated fragments along with qRT-PCR analysis showed the efficient role of various DNA fragments, including demethylated fragments such as phosphoenol pyruvate carboxylase (PEPC), beta-glucosidase (BGlu), glycosyltransferase (GT), glutathione S-transferase (GST) and lysine demethylase (LSD) genes and methylated fragments like ubiquitin E2 enzyme genes in the development of drought tolerance. These results suggested the specific roles of DNA methylation in development of drought tolerance in wheat landrace.
Collapse
Affiliation(s)
- Salehe Naderi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| | - Leila Sadeghi
- Seed and Plant Certification and Registration Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31368-63111, Karaj, Iran
| | - Aidin Hamidi
- Seed and Plant Certification and Registration Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31368-63111, Karaj, Iran
| |
Collapse
|
3
|
Türkoğlu A, Haliloğlu K, Demirel F, Aydin M, Çiçek S, Yiğider E, Demirel S, Piekutowska M, Szulc P, Niedbała G. Machine Learning Analysis of the Impact of Silver Nitrate and Silver Nanoparticles on Wheat ( Triticum aestivum L.): Callus Induction, Plant Regeneration, and DNA Methylation. PLANTS (BASEL, SWITZERLAND) 2023; 12:4151. [PMID: 38140479 PMCID: PMC10747064 DOI: 10.3390/plants12244151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
The objective of this study was to comprehend the efficiency of wheat regeneration, callus induction, and DNA methylation through the application of mathematical frameworks and artificial intelligence (AI)-based models. This research aimed to explore the impact of treatments with AgNO3 and Ag-NPs on various parameters. The study specifically concentrated on analyzing RAPD profiles and modeling regeneration parameters. The treatments and molecular findings served as input variables in the modeling process. It included the use of AgNO3 and Ag-NPs at different concentrations (0, 2, 4, 6, and 8 mg L-1). The in vitro and epigenetic characteristics were analyzed using several machine learning (ML) methods, including support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), k-nearest neighbor classifier (KNN), and Gaussian processes classifier (GP) methods. This study's results revealed that the highest values for callus induction (CI%) and embryogenic callus induction (EC%) occurred at a concentration of 2 mg L-1 of Ag-NPs. Additionally, the regeneration efficiency (RE) parameter reached its peak at a concentration of 8 mg L-1 of AgNO3. Taking an epigenetic approach, AgNO3 at a concentration of 2 mg L-1 demonstrated the highest levels of genomic template stability (GTS), at 79.3%. There was a positive correlation seen between increased levels of AgNO3 and DNA hypermethylation. Conversely, elevated levels of Ag-NPs were associated with DNA hypomethylation. The models were used to estimate the relationships between the input elements, including treatments, concentration, GTS rates, and Msp I and Hpa II polymorphism, and the in vitro output parameters. The findings suggested that the XGBoost model exhibited superior performance scores for callus induction (CI), as evidenced by an R2 score of 51.5%, which explained the variances. Additionally, the RF model explained 71.9% of the total variance and showed superior efficacy in terms of EC%. Furthermore, the GP model, which provided the most robust statistics for RE, yielded an R2 value of 52.5%, signifying its ability to account for a substantial portion of the total variance present in the data. This study exemplifies the application of various machine learning models in the cultivation of mature wheat embryos under the influence of treatments and concentrations involving AgNO3 and Ag-NPs.
Collapse
Affiliation(s)
- Aras Türkoğlu
- Department of Field Crops, Faculty of Agriculture, Necmettin Erbakan University, Konya 42310, Türkiye
| | - Kamil Haliloğlu
- Department of Field Crops, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye;
| | - Fatih Demirel
- Department of Agricultural Biotechnology, Faculty of Agriculture, Igdır University, Igdir 76000, Türkiye;
| | - Murat Aydin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye; (M.A.); (S.Ç.); (E.Y.)
| | - Semra Çiçek
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye; (M.A.); (S.Ç.); (E.Y.)
| | - Esma Yiğider
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye; (M.A.); (S.Ç.); (E.Y.)
| | - Serap Demirel
- Department of Molecular Biology and Genetics, Faculty of Science, Van Yüzüncü Yıl University, Van 65080, Türkiye;
| | - Magdalena Piekutowska
- Department of Geoecology and Geoinformation, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, 27 Partyzantów St., 76-200 Słupsk, Poland;
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
| |
Collapse
|
4
|
Effects of Zinc, Copper and Iron Oxide Nanoparticles on Induced DNA Methylation, Genomic Instability and LTR Retrotransposon Polymorphism in Wheat (Triticum aestivum L.). PLANTS 2022; 11:plants11172193. [PMID: 36079574 PMCID: PMC9460560 DOI: 10.3390/plants11172193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
Nanomaterials with unique and diverse physico-chemical properties are used in plant science since they improve plant growth and development and offer protection against biotic and abiotic stressors. Previous studies have explored the effects of such nanomaterials on different plant mechanisms, but information about the effects of nanomaterials on induced DNA methylation, genomic instability and LTR retrotransposon polymorphism in wheat is lacking. Therefore, the present study highlights the key role of nanoparticles in DNA methylation and polymorphism in wheat by investigating the effects of ZnO, CuO and γ-Fe3O4 nanoparticles (NPs) on mature embryo cultures of wheat (Triticum aestivum L.). Nanoparticles were supplemented with Murashige and Skoog (MS) basal medium at normal (1X), double (2X) and triple (3X) concentrations. The findings revealed different responses to the polymorphism rate depending on the nanoparticle type and concentration. Genomic template stability (GTS) values were used to compare the changes encountered in iPBS profiles. ZnO, CuO and γ-Fe3O4 NPs increased the polymorphism rate and cytosine methylation compared to the positive control while reducing GTS values. Moreover, non-γ-Fe3O4 NPs treatments and 2X ZnO and CuO NP treatments yielded higher polymorphism percentages in both MspI- and HpaII-digested CRED-iPBS assays and were thus classified as hypermethylation when the average polymorphism percentage for MspI digestion was considered. On the other hand, the 3X concentrations of all nanoparticles decreased HpaII and MspI polymorphism percentages and were thus classified as hypomethylation. The findings revealed that MS medium supplemented with nanoparticles had epigenetic and genotoxic effects.
Collapse
|
5
|
Tini F, Beccari G, Marconi G, Porceddu A, Sulyok M, Gardiner DM, Albertini E, Covarelli L. Identification of Putative Virulence Genes by DNA Methylation Studies in the Cereal Pathogen Fusarium graminearum. Cells 2021; 10:cells10051192. [PMID: 34068122 PMCID: PMC8152758 DOI: 10.3390/cells10051192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 01/17/2023] Open
Abstract
DNA methylation mediates organisms’ adaptations to environmental changes in a wide range of species. We investigated if a such a strategy is also adopted by Fusarium graminearum in regulating virulence toward its natural hosts. A virulent strain of this fungus was consecutively sub-cultured for 50 times (once a week) on potato dextrose agar. To assess the effect of subculturing on virulence, wheat seedlings and heads (cv. A416) were inoculated with subcultures (SC) 1, 23, and 50. SC50 was also used to re-infect (three times) wheat heads (SC50×3) to restore virulence. In vitro conidia production, colonies growth and secondary metabolites production were also determined for SC1, SC23, SC50, and SC50×3. Seedling stem base and head assays revealed a virulence decline of all subcultures, whereas virulence was restored in SC50×3. The same trend was observed in conidia production. The DNA isolated from SC50 and SC50×3 was subject to a methylation content-sensitive enzyme and double-digest, restriction-site-associated DNA technique (ddRAD-MCSeEd). DNA methylation analysis indicated 1024 genes, whose methylation levels changed in response to the inoculation on a healthy host after subculturing. Several of these genes are already known to be involved in virulence by functional analysis. These results demonstrate that the physiological shifts following sub-culturing have an impact on genomic DNA methylation levels and suggest that the ddRAD-MCSeEd approach can be an important tool for detecting genes potentially related to fungal virulence.
Collapse
Affiliation(s)
- Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Gianpiero Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
- Correspondence:
| | - Andrea Porceddu
- Department of Agriculture, University of Sassari, Viale Italia, 39a, 07100 Sassari, Italy;
| | - Micheal Sulyok
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Applied Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse, 20, A-3430 Tulln, Austria;
| | - Donald M. Gardiner
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, 306 Carmody Road, St Lucia, QLD 4067, Australia;
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| |
Collapse
|
6
|
Cascales J, Acevedo RM, Paiva DI, Gottlieb AM. Differential DNA methylation and gene expression during development of reproductive and vegetative organs in Ilex species. JOURNAL OF PLANT RESEARCH 2021; 134:559-575. [PMID: 33759060 DOI: 10.1007/s10265-021-01279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Differential epigenetic (DNA cytosine methylation) and gene expression patterns were investigated in reproductive and vegetative organs from Ilex paraguariensis and I. dumosa, at distinct developmental stages. We aimed at contributing towards elucidating major molecular changes underlying the sexual differentiation processes which, in these dioecious species, are completely unknown. Simultaneously, as a first step towards the development of an early sexing system, we searched for promising molecular markers. This was assessed through Methylation Sensitive Amplified Polymorphism (MSAP) and Amplified Fragment Length Polymorphism on cDNA (cDNA-AFLP) techniques, applying discriminant multivariate analyses, and bioinformatic characterization of differential fragments. A significant positive correlation was found between epigenetic and indirect 'genetic' information for both species, indicating influence of the genetic background on the epigenetic variation. Higher epigenetic than genetic diversities were estimated. Our outcomes showed up to 1.86 times more representation of mCG subepiloci than mCCG in all organs sampled. Along the maturing stages of floral buds, the frequency of mCG evidenced an incremental trend, whereas mCCG and unmethylated conditions showed opposite tendencies. Reproductive and vegetative samples tended to cluster apart based on epigenetic patterns; at gene expression level, organs exhibited clear-cut distinctive patterns, nonetheless profiles of young leaves and floral primordia resemble. Epigenetic and expression data allowed discrimination of I. dumosa´s samples according to the gender of the donor; more elusive patterns were observed for I. paraguariensis. In total, 102 differentially methylated and expressed fragments were characterized bioinformatically. Forty-three were annotated in various functional categories; four candidate markers were validated through qPCR, finding statistical differences among organs but not among sexes. The methylation condition of epilocus C13m33 appears as indicative of gender in both species. Thirty-three organ-specific and 34 gender-specific methylated markers were discriminated and deserve further research, particularly those expressed in leaves. Our study contributes concrete candidate markers with potential for practical application.
Collapse
Affiliation(s)
- Jimena Cascales
- Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA, CONICET-UBA), Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Ciudad Universitaria, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Raúl Maximiliano Acevedo
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Facultad de Ciencias Agrarias, Instituto de Botánica del Nordeste (IBONE, UNNE-CONICET), Universidad Nacional del Nordeste, Sargento Juan Bautista Cabral 2131, Corrientes, W3402BKG, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Daniela Ivana Paiva
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Montecarlo (INTA EEA Montecarlo), Av. El Libertador 2472, Misiones, N3384, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Alexandra Marina Gottlieb
- Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA, CONICET-UBA), Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Ciudad Universitaria, C1428EHA, Ciudad Autónoma de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina.
| |
Collapse
|
7
|
Yu J, Xu F, Wei Z, Zhang X, Chen T, Pu L. Epigenomic landscape and epigenetic regulation in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1467-1489. [PMID: 31965233 DOI: 10.1007/s00122-020-03549-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/14/2020] [Indexed: 05/12/2023]
Abstract
Epigenetic regulation has been implicated in the control of multiple agronomic traits in maize. Here, we review current advances in our understanding of epigenetic regulation, which has great potential for improving agronomic traits and the environmental adaptability of crops. Epigenetic regulation plays vital role in the control of complex agronomic traits. Epigenetic variation could contribute to phenotypic diversity and can be used to improve the quality and productivity of crops. Maize (Zea mays L.), one of the most widely cultivated crops for human food, animal feed, and ethanol biofuel, is a model plant for genetic studies. Recent advances in high-throughput sequencing technology have made possible the study of epigenetic regulation in maize on a genome-wide scale. In this review, we discuss recent epigenetic studies in maize many achieved by Chinese research groups. These studies have explored the roles of DNA methylation, posttranslational modifications of histones, chromatin remodeling, and noncoding RNAs in the regulation of gene expression in plant development and environment response. We also provide our future prospects for manipulating epigenetic regulation to improve crops.
Collapse
Affiliation(s)
- Jia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziwei Wei
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiangxiang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
8
|
Li S, Liu X, Liu H, Zhang X, Ye Q, Zhang H. Induction, identification and genetics analysis of tetraploid Actinidia chinensis. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191052. [PMID: 31827844 PMCID: PMC6894549 DOI: 10.1098/rsos.191052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/16/2019] [Indexed: 05/30/2023]
Abstract
Actinidia chinensis is a commercially important fruit, and tetraploid breeding of A. chinensis is of great significance for economic benefit. In order to obtain elite tetraploid cultivars, tetraploid plants were induced by colchicine treatment with leaves of diploid A. chinensis 'SWFU03'. The results showed that the best treatment was dipping leaves 30 h in 60 mg l-1 colchicine solutions, with induction rate reaching 26%. Four methods, including external morphology comparison, stomatal guard cell observation, chromosome number observation and flow cytometry analysis were used to identify the tetraploid of A. chinensis. Using the induction system and flow cytometry analysis methods, 187 tetraploid plants were identified. Three randomly selected tetraploid plants and their starting diploid plants were further subjected to transcriptome analysis, real-time quantitative polymerase chain reaction (RT-qPCR) and methylation-sensitive amplification polymorphism (MSAP) analysis. The transcriptome analysis results showed that there were a total of 2230 differentially expressed genes (DEG) between the diploid and tetraploid plants, of which 660 were downregulated and 1570 upregulated. The DEGs were mainly the genes involved in growth and development, stress resistance and antibacterial ability in plants. RT-qPCR results showed that the gene expression levels of the growth and stress resistance of tetraploid plants were higher than those of diploid ones at the transcriptome level. MSAP analysis of DNA methylation results showed that tetraploid plants had lower methylation ratio than diploid ones. The present results were valuable to further explore the epigenetics of diploid and tetraploid kiwifruit plants.
Collapse
Affiliation(s)
- Shengxing Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Xiaozhen Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Huiming Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Xianang Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Qinxia Ye
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forest Administration, Southwest Forestry University, Kunming, Yunnan Province, 650224, People's Republic of China
| |
Collapse
|
9
|
Xin C, Chi J, Zhao Y, He Y, Guo J. Cadmium stress alters cytosine methylation status and expression of a select set of genes in Nicotiana benthamiana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:16-24. [PMID: 31084868 DOI: 10.1016/j.plantsci.2019.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 05/14/2023]
Abstract
In this paper, we evaluated the genotoxicity of cadmium (Cd) in plants by performing a methylation-sensitive amplification polymorphism (MSAP) on the model plant Nicotiana benthamiana. Among 255 loci examined, 14 genes were found to show altered cytosine methylation patterns in response to Cd stress. Four of those genes (NbMORC3, NbHGSNAT, NbMUT, and NbBG) were selected for further analysis due to their predicted roles in plant development. Cd-induced changes of cytosine methylation status in MSAP fragments of selected genes were confirmed using bisulfite sequencing polymerase chain reaction (BSP). In addition, the expression levels of these genes were found to correlate with cadmium dosage, and a knock-down of these four genes via virus-induced genes silencing (VIGS) led to abnormal development and elevated sensitivity to cadmium stress. Silencing of these four genes resulted in altered cadmium accumulation in different parts of the experimental plants. Our data indicate that cadmium exposure causes dramatic changes in the cytosine methylation status of the plant genome, thus affecting the expression of many genes that are vital for plant growth and are involved in cadmium stress response.
Collapse
Affiliation(s)
- Cuihua Xin
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Junling Chi
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yibo Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yindi He
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Jiangbo Guo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
| |
Collapse
|
10
|
Duan CG, Zhu JK, Cao X. Retrospective and perspective of plant epigenetics in China. J Genet Genomics 2018; 45:621-638. [PMID: 30455036 DOI: 10.1016/j.jgg.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 01/21/2023]
Abstract
Epigenetics refers to the study of heritable changes in gene function that do not involve changes in the DNA sequence. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors or be part of normal developmental program. In eukaryotes, DNA wraps on a histone octamer (two copies of H2A, H2B, H3 and H4) to form nucleosome, the fundamental unit of chromatin. The structure of chromatin is subjected to a dynamic regulation through multiple epigenetic mechanisms, including DNA methylation, histone posttranslational modifications (PTMs), chromatin remodeling and noncoding RNAs. As conserved regulatory mechanisms in gene expression, epigenetic mechanisms participate in almost all the important biological processes ranging from basal development to environmental response. Importantly, all of the major epigenetic mechanisms in mammalians also occur in plants. Plant studies have provided numerous important contributions to the epigenetic research. For example, gene imprinting, a mechanism of parental allele-specific gene expression, was firstly observed in maize; evidence of paramutation, an epigenetic phenomenon that one allele acts in a single locus to induce a heritable change in the other allele, was firstly reported in maize and tomato. Moreover, some unique epigenetic mechanisms have been evolved in plants. For example, the 24-nt siRNA-involved RNA-directed DNA methylation (RdDM) pathway is plant-specific because of the involvements of two plant-specific DNA-dependent RNA polymerases, Pol IV and Pol V. A thorough study of epigenetic mechanisms is of great significance to improve crop agronomic traits and environmental adaptability. In this review, we make a brief summary of important progress achieved in plant epigenetics field in China over the past several decades and give a brief outlook on future research prospects. We focus our review on DNA methylation and histone PTMs, the two most important aspects of epigenetic mechanisms.
Collapse
Affiliation(s)
- Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Gutiérrez-Velázquez MV, Almaraz-Abarca N, Herrera-Arrieta Y, Ávila-Reyes JA, González-Valdez LS, Torres-Ricario R, Uribe-Soto JN, Monreal-García HM. Comparison of the phenolic contents and epigenetic and genetic variability of wild and cultivated watercress ( Rorippa nasturtium var. aquaticum L.). ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Bhatia H, Khemka N, Jain M, Garg R. Genome-wide bisulphite-sequencing reveals organ-specific methylation patterns in chickpea. Sci Rep 2018; 8:9704. [PMID: 29946142 PMCID: PMC6018830 DOI: 10.1038/s41598-018-27979-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/30/2018] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is widely known to regulate gene expression in eukaryotes. Here, we unraveled DNA methylation patterns in cultivated chickpea to understand the regulation of gene expression in different organs. We analyzed the methylation pattern in leaf tissue of wild chickpea too, and compared it with cultivated chickpea. Our analysis indicated abundant CG methylation within gene-body and CHH methylation in intergenic regions of the chickpea genome in all the organs examined. Analysis of differentially methylated regions (DMRs) demonstrated a higher number of CG context DMRs in wild chickpea and CHH context DMRs in cultivated chickpea. We observed increased preponderance of hypermethylated DMRs in the promoter regions and hypomethylated DMRs in the genic regions in cultivated chickpea. Genomic location and context of the DMRs correlated well with expression of proximal genes. Our results put forth a positive correlation of promoter hypermethylation with increased transcript abundance via identification of DMR-associated genes involved in flower development in cultivated chickpea. The atypical correlation observed between promoter hypermethylation and increased transcript abundance might be dependent on 24-nt small RNAs and transcription factors binding to the promoter region. This study provides novel insights into DNA methylation patterns in chickpea and their role in regulation of gene expression.
Collapse
Affiliation(s)
- Himanshi Bhatia
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Niraj Khemka
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
13
|
Analysis of sulphur and chlorine induced DNA cytosine methylation alterations in fresh corn (Zea mays L. saccharata and rugosa) leaf tissues by methylation sensitive amplification polymorphism (MSAP) approach. Genes Genomics 2018; 40:913-925. [PMID: 30155706 DOI: 10.1007/s13258-018-0685-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/26/2018] [Indexed: 01/24/2023]
Abstract
DNA (cytosine) methylation mechanism is another way through which plants respond to various cues including soil fertility amendments and abiotic stresses, and the mechanism has been used to infer some physiological, biochemical or adaptation processes. Despite numerous studies on global DNA methylation profiling in various crop species, however, researches on fresh corn (Zea mays L. saccharata or rugosa) remain largely unreported. The study aimed at investigating sulphur and chlorine induced DNA methylation changes in the fresh corn leaves of field-grown plants at the milk stage. Methylation sensitive amplification polymorphism (MSAP) technique was used to profile sulphur (S) and chlorine (Cl) induced DNA methylation patterns, levels and polymorphism alterations at the CCGG sites in fresh corn leaves of TDN21, JKN2000 and JKN928 hybrid cultivars. Twelve primer pairs used effectively detected 325 MSAP bands, exhibiting differentially methylated sites in the genomic DNA of all the three cultivars, with control showing higher (48.9-56.3%) type I bands as compared to sulphur (34.8-44.9%) and chlorine (40.9-47.4%) treatment samples. Consequently, total methylation levels were greater in S and Cl treatment samples than control; accounting for 43.7-59.7, 51.1-65.2 and 46.8-55.1% of total sites in TDN21, JKN2000 and JKN928, respectively. Full methylation of the internal cytosine was greater than hemi-methylation. Further, demethylation polymorphic loci significantly exceeded methylation polymorphic loci, being greater in S than Cl and control samples in all cultivars. Sulphur and chlorine have a profound influence on DNA methylation patterns and levels at the milk stage, principally by increasing the demethylation loci in the internal cytosine of the fresh corn genome. We speculate that these methylation alterations play an integral role in photosynthates assimilation and physiochemical pathways regulating quality parameters in kernels, as well as abiotic stress responses in fresh corn.
Collapse
|
14
|
Monja-Mio KM, Quiroz-Moreno A, Herrera-Herrera G, Montero-Muñoz JL, Sánchez-Teyer F, Robert ML. Analysis of Two Clonal Lines (Embryogenic and Non-Embryogenic) of <i>Agave fourcroydes</i> Using AFLP and MSAP. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ajps.2018.94059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Yang C, Zhang Y, Liu W, Lu X, Li C. Genome-wide analysis of DNA methylation in five tissues of sika deer (Cervus nippon). Gene 2017; 645:48-54. [PMID: 29253609 DOI: 10.1016/j.gene.2017.12.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
DNA methylation plays an important role in regulating gene expression during tissue development and differentiation in eukaryotes. In contrast to domestic animals, epigenetic studies have been seldom conducted in wild animals. In the present study, we conducted the genome-wide profiling of DNA methylation for five tissues of sika deer using the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique. Overall, a total of 104,131 fragments were amplified including 41,951 methylated fragments using 32 pairs of selected primers. The average incidence of DNA methylation was approximately 38.18% in muscle, 40.32% in heart, 41.86% in liver, 41.20% in lung, and 41.68% in kidney, respectively. Also, the significant differences of the DNA methylation levels were found between the different tissue types (P<0.05), which indicates that the differences of genome-wide DNA methylation levels may be related to gene expression during tissue development and differentiation. In addition, 37 tissue-specific differentially methylated regions (T-DMRs) were identified and recovered by MSAP in five tissues, and were further confirmed by Southern blot analysis. Our study presents the first look at the T-DMRs in sika deer and represents an initial step towards understanding of epigenetic regulatory mechanism underlying tissue development and differentiation in sika deer.
Collapse
Affiliation(s)
- Chun Yang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, PR China; State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, PR China
| | - Yan Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, PR China
| | - Wenyuan Liu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, PR China; State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, PR China
| | - Xiao Lu
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, PR China; State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, PR China
| | - Chunyi Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, PR China; State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, PR China.
| |
Collapse
|
16
|
Baldanzi S, Watson R, McQuaid CD, Gouws G, Porri F. Epigenetic variation among natural populations of the South African sandhopper Talorchestia capensis. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9877-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Kellenberger RT, Schlüter PM, Schiestl FP. Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa. PLoS One 2016; 11:e0166646. [PMID: 27870873 PMCID: PMC5117703 DOI: 10.1371/journal.pone.0166646] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022] Open
Abstract
Plants have to fine-tune their signals to optimise the trade-off between herbivore deterrence and pollinator attraction. An important mechanism in mediating plant-insect interactions is the regulation of gene expression via DNA methylation. However, the effect of herbivore-induced DNA methylation changes on pollinator-relevant plant signalling has not been systematically investigated. Here, we assessed the impact of foliar herbivory on DNA methylation and floral traits in the model crop plant Brassica rapa. Methylation-sensitive amplified fragment length polymorphism (MSAP) analysis showed that leaf damage by the caterpillar Pieris brassicae was associated with genome-wide methylation changes in both leaves and flowers of B. rapa as well as a downturn in flower number, morphology and scent. A comparison to plants with jasmonic acid-induced defence showed similar demethylation patterns in leaves, but both the floral methylome and phenotype differed significantly from P. brassicae infested plants. Standardised genome-wide demethylation with 5-azacytidine in five different B. rapa full-sib groups further resulted in a genotype-specific downturn of floral morphology and scent, which significantly reduced the attractiveness of the plants to the pollinator bee Bombus terrestris. These results suggest that DNA methylation plays an important role in adjusting plant signalling in response to changing insect communities.
Collapse
Affiliation(s)
- Roman T. Kellenberger
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Philipp M. Schlüter
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Florian P. Schiestl
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Comparison of molecular genetic utilities of TD, AFLP, and MSAP among the accessions of japonica, indica, and Tongil of Oryza sativa L. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Rakei A, Maali-Amiri R, Zeinali H, Ranjbar M. DNA methylation and physio-biochemical analysis of chickpea in response to cold stress. PROTOPLASMA 2016; 253:61-76. [PMID: 25820678 DOI: 10.1007/s00709-015-0788-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/27/2015] [Indexed: 05/27/2023]
Abstract
Cold stress (CS) signals are translated into physiological changes as products of direct and/or indirect of gene expression regulated by different factors like DNA methylation. In this study, some of these factors were comparatively studied in two chickpea (Cicer arietinum L.) genotypes (Sel96Th11439, cold-tolerant genotype, and ILC533, cold susceptible one) under control (23 °C) and days 1, 3, and 6 after exposing the seedlings to CS (4 °C). Under CS, tolerant genotype prevented H2O2 accumulation which led to a decrease in damage indices (malondialdehyde and electrolyte leakage index) compared to susceptible one. The significant activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and polyphenol oxidase) along with a significant proportion of change in DNA methylation/demethylation patterns were often effective factors in preserving cell against cold-induced oxidative stress. Chickpea cells in response to CS changed access to their genome as the number of bands without change from day 1 to day 6 of exposure to CS particularly in tolerant genotype was decreased. During CS, the methylation level was higher compared to demethylation (29.05 vs 19.79 %) in tolerant genotype and (27.92 vs 22.09 %) in susceptible one. However, for prolonged periods of CS, changes in demethylated bands in tolerant genotype were higher than that of in susceptible one (9.24 vs 4.13 %), indicating higher potential for activation of CS responsive genes. Such a status along with higher activity of antioxidants and less damage indices could be related to cold tolerance (CT) mechanisms in chickpea. Sequencing analysis confirmed the important role of some specific DNA sequences in creating CT with possible responsive components involved in CS. Thus, dynamic assessment using multi-dimensional approaches allows us to progressively fill in the gaps between physio-biochemical and molecular events in creating CT, to comprehend better the nature of the plant stress response and molecular mechanisms behind.
Collapse
Affiliation(s)
- Aida Rakei
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran.
| | - Hassan Zeinali
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, 46168-49767, Iran
| |
Collapse
|
20
|
|
21
|
Li Z, Liu Z, Chen R, Li X, Tai P, Gong Z, Jia C, Liu W. DNA damage and genetic methylation changes caused by Cd in Arabidopsis thaliana seedlings. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2095-103. [PMID: 25914311 DOI: 10.1002/etc.3033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 03/25/2015] [Accepted: 04/19/2015] [Indexed: 05/05/2023]
Abstract
Amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MASP) techniques are sensitive to deoxyribonucleic acid (DNA) damage and genetic methylation, respectively. Using these 2 techniques, Arabidopsis thaliana cultured with 0 mg/L (control), 0.5 mg/L, 1.5 mg/L, and 5.0 mg/L Cd(2+) for 16 d was used to analyze the DNA damage and methylation changes as a result of cadmium (Cd). The DNA was amplified by 14 AFLP primer pairs and 13 MSAP primer combinations. In the AFLP experiment, 62 polymorphic sites were found in the patterns of 11 primer combinations and a total of 1116 fragments were obtained in these patterns. There were no polymorphic bands in the remaining 3 pairs. The proportions of polymorphic sites in the 0.5-mg/L Cd(2+) and 5.0-mg/L Cd(2+) treatments were significantly different. Seven polymorphic fragments were then separated and successfully sequenced, yielding 6 nucleobase substitutions and 1 nucleobase deletion. Similarly, in the MSAP experiment, the MSAP% and number of demethylated-type bands were unchanged after Cd treatment, but the number of methylated-type bands was increased significantly in the 5.0-mg/L Cd(2+) treatment group, a finding that may be associated with the AFLP results. The polymorphic bands were also sequenced and the functions of their homologous genes were determined. The DNA damage and methylation changes may be the primary cause of certain pathology changes as a result of Cd uptake in plants.
Collapse
Affiliation(s)
- Zhaoling Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zhihong Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Life and Environmental, Deakin University, Warrnambool, Victoria, Australia
| | - Ruijuan Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Peidong Tai
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Zongqiang Gong
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Chunyun Jia
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Wan Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| |
Collapse
|
22
|
Michalak M, Plitta-Michalak BP, Naskręt-Barciszewska M, Barciszewski J, Bujarska-Borkowska B, Chmielarz P. Global 5-methylcytosine alterations in DNA during ageing of Quercus robur seeds. ANNALS OF BOTANY 2015; 116:369-76. [PMID: 26133690 PMCID: PMC4549962 DOI: 10.1093/aob/mcv104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/21/2015] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Epigenetic regulation plays an important role in the management of plant growth, development and response to stress factors, and several reports have indicated that DNA methylation plays a critical role in seed development and viability. This study examines changes in 5-methylcytosine (m(5)C) levels in the DNA of seeds during ageing, a process that has important implications for plant conservation and agriculture. METHODS Changes in the global level of m(5)C were measured in mature seeds of oak, Quercus robur. The extent of DNA methylation was measured using a protocol based on two-dimensional thin-layer chromatography. Viability of seeds was determined by germination and seedling emergence tests. KEY RESULTS An ageing-related decrease in total m(5)C during storage of recalcitrant seeds was highly and significantly correlated with a decrease in seed viability, as reflected by a reduction in germination (r = 0·8880) and seedling emergence (r = 0·8269). CONCLUSIONS The decrease in viability during ageing of Q. robur seeds is highly correlated with a global decline in the amount of m(5)C in genomic DNA, and it is possible that this may represent a typical response to ageing and senescence in recalcitrant seeds. Potential mechanisms that drive changes in genomic DNA methylation during ageing are discussed, together with their implications for seed viability.
Collapse
Affiliation(s)
- Marcin Michalak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland and
| | | | | | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | - Paweł Chmielarz
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland and
| |
Collapse
|
23
|
Wang W, Huang F, Qin Q, Zhao X, Li Z, Fu B. Comparative analysis of DNA methylation changes in two rice genotypes under salt stress and subsequent recovery. Biochem Biophys Res Commun 2015; 465:790-6. [PMID: 26319557 DOI: 10.1016/j.bbrc.2015.08.089] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023]
Abstract
DNA methylation, which is one of the best understood epigenetic phenomena, plays an important role in plant responses to environmental stimuli. The rice introgression line IL177-103 and its recurrent parent IR64, which show contrasting salt stress tolerance, were used to characterize DNA methylation changes under salt stress and subsequent recovery using methylation-sensitive amplified polymorphism (MSAP) analysis. The introgression line IL177-103 showed significantly improved tolerance to salinity, as represented by higher relative water content, endogenous abscisic acid content, activity of reactive oxygen species scavenging enzymes, and lower Na(+) concentration in shoots, compared with IR64. The MSAP results showed that less than 10.5% of detected DNA methylation sites were genotype specific, in line with their similar genetic background. Salt-induced DNA methylation changes in both genotypes were mostly detected in roots, and the major portion of the salt-induced DNA demethylation/methylation alterations remained even after recovery, implying their inheritance in the present generation. Furthermore, a few sites with stable DNA methylation differences were identified between salt-tolerant IL177-103 and salt-sensitive IR64, thus providing genotype-specific epigenetic markers. Collectively, these results provide valuable data for further dissection of the molecular mechanisms of salt-stress response and tolerance in rice.
Collapse
Affiliation(s)
- Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Fei Huang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Qiao Qin
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Shenzhen Institute of Breeding and Innovation, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
24
|
Li Y, Huang X, Guan Y, Shi Y, Zhang H, He M. DNA methylation is associated with expression level changes of galectin gene in mantle wound healing process of pearl oyster, Pinctada fucata. FISH & SHELLFISH IMMUNOLOGY 2015; 45:912-918. [PMID: 26093206 DOI: 10.1016/j.fsi.2015.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/07/2015] [Accepted: 06/13/2015] [Indexed: 06/04/2023]
Abstract
Galectin is one important member of pattern recognition proteins that plays a pivotal role in regulating innate immune response of invertebrates. In this study, we cloned the promoter sequence of a tandem-repeat galectin from the pearl oyster Pinctada fucata (P. fucata). The quantitative real-time PCR analysis revealed that galectin mRNA expression in mantle tissues were firstly up-regulated from time points of 2 h-24 h, and then down-regulated from time points of 24 h-168 h after mantle injury. The genome methylation level of mantle tissue was inversely related to galectin mRNA expression (Pearson correlation: -0.554, P: 0.154). The "CpG4-6" methylation level in promoter region of galectin was significant positive correlated with the mRNA expression (Pearson correlation: 0.313, P: 0.049). The results indicated that galectin gene may be involved in immune response in mantle wound healing process of P. fucata, and DNA methylation may be a regulation factor of gene expression.
Collapse
Affiliation(s)
- Yaoguo Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiande Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yunyan Guan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
25
|
Erturk FA, Agar G, Arslan E, Nardemir G. Analysis of genetic and epigenetic effects of maize seeds in response to heavy metal (Zn) stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10291-7. [PMID: 25703614 DOI: 10.1007/s11356-014-3886-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/18/2014] [Indexed: 04/16/2023]
Abstract
Conditions of environmental stress are known to lead genetic and epigenetic variability in plants. DNA methylation is one of the important epigenetic mechanisms and plays a critical role in epigenetic control of gene expression. Thus, the aim of the study was to investigate the alteration of genome methylation induced by zinc stress by using coupled restriction enzyme digestion-random amplification (CRED-RA) technique in maize (Zea mays L.) seedlings. In addition, to determine the effect of zinc on mitotic activity and phytohormone level, high-pressure liquid chromatography (HPLC) and mitotic index analysis were utilized. According to the results, mitotic index decreased in all concentrations of zinc except for 5 mM dose and chromosome aberrations such as c-mitosis, stickiness, and anaphase bridges were determined. It was also observed that increasing concentrations of zinc caused an increase in methylation patterns and decrease in gibberellic acid (GA), zeatin (ZA), and indole acetic acid (IAA) levels in contrast to abscisic acid (ABA) level. Especially increasing of ABA levels under zinc stress may be a part of the defense system against heavy metal accumulation in plants.
Collapse
Affiliation(s)
- Filiz Aygun Erturk
- Department of Molecular Biology and Genetic, Faculty of Science, Avrasya University, Trabzon, Turkey
| | | | | | | |
Collapse
|
26
|
Ferreira LJ, Azevedo V, Maroco J, Oliveira MM, Santos AP. Salt Tolerant and Sensitive Rice Varieties Display Differential Methylome Flexibility under Salt Stress. PLoS One 2015; 10:e0124060. [PMID: 25932633 PMCID: PMC4416925 DOI: 10.1371/journal.pone.0124060] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/28/2015] [Indexed: 01/20/2023] Open
Abstract
DNA methylation has been referred as an important player in plant genomic responses to environmental stresses but correlations between the methylome plasticity and specific traits of interest are still far from being understood. In this study, we inspected global DNA methylation levels in salt tolerant and sensitive rice varieties upon salt stress imposition. Global DNA methylation was quantified using the 5-methylcytosine (5mC) antibody and an ELISA-based technique, which is an affordable and quite pioneer assay in plants, and in situ imaging of methylation sites in interphase nuclei of tissue sections. Variations of global DNA methylation levels in response to salt stress were tissue- and genotype-dependent. We show a connection between a higher ability of DNA methylation adjustment levels and salt stress tolerance. The salt-tolerant rice variety Pokkali was remarkable in its ability to quickly relax DNA methylation in response to salt stress. In spite of the same tendency for reduction of global methylation under salinity, in the salt-sensitive rice variety IR29 such reduction was not statistically supported. In 'Pokkali', the salt stress-induced demethylation may be linked to active demethylation due to increased expression of DNA demethylases under salt stress. In 'IR29', the induction of both DNA demethylases and methyltransferases may explain the lower plasticity of DNA methylation. We further show that mutations for epigenetic regulators affected specific phenotypic parameters related to salinity tolerance, such as the root length and biomass. This work emphasizes the role of differential methylome flexibility between salt tolerant and salt sensitive rice varieties as an important player in salt stress tolerance, reinforcing the need to better understand the connection between epigenetic networks and plant responses to environmental stresses.
Collapse
Affiliation(s)
- Liliana J. Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress. Av. da República, 2780–157 Oeiras, Portugal
| | - Vanessa Azevedo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress. Av. da República, 2780–157 Oeiras, Portugal
| | - João Maroco
- UIPES, ISPA-Instituto Universitário, Lisbon, Portugal
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress. Av. da República, 2780–157 Oeiras, Portugal
| | - Ana Paula Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress. Av. da República, 2780–157 Oeiras, Portugal
| |
Collapse
|
27
|
Inheritance and variation of Cytosine methylation in three populus allotriploid populations with different heterozygosity. PLoS One 2015; 10:e0126491. [PMID: 25901359 PMCID: PMC4406749 DOI: 10.1371/journal.pone.0126491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 04/02/2015] [Indexed: 11/19/2022] Open
Abstract
DNA methylation is an epigenetic mechanism with the potential to regulate gene expression and affect plant phenotypes. Both hybridization and genome doubling may affect the DNA methylation status of newly formed allopolyploid plants. Previous studies demonstrated that changes in cytosine methylation levels and patterns were different among individual hybrid plant, therefore, studies investigating the characteristics of variation in cytosine methylation status must be conducted at the population level to avoid sampling error. In the present study, an F1 hybrid diploid population and three allotriploid populations with different heterozygosity [originating from first-division restitution (FDR), second-division restitution (SDR), and post-meiotic restitution (PMR) 2n eggs of the same female parent] were used to investigate cytosine methylation inheritance and variation relative to their common parents using methylation-sensitive amplification polymorphism (MSAP). The variation in cytosine methylation in individuals in each population exhibited substantial differences, confirming the necessity of population epigenetics. The total methylation levels of the diploid population were significantly higher than in the parents, but those of the three allotriploid populations were significantly lower than in the parents, indicating that both hybridization and polyploidization contributed to cytosine methylation variation. The vast majority of methylated status could be inherited from the parents, and the average percentages of non-additive variation were 6.29, 3.27, 5.49 and 5.07% in the diploid, FDR, SDR and PMR progeny populations, respectively. This study lays a foundation for further research on population epigenetics in allopolyploids.
Collapse
|
28
|
Wang P, Xia H, Zhang Y, Zhao S, Zhao C, Hou L, Li C, Li A, Ma C, Wang X. Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across embryo and endosperm in Maize (Zea may). BMC Genomics 2015; 16:21. [PMID: 25612809 PMCID: PMC4316406 DOI: 10.1186/s12864-014-1204-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/24/2014] [Indexed: 12/26/2022] Open
Abstract
Background Epigenetic modifications play important roles in plant and animal development. DNA methylation impacts the transposable element (TE) silencing, gene imprinting and expression regulation. Results Through a genome-wide analysis, DNA methylation peaks were characterized and mapped in maize embryo and endosperm genome, respectively. Distinct methylation level was observed across maize embryo and endosperm. The maize embryo genome contained more DNA methylation than endosperm. Totally, 985,478 CG islands (CGIs) were identified and most of them were unmethylated. More CGI shores were methylated than CGIs in maize suggested that DNA methylation level was not positively correlated with CpG density. The promoter sequence and transcriptional termination region (TTR) were more methylated than the gene body (intron and exon) region based on peak number and methylated depth. Result showed that 99% TEs were methylated in maize embryo, but a large portion of them (34.8%) were not methylated in endosperm. Maize embryo and endosperm exhibit distinct pattern/level of methylation. The most differentially methylated region between embryo and endosperm are CGI shores. Our results indicated that DNA methylation is associated with both gene silencing and gene activation in maize. Many genes involved in embryogenesis and seed development were found differentially methylated in embryo and endosperm. We found 41.5% imprinting genes were similarly methylated and 58.5% imprinting genes were differentially methylated between embryo and endosperm. Methylation level was associated with allelic silencing of only a small number of imprinting genes. The expression of maize DEMETER-like (DME-like) gene and MBD101 gene (MBD4 homolog) were higher in endosperm than in embryo. These two genes may be associated with distinct methylation levels across maize embryo and endosperm. Conclusions Through MeDIP-seq we systematically analyzed the methylomes of maize embryo and endosperm and results indicated that the global methylation status of embryo was more than that of the endosperm. Differences could be observed at the total number of methylation peaks, DMRs and specific methylated genes which were tightly associated with development of embryo and endosperm. Our results also revealed that many DNA methylation regions didn’t affect transcription of the corresponding genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-014-1204-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengfei Wang
- Agricultural College, Anhui Agricultural University, Hefei, 230036, PR China. .,Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Han Xia
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Ye Zhang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Shuzhen Zhao
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Chuanzhi Zhao
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Lei Hou
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Changsheng Li
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Aiqin Li
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| | - Chuanxi Ma
- Agricultural College, Anhui Agricultural University, Hefei, 230036, PR China.
| | - Xingjun Wang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, PR China.
| |
Collapse
|
29
|
Analysis of DNA methylation in tissues and development stages of pearl oyster Pinctada fucata. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0246-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Liu TJ, Sun LF, Shan XH, Wu Y, Su SZ, Li SP, Liu HK, Han JY, Yuan YP. Analysis of DNA methylation patterns and levels in maize hybrids and their parents. GENETICS AND MOLECULAR RESEARCH : GMR 2014. [PMID: 25366740 DOI: 10.1007/s10535-015-0490-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Heterosis is the superior performance of heterozygous individuals and has been widely exploited in plant breeding, although the underlying regulatory mechanisms still remain largely elusive. To understand the molecular basis of heterosis in maize, in this study, roots and leaves at the seedling stage and embryos and endosperm tissues 15 days after fertilization of 2 elite hybrids and their parental lines were used to estimate the levels and patterns of cytosine methylation by the methylation-sensitive amplification polymorphism method. The relative total methylation levels were lower in all the tissues of all hybrids than their corresponding mid-parent values, and the number of demethylation events was higher in the hybrids. These results implied that the decreasing trend and demethylation in hybrids relative to their parents may enable the derepression and possibly expression of many genes that were associated with the phenotypic variation in hybrids. To further analyze the observed methylation pattern changes, a total of 63 differentially displayed DNA fragments were successfully sequenced. Basic Local Alignment Search Tool analysis showed that 11 fragments shared similarity with known functional proteins in maize or other plant species, including metabolism, transposon/retrotransposon, development, stress response, and signal transduction, which indicated that these genes might play a significant role in maize hybrid vigor.
Collapse
Affiliation(s)
- T J Liu
- College of Plant Science, Jilin University, Changchun, China
| | - L F Sun
- College of Plant Science, Jilin University, Changchun, China
| | - X H Shan
- College of Plant Science, Jilin University, Changchun, China
| | - Y Wu
- College of Plant Science, Jilin University, Changchun, China
| | - S Z Su
- College of Plant Science, Jilin University, Changchun, China
| | - S P Li
- College of Plant Science, Jilin University, Changchun, China
| | - H K Liu
- College of Plant Science, Jilin University, Changchun, China
| | - J Y Han
- College of Plant Science, Jilin University, Changchun, China
| | - Y P Yuan
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
31
|
Jiao J, Jia Y, Lv Z, Sun C, Gao L, Yan X, Cui L, Tang Z, Yan B. Analysis of methylated patterns and quality-related genes in tobacco (Nicotiana tabacum) cultivars. Biochem Genet 2014; 52:372-86. [PMID: 24816541 DOI: 10.1007/s10528-014-9654-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
Methylation-sensitive amplified polymorphism was used in this study to investigate epigenetic information of four tobacco cultivars: Yunyan 85, NC89, K326, and Yunyan 87. The DNA fragments with methylated information were cloned by reamplified PCR and sequenced. The results of Blast alignments showed that the genes with methylation information included chitinase, nitrate reductase, chloroplast DNA, mitochondrial DNA, ornithine decarboxylase, ribulose carboxylase, and promoter sequences. Homologous comparison in three cloned gene sequences (nitrate reductase, ornithine decarboxylase, and ribulose decarboxylase) indicated that geographic factors had significant influence on the whole genome methylation. Introns also contained different information in different tobacco cultivars. These findings suggest that synthetic mechanisms for tobacco aromatic components could be affected by different environmental factors leading to variation of noncoding regions in the genome, which finally results in different fragrance and taste in different tobacco cultivars.
Collapse
Affiliation(s)
- Junna Jiao
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Roles, and establishment, maintenance and erasing of the epigenetic cytosine methylation marks in plants. J Genet 2014; 92:629-66. [PMID: 24371187 DOI: 10.1007/s12041-013-0273-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heritable information in plants consists of genomic information in DNA sequence and epigenetic information superimposed on DNA sequence. The latter is in the form of cytosine methylation at CG, CHG and CHH elements (where H = A, T orC) and a variety of histone modifications in nucleosomes. The epialleles arising from cytosine methylation marks on the nuclear genomic loci have better heritability than the epiallelic variation due to chromatin marks. Phenotypic variation is increased manifold by epiallele comprised methylomes. Plants (angiosperms) have highly conserved genetic mechanisms to establish, maintain or erase cytosine methylation from epialleles. The methylation marks in plants fluctuate according to the cell/tissue/organ in the vegetative and reproductive phases of plant life cycle. They also change according to environment. Epialleles arise by gain or loss of cytosine methylation marks on genes. The changes occur due to the imperfection of the processes that establish and maintain the marks and on account of spontaneous and stress imposed removal of marks. Cytosine methylation pattern acquired in response to abiotic or biotic stress is often inherited over one to several subsequent generations.Cytosine methylation marks affect physiological functions of plants via their effect(s) on gene expression levels. They also repress transposable elements that are abundantly present in plant genomes. The density of their distribution along chromosome lengths affects meiotic recombination rate, while their removal increases mutation rate. Transposon activation due to loss of methylation causes rearrangements such that new gene regulatory networks arise and genes for microRNAs may originate. Cytosine methylation dynamics contribute to evolutionary changes. This review presents and discusses the available evidence on origin, removal and roles of cytosine methylation and on related processes, such as RNA directed DNA methylation, imprinting, paramutation and transgenerational memory in plants.
Collapse
|
33
|
Kumari R, Sharma V, Sharma V, Kumar S. Pleiotropic phenotypes of the salt-tolerant and cytosine hypomethylated leafless inflorescence, evergreen dwarf and irregular leaf lamina mutants of Catharanthus roseus possessing Mendelian inheritance. J Genet 2014; 92:369-94. [PMID: 24371160 DOI: 10.1007/s12041-013-0271-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In Catharanthus roseus, three morphological cum salt-tolerant chemically induced mutants of Mendelian inheritance and their wild-type parent cv Nirmal were characterized for overall cytosine methylation at DNA repeats, expression of 119 protein coding and seven miRNA-coding genes and 50 quantitative traits. The mutants, named after their principal morphological feature(s), were leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill). The Southern-blot analysis of MspI digested DNAs of mutants probed with centromeric and 5S and 18S rDNA probes indicated that, in comparison to wild type, the mutants were extensively demethylated at cytosine sites. Among the 126 genes investigated for transcriptional expression, 85 were upregulated and 41 were downregulated in mutants. All of the five genes known to be stress responsive had increased expression in mutants. Several miRNA genes showed either increased or decreased expression in mutants. The C. roseus counterparts of CMT3, DRM2 and RDR2 were downregulated in mutants. Among the cell, organ and plant size, photosynthesis and metabolism related traits studied, 28 traits were similarly affected in mutants as compared to wild type. Each of the mutants also expressed some traits distinctively. The egd mutant possessed superior photosynthesis and water retention abilities. Biomass was hyperaccumulated in roots, stems, leaves and seeds of the lli mutant. The ill mutant was richest in the pharmaceutical alkaloids catharanthine, vindoline, vincristine and vinblastine. The nature of mutations, origins of mutant phenotypes and evolutionary importance of these mutants are discussed.
Collapse
Affiliation(s)
- Renu Kumari
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | | | | | | |
Collapse
|
34
|
HU N, SUI Y, CAI Y, FAN H, LIN Y. Effects of lanthanum on POD expression and DNA methylation of purple pepper under salt stress. J RARE EARTH 2014. [DOI: 10.1016/s1002-0721(14)60095-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Candaele J, Demuynck K, Mosoti D, Beemster GT, Inzé D, Nelissen H. Differential methylation during maize leaf growth targets developmentally regulated genes. PLANT PHYSIOLOGY 2014; 164:1350-64. [PMID: 24488968 PMCID: PMC3938625 DOI: 10.1104/pp.113.233312] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/28/2014] [Indexed: 05/20/2023]
Abstract
DNA methylation is an important and widespread epigenetic modification in plant genomes, mediated by DNA methyltransferases (DMTs). DNA methylation is known to play a role in genome protection, regulation of gene expression, and splicing and was previously associated with major developmental reprogramming in plants, such as vernalization and transition to flowering. Here, we show that DNA methylation also controls the growth processes of cell division and cell expansion within a growing organ. The maize (Zea mays) leaf offers a great tool to study growth processes, as the cells progressively move through the spatial gradient encompassing the division zone, transition zone, elongation zone, and mature zone. Opposite to de novo DMTs, the maintenance DMTs were transcriptionally regulated throughout the growth zone of the maize leaf, concomitant with differential CCGG methylation levels in the four zones. Surprisingly, the majority of differentially methylated sequences mapped on or close to gene bodies and not to repeat-rich loci. Moreover, especially the 5' and 3' regions of genes, which show overall low methylation levels, underwent differential methylation in a developmental context. Genes involved in processes such as chromatin remodeling, cell cycle progression, and growth regulation, were differentially methylated. The presence of differential methylation located upstream of the gene anticorrelated with transcript expression, while gene body differential methylation was unrelated to the expression level. These data indicate that DNA methylation is correlated with the decision to exit mitotic cell division and to enter cell expansion, which adds a new epigenetic level to the regulation of growth processes.
Collapse
|
36
|
Díaz-Freije E, Gestal C, Castellanos-Martínez S, Morán P. The role of DNA methylation on Octopus vulgaris development and their perspectives. Front Physiol 2014; 5:62. [PMID: 24605101 PMCID: PMC3932432 DOI: 10.3389/fphys.2014.00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/31/2014] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is a common regulator of gene expression and development in mammalian and other vertebrate genomes. DNA methylation has been studied so far in a few bivalve mollusk species, finding a wide spectrum of levels. We focused our study in the common octopus, Octopus vulgaris, an important organism for neuroscience, physiology and ethology research as well as for human consumption. We aim to confirm the existence of DNA methylation in O. vulgaris and ultimately, if methylation plays a role in gene regulation during octopus development. We used a genome-wide approach, methylation-sensitive amplified polymorphism (MSAP), firstly in four different tissues from the same specimens from adult benthonic individuals to test whether gene expression is regulated by methylation. Secondly, we tested the hypothesis that methylation underlies development by assessing MSAP patters from paralarvae to adult developmental stages. Our data indicate that octopus genome is widely methylated since clear differences can be observed, and the methylation pattern changes with the development. The statistical analyses showed significant differences in methylation pattern between paralarvae, where higher internal cytosine methylation is observed, and the three other post-hatching stages. This suggests an important role of cytosine methylation during the first step of development, when major morphological changes take place. However, methylation seems to have little effect on gene expression during the benthonic phase, since no significant effect was revealed in the analyses of molecular variance (AMOVA) performed. Our observations highlight the importance of epigenetic mechanisms in the first developmental steps of the common octopus and opens new perspectives to overcome high mortality rate during paralarvae growth. Thus, better understanding the molecular regulation patterns could lead to new approaches that increase the efficiency of husbandry of this emergent species for aquaculture.
Collapse
Affiliation(s)
- Eva Díaz-Freije
- Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| | - Camino Gestal
- Aquatic Molecular Pathobiology Group, Instituto de Investigaciones Marinas (IIM-CSIC) Vigo, Spain
| | | | - Paloma Morán
- Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo Vigo, Spain
| |
Collapse
|
37
|
Cicatelli A, Todeschini V, Lingua G, Biondi S, Torrigiani P, Castiglione S. Epigenetic control of heavy metal stress response in mycorrhizal versus non-mycorrhizal poplar plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1723-1737. [PMID: 23975714 DOI: 10.1007/s11356-013-2072-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
It was previously shown that arbuscular mycorrhizal fungi (AMF) exert a significant improvement of growth in a tolerant white poplar (Populus alba L.) clone (AL35) grown on Cu- and Zn-polluted soil via foliar alterations in the levels of defence/stress-related transcripts and molecules. However, nothing is known about the epigenetic changes which occur during tolerance acquisition in response to heavy metals (HMs) in the same mycorrhizal vs. non-mycorrhizal poplar plants. In order to analyse the epigenome in leaves of AL35 plants inoculated or not with AMF and grown in a greenhouse on multimetal polluted or unpolluted soil, the Methylation Sensitive Amplification Polymorphism (MSAP) approach was adopted to detect cytosine DNA methylation. Modest changes in cytosine methylation patterns were detected at first sampling (4 months from planting), whereas extensive alterations (hypomethylation) occurred at second sampling (after 6 months) in mycorrhizal plants grown in the presence of HMs. The sequencing of MSAP fragments led to the identification of genes belonging to several Gene Ontology categories. Seven MSAP fragments, selected on the basis of DNA methylation status in treated vs control AL35 leaves at the end of the experiment, were analysed for their transcript levels by means of qRT-PCR. Gene expression varied in treated samples relative to controls in response to HMs and/or AMF inoculation; in particular, transcripts of genes involved in RNA processing, cell wall and amino acid metabolism were upregulated in the presence of AMF with or without HMs.
Collapse
Affiliation(s)
- Angela Cicatelli
- Dipartimento di Chimica e Biologia, Università di Salerno, 84084, Fisciano, SA, Italy
| | - Valeria Todeschini
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, 15121, Alessandria, Italy
| | - Guido Lingua
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, 15121, Alessandria, Italy
| | - Stefania Biondi
- Dipartimento BiGeA, Università di Bologna, 40126, Bologna, Italy
| | - Patrizia Torrigiani
- Dipartimento di Scienze Agrarie, Università di Bologna, 40127, Bologna, Italy
| | - Stefano Castiglione
- Dipartimento di Chimica e Biologia, Università di Salerno, 84084, Fisciano, SA, Italy.
| |
Collapse
|
38
|
Osabe K, Clement JD, Bedon F, Pettolino FA, Ziolkowski L, Llewellyn DJ, Finnegan EJ, Wilson IW. Genetic and DNA methylation changes in cotton (Gossypium) genotypes and tissues. PLoS One 2014; 9:e86049. [PMID: 24465864 PMCID: PMC3896429 DOI: 10.1371/journal.pone.0086049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 12/05/2013] [Indexed: 12/19/2022] Open
Abstract
In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.
Collapse
|
39
|
Sun Y, Hou R, Fu X, Sun C, Wang S, Wang C, Li N, Zhang L, Bao Z. Genome-wide analysis of DNA methylation in five tissues of Zhikong scallop, Chlamys farreri. PLoS One 2014; 9:e86232. [PMID: 24454962 PMCID: PMC3891877 DOI: 10.1371/journal.pone.0086232] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023] Open
Abstract
DNA methylation plays a vital role in tissue development and differentiation in eukaryotes. Epigenetic studies have been seldom conducted in the extremely diverse and evolutionarily highly successful bilaterian lineage Mollusca. In the present study, we conducted the genome-wide profiling of DNA methylation for five tissues of a bivalve mollusc, Chlamys farreri using the methylation-sensitive amplification polymorphism (MSAP) technique. The methylation levels were quite similar among tissues, ranging from 20.9% to 21.7%. CG methylation was the dominant type (14.9%-16.5%) in the C. farreri genome, but CHG methylation also accounted for a substantial fraction of total methylation (5.1%-6.3%). Relatively high methylation diversity was observed within tissues. Methylation differentiation between tissues was evaluated and 460 tissue-specific epiloci were identified. Kidney differs from the other tissues in DNA methylation profiles. Our study presents the first look at the tissue-specific DNA methylation patterns in a bivalve mollusc and represents an initial step towards understanding of epigenetic regulatory mechanism underlying tissue development and differentiation in bivalves.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Rui Hou
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoteng Fu
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Changsen Sun
- School of Life Science, Taizhou University, Taizhou, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chen Wang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ning Li
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lingling Zhang
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- * E-mail:
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding (MGB), Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
40
|
DNA methylation changes in photoperiod-thermo-sensitive male sterile rice PA64S under two different conditions. Gene 2013; 537:143-8. [PMID: 24365594 DOI: 10.1016/j.gene.2013.12.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 01/03/2023]
Abstract
Epigenetic modification can occur at a high frequency in crop plants and might generate phenotypic variation without changes in DNA sequences. DNA methylation is an important epigenetic modification that may contribute to environmentally-induced phenotypic variations by regulating gene expression. Rice Photoperiod-Thermo-Sensitive Genic Male Sterile (PTGMS) lines can transform from sterility to fertility under lower temperatures and short-day (SD) conditions during anther development. So far, little is known about the DNA methylation variation of PTGMS throughout the genome in rice. In this study, we investigated DNA cytosine methylation alterations in the young panicles of PTGMS line PA64S under two different conditions using methylation sensitive amplified polymorphism (MSAP) method. Compared with the DNA methylation level of PA64S under lower temperatures and SD conditions (fertility), higher methylation was observed in PA64S (sterility). The sequences of 25 differentially amplified fragments were successfully obtained and annotated. Three methylated fragments, which are homologous to D2, NAD7 and psaA, were confirmed by bisulfite sequencing and their expression levels were also evaluated by qPCR. Real time quantitative PCR analysis revealed that five of the six selected methylated genes were downregulated in PA64S (sterility). These results suggested that DNA methylation may be involved in the sterility-fertility transition of PA64S under two different environmental conditions.
Collapse
|
41
|
Gao X, Cao D, Liu J, Wang X, Geng S, Liu B, Shi D. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress. PLoS One 2013; 8:e78426. [PMID: 24223802 PMCID: PMC3818329 DOI: 10.1371/journal.pone.0078426] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/20/2013] [Indexed: 01/25/2023] Open
Abstract
Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.
Collapse
Affiliation(s)
- Xiang Gao
- Institutes of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Donghui Cao
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jie Liu
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- Weifang University of science & technology, Shouguang, China
| | - Xiaoping Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Shujuan Geng
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Decheng Shi
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
- * E-mail:
| |
Collapse
|
42
|
Dar TH, Raina SN, Goel S. Molecular analysis of genomic changes in synthetic autotetraploidPhlox drummondii Hook. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tanvir H. Dar
- Department of Botany; University of Delhi; Delhi; 110007; India
| | - Soom N. Raina
- Amity Institute of Biotechnology; Amity University; Sector 125; Noida; 201303; UP; India
| | - Shailendra Goel
- Department of Botany; University of Delhi; Delhi; 110007; India
| |
Collapse
|
43
|
Marconi G, Pace R, Traini A, Raggi L, Lutts S, Chiusano M, Guiducci M, Falcinelli M, Benincasa P, Albertini E. Use of MSAP markers to analyse the effects of salt stress on DNA methylation in rapeseed (Brassica napus var. oleifera). PLoS One 2013; 8:e75597. [PMID: 24086583 PMCID: PMC3781078 DOI: 10.1371/journal.pone.0075597] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 08/18/2013] [Indexed: 01/30/2023] Open
Abstract
Excessive soil salinity is a major ecological and agronomical problem, the adverse effects of which are becoming a serious issue in regions where saline water is used for irrigation. Plants can employ regulatory strategies, such as DNA methylation, to enable relatively rapid adaptation to new conditions. In this regard, cytosine methylation might play an integral role in the regulation of gene expression at both the transcriptional and post-transcriptional levels. Rapeseed, which is the most important oilseed crop in Europe, is classified as being tolerant of salinity, although cultivars can vary substantially in their levels of tolerance. In this study, the Methylation Sensitive Amplified Polymorphism (MSAP) approach was used to assess the extent of cytosine methylation under salinity stress in salinity-tolerant (Exagone) and salinity-sensitive (Toccata) rapeseed cultivars. Our data show that salinity affected the level of DNA methylation. In particular methylation decreased in Exagone and increased in Toccata. Nineteen DNA fragments showing polymorphisms related to differences in methylation were sequenced. In particular, two of these were highly similar to genes involved in stress responses (Lacerata and trehalose-6-phosphatase synthase S4) and were chosen to further characterization. Bisulfite sequencing and quantitative RT-PCR analysis of selected MSAP loci showed that cytosine methylation changes under salinity as well as gene expression varied. In particular, our data show that salinity stress influences the expression of the two stress-related genes. Moreover, we quantified the level of trehalose in Exagone shoots and found that it was correlated to TPS4 expression and, therefore, to DNA methylation. In conclusion, we found that salinity could induce genome-wide changes in DNA methylation status, and that these changes, when averaged across different genotypes and developmental stages, accounted for 16.8% of the total site-specific methylation differences in the rapeseed genome, as detected by MSAP analysis.
Collapse
Affiliation(s)
- Gianpiero Marconi
- Department of Applied Biology, University of Perugia, Perugia, Italy
| | - Roberta Pace
- Department of Agricultural and Environmental Science, University of Perugia, Perugia, Italy
| | - Alessandra Traini
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Naples, Italy
| | - Lorenzo Raggi
- Department of Applied Biology, University of Perugia, Perugia, Italy
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marialuisa Chiusano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Naples, Italy
| | - Marcello Guiducci
- Department of Agricultural and Environmental Science, University of Perugia, Perugia, Italy
| | - Mario Falcinelli
- Department of Applied Biology, University of Perugia, Perugia, Italy
| | - Paolo Benincasa
- Department of Agricultural and Environmental Science, University of Perugia, Perugia, Italy
| | - Emidio Albertini
- Department of Applied Biology, University of Perugia, Perugia, Italy
| |
Collapse
|
44
|
Pérez‐Figueroa A. msap
: a tool for the statistical analysis of methylation‐sensitive amplified polymorphism data. Mol Ecol Resour 2013; 13:522-7. [DOI: 10.1111/1755-0998.12064] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/03/2012] [Accepted: 12/12/2012] [Indexed: 11/29/2022]
Affiliation(s)
- A. Pérez‐Figueroa
- Departamento de Bioquímica, Genética e Inmunología Facultad de Biología Universidad de Vigo 36310 Vigo Spain
| |
Collapse
|
45
|
Greco M, Chiappetta A, Bruno L, Bitonti MB. In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:695-709. [PMID: 22058406 PMCID: PMC3254685 DOI: 10.1093/jxb/err313] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 07/08/2011] [Accepted: 08/18/2011] [Indexed: 05/17/2023]
Abstract
In mammals, cadmium is widely considered as a non-genotoxic carcinogen acting through a methylation-dependent epigenetic mechanism. Here, the effects of Cd treatment on the DNA methylation patten are examined together with its effect on chromatin reconfiguration in Posidonia oceanica. DNA methylation level and pattern were analysed in actively growing organs, under short- (6 h) and long- (2 d or 4 d) term and low (10 μM) and high (50 μM) doses of Cd, through a Methylation-Sensitive Amplification Polymorphism technique and an immunocytological approach, respectively. The expression of one member of the CHROMOMETHYLASE (CMT) family, a DNA methyltransferase, was also assessed by qRT-PCR. Nuclear chromatin ultrastructure was investigated by transmission electron microscopy. Cd treatment induced a DNA hypermethylation, as well as an up-regulation of CMT, indicating that de novo methylation did indeed occur. Moreover, a high dose of Cd led to a progressive heterochromatinization of interphase nuclei and apoptotic figures were also observed after long-term treatment. The data demonstrate that Cd perturbs the DNA methylation status through the involvement of a specific methyltransferase. Such changes are linked to nuclear chromatin reconfiguration likely to establish a new balance of expressed/repressed chromatin. Overall, the data show an epigenetic basis to the mechanism underlying Cd toxicity in plants.
Collapse
Affiliation(s)
| | | | | | - Maria Beatrice Bitonti
- Department of Ecology, University of Calabria, Laboratory of Plant Cyto-physiology, Ponte Pietro Bucci, I-87036 Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
46
|
Da K, Nowak J, Flinn B. Potato cytosine methylation and gene expression changes induced by a beneficial bacterial endophyte, Burkholderia phytofirmans strain PsJN. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 50:24-34. [PMID: 22099516 DOI: 10.1016/j.plaphy.2011.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 09/23/2011] [Indexed: 05/22/2023]
Abstract
Burkholderia phytofirmans strain PsJN is a highly effective plant-beneficial endophyte. We have used a combination of capillary electrophoresis and methylation-sensitive amplification length polymorphism (CE-MSAP) analysis to investigate the potato genomic DNA cytosine methylation changes that occur in response to PsJN bacterization. Six weeks after PsJN inoculation, over 6800 loci were identified and assessed in two in vitro grown potato varieties, the strongly-responsive Red Pontiac and the poorly-responsive Superior. Compared to non-bacterized control, bacterized Red Pontiac exhibited little change in the overall cytosine methylation, although methylation polymorphisms did occur. In contrast, poorly-responsive Superior exhibited significantly higher levels of overall cytosine methylation and a decrease in the number of non-methylated sites in the bacterized plants compared to controls. Superior had significantly higher DNA methylation and DNA hyper-methylation than Red Pontiac, suggesting that enhanced DNA loci methylation is involved in the suppression of PsJN-induced plant growth stimulation. Several DNA fragments, corresponding to different open reading frames exhibiting methylation polymorphisms in Red Pontiac or Superior were sequenced. Gene expression analysis of a subset of those genes was carried out using real time PCR. We identified several genes whose transcript levels were either enhanced or decreased in response to PsJN in a variety-specific way, as well as genes that were specifically enhanced in both varieties in response to the endophyte.
Collapse
Affiliation(s)
- Kedong Da
- Institute for Sustainable and Renewable Resources, Institute for Advanced Learning and Research, 150 Slayton Avenue, Danville, VA 24540, USA
| | | | | |
Collapse
|
47
|
[Analysis of DNA methylation in different chicken tissues with MSAP]. YI CHUAN = HEREDITAS 2011; 33:620-6. [PMID: 21684868 DOI: 10.3724/sp.j.1005.2011.00620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
With methylation sensitive amplified polymorphism (MSAP), the DNA methylation levels and patterns of CCGG sites in genomes was analyzed among four different tissues and between parents and offsprings from three groups of adult chicken, White Leghorn, White Plymouth Rock, and their F1 hybrids. The results indicated that the degree of methylation was approximate 29.7% in muscle, 27.5% in liver, 27.5% in heart, and 26.1% in kidney. There was significantly different in the level of methylation in the 3 different groups and in 4 different tissues (P<0.05). The fully-methylated sites were less than the hemi-methylated sites among the 4 tissues, which was different from that of plants. The two tissue-specific MSAP fragments were isolated, sequenced, and characterized, both of which were located in the coding regions. These results clearly demonstrated that there was difference in the methylation level among various tissues and different groups, which suggested that the genetic factor may have effect on the individual methylation level.
Collapse
|
48
|
Wang W, Zhao X, Pan Y, Zhu L, Fu B, Li Z. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. J Genet Genomics 2011; 38:419-24. [PMID: 21930101 DOI: 10.1016/j.jgg.2011.07.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/25/2022]
Abstract
DNA methylation, one of the most important epigenetic phenomena, plays a vital role in tuning gene expression during plant development as well as in response to environmental stimuli. In the present study, a methylation-sensitive amplified polymorphism (MSAP) analysis was performed to profile DNA methylation changes in two contrasting rice genotypes under salt stress. Consistent with visibly different phenotypes in response to salt stress, epigenetic markers classified as stable inter-cultivar DNA methylation differences were determined between salt-tolerant FL478 and salt-sensitive IR29. In addition, most tissue-specific DNA methylation loci were conserved, while many of the growth stage-dependent DNA methylation loci were dynamic between the two genotypes. Strikingly, salt stress induced a decrease in DNA methylation specifically in roots at the seedling stage that was more profound in IR29 than in the FL478. This result may indicate that demethylation of genes is an active epigenetic response to salt stress in roots at the seedling stage, and helps to further elucidate the implications of DNA methylation in crop growth and development.
Collapse
Affiliation(s)
- Wensheng Wang
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
49
|
Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1951-60. [PMID: 21193578 PMCID: PMC3060682 DOI: 10.1093/jxb/erq391] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An indica pyramiding line, DK151, and its recurrent parent, IR64, were evaluated under drought stress and non-stress conditions for three consecutive seasons. DK151 showed significantly improved tolerance to drought. The DNA methylation changes in DK151 and IR64 under drought stress and subsequent recovery were assessed using methylation-sensitive amplified polymorphism analysis. Our results indicate that drought-induced genome-wide DNA methylation changes accounted for ∼12.1% of the total site-specific methylation differences in the rice genome. This drought-induced DNA methylation pattern showed three interesting properties. The most important one was its genotypic specificity reflected by large differences in the detected DNA methylation/demethylation sites between DK151 and IR64, which result from introgressed genomic fragments in DK151. Second, most drought-induced methylation/demethylation sites were of two major types distinguished by their reversibility, including 70% of the sites at which drought-induced epigenetic changes were reversed to their original status after recovery, and 29% of sites at which the drought-induced DNA demethylation/methylation changes remain even after recovery. Third, the drought-induced DNA methylation alteration showed a significant level of developmental and tissue specificity. Together, these properties are expected to have contributed greatly to rice response and adaptation to drought stress. Thus, induced epigenetic changes in rice genome can be considered as a very important regulatory mechanism for rice plants to adapt to drought and possibly other environmental stresses.
Collapse
Affiliation(s)
- Wen-Sheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ya-Jiao Pan
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiu-Qin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - D. Dwivedi
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Current address: Department of Biotechnology, N. D. University of Agriculture and Technology, Narendra Nagar 224 229, Faizabad (UP), India
| | - Ling-Hua Zhu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J. Ali
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Bin-Ying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- To whom correspondence should be addressed: E-mail: and
| | - Zhi-Kang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- To whom correspondence should be addressed: E-mail: and
| |
Collapse
|
50
|
Yang C, Zhang M, Niu W, Yang R, Zhang Y, Qiu Z, Sun B, Zhao Z. Analysis of DNA methylation in various swine tissues. PLoS One 2011; 6:e16229. [PMID: 21283691 PMCID: PMC3025005 DOI: 10.1371/journal.pone.0016229] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/15/2010] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is known to play an important role in regulating gene expression during biological development and tissue differentiation in eukaryotes. In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) method to assess the extent and pattern of cytosine methylation in muscle, heart, liver, spleen, lung, kidney and stomach from the swine strain Laiwu, and we also examined specific methylation patterns in the seven tissues. In total, 96,371 fragments, each representing a recognition site cleaved by either or both EcoRI + HpaII and EcoRI + MspI, the HpaII and MspI are isoschizomeric enzymes, were amplified using 16 pairs of selective primers. A total of 50,094 sites were found to be methylated at cytosines in seven tissues. The incidence of DNA methylation was approximately 53.99% in muscle, 51.24% in the heart, 50.18% in the liver, 53.31% in the spleen, 51.97% in the lung, 51.15% in the kidney and 53.39% in the stomach, as revealed by the incidence of differential digestion. Additionally, differences in DNA methylation levels imply that such variations may be related to specific gene expression during tissue differentiation, growth and development. Three types of bands were generated in the F-MSAP profile, the total numbers of these three types of bands in the seven tissues were 46,277, 24,801 and 25,293, respectively. In addition, different methylation patterns were observed in seven tissues from pig, and almost all of the methylation patterns detected by F-MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrated that the F-MSAP technique can be adapted for use in large-scale DNA methylation detection in the pig genome.
Collapse
Affiliation(s)
- Chun Yang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Mingjun Zhang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Weiping Niu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Runjun Yang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Yonghong Zhang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengyan Qiu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Boxing Sun
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (BS); (ZZ)
| | - Zhihui Zhao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (BS); (ZZ)
| |
Collapse
|