1
|
Albro JA, Garrett NT, Govindaraj K, Bloom BP, Rosi NL, Waldeck DH. Measurement Platform to Probe the Mechanism of Chiral-Induced Spin Selectivity through Direction-Dependent Magnetic Conductive Atomic Force Microscopy. ACS NANO 2025. [PMID: 40298194 DOI: 10.1021/acsnano.5c04980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
This work introduces a magnetic conductive atomic force microscopy (mc-AFM) measurement platform for determining spin polarizations, arising from the chiral-induced spin selectivity (CISS) effect along different directions in helical conducting fibers. By using the principle that the spin preference for electron transport in a chiral material changes with the momentum of the electron, this method quantifies the spin polarization of chiral materials, which straddle a ferromagnetic electrode, i.e., by taking measurements in regions to the right and left of the electrode while it is magnetized in-plane. The working mechanism of the measurement is shown using chiral polyaniline (PANI) fibers, and they reveal that the longitudinal, along the fiber's helical axis, and transverse, perpendicular to the fiber axis, magnetoresistance differ by about a factor of 2. The observations imply that the spin polarization in PANI fibers is not consistent with models that attribute the spin selectivity (or magnetoresistance) solely to the spinterface or to spin-dependent charge injection barriers. In aggregate, this new platform offers a simplified approach for extending the mc-AFM method to resolving the spin-filtered charge currents along different directions in oriented samples.
Collapse
Affiliation(s)
- Joseph A Albro
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Noah T Garrett
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Keerthana Govindaraj
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Brian P Bloom
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Fransson J. Chiral Induced Spin Polarized Electron Current: Origin of the Chiral Induced Spin Selectivity Effect. J Phys Chem Lett 2025:4346-4353. [PMID: 40270227 DOI: 10.1021/acs.jpclett.5c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The discovery of the chiral induced spin selectivity effect has provided a novel tool to study how active physical and chemical mechanisms may differ in chiral enantiomers; however, the origin of the effect itself is yet an open question. In this Letter, it is theoretically shown that two aspects must be fulfilled for the chiral induced spin selectivity effect to arise. First, chirality is a necessary condition for breaking the spin-degeneracy in molecular structures that do not comprise heavy elements. Second, dissipation is indispensable for the molecule to develop a nonvanishing spin-polarization. These theoretical conclusions are illustrated in terms of a few examples, showing the necessity of the two aspects to be coordinated for the emergence of the chiral induced spin selectivity effect.
Collapse
Affiliation(s)
- Jonas Fransson
- Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| |
Collapse
|
3
|
VanOrman ZA, Kitzmann WR, Reponen APM, Deshpande T, Jöbsis HJ, Feldmann S. Chiral light-matter interactions in solution-processable semiconductors. Nat Rev Chem 2025; 9:208-223. [PMID: 39962270 DOI: 10.1038/s41570-025-00690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Chirality is a fundamental property widely observed in nature, arising in objects without a proper rotation axis, therefore existing as forms with distinct handedness. This characteristic can profoundly impact the properties of materials and can enable new functionality, especially for spin-optoelectronics. Chirality enables asymmetric light and spin interactions in materials, with widespread potential applications ranging from energy-efficient displays, holography, imaging, and spin-selective and enantio-selective chemistry to quantum information technologies. This Review focuses on the emerging material class of solution-processable chiral semiconductors, a broad material class comprising organic, inorganic and hybrid materials. These exciting materials offer the opportunity to design desirable light-matter interactions based on symmetry rules, potentially enabling the simultaneous control of light, charge and spin. We briefly discuss the various types of solution-processible chiral semiconductors, including small molecules, polymers, supramolecular self-assemblies and halide perovskites. We then examine the interplay between chirality and spin in these materials, the various mechanisms of chiral light-matter interactions, and techniques utilized to characterize them. We conclude with current and future applications of chiral semiconductors that take advantage of their chiral light-matter interactions.
Collapse
Affiliation(s)
- Zachary A VanOrman
- Rowland Institute, Harvard University, Cambridge, MA, USA
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Winald R Kitzmann
- Rowland Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Tejas Deshpande
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Huygen J Jöbsis
- Rowland Institute, Harvard University, Cambridge, MA, USA
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sascha Feldmann
- Rowland Institute, Harvard University, Cambridge, MA, USA.
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Singh AK, Martin K, Mastropasqua Talamo M, Houssin A, Vanthuyne N, Avarvari N, Tal O. Single-molecule junctions map the interplay between electrons and chirality. Nat Commun 2025; 16:1759. [PMID: 39971801 PMCID: PMC11839929 DOI: 10.1038/s41467-025-56718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
The interplay of electrons with a chiral medium has a diverse impact across science and technology, influencing drug separation, chemical reactions, and electronic transport1-30. In particular, electron-chirality interactions can significantly affect charge and spin transport in chiral conductors, making them highly appealing for spintronics. However, an atomistic mapping of different electron-chirality interactions remains elusive. Here, we find that helicene-based single-molecule junctions behave as a combined magnetic-diode and spin-valve device. This dual-functionality enables the identification of an atomic-scale coexistence of different electron-chirality interactions: the magnetic-diode behavior is attributed to an interaction between electron's angular momentum in a chiral medium and magnetic fields, whereas the spin-valve functionality is ascribed to an interaction between the electron's spin and a chiral medium. This work uncovers the coexistence of electron-chirality interactions at the atomic-scale, identifies their distinct properties, and demonstrates how integrating their functionalities can broaden of the available methods for spintronics.
Collapse
Affiliation(s)
- Anil-Kumar Singh
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Kévin Martin
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, Angers, France
| | | | - Axel Houssin
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, Angers, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Med, UAR 1739, FSCM, Chiropole, Marseille, France
| | - Narcis Avarvari
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, Angers, France.
| | - Oren Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Liu ZF. Many-Body Effects at Heterogeneous Interfaces from First-Principles: Progress, Challenges, and Opportunities. ACS NANO 2025; 19:5861-5870. [PMID: 39915927 DOI: 10.1021/acsnano.4c18268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Heterogeneous interfaces are pivotal in numerous nanoscale devices and applications. First-principles approaches based on quantum mechanics and atomistic structures provide critical insights into structure-property relationships, enabling the informed design of materials and devices. Accurate first-principles methods must reliably capture many-body effects, i.e., electron-electron interactions, which significantly influence system properties compared to the predictions from models using free or noninteracting electrons. In this Perspective, we survey a few computational tools in this context and attempt to be forward looking by discussing the current challenges and emerging research opportunities. We examine diverse manifestations of many-body effects across several domains: geometries and reaction barriers (total-energy properties), orbital energy levels and band alignments (one-particle properties), and optical excited states (two-particle properties).
Collapse
Affiliation(s)
- Zhen-Fei Liu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
6
|
Smorka R, Rudge SL, Thoss M. Influence of nonequilibrium vibrational dynamics on spin selectivity in chiral molecular junctions. J Chem Phys 2025; 162:014304. [PMID: 39760295 DOI: 10.1063/5.0235411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
We explore the role of molecular vibrations in the chirality-induced spin selectivity (CISS) effect in the context of charge transport through a molecular nanojunction. We employ a mixed quantum-classical approach that combines Ehrenfest dynamics for molecular vibrations with the hierarchical equations of motion method for the electronic degrees of freedom. This approach treats the molecular vibrations in a nonequilibrium manner, which is crucial for the dynamics of molecular nanojunctions. To explore the effect of vibrational dynamics on spin selectivity, we also introduce a new figure of merit, the displacement polarization, which quantifies the difference in vibrational displacements for opposing lead magnetizations. We analyze the dynamics of single trajectories, investigating how the spin selectivity depends on voltage and electronic-vibrational coupling. Furthermore, we investigate the dynamics and temperature dependence of ensemble-averaged observables. We demonstrate that spin selectivity is correlated in time with the vibrational polarization, indicating that the dynamics of molecular vibrations is the driving force of CISS in this model within the Ehrenfest approach.
Collapse
Affiliation(s)
- R Smorka
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - S L Rudge
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - M Thoss
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Moharana A, Kapon Y, Kammerbauer F, Anthofer D, Yochelis S, Shema H, Gross E, Kläui M, Paltiel Y, Wittmann A. Chiral-induced unidirectional spin-to-charge conversion. SCIENCE ADVANCES 2025; 11:eado4285. [PMID: 39742478 DOI: 10.1126/sciadv.ado4285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025]
Abstract
The observation of spin-dependent transmission of electrons through chiral molecules has led to the discovery of chiral-induced spin selectivity (CISS). The remarkably high efficiency of the spin polarizing effect has recently gained substantial interest due to the high potential for future sustainable hybrid chiral molecule magnetic applications. However, the fundamental mechanisms underlying the chiral-induced phenomena remain to be understood fully. In this work, we explore the impact of chirality on spin angular momentum in hybrid metal/chiral molecule thin-film heterostructures. For this, we inject a pure spin current via spin pumping and investigate the spin-to-charge conversion at the hybrid chiral interface. Notably, we observe a chiral-induced unidirectionality in the conversion. Furthermore, angle-dependent measurements reveal that the spin selectivity is maximum when the spin angular momentum is aligned with the molecular chiral axis. Our findings validate the central role of spin angular momentum for the CISS effect, paving the path toward three-dimensional functionalization of hybrid molecule-metal devices via chirality.
Collapse
Affiliation(s)
- Ashish Moharana
- Institute of Physics, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Yael Kapon
- Institute of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Fabian Kammerbauer
- Institute of Physics, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - David Anthofer
- Institute of Physics, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Shira Yochelis
- Institute of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Hadar Shema
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Elad Gross
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Mathias Kläui
- Institute of Physics, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Yossi Paltiel
- Institute of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Angela Wittmann
- Institute of Physics, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| |
Collapse
|
8
|
Kataria M, Seki S. Responsive Chirality: Tailoring Supramolecular Assemblies with External Stimuli as Future Platforms for Electronic/Spintronic Materials. Chemistry 2025; 31:e202403460. [PMID: 39462198 DOI: 10.1002/chem.202403460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
Supramolecular chirality is the major branch of supramolecular chemistry, which not only plays important roles in biological processes but also in synthetically designed aggregated systems. To understand the complex processing of biological systems, the only way is to design supramolecular chiral ensembles that mimic natural biomolecules such as Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA), amino acids, etc. In addition, chiral systems and self-assemblies as molecular motifs with breaking spatial inversion symmetry have been regarded as key substances in electronics and spintronics as well as in fundamental chemistry and physics. Here, in this review, our major concern is understanding modulation in spatial arrangements and packing modes under the impact of any external stimuli, which results in tailoring the handedness of resulted supramolecular chiral superstructures. We, in this review, highlighted the role of external stimuli such as solvent, chemical additives, photo exposure, etc. in altering the supramolecular chirality for their future utility as "active switches" in optoelectronic and spintronic devices and applications.
Collapse
Affiliation(s)
- Meenal Kataria
- Department of Molecular Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
9
|
Chen S, Fu HH. Chirality-Induced Majorana Zero Modes and Majorana Polarization. ACS NANO 2024; 18:34126-34133. [PMID: 39638808 DOI: 10.1021/acsnano.4c10395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Realizing Majorana Fermions has always been regarded as a crucial and formidable task in topological superconductors. In this work, we report a physical mechanism and a material platform for realizing Majorana zero modes (MZMs). This material platform consists of open circular helix molecule (CHM) proximity coupled with an s-wave superconductor (under an external magnetic field) or interconnected-CHM chain coupled with a phase-bias s-wave superconducting heterostructure (without any external magnetic field). MZMs generated here are tightly associated with the structural chirality in CHMs. Notably, the left- and right-handedness results in completely opposite Majorana polarization (MP), leading us to refer to this phenomenon as chirality-induced MP (CIMP). Importantly, the local CIMP is closely linked to chirality-induced spin polarization, providing us with an effective way to regulate MZMs through the chirality-induced spin selectivity (CISS) effect. Furthermore, MZMs can be detected by the spin-polarized current measurements related to the CISS in chiral materials.
Collapse
Affiliation(s)
- Song Chen
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Hua-Hua Fu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
10
|
Naaman R, Waldeck DH. What Can CISS Teach Us about Electron Transfer? J Phys Chem Lett 2024; 15:11002-11006. [PMID: 39462257 PMCID: PMC11552069 DOI: 10.1021/acs.jpclett.4c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Electron transfer (eT) processes have garnered the attention of chemists and physicists for more than seven decades, and it is commonly believed that the essential features of the electron transfer mechanism are well understood─despite some open questions relating to the efficiency of long-range eT in some systems and temperature effects that are difficult to reconcile with the existing theories. The chiral induced spin selectivity (CISS) effect, which has been studied experimentally since 1999, demonstrates that eT through chiral systems depends on the electron's spin. Attempts to explain the CISS effect by adding spin-orbit coupling to the existing eT theories fails to reproduce the experimental results quantitatively, and it has become evident that the theory for explaining CISS must consider electron-vibration and/or electron-electron interactions. In this Perspective we identify some features of the CISS effect that imply that we should reconsider and refine the Marcus-Levich-Jortner mechanistic description for eT processes, especially for nonlinear systems and in the case of long-range eT.
Collapse
Affiliation(s)
- Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, 76100 Rehovot, Israel
| | - David H. Waldeck
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 United States
| |
Collapse
|
11
|
Davis NS, Lawn JA, Preston RJ, Kosov DS. Current-driven mechanical motion of double stranded DNA results in structural instabilities and chiral-induced-spin-selectivity of electron transport. J Chem Phys 2024; 161:144107. [PMID: 39382131 DOI: 10.1063/5.0230466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Chiral-induced-spin-selectivity of electron transport and its interplay with DNA's mechanical motion are explored in a double stranded DNA helix with spin-orbit-coupling. The mechanical degree of freedom is treated as a stochastic classical variable experiencing fluctuations and dissipation induced by the environment as well as force exerted by nonequilibrium, current-carrying electrons. Electronic degrees of freedom are described quantum mechanically using nonequilibrium Green's functions. Nonequilibrium Green's functions are computed along the trajectory for the classical variable taking into account dynamical, velocity dependent corrections. This mixed quantum-classical approach enables calculations of time-dependent spin-resolved currents. We showed that the electronic force may significantly modify the classical potential, which, at sufficient voltage, creates a bistable potential with a considerable effect on electronic transport. The DNA's mechanical motion has a profound effect on spin transport; it results in chiral-induced spin selectivity, increasing spin polarization of the current by 9% and also resulting in temperature-dependent current voltage characteristics. We demonstrate that the current noise measurement provides an accessible experimental means to monitor the emergence of mechanical instability in DNA motion. The spin resolved current noise also provides important dynamical information about the interplay between vibrational and spin degrees of freedom in DNA.
Collapse
Affiliation(s)
- Nicholas S Davis
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Julian A Lawn
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Riley J Preston
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Daniel S Kosov
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
12
|
Chiesa A, Garlatti E, Mezzadri M, Celada L, Sessoli R, Wasielewski MR, Bittl R, Santini P, Carretta S. Many-Body Models for Chirality-Induced Spin Selectivity in Electron Transfer. NANO LETTERS 2024; 24:12133-12139. [PMID: 39306768 PMCID: PMC11450995 DOI: 10.1021/acs.nanolett.4c02912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024]
Abstract
We present the first microscopic model for the chirality-induced spin selectivity effect in electron-transfer, in which the internal degrees of freedom of the chiral bridge are explicitly included. By exactly solving this model on short chiral chains we demonstrate that a sizable spin polarization on the acceptor arises from the interplay of coherent and incoherent dynamics, with strong electron-electron correlations yielding many-body states on the bridge as crucial ingredients. Moreover, we include the coherent and incoherent dynamics induced by interactions with vibrational modes and show that they can play an important role in determining the long-time polarized state probed in experiments.
Collapse
Affiliation(s)
- Alessandro Chiesa
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN−Sezione
di Milano-Bicocca, gruppo collegato di Parma, 43124 Parma, Italy
- Consorzio
Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
(INSTM), I-50121 Firenze, Italy
| | - Elena Garlatti
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN−Sezione
di Milano-Bicocca, gruppo collegato di Parma, 43124 Parma, Italy
- Consorzio
Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
(INSTM), I-50121 Firenze, Italy
| | - Matteo Mezzadri
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN−Sezione
di Milano-Bicocca, gruppo collegato di Parma, 43124 Parma, Italy
| | - Leonardo Celada
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN−Sezione
di Milano-Bicocca, gruppo collegato di Parma, 43124 Parma, Italy
| | - Roberta Sessoli
- Consorzio
Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
(INSTM), I-50121 Firenze, Italy
- Dipartimento
di Chimica “U. Schiff” (DICUS), Università degli Studi di Firenze, I-50019 Sesto Fiorentino (FI), Italy
| | - Michael R. Wasielewski
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Institute
for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Robert Bittl
- Fachbereich
Physik, Berlin Joint EPR Lab, Freie Universität
Berlin, D-14195 Berlin, Germany
| | - Paolo Santini
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN−Sezione
di Milano-Bicocca, gruppo collegato di Parma, 43124 Parma, Italy
- Consorzio
Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
(INSTM), I-50121 Firenze, Italy
| | - Stefano Carretta
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43124 Parma, Italy
- INFN−Sezione
di Milano-Bicocca, gruppo collegato di Parma, 43124 Parma, Italy
- Consorzio
Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
(INSTM), I-50121 Firenze, Italy
| |
Collapse
|
13
|
Chae K, Mohamad NARC, Kim J, Won DI, Lin Z, Kim J, Kim DH. The promise of chiral electrocatalysis for efficient and sustainable energy conversion and storage: a comprehensive review of the CISS effect and future directions. Chem Soc Rev 2024; 53:9029-9058. [PMID: 39158537 DOI: 10.1039/d3cs00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The integration of chirality, specifically through the chirality-induced spin selectivity (CISS) effect, into electrocatalytic processes represents a pioneering approach for enhancing the efficiency of energy conversion and storage systems. This review delves into the burgeoning field of chiral electrocatalysis, elucidating the fundamental principles, historical development, theoretical underpinnings, and practical applications of the CISS effect across a spectrum of electrocatalytic reactions, including the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). We explore the methodological advancements in inducing the CISS effect through structural and surface engineering and discuss various techniques for its measurement, from magnetic conductive atomic force microscopy (mc-AFM) to hydrogen peroxide titration. Furthermore, this review highlights the transformative potential of the CISS effect in addressing the key challenges of the NRR and CO2RR processes and in mitigating singlet oxygen formation in metal-air batteries, thereby improving their performance and durability. Through this comprehensive overview, we aim to underscore the significant role of incorporating chirality and spin polarization in advancing electrocatalytic technologies for sustainable energy applications.
Collapse
Affiliation(s)
- Kyunghee Chae
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Nur Aqlili Riana Che Mohamad
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeonghyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Zhiqun Lin
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
14
|
Nguyen TNH, Salvan G, Hellwig O, Paltiel Y, Baczewski LT, Tegenkamp C. The mechanism of the molecular CISS effect in chiral nano-junctions. Chem Sci 2024; 15:d4sc04435e. [PMID: 39246376 PMCID: PMC11378035 DOI: 10.1039/d4sc04435e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
The chirality induced spin selectivity (CISS) effect has been up to now measured in a wide variety of systems but its exact mechanism is still under debate. Whether the spin polarization occurs at an interface layer or builds up in the helical molecule is yet not clear. Here we have investigated the current transmission through helical polyalanine molecules as a part of a tunnel junction realized with a scanning tunneling microscope. Depending on whether the molecules were chemisorbed directly on the magnetic Au/Co/Au substrate or at the STM Au-tip, the magnetizations of the Co layer had been oriented in the opposite direction in order to preserve the symmetry of the IV-curves. This is the first time that the CISS effect is demonstrated for a tunneling junction without a direct interface between the helical molecules and the magnetic substrate. Our results can be explained by a spin-polarized or spin-selective interface effect, induced and defined by the helicity and electric dipole orientation of the molecule at the interface. In this sense, the helical molecule does not act as a simple spin-filter or spin-polarizer and the CISS effect is not limited to spinterfaces.
Collapse
Affiliation(s)
- Thi Ngoc Ha Nguyen
- Solid Surface Analysis, Institute of Physics, Chemnitz University of Technology 09126 Chemnitz Germany
| | - Georgeta Salvan
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology 09126 Chemnitz Germany
| | - Olav Hellwig
- Functional Magnetic Materials, Institute of Physics, Chemnitz University of Technology 09126 Chemnitz Germany
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden Germany
| | - Yossi Paltiel
- Department of Applied Physics, Hebrew University of Jerusalem 91904 Jerusalem Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem 91904 Jerusalem Israel
| | | | - Christoph Tegenkamp
- Solid Surface Analysis, Institute of Physics, Chemnitz University of Technology 09126 Chemnitz Germany
| |
Collapse
|
15
|
Day PN, Pachter R, Nguyen KA, Hong G. Chirality-Induced Spin Selectivity: Analysis of Density Functional Theory Calculations. J Chem Theory Comput 2024; 20:5475-5486. [PMID: 38888590 DOI: 10.1021/acs.jctc.4c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Chirality-induced spin selectivity (CISS), which was demonstrated in several molecular and material systems, has drawn much interest recently. The phenomenon, described in electron transport by the difference in the transport rate of electrons of opposite spins through a chiral system, is however not fully understood. Herein, we employed density functional theory in conjunction with spin-orbit coupling to evaluate the percent spin-polarization in a device setup with finite electrodes at zero bias, using an electron transport program developed in-house. To study the interface effects and the level of theory considered, we investigated a helical oligopeptide chain, an intrinsically chiral gold cluster, and a helicene model system that was previously studied (Zöllner et al. J. Chem. Theory Comput. 2020, 16, 7357-7371). We find that the magnitude of the spin-polarization depends on the chiral system-electrode interface that is modeled by varying the interface boundary between the system's regions, on the method of calculating spin-orbit coupling, and on the exchange-correlation functional, e.g., the amount of exact exchange in the hybrid functionals. In addition, to assess the effects of bias, we employ the nonequilibrium Green's function formalism in the Quantum Atomistix Toolkit program, showing that the spin-flip terms could be important in calculating the CISS effect. Although understanding CISS in comparison to experiment is still not resolved, our study provides intrinsic responses from first-principles calculations.
Collapse
Affiliation(s)
- Paul N Day
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Ruth Pachter
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Kiet A Nguyen
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Gongyi Hong
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| |
Collapse
|
16
|
Fransson J, Turin L. Current Induced Spin-Polarization in Chiral Molecules. J Phys Chem Lett 2024; 15:6370-6374. [PMID: 38857512 PMCID: PMC11194818 DOI: 10.1021/acs.jpclett.4c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The inverse spin-galvanic effect or current-induced spin-polarization is mainly associated with interfaces between different layers in semiconducting heterostructures, surfaces of metals, and bulk semiconducting materials. Here, we theoretically predict that the inverse spin-galvanic effect should also be present in chiral molecules, as a result of the chiral induced spin selectivity effect. As proof-of-principle, we calculate the nonequilibrium properties of a model system that previously has been successfully used to explain a multitude of aspects related to the chiral induced spin selectivity effect. Here we show that current driven spin-polarization in a chiral molecule gives rise to a magnetic moment that is sensitive to external magnet field. The chiral molecule then behaves like a soft ferromagnet. This, in turn, suggests that magnetic permeability measurement in otherwise nonmagnetic systems may be used noninvasively to detect the presence of spin-polarized currents.
Collapse
Affiliation(s)
- J. Fransson
- Department
of Physics and Astronomy, Box 516, 751 20, Uppsala University, Uppsala 751 21, Sweden
| | - L. Turin
- Clore
Laboratory, University of Buckingham, Buckingham MK18 1EG, U.K.
| |
Collapse
|
17
|
Chen S, Wu R, Fu HH. Persistent Chirality-Induced Spin-Selectivity Effect in Circular Helix Molecules. NANO LETTERS 2024; 24:6210-6217. [PMID: 38709107 DOI: 10.1021/acs.nanolett.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The spin-orbit coupling (SOC), the dynamics of the nonequilibrium transport process, and the breaking of time-reversal and space-inversion symmetries have been regarded as key factors for the emergence of chirality-induced spin selectivity (CISS) and chirality-dependent spin currents in helix molecules. In this work, we demonstrated the generation of persistent CISS currents in various circular single-stranded DNAs and 310-helix proteins for the first time, regardless of whether an external magnetic flux is applied or not. This new CISS effect presents only in equilibrium transport processes, distinct from the traditional CISS observed in nonequilibrium transport processes and linear helix molecules; we term it as the PCISS effect. Notably, PCISS manifests irrespective of whether the SOC is chirality-driven or stems from heavy-metal substrates, making it an efficient way to generate chirality-locked pure spin currents. Our research establishes a novel paradigm for examining the underlying physics of the CISS effect.
Collapse
Affiliation(s)
- Song Chen
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Hua-Hua Fu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
18
|
Bloom BP, Paltiel Y, Naaman R, Waldeck DH. Chiral Induced Spin Selectivity. Chem Rev 2024; 124:1950-1991. [PMID: 38364021 PMCID: PMC10906005 DOI: 10.1021/acs.chemrev.3c00661] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Since the initial landmark study on the chiral induced spin selectivity (CISS) effect in 1999, considerable experimental and theoretical efforts have been made to understand the physical underpinnings and mechanistic features of this interesting phenomenon. As first formulated, the CISS effect refers to the innate ability of chiral materials to act as spin filters for electron transport; however, more recent experiments demonstrate that displacement currents arising from charge polarization of chiral molecules lead to spin polarization without the need for net charge flow. With its identification of a fundamental connection between chiral symmetry and electron spin in molecules and materials, CISS promises profound and ubiquitous implications for existing technologies and new approaches to answering age old questions, such as the homochiral nature of life. This review begins with a discussion of the different methods for measuring CISS and then provides a comprehensive overview of molecules and materials known to exhibit CISS-based phenomena before proceeding to identify structure-property relations and to delineate the leading theoretical models for the CISS effect. Next, it identifies some implications of CISS in physics, chemistry, and biology. The discussion ends with a critical assessment of the CISS field and some comments on its future outlook.
Collapse
Affiliation(s)
- Brian P. Bloom
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yossi Paltiel
- Applied
Physics Department and Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - David H. Waldeck
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Tirion SH, van Wees BJ. Mechanism for Electrostatically Generated Magnetoresistance in Chiral Systems without Spin-Dependent Transport. ACS NANO 2024; 18:6028-6037. [PMID: 38353652 PMCID: PMC10906072 DOI: 10.1021/acsnano.3c12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Significant attention has been drawn to electronic transport in chiral materials coupled to ferromagnets in the chirality-induced spin selectivity (CISS) effect. A large magnetoresistance (MR) is usually observed, which is widely interpreted to originate from spin (dependent) transport. However, there are severe discrepancies between the experimental results and the theoretical interpretations, most notably the apparent failure of the Onsager reciprocity relations in the linear response regime. We provide an alternative mechanism for the two terminal MR in chiral systems coupled to a ferromagnet. For this, we point out that it was observed experimentally that the electrostatic contact potential of chiral materials on a ferromagnet depends on the magnetization direction and chirality. The mechanism that we provide causes the transport barrier to be modified by the magnetization direction, already in equilibrium, in the absence of a bias current. This strongly alters the charge transport through and over the barrier, not requiring spin transport. This provides a mechanism that allows the linear response resistance to be sensitive to the magnetization direction and also explains the failure of the Onsager reciprocity relations. We propose experimental configurations to confirm our alternative mechanism for MR.
Collapse
Affiliation(s)
- Sytze H. Tirion
- Zernike Institute for Advanced
Materials, University of Groningen, NL-9747AG Groningen, The Netherlands
| | - Bart J. van Wees
- Zernike Institute for Advanced
Materials, University of Groningen, NL-9747AG Groningen, The Netherlands
| |
Collapse
|
20
|
Tan L, Fu W, Gao Q, Wang PP. Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309033. [PMID: 37944554 DOI: 10.1002/adma.202309033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light-matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state-of-the-art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.
Collapse
Affiliation(s)
- Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qi Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
21
|
Zhang DY, Sang Y, Das TK, Guan Z, Zhong N, Duan CG, Wang W, Fransson J, Naaman R, Yang HB. Highly Conductive Topologically Chiral Molecular Knots as Efficient Spin Filters. J Am Chem Soc 2023; 145:26791-26798. [PMID: 37972388 PMCID: PMC10722505 DOI: 10.1021/jacs.3c08966] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Knot-like structures were found to have interesting magnetic properties in condensed matter physics. Herein, we report on topologically chiral molecular knots as efficient spintronic chiral material. The discovery of the chiral-induced spin selectivity (CISS) effect opens the possibility of manipulating the spin orientation with soft materials at room temperature and eliminating the need for a ferromagnetic electrode. In the chiral molecular trefoil knot, there are no stereogenic carbon atoms, and chirality results from the spatial arrangements of crossings in the trefoil knot structures. The molecules show a very high spin polarization of nearly 90%, a conductivity that is higher by about 2 orders of magnitude compared with that of other chiral small molecules, and enhanced thermal stability. A plausible explanation for these special properties is provided, combined with model calculations, that supports the role of electron-electron interaction in these systems.
Collapse
Affiliation(s)
- Dan-Yang Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Shanghai
Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung
Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yutao Sang
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Tapan Kumar Das
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Zhao Guan
- Key
Laboratory of Polar Materials and Devices (MOE) and State Key Laboratory
of Precision Spectroscopy, East China Normal
University, 500 Dongchuan Rd., Shanghai 200241, China
| | - Ni Zhong
- Key
Laboratory of Polar Materials and Devices (MOE) and State Key Laboratory
of Precision Spectroscopy, East China Normal
University, 500 Dongchuan Rd., Shanghai 200241, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan 237016 Shanxi, China
| | - Chun-Gang Duan
- Key
Laboratory of Polar Materials and Devices (MOE) and State Key Laboratory
of Precision Spectroscopy, East China Normal
University, 500 Dongchuan Rd., Shanghai 200241, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan 237016 Shanxi, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Shanghai
Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung
Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jonas Fransson
- Department
of Physics and Astronomy, Uppsala University, Uppsala 75236, Sweden
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Shanghai
Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung
Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Institute
of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
22
|
Chen S, Fu HH. Spin-Dependent Destructive and Constructive Quantum Interference Associated with Chirality-Induced Spin Selectivity in Single Circular Helix Molecules. J Phys Chem Lett 2023:11076-11083. [PMID: 38048754 DOI: 10.1021/acs.jpclett.3c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Chirality-induced spin selectivity (CISS) effect in straight helical molecules has received intense studies in past decade; however, the CISS effect in circular helical molecules (CHMs) has still rarely been explored. Here, we have constructed single CHMs having chirality-induced spin-orbit coupling (SOC) and connected by two nonmagnetic leads and successfully gained the required conditions for CISS effect occurring in CHMs for the first time. Our results uncover that only when the CHMs form a closed loop and when the lattice positions are coupled asymmetrically with both leads does the CISS effect occur. More importantly, the CISS-associated spin-dependent destructive and constructive quantum interference (QI) together with their phase transition appears in CHMs. The combination of CISS effect and spin-dependent QI phenomena opens up a new door to understand the underlying physics of the CISS effect in helical molecules.
Collapse
Affiliation(s)
- Song Chen
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Hua-Hua Fu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
23
|
Fathizadeh S. Phonon-assisted nearly pure spin current in DNA molecular chains: a multifractal analysis. Sci Rep 2023; 13:21281. [PMID: 38042962 PMCID: PMC10693578 DOI: 10.1038/s41598-023-48644-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023] Open
Abstract
Motivated by the development of molecular spintronics, we studied the phonon-assisted spin transport along a DNA chain in the presence of environmental-induced dephasing using multifractal analysis. The results demonstrate that a nearly pure spin current is generated in the presence of the voltage gate. The pure spin current is enhanced by increasing thermal effects. The vibration modes due to the thermal phonon bath assist in generating the spin current, so the spin state is more delocalized in strong electron-phonon coupling. The phonon chirality can translate to the electron spin to create a nontrivial spin texture, including spin currents. The spin states become more extended by increasing the phonon temperature. On the other hand, the spin states are less localized in longer chains as the spin selectivity is higher in longer chains than in short ones. Therefore, we can engineer a molecular spintronic device by controlling phonon effects on the storage and transport of binary digits.
Collapse
Affiliation(s)
- S Fathizadeh
- Department of Physics, Urmia University of Technology, Urmia, Iran.
- Research Institute for Applied Physics and Astronomy, Tabriz University, Tabriz, Iran.
| |
Collapse
|
24
|
Eckvahl HJ, Tcyrulnikov NA, Chiesa A, Bradley JM, Young RM, Carretta S, Krzyaniak MD, Wasielewski MR. Direct observation of chirality-induced spin selectivity in electron donor-acceptor molecules. Science 2023; 382:197-201. [PMID: 37824648 DOI: 10.1126/science.adj5328] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023]
Abstract
The role of chirality in determining the spin dynamics of photoinduced electron transfer in donor-acceptor molecules remains an open question. Although chirality-induced spin selectivity (CISS) has been demonstrated in molecules bound to substrates, experimental information about whether this process influences spin dynamics in the molecules themselves is lacking. Here we used time-resolved electron paramagnetic resonance spectroscopy to show that CISS strongly influences the spin dynamics of isolated covalent donor-chiral bridge-acceptor (D-Bχ-A) molecules in which selective photoexcitation of D is followed by two rapid, sequential electron-transfer events to yield D•+-Bχ-A•-. Exploiting this phenomenon affords the possibility of using chiral molecular building blocks to control electron spin states in quantum information applications.
Collapse
Affiliation(s)
- Hannah J Eckvahl
- Department of Chemistry, Center for Molecular Quantum Transduction and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208-3113, USA
| | - Nikolai A Tcyrulnikov
- Department of Chemistry, Center for Molecular Quantum Transduction and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208-3113, USA
| | - Alessandro Chiesa
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy
| | - Jillian M Bradley
- Department of Chemistry, Center for Molecular Quantum Transduction and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ryan M Young
- Department of Chemistry, Center for Molecular Quantum Transduction and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208-3113, USA
| | - Stefano Carretta
- Università di Parma, Dipartimento di Scienze Matematiche, Fisiche e Informatiche, I-43124 Parma, Italy
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208-3113, USA
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|
25
|
Alhyder R, Cappellaro A, Lemeshko M, Volosniev AG. Achiral dipoles on a ferromagnet can affect its magnetization direction. J Chem Phys 2023; 159:104103. [PMID: 37694742 DOI: 10.1063/5.0165806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
We demonstrate the possibility of a coupling between the magnetization direction of a ferromagnet and the tilting angle of adsorbed achiral molecules. To illustrate the mechanism of the coupling, we analyze a minimal Stoner model that includes Rashba spin-orbit coupling due to the electric field on the surface of the ferromagnet. The proposed mechanism allows us to study magnetic anisotropy of the system with an extended Stoner-Wohlfarth model and argue that adsorbed achiral molecules can change magnetocrystalline anisotropy of the substrate. Our research aims to motivate further experimental studies of the current-free chirality induced spin selectivity effect involving both enantiomers.
Collapse
Affiliation(s)
- Ragheed Alhyder
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Alberto Cappellaro
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Mikhail Lemeshko
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| | - Artem G Volosniev
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
26
|
García-Blázquez MA, Dednam W, Palacios JJ. Nonequilibrium Magneto-Conductance as a Manifestation of Spin Filtering in Chiral Nanojunctions. J Phys Chem Lett 2023; 14:7931-7939. [PMID: 37646507 PMCID: PMC10494227 DOI: 10.1021/acs.jpclett.3c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
It is generally accepted that spin-dependent electron transmission may appear in chiral systems, even without magnetic components, as long as significant spin-orbit coupling is present in some of its elements. However, how this chirality-induced spin selectivity (CISS) manifests in experiments, where the system is taken out of equilibrium, is still debated. Aided by group theoretical considerations and nonequilibrium DFT-based quantum transport calculations, here we show that when spatial symmetries that forbid a finite spin polarization in equilibrium are broken, a net spin accumulation appears at finite bias in an arbitrary two-terminal nanojunction. Furthermore, when a suitably magnetized detector is introduced into the system, the net spin accumulation, in turn, translates into a finite magneto-conductance. The symmetry prerequisites are mostly analogous to those for the spin polarization at any bias with the vectorial nature given by the direction of magnetization, hence establishing an interconnection between these quantities.
Collapse
Affiliation(s)
- M. A. García-Blázquez
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - W. Dednam
- Department
of Physics, Science Campus, University of
South Africa, Florida
Park, Johannesburg 1710, South Africa
| | - J. J. Palacios
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
27
|
Fransson J. Temperature activated chiral induced spin selectivity. J Chem Phys 2023; 159:084115. [PMID: 37638628 DOI: 10.1063/5.0155854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 08/29/2023] Open
Abstract
Recent experiments performed on chiral molecules, comprising transition metal or rare earth elements, indicate temperature reinforced chiral induced spin selectivity. In these compounds, spin selectivity is suppressed in the low temperature regime but grows by one to several orders of magnitude as the temperature is increased to room temperature. By relating temperature to nuclear motion, it is proposed that nuclear displacements acting on the local spin moments, through indirect exchange interactions, generate an anisotropic magnetic environment that is enhanced with temperature. The induced local anisotropy field serves as the origin of a strongly increased spin selectivity at elevated temperature.
Collapse
Affiliation(s)
- J Fransson
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala, Sweden
| |
Collapse
|
28
|
Adhikari Y, Liu T, Wang H, Hua Z, Liu H, Lochner E, Schlottmann P, Yan B, Zhao J, Xiong P. Interplay of structural chirality, electron spin and topological orbital in chiral molecular spin valves. Nat Commun 2023; 14:5163. [PMID: 37620378 PMCID: PMC10449876 DOI: 10.1038/s41467-023-40884-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure to spin polarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior.
Collapse
Affiliation(s)
- Yuwaraj Adhikari
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
| | - Tianhan Liu
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
| | - Hailong Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
| | - Zhenqi Hua
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
| | - Haoyang Liu
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
| | - Eric Lochner
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
| | - Pedro Schlottmann
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
| | - Binghai Yan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Jianhua Zhao
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China.
| | - Peng Xiong
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
29
|
Ozturk SF, Sasselov DD, Sutherland JD. The central dogma of biological homochirality: How does chiral information propagate in a prebiotic network? J Chem Phys 2023; 159:061102. [PMID: 37551802 PMCID: PMC7615580 DOI: 10.1063/5.0156527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 08/09/2023] Open
Abstract
Biological systems are homochiral, raising the question of how a racemic mixture of prebiotically synthesized biomolecules could attain a homochiral state at the network level. Based on our recent results, we aim to address a related question of how chiral information might have flowed in a prebiotic network. Utilizing the crystallization properties of the central ribonucleic acid (RNA) precursor known as ribose-aminooxazoline (RAO), we showed that its homochiral crystals can be obtained from its fully racemic solution on a magnetic mineral surface due to the chiral-induced spin selectivity (CISS) effect [Ozturk et al., arXiv:2303.01394 (2023)]. Moreover, we uncovered a mechanism facilitated by the CISS effect through which chiral molecules, such as RAO, can uniformly magnetize such surfaces in a variety of planetary environments in a persistent manner [Ozturk et al., arXiv:2304.09095 (2023)]. All this is very tantalizing because recent experiments with tRNA analogs demonstrate high stereoselectivity in the attachment of L-amino acids to D-ribonucleotides, enabling the transfer of homochirality from RNA to peptides [Wu et al., J. Am. Chem. Soc. 143, 11836 (2021)]. Therefore, the biological homochirality problem may be reduced to ensuring that a single common RNA precursor (e.g., RAO) can be made homochiral. The emergence of homochirality at RAO then allows for the chiral information to propagate through RNA, then to peptides, and ultimately through enantioselective catalysis to metabolites. This directionality of the chiral information flow parallels that of the central dogma of molecular biology-the unidirectional transfer of genetic information from nucleic acids to proteins [F. H. Crick, in Symposia of the Society for Experimental Biology, Number XII: The Biological Replication of Macromolecules, edited by F. K. Sanders (Cambridge University Press, Cambridge, 1958), pp. 138-163; and F. Crick, Nature 227, 561 (1970)].
Collapse
Affiliation(s)
- S. Furkan Ozturk
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Dimitar D. Sasselov
- Department of Astronomy, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
30
|
Xu Y, Mi W. Chiral-induced spin selectivity in biomolecules, hybrid organic-inorganic perovskites and inorganic materials: a comprehensive review on recent progress. MATERIALS HORIZONS 2023; 10:1924-1955. [PMID: 36989068 DOI: 10.1039/d3mh00024a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The two spin states of electrons are degenerate in nonmagnetic materials. The chiral-induced spin selectivity (CISS) effect provides a new strategy for manipulating electron's spin and a deeper understanding of spin selective processes in organisms. Here, we summarize the important discoveries and recent experiments performed during the development of the CISS effect, analyze the spin polarized transport in various types of materials and discuss the mechanisms, theoretical calculations, experimental techniques and biological significance of the CISS effect. The first part of this review concisely presents a general overview of the discoveries and importance of the CISS effect, laws and underlying mechanisms of which are discussed in the next section, where several classical experimental methods for detecting the CISS effect are also introduced. Based on the organic and inorganic properties of materials, the CISS effect of organic biomolecules, hybrid organic-inorganic perovskites and inorganic materials are reviewed in the third, fourth and fifth sections, especially the chiral transfer mechanism of hybrid materials and the relationship between the CISS effect and life science. In addition, conclusions and prospective future of the CISS effect are outlined at the end, where the development and applications of the CISS effect in spintronics are directly described, which is helpful for designing promising chiral spintronic devices and understanding the natural status of chirality from a new perspective.
Collapse
Affiliation(s)
- Yingdan Xu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
31
|
Huisman KH, Heinisch JBMY, Thijssen JM. CISS effect: Magnetocurrent-voltage characteristics with Coulomb interactions. II. J Chem Phys 2023; 158:2887768. [PMID: 37130070 DOI: 10.1063/5.0148748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
One of the manifestations of chirality-induced spin selectivity is the appearance of a magnetocurrent. Magnetocurrent is defined as the difference between the charge currents at finite bias in a two terminal device for opposite magnetizations of one of the leads. In experiments on chiral molecules assembled in monolayers the magnetocurrent is dominantly odd in bias voltage, while theory often yields an even one. From theory it is known that the spin-orbit coupling and chirality of the molecule can only generate a finite magnetocurrent in the presence of interactions, either of the electrons with vibrational modes or among themselves, through the Coulomb interaction. Here we analytically show that the magnetocurrent in bipartite-chiral structures mediated through Coulomb interactions is exactly even in the wide band limit and exactly odd for semi-infinite leads due to the bipartite lattice symmetry of the Green's function. Our numerical results confirm these analytical findings.
Collapse
Affiliation(s)
- K H Huisman
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - J B M Y Heinisch
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - J M Thijssen
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| |
Collapse
|
32
|
Huisman KH, Heinisch JBMY, Thijssen JM. Chirality-Induced Spin Selectivity (CISS) Effect: Magnetocurrent-Voltage Characteristics with Coulomb Interactions I. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:6900-6905. [PMID: 37081995 PMCID: PMC10108364 DOI: 10.1021/acs.jpcc.2c08807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Indexed: 05/03/2023]
Abstract
One of the manifestations of chirality-induced spin selectivity (CISS) is the appearance of a magnetocurrent. Magnetocurrent is the observation that the charge currents at finite bias in a two terminal device for opposite magnetizations of one of the leads differ. Magnetocurrents can only occur in the presence of interactions of the electrons either with vibrational modes or among themselves through the Coulomb interaction. In experiments on chiral molecules assembled in monolayers, the magnetocurrent seems to be dominantly cubic (odd) in bias voltage while theory finds a dominantly even bias voltage dependence. Thus far, theoretical work has predicted a magnetocurrent which is even bias. Here we analyze the bias voltage dependence of the magnetocurrent numerically and analytically involving the spin-orbit and Coulomb interactions (through the Hartree-Fock and Hubbard One approximations). For both approximations it is found that for strong Coulomb interactions the magnetocurrent is dominantly odd in bias voltage, confirming the symmetry observed in experiment.
Collapse
|
33
|
Dednam W, García-Blázquez MA, Zotti LA, Lombardi EB, Sabater C, Pakdel S, Palacios JJ. A Group-Theoretic Approach to the Origin of Chirality-Induced Spin-Selectivity in Nonmagnetic Molecular Junctions. ACS NANO 2023; 17:6452-6465. [PMID: 36947721 PMCID: PMC10100547 DOI: 10.1021/acsnano.2c11410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Spin-orbit coupling gives rise to a range of spin-charge interconversion phenomena in nonmagnetic systems where certain spatial symmetries are reduced or absent. Chirality-induced spin-selectivity (CISS), a term that generically refers to a spin-dependent electron transfer in nonmagnetic chiral systems, is one such case, appearing in a variety of seemingly unrelated situations ranging from inorganic materials to molecular devices. In particular, the origin of CISS in molecular junctions is a matter of an intense current debate. Here, we derive a set of geometrical conditions for this effect to appear, hinting at the fundamental role of symmetries beyond otherwise relevant quantitative issues. Our approach, which draws on the use of point-group symmetries within the scattering formalism for transport, shows that electrode symmetries are as important as those of the molecule when it comes to the emergence of a spin-polarization and, by extension, to the possible appearance of CISS. It turns out that standalone metallic nanocontacts can exhibit spin-polarization when relative rotations which reduce the symmetry are introduced. As a corollary, molecular junctions with achiral molecules can also exhibit spin-polarization along the direction of transport, provided that the whole junction is chiral in a specific way. This formalism also allows the prediction of qualitative changes of the spin-polarization upon substitution of a chiral molecule in the junction with its enantiomeric partner. Quantum transport calculations based on density functional theory corroborate all of our predictions and provide further quantitative insight within the single-particle framework.
Collapse
Affiliation(s)
- W. Dednam
- Department
of Physics, Florida Science Campus, University
of South Africa, 1710 Johannesburg, South Africa
| | - M. A. García-Blázquez
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Linda A. Zotti
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| | - E. B. Lombardi
- Department
of Physics, Florida Science Campus, University
of South Africa, 1710 Johannesburg, South Africa
| | - C. Sabater
- Departamento
de Física Aplicada and Unidad asociada CSIC, Universidad de Alicante, E-03690 Alicante, Spain
| | - S. Pakdel
- CAMD, Department
of Physics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - J. J. Palacios
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto
Nicolás Cabrera (INC) and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
34
|
Abstract
Chiral-induced spin selectivity is a phenomenon in which electron spins are polarized as they are transported through chiral molecules, and the spin polarization depends on the handedness of the chiral molecule. In this study, we show that spin selectivity can be realized in achiral materials by strongly coupling electrons to a circularly polarized mode of an optical cavity or waveguide. Through the investigation of spin-dependent electron transport in a two-terminal setup using the nonequilibrium Green's function approach, it is found that a large spin polarization can be obtained if the rate of dephasing is sufficiently small and the average chemical potential of the two leads is within an appropriate range of values, which is narrow because of the high frequency of the optical mode. To obtain a wider range of energies for a large spin polarization, chiral molecules can be combined with light-matter interactions. To demonstrate this, the spin polarization of electrons transported through a helical molecule strongly coupled to a circularly polarized optical mode is evaluated.
Collapse
Affiliation(s)
- Nguyen Thanh Phuc
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
35
|
Vittmann C, Lim J, Tamascelli D, Huelga SF, Plenio MB. Spin-Dependent Momentum Conservation of Electron-Phonon Scattering in Chirality-Induced Spin Selectivity. J Phys Chem Lett 2023; 14:340-346. [PMID: 36625481 DOI: 10.1021/acs.jpclett.2c03224] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The elucidation of the mechanisms underpinning chirality-induced spin selectivity remains an outstanding scientific challenge. Here we consider the role of delocalized phonon modes in electron transport in chiral structures and demonstrate that spin selectivity can originate from spin-dependent energy and momentum conservation in electron-phonon scattering events. While this mechanism is robust to the specific nature of the vibrational modes, the degree of spin polarization depends on environmental factors, such as the specific temperature and phonon relaxation rates, as well as the presence of external driving fields. This parametric dependence is used to present experimentally testable predictions of our model.
Collapse
Affiliation(s)
- Clemens Vittmann
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - James Lim
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Dario Tamascelli
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89081Ulm, Germany
- Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria 16, 20133Milano, Italy
| | - Susana F Huelga
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89081Ulm, Germany
| |
Collapse
|
36
|
Naaman R, Waldeck DH, Fransson J. New Perspective on Electron Transfer through Molecules. J Phys Chem Lett 2022; 13:11753-11759. [PMID: 36516240 PMCID: PMC9791659 DOI: 10.1021/acs.jpclett.2c03141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Motivated by experiments which display unusual length and temperature effects for electron transfer in the nanometer length regime, we propose a new approach for describing long-range electron transfer (ET) processes through molecules. We posit that the electron reorganization in the molecules (e.g., the electronic polarization of a macromolecule or organic film by an applied electric potential, or the injected charge generating a dipole moment) should be included in the description. We numerically solve a one-dimensional model for the electron transport, which includes electron-electron interactions explicitly, and we show that it generates a power law distance dependence for electron transport similar to that observed in experiments. The model does not include vibrations explicitly and should be consistent with the weak temperature dependences observed experimentally. This approach emphasizes the need to treat the electronic changes in the molecule(s) more explicitly to understand the behavior.
Collapse
Affiliation(s)
- Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| | - David H. Waldeck
- Chemistry
Department, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Jonas Fransson
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 21Uppsala, Sweden
| |
Collapse
|
37
|
Aragonès AC, Aravena D, Ugalde JM, Medina E, Gutierrez R, Ruiz E, Mujica V, Díez‐Pérez I. Magnetoresistive Single‐Molecule Junctions: the Role of the
Spinterface
and the
CISS
Effect. Isr J Chem 2022. [DOI: 10.1002/ijch.202200090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Albert C. Aragonès
- Departament de Ciència de Materials i Química Física Universitat de Barcelona Marti i Franquès 1 08028 Barcelona Spain
- Institut de Química Teòrica i Computacional (IQTC) Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Daniel Aravena
- Departamento de Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile Casilla 40, Correo 33 Santiago 9170022 Chile
| | - Jesús M. Ugalde
- Kimika Fakultatea Euskal Herriko Unibertsitatea (UPV/EHU) P.K. 1072 20018 Donostia, Euskadi Spain
| | - Ernesto Medina
- Departamento de Física Colegio de Ciencias e Ingeniería Universidad San Francisco de Quito Diego de Robles y Vía Interoceánica Quito 170901 Ecuador
| | - Rafael Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials Dresden University of Technology 01062 Dresden Germany
| | - Eliseo Ruiz
- Institut de Química Teòrica i Computacional (IQTC) Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Departament de Química Inorgànica i Orgànica Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Vladimiro Mujica
- School of Molecular Sciences Arizona State University Tempe Arizona 85287 USA
| | - Ismael Díez‐Pérez
- Department of Chemistry Faculty of Natural & Mathematical Sciences King's College London Britannia House 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
38
|
Utsumi Y, Kato T, Entin‐Wohlman O, Aharony A. Spin‐Filtering in a
p
‐Orbital Helical Atomic Chain. Isr J Chem 2022. [DOI: 10.1002/ijch.202200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yasuhiro Utsumi
- Department of Physics Engineering Faculty of Engineering Mie University Tsu Mie 514-8507 Japan
| | - Takemitsu Kato
- Department of Physics Engineering Faculty of Engineering Mie University Tsu Mie 514-8507 Japan
| | - Ora Entin‐Wohlman
- School of Physics and Astronomy Tel Aviv University Tel Aviv 6997801 Israel
| | - Amnon Aharony
- School of Physics and Astronomy Tel Aviv University Tel Aviv 6997801 Israel
| |
Collapse
|
39
|
Fransson J. The Chiral Induced Spin Selectivity Effect What It Is, What It Is Not, And Why It Matters. Isr J Chem 2022. [DOI: 10.1002/ijch.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Fransson
- Department of Physics and Astronomy Uppsala University Box 516, 751 21 Uppsala Sweden
| |
Collapse
|
40
|
Möllers PV, Göhler B, Zacharias H. Chirality Induced Spin Selectivity – the Photoelectron View. Isr J Chem 2022. [DOI: 10.1002/ijch.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Paul V. Möllers
- Center for Soft Nanoscience University of Münster Busso-Peus-Str. 10 48149 Münster Germany
| | - Benjamin Göhler
- Center for Soft Nanoscience University of Münster Busso-Peus-Str. 10 48149 Münster Germany
| | - Helmut Zacharias
- Center for Soft Nanoscience University of Münster Busso-Peus-Str. 10 48149 Münster Germany
| |
Collapse
|
41
|
Kishine J, Kusunose H, Yamamoto HM. On the Definition of Chirality and Enantioselective Fields. Isr J Chem 2022. [DOI: 10.1002/ijch.202200049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jun‐ichiro Kishine
- Department of Natural Sciences The Open University of Japan Wakaba 2–11 Chiba 261-8586 Japan
| | - Hiroaki Kusunose
- Department of Physics Meiji University Higashi-Mita, Taka-Ku Kawasaki 214-8571 Japan
| | - Hiroshi M. Yamamoto
- Research Centre of Integrated Molecular Systems Institute for Molecular Science Myodaiji Okazaki 444-8585 Japan
| |
Collapse
|
42
|
Safari MR, Matthes F, Ernst KH, Bürgler DE, Schneider CM. Deposition of Chiral Heptahelicene Molecules on Ferromagnetic Co and Fe Thin-Film Substrates. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3281. [PMID: 36234411 PMCID: PMC9565510 DOI: 10.3390/nano12193281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The discovery of chirality-induced spin selectivity (CISS), resulting from an interaction between the electron spin and handedness of chiral molecules, has sparked interest in surface-adsorbed chiral molecules due to potential applications in spintronics, enantioseparation, and enantioselective chemical or biological processes. We study the deposition of chiral heptahelicene by sublimation under ultra-high vacuum onto bare Cu(111), Co bilayer nanoislands on Cu(111), and Fe bilayers on W(110) by low-temperature spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS). In all cases, the molecules remain intact and adsorb with the proximal phenanthrene group aligned parallel to the surface. Three degenerate in-plane orientations on Cu(111) and Co(111), reflecting substrate symmetry, and only two on Fe(110), i.e., fewer than symmetry permits, indicate a specific adsorption site for each substrate. Heptahelicene physisorbs on Cu(111) but chemisorbs on Co(111) and Fe(110) bilayers, which nevertheless remain for the sub-monolayer coverage ferromagnetic and magnetized out-of-plane. We are able to determine the handedness of individual molecules chemisorbed on Fe(110) and Co(111), as previously reported for less reactive Cu(111). The demonstrated deposition control and STM/STS imaging capabilities for heptahelicene on Co/Cu(111) and Fe/W(110) substrate systems lay the foundation for studying CISS in ultra-high vacuum and on the microscopic level of single molecules in controlled atomic configurations.
Collapse
Affiliation(s)
- Mohammad Reza Safari
- Peter Grünberg Institute, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52428 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - Frank Matthes
- Peter Grünberg Institute, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52428 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - Karl-Heinz Ernst
- Molecular Surface Science Group, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Daniel E. Bürgler
- Peter Grünberg Institute, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52428 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - Claus M. Schneider
- Peter Grünberg Institute, Electronic Properties (PGI-6), Forschungszentrum Jülich, 52428 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
- Fakultät für Physik, Universität Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
43
|
Dubi Y. Spinterface chirality-induced spin selectivity effect in bio-molecules. Chem Sci 2022; 13:10878-10883. [PMID: 36320704 PMCID: PMC9491198 DOI: 10.1039/d2sc02565e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
The chirality-induced spin selectivity (CISS) effect, namely the dependence of current through a chiral molecule on spin of the electron, was discovered over two decades ago, and has been suggested for various spin- and chirality-related applications. Yet, quite surprisingly, its physical origin remains elusive, and no theoretical description can quantitatively describe it. Here, we propose a theory for the CISS effect in bio-molecular junctions, based on the interplay between spin-orbit coupling in the electrodes, molecular chirality and spin-transfer torque across the electrode-molecule interface. This theory leads to the first ever quantitative analysis of experimental data, and provides insights into the origin of the CISS effect. The theory presented here can be used to analyze past experiments and to design new experiments, which may lead to deeper understanding of what is considered one of the outstanding problems in molecular electronics and nano-scale transport.
Collapse
Affiliation(s)
- Yonatan Dubi
- Department of Chemistry, Ben Gurion University of the Negev Be'er Sheva Israel 8410501
- Ilse Katz Center for Nanoscale Science and Technology, Ben Gurion University of the Negev Be'er Sheva Israel 8410501
| |
Collapse
|
44
|
On the origins of life's homochirality: Inducing enantiomeric excess with spin-polarized electrons. Proc Natl Acad Sci U S A 2022; 119:e2204765119. [PMID: 35787048 PMCID: PMC9282223 DOI: 10.1073/pnas.2204765119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Life as we know it is homochiral, but the origins of biological homochirality on early Earth remain elusive. Shallow closed-basin lakes are a plausible prebiotic environment on early Earth, and most are expected to have significant sedimentary magnetite deposits. We hypothesize that ultraviolet (200- to 300-nm) irradiation of magnetite deposits could generate hydrated spin-polarized electrons sufficient to induce enantioselective prebiotic chemistry. Such electrons are potent reducing agents that drive reduction reactions where the spin polarization direction can enantioselectively alter the reaction kinetics. Our estimate of this chiral bias is based on the strong effective spin-orbit coupling observed in the chiral-induced spin selectivity (CISS) effect, as applied to energy differences in reduction reactions for different isomers. In the original CISS experiments, spin-selective electron transmission through a monolayer of double-strand DNA molecules is observed at room temperature-indicating a strong coupling between molecular chirality and electron spin. We propose that the chiral symmetry breaking due to the CISS effect, when applied to reduction chemistry, can induce enantioselective synthesis on the prebiotic Earth and thus facilitate the homochiral assembly of life's building blocks.
Collapse
|
45
|
Control of light, spin and charge with chiral metal halide semiconductors. Nat Rev Chem 2022; 6:470-485. [PMID: 37117313 DOI: 10.1038/s41570-022-00399-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
The relationship between the structural asymmetry and optoelectronic properties of functional materials is an active area of research. The movement of charges through an oriented chiral medium depends on the spin configuration of the charges, and such systems can be used to control spin populations without magnetic components - termed the chiral-induced spin selectivity (CISS) effect. CISS has mainly been studied in chiral organic molecules and their assemblies. Semiconductors are non-magnetic extended systems that allow for the control of charge transport, as well as the absorption and emission of light. Therefore, introducing chirality into semiconductors would enable control over charge, spin and light without magnetic components. Chiral metal halide semiconductors (MHSs) are hybrid organic-inorganic materials that combine the properties of small chiral organic molecules with those of extended inorganic semiconductors. Reports of CISS in chiral MHSs have resulted in breakthroughs in our understanding of CISS and in the realization of spin-dependent optoelectronic properties. This Review examines the fundamentals and applications of CISS in chiral MHSs. The structural diversity and key structure-property relationships, such as chiral transfer from the organic to the inorganic components, are summarized. With a focus on the underlying chemistry and physics, the control of spin, light and charge in these semiconductors is explored.
Collapse
|
46
|
Geyer M, Gutierrez R, Mujica V, Silva JFR, Dianat A, Cuniberti G. The contribution of intermolecular spin interactions to the London dispersion forces between chiral molecules. J Chem Phys 2022; 156:234106. [PMID: 35732515 DOI: 10.1063/5.0090266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dispersion interactions are one of the components of van der Waals (vdW) forces that play a key role in the understanding of intermolecular interactions in many physical, chemical, and biological processes. The theory of dispersion forces was developed by London in the early years of quantum mechanics. However, it was only in the 1960s that it was recognized that for molecules lacking an inversion center, such as chiral and helical molecules, there are chirality-sensitive corrections to the dispersion forces proportional to the rotatory power known from the theory of circular dichroism and with the same distance scaling law R-6 as the London energy. The discovery of the chirality-induced spin selectivity effect in recent years has led to an additional twist in the study of chiral molecular systems, showing a close relation between spin and molecular geometry. Motivated by it, we propose in this investigation to describe the mutual induction of charge and spin-density fluctuations in a pair A-B of chiral molecules by a simple physical model. The model assumes that the same fluctuating electric fields responsible for vdW forces can induce a magnetic response via a Rashba-like term so that a spin-orbit field acting on molecule B is generated by the electric field arising from charge density fluctuations in molecule A (and vice versa). Within a second-order perturbative approach, these contributions manifest as an effective intermolecular exchange interaction. Although expected to be weaker than the standard London forces, these interactions display the same R-6 distance scaling.
Collapse
Affiliation(s)
- M Geyer
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - R Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - V Mujica
- Arizona State University, School of Molecular Sciences, P.O. Box 871604, Tempe, Arizona 85287-1604, USA
| | - J F Rivas Silva
- Instituto de Física Luis Rivera Terrazas, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J48, Col. San Manuel, Puebla Pue. C. P. 72570, Mexico
| | - A Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - G Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| |
Collapse
|
47
|
Aiello CD, Abendroth JM, Abbas M, Afanasev A, Agarwal S, Banerjee AS, Beratan DN, Belling JN, Berche B, Botana A, Caram JR, Celardo GL, Cuniberti G, Garcia-Etxarri A, Dianat A, Diez-Perez I, Guo Y, Gutierrez R, Herrmann C, Hihath J, Kale S, Kurian P, Lai YC, Liu T, Lopez A, Medina E, Mujica V, Naaman R, Noormandipour M, Palma JL, Paltiel Y, Petuskey W, Ribeiro-Silva JC, Saenz JJ, Santos EJG, Solyanik-Gorgone M, Sorger VJ, Stemer DM, Ugalde JM, Valdes-Curiel A, Varela S, Waldeck DH, Wasielewski MR, Weiss PS, Zacharias H, Wang QH. A Chirality-Based Quantum Leap. ACS NANO 2022; 16:4989-5035. [PMID: 35318848 PMCID: PMC9278663 DOI: 10.1021/acsnano.1c01347] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.
Collapse
Affiliation(s)
- Clarice D. Aiello
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - John M. Abendroth
- Laboratory
for Solid State Physics, ETH Zürich, Zürich 8093, Switzerland
| | - Muneer Abbas
- Department
of Microbiology, Howard University, Washington, D.C. 20059, United States
| | - Andrei Afanasev
- Department
of Physics, George Washington University, Washington, D.C. 20052, United States
| | - Shivang Agarwal
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Amartya S. Banerjee
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - David N. Beratan
- Departments
of Chemistry, Biochemistry, and Physics, Duke University, Durham, North Carolina 27708, United States
| | - Jason N. Belling
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Bertrand Berche
- Laboratoire
de Physique et Chimie Théoriques, UMR Université de Lorraine-CNRS, 7019 54506 Vandœuvre les
Nancy, France
| | - Antia Botana
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Justin R. Caram
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Giuseppe Luca Celardo
- Institute
of Physics, Benemerita Universidad Autonoma
de Puebla, Apartado Postal J-48, 72570, Mexico
- Department
of Physics and Astronomy, University of
Florence, 50019 Sesto Fiorentino, Italy
| | - Gianaurelio Cuniberti
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Aitzol Garcia-Etxarri
- Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Arezoo Dianat
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Ismael Diez-Perez
- Department
of Chemistry, Faculty of Natural and Mathematical Sciences, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Yuqi Guo
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Rafael Gutierrez
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Carmen Herrmann
- Department
of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Joshua Hihath
- Department
of Electrical and Computer Engineering, University of California, Davis, Davis, California 95616, United States
| | - Suneet Kale
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Philip Kurian
- Quantum
Biology Laboratory, Graduate School, Howard
University, Washington, D.C. 20059, United States
| | - Ying-Cheng Lai
- School
of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Tianhan Liu
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexander Lopez
- Escuela
Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil 090902, Ecuador
| | - Ernesto Medina
- Departamento
de Física, Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Av. Diego de Robles
y Vía Interoceánica, Quito 170901, Ecuador
| | - Vladimiro Mujica
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Kimika
Fakultatea, Euskal Herriko Unibertsitatea, 20080 Donostia, Euskadi, Spain
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Mohammadreza Noormandipour
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- TCM Group,
Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Julio L. Palma
- Department
of Chemistry, Pennsylvania State University, Lemont Furnace, Pennsylvania 15456, United States
| | - Yossi Paltiel
- Applied
Physics Department and the Center for Nano-Science and Nano-Technology, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - William Petuskey
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - João Carlos Ribeiro-Silva
- Laboratory
of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, 05508-900 São
Paulo, Brazil
| | - Juan José Saenz
- Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Elton J. G. Santos
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- Higgs Centre
for Theoretical Physics, The University
of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
| | - Maria Solyanik-Gorgone
- Department
of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Volker J. Sorger
- Department
of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Dominik M. Stemer
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jesus M. Ugalde
- Kimika
Fakultatea, Euskal Herriko Unibertsitatea, 20080 Donostia, Euskadi, Spain
| | - Ana Valdes-Curiel
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Solmar Varela
- School
of Chemical Sciences and Engineering, Yachay
Tech University, 100119 Urcuquí, Ecuador
| | - David H. Waldeck
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael R. Wasielewski
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Institute
for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Paul S. Weiss
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California, 90095, United States
| | - Helmut Zacharias
- Center
for Soft Nanoscience, University of Münster, 48149 Münster, Germany
| | - Qing Hua Wang
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
48
|
Du M, Liu X, Xie S. Spin-orbit coupling and the fine optical structure of chiral helical polymers. Phys Chem Chem Phys 2022; 24:9557-9563. [PMID: 35394001 DOI: 10.1039/d2cp01092e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the discovery of the chiral-induced spin selectivity (CISS) effect, it has been recognized that spin and structural spin-orbit coupling (SOC) play important roles in the electro-optical properties of chiral materials. We redefine the spin-dependent current and magnetic moment operators to include chiral-induced SOC in a helical polymer and deduce optical absorption and circular dichroism (CD) formulae. The fine structure in the optical spectra is calculated for a helical polymer described with the tight-binding model. The effects of both the electron orbit and spin on the optical absorption and CD are discussed. Our investigations demonstrate that the synergy between the electron orbit and spin will contribute to higher-sensitivity circularly polarized light (CPL) detection.
Collapse
Affiliation(s)
- Mengzhao Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China.
| | - Xuan Liu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China.
| | - Shijie Xie
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China.
| |
Collapse
|
49
|
Vittmann C, Kessing RK, Lim J, Huelga SF, Plenio MB. Interface-Induced Conservation of Momentum Leads to Chiral-Induced Spin Selectivity. J Phys Chem Lett 2022; 13:1791-1796. [PMID: 35170964 DOI: 10.1021/acs.jpclett.1c03975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We study the nonequilibrium dynamics of electron transmission from a straight waveguide to a helix with spin-orbit coupling. Transmission is found to be spin-selective and can lead to large spin polarizations of the itinerant electrons. The degree of spin selectivity depends on the width of the interface region, and no polarization is found for single-point couplings. We show that this is due to momentum conservation conditions arising from extended interfaces. We therefore identify interface structure and conservation of momentum as crucial ingredients for chiral-induced spin selectivity, and we confirm that this mechanism is robust against static disorder.
Collapse
Affiliation(s)
- Clemens Vittmann
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - R Kevin Kessing
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - James Lim
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Susana F Huelga
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|
50
|
Fransson J. Charge and Spin Dynamics and Enantioselectivity in Chiral Molecules. J Phys Chem Lett 2022; 13:808-814. [PMID: 35068158 PMCID: PMC8802319 DOI: 10.1021/acs.jpclett.1c03925] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 05/29/2023]
Abstract
Charge and spin dynamics are addressed in chiral molecules immediately after their instantaneous coupling to an external metallic reservoir. This work describes how a spin polarization is induced in the chiral structure as a response to the charge dynamics. The dynamics indicate that chiral induced spin selectivity is an excited state phenomenon that in the transient regime can be partly captured using a simplistic single-particle description but in the stationary limit definitively shows that electron correlations, e.g., electron-vibration interactions, crucially contribute to sustain an intrinsic spin anisotropy that can lead to a nonvanishing spin selectivity. The dynamics, moreover, provide insight into enantiomer separation, due to different acquired spin polarizations.
Collapse
Affiliation(s)
- J. Fransson
- Department of Physics and
Astronomy, Uppsala University, Box 516, 751 21 Uppsala, Sweden
| |
Collapse
|