1
|
Cousin I, Misery L, de Vries P, Lebonvallet N. Emergence of New Concepts in Skin Physiopathology through the Use of in vitro Human Skin Explants Models. Dermatology 2023; 239:849-859. [PMID: 37717565 DOI: 10.1159/000533261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/20/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND This review summarizes uses and new applications for dermatological research of in vitro culture models of human skin explants (HSEs). In the last decade, many innovations have appeared in the literature and an exponential number of studies have been recorded in various fields of application such as process culture engineering, stem cell extractions methodology, or cell-to-cell interaction studies under physiological and pathological conditions, wound-healing, and inflammation. Most studies also concerned pharmacology, cosmetology, and photobiology. However, these topics will not be considered in our review. SUMMARY A better understanding of the mechanisms driving intercellular relationships, at work in the maintenance of 3D tissue architectures has led to the improvement of cell culture techniques. Many papers have focused on the physiological ways that govern in vitro tissue maintenance of HSEs. The analysis of the necessary mechanical stress, intercellular and cell-matrix interactions, allows the maintenance and prolonged use of HSEs in culture for up to 15 days, regardless of the great variability of study protocols from one laboratory to another and in accordance with the objectives set. Because of their close similarities to fresh skin, HSEs are increasingly used to study skin barrier repair and wound healing physiology. Easy to use in co-culture, this model allows a better understanding of the connections and interactions between the peripheral nervous system, the skin and the immune system. The development of the concept of an integrated neuro-immuno-cutaneous system at work in skin physiology and pathology highlighted by this article represents one of the new technical challenges in the field of in vitro culture of HSE. This review of the literature also reveals the importance of using such models in pathology. As sources of stem cells, HSEs are the basis for the development of new tissue engineering models such as organoids or optical clearing tissues technology. This study identifies the main advances and cross-cutting issues in the use of HSE.
Collapse
Affiliation(s)
- Ianis Cousin
- Laboratoire Interactions épithéliums Neurones, Université de Bretagne Occidentale, Brest, France
- Service de chirurgie pédiatrique CHRU de Brest, Brest, France
| | - Laurent Misery
- Laboratoire Interactions épithéliums Neurones, Université de Bretagne Occidentale, Brest, France
- Service de dermatologie CHRU de Brest, Brest, France
| | - Philine de Vries
- Laboratoire Interactions épithéliums Neurones, Université de Bretagne Occidentale, Brest, France
- Service de chirurgie pédiatrique CHRU de Brest, Brest, France
| | - Nicolas Lebonvallet
- Laboratoire Interactions épithéliums Neurones, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
2
|
Sensory nerve sprouting of human skin explants confers improved survival to Merkel cells independent of Merkel cell-neurite complexes. J Invest Dermatol 2023:S0022-202X(23)00157-4. [PMID: 36863447 DOI: 10.1016/j.jid.2023.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 03/02/2023]
|
3
|
Oleszycka E, Kwiecien K, Kwiecinska P, Morytko A, Pocalun N, Camacho M, Brzoza P, Zabel BA, Cichy J. Soluble mediators in the function of the epidermal-immune-neuro unit in the skin. Front Immunol 2022; 13:1003970. [PMID: 36330530 PMCID: PMC9623011 DOI: 10.3389/fimmu.2022.1003970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/05/2022] [Indexed: 09/19/2023] Open
Abstract
Skin is the largest, environmentally exposed (barrier) organ, capable of integrating various signals into effective defensive responses. The functional significance of interactions among the epidermis and the immune and nervous systems in regulating and maintaining skin barrier function is only now becoming recognized in relation to skin pathophysiology. This review focuses on newly described pathways that involve soluble mediator-mediated crosstalk between these compartments. Dysregulation of these connections can lead to chronic inflammatory diseases and/or pathologic conditions associated with chronic pain or itch.
Collapse
Affiliation(s)
- Ewa Oleszycka
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kamila Kwiecien
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Patrycja Kwiecinska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Morytko
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Natalia Pocalun
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Michelle Camacho
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Piotr Brzoza
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Brian A. Zabel
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Ge S, Khachemoune A. The Importance of Cutaneous Innervation in Wound Healing: From Animal Studies to Clinical Applications. INT J LOW EXTR WOUND 2021:15347346211045022. [PMID: 34533075 DOI: 10.1177/15347346211045022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The skin is a neuroimmunoendocrine organ that regularly undergoes injury and repair. The complex process of wound healing relies heavily on the cutaneous nervous system. Despite the observation that wound healing deficiencies cause significant morbidity and mortality for patients with nervous dysfunction across many disciplinaries, the role of cutaneous innervation in wound repair has not been well elucidated. In a previous article, we learned the basics of cutaneous neuroanatomy and the important neuropeptides involved in the wound healing process. Currently, we aim to synthesize the basics with observations from animal models and human studies for a more comprehensive understanding of nervous system involvement in cutaneous wound healing. We have demonstrated in this review, the importance of the cutaneous nervous system in each phase of wound healing through basic science research, animal experiments, and human studies.
Collapse
Affiliation(s)
| | - Amor Khachemoune
- Veterans Affairs Medical Center, Brooklyn, NY, USA.,SUNY Downstate, Brooklyn, NY, USA
| |
Collapse
|
5
|
Sensory re-innervation of human skin by human neural stem cell-derived peripheral neurons ex vivo. J Invest Dermatol 2021; 142:257-261.e5. [PMID: 34293348 DOI: 10.1016/j.jid.2021.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/15/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022]
|
6
|
Bagood MD, Isseroff RR. TRPV1: Role in Skin and Skin Diseases and Potential Target for Improving Wound Healing. Int J Mol Sci 2021; 22:ijms22116135. [PMID: 34200205 PMCID: PMC8201146 DOI: 10.3390/ijms22116135] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Skin is innervated by a multitude of sensory nerves that are important to the function of this barrier tissue in homeostasis and injury. The role of innervation and neuromediators has been previously reviewed so here we focus on the role of the transient receptor potential cation channel, subfamily V member 1 (TRPV1) in wound healing, with the intent of targeting it in treatment of non-healing wounds. TRPV1 structure and function as well as the outcomes of TRPV1-targeted therapies utilized in several diseases and tissues are summarized. In skin, keratinocytes, sebocytes, nociceptors, and several immune cells express TRPV1, making it an attractive focus area for treating wounds. Many intrinsic and extrinsic factors confound the function and targeting of TRPV1 and may lead to adverse or off-target effects. Therefore, a better understanding of what is known about the role of TRPV1 in skin and wound healing will inform future therapies to treat impaired and chronic wounds to improve healing.
Collapse
Affiliation(s)
- Michelle D. Bagood
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95816, USA;
| | - R. Rivkah Isseroff
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95816, USA;
- Dermatology Section, VA Northern California Health Care System, Mather, CA 95655, USA
- Correspondence: ; Tel.: +1-(916)-551-2606
| |
Collapse
|
7
|
Epidermal expression of human TRPM8, but not of TRPA1 ion channels, is associated with sensory responses to local skin cooling. Pain 2020; 160:2699-2709. [PMID: 31343541 DOI: 10.1097/j.pain.0000000000001660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human cold perception and nociception play an important role in persisting pain. However, species differences in the target temperature of thermosensitive ion channels expressed in peripheral nerve endings have fueled discussions about the mechanism of cold nociception in humans. Most frequently implicated thermosensors are members of the transient receptor potential (TRP) ion channel family TRPM8 and TRPA1. Regularly observed, distinct cold pain phenotype groups suggested the existence of interindividually differing molecular bases. In 28 subjects displaying either high or medium sensitivity to local cooling of the skin, the density at epidermal nerve fibers of TRPM8, but not that of TRPA1 expression, correlated significantly with the cold pain threshold. Moreover, reproducible grouping of the subjects, based on high or medium sensitivity to cooling, was reflected in an analogous grouping based on high or low TRPM8 expression at epidermal nerve fibers. The distribution of TRPM8 expression in epidermal nerve fibers provided an explanation for the previously observed (bi)modal distribution of human cold pain thresholds which was reproduced in this study. In the light of current controversies on the role of human TRPA1 ion channels in cold pain perception, the present observations demonstrating a lack of association of TRPA1 channel expression with cold sensitivity-related measures reinforce doubts about involvement of this channel in cold pain in humans. Since TRP inhibitors targeting TRPM8 and TRPA1 are currently entering clinical phases of drug development, the existence of known species differences, in particular in the function of TRPA1, emphasizes the increasing importance of new methods to directly approach the roles of TRPs in humans.
Collapse
|
8
|
De Vita MJ, Maisto SA, Ansell EB, Zale EL, Ditre JW. Pack-years of tobacco cigarette smoking as a predictor of spontaneous pain reporting and experimental pain reactivity. Exp Clin Psychopharmacol 2019; 27:552-560. [PMID: 30714754 PMCID: PMC6748874 DOI: 10.1037/pha0000258] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pack-years formula is a widely used estimate of lifetime tobacco smoking exposure, and greater pack-years have been associated with greater risk of chronic pain development and poorer pain-related outcomes among smokers with chronic pain. The pathophysiology underlying these associations is poorly understood. Regular tobacco smoking exposure may dysregulate homeostatic pain processes, producing an allostatic state of pain facilitation. Maladaptive pain mechanisms, such as central and peripheral sensitization, are chronic pain risk factors. Yet no published research has examined the relation between lifetime-smoking exposure and dysregulated pain processing. The current study used hierarchical linear regression analyses to test pack-years of tobacco smoking as a predictor of (a) pain reporting (current pain severity, pain frequency in the last 180 days) among a sample of 228 daily smokers without chronic pain, and (b) experimental capsaicin-induced pain reactivity (pain intensity, area of flare, mechanical pain sensitivity, and area of mechanical hyperalgesia) among 101 daily smokers without chronic pain. As hypothesized, results indicated that pack-years smoking was positively and significantly associated with current pain severity, past 180-day pain frequency, experimental pain intensity, mechanical pain sensitivity ratings, and area of mechanical hyperalgesia. Pack-years smoking was not significantly associated with neurogenic flare. These findings implicate central sensitization as a factor that may underlie the association between chronic tobacco smoking and increased risk for persistent pain. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Emily L Zale
- Department of Psychology, Binghampton University
| | | |
Collapse
|
9
|
UCHL1/PGP 9.5 Dynamic in Neuro-Immune-Cutaneous Milieu: Focusing on Axonal Nerve Terminals and Epidermal Keratinocytes in Psoriatic Itch. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7489316. [PMID: 30148172 PMCID: PMC6083486 DOI: 10.1155/2018/7489316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 01/03/2023]
Abstract
Psoriasis is an immunogenetic skin disease manifesting as plaque lesions on the skin. Patients with psoriasis frequently suffer from itch, an unpleasant sensation causing a desire to scratch. Psoriatic itch is mainly transmitted by unmyelinated C-fibers; however, the exact molecular mechanism of psoriatic itch is still unexplained. Protein gene product 9.5 (PGP 9.5) is a panneurological marker commonly used for analysis of peripheral peptidergic and nonpeptidergic nerves and identification of cutaneous neuro-immune-endocrine cells. However, some studies suggested that nonneuronal cells, like keratinocytes, may also express PGP 9.5. This phenomenon might be linked with impaired axonal transport, keratinocyte injury, or dysfunctions of neuro-immune-cutaneous connections. The aim of this study was to analyze the expression of PGP 9.5 in psoriatic skin. We observed significantly altered density of PGP 9.5-positive axonal nerve terminals in pruritic lesional (p=0.04) and nonlesional psoriatic skin (p>0.001) compared with controls. In contrast, no significant differences were observed between psoriatic skin without itch and controls. Furthermore, PGP 9.5 expression by suprabasal keratinocytes (SBKs) was significantly increased in itchy skin lesions (p=0.007) compared to skin without itch, and a positive correlation was observed between PGP 9.5 expression and itch intensity (r=0.64; p=0.02). Our findings indicate changes in peripheral innervations and psoriatic keratinocytes, which may influence neuro-immune-cutaneous homeostasis and modulate itch transmission.
Collapse
|
10
|
Ditre JW, Zale EL, LaRowe LR, Kosiba JD, De Vita MJ. Nicotine deprivation increases pain intensity, neurogenic inflammation, and mechanical hyperalgesia among daily tobacco smokers. JOURNAL OF ABNORMAL PSYCHOLOGY 2018; 127:578-589. [PMID: 29781659 DOI: 10.1037/abn0000353] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An evolving reciprocal model posits that pain and tobacco smoking behavior interact in the manner of a positive feedback loop, resulting in greater pain and the maintenance of nicotine dependence. There is also reason to believe that abstaining from smoking may increase pain during the early stages of smoking cessation. The goal of this study was to test the effects of nicotine deprivation on experimental pain reactivity. Daily tobacco cigarette smokers (N = 165; 43% female) were randomized to either extended nicotine deprivation (12-24 hr smoking abstinence), minimal deprivation (2 hr smoking abstinence), or continued smoking conditions, prior to undergoing pain induction via topical capsaicin. As hypothesized, results indicated that extended deprivation (relative to continued smoking) increased capsaicin-induced pain intensity ratings, neurogenic inflammation, and mechanical hyperalgesia, thus implicating both central and peripheral mechanisms of action in the effects of smoking abstinence on pain reactivity. Pain intensity ratings were also positively correlated with nicotine withdrawal symptoms, and exploratory analyses suggest that pain sensitivity may increase with duration of smoking abstinence. Collectively, these findings indicate that smokers may experience a variety of negative pain-related sequelae during the early stages of a quit attempt. Future research should examine pain as a consequence or correlate of the nicotine withdrawal syndrome, and determine whether smokers may benefit from tailored cessation interventions that account for nicotine deprivation-induced amplification of pain. (PsycINFO Database Record
Collapse
|
11
|
Chiang H, Chang KC, Kan HW, Wu SW, Tseng MT, Hsueh HW, Lin YH, Chao CC, Hsieh ST. Physiological and pathological characterization of capsaicin-induced reversible nerve degeneration and hyperalgesia. Eur J Pain 2018; 22:1043-1056. [DOI: 10.1002/ejp.1189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2017] [Indexed: 11/07/2022]
Affiliation(s)
- H. Chiang
- Department of Anatomy and Cell Biology; National Taiwan University College of Medicine; Taipei Taiwan
| | - K.-C. Chang
- Department of Neurology; National Taiwan University Hospital; Taipei Taiwan
| | - H.-W. Kan
- Department of Anatomy and Cell Biology; National Taiwan University College of Medicine; Taipei Taiwan
| | - S.-W. Wu
- Department of Anatomy and Cell Biology; National Taiwan University College of Medicine; Taipei Taiwan
- Department of Neurology; National Taiwan University Hospital; Taipei Taiwan
| | - M.-T. Tseng
- Graduate Institute of Brain and Mind Sciences; National Taiwan University College of Medicine; Taipei Taiwan
| | - H.-W. Hsueh
- Department of Neurology; National Taiwan University Hospital; Taipei Taiwan
| | - Y.-H. Lin
- Department of Neurology; National Taiwan University Hospital; Taipei Taiwan
| | - C.-C. Chao
- Department of Neurology; National Taiwan University Hospital; Taipei Taiwan
| | - S.-T. Hsieh
- Department of Anatomy and Cell Biology; National Taiwan University College of Medicine; Taipei Taiwan
- Department of Neurology; National Taiwan University Hospital; Taipei Taiwan
- Graduate Institute of Brain and Mind Sciences; National Taiwan University College of Medicine; Taipei Taiwan
- Graduate Institute of Clinical Medicine; National Taiwan University College of Medicine; Taipei Taiwan
| |
Collapse
|
12
|
Biomarkers of neuropathic pain in skin nerve degeneration neuropathy: contact heat-evoked potentials as a physiological signature. Pain 2017; 158:516-525. [DOI: 10.1097/j.pain.0000000000000791] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Girard D, Laverdet B, Buhé V, Trouillas M, Ghazi K, Alexaline MM, Egles C, Misery L, Coulomb B, Lataillade JJ, Berthod F, Desmoulière A. Biotechnological Management of Skin Burn Injuries: Challenges and Perspectives in Wound Healing and Sensory Recovery. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:59-82. [DOI: 10.1089/ten.teb.2016.0195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dorothée Girard
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| | - Betty Laverdet
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| | - Virginie Buhé
- University of Western Brittany, Laboratory of Neurosciences of Brest (EA 4685), Brest, France
| | - Marina Trouillas
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Kamélia Ghazi
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne, France
| | - Maïa M. Alexaline
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Christophe Egles
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne, France
| | - Laurent Misery
- University of Western Brittany, Laboratory of Neurosciences of Brest (EA 4685), Brest, France
| | - Bernard Coulomb
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Jean-Jacques Lataillade
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - François Berthod
- Centre LOEX de l'Université Laval, Centre de recherche du CHU de Québec and Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Alexis Desmoulière
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| |
Collapse
|
14
|
Abstract
BiTox attenuated A-nociceptor-mediated mechanosensitivity in rat models of chronic pain. Plasma extravasation and keratinocyte proliferation were also inhibited but C-fiber nociception was not impaired. Local injections of botulinum toxins have been reported to be useful not only for the treatment of peripheral neuropathic pain and migraine but also to cause long-lasting muscle paralysis, a potentially serious side effect. Recently, a botulinum A-based molecule (“BiTox”) has been synthesized that retains neuronal silencing capacity without triggering muscle paralysis. In this study, we examined whether BiTox delivered peripherally was able to reduce or prevent the increased nociceptive sensitivity found in animal models of inflammatory, surgical, and neuropathic pain. Plasma extravasation and edema were also measured as well as keratinocyte proliferation. No motor deficits were seen and acute thermal and mechanical nociceptive thresholds were unimpaired by BiTox injections. We found reduced plasma extravasation and inflammatory edema as well as lower levels of keratinocyte proliferation in cutaneous tissue after local BiTox injection. However, we found no evidence that BiTox was transported to the dorsal root ganglia or dorsal horn and no deficits in formalin-elicited behaviors or capsaicin or formalin-induced c-Fos expression within the dorsal horn. In contrast, Bitox treatment strongly reduced A-nociceptor-mediated secondary mechanical hyperalgesia associated with either complete Freund’s adjuvant (CFA)-induced joint inflammation or capsaicin injection and the hypersensitivity associated with spared nerve injury. These results imply that although local release of neuromodulators from C-fibers was inhibited by BiTox injection, C-nociceptive signaling function was not impaired. Taken together with recent clinical data the results suggest that BiTox should be considered for treatment of pain conditions in which A-nociceptors are thought to play a significant role.
Collapse
|
15
|
The Adaptor Protein CD2AP Is a Coordinator of Neurotrophin Signaling-Mediated Axon Arbor Plasticity. J Neurosci 2016; 36:4259-75. [PMID: 27076424 DOI: 10.1523/jneurosci.2423-15.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/14/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Growth of intact axons of noninjured neurons, often termed collateral sprouting, contributes to both adaptive and pathological plasticity in the adult nervous system, but the intracellular factors controlling this growth are largely unknown. An automated functional assay of genes regulated in sensory neurons from the rat in vivo spared dermatome model of collateral sprouting identified the adaptor protein CD2-associated protein (CD2AP; human CMS) as a positive regulator of axon growth. In non-neuronal cells, CD2AP, like other adaptor proteins, functions to selectively control the spatial/temporal assembly of multiprotein complexes that transmit intracellular signals. Although CD2AP polymorphisms are associated with increased risk of late-onset Alzheimer's disease, its role in axon growth is unknown. Assessments of neurite arbor structure in vitro revealed CD2AP overexpression, and siRNA-mediated knockdown, modulated (1) neurite length, (2) neurite complexity, and (3) growth cone filopodia number, in accordance with CD2AP expression levels. We show, for the first time, that CD2AP forms a novel multiprotein complex with the NGF receptor TrkA and the PI3K regulatory subunit p85, with the degree of TrkA:p85 association positively regulated by CD2AP levels. CD2AP also regulates NGF signaling through AKT, but not ERK, and regulates long-range signaling though TrkA(+)/RAB5(+) signaling endosomes. CD2AP mRNA and protein levels were increased in neurons during collateral sprouting but decreased following injury, suggesting that, although typically considered together, these two adult axonal growth processes are fundamentally different. These data position CD2AP as a major intracellular signaling molecule coordinating NGF signaling to regulate collateral sprouting and structural plasticity of intact adult axons. SIGNIFICANCE STATEMENT Growth of noninjured axons in the adult nervous system contributes to adaptive and maladaptive plasticity, and dysfunction of this process may contribute to neurologic pathologies. Functional screening of genes regulated during growth of noninjured axons revealed CD2AP as a positive regulator of axon outgrowth. A novel association of CD2AP with TrkA and p85 suggests a distinct intracellular signaling pathway regulating growth of noninjured axons. This may also represent a novel mechanism of generating specificity in multifunctional NGF signaling. Divergent regulation of CD2AP in different axon growth conditions suggests that separate mechanisms exist for different modes of axon growth. CD2AP is the first signaling molecule associated with adult sensory axonal collateral sprouting, and this association may offer new insights for NGF/TrkA-related Alzheimer's disease mechanisms.
Collapse
|
16
|
Li R, Wang J, Wang X, Zhou J, Wang M, Ma H, Xiao S. Increased βTrCP are associated with imiquimod-induced psoriasis-like skin inflammation in mice via NF-κB signaling pathway. Gene 2016; 592:164-171. [PMID: 27476970 DOI: 10.1016/j.gene.2016.07.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/08/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022]
Abstract
Psoriasis is a common inflammatory skin disease characterized by T cell-mediated hyperproliferation of keratinocytes, increased angiogenesis and inflammation. Accumulating evidence suggests that some keratinocyte differentiation events are controlled by the ubiquitin/proteasome system. β-transducin repeat-containing protein (βTrCP) serve as substrate recognition component of E3 ubiquitin ligases that control stability of important regulators of signal transduction including the nuclear factor (NF)-κB signaling, a key regulatory element in inflammatory pathways related to psoriasis, suggesting a potential role of βTrCP in psoriasis pathogenesis. However, no published study has investigated the role of βTrCP in the etiology of psoriasis. Here, we combined an in vitro cell model of tumor necrosis factor (TNF)-α-induced keratinocyte inflammation and an animal model of imiquimod (IMQ)-induced psoriasis-like inflammation to investigate the pathogenic mechanisms in psoriasis-like dermatitis and assess its βTrCP/NF-κB dependency. Daily application of IMQ on mouse back skin induced inflamed scaly skin lesions resembling plaque type psoriasis. These lesions were associated with elevated βTrCP levels, reduced inhibitor κB (IκB), and enhanced NF-κB activation in epidermal tissues. Furthermore, βTrCP knockdown via siRNA in in TNF-α-stimulated HaCaT and normal human epidermal keratinocytes (NHEK) cells significantly inhibited the over-activation of NF-κB and expression of intercellular adhesion molecule 1 (ICAM-1), demonstrating a pivotal role of βTrCP in regulation the TNF-α-activated NF-κB inflammatory pathways. Moreover, downregulation of βTrCP through lentiviral shRNA ameliorates IMQ-induced psoriasis-like skin lesions in vivo. In conclusion, βTrCP is involved in the NF-κB signaling mediated-, psoriasis-related inflammation and represent a novel target for developing agents to treat psoriasis.
Collapse
Affiliation(s)
- Ruilian Li
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi, China
| | - Juan Wang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi, China
| | - Xin Wang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi, China
| | - Jun Zhou
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi, China
| | - Mei Wang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi, China
| | - Huiqun Ma
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi, China.
| | - Shengxiang Xiao
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi, China.
| |
Collapse
|
17
|
Loss of Aβ-nerve endings associated with the Merkel cell-neurite complex in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis. Int J Oral Sci 2016; 8:32-8. [PMID: 27025263 PMCID: PMC4822177 DOI: 10.1038/ijos.2015.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2015] [Indexed: 11/27/2022] Open
Abstract
The Merkel cell-neurite complex initiates the perception of touch and mediates Aβ slowly adapting type I responses. Lichen planus is a chronic inflammatory autoimmune disease with T-cell-mediated inflammation, whereas hyperkeratosis is characterized with or without epithelial dysplasia in the oral mucosa. To determine the effects of lichen planus and hyperkeratosis on the Merkel cell-neurite complex, healthy oral mucosal epithelium and lesional oral mucosal epithelium of lichen planus and hyperkeratosis patients were stained by immunohistochemistry (the avidin-biotin-peroxidase complex and double immunofluorescence methods) using pan cytokeratin, cytokeratin 20 (K20, a Merkel cell marker), and neurofilament 200 (NF200, a myelinated Aβ- and Aδ-nerve fibre marker) antibodies. NF200-immunoreactive (ir) nerve fibres in healthy tissues and in the lesional oral mucosa epithelium of lichen planus and hyperkeratosis were counted and statistically analysed. In the healthy oral mucosa, K20-positive Merkel cells with and without close association to the intraepithelial NF200-ir nerve fibres were detected. In the lesional oral mucosa of lichen planus and hyperkeratosis patients, extremely rare NF200-ir nerve fibres were detected only in the lamina propria. Compared with healthy tissues, lichen planus and hyperkeratosis tissues had significantly decreased numbers of NF200-ir nerve fibres in the oral mucosal epithelium. Lichen planus and hyperkeratosis were associated with the absence of Aβ-nerve endings in the oral mucosal epithelium. Thus, we conclude that mechanosensation mediated by the Merkel cell-neurite complex in the oral mucosal epithelium is impaired in lichen planus and hyperkeratosis.
Collapse
|
18
|
Oaklander AL. Immunotherapy Prospects for Painful Small-fiber Sensory Neuropathies and Ganglionopathies. Neurotherapeutics 2016; 13:108-17. [PMID: 26526686 PMCID: PMC4720682 DOI: 10.1007/s13311-015-0395-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The best-known peripheral neuropathies are those affecting the large, myelinated motor and sensory fibers. These have well-established immunological causes and therapies. Far less is known about the somatic and autonomic "small fibers"; the unmyelinated C-fibers, thinly myelinated A-deltas, and postganglionic sympathetics. The small fibers sense pain and itch, innervate internal organs and tissues, and modulate the inflammatory and immune responses. Symptoms of small-fiber neuropathy include chronic pain and itch, sensory impairment, edema, and skin color, temperature, and sweating changes. Small-fiber polyneuropathy (SFPN) also causes cardiovascular, gastrointestinal, and urological symptoms, the neurologic origin of which often remains unrecognized. Routine electrodiagnostic study does not detect SFPN, so skin biopsies immunolabeled to reveal axons are recommended for diagnostic confirmation. Preliminary evidence suggests that dysimmunity causes some cases of small-fiber neuropathy. Several autoimmune diseases, including Sjögren and celiac, are associated with painful small-fiber ganglionopathy and distal axonopathy, and some patients with "idiopathic" SFPN have evidence of organ-specific dysimmunity, including serological markers. Dysimmune SFPN first came into focus in children and teenagers as they lack other risk factors, for example diabetes or toxic exposures. In them, the rudimentary evidence suggests humoral rather than cellular mechanisms and complement consumption. Preliminary evidence supports efficacy of corticosteroids and immunoglobulins in carefully selected children and adult patients. This paper reviews the evidence of immune causality and the limited data regarding immunotherapy for small-fiber-predominant ganglionitis, regional neuropathy (complex regional pain syndrome), and distal SFPN. These demonstrate the need to develop case definitions and outcome metrics to improve diagnosis, enable prospective trials, and dissect the mechanisms of small-fiber neuropathy.
Collapse
Affiliation(s)
- Anne Louise Oaklander
- Department of Neurology and Department of Pathology (Neuropathology) Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
19
|
Dermal Contributions to Human Interfollicular Epidermal Architecture and Self-Renewal. Int J Mol Sci 2015; 16:28098-107. [PMID: 26602926 PMCID: PMC4691026 DOI: 10.3390/ijms161226078] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/10/2015] [Accepted: 11/17/2015] [Indexed: 12/21/2022] Open
Abstract
The human interfollicular epidermis is renewed throughout life by populations of proliferating basal keratinocytes. Though interfollicular keratinocyte stem cells have been identified, it is not known how self-renewal in this compartment is spatially organized. At the epidermal-dermal junction, keratinocytes sit atop a heterogeneous mix of dermal cells that may regulate keratinocyte self-renewal by influencing local tissue architecture and signalling microenvironments. Focusing on the rete ridges and complementary dermal papillae in human skin, we review the identity and organisation of abundant dermal cells types and present evidence for interactions between the dermal microenvironment and the interfollicular keratinocytes.
Collapse
|
20
|
Blais M, Mottier L, Germain MA, Bellenfant S, Cadau S, Berthod F. Sensory neurons accelerate skin reepithelialization via substance P in an innervated tissue-engineered wound healing model. Tissue Eng Part A 2014; 20:2180-8. [PMID: 24716723 DOI: 10.1089/ten.tea.2013.0535] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Keratinocytes are responsible for reepithelialization and restoration of the epidermal barrier during wound healing. The influence of sensory neurons on this mechanism is not fully understood. We tested whether sensory neurons influence wound closure via the secretion of the neuropeptide substance P (SP) with a new tissue-engineered wound healing model made of an upper-perforated epidermal compartment reconstructed with human keratinocytes expressing green fluorescent protein, stacked over a dermal compartment, innervated or not with sensory neurons. We showed that sensory neurons secreted SP in the construct and induced a two times faster wound closure in vitro. This effect was partially reproduced by addition of SP in the model without neurons, and completely blocked by a treatment with a specific antagonist of the SP receptor neurokinin-1 expressed by keratinocytes. However, this antagonist did not compromise wound closure compared with the control. Similar results were obtained when the model with or without neurons was transplanted on CD1 mice, while wound closure occurred faster. We conclude that sensory neurons play an important, but not essential, role in wound healing, even in absence of the immune system. This model is promising to study the influence of the nervous system on reepithelialization in normal and pathological conditions.
Collapse
Affiliation(s)
- Mathieu Blais
- 1 Centre LOEX de l'Université Laval , Centre de recherche du CHU de Québec, Québec, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Roggenkamp D, Köpnick S, Stäb F, Wenck H, Schmelz M, Neufang G. Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model. J Invest Dermatol 2013; 133:1620-8. [PMID: 23283070 DOI: 10.1038/jid.2012.464] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Atopic eczema is a chronic inflammatory skin disease characterized by cutaneous nerve fiber sprouting and epidermal hyperplasia, pointing to an involvement of the peripheral nervous system in cutaneous homeostasis. However, the interaction of sensory neurons and skin cells is poorly understood. Using an innervated skin model, we investigated the influence of sensory neurons on epidermal morphogenesis. Neurons induced the proliferation of keratinocytes, resulting in an increase in the epidermal thickness. Inhibition of calcitonin gene-related peptide (CGRP), but not substance P (SP) signaling, reversed this effect. Human CGRP enhanced keratinocyte proliferation and epidermal thickness in skin models, demonstrating a key role of CGRP in modulating epidermal morphogenesis, whereas SP had only a moderate effect. Innervated skin models composed of atopic skin cells showed increased neurite outgrowth, accompanied by elevated CGRP release. As atopic keratinocytes were sensitized to CGRP owing to higher expression levels of the CGRP receptor components, receptor activity-modifying protein 1 (RAMP1) and receptor component protein (RCP), atopic innervated skin models displayed a thicker epidermis than did healthy controls. We conclude that neural CGRP controls local keratinocyte growth. Our results show that the crosstalk of the cutaneous peripheral nervous system and skin cells significantly influences epidermal morphogenesis and homeostasis in healthy and atopic skin.
Collapse
|
22
|
Schöbel N, Kyereme J, Minovi A, Dazert S, Bartoshuk L, Hatt H. Sweet taste and chorda tympani transection alter capsaicin-induced lingual pain perception in adult human subjects. Physiol Behav 2012; 107:368-73. [PMID: 22995977 DOI: 10.1016/j.physbeh.2012.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/11/2012] [Indexed: 10/27/2022]
Abstract
Sweetness signals the nutritional value of food and may moreover be accompanied by a sensory suppression that leads to higher pain tolerance. This effect is well documented in infant rats and humans. However, it is still debated whether sensory suppression is also present in adult humans. Thus, we investigated the effects of sweet taste on the perception of the painful trigeminal stimulus capsaicin in two groups of healthy adult human subjects. A solution of 100 μM capsaicin was applied to the tip of the subject's tongues in order to stimulate trigeminal Aδ- and C-fiber nociceptors. When swallowed, 1M sucrose reduced the capsaicin-induced burning sensation by 29% (p ≤ 0.05) whereas a solution of similar taste intensity containing 1 μM quinine did not. Similarly, sucrose application to the frontal hemitongue suppressed the perception of the burning sensation induced by contralaterally applied capsaicin by 25% (p ≤ 0.01). We furthermore investigated the effects of documented unilateral transection of the chorda tympani nerve on capsaicin perception. In accordance with the ipsi-to-contralateral effect of sucrose on capsaicin perception in healthy subjects, hemiageusic subjects were more sensitive for capsaicin on the tongue contralateral to the taste nerve lesion (+38%; p ≤ 0.01). Taken together, these results argue I) for the existence of food intake-induced sensory suppression, if not analgesia, in adult humans and II) a centrally mediated suppression of trigeminal sensation by taste inputs that III) becomes disinhibited upon peripheral taste nerve lesion.
Collapse
Affiliation(s)
- N Schöbel
- Ruhr-University Bochum, Department of Cell Physiology, Universitätsstraße 150, D-44780 Bochum, Germany; Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, D-44139 Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Visscher MO, Randall Wickett R. Hand hygiene compliance and irritant dermatitis: a juxtaposition of healthcare issues. Int J Cosmet Sci 2012; 34:402-15. [DOI: 10.1111/j.1468-2494.2012.00733.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/05/2012] [Indexed: 12/14/2022]
Affiliation(s)
| | - R. Randall Wickett
- The James L. Winkle College of Pharmacy; University of Cincinnati; Cincinnati; OH; 45267; U.S.A
| |
Collapse
|
24
|
Chao CY, Zheng YP, Cheing GL. The association between skin blood flow and edema on epidermal thickness in the diabetic foot. Diabetes Technol Ther 2012; 14:602-9. [PMID: 22512286 PMCID: PMC3389379 DOI: 10.1089/dia.2011.0301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Skin blood flow plays an important role in maintaining the health of the skin. The development of interstitial edema may impede oxygen diffusion to the skin. The aim of this study was to evaluate the association of skin blood flow and edema and epidermal thickness in the feet of people with and without diabetic neuropathy compared with a healthy control group. SUBJECTS AND METHODS Eighty-seven subjects (19 people with diabetic neuropathy and foot ulceration, 35 people with diabetes but without neuropathy, and 33 healthy controls without diabetes) participated in the study. High-frequency ultrasonography was used to measure the epidermal thickness and edema in papillary skin at the big toe as reflected by the thickness of the subepidermal low echogenic band (SLEB). The capillary nutritive blood flow was measured by the use of video capillaroscopy, and skin blood flux was monitored by laser Doppler flowmetry. RESULTS There was a 7.2% increase in epidermal thickness in those with diabetes but without neuropathy and a 16.5% decrease in people with diabetic neuropathy and foot ulceration compared with the healthy controls (all P<0.05). The SLEB thickness increased in all subjects with diabetes to a greater degree in those with neuropathy and ulceration than in those without (64.7% vs. 11.8%, P<0.001). Skin blood flux was shown to be higher in the diabetes groups than in the controls (all P<0.05), but no significant differences were found in the resting nutritive capillary blood flow (P>0.05). A significant negative correlation (P=0.002, r=-0.366) was demonstrated between the SLEB and epidermal thickness at the pulp of the big toe, whereas no significant correlation was demonstrated between skin blood flow and epidermal thickness (all P>0.05). CONCLUSIONS An increase in subepidermal edema was demonstrated in people with diabetic neuropathy and ulceration, which may partly contribute to reduced epidermal thickness at the pulp of the big toe. This may subsequently lead to the breaking down of skin in the diabetic foot.
Collapse
Affiliation(s)
- Clare Y.L. Chao
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Physiotherapy Department, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Yong-Ping Zheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Gladys L.Y. Cheing
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
25
|
|
26
|
Klonschinski T, Ament SJ, Schlereth T, Rompe JD, Birklein F. Application of Local Anesthesia Inhibits Effects of Low-Energy Extracorporeal Shock Wave Treatment (ESWT) on Nociceptors. PAIN MEDICINE 2011; 12:1532-7. [DOI: 10.1111/j.1526-4637.2011.01229.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Chao CYL, Zheng YP, Cheing GLY. Epidermal thickness and biomechanical properties of plantar tissues in diabetic foot. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1029-1038. [PMID: 21640473 DOI: 10.1016/j.ultrasmedbio.2011.04.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/31/2011] [Accepted: 04/08/2011] [Indexed: 05/30/2023]
Abstract
Diabetic foot is a common complication for people with diabetes but it is unclear whether the change is initiated from the skin surface or underneath plantar tissues. This study compared the thickness of epidermis and the thickness and stiffness of the total plantar soft tissue among people with diabetes with or without complications. Seventy-two people with diabetes, including 22 people with neuropathies, 16 foot ulcerations, 34 pure diabetics without complications and 40 healthy controls participated in the study. The thickness of the epidermal layer of the plantar skin was examined using high-frequency ultrasonography; the thickness and stiffness of the total plantar soft tissue were measured by using tissue ultrasound palpation system at the big toe, the first, third and fifth metatarsal heads; and the heel pad. Compared with the control group, the average epidermal thickness of plantar skin was reduced by 15% in people with diabetic foot ulceration and 9% in people with neuropathy, but was increased by 6% in pure diabetics. There was an 8% increase in total thickness of plantar soft tissue in the 3 diabetic groups at all testing sites (all p < 0.05), except the first metatarsal head. The stiffness of plantar soft tissue was increased in all diabetic groups at all testing sites compared with the control (all p < 0.05). The epidermal plantar skin becomes thinner and plantar soft tissues stiffen in people with diabetes, particularly in persons who have neuropathy or ulceration, which increases the risk of tissue breakdown and ulceration formation.
Collapse
Affiliation(s)
- Clare Y L Chao
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | | |
Collapse
|
28
|
Ostrowski SM, Belkadi A, Loyd CM, Diaconu D, Ward NL. Cutaneous denervation of psoriasiform mouse skin improves acanthosis and inflammation in a sensory neuropeptide-dependent manner. J Invest Dermatol 2011; 131:1530-8. [PMID: 21471984 PMCID: PMC3116081 DOI: 10.1038/jid.2011.60] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nervous system involvement in psoriasis pathogenesis is supported by increases in nerve fiber numbers and neuropeptides in psoriatic skin and by reports detailing spontaneous plaque remission following nerve injury. Using the KC-Tie2 psoriasiform mouse model, we investigated the mechanisms by which nerve injury leads to inflammatory skin disease remission. Cutaneous nerves innervating dorsal skin of KC-Tie2 animals were surgically axotomized and beginning 1 day after denervation, CD11c(+) cell numbers decreased by 40% followed by a 30% improvement in acanthosis at 7 days and a 30% decrease in CD4(+) T-cell numbers by 10 days. Restoration of substance P (SP) signaling in denervated KC-Tie2 skin prevented decreases in CD11c(+) and CD4(+) cells, but had no effect on acanthosis; restoration of calcitonin gene-related peptide (CGRP) signaling reversed the improvement in acanthosis and prevented denervated-mediated decreases in CD4(+) cells. Under innervated conditions, small-molecule inhibition of SP in KC-Tie2 animals resulted in similar decreases to those observed following surgical denervation for cutaneous CD11c(+) and CD4(+) cell numbers; whereas small-molecule inhibition of CGRP resulted in significant reductions in CD4(+) cell numbers and acanthosis. These data demonstrate that sensory nerve-derived peptides mediate psoriasiform dendritic cell and T-cell infiltration and acanthosis and introduce targeting nerve-immunocyte/KC interactions as potential psoriasis therapeutic treatment strategies.
Collapse
Affiliation(s)
- Stephen M Ostrowski
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
29
|
Pain S, Altobelli C, Boher A, Cittadini L, Favre-Mercuret M, Gaillard C, Sohm B, Vogelgesang B, André-Frei V. Surface rejuvenating effect of Achillea millefolium extract. Int J Cosmet Sci 2011; 33:535-42. [PMID: 21711463 DOI: 10.1111/j.1468-2494.2011.00667.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proopiomelanocortin is a precursor peptide that gives rise to several neuropeptides including adrenocorticotrophic hormone (ACTH) and β-endorphin. POMC-derived peptides have been shown to be synthesized in human epidermis where they modulate numerous skin functions. Because we previously observed that melanocortin receptor-2 and μ-opioid receptor 1, the respective receptors for ACTH and β-endorphin decreased with ageing in human epidermis, we have selected an active ingredient (INCI name: Achillea millefolium extract) able to upregulate receptor expressions. The aim of the present work was first to evaluate the effect of A. millefolium extract on the expression pattern of various epidermal differentiation markers ex vivo in normal human skin biopsies using quantitative image analysis and second to evaluate its capacity to rejuvenate the appearance of skin surface in vivo. Results show an improved expression profile of cytokeratin 10, transglutaminase-1 and filaggrin in cultured skin biopsies as well as an increased epidermal thickness. In vivo, a 2-month treatment with A. millefolium extract at 2% significantly improved the appearance of wrinkles and pores compared with placebo. Results were also directionally better than those of glycolic acid that was chosen as reference resurfacing molecule.
Collapse
Affiliation(s)
- S Pain
- BASF Beauty Care Solutions France S.A.S, 32 rue Saint-Jean-de-Dieu, F-69366, Lyon Cedex 07, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Long-Term Effects of Neonatal Capsaicin Treatment on Intraepidermal Nerve Fibers and Keratinocyte Proliferation in Rat Glabrous Skin. Anat Rec (Hoboken) 2010; 294:173-84. [DOI: 10.1002/ar.21237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 07/06/2010] [Indexed: 12/14/2022]
|
31
|
Mosconi T, Gruber T. Immunohistochemical comparison of whisker pad cutaneous innervation in Swiss Webster and hairless mice. Somatosens Mot Res 2010; 27:149-73. [PMID: 20961209 DOI: 10.3109/08990220.2010.513597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To establish the mouse mutant, hairless (Hr), as a useful model for future analyses of target-ending interactions, we assessed the cutaneous innervation in the whisker pad after loss of primary hair targets. Postnatal (P) development of fur in Hr begins similarly to that of "normal" Swiss Webster (SW) mice. Around P10, hairs are shed and the follicles rendered permanently incompetent. Hair loss progresses rostrocaudally until the entire skin is denuded. Substantial alterations in the distribution and density of sensory and autonomic endings in the mystacial pad vibrissal and intervibrissal fur innervation were discovered. Pilo-neural complexes innervating fur hairs were dismantled in Hr. Epidermal innervation in SW was rich; only a few endings expressed growth-associated protein-43 kdal (GAP), suggesting limited changes in axonal elongation. Innervation in Hr formed a dense layer passing upward through the thickened epidermis, with substantial increases among all types of endings. Vibrissal follicle-sinus complexes were also hyperinnervated. Endings in Hr vibrissae and fur were strongly GAP-positive, suggesting reorganization of innervation. Dermal and vascular autonomic innervation in both strains co-localized tyrosine hydroxylase and neuropeptide Y, but only in Hr did neuropeptide Y co-localize calcitonin gene-related peptide (CGRP) and express GAP immunolabeling. Stereological quantitation of trigeminal ganglia revealed no differences in neuron number between Hr and SW, although there were small increases in cell volume in Hr trigeminal ganglion cells. These results suggested that a form of collateral sprouting was active in Hr mystacial pads, not in response to local injury, but as a result of loss of primary target tissues.
Collapse
Affiliation(s)
- Tony Mosconi
- Department of Physical Therapy Education, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | |
Collapse
|
32
|
Effects of 4-methylcatechol on skin reinnervation: promotion of cutaneous nerve regeneration after crush injury. J Neuropathol Exp Neurol 2009; 68:1269-81. [PMID: 19915488 DOI: 10.1097/nen.0b013e3181c17b46] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We assessed the effects of treatment with 4-methylcatechol (4MC), a known inducer of nerve growth factor, on peripheral nerve regeneration by analyzing cutaneous and muscular reinnervation in mice after sciatic nerve crush injury. At 3 months postinjury, the skin innervation index was significantly higher in the 4MC group than the control group (p=0.0002); there was also increased unmyelinated fiber density (p=0.0042) and unmyelinated fibers/Remak bundle (p = 0.001) in sural nerves, indicating unmyelinated nerve fiber regeneration. These changes were accompanied by increases of transcripts for nerve growth factor (p = 0.0026) and glial cell line-derived neurotrophic factor (p=0.03) in the 4MC group. In contrast, muscle innervation indices were similar in both groups and were higher than the skin innervation index (p < 0.0001). The regeneration of myelinated nerve fibers, as assessed by fiber density, diameter and g ratio analyses in sural nerves, and amplitudes of muscle action potential in sciatic nerves, was similar in both groups. Taken together, these data suggest that 4MC specifically promoted the regeneration of unmyelinated nerve fibers and reinnervation of the skin by increasing the expression of nerve growth factor and glial cell line-derived neurotrophic factor.
Collapse
|
33
|
Kojundzic SL, Dujmovic I, Grkovic I, Sapunar D. Regional Differences in Epidermal Thickness and Behavioral Response Following Partial Denervation of the Rat Paw. Int J Neurosci 2009; 118:1748-62. [DOI: 10.1080/00207450802174506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Oaklander AL, Fields HL. Is reflex sympathetic dystrophy/complex regional pain syndrome type I a small-fiber neuropathy? Ann Neurol 2009; 65:629-38. [DOI: 10.1002/ana.21692] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Lin YY, Tseng TJ, Hsieh YL, Luo KR, Lin WM, Chiang H, Hsieh ST. Depletion of peptidergic innervation in the gastric mucosa of streptozotocin-induced diabetic rats. Exp Neurol 2008; 213:388-96. [PMID: 18671969 DOI: 10.1016/j.expneurol.2008.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/27/2008] [Accepted: 07/01/2008] [Indexed: 01/24/2023]
Abstract
Autonomic neuropathy affecting the gastrointestinal system is a major presentation of diabetic neuropathy. Changes in the innervation of gastric mucosa or muscle layers can contribute to gastrointestinal symptoms. The present study investigated this issue by quantitatively analyzing the immunohistochemical patterns of the gastric innervation in rats with streptozotocin (STZ)-induced diabetes. In control rats, calcitonin gene-related peptide (CGRP) and substance P (SP) (+) nerve fibers appeared in the gastric mucosa and muscle layers. Double immunohistochemical staining showed that immunoreactivities for SP and CGRP were co-localized with a pan-neuronal marker protein gene product 9.5. Both SP (+) nerve fibers (p<0.001) and CGRP (+) nerve fibers (p<0.005) were decreased in the gastric mucosa within 4 weeks of diabetes; the reduction persisted throughout 24 weeks. Diabetic rats treated with insulin did not show decrease of SP or CGRP (+) fibers in the mucosa 4 weeks after STZ injection (p>0.05). There was no significant change in SP (+) nerve fibers (p>0.05) or CGRP (+) nerve fibers (p>0.05) of the gastric muscle layers. Reverse transcription-polymerase chain reaction (RT-PCR) showed that the expression levels of SP and CGRP mRNA in the thoracic dorsal root ganglia were similar between diabetic and control animals (p>0.05). Qualitative and quantitative ultrastructural examinations on the gastric mucosa documented unmyelinated nerve degeneration. These results suggest the existence of gastric sensory neuropathy in STZ-induced diabetes, and this pathology provides a foundation for understanding diabetic gastropathy.
Collapse
Affiliation(s)
- Yen-Yu Lin
- Department of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
36
|
Geber C, Fondel R, Krämer HH, Rolke R, Treede RD, Sommer C, Birklein F. Psychophysics, Flare, and Neurosecretory Function in Human Pain Models: Capsaicin Versus Electrically Evoked Pain. THE JOURNAL OF PAIN 2007; 8:503-14. [PMID: 17434803 DOI: 10.1016/j.jpain.2007.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 12/17/2006] [Accepted: 01/22/2007] [Indexed: 12/25/2022]
Abstract
UNLABELLED Intradermal capsaicin injection (CAP) and electrical current stimulation (ES) are analyzed in respect to patterns and test-retest reliability of pain as well as sensory and neurosecretory changes. In 10 healthy subjects, 2x CAP (50 microg) and 2x ES (5 to 30 mA) were applied to the volar forearm. The time period between 2 identical stimulations was about 4 months. Pain ratings, areas of mechanical hyperalgesia, and allodynia were assessed. The intensity of sensory changes was quantified by using quantitative sensory testing. Neurogenic flare was assessed by using laser Doppler imaging. Calcitonin gene-related peptide (CGRP) release was quantified by dermal microdialysis in combination with an enzyme immunoassay. Time course and peak pain ratings were different between CAP and ES. Test-retest correlation was high (r > or = 0.73). Both models induced primary heat hyperalgesia and primary plus secondary pin-prick hyperalgesia. Allodynia occurred in about half of the subjects. Maximum flare sizes did not differ between CAP and ES, but flare intensities were higher for ES. Test-retest correlation was higher for flare sizes than for flare intensity. A significant CGRP release could only be measured after CAP. The different time courses of pain stimulation (CAP: rapidly decaying pain versus ES: pain plateau) led to different peripheral neurosecretory effects but induced similar central plasticity and hyperalgesia. PERSPECTIVE The present study gives a detailed overview of psychophysical and neurosecretory characteristics induced by noxious stimulation with capsaicin and electrical current. We describe differences, similarities, and reproducibility of these human pain models. These data might help to interpret past and future results of human pain studies using experimental pain.
Collapse
Affiliation(s)
- Christian Geber
- Klinik und Poliklinik für Neurologie der Universität Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Bigliardi-Qi M, Gaveriaux-Ruff C, Pfaltz K, Bady P, Baumann T, Rufli T, Kieffer BL, Bigliardi PL. Deletion of μ- and κ-Opioid Receptors in Mice Changes Epidermal Hypertrophy, Density of Peripheral Nerve Endings, and Itch Behavior. J Invest Dermatol 2007; 127:1479-88. [PMID: 17185983 DOI: 10.1038/sj.jid.5700661] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mu- (MOR) and kappa- (KOR) opioid receptors have been implicated in the regulation of homeostasis of non-neuronal cells, such as keratinocytes, and sensations like pain and chronic pruritus. Therefore, we have studied the phenotype of skin after deletion of MOR and KOR. In addition, we applied a dry skin model in these knockout mice and compared the different mice before and after induction of the dermatitis in terms of epidermal thickness, epidermal peripheral nerve ending distribution, dermal inflammatory infiltrate (mast cells, CD4 positive lymphocytes), and scratching behavior. MOR knockout mice reveal as phenotype a significantly thinner epidermis and a higher density of epidermal fiber staining by protein gene product 9.5 than the wild-type counterparts. Epidermal hypertrophy, induced by the dry skin dermatitis, was significantly less developed in MOR knockout than in wild-type mice. Neither mast cells nor CD4 T(h)-lymphocytes are involved in the changes of epidermal nerve endings and epidermal homeostasis. Finally, behavior experiments revealed that MOR and KOR knockout mice scratch less after induction of dry skin dermatitis than wild-type mice. These results indicate that MOR and KOR are important in skin homeostasis, epidermal nerve fiber regulation, and pathophysiology of itching.
Collapse
Affiliation(s)
- Mei Bigliardi-Qi
- Department of Dermatology, CHUV Hôpital Beaumont, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Paticoff J, Valovska A, Nedeljkovic SS, Oaklander AL. Defining a Treatable Cause of Erythromelalgia: Acute Adolescent Autoimmune Small-Fiber Axonopathy. Anesth Analg 2007; 104:438-41. [PMID: 17242106 DOI: 10.1213/01.ane.0000252965.83347.25] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Conditions described as "erythromelalgia" and "erythermalgia" are being formally specified by etiological diagnoses that enable the use of disease-modifying as well as symptomatic treatments. We describe an otherwise healthy 20-year-old man with acute-onset erythromelalgia. Severe bilateral distal limb pain and vasodilation persisted despite the use of many antihyperalgesics. Pathological examination of cutaneous nerve endings revealed severe small-fiber predominant axonopathy. Treatment of his apparent autoimmune polyneuropathy with high dose corticosteroids, 4 days of lidocaine infusion, and a prednisone taper cured him. Similarities to other cases allowed us to tentatively characterize a new treatable cause of erythromelalgia; acute adolescent autoimmune small-fiber axonopathy. In this report we evaluate various options for diagnosis and treatment.
Collapse
Affiliation(s)
- Joshua Paticoff
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Small-fiber neuropathy is a peripheral nerve disease that most commonly presents in middle-aged and older people, who develop burning pain in their feet. Although it can be caused by disorders of metabolism such as diabetes, chronic infections (such as with human immunodeficiency virus), genetic abnormalities, toxicity from various drugs, and autoimmune diseases, the cause often remains a mystery because standard electrophysiologic tests for nerve injury do not detect small-fiber function. Inadequate ability to test for and diagnose small-fiber neuropathies has impeded patient care and research, but new tools offer promise. Infrequently, the underlying cause of small-fiber dysfunction is identified and disease-modifying therapy can be instituted. More commonly, the treatments for small-fiber neuropathy involve symptomatic treatment of neuropathic pain.
Collapse
Affiliation(s)
- Ezekiel Fink
- Department of Anesthesiology, Neurology, and Neuropathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
40
|
Oaklander AL, Siegel SM. Cutaneous innervation: Form and function. J Am Acad Dermatol 2005; 53:1027-37. [PMID: 16310064 DOI: 10.1016/j.jaad.2005.08.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 08/23/2005] [Accepted: 08/28/2005] [Indexed: 12/11/2022]
Abstract
It is useful for dermatologists to know about the innervation of the skin because dysfunction of cutaneous neurons can cause symptoms--such as itching, pain, and paresthesias--that are evaluated by dermatologists. We review the innervation of the skin and update readers about recent neuroscientific discoveries.
Collapse
Affiliation(s)
- Anne Louise Oaklander
- Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
41
|
Lauria G, Lombardi R, Borgna M, Penza P, Bianchi R, Savino C, Canta A, Nicolini G, Marmiroli P, Cavaletti G. Intraepidermal nerve fiber density in rat foot pad: neuropathologic-neurophysiologic correlation. J Peripher Nerv Syst 2005; 10:202-8. [PMID: 15958131 DOI: 10.1111/j.1085-9489.2005.0010210.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantification of cutaneous innervation in rat footpad is a useful tool to investigate sensory small-diameter nerve fibers, which are affected early in peripheral neuropathies. The aim of this work was to provide normative reference data on the density of intraepidermal nerve fibers (IENFs) and Langerhans cells in the hindpaw footpad of Sprague-Dawley and Wistar rats. We also evaluated the sensibility of IENF density by comparing neuropathologic findings with neurophysiologic examination and the presence of peripheral neuropathy in two well-characterized animal models of neuropathy. IENF density was quantified in 22 Sprague-Dawley rats and 13 Wistar rats and compared with 19 age-matched Sprague-Dawley rats with streptozotocin-induced diabetic neuropathy and 30 age-matched Wistar rats with cisplatin- or paclitaxel-induced neuropathy. Antidromic tail sensory nerve conduction velocity (SNCV) was assessed in all animals. IENF and Langerhans cell densities were constant in healthy Sprague-Dawley rats at any age, and they were similar to those observed in healthy Wistar rats. In neuropathic rats, both SNCV and IENF density were significantly reduced with respect to controls. Quantification of IENF density was significantly correlated with changes in conduction velocity. Diabetic neuropathy rats alone showed a significantly higher density of Langerhans cells compared with controls. Our study demonstrated that IENF density quantification correlates with SNCV changes and suggests that this might represent a useful outcome measurement in experimental neuropathies.
Collapse
Affiliation(s)
- Giuseppe Lauria
- Immunology and Muscular Pathology Unit, National Neurological Institute Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shun CT, Chang YC, Wu HP, Hsieh SC, Lin WM, Lin YH, Tai TY, Hsieh ST. Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. ACTA ACUST UNITED AC 2004; 127:1593-605. [PMID: 15128619 DOI: 10.1093/brain/awh180] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sensory neuropathy is a prominent component of diabetic neuropathy. It is not entirely clear how diabetes influences skin innervation, and whether these changes are correlated with clinical signs and laboratory findings. To investigate these issues, we performed skin biopsies on the distal leg of 38 consecutive type 2 diabetic patients with sensory symptoms in lower limbs (25 males and 13 females, aged 56.2 +/- 9.4 years) and analysed the correlations of intraepidermal nerve fibre (IENF) densities in skin with glycaemic status (duration of diabetes, HbA1C, and fasting and post-prandial glucose levels), and functional parameters of small fibres (warm and cold thresholds) and large fibres (vibratory threshold and parameters of nerve conduction studies). Clinically, 23 patients (60.5%) had signs of small-fibre impairment, and 19 patients (50.0%) had signs of large-fibre impairment. IENF densities were much lower in diabetic patients than in age- and gender-matched controls (1.794 +/- 2.120 versus 9.359 +/- 3.466 fibres/mm, P < 0.0001), and 81.6% (31/38) of diabetic patients had reduced IENF densities. IENF densities were negatively associated with the duration of diabetes (standardized coefficient: -0.422, P = 0.015) by analysis with a multivariate linear regression model. Abnormal results of functional examinations were present in 81.6% (warm threshold), 57.9% (cold threshold), 63.2% (vibratory threshold) and 49% (amplitude of sural sensory action potential) of diabetic patients. Among the three sensory thresholds, the warm threshold temperature had the highest correlation with IENF densities (standardized coefficient: -0.773, P < 0.0001). On nerve conduction studies in lower-limb nerves, there were abnormal responses in 54.1% of sural nerves, and 50.0% of peroneal nerves. Of neurophysiological parameters, the amplitude of the sural sensory action potential had the highest correlation with IENF density (standardized coefficient: 0.739, P < 0.0001). On clinical examination, 15 patients showed no sign of small-fibre impairment, but seven of these patients had reduced IENF densities. In conclusion, small-fibre sensory neuropathy presenting with reduced IENF densities and correlated elevation of warm thresholds is a major manifestation of type 2 diabetes. In addition, the extent of skin denervation increases with diabetic duration.
Collapse
Affiliation(s)
- Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital, Taipei
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yosipovitch G, Chan YH, Tay YK, Goh CL. Thermosensory abnormalities and blood flow dysfunction in psoriatic skin. Br J Dermatol 2003; 149:492-7. [PMID: 14510980 DOI: 10.1046/j.1365-2133.2003.05585.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Accumulating data have shown evidence of involvement of cutaneous nerve fibres and neuropeptides in psoriasis. Although ample evidence of structural and biochemical data exist no studies have been done on assessing the function of small nerve fibres in this disease. OBJECTIVES To investigate the function of small nerve fibres in patients with psoriasis between psoriatic plaques and non-involved skin and in comparison with healthy controls. METHODS We performed computerized psychophysical thermal sensory testing of warmth, cold and heat pain thresholds and skin blood flow using laser Doppler imaging in psoriatic lesions vs. non-involved skin and healthy skin. We evaluated these parameters before and immediately after barrier perturbation, and 1 week after as a measure of barrier repair. RESULTS There is a significantly elevated warm and decreased cold sensation threshold in psoriatic skin compared with non-involved skin and skin of healthy controls in the same sites. These differences were particularly abnormal 1 week poststripping. The warm sensation threshold was significantly elevated in non-involved skin in psoriatics vs. skin of healthy controls after tape stripping. These findings suggest there is an abnormal function of cutaneous nerve fibres in response to trauma to the stratum corneum, which is not limited to the visible plaque but could be generalized and aggravated by stressful events. Skin blood flow was significantly elevated in psoriatic plaques and inversely correlated to warm sensation thresholds while in healthy controls a direct correlation was noted. CONCLUSIONS Our data demonstrate an abnormal thermosensory response in psoriasis.
Collapse
Affiliation(s)
- G Yosipovitch
- Department of Dermatology, Wake Forest University Health Sciences, Winston Salem, NC 21757, USA.
| | | | | | | |
Collapse
|
44
|
Abstract
Há evidências crescentes de que a inervação cutânea é capaz de modular uma variedade de fenômenos cutâneos agudos e crônicos, interagindo com as células da pele e seus componentes imunes. Essa forma de sinalização local entre tecido nervoso e tecido cutâneo ocorre especialmente por meio dos neuropeptídeos, uma numerosa família de neurotransmissores de natureza química comum e nomenclatura heterogênea presentes em todo o sistema nervoso e secretados pelas fibras nervosas cutâneas. São alvo desta revisão os neuropeptídeos substância P (SP), o peptídeo relacionado ao gene da calcitonina (CGRP), o peptídeo vasoativo intestinal (VIP), o peptídeo ativador da adenilato-ciclase pituitária (PACAP), o neuropeptídeo Y (NPY) e a somatostatina (SOM). Serão discutidas suas ações sobre as células da pele e sistema imune, bem como estudos recentes que sugerem a participação dos neuropeptídeos nas respostas inflamatórias cutâneas, nas reações de hipersensibilidade e em dermatoses humanas, notadamente na psoríase, dermatite atópica, hanseníase e alopecia.
Collapse
|
45
|
Baumann MA, Korkmaz Y, Bloch W, Schmidt A, Addicks K, Schröder H. Localization of the neuropeptide galanin in nerve fibers and epithelial keratinocytes of the rat molar gingiva. Eur J Oral Sci 2003; 111:175-8. [PMID: 12648271 DOI: 10.1034/j.1600-0722.2003.00029.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Knowledge of the histochemical substrates of cellular and neurovascular connections in the gingiva is essential in order to understand the initial mechanisms of inflammation in the periodontium. Since the localization of the neuroendocrine peptide galanin in the gingiva is still unclear, we used immunohistochemical, in situ hybridization and immunoblot techniques to assess the localization of galanin in the gingiva of rat molars. Galanin-immunoreactive nerve fibers were located around blood vessels in the lamina propria, beneath the epithelium, in the epithelial-proprial junction and in the basal layer of the epithelium. Galanin was highly expressed in the suprabasal keratinocytes of the gingival epithelium. The localization of galanin in gingival nerve fibers and the expression of galanin in keratinocytes of the gingival epithelium indicate that galanin may be a possible regulator of different cellular functions in the gingiva.
Collapse
Affiliation(s)
- Michael A Baumann
- Department of Operative Dentistry and Periodontology, Institute I for Anatomy - Cell Biology, University of Cologne, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Ko MH, Chen WP, Hsieh ST. Neuropathology of skin denervation in acrylamide-induced neuropathy. Neurobiol Dis 2002; 11:155-65. [PMID: 12460555 DOI: 10.1006/nbdi.2002.0537] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have established the neurotoxicity and pathology of acrylamide to large-diameter nerves. It remains unclear (1) whether small-diameter sensory nerves are vulnerable to acrylamide and (2) if so, how the pathology evolves during intoxication. We investigated the influence of acrylamide on small-diameter sensory nerves by studying the pathology of sensory nerve terminals in the skin. The neurotoxic effects of acrylamide (400 ppm in drinking water) on mice were assessed by immunostaining the skin with protein gene product 9.5, a ubiquitin C-terminal hydrolase, particularly useful for demonstrating cutaneous nerve terminals. Within 5 days of acrylamide administration (the initial stage), epidermal nerves showed two major changes: (1) terminal swelling and (2) increased branching. There was a progressive reduction in epidermal nerve density (END) thereafter. Fifteen days after acrylamide intoxication (the late stage), reduction in END became evident (25.22 +/- 2.19 fibers/mm vs 41.74 +/- 2.60 fibers/mm in control mice, P < 0.003). At this stage, there was significant dermal nerve degeneration with ultrastructural demonstrations of vacuolar changes. These findings establish the pathological consequences of acrylamide neurotoxicity in cutaneous sensory nerves with far-reaching implications: (1) providing an animal system to study "dying-back" pathology of nociceptive nerves and (2) forming the ultrastructural foundation for interpreting the pathology of cutaneous nerve degeneration in skin biopsies.
Collapse
Affiliation(s)
- Miau-Hwa Ko
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 10018, Taiwan
| | | | | |
Collapse
|
47
|
Seike M, Ikeda M, Morimoto A, Matsumoto M, Kodama H. Increased synthesis of calcitonin gene-related peptide stimulates keratinocyte proliferation in murine UVB-irradiated skin. J Dermatol Sci 2002; 28:135-43. [PMID: 11858952 DOI: 10.1016/s0923-1811(01)00155-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Repeated ultraviolet (UV) irradiations have been shown to induce keratinocyte proliferation with acanthosis, stimulate the cutaneous nerve proliferation, and increase the synthesis of calcitonin gene-related peptide (CGRP). In the current study, we examined the role of CGRP in the UVB-induced proliferation of murine keratinocytes. UVB irradiation increased the number of bromodeoxyuridine (BrdU)-labeled basal keratinocytes and caused acanthosis. In addition, CGRP expression was up-regulated in the peripheral nerves of the upper dermis and lower epidermis. Repeated intradermal injections of CGRP increased the number of BrdU-labeled basal cells and caused acanthosis. Intradermal injections of capsaicin prior to UVB-irradiation inhibited the UVB-induced CGRP expression, BrdU labeling in basal keratinocytes and epidermal thickening. Intradermal injections of anti-CGRP antibody inhibited the UVB-induced BrdU labeling in basal keratinocytes, but epidermal thickening was not significantly inhibited. These results indicate that CGRP is one of the stimulators to UVB-induced keratinocyte proliferation. On the other hand, expression of substance P, another neuropeptide in the peripheral nerve, was not up-regulated by UVB irradiation.
Collapse
Affiliation(s)
- Masahiro Seike
- Department of Dermatology, Kochi Medical School, Okohcho, Nankoku, 783-8505, Kochi, Japan.
| | | | | | | | | |
Collapse
|
48
|
Lin YW, Tseng TJ, Lin WM, Hsieh ST. Cutaneous nerve terminal degeneration in painful mononeuropathy. Exp Neurol 2001; 170:290-6. [PMID: 11476595 DOI: 10.1006/exnr.2001.7704] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nociceptive nerves innervate the skin and play an important role in the generation of neuropathic pain. However, it remains elusive whether and how nociceptive nerve terminals degenerate in neuropathic pain conditions. To address this issue, we investigated cutaneous innervation in a model of painful mononeuropathy, the chronic constriction injury (CCI). The hind paws of rats were immunocytochemically stained with a pan-axonal marker, protein gene product 9.5 (PGP 9.5). Within 2 days after CCI, rats exhibited thermal hyperalgesia, and there was a partial depletion of epidermal nerves. The extent of reduction in epidermal nerves after CCI was variable with an epidermal nerve density of 3.65 +/- 1.97 fibers/mm (compared to 15.39 +/- 1.58 fibers/mm on the control side, P < 0.02). There was a mild but concomitant increase in PGP 9.5 (+) Langerhans cells in the epidermis of the skin with CCI (10.19 +/- 1.99 vs 7.75 +/- 1.36 cells/mm, P < 0.05). In the skin denervated by tight ligation of the sciatic nerve, epidermal nerves were completely depleted (0 fibers/mm vs. 12.26 +/- 1.44 fibers/mm on the control side, P < 0.001). Animals with tight ligation of the sciatic nerve exhibited thermal anesthesia. These findings suggest that the epidermis is partially denervated in CCI, and that a partial injury of nerves is correlated with the development of neuropathic pain.
Collapse
Affiliation(s)
- Y W Lin
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, 10018, Taiwan
| | | | | | | |
Collapse
|
49
|
Weber M, Birklein F, Neundörfer B, Schmelz M. Facilitated neurogenic inflammation in complex regional pain syndrome. Pain 2001; 91:251-257. [PMID: 11275381 DOI: 10.1016/s0304-3959(00)00445-0] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Complex regional pain syndrome (CRPS) is characterized by a variety of clinical features including spontaneous pain and hyperalgesia. Increased neuropeptide release from peripheral nociceptors has been suggested as a possible pathophysiologic mechanism triggering the combination of trophic changes, edema, vasodilatation and pain. In order to verify the increased neuropeptide release in CRPS, electrically induced neurogenic vasodilatation and protein extravasation were evaluated in patients and controls. We performed a prospective study on 10 patients with acute and untreated CRPS and 10 matched healthy controls. Neurogenic inflammation was elicited by strong transcutaneous electrical stimulation via intradermal microdialysis capillaries which simultaneously enabled measurement of protein extravasation. Laser-Doppler scanning was used to assess axon reflex vasodilatation. Axon reflex vasodilatation was significantly increased in CRPS patients (438 +/- 68% of baseline vs. 306 +/- 52%; P < 0.05) and transcutaneous electrical stimulation provoked protein extravasation only in the patients (before, 0.28 +/- 0.03 mg/ml; during stimulation, 0.34 +/- 0.04 mg/ml), whereas protein concentration steadily declined during stimulation in the healthy controls (before, 0.23 +/- 0.04 mg/ml; during stimulation, 0.18 +/- 0.04; P < 0.001). The time course of electrically induced protein extravasation in the patients resembled the one observed following application of exogenous substance P (SP). We conclude that neurogenic inflammation is facilitated in CRPS. Our results suggest an increased releasability of neuropeptides in CRPS.
Collapse
Affiliation(s)
- M Weber
- Neurologische Klinik, Friedrich Alexander Universität Erlangen-Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany Institut für Physiologie und experimentelle Pathophysiologie, Friedrich Alexander Universität Erlangen-Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
50
|
Abstract
Since the discovery of its role in the CNS, glutamate, together with its involvement in signalling at synapses, has been the subject of a vast amount of research. More recently, it has become clear that glutamate signalling is also functional in non-neuronal tissues and occurs in sites as diverse as bone, pancreas and skin. These findings raise the possibility that glutamate acts as a more widespread 'cytokine' and is able to influence cellular activity in a range of tissue types. The impact of these discoveries is significant because they offer a rapid way to advance the development of therapeutics. Agents developed for use in neuroscience applications might be beneficial in the modulation of pathology peripherally, impacting on conditions such as osteoporosis, diabetes and wound healing.
Collapse
Affiliation(s)
- T M Skerry
- Dept of Biology, University of York, PO Box 373, YO10 5YW, UK.
| | | |
Collapse
|