1
|
Zhang XT, Blacutt J, Lloyd T, Mencer M, Pratt V, Kotha J, Sheeran L, Adcock S. Enhancing clinical research with pharmacogenomics: a practical perspective. Bioanalysis 2025; 17:399-411. [PMID: 40118816 PMCID: PMC11970788 DOI: 10.1080/17576180.2025.2481019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/12/2025] [Indexed: 03/24/2025] Open
Abstract
Pharmacogenomics (PGx) is transforming therapeutic development by providing insights into how genetic variations influence drug response, safety, and efficacy. This review provides a structured analysis of PGx in clinical research, beginning with an overview of key genes involved in drug metabolism, transport, and targets. Following this, it examines strategies for identifying PGx-relevant genes, including phenotype-driven, hypothesis-driven, population-focused, and clinical-driven approaches. Technical platforms such as PCR, MassARRAY, and next-generation sequencing are analyzed for their suitability in PGx studies. The discussion then shifts to assay validation processes, covering both analytical and clinical validation, to ensure data reliability in clinical trials. Finally, regulatory expectations for PGx in clinical trials are discussed, focusing on key requirements across all phases of drug development. This review aims to provide a clear and practical framework for integrating PGx into clinical research to enhance drug safety, efficacy, and personalized medicine.
Collapse
Affiliation(s)
| | - Jacob Blacutt
- Early Phase Unit, Worldwide Clinical Trials, Austin, TX, USA
| | - Thomas Lloyd
- Early Phase Unit, Worldwide Clinical Trials, Austin, TX, USA
| | - Mike Mencer
- Early Phase Unit, Worldwide Clinical Trials, Austin, TX, USA
| | - Vicky Pratt
- Pharmacogenetics, Agena Bioscience, San Diego, CA, USA
| | | | - Lona Sheeran
- Early Phase Unit, Worldwide Clinical Trials, Austin, TX, USA
| | - Sherilyn Adcock
- Early Phase Unit, Worldwide Clinical Trials, Austin, TX, USA
| |
Collapse
|
2
|
Silva OLT, Alves MGDCF, Rocha HAO. Exploring the Pharmacological Potential of Carrageenan Disaccharides as Antitumor Agents: An In Silico Approach. Mar Drugs 2024; 23:6. [PMID: 39852508 PMCID: PMC11766674 DOI: 10.3390/md23010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
Carrageenans have demonstrated enhanced antitumor activity upon depolymerization into disaccharides. However, the pharmacological viability of these disaccharides and their mechanisms of antitumor action remains to be fully elucidated. This study aimed to employ computational tools to investigate the pharmacological properties and molecular targets pertinent to cancer of the disaccharides derived from the primary carrageenans. Analyses of pharmacological properties predicted by the pkCSM and SwissADME servers indicated that the disaccharides possess a favorable pharmacokinetic profile, although they encounter permeability challenges primarily due to their high polarity and low lipophilicity. Target prediction using SwissTarget and PPB2 identified five carbonic anhydrases, which are also targets of oncology drugs, as common targets for the disaccharides. Molecular docking performed with AutoDock Vina revealed that the binding energies of the disaccharides with carbonic anhydrases were comparable to or greater than those of existing drugs that target these lyases. Notably, six of the complexes formed exhibited interactions between the disaccharides and the zinc cofactor, which represents a primary mechanism of inhibition for these targets. Furthermore, molecular dynamics simulations conducted using GROMACS demonstrated a stable interaction between the disaccharides and carbonic anhydrases. These findings offer new insights into the pharmacological properties and mechanisms of action of carrageenan-derived disaccharides, highlighting their potential for further exploration in clinical trials and experimental studies.
Collapse
Affiliation(s)
| | | | - Hugo Alexandre Oliveira Rocha
- Graduate Program in Biochemistry and Molecular Biology, Center of Biosciences, Federal University of Rio Grande do Norte—UFRN, Av. Sen. Salgado Filho, 3000, Natal 59078-900, Brazil; (O.L.T.S.); (M.G.d.C.F.A.)
| |
Collapse
|
3
|
O’Hara BA, Lukacher AS, Garabian K, Kaiserman J, MacLure E, Ishikawa H, Schroten H, Haley SA, Atwood WJ. Highly restrictive and directional penetration of the blood cerebral spinal fluid barrier by JCPyV. PLoS Pathog 2024; 20:e1012335. [PMID: 39038049 PMCID: PMC11293668 DOI: 10.1371/journal.ppat.1012335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/01/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
The human polyomavirus JCPyV is an opportunistic pathogen that infects greater than 60% of the world's population. The virus establishes a persistent and asymptomatic infection in the urogenital system but can cause a fatal demyelinating disease in immunosuppressed or immunomodulated patients following invasion of the CNS. The mechanisms responsible for JCPyV invasion into CNS tissues are not known but direct invasion from the blood to the cerebral spinal fluid via the choroid plexus has been hypothesized. To study the potential of the choroid plexus as a site of neuroinvasion, we used an adult human choroid plexus epithelial cell line to model the blood-cerebrospinal fluid (B-CSF) barrier in a transwell system. We found that these cells formed a highly restrictive barrier to virus penetration either as free virus or as virus associated with extracellular vesicles (EVJC+). The restriction was not absolute and small amounts of virus or EVJC+ penetrated and were able to establish foci of infection in primary astrocytes. Disruption of the barrier with capsaicin did not increase virus or EVJC+ penetration leading us to hypothesize that virus and EVJC+ were highly cell-associated and crossed the barrier by an active process. An inhibitor of macropinocytosis increased virus penetration from the basolateral (blood side) to the apical side (CSF side). In contrast, inhibitors of clathrin and raft dependent transcytosis reduced virus transport from the basolateral to the apical side of the barrier. None of the drugs inhibited apical to basolateral transport suggesting directionality. Pretreatment with cyclosporin A, an inhibitor of P-gp, MRP2 and BCRP multidrug resistance transporters, restored viral penetration in cells treated with raft and clathrin dependent transcytosis inhibitors. Because choroid plexus epithelial cells are known to be susceptible to JCPyV infection both in vitro and in vivo we also examined the release of infectious virus from the barrier. We found that virus was preferentially released from the cells into the apical (CSF) chamber. These data show clearly that there are two mechanisms of penetration, direct transcytosis which is capable of seeding the CSF with small amounts of virus, and infection followed by directional release of infectious virions into the CSF compartment.
Collapse
Affiliation(s)
- Bethany A. O’Hara
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Avraham S. Lukacher
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Kaitlin Garabian
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Jacob Kaiserman
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Evan MacLure
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | | | - Horst Schroten
- Department of Pediatrics, Medical Faculty Mannheim, Mannheim, Germany
| | - Sheila A. Haley
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Walter J. Atwood
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
4
|
Teixeira FS, Costa PT, Soares AMS, Fontes AL, Pintado ME, Vidigal SSMP, Pimentel LL, Rodríguez-Alcalá LM. Novel Lipids to Regulate Obesity and Brain Function: Comparing Available Evidence and Insights from QSAR In Silico Models. Foods 2023; 12:2576. [PMID: 37444314 DOI: 10.3390/foods12132576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/09/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Lipid molecules, such as policosanol, ergosterol, sphingomyelin, omega 3 rich phosphatidylcholine, α-tocopherol, and sodium butyrate, have emerged as novel additions to the portfolio of bioactive lipids. In this state-of-the-art review, we discuss these lipids, and their activity against obesity and mental or neurological disorders, with a focus on their proposed cellular targets and the ways in which they produce their beneficial effects. Furthermore, this available information is compared with that provided by in silico Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) models in order to understand the usefulness of these tools for the discovery of new bioactive compounds. Accordingly, it was possible to highlight how these lipids interact with various cellular targets related to the molecule transportation and absorption (e.g., α-tocopherol transfer protein for α-Tocopherol, ATP-binding cassette ABC transporters or Apolipoprotein E for sphingomyelins and phospholipids) or other processes, such as the regulation of gene expression (involving Sterol Regulatory Element-Binding Proteins for ergosterol or Peroxisome Proliferator-Activated Receptors in the case of policosanol) and inflammation (the regulation of interleukins by sodium butyrate). When comparing the literature with in silico Quantitative Structure-Activity Relationship (QSAR) models, it was observed that although they are useful for selecting bioactive molecules when compared in batch, the information they provide does not coincide when assessed individually. Our review highlights the importance of considering a broad range of lipids as potential bioactives and the need for accurate prediction of ADMET parameters in the discovery of new biomolecules. The information presented here provides a useful resource for researchers interested in developing new strategies for the treatment of obesity and mental or neurological disorders.
Collapse
Affiliation(s)
- Francisca S Teixeira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Paula T Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana M S Soares
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Luiza Fontes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Susana S M P Vidigal
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Lígia L Pimentel
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Luís M Rodríguez-Alcalá
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
5
|
Ashino T, Nakamura Y, Ohtaki H, Iwakura Y, Numazawa S. Interleukin-6 regulates the expression of hepatic canalicular efflux drug transporters after cecal ligation and puncture-induced sepsis: A comparison with lipopolysaccharide treatment. Toxicol Lett 2023; 374:40-47. [PMID: 36526125 DOI: 10.1016/j.toxlet.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Hepatic multidrug transporters expressed on the canalicular membrane play a role in the hepatobiliary excretion of xenobiotics and endogenous substrates. The aim of this study was to elucidate the role of pro-inflammatory cytokines in the regulation of hepatic drug transporter expression after cecal ligation and puncture (CLP), a valuable tool for studying polymicrobial sepsis, and to compare CLP with lipopolysaccharide (LPS) treatment. CLP reduced the expression of Mdr2/Abcb4, Mrp2/Abcc2, Bsep/Abcb11, Bcrp/Abcg2, and Mate1/Slc47a1 mRNAs in wild-type (WT) mouse livers in a time-dependent manner up to 48 h postoperation. LPS also reduced the expression of all transporters in WT mouse livers 24 h posttreatment; thereafter, expression levels tended to return to normal by 48 h posttreatment. IL-6-/- mice exhibited inhibited downregulation of drug transporters following CLP, although IL-1-/- and TNFα-/- mice exhibited the reduced expression of all transporters in a manner similar to that found in WT mice. Compared with CLP, LPS treatment reduced the expression of all transporters in all cytokine-deficient mouse livers, except for the expression of Mrp2/Abcc2 in IL-6-/- mice. Overall, these findings suggest that IL-6 is major factor in the downregulation of hepatic multidrug transporters following the onset of polymicrobial sepsis but not after LPS treatment.
Collapse
Affiliation(s)
- Takashi Ashino
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Yuki Nakamura
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Center for Pharmaceutical Education, Faculty of Pharmacy, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama, Kanagawa 245-0066, Japan
| | - Hirokazu Ohtaki
- Department of Functional Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| |
Collapse
|
6
|
Simonetti S, Zupo V, Gambi MC, Luckenbach T, Corsi I. Unraveling cellular and molecular mechanisms of acid stress tolerance and resistance in marine species: New frontiers in the study of adaptation to ocean acidification. MARINE POLLUTION BULLETIN 2022; 185:114365. [PMID: 36435021 DOI: 10.1016/j.marpolbul.2022.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Since the industrial revolution, fossil fuel combustion has led to a 30 %-increase of the atmospheric CO2 concentration, also increasing the ocean partial CO2 pressure. The consequent lowered surface seawater pH is termed ocean acidification (OA) and severely affects marine life on a global scale. Cellular and molecular responses of marine species to lowered seawater pH have been studied but information on the mechanisms driving the tolerance of adapted species to comparatively low seawater pH is limited. Such information may be obtained from species inhabiting sites with naturally low water pH that have evolved remarkable abilities to tolerate such conditions. This review gathers information on current knowledge about species naturally facing low water pH conditions and on cellular and molecular adaptive mechanisms enabling the species to survive under, and even benefit from, adverse pH conditions. Evidences derived from case studies on naturally acidified systems and on resistance mechanisms will guide predictions on the consequences of future adverse OA scenarios for marine biodiversity.
Collapse
Affiliation(s)
- Silvia Simonetti
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy; Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Dep.t of BluBioTech, Napoli, Italy.
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Dep.t of BluBioTech, Napoli, Italy.
| | | | - Till Luckenbach
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy.
| |
Collapse
|
7
|
Lumefantrine solid dispersions with piperine for the enhancement of solubility, bioavailability and anti-parasite activity. Int J Pharm 2022; 628:122354. [DOI: 10.1016/j.ijpharm.2022.122354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
|
8
|
Milani N, Parrott N, Ortiz Franyuti D, Godoy P, Galetin A, Gertz M, Fowler S. Application of a gut-liver-on-a-chip device and mechanistic modelling to the quantitative in vitro pharmacokinetic study of mycophenolate mofetil. LAB ON A CHIP 2022; 22:2853-2868. [PMID: 35833849 DOI: 10.1039/d2lc00276k] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microphysiological systems (MPS) consisting of multiple linked organ-on-a-chip (OoC) components are highly promising tools with potential to provide more relevant in vitro to in vivo translation of drug disposition, efficacy and toxicity. A gut-liver OoC system was employed with Caco2 cells in co-culture with HT29 cells in the intestinal compartment and single donor primary hepatocytes in the hepatic compartment for the investigation of intestinal permeability, metabolism (intestinal and hepatic) and potential interplay of those processes. The prodrug mycophenolate mofetil was tested for quantitative evaluation of the gut-liver OoC due to the contribution of both gut and liver in its metabolism. Conversion of mycophenolate mofetil to active drug mycophenolic acid and further metabolism to a glucuronide metabolite was assessed over time in the gut apical, gut basolateral and liver compartments. Mechanistic modelling of experimental data was performed to estimate clearance and permeability parameters for the prodrug, active drug and glucuronide metabolite. Integration of gut-liver OoC data with in silico modelling allowed investigation of the complex combination of intestinal and hepatic processes, which is not possible with standard single tissue in vitro systems. A comprehensive evaluation of the mechanistic model, including structural model and parameter identifiability and global sensitivity analysis, enabled a robust experimental design and estimation of in vitro pharmacokinetic parameters. We propose that similar methodologies may be applied to other multi-organ microphysiological systems used for drug metabolism studies or wherever quantitative knowledge of changing drug concentration with time enables better understanding of biological effect.
Collapse
Affiliation(s)
- Nicoló Milani
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, UK
| | - Neil Parrott
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Daniela Ortiz Franyuti
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Patricio Godoy
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, UK
| | - Michael Gertz
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Stephen Fowler
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
9
|
Nwabufo CK. Relevance of ABC Transporters in Drug Development. Curr Drug Metab 2022; 23:434-446. [PMID: 35726814 DOI: 10.2174/1389200223666220621113524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
ATP-binding cassette (ABC) transporters play a critical role in protecting vital organs such as the brain and placenta against xenobiotics, as well as in modulating the pharmacological and toxicological profile of several drug candidates by restricting their penetration through cellular and tissue barriers. This review paper provides a description of the structure and function of ABC transporters as well as the role of P-glycoprotein, multidrug resistance-associated protein 2 and breast cancer resistance protein in the disposition of drugs. Furthermore, a review of the in vitro and in vivo techniques for evaluating the interaction between drugs and ABC transporters are provided.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Investigation of the effect of verapamil on the regional absorption of sofosbuvir from rabbit intestine in situ. Daru 2022; 30:49-58. [PMID: 35023081 PMCID: PMC9114277 DOI: 10.1007/s40199-021-00429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/05/2021] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Sofosbuvir, a nucleotide antiviral drug, is a Biopharmaceutics Classification System (BCS) class III prodrug suffering from limited intestinal absorption due to its high hydrophilicity and low intestinal permeability. This research aims to investigate the luminal stability of Sofosbuvir, the influence of anatomical site on its intestinal absorption and the effects of verapamil on such absorption. METHOD The study utilized in situ rabbit intestinal perfusion technique to examine absorption of Sofosbuvir from duodenum, jejunum, ileum and ascending colon. This was conducted both with and without verapamil. RESULTS The luminal stability study showed that Sofosbuvir was subjected to premature degradation with varying fractions degraded from the different intestinal segments. The in situ perfusion data showed incomplete absorption of Sofosbuvir from small and large intestinal segments. The recorded values of the absorptive clearance per unit length (Pe.A/L) of Sofosbuvir were 0.026, 0.0075, 0.0026, & 0.054 ml/min.cm for duodenum, jejunum, ileum, and ascending colon, respectively. The Pe.A/L values were ordered as colon > duodenum > jejunum > ileum. This is the opposite rank of P-gp content in the different intestinal segments. The recorded values of the length required for complete Sofosbuvir absorption (L95%) were 29.58, 128.47, 949.2 and, 13.63 cm for duodenum, jejunum, ileum, and ascending colon, respectively. Co-perfusion with verapamil significantly increased Pe.A/L and reduced the L95% of Sofosbuvir from both jejunum and ileum (P-value < 0.05). CONCLUSION The results indicated that the absorptive clearance of Sofosbuvir was site dependent and associated with the content of P-glycoprotein, in addition to the expected drug interactions that can occur in polymedicated hepatitis C virus (HCV) infected patients.
Collapse
|
11
|
Stromsnes K, Lagzdina R, Olaso-Gonzalez G, Gimeno-Mallench L, Gambini J. Pharmacological Properties of Polyphenols: Bioavailability, Mechanisms of Action, and Biological Effects in In Vitro Studies, Animal Models, and Humans. Biomedicines 2021; 9:1074. [PMID: 34440278 PMCID: PMC8392236 DOI: 10.3390/biomedicines9081074] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Drugs are bioactive compounds originally discovered from chemical structures present in both the plant and animal kingdoms. These have the ability to interact with molecules found in our body, blocking them, activating them, or increasing or decreasing their levels. Their actions have allowed us to cure diseases and improve our state of health, which has led us to increase the longevity of our species. Among the molecules with pharmacological activity produced by plants are the polyphenols. These, due to their molecular structure, as drugs, also have the ability to interact with molecules in our body, presenting various pharmacological properties. In addition, these compounds are found in multiple foods in our diet. In this review, we focused on discussing the bioavailability of these compounds when we ingested them through diet and the specific mechanisms of action of polyphenols, focusing on studies carried out in vitro, in animals and in humans over the last five years. Knowing which foods have these pharmacological activities could allow us to prevent and aid as concomitant treatment against various pathologies.
Collapse
Affiliation(s)
- Kristine Stromsnes
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (G.O.-G.)
| | - Rudite Lagzdina
- Faculty of Medicine, Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (G.O.-G.)
| | - Lucia Gimeno-Mallench
- Department of Biomedical Sciences, Faculty of Health Sciences, Cardenal Herrera CEU University, 46115 Valencia, Spain;
| | - Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (G.O.-G.)
| |
Collapse
|
12
|
Truong VL, Jun M, Jeong WS. Phytochemical and Over-The-Counter Drug Interactions: Involvement of Phase I and II Drug-Metabolizing Enzymes and Phase III Transporters. J Med Food 2021; 24:786-805. [PMID: 34382862 DOI: 10.1089/jmf.2021.k.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Consumption of plant-derived natural products and over-the-counter (OTC) drugs is increasing on a global scale, and studies of phytochemical-OTC drug interactions are becoming more significant. The intake of dietary plants and herbs rich in phytochemicals may affect drug-metabolizing enzymes (DMEs) and transporters. These effects may lead to alterations in pharmacokinetics and pharmacodynamics of OTC drugs when concomitantly administered. Some phytochemical-drug interactions benefit patients through enhanced efficacy, but many interactions cause adverse effects. This review discusses possible mechanisms of phytochemical-OTC drug interactions mediated by phase I and II DMEs and phase III transporters. In addition, current information is summarized for interactions between phytochemicals derived from fruits, vegetables, and herbs and OTC drugs, and counseling is provided on appropriate and safe use of OTC drugs.
Collapse
Affiliation(s)
- Van-Long Truong
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Mira Jun
- Brain Busan 21 Plus Program, Department of Food Science and Nutrition, Graduate School, Center for Silver-Targeted Biomaterials, Dong-A University, Busan, Korea
| | - Woo-Sik Jeong
- Food and Bio-Industry Research Institute, School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
13
|
Coppo R, Orso F, Virga F, Dalmasso A, Baruffaldi D, Nie L, Clapero F, Dettori D, Quirico L, Grassi E, Defilippi P, Provero P, Valdembri D, Serini G, Sadeghi MM, Mazzone M, Taverna D. ESDN inhibits melanoma progression by blocking E-selectin expression in endothelial cells via STAT3. Cancer Lett 2021; 510:13-23. [PMID: 33862151 DOI: 10.1016/j.canlet.2021.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
An interactive crosstalk between tumor and stroma cells is essential for metastatic melanoma progression. We evidenced that ESDN/DCBLD2/CLCP1 plays a crucial role in endothelial cells during the spread of melanoma. Precisely, increased extravasation and metastasis formation were revealed in ESDN-null mice injected with melanoma cells, even if the primary tumor growth, vessel permeability, and angiogenesis were not enhanced. Interestingly, improved adhesion of melanoma cells to ESDN-depleted endothelial cells was observed, due to the presence of higher levels of E-selectin transcripts/proteins in ESDN-defective cells. In accordance with these results, anticorrelation was observed between ESDN and E-selectin in human endothelial cells. Most importantly, our data revealed that cimetidine, an E-selectin inhibitor, was able to block cell adhesion, extravasation, and metastasis formation in ESDN-null mice, underlying a major role of ESDN in E-selectin transcription upregulation, which according to our data, may presumably be linked to STAT3. Based on our results, we propose a protective role for ESDN during the spread of melanoma and reveal its therapeutic potential.
Collapse
Affiliation(s)
- Roberto Coppo
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesca Orso
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federico Virga
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; VIB Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Alberto Dalmasso
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Desirée Baruffaldi
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Lei Nie
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA; Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Fabiana Clapero
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy
| | - Daniela Dettori
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Lorena Quirico
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Elena Grassi
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paola Defilippi
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paolo Provero
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milano, Italy
| | - Donatella Valdembri
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy
| | - Guido Serini
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 10060, Candiolo, Torino, Italy; Department of Oncology, University of Torino School of Medicine, 10060, Candiolo, Torino, Italy
| | - Mehran M Sadeghi
- Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA; Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Massimiliano Mazzone
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; VIB Center for Cancer Biology, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC), University of Torino, Torino, Italy; Dept. Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
14
|
Liu Y, Eckenrode JM, Zhang Y, Zhang J, Hayden RC, Kyomuhangi A, Ponomareva LV, Cui Z, Rohr J, Tsodikov OV, Van Lanen SG, Shaaban KA, Leggas M, Thorson JS. Mithramycin 2'-Oximes with Improved Selectivity, Pharmacokinetics, and Ewing Sarcoma Antitumor Efficacy. J Med Chem 2020; 63:14067-14086. [PMID: 33191745 DOI: 10.1021/acs.jmedchem.0c01526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mithramycin A (MTM) inhibits the oncogenic transcription factor EWS-FLI1 in Ewing sarcoma, but poor pharmacokinetics (PK) and toxicity limit its clinical use. To address this limitation, we report an efficient MTM 2'-oxime (MTMox) conjugation strategy for rapid MTM diversification. Comparative cytotoxicity assays of 41 MTMox analogues using E-twenty-six (ETS) fusion-dependent and ETS fusion-independent cancer cell lines revealed improved ETS fusion-independent/dependent selectivity indices for select 2'-conjugated analogues as compared to MTM. Luciferase-based reporter assays demonstrated target engagement at low nM concentrations, and molecular assays revealed that analogues inhibit the transcriptional activity of EWS-FLI1. These in vitro screens identified MTMox32E (a Phe-Trp dipeptide-based 2'-conjugate) for in vivo testing. Relative to MTM, MTMox32E displayed an 11-fold increase in plasma exposure and improved efficacy in an Ewing sarcoma xenograft. Importantly, these studies are the first to point to simple C3 aliphatic side-chain modification of MTM as an effective strategy to improve PK.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Joseph M Eckenrode
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yinan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jianjun Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Reiya C Hayden
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Annet Kyomuhangi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Larissa V Ponomareva
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Khaled A Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Markos Leggas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
15
|
Madajewski B, Chen F, Yoo B, Turker MZ, Ma K, Zhang L, Chen PM, Juthani R, Aragon-Sanabria V, Gonen M, Rudin CM, Wiesner U, Bradbury MS, Brennan C. Molecular Engineering of Ultrasmall Silica Nanoparticle-Drug Conjugates as Lung Cancer Therapeutics. Clin Cancer Res 2020; 26:5424-5437. [PMID: 32723835 DOI: 10.1158/1078-0432.ccr-20-0851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/29/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Small-molecule inhibitors have had a major impact on cancer care. While treatments have demonstrated clinically promising results, they suffer from dose-limiting toxicities and the emergence of refractory disease. Considerable efforts made to address these issues have more recently focused on strategies implementing particle-based probes that improve drug delivery and accumulation at target sites, while reducing off-target effects. EXPERIMENTAL DESIGN Ultrasmall (<8 nm) core-shell silica nanoparticles, C' dots, were molecularly engineered to function as multivalent drug delivery vehicles for significantly improving key in vivo biological and therapeutic properties of a prototype epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, gefitinib. Novel surface chemical components were used to conjugate gefitinib-dipeptide drug-linkers and deferoxamine (DFO) chelators for therapeutic delivery and PET imaging labels, respectively. RESULTS Gefitinib-bound C' dots (DFO-Gef-C' dots), synthesized using the gefitinib analogue, APdMG, at a range of drug-to-particle ratios (DPR; DPR = 11-56), demonstrated high stability for DPR values≤ 40, bulk renal clearance, and enhanced in vitro cytotoxicity relative to gefitinib (LD50 = 6.21 nmol/L vs. 3 μmol/L, respectively). In human non-small cell lung cancer mice, efficacious Gef-C' dot doses were at least 200-fold lower than that needed for gefitinib (360 nmoles vs. 78 μmoles, respectively), noting fairly equivalent tumor growth inhibition and prolonged survival. Gef-C' dot-treated tumors also exhibited low phosphorylated EFGR levels, with no appreciable wild-type EGFR target inhibition, unlike free drug. CONCLUSIONS Results underscore the clinical potential of DFO-Gef-C' dots to effectively manage disease and minimize off-target effects at a fraction of the native drug dose.
Collapse
Affiliation(s)
- Brian Madajewski
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York.,MSK-Cornell Center for Translation of Cancer Nanomedicines, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Feng Chen
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York.,MSK-Cornell Center for Translation of Cancer Nanomedicines, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barney Yoo
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Chemistry, Hunter College, New York, New York
| | - Melik Z Turker
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Materials Science and Engineering, Cornell University, Ithaca, New York
| | - Kai Ma
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York
| | - Li Zhang
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York.,MSK-Cornell Center for Translation of Cancer Nanomedicines, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pei-Ming Chen
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York.,MSK-Cornell Center for Translation of Cancer Nanomedicines, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rupa Juthani
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Virginia Aragon-Sanabria
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York.,MSK-Cornell Center for Translation of Cancer Nanomedicines, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Charles M Rudin
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ulrich Wiesner
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Materials Science and Engineering, Cornell University, Ithaca, New York
| | - Michelle S Bradbury
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York. .,MSK-Cornell Center for Translation of Cancer Nanomedicines, Memorial Sloan Kettering Cancer Center, New York, New York.,Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Cameron Brennan
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
16
|
Drozdzik M, Czekawy I, Oswald S, Drozdzik A. Intestinal drug transporters in pathological states: an overview. Pharmacol Rep 2020; 72:1173-1194. [PMID: 32715435 PMCID: PMC7550293 DOI: 10.1007/s43440-020-00139-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Marek Drozdzik
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111, Szczecin, Poland.
| | - Izabela Czekawy
- Department of Pharmacology, Pomeranian Medical University, Powstancow Wlkp 72, 70-111, Szczecin, Poland
| | - Stefan Oswald
- Department of Pharmacology, Medicine University Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany.,Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18051, Rostock, Germany
| | - Agnieszka Drozdzik
- Department of Integrated Dentistry, Pomeranian Medical University, Powstancow Wlkp 72, 70-111, Szczecin, Poland
| |
Collapse
|
17
|
Guéniche N, Bruyere A, Ringeval M, Jouan E, Huguet A, Le Hégarat L, Fardel O. Differential interactions of carbamate pesticides with drug transporters. Xenobiotica 2020; 50:1380-1392. [PMID: 32421406 DOI: 10.1080/00498254.2020.1771473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pesticides are now recognised to interact with drug transporters, but only few data are available on this issue for carbamate pesticides, a widely used class of agrochemicals, to which humans are highly exposed. The present study was therefore designed to determine whether four representative carbamate pesticides, i.e. the insecticides aminocarb and carbofuran, the herbicide chlorpropham and the fungicide propamocarb, may impair activities of main drug transporters implicated in pharmacokinetics. The interactions of carbamates with solute carrier and ATP-binding cassette transporters were investigated using cultured transporter-overexpressing cells, reference substrates and spectrofluorimetry-, liquid chomatography/tandem mass spectrometry- or radioactivity-based methods. Aminocarb and carbofuran exerted no or minimal effects on transporter activities, whereas chlorpropham inhibited BCRP and OAT3 activities and propamocarb decreased those of OCT1 and OCT2, but cis-stimulated that of MATE2-K. Such alterations of transporters however required chlorpropham/propamocarb concentrations in the 5-50 µM range, likely not relevant to environmental exposure. Trans-stimulation assays and propamocarb accumulation experiments additionally suggested that propamocarb is not a substrate for OCT1, OCT2 and MATE2-K. These data indicate that some carbamate pesticides can interact in vitro with some drug transporters, but only when used at concentrations higher than those expected to occur in environmentally exposed humans.
Collapse
Affiliation(s)
- Nelly Guéniche
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France.,ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Mélanie Ringeval
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Antoine Huguet
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Ludovic Le Hégarat
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S1085, Rennes, France
| |
Collapse
|
18
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, Sethi G. Association of the Epithelial-Mesenchymal Transition (EMT) with Cisplatin Resistance. Int J Mol Sci 2020; 21:E4002. [PMID: 32503307 PMCID: PMC7312011 DOI: 10.3390/ijms21114002] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Therapy resistance is a characteristic of cancer cells that significantly reduces the effectiveness of drugs. Despite the popularity of cisplatin (CP) as a chemotherapeutic agent, which is widely used in the treatment of various types of cancer, resistance of cancer cells to CP chemotherapy has been extensively observed. Among various reported mechanism(s), the epithelial-mesenchymal transition (EMT) process can significantly contribute to chemoresistance by converting the motionless epithelial cells into mobile mesenchymal cells and altering cell-cell adhesion as well as the cellular extracellular matrix, leading to invasion of tumor cells. By analyzing the impact of the different molecular pathways such as microRNAs, long non-coding RNAs, nuclear factor-κB (NF-ĸB), phosphoinositide 3-kinase-related protein kinase (PI3K)/Akt, mammalian target rapamycin (mTOR), and Wnt, which play an important role in resistance exhibited to CP therapy, we first give an introduction about the EMT mechanism and its role in drug resistance. We then focus specifically on the molecular pathways involved in drug resistance and the pharmacological strategies that can be used to mitigate this resistance. Overall, we highlight the various targeted signaling pathways that could be considered in future studies to pave the way for the inhibition of EMT-mediated resistance displayed by tumor cells in response to CP exposure.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Mahshad Kalantari
- Department of Genetic Science, Tehran Medical Science Branch, Islamic Azad University, Tehran 19168931813, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 1355576169, Iran
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, MA 02215, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| |
Collapse
|
19
|
Fan Y, Mansoor N, Ahmad T, Wu ZX, Khan RA, Czejka M, Sharib S, Ahmed M, Chen ZS, Yang DH. Enzyme and Transporter Kinetics for CPT-11 (Irinotecan) and SN-38: An Insight on Tumor Tissue Compartment Pharmacokinetics Using PBPK. Recent Pat Anticancer Drug Discov 2020; 14:177-186. [PMID: 30760193 DOI: 10.2174/1574892814666190212164356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/29/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Computational tools are becoming more and more powerful and comprehensive as compared to past decades in facilitating pharmaceutical, pharmacological and clinical practice. Anticancer agents are used either as monotherapy or in combination therapy to treat malignant conditions of the body. A single antineoplastic agent may be used in different types of malignancies at different doses according to the stage of the disease. OBJECTIVE To study the behavior of CPT-11 (Irinotecan) and its metabolite SN-38 in tumor tissue compartment through the Whole Body-Physiologically Pharmacokinetics (WB-PBPK) and to determine the activity of metabolic enzymes and transporters participating in the disposition of CPT-11 and SN-38 working in their physiological environment inside the human body. METHODS Whole body PBPK approach is used to determine the activity of different metabolic enzymes and transporters involved in the disposition of CPT-11 and its active metabolite, SN-38. The concentrations and pharmacokinetic parameters of the parent compound and its metabolite administered at clinically applicable dose via the intravenous route in the tumor tissue are predicted using this approach. RESULTS The activity rate constants of metabolic enzymes and transporters of CPT-11 are derived at their natural anatomic locations. Concentration-time curves of CPT-11 and SN-38 with their 5th to 95th percentage range are achieved at the tumor tissue level. Mean tumor tissue pharmacokinetics of both compounds are determined in a population of 100 individuals. CONCLUSION Tumor tissue concentration-time curves of CPT-11 and SN-38 can be determined via PBPK modeling. Rate constants of enzymes and transporters can be shown for healthy and tumor bearing individuals. The results will throw light on the effective concentration of active compound at its target tissue at the clinically applied IV dose.
Collapse
Affiliation(s)
- Yingfang Fan
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, NY 11439, United States
| | - Najia Mansoor
- Department of Pharmacology, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Tasneem Ahmad
- Pharma Professional Service, Karachi 75270, Pakistan
| | - Zhuo X Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, NY 11439, United States
| | - Rafeeq A Khan
- Department of Pharmacology, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Martin Czejka
- Department of Clinical Pharmacy and Diagnostics, University of Vienna, A-1090 Vienna, Austria
| | - Syed Sharib
- Pharma Professional Service, Karachi 75270, Pakistan
| | - Mansoor Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zhe S Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, NY 11439, United States
| | - Dong H Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, NY 11439, United States
| |
Collapse
|
20
|
Wang C, Zhou Y, Gong X, Zheng L, Li Y. In vitro and in situ study on characterization and mechanism of the intestinal absorption of 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside. BMC Pharmacol Toxicol 2020; 21:7. [PMID: 31969193 PMCID: PMC6977318 DOI: 10.1186/s40360-020-0384-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/13/2020] [Indexed: 01/29/2023] Open
Abstract
Background 2,3,5,4′-tetrahydroxystilbence-2-O-β-D-glucoside (TSG) is a polyhydroxyphenolic compound, which exhibited a broad spectrum of pharmacological activities, such as anti-inflammatory, anti-depression, anti-oxidation and anti-atherosclerosis. However, the compound had poor bioavailability and the underlying absorption mechanisms had not been studied. Therefore, the purpose of this study was to investigate the intestinal absorption mechanism of TSG. Methods This study used Caco-2 cell monolayer model and single-pass intestinal perfusion model to explore the gastrointestinal absorption mechanisms of TSG. The effects of basic parameters such as drug concentration, time and pH on the intestinal absorption of TSG were analyzed by high performance liquid chromatography. The absorption susceptibility of TSG to three inhibitors, P-gp inhibitors verapamil hydrochloride and quinidine, and MRP2 inhibitor probenecid were also assessed. Results TSG was poorly absorbed in the intestines and the absorption of TSG in stomach is much higher than that in intestine. Both in vitro and in situ experiments showed that the absorption of TSG was saturated with increasing concentration and it was better absorbed in a weakly acidic environment pH 6.4. Moreover, TSG interacts with P-gp and MRP2, and TSG was not only the substrate of the P-gp and MRP2, but also affected the expression of P-gp and MRP2. Conclusions It was concluded that the gastrointestinal absorption the most unique active ingredient and considered as the mechanisms of TSG involved processes passive transport and the participation of efflux transporters.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yimeng Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xiaohong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Li Zheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China.,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China. .,Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu, 611137, China. .,National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
21
|
Yao HT, Yang YH, Li ML. Intake of Molecular Hydrogen in Drinking Water Increases Membrane Transporters, p-Glycoprotein, and Multidrug Resistance-Associated Protein 2 without Affecting Xenobiotic-Metabolizing Enzymes in Rat Liver. Molecules 2019; 24:E2627. [PMID: 31330936 PMCID: PMC6680492 DOI: 10.3390/molecules24142627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/03/2023] Open
Abstract
Molecular hydrogen (H2) has been shown to have antioxidant and anti-inflammatory activities that may reduce the development and progression of many diseases. In this study, hydrogen-rich water (HRW) was obtained by reacting hybrid magnesium-carbon hydrogen storage materials with water. Then, the effects of intake of HRW on the activities of xenobiotic-metabolizing enzymes, membrane transporters, and oxidative stress in rats were investigated. Rats were given HRW ad libitum for four weeks. The results showed that intake of HRW had no significant effect on the activities of various cytochrome P450 (CYP) enzymes (CYP1A1, 1A2, 2B, 2C, 2D, 2E1, 3A, and 4A), glutathione-S-transferase, and Uridine 5'-diphospho (UDP)-glucuronosyltransferase. Except for a mild lower plasma glucose concentration, intake of HRW had no effect on other plasma biochemical parameters in rats. p-Glycoprotein and multidrug resistance-associated protein (Mrp) 2 protein expressions in liver were elevated after intake of HRW. However, HRW had no significant effects on glutathione, glutathione peroxidase, or lipid peroxidation in liver. The results from this study suggest that consumption of HRW may not affect xenobiotic metabolism or oxidative stress in liver. However, intake of HRW may increase the efflux of xenobiotics or toxic substances from the liver into bile by enhancing p-glycoprotein and Mrp2 protein expressions.
Collapse
Affiliation(s)
- Hsien-Tsung Yao
- Department of Nutrition, China Medical University, 91 Hsueh-shih Road, Taichung 404, Taiwan.
| | - Yu-Hsuan Yang
- Department of Nutrition, China Medical University, 91 Hsueh-shih Road, Taichung 404, Taiwan
| | - Mei-Ling Li
- Department of Nutrition, China Medical University, 91 Hsueh-shih Road, Taichung 404, Taiwan
| |
Collapse
|
22
|
Leopoldo M, Nardulli P, Contino M, Leonetti F, Luurtsema G, Colabufo NA. An updated patent review on P-glycoprotein inhibitors (2011-2018). Expert Opin Ther Pat 2019; 29:455-461. [DOI: 10.1080/13543776.2019.1618273] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Marcello Leopoldo
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Patrizia Nardulli
- Hospital Pharmacy Unit, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari, Italy
| | | | - Francesco Leonetti
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
23
|
Naidoo P, Chetty M. Progress in the Consideration of Possible Sex Differences in Drug Interaction Studies. Curr Drug Metab 2019; 20:114-123. [PMID: 30488793 DOI: 10.2174/1389200220666181128160813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022]
Abstract
Background:
Anecdotal evidence suggests that there may be sex differences in Drug-drug Interactions
(DDI) involving specific drugs. Regulators have provided general guidance for the inclusion of females in clinical
studies. Some clinical studies have reported sex differences in the Pharmacokinetics (PK) of CYP3A4 substrates,
suggesting that DDI involving CYP3A4 substrates could potentially show sex differences.
Objective:
The aim of this review was to investigate whether recent prospective DDI studies have included both
sexes and whether there was evidence for the presence or absence of sex differences with the DDIs.
Methods:
The relevant details from 156 drug interaction studies within 124 papers were extracted and evaluated.
Results:
Only eight studies (five papers) compared the outcome of the DDI between males and females. The majority
of the studies had only male volunteers. Five studies had females only while 60 had males only, with 7.7% of the
studies having an equal proportion of both sexes. Surprisingly, four studies did not specify the sex of the subjects.
:
Based on the limited number of studies comparing males and females, no specific trends or conclusions were evident.
Sex differences in the interaction were reported between ketoconazole and midazolam as well as clarithromycin and
midazolam. However, no sex difference was observed with the interaction between clarithromycin and triazolam or
erythromycin and triazolam. No sex-related PK differences were observed with the interaction between ketoconazole
and domperidone, although sex-related differences in QT prolongation were observed.
Conclusion:
This review has shown that only limited progress had been made with the inclusion of both sexes in
DDI studies.
Collapse
Affiliation(s)
- Panjasaram Naidoo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu Natal, KwaZulu Natal, South Africa
| | - Manoranjenni Chetty
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu Natal, KwaZulu Natal, South Africa
| |
Collapse
|
24
|
Fawzy AM, Lip GYH. Pharmacokinetics and pharmacodynamics of oral anticoagulants used in atrial fibrillation. Expert Opin Drug Metab Toxicol 2019; 15:381-398. [PMID: 30951640 DOI: 10.1080/17425255.2019.1604686] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The availability of non-vitamin K antagonist oral anti-coagulants alongside vitamin K antagonists has offered a variety of options for anti-coagulation, but has also necessitated a good understanding of the pharmacological properties of each of these drugs prior to their use, to maximise the therapeutic benefit and minimise patient harm Areas covered: This review article outlines the pharmacokinetic and pharmacodynamic profiles of the currently licensed VKAs and NOACs that are most commonly used in clinical practice, with the aim of demonstrating how variations in these characteristics influence their use in clinical practice. A literature search was conducted on PubMed using keywords and relevant articles published by the 31st of December 2018 were included. Expert opinion: The effect of a drug is determined by a combination of elements which include patient characteristics and external factors, in addition to its pharmacokinetic and pharmacodynamic properties. A good understanding of these is essential. Despite the wealth of information available, particularly on VKAs, our knowledge on the pharmacology responsible for certain drug effects and inter-individual variations is still limited. Increasing efforts are being made to understand these and include focus on pharmacogenomics and drug transporter proteins.
Collapse
Affiliation(s)
| | - Gregory Y H Lip
- b Liverpool Centre for Cardiovascular Science , University of Liverpool and Liverpool Heart & Chest Hospital , Liverpool , UK.,c Aalborg Thrombosis Research Unit, Department of Clinical Medicine , Aalborg University , Aalborg , Denmark
| |
Collapse
|
25
|
Erdmann P, Bruckmueller H, Martin P, Busch D, Haenisch S, Müller J, Wiechowska-Kozlowska A, Partecke LI, Heidecke CD, Cascorbi I, Drozdzik M, Oswald S. Dysregulation of Mucosal Membrane Transporters and Drug-Metabolizing Enzymes in Ulcerative Colitis. J Pharm Sci 2019; 108:1035-1046. [PMID: 30267783 DOI: 10.1016/j.xphs.2018.09.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023]
|
26
|
Food Bioactive Compounds and Their Interference in Drug Pharmacokinetic/Pharmacodynamic Profiles. Pharmaceutics 2018; 10:pharmaceutics10040277. [PMID: 30558213 PMCID: PMC6321138 DOI: 10.3390/pharmaceutics10040277] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022] Open
Abstract
Preclinical and clinical studies suggest that many food molecules could interact with drug transporters and metabolizing enzymes through different mechanisms, which are predictive of what would be observed clinically. Given the recent incorporation of dietary modifications or supplements in traditional medicine, an increase in potential food-drug interactions has also appeared. The objective of this article is to review data regarding the influence of food on drug efficacy. Data from Google Scholar, PubMed, and Scopus databases was reviewed for publications on pharmaceutical, pharmacokinetic, and pharmacodynamic mechanisms. The following online resources were used to integrate functional and bioinformatic results: FooDB, Phenol-Explorer, Dr. Duke's Phytochemical and Ethnobotanical Databases, DrugBank, UniProt, and IUPHAR/BPS Guide to Pharmacology. A wide range of food compounds were shown to interact with proteins involved in drug pharmacokinetic/pharmacodynamic profiles, starting from drug oral bioavailability to enteric/hepatic transport and metabolism, blood transport, and systemic transport/metabolism. Knowledge of any food components that may interfere with drug efficacy is essential, and would provide a link for obtaining a holistic view for cancer, cardiovascular, musculoskeletal, or neurological therapies. However, preclinical interaction may be irrelevant to clinical interaction, and health professionals should be aware of the limitations if they intend to optimize the therapeutic effects of drugs.
Collapse
|
27
|
Wang X, Wang J, Arora S, Hughes L, Christensen J, Lu S, Zhang ZY. Pharmacokinetic Interactions of Rolapitant With Cytochrome P450 3A Substrates in Healthy Subjects. J Clin Pharmacol 2018; 59:488-499. [PMID: 30422319 DOI: 10.1002/jcph.1339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/19/2018] [Indexed: 01/30/2023]
Abstract
Rolapitant (Varubi) is a neurokinin-1 receptor antagonist approved for the prevention of chemotherapy-induced nausea and vomiting. Rolapitant is primarily metabolized by the cytochrome P450 3A4 (CYP3A4) enzyme. Unlike other neurokinin-1 receptor antagonists, rolapitant is neither an inhibitor nor an inducer of CYP3A4 in vitro. The objective of this analysis was to examine the pharmacokinetics of rolapitant in healthy subjects and assess drug-drug interactions between rolapitant and midazolam (a CYP3A substrate), ketoconazole (a CYP3A inhibitor), or rifampin (a CYP3A4 inducer). Three phase 1, open-label, drug-drug interaction studies were conducted to examine the pharmacokinetic interactions of orally administered rolapitant with midazolam, rolapitant with ketoconazole, and rolapitant with rifampin. The pharmacokinetic profiles of midazolam and 1-hydroxy midazolam metabolites were essentially unchanged when coadministered with rolapitant, indicating the lack of a clinically relevant inhibition or induction of CYP3A by rolapitant. Coadministration of ketoconazole with rolapitant had no effects on rolapitant maximum concentration and resulted in an approximately 20% increase in the area under the concentration-time curve of rolapitant, suggesting that strong CYP3A inhibitors have minimal inhibitory effects on rolapitant exposure. Repeated administrations of rifampin appeared to reduce rolapitant exposure, resulting in a 33% decrease in maximum concentration and 87% decrease in area under the concentration-time curve from time zero to infinity. Coadministration of rolapitant did not affect the exposure of midazolam. Rifampin coadministration resulted in lower concentrations of rolapitant, and ketoconazole coadministration had no or minimal effects on rolapitant exposure. Rolapitant was safe and well tolerated when coadministered with ketoconazole, rifampin, or midazolam. No new safety signals were reported compared with previous studies of rolapitant.
Collapse
|
28
|
Yamasaki Y, Kobayashi K, Okuya F, Kajitani N, Kazuki K, Abe S, Takehara S, Ito S, Ogata S, Uemura T, Ohtsuki S, Minegishi G, Akita H, Chiba K, Oshimura M, Kazuki Y. Characterization of P-Glycoprotein Humanized Mice Generated by Chromosome Engineering Technology: Its Utility for Prediction of Drug Distribution to the Brain in Humans. Drug Metab Dispos 2018; 46:1756-1766. [PMID: 29777024 DOI: 10.1124/dmd.118.081216] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/16/2018] [Indexed: 12/31/2022] Open
Abstract
P-glycoprotein (P-gp), encoded by the MDR1 gene in humans and by the Mdr1a/1b genes in rodents, is expressed in numerous tissues and performs as an efflux pump to limit the distribution and absorption of many drugs. Owing to species differences of P-gp between humans and rodents, it is difficult to predict the impact of P-gp on pharmacokinetics and the tissue distribution of P-gp substrates in humans from the results of animal experiments. Therefore, we generated a novel P-gp humanized mouse model by using a mouse artificial chromosome (MAC) vector [designated human MDR1-MAC (hMDR1-MAC) mice]. The results showed that hMDR1 mRNA was expressed in various tissues of hMDR1-MAC mice. Furthermore, the expression of human P-gp was detected in the brain capillary fraction and plasma membrane fraction of intestinal epithelial cells isolated from hMDR1-MAC mice, although the expression levels of intestinal P-gp were extremely low. Thus, we evaluated the function of human P-gp at the blood-brain barrier of hMDR1-MAC mice. The brain-to-plasma ratios of P-gp substrates in hMDR1-MAC mice were much lower than those in Mdr1a/1b-knockout mice, and the brain-to-plasma ratio of paclitaxel was significantly increased by pretreatment with a P-gp inhibitor in hMDR1-MAC mice. These results indicated that the hMDR1-MAC mice are the first P-gp humanized mice expressing functional human P-gp at the blood-brain barrier. This mouse is a promising model with which to evaluate species differences of P-gp between humans and mice in vivo and to estimate the brain distribution of drugs in humans while taking into account species differences of P-gp.
Collapse
Affiliation(s)
- Yuki Yamasaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Kaoru Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Fuka Okuya
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Naoyo Kajitani
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Kanako Kazuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Satoshi Abe
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Shoko Takehara
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Shingo Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Seiryo Ogata
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Tatsuki Uemura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Sumio Ohtsuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Genki Minegishi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Hidetaka Akita
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Kan Chiba
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Mitsuo Oshimura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| | - Yasuhiro Kazuki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan (Y.Y., K.Ko., F.O., G.M., H.A., K.C.); Chromosome Engineering Research Center (N.K., K.Ka., S.A., S.T., M.O., Y.K.) and Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science (Y.K.), Tottori University, Tottori, Japan; and Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan (S.I., S.Og., T.U., S.Oh.)
| |
Collapse
|
29
|
Ashmawy SM, El-Gizawy SA, El Maghraby GM, Osman MA. Regional difference in intestinal drug absorption as a measure for the potential effect of P-glycoprotein efflux transporters. J Pharm Pharmacol 2018; 71:362-370. [PMID: 30362574 DOI: 10.1111/jphp.13036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/29/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this research was to assess regional difference in the intestinal absorption of ranitidine HCl as an indicator for the potential effect of P-glycoprotein (P-gp) efflux transporters. METHODS In situ rabbit intestinal perfusion was used to investigate absorption of ranitidine HCl, a substrate for P-gp efflux from duodenum, jejunum, ileum and colon. This was conducted both in the presence and absence of piperine as P-gp inhibitor. KEY FINDINGS Ranitidine HCl was incompletely absorbed from rabbit intestine. The length normalized absorptive clearance (PeA/L) of ranitidine HCl was ranked as colon > duodenum > jejunum > ileum. This is the reverse order of the magnitude of P-gp expression. Coperfusion of piperine with ranitidine HCl significantly increased the PeA/L of ranitidine HCl from jejunum and ileum with no significant change on the absorption from duodenum and colon. This was confirmed by significant reduction in the length required for complete ranitidine HCl absorption from jejunum and ileum in presence piperine. CONCLUSIONS The results indicate that P-gp transporters play a major role in determining regional difference in intestinal absorption of ranitidine HCl. Thus, the regional absorption of drugs may be taken as an indirect indication for the role of P-gp in intestinal absorption.
Collapse
Affiliation(s)
- Shimaa M Ashmawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Sanaa A El-Gizawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
30
|
Chang WK, Chen CH, Chen YA, Tang MC, Ju SY, Huang SW, Wu KM. Unique Pharmacokinetic Parameters with Prolonged Elimination Half-life of Oral Azithromycin and Analysis of Pharmacokinetic Phenotype in Young Taiwanese Population. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.981.991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Morcillo P, Esteban MA, Cuesta A. Metal detoxification in the marine teleost fish Sparus aurata L. and Dicentrarchus labrax L. MARINE POLLUTION BULLETIN 2018; 133:835-840. [PMID: 30041384 DOI: 10.1016/j.marpolbul.2018.06.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/25/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Transcription of ATP-binding cassette (ABC) transporters has been evaluated in cell lines and primary cultures from gilthead seabream and European sea bass teleost fish exposed to methylmercury (MeHg), arsenic, cadmium or lead. The mRNA expression levels showed abcb1, abcc2 and abcc5 constitutive gene expression in all seabream tissues analyzed; however, we were unable to detect any constitutive transcription of abcb1 in many of the sea bass tissues. Furthermore, ABC mRNA expression levels were all affected by metal exposure, especially in the case of fish cell lines and erythrocytes, and greatly depended on cell type and fish species. Thus, while ABC transcription was up-regulated in the seabream cell line it was down-regulated in the sea bass cell line, while the opposite occurred in the primary cultures. All these data point to the importance of ABC transporters in metal detoxification and in the differential regulation in seabream and sea bass cells.
Collapse
Affiliation(s)
- Patricia Morcillo
- Fish Innate Immune System Group, Department of Cellular Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer, 209, 1300 Morris Park Ave, Bronx 10461, NY, USA
| | - María A Esteban
- Fish Innate Immune System Group, Department of Cellular Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cellular Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
32
|
Zhang X, Lin G, Tan L, Li J. Current progress of tacrolimus dosing in solid organ transplant recipients: Pharmacogenetic considerations. Biomed Pharmacother 2018; 102:107-114. [DOI: 10.1016/j.biopha.2018.03.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/27/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
|
33
|
Human and rat precision-cut intestinal slices as ex vivo models to study bile acid uptake by the apical sodium-dependent bile acid transporter. Eur J Pharm Sci 2018; 121:65-73. [PMID: 29751102 DOI: 10.1016/j.ejps.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 03/06/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
|
34
|
Acharya PC, Fernandes C, Mallik S, Mishra B, Tekade RK. Physiologic Factors Related to Drug Absorption. DOSAGE FORM DESIGN CONSIDERATIONS 2018:117-147. [DOI: 10.1016/b978-0-12-814423-7.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
35
|
Akel T, Bekheit S. Loperamide cardiotoxicity: "A Brief Review". Ann Noninvasive Electrocardiol 2017; 23:e12505. [PMID: 29125226 DOI: 10.1111/anec.12505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/31/2017] [Indexed: 01/20/2023] Open
Abstract
Loperamide is a popular antidiarrheal medication that has been used for many years. It is currently gaining more attention among healthcare professionals due to its increasing potential for side effects. At present, it is considered safe enough to be sold over the counter. In contrast with other opioid agonists, loperamide is a peripherally acting μ-receptor agonist exerting its effects mainly on the myenteric plexus of the gastrointestinal longitudinal muscle layer. It decreases peristalsis and fluid secretion resulting in longer gastrointestinal transit time. The bioavailability of the drug is extremely low. Moreover, it is actively excluded from the central nervous system; hence, it lacks the central effects of euphoria and analgesia at the recommended dosages. Loperamide abuse has been steadily increasing in the United States. Abusers typically ingest high doses in desire to achieve a satisfactory central nervous system drug penetration. This has made it a potential over the counter substitute for self-treating opioid withdrawal symptoms and achieving euphoric effects.
Collapse
Affiliation(s)
- Tamer Akel
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, NY, USA
| | - Soad Bekheit
- Department of Electrophysiology, Staten Island University Hospital, Staten Island, NY, USA
| |
Collapse
|
36
|
Affiliation(s)
- Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Abualsunun WA, Piquette-Miller M. Involvement of Nuclear Factor κB, not Pregnane X Receptor, in Inflammation-Mediated Regulation of Hepatic Transporters. Drug Metab Dispos 2017; 45:1077-1083. [PMID: 28778997 DOI: 10.1124/dmd.117.076927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/28/2017] [Indexed: 02/13/2025] Open
Abstract
Endotoxin-induced inflammation decreases the hepatic expression of several drug transporters, metabolizing enzymes, and nuclear transcription factors, including pregnane X receptor (PXR). As the nuclear factor κB (NF-κB) is a major mediator of inflammation, and reciprocal repression between NF-κB and PXR signaling has been reported, the objective of this study was to examine whether NF-κB directly regulates the expression of transporters or exerts its effect indirectly via PXR. PXR-deficient (-/-) or wild-type (+/+) male mice were dosed with the selective NF-κB inhibitor PHA408 (40 mg/kg i.p.) or vehicle (n = 5-8/group), followed by endotoxin (5 mg/kg) or saline 30 minutes later. Animals were sacrificed at 6 hours; samples were analyzed using quantitative reverse-transcription polymerase chain reaction and Western blots. Endotoxin induced tumor necrosis factor-α, interleukin (IL)-6, IL-1β, and inducible nitric oxide synthase in PXR (+/+) and (-/-) mice. As compared with saline controls, endotoxin administration imposed 30%-70% significant decreases in the expression of Abcb1a, Abcb11, Abcc2, Abcc3, Abcg2, Slc10a1, Slco2b1, and Slco1a4 in PXR (+/+) and (-/-) mice to a similar extent. Preadministration of PHA408 attenuated endotoxin-mediated changes in both PXR (+/+) and (-/-) mice (P < 0.05). Our findings demonstrate that endotoxin activates NF-κB and imposes a downregulation of numerous ATP-binding cassette and solute carrier transporters through NF-κB in liver and is independent of PXR. Moreover, inhibition of NF-κB attenuates the impact of endotoxin on transporter expression. As NF-κB activation is involved in many acute and chronic disease states, disease-induced changes in transporter function may be an important source of variability in drug response. This information may be useful in predicting potential drug-disease interactions.
Collapse
Affiliation(s)
- Walaa A Abualsunun
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
38
|
Pang X, Wang L, Kang D, Zhao Y, Wu S, Liu AL, Du GH. Effects of P-Glycoprotein on the Transport of DL0410, a Potential Multifunctional Anti-Alzheimer Agent. Molecules 2017; 22:E1246. [PMID: 28757552 PMCID: PMC6151990 DOI: 10.3390/molecules22081246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/17/2017] [Accepted: 07/23/2017] [Indexed: 11/28/2022] Open
Abstract
In our study, we attempted to investigate the influences of P-glycoprotein (P-gp) on DL0410, a novel synthetic molecule for Alzheimer's disease (AD) treatment, for intestinal absorption and blood-brain barrier permeability in vitro and related binding mechanisms in silico. Caco-2, MDCK, and MDCK-MDR1 cells were utilized for transport studies, and homology modelling of human P-gp was built for further docking study to uncover the binding mode of DL0410. The results showed that the apparent permeability (Papp) value of DL0410 was approximately 1 × 10-6 cm/s, indicating the low permeability of DL0410. With the presence of verapamil, the directional transport of DL0410 disappeared in Caco-2 and MDCK-MDR1 cells, suggesting that DL0410 should be a substrate of P-gp, which was also confirmed by P-gp ATPase assay. In addition, DL0410 could competitively inhibit the transport of Rho123, a P-gp known substrate. According to molecular docking, we also found that DL0410 could bind to the drug binding pocket (DBP), but not the nucleotide binding domain (NBD). In conclusion, DL0410 was a substrate as well as a competitive inhibitor of P-gp, and P-gp had a remarkable impact on the intestine and brain permeability of DL0410, which is of significance for drug research and development.
Collapse
Affiliation(s)
- Xiaocong Pang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
| | - Lin Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
| | - De Kang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
| | - Ying Zhao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
| | - Song Wu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
| | - Ai-Lin Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
- Beijing Key Laboratory of Drug Target Research and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guan-Hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, China.
- Beijing Key Laboratory of Drug Target Research and Drug Screening, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
39
|
Peluso I, Serafini M. Antioxidants from black and green tea: from dietary modulation of oxidative stress to pharmacological mechanisms. Br J Pharmacol 2017; 174:1195-1208. [PMID: 27747873 PMCID: PMC5429329 DOI: 10.1111/bph.13649] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/12/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022] Open
Abstract
The consumption of tea (Camellia sinensis) has been correlated with a low incidence of chronic pathologies, such as cardiovascular disease and cancer, in which oxidative stress plays a critical role. Tea catechins and theaflavins are, respectively, the bioactive phytochemicals responsible for the antioxidant activity of green tea (GT) and black tea (BT). In addition to their redox properties, tea catechins and theaflavins could have also pharmacological activities, such as the ability to lower glucose, lipid and uric acid (UA) levels. These activities are mediated by pharmacological mechanisms such as enzymatic inhibition and interaction with transporters. Epigallocatechin gallate is the most active compound at inhibiting the enzymes involved in cholesterol and UA metabolism (hydroxy-3-methyl-glutaryl-CoA reductase and xanthine oxidase respectively) and affecting glucose transporters. The structural features of catechins that significantly contribute to their pharmacological effect are the presence/absence of the galloyl moiety and the number and positions of the hydroxyl groups on the rings. Although the inhibitory effects on α-glucosidase, maltase, amylase and lipase, multidrug resistance 1, organic anion transporters and proton-coupled folate transport occur at higher concentrations than those apparent in the circulation, these effects could be relevant in the gut. In conclusion, despite the urgent need for further research in humans, the regular consumption of moderate quantities of GT and BT can effectively modulate their antioxidant capacity, mainly in people subjected to oxidative stress, and could improve the metabolism of glucose, lipid and UA. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Ilaria Peluso
- Functional Foods and Metabolic Stress Prevention Laboratory, Centre for Food and NutritionCouncil for Agricultural Research and EconomicsRomeItaly
| | - Mauro Serafini
- Functional Foods and Metabolic Stress Prevention Laboratory, Centre for Food and NutritionCouncil for Agricultural Research and EconomicsRomeItaly
| |
Collapse
|
40
|
Bu P, Le Y, Zhang Y, Zhang Y, Cheng X. Berberine-induced Inactivation of Signal Transducer and Activator of Transcription 5 Signaling Promotes Male-specific Expression of a Bile Acid Uptake Transporter. J Biol Chem 2017; 292:4602-4613. [PMID: 28154180 DOI: 10.1074/jbc.m116.757567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/29/2017] [Indexed: 01/05/2023] Open
Abstract
Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (-1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (-2898, -2164, and -691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the-2164 and -691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis.
Collapse
Affiliation(s)
- Pengli Bu
- From the Departments of Pharmaceutical Sciences and.,Biological Sciences, St. John's University, Queens, New York 11439 and
| | - Yuan Le
- From the Departments of Pharmaceutical Sciences and
| | - Yue Zhang
- From the Departments of Pharmaceutical Sciences and
| | - Youcai Zhang
- the School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | | |
Collapse
|
41
|
Almeida-Paulo GN, Dapía García I, Lubomirov R, Borobia AM, Alonso-Sánchez NL, Espinosa L, Carcas-Sansuán AJ. Weight of ABCB1 and POR genes on oral tacrolimus exposure in CYP3A5 nonexpressor pediatric patients with stable kidney transplant. THE PHARMACOGENOMICS JOURNAL 2017; 18:180-186. [DOI: 10.1038/tpj.2016.93] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023]
|
42
|
Beltinger J, Haschke M, Kaufmann P, Michot M, Terracciano L, Krähenbühl S. Hepatic Veno-Occlusive Disease Associated with Immunosuppressive Cyclophosphamide Dosing and Roxithromycin. Ann Pharmacother 2016; 40:767-70. [PMID: 16595573 DOI: 10.1345/aph.1g441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: To report on a patient developing hepatic veno-occlusive disease while being treated with immunosuppressive doses of cyclophosphamide (≤2 mg/kg). Case Summary: A 66-year-old woman with autoimmune hemolytic anemia developed hepatic veno-occlusive disease while being treated with immunosuppressive cyclophosphamide 100 mg/day in combination with roxithromycin (total dose 600 mg/day). After all drugs were stopped, the patient recovered within 2 weeks. The Naranjo probability scale indicated a probable relationship between veno-occlusive disease and treatment with cyclophosphamide in this patient. Discussion: Since roxithromycin inhibits CYP3A4, which is involved with cyclophosphamide metabolism, a drug-drug interaction could have been responsible. In addition, roxithromycin is an inhibitor of the drug transporter P-glycoprotein, possibly leading to accumulation of cyclophosphamide in endothelial cells. Alternatively, since cyclophosphamide has been reported to induce apoptosis, roxithromycin could have rendered endothelial cells more vulnerable for apoptosis. Conclusions: In specific patients, cyclophosphamide can be associated with hepatic veno-occlusive disease at immunosuppressive doses.
Collapse
|
43
|
Liu Z, Mi J, Yang S, Zhao M, Li Y, Sheng L. Effects of P-glycoprotein on the intestine and blood-brain barrier transport of YZG-331, a promising sedative-hypnotic compound. Eur J Pharmacol 2016; 791:339-347. [DOI: 10.1016/j.ejphar.2016.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 11/28/2022]
|
44
|
Narumi K, Kobayashi M, Kondo A, Furugen A, Yamada T, Takahashi N, Iseki K. Characterization of loxoprofen transport in Caco-2 cells: the involvement of a proton-dependent transport system in the intestinal transport of loxoprofen. Biopharm Drug Dispos 2016; 37:447-455. [PMID: 27514365 DOI: 10.1002/bdd.2026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 11/10/2022]
Abstract
Loxoprofen, a propionate non-steroidal anti-inflammatory drug (NSAID), is used widely in East Asian countries. However, little is known about the transport mechanisms contributing to its intestinal absorption. The objectives of this study were to characterize the intestinal transport of loxoprofen using the human intestinal Caco-2 cell model. The transport of loxoprofen was investigated in cellular uptake studies. The uptake of loxoprofen into Caco-2 cells was pH- and concentration-dependent, and was described by a Michaelis-Menten equation with passive diffusion (Km : 4.8 mm, Vmax : 142 nmol/mg protein/30 s, and Kd : 2.2 μl/mg protein/30 s). Moreover, the uptake of loxoprofen was inhibited by a typical monocarboxylate transporter (MCT) inhibitor as well as by various monocarboxylates. The uptake of [14 C] l-lactic acid, a typical MCT substrate, in Caco-2 cells was saturable with relatively high affinity for MCT. Because loxoprofen inhibited the uptake of [14 C] l-lactic acid in a noncompetitive manner, it was unlikely that loxoprofen uptake was mediated by high-affinity MCT(s). Our results suggest that transport of loxoprofen in Caco-2 cells is, at least in part, mediated by a proton-dependent transport system. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Department of Pharmacy, Hokkaido University Hospital, Sapporo, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ayuko Kondo
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takehiro Yamada
- Department of Pharmacy, Hokkaido University Hospital, Sapporo, Japan
| | - Natsuko Takahashi
- Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan. .,Department of Pharmacy, Hokkaido University Hospital, Sapporo, Japan.
| |
Collapse
|
45
|
Ooko E, Alsalim T, Saeed B, Saeed MEM, Kadioglu O, Abbo HS, Titinchi SJJ, Efferth T. Modulation of P-glycoprotein activity by novel synthetic curcumin derivatives in sensitive and multidrug-resistant T-cell acute lymphoblastic leukemia cell lines. Toxicol Appl Pharmacol 2016; 305:216-233. [PMID: 27318188 DOI: 10.1016/j.taap.2016.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) and drug transporter P-glycoprotein (P-gp) represent major obstacles in cancer chemotherapy. We investigated 19 synthetic curcumin derivatives in drug-sensitive acute lymphoblastic CCRF-CEM leukemia cells and their multidrug-resistant P-gp-overexpressing subline, CEM/ADR5000. MATERIAL AND METHODS Cytotoxicity was tested by resazurin assays. Doxorubicin uptake was assessed by flow cytometry. Binding modes of compounds to P-gp were analyzed by molecular docking. Chemical features responsible for bioactivity were studied by quantitative structure activity relationship (QSAR) analyses. A 7-descriptor QSAR model was correlated with doxorubicin uptake values, IC50 values and binding energies. RESULTS The compounds displayed IC50 values between 0.7±0.03 and 20.2±0.25μM. CEM/ADR5000 cells exhibited cross-resistance to 10 compounds, collateral sensitivity to three compounds and regular sensitivity to the remaining six curcumins. Molecular docking studies at the intra-channel transmembrane domain of human P-gp resulted in lowest binding energies ranging from -9.00±0.10 to -6.20±0.02kcal/mol and pKi values from 0.24±0.04 to 29.17±0.88μM. At the ATP-binding site of P-gp, lowest binding energies ranged from -9.78±0.17 to -6.79±0.01kcal/mol and pKi values from 0.07±0.02 to 0.03±0.03μM. CEM/ADR5000 cells accumulated approximately 4-fold less doxorubicin than CCRF-CEM cells. The control P-gp inhibitor, verapamil, partially increased doxorubicin uptake in CEM/ADR5000 cells. Six curcumins increased doxorubicin uptake in resistant cells or even exceeded uptake levels compared to sensitive one. QSAR yielded good activity prediction (R=0.797 and R=0.794 for training and test sets). CONCLUSION Selected derivatives may serve to guide future design of novel P-gp inhibitors and collateral sensitive drugs to combat MDR.
Collapse
Affiliation(s)
- Edna Ooko
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Tahseen Alsalim
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, P.O. Box 49 Basrah, Al Basrah, Iraq
| | - Bahjat Saeed
- Department of Chemistry, College of Education for Pure Sciences, University of Basrah, P.O. Box 49 Basrah, Al Basrah, Iraq
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Hanna S Abbo
- Department of Chemistry, University of the Western Cape, P/B X17, Bellville, 7535 Cape Town, South Africa
| | - Salam J J Titinchi
- Department of Chemistry, University of the Western Cape, P/B X17, Bellville, 7535 Cape Town, South Africa.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
46
|
Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev 2016; 101:89-98. [PMID: 27182629 PMCID: PMC4910824 DOI: 10.1016/j.addr.2016.05.007] [Citation(s) in RCA: 432] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022]
Abstract
The Rule of 5 methodology appears to be as useful today in defining drugability as when it was proposed, but recognizing that the database that we used includes only drugs that successfully reached the market. We do not view additional criteria necessary nor did we find significant deficiencies in the four Rule of 5 criteria originally proposed by Lipinski and coworkers. BDDCS builds upon the Rule of 5 and can quite successfully predict drug disposition characteristics for drugs both meeting and not meeting Rule of 5 criteria. More recent expansions of classification systems have been proposed and do provide useful qualitative and quantitative predictions for clearance relationships. However, the broad range of applicability of BDDCS beyond just clearance predictions gives a great deal of further usefulness for the combined Rule of 5/BDDCS system.
Collapse
Affiliation(s)
- Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, USA
| | - Chelsea M Hosey
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, USA
| | - Oleg Ursu
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tudor I Oprea
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
47
|
|
48
|
Abstract
Antipsychotics, risperidone, and risperidone’s active metabolite, paliperidone (9-hydroxyrisperidone), are related molecules used for the treatment of schizophrenia and related disorders. Differences in receptor binding, 5-HT2A/D2 (serotonin/dopamine) binding ratios, and mitochondrial proteomics suggest that the effects of risperidone and paliperidone on neuronal firing, regulation of mitochondrial function, and movement are different. This review seeks to explore the most significant differences at the molecular level between risperidone and paliperidone, as reported in preclinical studies. Although risperidone shows higher affinity for 5-HT receptors, paliperidone does not fit this profile. Thus, the risperidone 5-HT2A/D2 binding ratio is significantly lower than the paliperidone 5-HT2A/D2 binding ratio. Paliperidone, similar to lithium and valproate, affects expression levels and phosphorylation of complex I and V proteins in synaptoneurosomal preparations of rat prefrontal cortex, suggesting that paliperidone behaves as a mood stabilizer. It is apparent that the presence of a hydroxyl group in the paliperidone molecule confers increased hydrophilicity to this drug compared with its parent, risperidone; thus, this contributes to differential effects on mitochondrial movement, protein expression, and phosphorylation. These differences are reflected in synaptic plasticity and neuronal firing and have only recently been implicated in the mechanisms of mitochondrial function and movement.
Collapse
|
49
|
Zhang T, Hu Y, Tang M, Kong L, Ying J, Wu T, Xue Y, Pu Y. Liver Toxicity of Cadmium Telluride Quantum Dots (CdTe QDs) Due to Oxidative Stress in Vitro and in Vivo. Int J Mol Sci 2015; 16:23279-99. [PMID: 26404244 PMCID: PMC4632698 DOI: 10.3390/ijms161023279] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 01/01/2023] Open
Abstract
With the applications of quantum dots (QDs) expanding, many studies have described the potential adverse effects of QDs, yet little attention has been paid to potential toxicity of QDs in the liver. The aim of this study was to investigate the effects of cadmium telluride (CdTe) QDs in mice and murine hepatoma cells alpha mouse liver 12 (AML 12). CdTe QDs administration significantly increased the level of lipid peroxides marker malondialdehyde (MDA) in the livers of treated mice. Furthermore, CdTe QDs caused cytotoxicity in AML 12 cells in a dose- and time-dependent manner, which was likely mediated through the generation of reactive oxygen species (ROS) and the induction of apoptosis. An increase in ROS generation with a concomitant increase in the gene expression of the tumor suppressor gene p53, the pro-apoptotic gene Bcl-2 and a decrease in the anti-apoptosis gene Bax, suggested that a mitochondria mediated pathway was involved in CdTe QDs' induced apoptosis. Finally, we showed that NF-E2-related factor 2 (Nrf2) deficiency blocked induced oxidative stress to protect cells from injury induced by CdTe QDs. These findings provide insights into the regulatory mechanisms involved in the activation of Nrf2 signaling that confers protection against CdTe QDs-induced apoptosis in hepatocytes.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| | - Yuanyuan Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Jiali Ying
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, China.
| |
Collapse
|
50
|
Huang Y, Li W, Su ZY, Kong ANT. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem 2015; 26:1401-13. [PMID: 26419687 DOI: 10.1016/j.jnutbio.2015.08.001] [Citation(s) in RCA: 317] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
The NF-E2-related factor 2 (Nrf2)-mediated signalling pathway provides living organisms an efficient and pivotal line of defensive to counteract environmental insults and endogenous stressors. Nrf2 coordinates the basal and inducible expression of antioxidant and Phase II detoxification enzymes to adapt to different stress conditions. The stability and cellular distribution of Nrf2 is tightly controlled by its inhibitory binding protein Kelch-like ECH-associated protein 1. Nrf2 signalling is also regulated by posttranslational, transcriptional, translational and epigenetic mechanisms, as well as by other protein partners, including p62, p21 and IQ motif-containing GTPase activating protein 1. Many studies have demonstrated that Nrf2 is a promising target for preventing carcinogenesis and other chronic diseases, including cardiovascular diseases, neurodegenerative diseases and pulmonary injury. However, constitutive activation of Nrf2 in advanced cancer cells may confer drug resistance. Here, we review the molecular mechanisms of Nrf2 signalling, the diverse classes of Nrf2 activators, including bioactive nutrients and other chemicals, and the cellular functions and disease relevance of Nrf2 and discuss the dual role of Nrf2 in different contexts.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wenji Li
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zheng-yuan Su
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|