1
|
Mekuli R, Shoukat M, Dugat-Bony E, Bonnarme P, Landaud S, Swennen D, Hervé V. Iron-based microbial interactions: the role of iron metabolism in the cheese ecosystem. J Bacteriol 2025:e0053924. [PMID: 40237503 DOI: 10.1128/jb.00539-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Iron is involved in various microbial metabolisms and interactions and is an essential micronutrient for most microorganisms. This review focuses on the cheese ecosystem, in which iron is sparse (median concentration of 2.9 mg/kg based on a literature survey) and of limited bioavailability due to the presence of various metal-binding agents in the cheese matrix. Cheese microorganisms overcome this low bioavailability of iron by producing and/or importing ferric iron-specific chelators called siderophores. We introduce these siderophores and their specific transporters, which play a key role in ecological interactions and microbial metabolism. We discuss the impact of iron on all the major taxa (fungi, bacteria, and viruses) and functional groups (starters, ripening microorganisms, and pathogens) present and interacting in cheese, from the community to individual levels. We describe the ways in which cheese-ripening microorganisms use iron and the effects of iron limitation on major metabolic pathways, including the tricarboxylic acid (TCA) cycle and amino-acid biosynthesis. The cheese ecosystem is a relevant in situ model for improving our understanding of iron biochemistry and its putative role in microbe-microbe interactions. Yet, this review highlights critical gaps in our understanding of iron's role in cheese from fundamental ecological and biochemical perspectives to applied microbiology, with broader implications for the quality, safety, and organoleptic properties of cheese.
Collapse
Affiliation(s)
- Rina Mekuli
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Mahtab Shoukat
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Eric Dugat-Bony
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Pascal Bonnarme
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Sophie Landaud
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Dominique Swennen
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Vincent Hervé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| |
Collapse
|
2
|
Maes R, Naser Aldine M, Gerstmans H, Michiels C, Masschelein J. Bioactive Specialized Metabolites from Staphylococcus: Diversity, Biosynthesis, and Biotechnological Potential. Chembiochem 2025:e2500105. [PMID: 40139968 DOI: 10.1002/cbic.202500105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Staphylococci are a heterogeneous group of bacteria capable of colonizing diverse ecological niches and adopting a wide variety of lifestyles. While several strains are known as notorious, multidrug-resistant human pathogens, others are harmless inhabitants of soil, water, and food products, or beneficial members of the skin microbiota. To survive and remain competitive under challenging environmental conditions, staphylococci have evolved the ability to assemble and secrete a diverse range of ribosomally synthesized and posttranslationally modified peptides, nonribosomal peptides, terpenes, siderophores, and other specialized metabolites with antibiotic, immunomodulating and metal chelating activities. In this review, an overview of the bioactive metabolite arsenal of staphylococci is provided with a focus on their biosynthetic pathway, mode of action, and industrial application potential. Also, unexplored natural product biosynthetic pathways in staphylococci, along with strategies to access this hidden potential, are highlighted.
Collapse
Affiliation(s)
- Ruben Maes
- Department of Biology, KU Leuven, 3001, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001, Leuven, Belgium
| | | | - Hans Gerstmans
- Department of Biology, KU Leuven, 3001, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001, Leuven, Belgium
| | - Chris Michiels
- Department of Microbial and Molecular Systems, KU Leuven, 3001, Leuven, Belgium
| | - Joleen Masschelein
- Department of Biology, KU Leuven, 3001, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001, Leuven, Belgium
| |
Collapse
|
3
|
Wang M, Li H. Structure, Function, and Biosynthesis of Siderophores Produced by Streptomyces Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4425-4439. [PMID: 39808624 DOI: 10.1021/acs.jafc.4c08231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Since the natural supply of iron is low, microorganisms acquire iron by secreting siderophores. Streptomyces is known for its abundant secondary metabolites containing various types of siderophores, including hydroxamate, catecholate, and carboxylate. These siderophores are mainly synthesized through the nonribosomal peptide synthase (NRPS) and non-NRPS pathways and are regulated by ferric uptake regulator and diphtheria toxin regulators. Although both NRPS and non-NRPS pathways adenylate substrates, they differ significantly in the catalytic logic. Siderophores produced by Streptomyces play important roles in fields of agriculture, medicine, and environment. However, their structure, function, and synthetic mechanisms have been inadequately summarized. Therefore, this Review aimed to provide an overview of the classification, structure, biosynthesis, regulation, and applications of siderophores produced by Streptomyces. Finally, the need for a comprehensive and well-defined mechanism for synthesizing siderophores from Streptomyces was highlighted to further promote their commercialization and application in agriculture, medicine, and other areas.
Collapse
Affiliation(s)
- Mingxuan Wang
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Honglin Li
- Institute of Food Science and Engineering, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
4
|
Kumar R, Singh A, Srivastava A. Xenosiderophores: bridging the gap in microbial iron acquisition strategies. World J Microbiol Biotechnol 2025; 41:69. [PMID: 39939429 DOI: 10.1007/s11274-025-04287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Microorganisms acquire iron from surrounding environment through specific iron chelators known as siderophores that can be of self-origin or synthesized by neighboring microbes. The latter are termed as xenosiderophores. The acquired iron supports their growth, survival, and pathogenesis. Various microorganisms possess the ability to utilize xenosiderophores, a mechanism popularly termed as 'siderophore piracy' besides synthesizing their own siderophores. This adaptability allows microorganisms to conserve energy by reducing the load of siderogenesis. Owing to the presence of xenosiderophore transport machinery, these microbial systems can be used for targeting antibiotics-siderophore conjugates to control pathogenesis and combat antimicrobial resistance. This review outlines the significance of xenosiderophore utilization for growth, stress management and virulence. Siderogenesis and the molecular mechanism of its uptake by related organisms have been discussed vividly. It focuses on potential applications like disease diagnostics, drug delivery, and combating antibiotic resistance. In brief, this review highlights the importance of xenosiderophores projecting them beyond their role as mere iron chelators.
Collapse
Affiliation(s)
- Ravinsh Kumar
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Ashutosh Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
5
|
Breedt G, Korsten L, Gokul JK. Enhancing multi-season wheat yield through plant growth-promoting rhizobacteria using consortium and individual isolate applications. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01245-9. [PMID: 39907926 DOI: 10.1007/s12223-025-01245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
In recent decades, there has been a growing interest in harnessing plant growth-promoting rhizobacteria (PGPR) as a possible mechanism to mitigate the environmental impact of conventional agricultural practices and promote sustainable agricultural production. This study investigated the transferability of promising PGPR research from maize to another Poaceae cereal crop, wheat. This multi-seasonal study evaluated the wheat grain yield effect of Lysinibacillus sphaericus (T19), Paenibacillus alvei (T29) when applied i. individually, ii. as a consortium with Bacillus safensis (S7), and iii. at a 75% reduced fertilizer rate. Whole genome sequencing allowed annotation of genes linked to plant growth promotion, providing potential genomic explanations for the observed in-field findings. Application of the consortium compared to a commercial PGPR showed significantly increased wheat yield by 30.71%, and 25.03%, respectively, in season one, and 63.92% and 58.45%, respectively, under reduced fertilizer rates in season two. Individual application of T19 and T29 showed varying results, with T19 increasing wheat yield by 9.33% and 16.22% during seasons three and four but a substantial reduction (33.39%) during season five. T29 exhibited yield increases during season three (9.31%) and five (5.61%) but led to a significant reduction (21.15%) in season four. Genomic analysis unveiled a spectrum of plant growth-promoting genes including those associated with ammonification, phosphate solubilization, ethylene, siderophore, catalase, and superoxide dismutase production. These findings offer valuable insights into the mechanisms behind observed field results, with potential implications for advancing sustainable agriculture and crop productivity in evolving agricultural landscapes.
Collapse
Affiliation(s)
- Gerhardus Breedt
- Limpopo Department of Agriculture and Rural Development, Towoomba ADC, Private Bag X1615, Bela-Bela, 0480, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
- Department of Science and Innovation - National Research Foundation Centre of Excellence in Food Security, Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Jarishma Keriuscia Gokul
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| |
Collapse
|
6
|
Sieber A, Spiess S, Rassy WY, Schild D, Rieß T, Singh S, Jain R, Schönberger N, Lederer F, Kremser K, Guebitz GM. Fundamentals of bio-based technologies for selective metal recovery from bio-leachates and liquid waste streams. Front Bioeng Biotechnol 2025; 12:1528992. [PMID: 39850509 PMCID: PMC11755047 DOI: 10.3389/fbioe.2024.1528992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
The number of metal-containing waste streams resulting from electronic end-of life products, metallurgical by-products, and mine tailings to name but a few, is increasing worldwide. In recent decades, the potential to exploit these waste streams as valuable secondary resources to meet the high demand of critical and economically important raw materials has become more prominent. In this review, fundamental principles of bio-based metal recovery technologies are discussed focusing on microbial metabolism-dependent and metabolism-independent mechanisms as sustainable alternatives to conventional chemical metal recovery methods. In contrast to previous reviews which have partially addressed this topic, a special focus will be given on how fundamental principles of bio-based recovery technologies can influence the selectivity and specificity of metal recovery. While conventional methods for metal recovery show benefits in terms of economic affordability, bio-based recovery technologies offer advantages in terms of efficiency and environmentally friendliness. Modifications and adaptations in the processes of biosorption, bioaccumulation and bioelectrochemical systems are highlighted, further emphasizing the application of metal-binding peptides and siderophores to increase selectivity in the recovery of metals. Single metal solutions or mixtures with a low complexity have been the focus of previous studies and reviews, but this does not reflect the nature of complex industrial effluents. Therefore, key challenges that arise when dealing with complex polymetallic solutions are addressed and the focus is set on optimizing bio-based technologies to recover metals efficiently and selectively from bio-leachates or liquid waste streams.
Collapse
Affiliation(s)
| | | | - Wadih Y. Rassy
- Department of Science and Technology, Institute of Biotechnology, IMC University of Applied Sciences, Krems, Austria
- Faculty of Technical Chemistry, TU Wien, Vienna, Austria
| | - Dominik Schild
- Department of Science and Technology, Institute of Biotechnology, IMC University of Applied Sciences, Krems, Austria
| | - Thomas Rieß
- Department of Science and Technology, Institute of Biotechnology, IMC University of Applied Sciences, Krems, Austria
| | - Shalini Singh
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Biotechnology Department, Dresden, Germany
| | - Rohan Jain
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Biotechnology Department, Dresden, Germany
| | - Nora Schönberger
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Biotechnology Department, Dresden, Germany
| | - Franziska Lederer
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Biotechnology Department, Dresden, Germany
| | - Klemens Kremser
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
| | - Georg M. Guebitz
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria
- Austrian Centre of Industrial Biotechnology, Tulln an der Donau, Austria
| |
Collapse
|
7
|
Ahmed SF, Balutowski A, Yang J, Wencewicz TA, Gulick AM. Expanding the Substrate Selectivity of the Fimsbactin Biosynthetic Adenylation Domain, FbsH. ACS Chem Biol 2024; 19:2451-2461. [PMID: 39513969 PMCID: PMC11661926 DOI: 10.1021/acschembio.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Nonribosomal peptide synthetases (NRPSs) produce diverse natural products including siderophores, chelating agents that many pathogenic bacteria produce to survive in low iron conditions. Engineering NRPSs to produce diverse siderophore analogs could lead to the generation of novel antibiotics and imaging agents that take advantage of this unique iron uptake system in bacteria. The highly pathogenic and antibiotic-resistant bacteria Acinetobacter baumannii produces fimsbactin, an unusual branched siderophore with iron-binding catechol groups bound to a serine or threonine side chain. To explore the substrate promiscuity of the assembly line enzymes, we report a structure-guided investigation of the stand-alone aryl adenylation enzyme FbsH. We report structures bound to its native substrate 2,3-dihydroxybenzoic acid (DHB) as well as an inhibitor that mimics the adenylate intermediate. We produced enzyme variants with an expanded binding pocket that are more tolerant for analogs containing a DHB C4 modification. Wild-type and mutant enzymes were then used in an in vitro reconstitution analysis to assess the production of analogs of the final product as well as several early stage intermediates. This analysis shows that some altered substrates progress down the fimsbactin assembly line to the downstream domains. However, analogs from alternate building blocks are produced at lower levels, indicating that selectivity exists in the downstream catalytic domains. These findings expand the substrate scope of producing condensation products between serine and aryl acids and identify the bottlenecks for chemoenzymatic production of fimsbactin analogs.
Collapse
Affiliation(s)
- Syed Fardin Ahmed
- Department
of Structural Biology, University at Buffalo, Buffalo, New York 14203, United States
| | - Adam Balutowski
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Jinping Yang
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Timothy A. Wencewicz
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United States
| | - Andrew M. Gulick
- Department
of Structural Biology, University at Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
8
|
Gräff ÁT, Barry SM. Siderophores as tools and treatments. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:47. [PMID: 39649077 PMCID: PMC11621027 DOI: 10.1038/s44259-024-00053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/03/2024] [Indexed: 12/10/2024]
Abstract
In the search for iron, an essential element in many biochemical processes, microorganisms biosynthesise dedicated chelators, known as siderophores, to sequester iron from their environment and actively transport the siderophore complex into the cell. This process has been implicated in bacterial pathogenesis and exploited through siderophore-antibiotic conjugates as a method for selective antibiotic delivery. Here we review this Trojan-horse approach including design considerations and potential in diagnostics and infection imaging.
Collapse
Affiliation(s)
- Á. Tamás Gräff
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Britannia House, London, SE1 1DB UK
| | - Sarah M. Barry
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Britannia House, London, SE1 1DB UK
| |
Collapse
|
9
|
Patel KD, Fisk MB, Gulick AM. Discovery, functional characterization, and structural studies of the NRPS-independent siderophore synthetases. Crit Rev Biochem Mol Biol 2024; 59:447-471. [PMID: 40085133 PMCID: PMC12033978 DOI: 10.1080/10409238.2025.2476476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
To adapt to low-iron environments, many bacteria produce siderophores, low molecular weight iron chelators that are secreted into the environment where they bind ferric iron. The production of siderophore uptake systems then allows retrieval of the iron-complexed siderophore into the cell, where the metal ion can be used for structural and catalytic roles in many proteins. While many siderophores are produced by the activity of a family of large modular nonribosomal peptide synthetase (NRPS) enzymes, a second class of siderophores are produced by an alternate pathway. These so-called NRPS-independent siderophores (NIS) are biosynthesized through a shared catalytic step that is performed by an NIS synthetase. These enzymes catalyze the formation of an amide linkage between a carboxylate and an amine or, more rarely, form an ester with a hydroxyl substrate. Here we describe the discovery and biochemical studies of diverse NIS synthetases from different siderophore pathways to provide insight into their substrate specificity and catalytic mechanism. The structures of a small number of family members are additionally described that correlates the functional work with the enzyme structure. While the field has come a long way since it was described as a "long-overlooked" family in 2009, there remains much to discover in this large and important enzyme family.
Collapse
Affiliation(s)
| | | | - Andrew M. Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
10
|
Griffiths DB, Tiwari RP, Murphy DV, Scott C. Comparative genomics of the highly halophilic Haloferacaceae. Sci Rep 2024; 14:27025. [PMID: 39506039 PMCID: PMC11541754 DOI: 10.1038/s41598-024-78438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
The Haloferacaceae are a family of extremely halophilic archaea with many species producing enzymes and products beneficial for industrial biotechnology. They are, however, relatively under-characterised with regards to genetics and gene products. This study aims to use existing sequence data to highlight genetic diversity, create pangenomes for three genera, and provide secondary metabolite and pathway analysis. This will establish current knowledge and identify key gaps in research. We show that the Haloferacaceae have significant genetic diversity between genera, with numerous gene gain and loss events in key genera. It also found that the model genus, Haloferax, has relatively low identified secondary metabolites compared to other genera within the family. Additionally, this study has identified potential biotechnology targets for heterologous expression in model organisms.
Collapse
Affiliation(s)
- Dana B Griffiths
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia.
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, 6150, Australia.
| | - Ravi P Tiwari
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Daniel V Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia
| | - Colin Scott
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Perth, WA, 6150, Australia
- CSIRO Environment, Canberra, ACT, 2601, Australia
| |
Collapse
|
11
|
Soto-Varela ZE, Orozco-Sánchez CJ, Bolívar-Anillo HJ, Martínez JM, Rodríguez N, Consuegra-Padilla N, Robledo-Meza A, Amils R. Halotolerant Endophytic Bacteria Priestia flexa 7BS3110 with Hg 2+ Tolerance Isolated from Avicennia germinans in a Caribbean Mangrove from Colombia. Microorganisms 2024; 12:1857. [PMID: 39338530 PMCID: PMC11434322 DOI: 10.3390/microorganisms12091857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 09/30/2024] Open
Abstract
The mangrove ecosystems of the Department of Atlántico (Colombian Caribbean) are seriously threatened by problems of hypersalinization and contamination, especially by heavy metals from the Magdalena River. The mangrove plants have developed various mechanisms to adapt to these stressful conditions, as well as the associated microbial populations that favor their growth. In the present work, the tolerance and detoxification capacity to heavy metals, especially to mercury, of a halotolerant endophytic bacterium isolated from the species Avicennia germinans located in the Balboa Swamp in the Department of Atlántico was characterized. Diverse microorganisms were isolated from superficially sterilized A. germinans leaves. Tolerance to NaCl was evaluated for each of the obtained isolates, and the most resistant was selected to assess its tolerance to Pb2+, Cu2+, Hg2+, Cr3+, Co2+, Ni2+, Zn2+, and Cd2+, many of which have been detected in high concentrations in the area of study. According to the ANI and AAI percentages, the most halotolerant strain was identified as Priestia flexa, named P. flexa 7BS3110, which was able to tolerate up to 12.5% (w/v) NaCl and presented a minimum inhibitory concentrations (MICs) of 0.25 mM for Hg, 10 mM for Pb, and 15 mM for Cr3+. The annotation of the P. flexa 7BS3110 genome revealed the presence of protein sequences associated with exopolysaccharide (EPS) production, thiol biosynthesis, specific proteins for chrome efflux, non-specific proteins for lead efflux, and processes associated with sulfur and iron homeostasis. Scanning electron microscopy (SEM) analysis showed morphological cellular changes and the transmission electron microscopy (TEM) showed an electrodense extracellular layer when exposed to 0.25 mM Hg2+. Due to the high tolerance of P. flexa 7BS3110 to Hg2+ and NaCl, its ability to grow when exposed to both stressors was tested, and it was able to thrive in the presence of 5% (w/v) NaCl and 0.25 mM of Hg2+. In addition, it was able to remove 98% of Hg2+ from the medium when exposed to a concentration of 14 mg/L of this metalloid. P. flexa 7BS3110 has the potential to bioremediate Hg2+ halophilic contaminated ecosystems.
Collapse
Affiliation(s)
- Zamira E Soto-Varela
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
| | - Christian J Orozco-Sánchez
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Institute of Applied Microbiology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Hernando José Bolívar-Anillo
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - José M Martínez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
- Centro de Astrobiología (INTA-CSIC), Carretera, Ajalvir km 4, 28850 Torrejón de Ardoz, Spain
| | - Natalia Consuegra-Padilla
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
| | - Alfredo Robledo-Meza
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Biodiversidad y Cambio Climático-ADAPTIA, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain
- Centro de Astrobiología (INTA-CSIC), Carretera, Ajalvir km 4, 28850 Torrejón de Ardoz, Spain
| |
Collapse
|
12
|
Ahmed SF, Balutowski A, Yang J, Wencewicz TA, Gulick AM. Expanding the substrate selectivity of the fimsbactin biosynthetic adenylation domain, FbsH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605314. [PMID: 39091846 PMCID: PMC11291136 DOI: 10.1101/2024.07.26.605314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Nonribosomal peptide synthetases (NRPSs) produce diverse natural products including siderophores, chelating agents that many pathogenic bacteria produce to survive in low iron conditions. Engineering NRPSs to produce diverse siderophore analogs could lead to the generation of novel antibiotics and imaging agents that take advantage of this unique iron uptake system in bacteria. The highly pathogenic and antibiotic-resistant bacteria Acinetobacter baumannii produces fimsbactin, an unusual branched siderophore with iron-binding catechol groups bound to a serine or threonine side chain. To explore the substrate promiscuity of the assembly line enzymes, we report a structure-guided investigation of the stand-alone aryl adenylation enzyme FbsH. We report on structures bound to its native substrate 2,3-dihydroxybenzoic acid (DHB) as well as an inhibitor that mimics the adenylate intermediate. We produced enzyme variants with an expanded binding pocket that are more tolerant for analogs containing a DHB C4 modification. Wild-type and mutant enzymes were then used in an in vitro reconstitution analysis to assess the production of analogs of the final product as well as several early-stage intermediates. This analysis shows that some altered substrates progress down the fimsbactin assembly line to the downstream domains. However, analogs from alternate building blocks are produced at lower levels, indicating that selectivity exists in the downstream catalytic domains. These findings expand the substrate scope of producing condensation products between serine and aryl acids and identify the bottlenecks for chemoenzymatic production of fimsbactin analogs.
Collapse
Affiliation(s)
- Syed Fardin Ahmed
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, United States
| | - Adam Balutowski
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, United States
| | - Jinping Yang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, United States
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, United States
| | - Andrew M. Gulick
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, United States
| |
Collapse
|
13
|
Reitz ZL. Predicting metallophore structure and function through genome mining. Methods Enzymol 2024; 702:371-401. [PMID: 39155119 DOI: 10.1016/bs.mie.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Metallophores are small molecule chelators that many microbes use to obtain trace metals from their environment. Through genome mining, where genomes are scanned for metallophore biosynthesis genes, one can not only identify which organisms are likely to produce a metallophore, but also predict the metallophore structure, thus preventing undesired reisolation of known compounds and accelerating characterization. Furthermore, the presence of accessory genes for the transport, utilization, and regulation can suggest the biological function and fate of a metallophore. Modern, user-friendly tools have made powerful genomic analyses accessible to scientists with no bioinformatics experience, but these tools are often not utilized to their full potential. This chapter provides an introduction to metallophore genomics and demonstrates how to use the free, publicly available antiSMASH platform to infer metallophore function and structure.
Collapse
Affiliation(s)
- Zachary L Reitz
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
14
|
Yazzie MT, Reitz ZL, Schmid R, Petras D, Aron AT. Native metabolomics for mass spectrometry-based siderophore discovery. Methods Enzymol 2024; 702:317-352. [PMID: 39155117 DOI: 10.1016/bs.mie.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Microorganisms, plants, and animals alike have specialized acquisition pathways for obtaining metals, with microorganisms and plants biosynthesizing and secreting small molecule natural products called siderophores and metallophores with high affinities and specificities for iron or other non-iron metals, respectively. This chapter details a novel approach to discovering metal-binding molecules, including siderophores and metallophores, from complex samples ranging from microbial supernatants to biological tissue to environmental samples. This approach, called Native Metabolomics, is a mass spectrometry method in which pH adjustment and metal infusion post-liquid chromatography are interfaced with ion identity molecular networking (IIMN). This rule-based data analysis workflow that enables the identification of metal-binding species based on defined mass (m/z) offsets with the same chromatographic profiles and retention times. Ion identity molecular networking connects compounds that are structurally similar by their fragmentation pattern and species that are ion adducts of the same compound by chromatographic shape correlations. This approach has previously revealed new insights into metal binding metabolites, including that yersiniabactin can act as a biological zincophore (in addition to its known role as a siderophore), that the recently elucidated lepotchelin natural products are cyanobacterial metallophores, and that antioxidants in traditional medicine bind iron. Native metabolomics can be conducted on any liquid chromatography-mass spectrometry system to explore the binding of any metal or multiple metals simultaneously, underscoring the potential for this method to become an essential strategy for elucidating biological metal-binding molecules.
Collapse
Affiliation(s)
- Marquis T Yazzie
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, United States
| | - Zachary L Reitz
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, United States
| | - Robin Schmid
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Daniel Petras
- Department of Biochemistry, University of California Riverside, Riverside, CA, United States; Interfaculty of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, United States.
| |
Collapse
|
15
|
Calvanese M, D’Angelo C, Tutino ML, Lauro C. Whole-Cell Biosensor for Iron Monitoring as a Potential Tool for Safeguarding Biodiversity in Polar Marine Environments. Mar Drugs 2024; 22:299. [PMID: 39057408 PMCID: PMC11277574 DOI: 10.3390/md22070299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Iron is a key micronutrient essential for various essential biological processes. As a consequence, alteration in iron concentration in seawater can deeply influence marine biodiversity. In polar marine environments, where environmental conditions are characterized by low temperatures, the role of iron becomes particularly significant. While iron limitation can negatively influence primary production and nutrient cycling, excessive iron concentrations can lead to harmful algal blooms and oxygen depletion. Furthermore, the growth of certain phytoplankton species can be increased in high-iron-content environments, resulting in altered balance in the marine food web and reduced biodiversity. Although many chemical/physical methods are established for inorganic iron quantification, the determination of the bio-available iron in seawater samples is more suitably carried out using marine microorganisms as biosensors. Despite existing challenges, whole-cell biosensors offer other advantages, such as real-time detection, cost-effectiveness, and ease of manipulation, making them promising tools for monitoring environmental iron levels in polar marine ecosystems. In this review, we discuss fundamental biosensor designs and assemblies, arranging host features, transcription factors, reporter proteins, and detection methods. The progress in the genetic manipulation of iron-responsive regulatory and reporter modules is also addressed to the optimization of the biosensor performance, focusing on the improvement of sensitivity and specificity.
Collapse
Affiliation(s)
- Marzia Calvanese
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B), Viale Medaglie D’Oro 305, 00136 Roma, Italy
| | - Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B), Viale Medaglie D’Oro 305, 00136 Roma, Italy
| | - Concetta Lauro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Naples, Italy; (M.C.); (C.D.); (M.L.T.)
| |
Collapse
|
16
|
Song T, Gupta S, Sorokin Y, Frenkel O, Cytryn E, Friedman J. A Burkholderia cenocepacia-like environmental isolate strongly inhibits the plant fungal pathogen Zymoseptoria tritici. Appl Environ Microbiol 2024; 90:e0222223. [PMID: 38624199 PMCID: PMC11107150 DOI: 10.1128/aem.02222-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
Fungal phytopathogens cause significant reductions in agricultural yields annually, and overusing chemical fungicides for their control leads to environmental pollution and the emergence of resistant pathogens. Exploring natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We isolated and characterized a novel bacterial strain associated with the species Burkholderia cenocepacia, termed APO9, which strongly inhibits Zymoseptoria tritici, a commercially important pathogenic fungus causing Septoria tritici blotch in wheat. Additionally, this strain exhibits inhibitory activity against four other phytopathogens. We found that physical contact plays a crucial role for APO9's antagonistic capacity. Genome sequencing of APO9 and biosynthetic gene cluster (BGC) analysis identified nine classes of BGCs and three types of secretion systems (types II, III, and IV), which may be involved in the inhibition of Z. tritici and other pathogens. To identify genes driving APO9's inhibitory activity, we screened a library containing 1,602 transposon mutants and identified five genes whose inactivation reduced inhibition efficiency. One such gene encodes for a diaminopimelate decarboxylase located in a terpenoid biosynthesis gene cluster. Phylogenetic analysis revealed that while some of these genes are also found across the Burkholderia genus, as well as in other Betaproteobacteria, the combination of these genes is unique to the Burkholderia cepacia complex. These findings suggest that the inhibitory capacity of APO9 is complex and not limited to a single mechanism, and may play a role in the interaction between various Burkholderia species and various phytopathogens within diverse plant ecosystems. IMPORTANCE The detrimental effects of fungal pathogens on crop yields are substantial. The overuse of chemical fungicides contributes not only to environmental pollution but also to the emergence of resistant pathogens. Investigating natural isolates with strong antagonistic effects against pathogens can improve our understanding of their ecology and develop new treatments for the future. We discovered and examined a unique bacterial strain that demonstrates significant inhibitory activity against several phytopathogens. Our research demonstrates that this strain has a wide spectrum of inhibitory actions against plant pathogens, functioning through a complex mechanism. This plays a vital role in the interactions between plant microbiota and phytopathogens.
Collapse
Affiliation(s)
- Tingting Song
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Suyash Gupta
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon Lezion, Israel
- Institute of Plant Protection, Agricultural Research Organization, Rishon Lezion, Israel
| | - Yael Sorokin
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Omer Frenkel
- Institute of Plant Protection, Agricultural Research Organization, Rishon Lezion, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon Lezion, Israel
| | - Jonathan Friedman
- The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
17
|
Long Q, Zhou W, Zhou H, Tang Y, Chen W, Liu Q, Bian X. Polyamine-containing natural products: structure, bioactivity, and biosynthesis. Nat Prod Rep 2024; 41:525-564. [PMID: 37873660 DOI: 10.1039/d2np00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Covering: 2005 to August, 2023Polyamine-containing natural products (NPs) have been isolated from a wide range of terrestrial and marine organisms and most of them exhibit remarkable and diverse activities, including antimicrobial, antiprotozoal, antiangiogenic, antitumor, antiviral, iron-chelating, anti-depressive, anti-inflammatory, insecticidal, antiobesity, and antioxidant properties. Their extraordinary activities and potential applications in human health and agriculture attract increasing numbers of studies on polyamine-containing NPs. In this review, we summarized the source, structure, classification, bioactivities and biosynthesis of polyamine-containing NPs, focusing on the biosynthetic mechanism of polyamine itself and representative polyamine alkaloids, polyamine-containing siderophores with catechol/hydroxamate/hydroxycarboxylate groups, nonribosomal peptide-(polyketide)-polyamine (NRP-(PK)-PA), and NRP-PK-long chain poly-fatty amine (lcPFAN) hybrid molecules.
Collapse
Affiliation(s)
- Qingshan Long
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Ying Tang
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
18
|
He R, Gu S, Xu J, Li X, Chen H, Shao Z, Wang F, Shao J, Yin WB, Qian L, Wei Z, Li Z. SIDERITE: Unveiling hidden siderophore diversity in the chemical space through digital exploration. IMETA 2024; 3:e192. [PMID: 38882500 PMCID: PMC11170966 DOI: 10.1002/imt2.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 06/18/2024]
Abstract
In this work, we introduced a siderophore information database (SIDERTE), a digitized siderophore information database containing 649 unique structures. Leveraging this digitalized data set, we gained a systematic overview of siderophores by their clustering patterns in the chemical space. Building upon this, we developed a functional group-based method for predicting new iron-binding molecules with experimental validation. Expanding our approach to the collection of open natural products (COCONUT) database, we predicted a staggering 3199 siderophore candidates, showcasing remarkable structure diversity that is largely unexplored. Our study provides a valuable resource for accelerating the discovery of novel iron-binding molecules and advancing our understanding of siderophores.
Collapse
Affiliation(s)
- Ruolin He
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies Peking University Beijing China
| | - Shaohua Gu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies Peking University Beijing China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies Peking University Beijing China
| | - Jiazheng Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers Nanjing Agricultural University Nanjing China
| | - Xuejian Li
- Beyond Flux Technology Co., Ltd. Beijing China
| | - Haoran Chen
- Beyond Flux Technology Co., Ltd. Beijing China
| | - Zhengying Shao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers Nanjing Agricultural University Nanjing China
| | - Fanhao Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies Peking University Beijing China
| | - Jiqi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies Peking University Beijing China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology Chinese Academy of Sciences Beijing China
- Savaid Medical School University of Chinese Academy of Sciences Beijing China
| | - Long Qian
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies Peking University Beijing China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers Nanjing Agricultural University Nanjing China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies Peking University Beijing China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies Peking University Beijing China
| |
Collapse
|
19
|
Tanabe T, Mitome H, Miyamoto K, Akira K, Tsujibo H, Tomoo K, Nagaoka K, Funahashi T. Analysis of the vibrioferrin biosynthetic pathway of Vibrio parahaemolyticus. Biometals 2024; 37:507-517. [PMID: 38133869 DOI: 10.1007/s10534-023-00566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
Siderophores are small-molecule iron chelators produced by many microorganisms that capture and uptake iron from the natural environment and host. Their biosynthesis in microorganisms is generally performed using non-ribosomal peptide synthetase (NRPS) or NRPS-independent siderophore (NIS) enzymes. Vibrio parahaemolyticus secretes its cognate siderophore vibrioferrin under iron-starvation conditions. Vibrioferrin is a dehydrated condensate composed of α-ketoglutarate, L-alanine, aminoethanol, and citrate, and pvsA (the gene encoding the ATP-grasp enzyme), pvsB (the gene encoding the NIS enzyme), pvsD (the gene encoding the NIS enzyme), and pvsE (the gene encoding decarboxylase) are engaged in its biosynthesis. Here, we elucidated the biosynthetic pathway of vibrioferrin through in vitro enzymatic reactions using recombinant PvsA, PvsB, PvsD, and PvsE proteins. We also found that PvsD condenses L-serine and citrate to generate O-citrylserine, and that PvsE decarboxylates O-citrylserine to form O-citrylaminoethanol. In addition, we showed that O-citrylaminoethanol is converted to alanyl-O-citrylaminoethanol by amidification with L-Ala by PvsA and that alanyl-O-citrylaminoethanol is then converted to vibrioferrin by amidification with α-ketoglutarate by PvsB.
Collapse
Affiliation(s)
- Tomotaka Tanabe
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan.
| | - Hidemichi Mitome
- Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Katsushiro Miyamoto
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Kazuki Akira
- Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Hiroshi Tsujibo
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Koji Tomoo
- Department of Physical Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Kenjiro Nagaoka
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Tatsuya Funahashi
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| |
Collapse
|
20
|
Su L, Souaibou Y, Hôtel L, Paris C, Weissman KJ, Aigle B. Biosynthesis of novel desferrioxamine derivatives requires unprecedented crosstalk between separate NRPS-independent siderophore pathways. Appl Environ Microbiol 2024; 90:e0211523. [PMID: 38323847 PMCID: PMC10952394 DOI: 10.1128/aem.02115-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024] Open
Abstract
Iron is essential to many biological processes but its poor solubility in aerobic environments restricts its bioavailability. To overcome this limitation, bacteria have evolved a variety of strategies, including the production and secretion of iron-chelating siderophores. Here, we describe the discovery of four series of siderophores from Streptomyces ambofaciens ATCC23877, three of which are unprecedented. MS/MS-based molecular networking revealed that one of these series corresponds to acylated desferrioxamines (acyl-DFOs) recently identified from S. coelicolor. The remaining sets include tetra- and penta-hydroxamate acyl-DFO derivatives, all of which incorporate a previously undescribed building block. Stable isotope labeling and gene deletion experiments provide evidence that biosynthesis of the acyl-DFO congeners requires unprecedented crosstalk between two separate non-ribosomal peptide synthetase (NRPS)-independent siderophore (NIS) pathways in the producing organism. Although the biological role(s) of these new derivatives remain to be elucidated, they may confer advantages in terms of metal chelation in the competitive soil environment due to the additional bidentate hydroxamic functional groups. The metabolites may also find application in various fields including biotechnology, bioremediation, and immuno-PET imaging.IMPORTANCEIron-chelating siderophores play important roles for their bacterial producers in the environment, but they have also found application in human medicine both in iron chelation therapy to prevent iron overload and in diagnostic imaging, as well as in biotechnology, including as agents for biocontrol of pathogens and bioremediation. In this study, we report the discovery of three novel series of related siderophores, whose biosynthesis depends on the interplay between two NRPS-independent (NIS) pathways in the producing organism S. ambofaciens-the first example to our knowledge of such functional cross-talk. We further reveal that two of these series correspond to acyl-desferrioxamines which incorporate four or five hydroxamate units. Although the biological importance of these novel derivatives is unknown, the increased chelating capacity of these metabolites may find utility in diagnostic imaging (for instance, 89Zr-based immuno-PET imaging) and other applications of metal chelators.
Collapse
Affiliation(s)
- Li Su
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- Université de Lorraine, CNRS, IMoPA, Nancy, France
| | - Yaouba Souaibou
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- Université de Lorraine, CNRS, IMoPA, Nancy, France
| | | | | | | | | |
Collapse
|
21
|
Abbas R, Chakkour M, Zein El Dine H, Obaseki EF, Obeid ST, Jezzini A, Ghssein G, Ezzeddine Z. General Overview of Klebsiella pneumonia: Epidemiology and the Role of Siderophores in Its Pathogenicity. BIOLOGY 2024; 13:78. [PMID: 38392297 PMCID: PMC10886558 DOI: 10.3390/biology13020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
The opportunistic pathogen Klebsiella pneumoniae (K. pneumoniae) can colonize mucosal surfaces and spread from mucosae to other tissues, causing fatal infections. Medical equipment and the healthcare setting can become colonized by Klebsiella species, which are widely distributed in nature and can be found in water, soil, and animals. Moreover, a substantial number of community-acquired illnesses are also caused by this organism worldwide. These infections are characterized by a high rate of morbidity and mortality as well as the capacity to spread metastatically. Hypervirulent Klebsiella strains are thought to be connected to these infections. Four components are critical to this bacterium's pathogenicity-the capsule, lipopolysaccharide, fimbriae, and siderophores. Siderophores are secondary metabolites that allow iron to sequester from the surrounding medium and transport it to the intracellular compartment of the bacteria. A number of variables may lead to K. pneumoniae colonization in a specific area. Risk factors for infection include local healthcare practices, antibiotic use and misuse, infection control procedures, nutrition, gender, and age.
Collapse
Affiliation(s)
- Rim Abbas
- Faculty of Health Sciences, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Hiba Zein El Dine
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | | | - Soumaya T Obeid
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Aya Jezzini
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Ghassan Ghssein
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Zeinab Ezzeddine
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| |
Collapse
|
22
|
Koedooder C, Zhang F, Wang S, Basu S, Haley ST, Tolic N, Nicora CD, Glavina del Rio T, Dyhrman ST, Gledhill M, Boiteau RM, Rubin-Blum M, Shaked Y. Taxonomic distribution of metabolic functions in bacteria associated with Trichodesmium consortia. mSystems 2023; 8:e0074223. [PMID: 37916816 PMCID: PMC10734445 DOI: 10.1128/msystems.00742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.
Collapse
Affiliation(s)
- Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Futing Zhang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Siyuan Wang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Subhajit Basu
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sheean T. Haley
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
| | - Nikola Tolic
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D. Nicora
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tijana Glavina del Rio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sonya T. Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, USA
| | | | - Rene M. Boiteau
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | | | - Yeala Shaked
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
23
|
Zhang Y, Pan M, Wang Q, Wang L, Liao L. Complete Genome Sequence and Pan-Genome Analysis of Shewanella oncorhynchi Z-P2, a Siderophore Putrebactin-Producing Bacterium. Microorganisms 2023; 11:2961. [PMID: 38138105 PMCID: PMC10745600 DOI: 10.3390/microorganisms11122961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, we reported the complete genome sequence of Shewanella oncorhynchi for the first time. S. oncorhynchi Z-P2 is a bacterium that produces the siderophore putrebactin. Its genome consists of a circular chromosome of 5,034,612 bp with a G + C content of 45.4%. A total of 4544 protein-coding genes, 109 tRNAs and 31 rRNAs were annotated by the RAST. Five non-ribosomal peptide synthetase (NRPS) and polyketide synthetase (PKS) gene clusters were identified by the antiSMASH analysis. The pan-genome analysis of Z-P2 and 10 Shewanella putrefaciens revealed 9228 pan-gene clusters and 2681 core gene clusters, with Z-P2 having 618 unique gene clusters. Additionally, the gene cluster involved in putrebactin biosynthesis in Z-P2 was annotated, and the mechanism of putrebactin biosynthesis was analyzed. The putrebactin produced by Z-P2 was detected using UPLC-MS analysis, with an [M + H]+ molecular ion at m/z 373.21. These findings provide valuable support for further research on the genetic engineering of putrebactin biosynthetic genes of Z-P2 and their potential applications.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Z.); (L.W.)
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.P.); (Q.W.)
| | - Mengjie Pan
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.P.); (Q.W.)
| | - Qiaoyun Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (M.P.); (Q.W.)
| | - Lan Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Z.); (L.W.)
| | - Li Liao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs/Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.Z.); (L.W.)
| |
Collapse
|
24
|
Narh Mensah DL, Wingfield BD, Coetzee MPA. Two distinct non-ribosomal peptide synthetase-independent siderophore synthetase gene clusters identified in Armillaria and other species in the Physalacriaceae. G3 (BETHESDA, MD.) 2023; 13:jkad205. [PMID: 37843963 PMCID: PMC10700112 DOI: 10.1093/g3journal/jkad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 10/18/2023]
Abstract
Siderophores are important for ferric iron solubilization, sequestration, transportation, and storage, especially under iron-limiting conditions such as aerobic conditions at high pH. Siderophores are mainly produced by non-ribosomal peptide synthetase-dependent siderophore pathway, non-ribosomal peptide synthetase-independent siderophore synthetase pathway, or the hybrid non-ribosomal peptide synthetases/non-ribosomal peptide synthetases-independent siderophore pathway. Outcompeting or inhibition of plant pathogens, alteration of host defense mechanisms, and alteration of plant-fungal interactions have been associated with fungal siderophores. To understand these mechanisms in fungi, studies have been conducted on siderophore biosynthesis by ascomycetes with limited focus on the basidiomycetes. Armillaria includes several species that are pathogens of woody plants and trees important to agriculture, horticulture, and forestry. The aim of this study was to investigate the presence of non-ribosomal peptide synthetases-independent siderophore synthetase gene cluster(s) in genomes of Armillaria species using a comparative genomics approach. Iron-dependent growth and siderophore biosynthesis in strains of selected Armillaria spp. were also evaluated in vitro. Two distinct non-ribosomal peptide synthetases-independent siderophore synthetase gene clusters were identified in all the genomes. All non-ribosomal peptide synthetases-independent siderophore synthetase genes identified putatively encode Type A' non-ribosomal peptide synthetases-independent siderophore synthetases, most of which have IucA_IucC and FhuF-like transporter domains at their N- and C-terminals, respectively. The effect of iron on culture growth varied among the strains studied. Bioassays using the CAS assay on selected Armillaria spp. revealed in vitro siderophore biosynthesis by all strains irrespective of added FeCl3 concentration. This study highlights some of the tools that Armillaria species allocate to iron homeostasis. The information generated from this study may in future aid in developing molecular based methods to control these phytopathogens.
Collapse
Affiliation(s)
- Deborah L Narh Mensah
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
- CSIR—Food Research Institute, Microbiology and Mushroom Research Division, P. O. Box, M20, Accra, Ghana
| | - Brenda D Wingfield
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Martin P A Coetzee
- Departments of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
25
|
Rajapitamahuni S, Lyou ES, Kang BR, Lee TK. Microbial interaction-induced siderophore dynamics lead to phenotypic differentiation of Staphylococcus aureus. Front Cell Infect Microbiol 2023; 13:1277176. [PMID: 38045757 PMCID: PMC10690949 DOI: 10.3389/fcimb.2023.1277176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
This study investigated the impact of microbial interactions on siderophore dynamics and phenotypic differentiation of Staphylococcus aureus under iron-deficient conditions. Optimization of media demonstrated that the glycerol alanine salts medium was best suited for analyzing the dynamics of siderophore production because of its stable production of diverse siderophore types. The effects of pH and iron concentration on siderophore yield revealed a maximum yield at neutral pH and low iron concentration (10 µg). Microbial interaction studies have highlighted variations in siderophore production when different strains (Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli) are co-cultured with S. aureus. Co-culture of S. aureus with P. aeruginosa eliminated siderophore production in S. aureus, while co-culture of S. aureus with E. coli and S. epidermidis produced one or two siderophores, respectively. Raman spectroscopy revealed that microbial interactions and siderophore dynamics play a crucial role in directing the phenotypic differentiation of S. aureus, especially under iron-deficient conditions. Our results suggest that microbial interactions profoundly influence siderophore dynamics and phenotypic differentiation and that the study of these interactions could provide valuable insights for understanding microbial survival strategies in iron-limited environments.
Collapse
Affiliation(s)
| | | | | | - Tae Kwon Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
26
|
Blanco Nouche C, Paris C, Dhalleine T, Oger P, Turpault MP, Uroz S. The non-ribosomal peptide synthetase-independent siderophore (NIS) rhizobactin produced by Caballeronia mineralivorans PML1(12) confers the ability to weather minerals. Appl Environ Microbiol 2023; 89:e0045323. [PMID: 37800940 PMCID: PMC10617554 DOI: 10.1128/aem.00453-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/16/2023] [Indexed: 10/07/2023] Open
Abstract
To mobilize nutrients entrapped into minerals and rocks, heterotrophic bacteria living in nutrient-poor environments have developed different mechanisms based mainly on acidolysis and chelation. However, the genetic bases of these mechanisms remain unidentified. To fill this gap, we considered the model strain Caballeronia mineralivorans PML1(12) known to be effective at weathering. Based on its transcriptomics and proteomics responses in Fe-depleted conditions, we pointed a cluster of genes differentially expressed and putatively involved in the production of siderophores. In this study, we report the characterization of this gene region coding for the production of a non-ribosomal peptide synthetase-independent siderophore (NIS). Targeted mutagenesis associated with functional assays and liquid chromatography coupled to high-resolution tandem mass spectrometry demonstrated the production of a single siderophore, identified as rhizobactin. This siderophore represents the first NIS containing malic acid in its structure. The evidence for the implication of rhizobactin in mineral weathering was demonstrated during a hematite dissolution assay. This study provides the first demonstration of the synthesis of a NIS in the genus Caballeronia and its involvement in mineral weathering. Our conclusions reinforce the idea that strain PML1(12) is particularly well adapted to nutrient-poor environments. IMPORTANCE This work deciphers the molecular and genetic bases used by strain PML1(12) of Caballeronia mineralivorans to mobilize iron and weather minerals. Through the combination of bioinformatics, chemical, and phylogenetic analyses, we characterized the siderophore produced by strain PML1(12) and the related genes. This siderophore was identified as rhizobactin and classified as a non-ribosomal peptide synthetase-independent siderophore (NIS). Contrary to the previously identified NIS synthetases that form siderophores containing citric acid, α-ketoglutarate, or succinic acid, our analyses revealed that rhizobactin contains malic acid in its structure, representing, therefore, the first identified NIS with such an acid and probably a new NIS category. Last, this work demonstrates for the first time the effectiveness at weathering minerals of a siderophore of the NIS family. Our findings offer relevant information for different fields of research, such as environmental genomics, microbiology, chemistry, and soil sciences.
Collapse
Affiliation(s)
- Cintia Blanco Nouche
- Université de Lorraine, INRAE, UMR1136 Interactions Arbres-Microorganismes, Nancy, France
- INRAE, UR1138 Biogéochimie des Ecosystèmes Forestiers, Champenoux, France
| | - Cédric Paris
- Université de Lorraine, EA 4367 Laboratoire d’Ingénierie des Biomolécules, Ecole Nationale Supérieure d’Agronomie et des Industries Alimentaires (ENSAIA), Vandœuvre-lès-Nancy, France
| | - Tiphaine Dhalleine
- Université de Lorraine, INRAE, UMR1136 Interactions Arbres-Microorganismes, Nancy, France
| | - Philippe Oger
- INSA Lyon, Universite Claude Bernard Lyon 1, CNRS UMR5240, Villeurbanne, France
| | | | - Stéphane Uroz
- Université de Lorraine, INRAE, UMR1136 Interactions Arbres-Microorganismes, Nancy, France
- INRAE, UR1138 Biogéochimie des Ecosystèmes Forestiers, Champenoux, France
| |
Collapse
|
27
|
Kumar G, Adhikrao PA. Targeting Mycobacterium tuberculosis iron-scavenging tools: a recent update on siderophores inhibitors. RSC Med Chem 2023; 14:1885-1913. [PMID: 37859726 PMCID: PMC10583813 DOI: 10.1039/d3md00201b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Among the various bacterial infections, tuberculosis (TB) remains a life-threatening infectious disease responsible as the most significant cause of mortality and morbidity worldwide. The co-infection of human immunodeficiency virus (HIV) in association with TB burdens the healthcare system substantially. Notably, M.tb possesses defence against most antitubercular antibiotic drugs, and the efficacy of existing frontline anti-TB drugs is waning. Also, new and recurring cases of TB from resistant bacteria such as multidrug-resistant TB (MDR), extensively drug-resistant TB (XDR), and totally drug-resistant TB (TDR) strains are increasing. Hence, TB begs the scientific community to explore the new therapeutic class of compounds with their novel mechanism. M.tb requires iron from host cells to sustain, grow, and carry out several biological processes. M.tb has developed strategic methods of acquiring iron from the surrounding environment. In this communication, we discuss an overview of M.tb iron-scavenging tools. Also, we have summarized recently identified MbtA and MbtI inhibitors, which prevent M.tb from scavenging iron. These iron-scavenging tool inhibitors have the potential to be developed as anti-TB agents/drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| | - Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| |
Collapse
|
28
|
Covas C, Figueiredo G, Gomes M, Santos T, Mendo S, Caetano TS. The Pangenome of Gram-Negative Environmental Bacteria Hides a Promising Biotechnological Potential. Microorganisms 2023; 11:2445. [PMID: 37894103 PMCID: PMC10609062 DOI: 10.3390/microorganisms11102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Secondary metabolites (SMs) from environmental bacteria offer viable solutions for various health and environmental challenges. Researchers are employing advanced bioinformatic tools to investigate less-explored microorganisms and unearth novel bioactive compounds. In this research area, our understanding of SMs from environmental Gram-negative bacteria lags behind that of its Gram-positive counterparts. In this regard, Pedobacter spp. have recently gained attention, not only for their role as plant growth promoters but also for their potential in producing antimicrobials. This study focuses on the genomic analysis of Pedobacter spp. to unveil the diversity of the SMs encoded in their genomes. Among the 41 genomes analyzed, a total of 233 biosynthetic gene clusters (BGCs) were identified, revealing the potential for the production of diverse SMs, including RiPPs (27%), terpenes (22%), hybrid SMs (17%), PKs (12%), NRPs (9%) and siderophores (6%). Overall, BGC distribution did not correlate with phylogenetic lineage and most of the BGCs showed no significant hits in the MIBiG database, emphasizing the uniqueness of the compounds that Pedobacter spp. can produce. Of all the species examined, P. cryoconitis and P. lusitanus stood out for having the highest number and diversity of BGCs. Focusing on their applicability and ecological functions, we investigated in greater detail the BGCs responsible for siderophore and terpenoid production in these species and their relatives. Our findings suggest that P. cryoconitis and P. lusitanus have the potential to produce novel mixtures of siderophores, involving bifunctional IucAC/AcD NIS synthetases, as well as carotenoids and squalene. This study highlights the biotechnological potential of Pedobacter spp. in medicine, agriculture and other industries, emphasizing the need for a continued exploration of its SMs and their applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Tânia S. Caetano
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.C.); (G.F.); (S.M.)
| |
Collapse
|
29
|
Xiao L, Tang R, Wang J, Wan D, Yin Y, Xie L. Gut microbiota bridges the iron homeostasis and host health. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1952-1975. [PMID: 37515687 DOI: 10.1007/s11427-022-2302-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/08/2023] [Indexed: 07/31/2023]
Abstract
The gut microbiota acts as a symbiotic microecosystem that plays an indispensable role in the regulation of a number of metabolic processes in the host by secreting secondary metabolites and impacting the physiology and pathophysiology of numerous organs and tissues through the circulatory system. This relationship, referred to as the "gut-X axis", is associated with the development and progression of disorders, including obesity, fatty liver and Parkinson's disease. Given its importance, the gut flora is a vital research area for the understanding and development of the novel therapeutic approaches for multiple disorders. Iron is a common but necessary element required by both mammals and bacteria. As a result, iron metabolism is closely intertwined with the gut microbiota. The host's iron homeostasis affects the composition of the gut microbiota and the interaction between host and gut microbiota through various mechanisms such as nutrient homeostasis, intestinal peaceability, gut immunity, and oxidative stress. Therefore, understanding the relationship between gut microbes and host iron metabolism is not only of enormous significance to host health but also may offer preventative and therapeutic approaches for a number of disorders that impact both parties. In this review, we delve into the connection between the dysregulation of iron metabolism and dysbiosis of gut microbiota, and how it contributes to the onset and progression of metabolic and chronic diseases.
Collapse
Affiliation(s)
- Lanling Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Rui Tang
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Jie Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, 528308, China.
| |
Collapse
|
30
|
Zhgun AA. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int J Mol Sci 2023; 24:11184. [PMID: 37446362 PMCID: PMC10342363 DOI: 10.3390/ijms241311184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Filamentous fungi are one of the most important producers of secondary metabolites. Some of them can have a toxic effect on the human body, leading to diseases. On the other hand, they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and immunosuppressants. A single fungus species in response to various signals can produce 100 or more secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chromosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis of the available data on the "turning on" and "off" of the biosynthesis of secondary metabolites in response to signals in filamentous fungi. To describe the ongoing processes, the model of "piano regulation" is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain sound from the "musical instrument of the fungus cell", which is expressed in the production of a specific secondary metabolite.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
31
|
Patil RH, Luptáková D, Havlíček V. Infection metallomics for critical care in the post-COVID era. MASS SPECTROMETRY REVIEWS 2023; 42:1221-1243. [PMID: 34854486 DOI: 10.1002/mas.21755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/07/2023]
Abstract
Infection metallomics is a mass spectrometry (MS) platform we established based on the central concept that microbial metallophores are specific, sensitive, noninvasive, and promising biomarkers of invasive infectious diseases. Here we review the in vitro, in vivo, and clinical applications of metallophores from historical and functional perspectives, and identify under-studied and emerging application areas with high diagnostic potential for the post-COVID era. MS with isotope data filtering is fundamental to infection metallomics; it has been used to study the interplay between "frenemies" in hosts and to monitor the dynamic response of the microbiome to antibiotic and antimycotic therapies. During infection in critically ill patients, the hostile environment of the host's body activates secondary bacterial, mycobacterial, and fungal metabolism, leading to the production of metallophores that increase the pathogen's chance of survival in the host. MS can reveal the structures, stability, and threshold concentrations of these metal-containing microbial biomarkers of infection in humans and model organisms, and can discriminate invasive disease from benign colonization based on well-defined thresholds distinguishing proliferation from the colonization steady state.
Collapse
Affiliation(s)
- Rutuja H Patil
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Dominika Luptáková
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
32
|
Yang J, Banas VS, Rivera GSM, Wencewicz TA. Siderophore Synthetase DesD Catalyzes N-to-C Condensation in Desferrioxamine Biosynthesis. ACS Chem Biol 2023; 18:1266-1270. [PMID: 37207292 DOI: 10.1021/acschembio.3c00167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Desferrioxamine siderophores are assembled by the nonribosomal-peptide-synthetase-independent siderophore (NIS) synthetase enzyme DesD via ATP-dependent iterative condensation of three N1-hydroxy-N1-succinyl-cadaverine (HSC) units. Current knowledge of NIS enzymology and the desferrioxamine biosynthetic pathway does not account for the existence of most known members of this natural product family, which differ in substitution patterns of the N- and C-termini. The directionality of desferrioxamine biosynthetic assembly, N-to-C versus C-to-N, is a longstanding knowledge gap that is limiting further progress in understanding the origins of natural products in this structural family. Here, we establish the directionality of desferrioxamine biosynthesis using a chemoenzymatic approach with stable isotope incorporation and dimeric substrates. We propose a mechanism where DesD catalyzes the N-to-C condensation of HSC units to establish a unifying biosynthetic paradigm for desferrioxamine natural products in Streptomyces.
Collapse
Affiliation(s)
- Jinping Yang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Victoria S Banas
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Gerry S M Rivera
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
33
|
Puja H, Mislin GLA, Rigouin C. Engineering Siderophore Biosynthesis and Regulation Pathways to Increase Diversity and Availability. Biomolecules 2023; 13:959. [PMID: 37371539 PMCID: PMC10296737 DOI: 10.3390/biom13060959] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Siderophores are small metal chelators synthesized by numerous organisms to access iron. These secondary metabolites are ubiquitously present on Earth, and because their production represents the main strategy to assimilate iron, they play an important role in both positive and negative interactions between organisms. In addition, siderophores are used in biotechnology for diverse applications in medicine, agriculture and the environment. The generation of non-natural siderophore analogs provides a new opportunity to create new-to-nature chelating biomolecules that can offer new properties to expand applications. This review summarizes the main strategies of combinatorial biosynthesis that have been used to generate siderophore analogs. We first provide a brief overview of siderophore biosynthesis, followed by a description of the strategies, namely, precursor-directed biosynthesis, the design of synthetic or heterologous pathways and enzyme engineering, used in siderophore biosynthetic pathways to create diversity. In addition, this review highlights the engineering strategies that have been used to improve the production of siderophores by cells to facilitate their downstream utilization.
Collapse
Affiliation(s)
- Hélène Puja
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| | - Gaëtan L. A. Mislin
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| | - Coraline Rigouin
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| |
Collapse
|
34
|
Miller AL, Li S, Eichhorn CD, Zheng Y, Du L. Identification and Biosynthetic Study of the Siderophore Lysochelin in the Biocontrol Agent Lysobacter enzymogenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7418-7426. [PMID: 37158236 DOI: 10.1021/acs.jafc.3c01250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Lysobacter is a genus of bacteria emerging as new biocontrol agents in agriculture. Although iron acquisition is essential for the bacteria, no siderophore has been identified from any Lysobacter. Here, we report the identification of the first siderophore, N1,N8-bis(2,3-dihydroxybenzoyl)spermidine (lysochelin), and its biosynthetic gene cluster from Lysobacter enzymogenes. Intriguingly, the deletion of the spermidine biosynthetic gene encoding arginine decarboxylase or SAM decarboxylase eliminated lysochelin and the antifungals, HSAF and its analogues, which are key to the disease control activity and to the survival of Lysobacter under oxidative stresses caused by excess iron. The production of lysochelin and the antifungals is greatly affected by iron concentration. Together, the results revealed a previously unrecognized system, in which L. enzymogenes produces a group of small molecules, lysochelin, spermidine, and HSAF and its analogues, that are affected by iron concentration and critical to the growth and survival of the biocontrol agent.
Collapse
Affiliation(s)
- Amanda Lynn Miller
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Shanren Li
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Catherine D Eichhorn
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Yongbiao Zheng
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
35
|
Zhang L, Ma X, Li Q, Cui H, Shi K, Wang H, Zhang Y, Gao S, Li Z, Wang AJ, Liang B. Complementary Biotransformation of Antimicrobial Triclocarban Obviously Mitigates Nitrous Oxide Emission toward Sustainable Microbial Denitrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7490-7502. [PMID: 37053517 DOI: 10.1021/acs.est.2c08732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sustainable nitrogen cycle is an essential biogeochemical process that ensures ecosystem safety and byproduct greenhouse gas nitrous oxide reduction. Antimicrobials are always co-occurring with anthropogenic reactive nitrogen sources. However, their impacts on the ecological safety of microbial nitrogen cycle remain poorly understood. Here, a denitrifying bacterial strain Paracoccus denitrificans PD1222 was exposed to a widespread broad-spectrum antimicrobial triclocarban (TCC) at environmental concentrations. The denitrification was hindered by TCC at 25 μg L-1 and was completely inhibited once the TCC concentration exceeded 50 μg L-1. Importantly, the accumulation of N2O at 25 μg L-1 of TCC was 813 times as much as the control group without TCC, which attributed to the significantly downregulated expression of nitrous oxide reductase and the genes related to electron transfer, iron, and sulfur metabolism under TCC stress. Interestingly, combining TCC-degrading denitrifying Ochrobactrum sp. TCC-2 with strain PD1222 promoted the denitrification process and mitigated N2O emission by 2 orders of magnitude. We further consolidated the importance of complementary detoxification by introducing a TCC-hydrolyzing amidase gene tccA from strain TCC-2 into strain PD1222, which successfully protected strain PD1222 against the TCC stress. This study highlights an important link between TCC detoxification and sustainable denitrification and suggests a necessity to assess the ecological risks of antimicrobials in the context of climate change and ecosystem safety.
Collapse
Affiliation(s)
- Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Qian Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
36
|
Cui F, Fan R, Wang D, Li J, Li T. Research progress on iron uptake pathways and mechanisms of foodborne microorganisms and their application in the food sector. Crit Rev Food Sci Nutr 2023; 64:8892-8910. [PMID: 37099732 DOI: 10.1080/10408398.2023.2204491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Iron is one of the essential nutrients for almost all microorganisms. Under iron-limited conditions, bacteria can secrete siderophores to the outside world to absorb iron for survival. This process requires the coordinated action of energy-transducing proteins, transporters, and receptors. The spoilage factors of some spoilage bacteria and the pathogenic mechanism of pathogenic bacteria are also closely related to siderophores. Meanwhile, some siderophores have also gradually evolved toward beneficial aspects. First, a variety of siderophores are classified into three aspects. In addition, representative iron uptake systems of Gram-negative and Gram-positive bacteria are described in detail to understand the common and specific pathways of iron uptake by various bacteria. In particular, the causes of siderophore-induced bacterial pathogenicity and the methods and mechanisms of inhibiting bacterial iron absorption under the involvement of siderophores are presented. Then, the application of siderophores in the food sector is mainly discussed, such as improving the food quality of dairy products and meat, inhibiting the attack of pathogenic bacteria on food, improving the plant growth environment, and promoting plant growth. Finally, this review highlights the unresolved fate of siderophores in the iron uptake system and emphasizes further development of siderophore-based substitutes for traditional drugs, new antibiotic-resistance drugs, and vaccines in the food and health sectors.
Collapse
Affiliation(s)
- Fangchao Cui
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Rongsen Fan
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- College of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, China
| |
Collapse
|
37
|
A Four-Step Platform to Optimize Growth Conditions for High-Yield Production of Siderophores in Cyanobacteria. Metabolites 2023; 13:metabo13020154. [PMID: 36837773 PMCID: PMC9967094 DOI: 10.3390/metabo13020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In response to Iron deprivation and in specific environmental conditions, the cyanobacteria Anabaena flos aquae produce siderophores, iron-chelating molecules that in virtue of their interesting environmental and clinical applications, are recently gaining the interest of the pharmaceutical industry. Yields of siderophore recovery from in vitro producing cyanobacterial cultures are, unfortunately, very low and reach most of the times only analytical quantities. We here propose a four-step experimental pipeline for a rapid and inexpensive identification and optimization of growth parameters influencing, at the transcriptional level, siderophore production in Anabaena flos aquae. The four-steps pipeline consists of: (1) identification of the promoter region of the operon of interest in the genome of Anabaena flos aquae; (2) cloning of the promoter in a recombinant DNA vector, upstream the cDNA coding for the Green Fluorescent Protein (GFP) followed by its stable transformation in Escherichia Coli; (3) identification of the environmental parameters affecting expression of the gene in Escherichia coli and their application to the cultivation of the Anabaena strain; (4) identification of siderophores by the combined use of high-resolution tandem mass spectrometry and molecular networking. This multidisciplinary, sustainable, and green pipeline is amenable to automation and is virtually applicable to any cyanobacteria, or more in general, to any microorganisms.
Collapse
|
38
|
Xiao Y, Chen L, Li C, Ma J, Chen R, Yang B, Liu G, Liu S, Fang J. Role of the rhizosphere bacterial community in assisting phytoremediation in a lead-zinc area. FRONTIERS IN PLANT SCIENCE 2023; 13:1106985. [PMID: 36874912 PMCID: PMC9982732 DOI: 10.3389/fpls.2022.1106985] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Heavy metals (HMs) contamination and vegetation destruction in the mining area caused by mining activities are severely increasing. It is urgent to restore vegetation and stabilize HMs. In this study, we compared the ability of HMs phytoextraction/phytostabilization of three dominant plants, including Artemisia argyi (LA), Miscanthus floridulus (LM), and Boehmeria nivea (LZ) in a lead-zinc mining area in Huayuan County (China). We also explored the role of the rhizosphere bacterial community in assisting phytoremediation using 16S rRNA sequencing technology. Bioconcentration factor (BCF) and translocation factor (TF) analysis showed that LA preferred accumulating Cd, LZ preferred accumulating Cr and Sb, and LM preferred accumulating Cr and Ni. Significant (p < 0.05) differences were found among the rhizosphere soil microbial communities of these three plants. The key genera of LA were Truepera and Anderseniella, that of LM were Paracoccus and Erythrobacter, and of LZ was Novosphingobium. Correlation analysis showed some rhizosphere bacterial taxa (e.g., Actinomarinicola, Bacillariophyta and Oscillochloris) affected some soil physicochemical parameters (e.g., organic matter and pH) of the rhizosphere soil and enhanced the TF of metals. Functional prediction analysis of soil bacterial community showed that the relative abundances of genes related to the synthesis of some proteins (e.g., manganese/zinc-transporting P-type ATPase C, nickel transport protein and 1-aminocyclopropane-1-carboxylate deaminase) was positively correlated with the phytoextraction/phytostabilization capacity of plants for heavy metals. This study provided theoretical guidance on selecting appropriate plants for different metal remediation applications. We also found some rhizosphere bacteria might enhance the phytoremediation of multi-metals, which could provide a reference for subsequent research.
Collapse
Affiliation(s)
- Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chunxiao Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jingjing Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Rui Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Bo Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Shuming Liu
- College of Chemical and Environmental Sciences, YiLi Normal University, YiLi, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
39
|
Grosse C, Brandt N, Van Antwerpen P, Wintjens R, Matthijs S. Two new siderophores produced by Pseudomonas sp. NCIMB 10586: The anti-oomycete non-ribosomal peptide synthetase-dependent mupirochelin and the NRPS-independent triabactin. Front Microbiol 2023; 14:1143861. [PMID: 37032897 PMCID: PMC10080011 DOI: 10.3389/fmicb.2023.1143861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Globisporangium ultimum is an oomycetal pathogen causing damping-off on over 300 different plant hosts. Currently, as for many phytopathogens, its control relies in the use of chemicals with negative impact on health and ecosystems. Therefore, many biocontrol strategies are under investigation to reduce the use of fungicides. Results In this study, the soil bacterium Pseudomonas sp. NCIMB 10586 demonstrates a strong iron-repressed in vitro antagonism against G. ultimum MUCL 38045. This antagonism does not depend on the secretion of the broad-range antibiotic mupirocin or of the siderophore pyoverdine by the bacterial strain. The inhibitor molecule was identified as a novel non-ribosomal peptide synthetase (NRPS) siderophore named mupirochelin. Its putative structure bears similarities to other siderophores and bioactive compounds. The transcription of its gene cluster is affected by the biosynthesis of pyoverdine, the major known siderophore of the strain. Besides mupirochelin, we observed the production of a third and novel NRPS-independent siderophore (NIS), here termed triabactin. The iron-responsive transcriptional repression of the two newly identified siderophore gene clusters corroborates their role as iron scavengers. However, their respective contributions to the strain fitness are dissimilar. Bacterial growth in iron-deprived conditions is greatly supported by pyoverdine production and, to a lesser extent, by triabactin. On the contrary, mupirochelin does not contribute to the strain fitness under the studied conditions. Conclusion Altogether, we have demonstrated here that besides pyoverdine, Pseudomonas sp. NCIMB 10586 produces two newly identified siderophores, namely mupirochelin, a weak siderophore with strong antagonism activity against G. ultimum, and the potent siderophore triabactin.
Collapse
Affiliation(s)
- Camille Grosse
- Unité de Recherche NaturaMonas, Institut de Recherche LABIRIS, Brussels, Belgium
| | - Nathalie Brandt
- Unité de Recherche NaturaMonas, Institut de Recherche LABIRIS, Brussels, Belgium
| | - Pierre Van Antwerpen
- RD3 – Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - René Wintjens
- Unité Microbiologie, Chimie Bioorganique et Macromoléculaire, Department of Research in Drug Development (RD3), Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Sandra Matthijs
- Unité de Recherche NaturaMonas, Institut de Recherche LABIRIS, Brussels, Belgium
- *Correspondence: Sandra Matthijs,
| |
Collapse
|
40
|
Alam K, Islam MM, Islam S, Hao J, Abbasi MN, Hayat M, Shoaib M, Zhang Y, Li A. Comparative genomics with evolutionary lineage in Streptomyces bacteria reveals high biosynthetic potentials. World J Microbiol Biotechnol 2022; 39:64. [PMID: 36581678 DOI: 10.1007/s11274-022-03433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022]
Abstract
Genome mining in silico approaches allow scientists to proficiently evaluate the genomic potency of secondary bioactive chemical producers and find new bioactive compounds in different bacteria. Streptomyces is one of the most ubiquitous bacterial genera in the environments, and well-known as prolific producers of diverse and valuable natural products (NPs) with significant biological activities. Mining and prioritizing of NP biosynthetic gene clusters (BGCs) would be the most important stage in the identification of novel compounds. Comparative genomics and genetic similarity network analysis of 62 Streptomyces public reference genomes demonstrated that individuals of these species exhibit a huge number of distinct NP BGCs, the most of which are cryptic and unconnected to any reported NPs with high phylogenetic variation among individuals. It was assumed that substantial heterogeneity across the varieties of species of Streptomyces drives outstanding biosynthetic and metabolic potential, making them plausible candidates for the identification of novel molecules.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Md Mahmudul Islam
- Department of Microbiology, Rajshahi Institute of Biosciences (RIB), Affiliated University of Rajshahi, Rajshahi, 6212, Bangladesh
| | - Saiful Islam
- Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, 4220, Bangladesh
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Muhammad Nazeer Abbasi
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Muhammad Hayat
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Muhammad Shoaib
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
41
|
Li WR, Zhang ZQ, Liao K, Wang BB, Liu HZ, Shi QS, Huang XB, Xie XB. Pseudomonas aeruginosa heteroresistance to levofloxacin caused by upregulated expression of essential genes for DNA replication and repair. Front Microbiol 2022; 13:1105921. [PMID: 36620018 PMCID: PMC9816134 DOI: 10.3389/fmicb.2022.1105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a common cause of severe chronic infections, has developed heteroresistance to several antibiotics, thus hindering successful treatment. In this study, we aimed to investigate the characteristics and mechanisms underlying levofloxacin (LVX) heteroresistance in P. aeruginosa PAS71 and PAS81 clinical isolates using a combination of physiological and biochemical methods, bacterial genomics, transcriptomics, and qRT-PCR. The six P. aeruginosa strains, namely PAS71, PAS72, PAS81, PAS82, ATCC27853, and PAO1, were studied. The Kirby-Bauer (K-B), minimum inhibitory concentration (MIC) test, and population analysis profile (PAP) experimental results showed that PAS71, PAS81, ATCC27853, and PAO1 were heteroresistant to LVX, with MIC of 0.25, 1, 0.5, and 2 μg/ml, respectively; PAS72 and PAS82 were susceptible to LVX with a MIC of 0.25 and 0.5 μg/ml, respectively. The resistance of PAS71 and PAS81 heteroresistant subpopulations was unstable and had a growth fitness cost. Genomic and transcriptomic results proved that the unstable heteroresistance of PAS71 and PAS81 was caused by elevated expression of essential genes involved in DNA replication and repair, and homologous recombination, rather than their genomic single-nucleotide polymorphism (SNP) and insertion-deletion (InDel) mutations. Additionally, PAS71 and PAS81 enhanced virulence and physiological metabolism, including bacterial secretion systems and biosynthesis of siderophore group nonribosomal peptides, in response to LVX stress. Our results suggest that the upregulation of key genes involved in DNA replication and repair, and homologous recombination causes unstable heteroresistance in P. aeruginosa against LVX. This finding provides novel insights into the occurrence and molecular regulation pathway of P. aeruginosa heteroresistant strains.
Collapse
Affiliation(s)
- Wen-Ru Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhi-Qing Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Kang Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bei-Bei Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Hui-Zhong Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Qing-Shan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Xu-Bin Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,Xu-Bin Huang,
| | - Xiao-Bao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China,*Correspondence: Xiao-Bao Xie,
| |
Collapse
|
42
|
Jasrotia P, Sharma S, Nagpal M, Kamboj D, Kashyap PL, Kumar S, Mishra CN, Kumar S, Singh GP. Comparative transcriptome analysis of wheat in response to corn leaf aphid, Rhopalosiphum maidis F. infestation. FRONTIERS IN PLANT SCIENCE 2022; 13:989365. [PMID: 36507434 PMCID: PMC9730506 DOI: 10.3389/fpls.2022.989365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Aphids are one of the most important insect pests of wheat crop in all wheat growing regions of the world. Amongst various aphid species, the corn leaf aphid (Rhopalosiphum maidis F.) is considered one of the most destructive insect pests of wheat in the North Western Plains region of India. Transcriptome profiling of highly susceptible wheat Triticum durum genotype, A-9-30-1 and tolerant wheat Triticum aestivum genotype, HD2967 was performed to investigate aphid-host interactions. The results obtained from differential gene expression analysis of R. maidis on the highly susceptible genotype, A-9-30-1 plants, when compared with the tolerant genotype, HD2967, showed that 212 genes were significantly upregulated and 1009 genes were significantly downregulated. Our findings demonstrated that the genes associated with defense were significantly higher in response to R. maidis on HD2967 as compared to A-9-30-1. Additionally, various genes with physiological attributes were expressed during aphid attack. Based on gene ontology classification, three classifications, such as, cellular components (CC), molecular function (MF), and biological processes (BP) of sequences were identified. KEGG enrichment analysis revealed that twenty-five pathway genes were differentially expressed during the infestation of wheat with R. maidis. Notable changes were observed in A-9-30-1 and HD2967 transcriptomic profiling after infestation. The results obtained in the present study will help to elucidate the mechanism governing host-pest interaction and may lead to the development of new methods for increasing the resistance level of wheat against R. maidis, including over-expression of defense-related genes.
Collapse
Affiliation(s)
- Poonam Jasrotia
- Division of Crop Protection, ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Samriti Sharma
- Division of Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Mohini Nagpal
- Division of Crop Protection, ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Disha Kamboj
- Division of Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Prem Lal Kashyap
- Division of Crop Protection, ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Satish Kumar
- Division of Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Chandra Nath Mishra
- Division of Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Sudheer Kumar
- Division of Crop Protection, ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Gyanendra Pratap Singh
- Division of Crop Improvement, ICAR- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| |
Collapse
|
43
|
Bacterial Siderophores: Structure, Functions, and Role in the Pathogenesis of Infections. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2022. [DOI: 10.21055/0370-1069-2022-3-14-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review systematizes and analyzes the data published over the past decade, devoted to the study of low-molecular-weight high affinity iron chelators – siderophores. Siderophores, which are found in bacteria, fungi and mammals, are able to extract iron from insoluble inorganic compounds, and in the host organism – from complexes with proteins that perform the function of nonspecific protection of mammals from infections. The extracted iron is delivered to cells through surface protein receptors specific for each siderophore, as well as various protein transport systems that make up membranes. Siderophores play an important role in virulence in pathogenic bacteria, performing many functions in the host organism, in addition to providing microbes with iron and other biological metals. They participate in the storage of excess iron, toxic to cells, protect bacteria from reactive oxygen compounds, compete for iron with phagocytes, and have a harmful effect on host cells, acting as secreted bacterial toxin in some cases. Bacterial siderophores perform a signaling function and regulate both, their own synthesis and the synthesis of other virulence factors. Many pathogenic bacteria produce several siderophores that are active under different conditions, against various sources of iron in the host organism and at different stages of infectious process. The review presents the results of the experimental studies aimed at elucidating the structure and diverse functions of bacterial siderophores, the mechanisms of their biosynthesis and regulation of expression, as well as the role of these molecules in the physiology and virulence of pathogenic bacteria. Special emphasis is put on siderophores of bacteria causing particularly dangerous infections.
Collapse
|
44
|
Ghssein G, Ezzeddine Z. The Key Element Role of Metallophores in the Pathogenicity and Virulence of Staphylococcus aureus: A Review. BIOLOGY 2022; 11:1525. [PMID: 36290427 PMCID: PMC9598555 DOI: 10.3390/biology11101525] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
The ubiquitous bacterium Staphylococcus aureus causes many diseases that sometimes can be fatal due to its high pathogenicity. The latter is caused by the ability of this pathogen to secrete secondary metabolites, enabling it to colonize inside the host causing infection through various processes. Metallophores are secondary metabolites that enable bacteria to sequester metal ions from the surrounding environment since the availability of metal ions is crucial for bacterial metabolism and virulence. The uptake of iron and other metal ions such as nickel and zinc is one of these essential mechanisms that gives this germ its virulence properties and allow it to overcome the host immune system. Additionally, extensive interactions occur between this pathogen and other bacteria as they compete for resources. Staphylococcus aureus has high-affinity metal import pathways including metal ions acquisition, recruitment and metal-chelate complex import. These characteristics give this bacterium the ability to intake metallophores synthesized by other bacteria, thus enabling it to compete with other microorganisms for the limited nutrients. In scarce host conditions, free metal ions are extremely low because they are confined to storage and metabolic molecules, so metal ions are sequestered by metallophores produced by this bacterium. Both siderophores (iron chelating molecules) and staphylopine (wide- spectrum metallophore) are secreted by Staphylococcus aureus giving it infectious properties. The genetic regulation of the synthesis and export together with the import of metal loaded metallophores are well established and are all covered in this review.
Collapse
Affiliation(s)
- Ghassan Ghssein
- Department of Laboratory Sciences, Faculty of Public Health, Islamic University of Lebanon, Khalde P.O. Box 30014, Lebanon
| | - Zeinab Ezzeddine
- Department of Laboratory Sciences, Faculty of Public Health, Islamic University of Lebanon, Khalde P.O. Box 30014, Lebanon
| |
Collapse
|
45
|
Zhou D, Yin Z, Li X, Cui Y, Cheng Q, Du B, Liu K, Wang C, Ding Y. Complete Genome Sequence of Pseudomonas chloritidismutans 6L11 with Plant Growth-Promoting and Salt-Tolerant Properties. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:870-874. [PMID: 36104310 DOI: 10.1094/mpmi-01-22-0029-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Dandan Zhou
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Zhiqiu Yin
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Xujian Li
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Yanru Cui
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Qi Cheng
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Binghai Du
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Kai Liu
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Chengqiang Wang
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yanqin Ding
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
46
|
Pang F, Solanki MK, Wang Z. Streptomyces can be an excellent plant growth manager. World J Microbiol Biotechnol 2022; 38:193. [PMID: 35980475 DOI: 10.1007/s11274-022-03380-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/07/2022] [Indexed: 11/27/2022]
Abstract
Streptomyces, the most abundant and arguably the most important genus of actinomycetes, is an important source of biologically active compounds such as antibiotics, and extracellular hydrolytic enzymes. Since Streptomyces can have a beneficial symbiotic relationship with plants they can contribute to nutrition, health and fitness of the latter. This review article summarizes recent research contributions on the ability of Streptomyces to promote plant growth and improve plant tolerance to biotic and abiotic stress responses, as well as on the consequences, on plant health, of the enrichment of rhizospheric soils in Streptomyces species. This review summarizes the most recent reports of the contribution of Streptomyces to plant growth, health and fitness and suggests future research directions to promote the use of these bacteria for the development of a cleaner agriculture.
Collapse
Affiliation(s)
- Fei Pang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-701, Katowice, Poland.
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, China.
| |
Collapse
|
47
|
Reitz ZL, Medema MH. Genome mining strategies for metallophore discovery. Curr Opin Biotechnol 2022; 77:102757. [PMID: 35914390 DOI: 10.1016/j.copbio.2022.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
Many bacteria use small-molecule chelators called metallophores to acquire trace metals from their environment. These molecules play a central role in interactions between bacteria, plants, and animals. Hence, knowing their full diversity is key to combatting infectious diseases as well as harnessing beneficial microbial communities. Metallophore discovery has been streamlined by advances in genome mining, where genomes are scanned for genes involved in metallophore biosynthesis. This review highlights recent trends and advances in predicting the presence and structure of metallophores based solely on genomic information. Recent work suggests new families of metallophores remain hidden from current homology-based approaches. Their discovery will require new genome mining approaches that move beyond biosynthesis to consider metallophore transporters, regulation, and evolution.
Collapse
Affiliation(s)
- Zachary L Reitz
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands.
| |
Collapse
|
48
|
Yang J, Banas VS, Patel KD, Rivera GSM, Mydy LS, Gulick AM, Wencewicz TA. An acyl-adenylate mimic reveals the structural basis for substrate recognition by the iterative siderophore synthetase DesD. J Biol Chem 2022; 298:102166. [PMID: 35750210 PMCID: PMC9356276 DOI: 10.1016/j.jbc.2022.102166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Siderophores are conditionally essential metabolites used by microbes for environmental iron sequestration. Most Streptomyces strains produce hydroxamate-based desferrioxamine (DFO) siderophores composed of repeating units of N1-hydroxy-cadaverine (or N1-hydroxy-putrescine) and succinate. The DFO biosynthetic operon, desABCD, is highly conserved in Streptomyces; however, expression of desABCD alone does not account for the vast structural diversity within this natural product class. Here, we report the in vitro reconstitution and biochemical characterization of four DesD orthologs from Streptomyces strains that produce unique DFO siderophores. Under in vitro conditions, all four DesD orthologs displayed similar saturation steady-state kinetics (Vmax = 0.9–2.5 μM⋅min−1) and produced the macrocyclic trimer DFOE as the favored product, suggesting a conserved role for DesD in the biosynthesis of DFO siderophores. We further synthesized a structural mimic of N1-hydroxy-N1-succinyl-cadaverine (HSC)-acyl-adenylate, the HSC-acyl sulfamoyl adenosine analog (HSC-AMS), and obtained crystal structures of DesD in the ATP-bound, AMP/PPi-bound, and HSC-AMS/Pi-bound forms. We found HSC-AMS inhibited DesD orthologs (IC50 values = 48–53 μM) leading to accumulation of linear trimeric DFOG and di-HSC at the expense of macrocyclic DFOE. Addition of exogenous PPi enhanced DesD inhibition by HSC-AMS, presumably via stabilization of the DesD–HSC-AMS complex, similar to the proposed mode of adenylate stabilization where PPi remains buried in the active site. In conclusion, our data suggest that acyl-AMS derivatives may have utility as chemical probes and bisubstrate inhibitors to reveal valuable mechanistic and structural insight for this unique family of adenylating enzymes.
Collapse
Affiliation(s)
- Jinping Yang
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri, USA
| | - Victoria S Banas
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri, USA
| | - Ketan D Patel
- Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo, Buffalo, New York, USA
| | - Gerry S M Rivera
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri, USA
| | - Lisa S Mydy
- Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo, Buffalo, New York, USA
| | - Andrew M Gulick
- Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo, Buffalo, New York, USA.
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
49
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022. [PMID: 35672469 DOI: 10.1007/s00253-022-11995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
50
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022; 106:3985-4004. [PMID: 35672469 DOI: 10.1007/s00253-022-11995-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal. .,CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal. .,LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|