1
|
El Brouzi MY, Adadi N, Lamtai M, Boulahfa H, Zghari O, Fath N, Rezqaoui A, El Hamzaoui A, Njimat S, El Hessni A, Mesfioui A. Effects of Nickel Bioaccumulation on Hematological, Biochemical, Immune Responses, Neuroinflammatory, Oxidative Stress Parameters, and Neurotoxicity in Rats. Biol Trace Elem Res 2025:10.1007/s12011-025-04528-x. [PMID: 39891830 DOI: 10.1007/s12011-025-04528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
Nickel (Ni) exposure is linked to numerous health issues, including dermatitis, immunotoxicity, and cancer. Emerging evidence suggests Ni may cross the blood-brain barrier, accumulating in the brain and causing neuroinflammation, oxidative stress, and neuronal apoptosis. Herein, we investigated the effect of Ni exposure through the intraperitoneal route, studying the Ni effect in subacute and chronic toxicity, on various health parameters in Wistar rats. Rats were randomly divided into four groups (n = 10 per group): two groups received a daily intraperitoneal injection of NiCl₂ at a dose of 0.25 mg/kg for subacute (21 days) or chronic (60 days) exposure periods, while the other two groups were treated with NaCl solution (0.9%) as a control for equivalent durations. The study assessed behavioral, biochemical, hematological, immunological, neurobiochemical, and histopathological effects over 21 and 60 days. Neurobehavioral tests, blood and tissue analyses, and organ examinations were conducted. This study demonstrates that Ni bioaccumulation in subacute and chronic exposure has significant health impacts in Wistar rats, including hematological, immunological, biochemical, AchE activity, neuroinflammatory, oxidative stress, and neurobehavioral changes. Chronic exposure results in higher Ni accumulation, particularly in the brain, causing neurotoxicity, inflammation, and behavioral disorders such as anxiety, depression, and memory impairment. The findings highlight the importance of limiting Ni exposure to prevent adverse health effects.
Collapse
Affiliation(s)
- Mohamed Yassine El Brouzi
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco.
| | - Najlae Adadi
- Higher Institute of Nursing and Health Professions of Dakhla, Dakhla, Morocco
| | - Mouloud Lamtai
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Hafsa Boulahfa
- Laboratory of Biology and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Oussama Zghari
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Nada Fath
- Compared Anatomy Unit, School of Veterinary Medicine, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
- Physiology and Pathophysiology Laboratory, Department of Biology, Faculty of Sciences, Mohamed V University, Rabat, Morocco
| | - Ayoub Rezqaoui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Abdelghafour El Hamzaoui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Smail Njimat
- Laboratory of Materials, Electrochemistry and Environment, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
2
|
Olasehinde TA, Olaniran AO. Assessment of Neurotoxic Mechanisms of Individual and Binary Mixtures of Cobalt, Nickel and Lead in Hippocampal Neuronal Cells. ENVIRONMENTAL TOXICOLOGY 2025; 40:128-139. [PMID: 39365032 PMCID: PMC11628647 DOI: 10.1002/tox.24418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024]
Abstract
Many studies have focused on the neurotoxic effects of single metals, while investigation on the exposure to metal mixtures, which mainly occur in real-life situations, is scarce. This study sought to assess the neurotoxic effect of Ni, Co, and Pb binary mixtures and their individual effects in hippocampal neuronal cells (HT-22). Cells were exposed to Ni, Co, and Pb separately for 48 h at 37°C and 5% CO2, and cell viability was assessed. Morphological assessment of the cells exposed to binary mixtures of Co, Ni, and Pb and single metals was assessed using a microscope. Furthermore, acetylcholinesterase (AChE) activity, oxidative stress biomarkers (glutathione [GSH] and malondialdehyde [MDA] levels, catalase [CAT], and glutathione-S transferase [GST] activities) and nitric oxide [NO] levels were evaluated after treatment with the binary mixtures and single metals. Binary mixtures of the metals reduced cell viability, exerting an additivity action. The combinations also exerted synergistic action, as revealed by the combination index. Furthermore, a significant reduction in AChE activity, GSH levels, CAT and GST activities, and high MDA and NO levels were observed in neuronal cells. The additive interactions and synergistic actions of the binary mixtures might contribute to the significant reduction of AChE activity, GSH levels, GST, and CAT activities, and an increase in MDA and NO levels. The findings from this study revealed significant evidence that binary mixtures of Co, Pb, and Ni may induce impaired neuronal function and, ultimately, neurodegeneration.
Collapse
Affiliation(s)
- Tosin A. Olasehinde
- Nutrition and Toxicology Division, Food Technology DepartmentFederal Institute of Industrial ResearchLagosNigeria
- Discipline of Microbiology, School of Life SciencesUniversity of Kwazulu‐NatalDurbanSouth Africa
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life SciencesUniversity of Kwazulu‐NatalDurbanSouth Africa
| |
Collapse
|
3
|
Knoll S, Cappai MG. Foraging Activity of Honey Bees (Apis mellifera L., 1758) and Exposure to Cadmium: a Review. Biol Trace Elem Res 2024; 202:5733-5742. [PMID: 38443599 PMCID: PMC11502587 DOI: 10.1007/s12011-024-04118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Honey bees are commonly exposed to a broad spectrum of xenobiotics, including heavy metals. Heavy metal toxicity is of concern in the context of global pollinator declines, especially since honey bees seem to be particularly susceptible to xenobiotics in general. Here we summarize current knowledge on the interplay between cadmium, one of the most toxic and mobile elements in the environment, and honey bees, the primary managed pollinator species worldwide. Overall, cadmium pollution has been shown to be ubiquitous, affecting industrial, urban and rural areas alike. Uptake of this heavy metal by plants serves as the primary route of exposure for bees (through pollen and nectar). Reported cadmium toxicity consists of lethal and sublethal effects (reduced development and growth) in both adult and larval stages, as well as various molecular responses related to detoxification and cellular antioxidant defence systems. Other effects of cadmium in honey bees include the disruption of synaptic signalling, calcium metabolism and muscle function.
Collapse
Affiliation(s)
- Stephane Knoll
- Institute of Animal Productions of the Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Maria Grazia Cappai
- Institute of Animal Productions of the Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| |
Collapse
|
4
|
Wang T, Zhang L, Yao Z, Jin L, Zhang W, Feng X, Ma W, Lin M. Response of earthworm enzyme activity and gut microbial functional diversity to carbendazim in the manured soil. Front Microbiol 2024; 15:1461880. [PMID: 39411442 PMCID: PMC11473445 DOI: 10.3389/fmicb.2024.1461880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The effect of pesticide pollution on environmental microorganisms in soil has become the focus of widespread concern in society today. The response of earthworm gut and surrounding soil microbial functional diversity and enzyme activity to carbendazim (CBD) was studied in a soil-earthworm ecosystem amended with manure. In the experiment, CBD was added to the manured soil (MS). Meanwhile, the pesticide treatment without manure and the control treatment without pesticides were also set up. The activities of catalase (CAT) and acetylcholinesterase (AChE) were measured to evaluate the toxicity of CBD. The Biolog method was used to assess the functional diversity of the microbial community. In the 2 mg/kg CBD treatment, earthworm AChE activity decreased significantly in the MS after 14 d, which occurred earlier than in the un-manured soil (NS). The changes of earthworm CAT activity in the pesticide treatments showed a trend of initially increasing and then maintaining at a high activity level. However, the CAT activities at 28 d in the manured soils were clearly lower than that at 7 d for both the CBD treatments, while they remained stable in the control treatments. The carbon source utilization, Simpson index, Shannon index, and McIntosh index of soil microorganisms in the MS treatments were significantly higher than those in the NS treatments. The overall activity of earthworm gut microorganisms in the MS treated with 2 mg/kg CBD was higher than that in the control. Also, CBD treatment (2 mg/kg) increased significantly the Simpson index and McIntosh index of earthworm gut microorganisms. The results indicated that the enzyme activities in the manured soils increased before 7 d for the pesticide treatments. Furthermore, exposure to CBD at a high concentration in the MS not only led to the earlier inhibition of earthworm enzyme activity but also significantly improved the overall activity of earthworm gut microorganisms and microbial functional diversity. This study revealed the ecotoxicological effects of earthworms in response to pesticide stress following the use of organic fertilizers under facility environmental conditions, which can provide a theoretical basis for the remediation of pesticide pollution in soil in the future.
Collapse
Affiliation(s)
- Tianyu Wang
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Liping Zhang
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Zhoulin Yao
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Longfei Jin
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Weiqing Zhang
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Xianju Feng
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| | - Weibin Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mei Lin
- Key Laboratory of Fruit and Vegetable Function and Health Research of Taizhou, Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences, Taizhou, China
| |
Collapse
|
5
|
Dab H, Ben Hamed S, Jery A, Chehidi A, Zourgui L. Effect of Salvia officinalis aqueous infusion on copper sulfate-induced inflammatory response and oxidative stress imbalance in mice liver and kidney. Drug Chem Toxicol 2024; 47:587-596. [PMID: 37357715 DOI: 10.1080/01480545.2023.2228516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023]
Abstract
Extracts of Salvia officinalis (S. officinalis) have been described to have many therapeutic properties. However, the effect of S. officinalis on copper sulfate toxicity has not been previously reported. The aim of this study was to investigate the toxicity of copper sulfate and the potential beneficial effects of S. officinalis aqueous infusion on proinflammatory response and antioxidant status. 56 male mice were used and equally divided into 6 groups: control group, copper sulfate treated group (40 mg/kg), S. officinalis aqueous infusion treated groups (200 mg/kg and 400 mg/kg) separately or in combination with copper. IL-6 (interleukine-6) and TNF-α (Tumor necrosis factor alpha) were assessed by Elisa. Catalase (CAT), superoxide dismutase (SOD) and acetylcholinesterase (AChE) activities, malondialdehyde (MDA) and oxygen peroxide levels were determined. Serum biochemical parameters were analyzed. Copper enhanced aspartate aminotransferase (AST), alanine aminotransferase (ALT) and Lactate dehydrogenase (LDH) (p < 0.05). Copper enhances significantly IL-6, TNF-α and MDA levels in liver and kidney and reduced CAT, SOD and AChE activities (p < 0.05). Aqueous infusion of S. officinalis at 400 mg/kg abolished copper-induced changes in AST and ALT activity. S. officinalis aqueous infusion at 200 mg/kg reversed copper-induced IL-6 in kidney and TNF-α in liver at both doses. S. officinalis aqueous infusion at 400 mg/kg restored SOD in kidney and CAT and AChE activities in both liver and kidney. S. officinalis aqueous infusion may be useful in partially ameliorating tissue disorders induced by copper exposure such as inflammatory response, oxidative stress imbalance and organ dysfunction through its phenolic compounds and higher antioxidant capacity.
Collapse
Affiliation(s)
- Houcine Dab
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Said Ben Hamed
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Institut Pasteur de Tunis, Tunisia
| | - Amel Jery
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Amel Chehidi
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Lazhar Zourgui
- Laboratory of Biodiversity, Molecules, Applications, (LR22ES02) Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| |
Collapse
|
6
|
Zhou L, Lian C, He Y, Chi X, Chen H, Zhong Z, Wang M, Cao L, Wang H, Zhang H, Li C. Toxicology assessment of deep-sea mining impacts on Gigantidas platifrons: A comparative in situ and laboratory metal exposure study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173184. [PMID: 38750754 DOI: 10.1016/j.scitotenv.2024.173184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Deep-sea toxicology is essential for deep-sea environmental impact assessment. Yet most toxicology experiments are conducted solely in laboratory settings, overlooking the complexities of the deep-sea environment. Here we carried out metal exposure experiments in both the laboratory and in situ, to compare and evaluate the response patterns of Gigantidas platifrons to metal exposure (copper [Cu] or cadmium [Cd] at 100 μg/L for 48 h). Metal concentrations, traditional biochemical parameters, and fatty acid composition were assessed in deep-sea mussel gills. The results revealed significant metal accumulation in deep-sea mussel gills in both laboratory and in situ experiments. Metal exposure could induce oxidative stress, neurotoxicity, an immune response, altered energy metabolism, and changes to fatty acid composition in mussel gills. Interestingly, the metal accumulating capability, biochemical response patterns, and fatty acid composition each varied under differing experimental systems. In the laboratory setting, Cd-exposed mussels exhibited a higher value for integrated biomarker response (IBR) while in situ the Cu-exposed mussels instead displayed a higher IBR value. This study emphasizes the importance of performing deep-sea toxicology experiments in situ and contributes valuable data to a standardized workflow for deep-sea toxicology assessment.
Collapse
Affiliation(s)
- Li Zhou
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chao Lian
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yameng He
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xupeng Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Chen
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoshan Zhong
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lei Cao
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 10049, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
7
|
Peluso J, Martínez Chehda A, Olivelli MS, Ivanic FM, Butler M, Aparicio V, De Geronimo E, Gonzalez F, Valenzuela L, Candal RJ, Aronzon CM. Impacts of cattle management and agricultural practices on water quality through different approaches: physicochemical and ecotoxicological parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45177-45191. [PMID: 38961017 DOI: 10.1007/s11356-024-34059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
The intensification of livestock farming can pose risks to the environment due to the increased use of veterinary products and the generation of waste in confined areas. The quality of water bodies near livestock establishments (Areco River (A) and Doblado stream (D), San Antonio de Areco, Buenos Aires, Argentina) was studied by physicochemical parameters, metals, pesticides, emerging contaminants, and lethal and sublethal toxicity (neurotoxicity and oxidative stress) in larvae of the native amphibian Rhinella arenarum. Six sites were selected: upstream (S1A and S1D), at the level (S2A and S2D), and downstream (S3A and S3D) from the establishments. A low concentration of dissolved oxygen was observed in Doblado stream (< 2.34 mg/L). Cu, Mn, V, and Zn exceeded the limits for the protection of aquatic life at various sites. Between 24 and 34 pesticides were detected in all sites, with 2,4-D, atrazine, and metolachlor being the most recurrent. In water and sediment, the concentrations of ivermectin (S2A, 1.32 μg/L and 58.18 μg/kg; S2D, 0.8 μg/L and 85.22 μg/kg) and oxytetracycline (S2A, < 1 mg/L and < 1 mg/kg; S2D, 11.8 mg/L and 39 mg/kg) were higher at sites near the establishments. All sites caused between 30 and 38.3% of lethality and produced neurotoxicity and alterations in the reduced glutathione content. Moreover, larvae exposed to samples from all sites incorporated ivermectin. These results demonstrate the degradation of the studied sites in relation to the agricultural activities of the area, highlighting the need to take measures to protect and preserve aquatic ecosystems.
Collapse
Affiliation(s)
- Julieta Peluso
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Agostina Martínez Chehda
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Melisa S Olivelli
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Federico M Ivanic
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Matías Butler
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia Aparicio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria, Balcarce, Buenos Aires, Argentina
| | - Eduardo De Geronimo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria, Balcarce, Buenos Aires, Argentina
| | - Florencia Gonzalez
- Laboratorio de Fluorescencia de Rayos X, Gerencia Química, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Lautaro Valenzuela
- Laboratorio de Fluorescencia de Rayos X, Gerencia Química, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Roberto J Candal
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina M Aronzon
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Di Noi A, Caliani I, D'Agostino A, Cai G, Romi M, Campani T, Ferrante F, Baracchi D, Casini S. Assessing the effects of a commercial fungicide and an herbicide, alone and in combination, on Apis mellifera: Insights from biomarkers and cognitive analysis. CHEMOSPHERE 2024; 359:142307. [PMID: 38734252 DOI: 10.1016/j.chemosphere.2024.142307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/20/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Agrochemicals play a vital role in protecting crops and enhancing agricultural production by reducing threats from pests, pathogens and weeds. The toxicological status of honey bees can be influenced by a number of factors, including pesticides. While extensive research has focused on the lethal and sublethal effects of insecticides on individual bees and colonies, it is important to recognise that fungicides and herbicides can also affect bees' health. Unfortunately, in the field, honey bees are exposed to mixtures of compounds rather than single substances. This study aimed to evaluate the effects of a commercial fungicide and a commercial herbicide, both individually and in combination, on honey bees. Mortality assays, biomarkers and learning and memory tests were performed, and the results were integrated to assess the toxicological status of honey bees. Neurotoxicity (acetylcholinesterase and carboxylesterase activities), detoxification and metabolic processes (glutathione S-transferase and alkaline phosphatase activities), immune system function (lysozyme activity and haemocytes count) and genotoxicity biomarkers (Nuclear Abnormalities assay) were assessed. The fungicide Sakura® was found to activate detoxification enzymes and affect alkaline phosphatase activity. The herbicide Elegant 2FD and the combination of both pesticides showed neurotoxic effects and induced detoxification processes. Exposure to the herbicide/fungicide mixture impaired learning and memory in honey bees. This study represents a significant advance in understanding the toxicological effects of commonly used commercial pesticides in agriculture and contributes to the development of effective strategies to mitigate their adverse effects on non-target insects.
Collapse
Affiliation(s)
- Agata Di Noi
- Department of Life Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy.
| | - Antonella D'Agostino
- Department of Economics and Statistics, University of Siena, Piazza S. Francesco 7, 53100 Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Marco Romi
- Department of Life Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| | - Federico Ferrante
- Department of Ecological and Biological Science, Tuscia University, Largo dell'Università s.n.c., 01100 6, Viterbo, Italy
| | - David Baracchi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, Siena, 53100, Italy
| |
Collapse
|
9
|
Benrahma H, Bouhallaoui M, Elhaimeur B, Bessi H. Environmental assessment of the central Atlantic coast of Morocco using a multibiomarker approach in Mytilus galloprovincialis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35320-35331. [PMID: 38730214 DOI: 10.1007/s11356-024-33478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024]
Abstract
A multibiomarker approach helps assess environmental health as it provides a complete tool to understand the effects of environmental stressors on ecosystems and human health. We applied this approach in the central Atlantic Ocean of Morocco, an area subjected to the impact of many types of pollutants, threatening the durability of its resources. In this study, four biomarkers acetylcholinesterase (AChE), glutathione-s-transferase (GST), metallothioneins (MTs), and catalase (CAT) were measured in the digestive gland of the mussel Mytilus galloprovincialis collected from four sites: Imsouane (S1), Cap Ghir (S2), Imi Ouaddar (S3), and Douira (S4). These sites were chosen due to the diversity of impacts ranging from industrial to agricultural and touristic. We also assembled all the enzymatic responses (AChE, GST, CAT, and MTs), using the integrated biomarker response (IBR), to estimate the degree of impact of pollutants at the prospected sites to reveal all the complex interactions between biomarkers and to classify sites via the integrated approach. Results show a seasonal change in biomarker responses with variability between sites. We also recorded the highest levels of AChE inhibition and GST induction in S1, higher levels of catalase activity in S4, and a significant impact on metallothionein concentration in S1 and S3. This project highlights the interest in using a multibiomarker approach to ensure accurate interpretation of biomarker variation to protect the Moroccan coast and its resources.
Collapse
Affiliation(s)
- Hamza Benrahma
- Laboratory of Ecotoxicology, The National Institute of Fisheries Research, Casablanca Regional Centre, Casablanca, Morocco.
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University of Hassan II Casablanca, Mohammedia, Morocco.
| | - Mina Bouhallaoui
- Laboratory of Ecotoxicology, The National Institute of Fisheries Research, Casablanca Regional Centre, Casablanca, Morocco
| | - Bouchra Elhaimeur
- Laboratory of Ecotoxicology, The National Institute of Fisheries Research, Casablanca Regional Centre, Casablanca, Morocco
| | - Hlima Bessi
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University of Hassan II Casablanca, Mohammedia, Morocco
| |
Collapse
|
10
|
da Silva JA, Martins MDF, Guedes TDA, Collares GL, Primel EG, Corrêa MG, Martins CDMG. The use of integrative tools and multiple models for aquatic environmental quality assessment: a case study of the Mirim Lagoon, Southern Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:200. [PMID: 38270819 DOI: 10.1007/s10661-024-12336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
This study performed toxicity assays with microalgae, microcrustaceans, and fish as well as evaluated biochemical and behavioral biomarkers in fish and microcrustaceans to assess the quality of the surface water of Mirim Lagoon, which belongs to one of the largest hydrographic basins in the world, located in southern Brazil. Three distinct sampling periods were chosen (January, March, and June 2022) based on the rice plantation dynamics which is the main activity surrounding the lagoon. In January, the plantation is irrigated; in March, the water is drained into the Mirim Lagoon, and July is the off-season. Concerning toxicity tests, there was significant inhibition in microalgae growth when exposed to water collected in March, but no mortality was observed for Ceriodaphia dubia, Daphnia magna, and Danio rerio. Regarding biomarkers, behavioral variables contributed more to the higher values of the Integrated Biomarker Response (IBR) index for both D. magna and D. rerio, in March. The Redundancy Analysis (RDA) indicated a correlation between the biomarkers for both organisms and abiotic parameters, mainly nutrients (total phosphorus and total nitrogen), thermotolerant coliforms, total solids, and turbidity. Spatially, there was no difference during monitoring, but the most significant ecotoxicological effects were observed in March. Multivariate analysis and the IBR index proved to be useful tools for monitoring of water bodies such as Mirim Lagoon.
Collapse
Affiliation(s)
- Josiane Araujo da Silva
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Av, Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Mariana da Fountoura Martins
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Thays de Andrade Guedes
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Gilberto Loguercio Collares
- Centro de Desenvolvimento Tecnológico, Núcleo de Ensino, Pesquisa e Extensão em Hidrometria e Sedimentologia para o Manejo de Bacias Hidrográficas (NEPE-HIDROSEDI), Universidade Federal de Pelotas, Rua Gomes Carneiro 01, Pelotas, RS, 96010-610, Brazil
| | - Ednei Gilberto Primel
- Escola de Química e Alimentos, Programa de Pós Graduação em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Marília Guidotti Corrêa
- Centro de Desenvolvimento Tecnológico, Núcleo de Ensino, Pesquisa e Extensão em Hidrometria e Sedimentologia para o Manejo de Bacias Hidrográficas (NEPE-HIDROSEDI), Universidade Federal de Pelotas, Rua Gomes Carneiro 01, Pelotas, RS, 96010-610, Brazil
- Escola de Química e Alimentos, Programa de Pós Graduação em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Camila de Martinez Gaspar Martins
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Av, Itália Km 8, Rio Grande, RS, 96203-900, Brazil.
- Instituto de Ciências Biológicas, Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Av Itália Km 8, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
11
|
González MP, Cordero-de-Castro A, Salvatierra D, Kholssi R, Fernandes MN, Blasco J, Araújo CVM, Pereira CDS. Multi-level biological responses of Daphnia magna exposed to settleable atmospheric particulate matter from metallurgical industries. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106692. [PMID: 37722152 DOI: 10.1016/j.aquatox.2023.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Metallurgical industries are a continuous source of air pollution due to the amount of settleable particulate matter (SePM) they release. This SePM is a complex mixture formed by metallic nanoparticles and metals, which reach terrestrial and aquatic ecosystems and can be a significant source of contamination. The aim of this study was to evaluate the adverse effects of SePM at different levels of biological organization in order to estimate its ecological impacts on aquatic ecosystems. For this purpose, the crustacean Daphnia magna was exposed to different concentrations of SePM (0.01, 0.1, 1, 5, 10 g/L) using a multi-level response approach. The endpoints studied were: avoidance throughout 24 h in a non-forced exposure system, reproduction (total number of neonates per female after 21 days of exposure), acetylcholinesterase activity (AChE) after 48 h, and finally, the feeding rates during a short-term exposure (48 h) and a long-term exposure (21 day + 48 h). There was a negative effect of SePM on all responses measured at high concentrations. The avoidance was concentration-dependent and represented 88 % and 100 % at the two highest concentrations. The AChE activity was significantly inhibited at 5 and 10 g/L. The total number of neonates increased from 1 g/L of SePM and the first brood occurred earlier as of 5 g/L compared to control. The post-exposure feeding rates were lower during long-term exposure at the highest concentration. Chemical analyses were performed to characterize the metals present in this SePM, but this study did not report any direct relationship with toxicity, due to the chemical heterogeneity of the particles. The emission of compounds caused by anthropogenic activity may have significant ecological consequences, so it is important to consider these possible effects on aquatic biota generated by the mixture of metals present in SePM originated from metallurgical activities. Environmental and sectorial regulations are needed to prevent contamination and ecological disturbances.
Collapse
Affiliation(s)
- María Pilar González
- Department of Ecology and Coastal, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), 11519 Puerto Real, Spain.
| | - Andrea Cordero-de-Castro
- Department of Ecology and Coastal, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), 11519 Puerto Real, Spain
| | - David Salvatierra
- Department of Ecology and Coastal, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), 11519 Puerto Real, Spain
| | - Rajaa Kholssi
- Department of Ecology and Coastal, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), 11519 Puerto Real, Spain
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Julián Blasco
- Department of Ecology and Coastal, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), 11519 Puerto Real, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), 11519 Puerto Real, Spain
| | - Camilo Dias Seabra Pereira
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Campus Baixada Santista, 11030-100 Santos, São Paulo, Brazil
| |
Collapse
|
12
|
Hamouda AF, Felemban S. A Bio-Indicator Pilot Study Screening Selected Heavy Metals in Female Hair, Nails, and Serum from Lifestyle Cosmetic, Canned Food, and Manufactured Drink Choices. Molecules 2023; 28:5582. [PMID: 37513454 PMCID: PMC10386365 DOI: 10.3390/molecules28145582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Lifestyles, genetic predispositions, environmental factors, and geographical regions are considered key factors of heavy metals initiatives related to health issues. Heavy metals enter the body via the environment, daily lifestyle, foods, beverages, cosmetics, and other products. The accumulation of heavy metals in the human body leads to neurological issues, carcinogenesis, failure of multiple organs in the body, and a reduction in sensitivity to treatment. We screened for Cr, Al, Pb, and Cd in selected foods, beverages, and cosmetics products depending on questionnaire outcomes from female volunteers. We also screened for Cr, Al, Pb, and Cd on hair, nails, and serum samples using inductively coupled plasma mass spectrometry (ICP-MS) from the same volunteers, and we analyzed the serum cholinesterase and complete blood picture (CBC). We performed an AutoDock study on Cr, Al, Pb, and Cd as potential ligands. Our results indicate that the most elevated heavy metal in the cosmetic sample was Al. In addition, in the food and beverages samples, it was Pb and Al, respectively. The results of the questionnaire showed that 71 percent of the female volunteers used the studied cosmetics, food, and beverages, which were contaminated with Cr, Al, Pb, and Cd, reflecting the high concentration of Cr, Al, Cd, and Pb in the three different types of biological samples of sera, nails, and hair of the same females, with 29 percent of the female volunteers not using the products in the studied samples. Our results also show an elevated level of cholinesterase in the serum of group 1 that was greater than group 2, and this result was confirmed by AutoDock. Moreover, the negative variation in the CBC result was compared with the reference ranges. Future studies should concentrate on the actions of these heavy metal contaminations and their potential health consequences for various human organs individually.
Collapse
Affiliation(s)
- Asmaa Fathi Hamouda
- Department of Biochemistry, Faculty of Science, University of Alexandria, Alexandria 21111, Egypt
| | - Shifa Felemban
- Department of Chemistry, Faculty of Applied Science, University College-Al Leith, University of Umm Al-Qura, Makkah 21955, Saudi Arabia
| |
Collapse
|
13
|
Iheanacho SC, Ekpenyong J, Nwose R, Adeolu AI, Offu P, Amadi-Eke A, Iheanacho AC, Ogunji J. Effects of burnt tire-ash on Na +/K +, Ca 2+-ATPase, serum immunoglobulin and brain acetylcholinesterase activities in clarias gariepinus (Burchell, 1822). Drug Chem Toxicol 2023; 46:503-509. [PMID: 35416109 DOI: 10.1080/01480545.2022.2061987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aquatic pollution may continue to deepen following the emergence of new class of toxicants. The present study investigated the effect of water-soluble fraction of burnt tire-ash on Clarias gariepinus. The fish were exposed to sublethal doses; 0.00 g/L, 2.24 g/L, 1.12 g/L and 0.56 g/L of tire-ash solution, representing 1/5, 1/10 and 1/20 of 11.2 g/L median lethal concentration (96 LC50), for 28 days, followed by 14 days recovery trial. Biological sampling was done on exposure day 1, 14 and 28, and on day14 recovery period for biochemical analysis such as the liver and gill Na+/K+ and Ca2+-ATPase, serum immunoglobulin (IgM) and brain acetylcholinesterase (AChE) of the experimental fish. Also, body biomass and behavior were evaluated. The behavioral responses exhibited by the fish to BTA exposure include reduced feeding, hypoactivity, air gulping and skin discoloration, which was observed to be concentration dependent. The body weight of 2.24 g/L and 1.12 g/L BTA-exposed fish decreased significantly than 0.56 g/L exposed fish and the control. Furthermore, findings revealed evident induction of Na+/K+ and Ca2 +-ATPase activities in both tissues, elevation of serum immunoglobulin content and inhibition of AChE activity in the brain of the exposed fish relative to the control. However, it was also observed that the biochemical parameters normalized after the recovery period. In conclusion, water-soluble fraction of burnt tire-ash produced toxicological effects in the experimental model, hence the present study provides the ecotoxicological insight of tire ash.
Collapse
Affiliation(s)
- Stanley C Iheanacho
- Department of Fisheries and Aquaculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria.,Department of Zoology and Environmental Biology, University of Nigeria Nsukka, Enugu, Nigeria
| | - Joshua Ekpenyong
- Department of Fisheries and Aquaculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| | - Roseline Nwose
- Department of Agriculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| | - Adewale I Adeolu
- Department of Agriculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| | - Peter Offu
- Department of Political Science, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| | - Akunna Amadi-Eke
- Department of Fisheries and Aquaculture Technology, Federal University of Technology Owerri, Imo, Nigeria
| | - Angus C Iheanacho
- Department of Chemistry and Industrial Chemistry, University of Nigeria Nsukka, Enugu, Nigeria
| | - Johnny Ogunji
- Department of Fisheries and Aquaculture, Alex Ekwueme Federal University Ndufu Alike, Ebonyi, Nigeria
| |
Collapse
|
14
|
Mesquita AF, Gonçalves FJM, Gonçalves AMM. The Lethal and Sub-Lethal Effects of Fluorinated and Copper-Based Pesticides-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3706. [PMID: 36834400 PMCID: PMC9963512 DOI: 10.3390/ijerph20043706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
In recent decades, pollution levels have increased, mainly as a result of the intensive anthropogenic activities such industrial development, intensive agricultural practices, among others. The impact of metals and organic contaminants is, nowadays, a great concern to the scientific and political communities. Copper compounds are the main sold pesticides in Europe, as well as herbicides, including glyphosate. Diphenyl ethers are the second ones most sold. Glyphosate and copper compounds are intensively studied, but the opposite is seen in the case of diphenyl ethers, including fluorinated pesticides (e.g., oxyfluorfen). Some research has been performed to increase the knowledge about these contaminants, daily inputted on the aquatic systems and with dangerous effects at physical and biochemical levels on the organisms. A wide range of biomarkers (e.g., growth, survival, reproductive success, enzymatic activity, lipid metabolism) has been applied to determine the potential effects in many species. This review intends to: (a) perform a compilation of the knowledge in previous research about the action mode of organic (fluorinated-based herbicide) and inorganic (copper-based pesticides) contaminants; (b) carry out an information survey about the lethal and sub-lethal effects of the fluorinated-based pesticides, namely the oxyfluorfen and the copper-based pesticides, on aquatic species from different trophic levels, according to in vitro and in vivo studies; (c) understand the impact of oxyfluorfen and copper-based pesticides, considering their effects reported in in vitro studies and, simultaneously, the authorized concentrations by legal organizations and the effective concentrations of each pollutant found in the environment. The literature analyzed revealed noxious effects of Cu and oxyfluorfen to aquatic organisms, including freshwater and marine species, even when exposed to the reference as well as to environmental concentrations, thus highlighting the importance of more monitoring and ecotoxicological studies, to chemical pollutants and different species from different ecological niches, to sustain and improve the legislation.
Collapse
Affiliation(s)
- Andreia F. Mesquita
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Ana M. M. Gonçalves
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, 3000-456 Coimbra, Portugal
| |
Collapse
|
15
|
Capolupo M, Rafiq A, Coralli I, Alessandro T, Valbonesi P, Fabbri D, Fabbri E. Bioplastic leachates characterization and impacts on early larval stages and adult mussel cellular, biochemical and physiological responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120951. [PMID: 36581238 DOI: 10.1016/j.envpol.2022.120951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Bioplastics are promoted as safer alternatives to tackle the long-term persistence of conventional plastics. However, information on the potential release of additives and non-intentionally added substances (NIAS) in the surrounding environment is limited, and biological effects of the leachates have been little studied. Leachates produced from three bioplastics, i.e. compostable bags (CB), bio-polyethylene terephthalate bottles (bioPET) and polylactic acid cups (PLA), and a control polymeric material, i.e. rubber tire (TR), were examined. The chemical nature of bioplastic polyesters PET, PLA and poly (butylene adipate-co-terephthalate) (PBAT) in CB, was confirmed by analytical pyrolysis. Fragments were incubated in artificial sea water for 14 days at 20 °C in darkness and leachate contents examined by GC-MS and HPLC-MS/MS. Catalysts and stabilizers represented the majority of chemicals in TR, while NIAS (e.g. 1,6-dioxacyclododecane-7,12-dione) were the main components of CB. Bisphenol A occurred in all leachates at a concentration range 0.3-4.8 μg/L. Trace metals at concentrations higher than control water were found in all leachates, albeit more represented in leachates from CB and TR. A dose response to 11 dilutions of leachates (in the range 0.6-100%) was tested for biological effects on early embryo stages of Mytilus galloprovincialis. Embryotoxicity was observed in the whole range of tested concentrations, the magnitude of effect depending on the polymers. The highest concentrations caused reduction of egg fertilization (CB, bioPET, TR) and of larvae motility (CB, PLA, TR). TR leachates also provoked larvae mortality in the range 10-100%. Effects on adult mussel physiology were evaluated after a 7-day in vivo exposure to the different leachates at 0.6% concentration. Nine biomarkers concerning lysosomal functionality, neurotransmission, antioxidant and immune responses were assessed. All lysosomal parameters were affected, and serum lysozyme activity inhibited. Harmonized chemical and biological approaches are recommended to assess bioplastic safety and support production of sustainable bioplastics.
Collapse
Affiliation(s)
- Marco Capolupo
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Ayesha Rafiq
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna
| | - Irene Coralli
- Department of Chemistry "Giacomo Ciamician", Technopole of Rimini, University of Bologna, Italy
| | - Tanya Alessandro
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna
| | - Paola Valbonesi
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna
| | - Daniele Fabbri
- Department of Chemistry "Giacomo Ciamician", Technopole of Rimini, University of Bologna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna.
| |
Collapse
|
16
|
Kontchou JA, Baetz N, Grabner D, Nachev M, Tuerk J, Sures B. Pollutant load and ecotoxicological effects of sediment from stormwater retention basins to receiving surface water on Lumbriculus variegatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160185. [PMID: 36395831 DOI: 10.1016/j.scitotenv.2022.160185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The overflow of stormwater retention basins during intense and prolonged precipitation events may result in the direct input of particulate pollutants and remobilization of already sedimented particle-bound pollutants to receiving freshwater bodies. Particle-bound pollutants may cause adverse effects on aquatic biota, particularly sediment dwellers. Therefore, we investigated the sediment pollution load of a stream connected to the outfalls of two stormwater basins to determine the impact of the basins' discharges on the metal and organic pollutant content of the sediment. Also, the possible adverse effects of the pollutant load on benthic dwellers were evaluated in sediment toxicity tests with Lumbriculus variegatus and the effects on its growth, reproduction and the biomarkers catalase, acetylcholinesterase and metallothionein were analyzed. The results showed that the retention basins contained the highest load of pollutants. The pollutant load in the stream did not show a clear pollution pattern from the inlets. However, metal enrichment ratios revealed contamination with Cu, Pb and Zn with Pb and Zn above threshold effect concentrations in all sites. Ecotoxicity results showed that the retention basin samples were the most toxic compared to sediment from the stream. Exposure experiments with the stream sediment did not show considerable effects on reproduction, catalase activity and metallothionein concentration. However, modest inhibitions of growth and activity of acetylcholinesterase were detected. Based on the observed results, it cannot be concluded that overflows of the retention basin are responsible for the pollutant contents downstream of their inlet. Other sources that were not considered in this study, such as diffuse input, historic pollution and point sources further upstream as well as along the stream, are likely the major contributors of pollutant load in the sediment of the studied transects of the stream. Additionally, the observed results in the stormwater basin sediment further highlight their importance in retaining particle-bound pollutants and preventing ecotoxicological effects from receiving surface water bodies.
Collapse
Affiliation(s)
- Julios Armand Kontchou
- Department of Aquatic Ecology, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany.
| | - Nicolai Baetz
- Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Daniel Grabner
- Department of Aquatic Ecology, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Milen Nachev
- Department of Aquatic Ecology, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jochen Tuerk
- Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Bernd Sures
- Department of Aquatic Ecology, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| |
Collapse
|
17
|
Santos D, Abrantes N, Campos I, Domingues I, Lopes I. Effects of aqueous extracts of wildfire ashes on tadpoles of Pelophylax perezi: Influence of plant coverage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158746. [PMID: 36116652 DOI: 10.1016/j.scitotenv.2022.158746] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Wildfires have been pointed out as an important source of diffuse contamination to aquatic ecosystems, namely through the input of toxic compounds such as polycyclic aromatic hydrocarbons and metals. However, amphibians' responses to this disturbance have been largely ignored. Hence, this study intended to assess how ashes from Pinus sp. and Eucalyptus sp. plantation forests affect tadpoles of Pelophylax perezi. Tadpoles were exposed 14 days to serial concentrations (26.9 %-100 %) of aqueous extracts of ashes (AEA, with 10 g L-1 of ashes) containing Eucalypt (ELS) and Pine (PLS) ashes. The following endpoints were measured: mortality, malformations, developmental stage, body length and weight. Effects at sub-individual level were also monitored for oxidative stress, neurotoxicity, and energetic metabolism. Chemical characterization of the AEA of ELS showed higher concentrations of As, Cd, Co, Cr, Pb and V, while PLS showed higher concentrations of Cu, Mn, Ni and Zn. Concerning the lethal effects of AEAs on tadpoles, both extracts were able to induce mortality at high concentrations (76.9 and/or 100 % of AEA), although a high variability in the response was found. A significant mortality in tadpoles exposed to ELS was observed at the concentration of 76.9 %. For organisms exposed to PLS, though a mortality above 20 % was registered at the two highest tested concentrations, it was not significantly different from the control. No significant sub-lethal effects were observed in the ELS treatments. Contrasting, exposure to PLS induced a decrease in body length, weight, glutathione-S-transferase activity and an increase in oxygen consumption. Overall, the distinct effects of ELS and PLS suggest an influence of vegetation cover in ash toxicity. In conclusion, exposure to both ash extracts negatively affected sublethal responses of tadpoles of P. perezi. Future research is needed to assess how these effects at individual level may translate into effects at population level.
Collapse
Affiliation(s)
- Diogo Santos
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Nelson Abrantes
- Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel Campos
- Department of Environment and Planning, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Inês Domingues
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
18
|
Caliani I, Cannicci S, Pretti C, Baratti M, Contini G, Vitale M, Casini S, Fossi MC, Iannucci A, Fratini S. A multidisciplinary integrated approach using Pachygrapsus marmoratus to assess the impact of port activities on mediterranean marine protected areas. CHEMOSPHERE 2023; 312:137129. [PMID: 36356813 DOI: 10.1016/j.chemosphere.2022.137129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The establishment of marine protected areas is considered the main global strategy to halt the loss of marine biodiversity. Since most of marine areas are open systems, this form of habitat protection cannot prevent their contamination due to human activities performed outside of their borders. Innovative approaches to assess the health status of protected marine habitats are therefore needed. Here we developed a multidisciplinary approach that combines ecological characteristics, bioaccumulation of inorganic and organic pollutants, cell damage (micronuclei frequency, nuclear alterations and LPO) and enzymatic (AChE, CAT, IDH, LDH, GST and CAT) markers focused on an intertidal brachyuran crab, Pachygrapsus marmoratus, to assess the impacts of contaminant exposure on Mediterranean coastal habitats. As study sites we selected two protected areas and two sites within industrial ports of the Ligurian Sea. Our results showed that the selected crab species is an excellent bioindicator. Individuals collected in sites with the highest levels of heavy metal pollution showed the highest signals of stress responses at both cellular and enzymatic levels, coupled with a high incidence of the parasite Sacculina carcini, a signal of impairment of their standard development and reproduction cycle. We could also prove that one of the selected marine protected areas showed the same intensity of impact as its adjacent port site. Our multidisciplinary approach proved to be a valuable tool to assess the environmental quality and health of protected and disturbed Mediterranean coastal environments and to inform efficient management and protection schemes for such habitats.
Collapse
Affiliation(s)
- Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Stefano Cannicci
- Department of Biology, University of Florence, Via Madonna Del Piano 6 - 50019 Sesto Fiorentino Italy; The Swire Institute of Marine Science and Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, PR China.
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, Livorno, I-57128, Italy; Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, Pisa, I-56124, Italy.
| | - Mariella Baratti
- Institute of Biosciences and Bioresources, IBBR-CNR, Via Madonna Del Piano 10, Sesto Fiorentino, (FI), I-50019, Italy.
| | - Ginevra Contini
- Department of Biology, University of Florence, Via Madonna Del Piano 6 - 50019 Sesto Fiorentino Italy.
| | - Matteo Vitale
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Alessio Iannucci
- Department of Biology, University of Florence, Via Madonna Del Piano 6 - 50019 Sesto Fiorentino Italy.
| | - Sara Fratini
- Department of Biology, University of Florence, Via Madonna Del Piano 6 - 50019 Sesto Fiorentino Italy.
| |
Collapse
|
19
|
Marić Đ, Antonijević Miljaković E, Marić J, Javorac D, Baralić K, Đukić-Ćosić D, Bulat Z, Antonijević B, Buha Djordjevic A. Influence of toxic metal mixture on acetylcholinesterase activity in subchronic exposure in rats. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.03.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Đurđica Marić
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade – Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade – Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Jana Marić
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade – Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade – Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade – Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade – Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade – Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade – Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade – Faculty of Pharmacy, 11221 Belgrade, Serbia
| |
Collapse
|
20
|
Amer NR, Lawler SP, Zohdy NM, Younes A, ElSayed WM, Wos G, Abdelrazek S, Omer H, Connon RE. Copper Exposure Affects Anti-Predatory Behaviour and Acetylcholinesterase Levels in Culex pipiens (Diptera, Culicidae). INSECTS 2022; 13:1151. [PMID: 36555061 PMCID: PMC9782022 DOI: 10.3390/insects13121151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Copper is an essential metal that occurs chronically in the environment and affects the development and physiology of aquatic insects. In excess amounts, it can impair their nervous system and behaviour. We tested the anti-predatory behaviour of Cx. pipiens larvae after seven days exposure with several concentrations of copper up to 500 mg L-1. We measured responses to non- consumptive (predation cues) and consumptive predation (dragonfly larvae) across two generations. We also tested the accumulated effect of copper on AChE enzyme activity. We exposed half of treated and control larvae to predation cues (water with predator odour and crushed conspecifics) and the other half to water without predation cues. We evaluated total distance moved and velocity. Copper reduced the distance moved and velocity, with stronger effects in the second generation. Copper had no significant effect on larvae eaten by dragonflies. Copper inhibited the AChE enzyme across both generations at 500 µg L-1. Copper can affect the nervous system directly by inhibiting AChE activity, and possibly also by impairing the olfaction sensors of the larvae, resulting in larval inability to detect predation cues.
Collapse
Affiliation(s)
- Nermeen R. Amer
- Entomology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Krakow, Poland
| | - Sharon P. Lawler
- Entomology and Nematology Department, University of California Davis, Davis, CA 95616, USA
| | - Nawal M. Zohdy
- Entomology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Aly Younes
- Entomology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Wael M. ElSayed
- Entomology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Guillaume Wos
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Krakow, Poland
| | - Samah Abdelrazek
- Department of Anatomy, Physiology & Cell Biology, University of California Davis, Davis, CA 95616, USA
| | - Hind Omer
- Entomology and Nematology Department, University of California Davis, Davis, CA 95616, USA
| | - Richard E. Connon
- Department of Anatomy, Physiology & Cell Biology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
21
|
Bjørklund G, Antonyak H, Polishchuk A, Semenova Y, Lesiv M, Lysiuk R, Peana M. Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals. Arch Toxicol 2022; 96:3175-3199. [PMID: 36063174 DOI: 10.1007/s00204-022-03366-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Methylmercury (MeHg) is a global environmental pollutant with neurotoxic effects. Exposure to MeHg via consumption of seafood and fish can severely impact fetal neurobehavioral development even when MeHg levels in maternal blood are as low as about 5 μg/L, which the mother tolerates well. Persistent motor dysfunctions and cognitive deficits may result from trans-placental exposure. The present review summarizes current knowledge on the mechanisms of MeHg toxicity during the period of nervous system development. Although cerebellar Purkinje cells are MeHg targets, the actions of MeHg on thiol components in the neuronal cytoskeleton as well as on mitochondrial enzymes and induction of disturbances of glutamate signaling can impair extra-cerebellar functions, also at levels well tolerated by adult individuals. Numerous herbal substances possess neuroprotective effects, predominantly represented by natural polyphenolic molecules that might be utilized to develop natural drugs to alleviate neurotoxicity symptoms caused by MeHg or other Hg compounds.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | | | | | | | - Marta Lesiv
- Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
22
|
Benchaâbane S, Ayad AS, Loucif-Ayad W, Soltani N. Multibiomarker responses after exposure to a sublethal concentration of thiamethoxam in the African honeybee (Apis mellifera intermissa). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109334. [PMID: 35351619 DOI: 10.1016/j.cbpc.2022.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
Thiamethoxam is an insecticide mainly used in agriculture to control insect pests. However, non-target insect species, such as honeybees, may also be impacted. In this study, adults of Apis mellifera intermissa were orally exposed under laboratory conditions to a sublethal concentration of thiamethoxam (CL25= 0.17 ng/μl) for 9 days and the effects were evaluated at the biochemical level, by monitoring specific oxidative stress and neuronal biomarkers. Results showed an increase in the antioxidant enzymes, glutatione-S-transferase (GST), catalase (CAT) and glutathione peroxidase (GPx) and in content of malondialdehyde (MDA). The activity of acetylcholinesterase (AChE) was downregulated as evidence of a neurotoxic action and no significant change was observed in glutathione (GSH). Exposure to the insecticide thiamethoxam induced oxidative stress and defense mechanisms affecting honeybee physiology.
Collapse
Affiliation(s)
- S Benchaâbane
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria.
| | - A S Ayad
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria
| | - W Loucif-Ayad
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria; Faculty of Medicine, Badji Mokhtar University, Annaba 23000, Algeria
| | - N Soltani
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria
| |
Collapse
|
23
|
Biyiklioglu Z, Keleş T, Sahin H. Synthesis and acetylcholinesterase enzyme inhibition properties of axially disubstituted silicon phthalocyanines and their quaternized derivatives. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Boukadida K, Banni M, Romero-Ramirez A, Clerandeau C, Gourves PY, Cachot J. Metal contamination and heat stress impair swimming behavior and acetylcholinesterase activity in embryo-larval stages of the Mediterranean mussel, Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105677. [PMID: 35738152 DOI: 10.1016/j.marenvres.2022.105677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/27/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Behavioral parameters are increasingly considered sensitive and early bioindicators of toxicity in aquatic organisms. A video-tracking tool was specifically developed to monitor the swimming behaviour of D-larvae of the Mediterranean mussel, Mytilus galloprovincialis, in controlled laboratory conditions. Both maximum and average swimming speeds and trajectories were recorded. We then investigated the impact of copper and silver with or without a moderate rise of temperature on swimming behavior and acetylcholinesterase (AChE) activity of mussel D-larvae and the possible mechanistic link between both biological responses. Our results showed that copper and/or silver exposure, as well as temperature increase, disrupts the swimming behavior of mussel larvae which could compromise their dispersal and survival. In addition, the combined effect of temperature and metals significantly (p < 0.05) increased AChE activity in mussel larvae. Pearson's correlation analysis was performed and results showed that the AChE activity is positively correlated with maximum speeds (r = 0.71, p < 0.01). This study demonstrates the value of behavioral analyzes of aquatic invertebrates as a sensitive and integrate marker of the effects of stressors.
Collapse
Affiliation(s)
- Khouloud Boukadida
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France; Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042, Sousse, Tunisia.
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042, Sousse, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Alicia Romero-Ramirez
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| | - Christelle Clerandeau
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| | - Pierre-Yves Gourves
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| | - Jérôme Cachot
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| |
Collapse
|
25
|
Mese Y, Tuncsoy B, Ozalp P. Effects of Cu, Zn and their mixtures on bioaccumulation and antioxidant enzyme activities in Galleria mellonella L. (Lepidoptera: Pyralidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:649-656. [PMID: 35296951 DOI: 10.1007/s10646-022-02531-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The effects of Cu, Zn and their mixture on bioaccumulation and antioxidant enzyme activities of midgut and fat body of Galleria mellonella larvae were investigated. Exposure to mixtures of both metals showed a synergistic effect and the accumulation levels were increased in both tissues. When the metals were exposed separately the concentration of Zn increased in both tissues, whereas the concentration of Cu increased in midgut and decreased in fat body. Also, it was determined that, oxidative stress occurred in the midgut and fat body when G. mellonella larvae were fed singly and in a mixture with different concentrations of Cu and Zn. In addition, significant changes were observed in antioxidant and detoxification enzyme activities, which are an indicator of oxidative stress. Larvae of G. mellonella showed immune responses similar to vertebrates, and could be used as bioindicator species due to being grown easily in the laboratory and reduced research costs Understanding the detoxification mechanism in insects is an important parameter for future ecotoxicological studies on the genotoxic, cytotoxic and physiological effects that different environmental pollutants such as heavy metals can cause.
Collapse
Affiliation(s)
- Yagmur Mese
- Faculty of Science and Letters, Biology Department, Cukurova University, Adana, Turkey
| | - Benay Tuncsoy
- Bioengineering Department, Adana Alparslan Turkes Science and Technology University, Adana, Turkey.
| | - Pınar Ozalp
- Faculty of Science and Letters, Biology Department, Cukurova University, Adana, Turkey
| |
Collapse
|
26
|
Cuccaro A, Oliva M, De Marchi L, Vieira Sanches M, Bontà Pittaluga G, Meucci V, Battaglia F, Puppi D, Freitas R, Pretti C. Biochemical response of Ficopomatus enigmaticus adults after exposure to organic and inorganic UV filters. MARINE POLLUTION BULLETIN 2022; 178:113601. [PMID: 35367697 DOI: 10.1016/j.marpolbul.2022.113601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/31/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
With the increase of UV filters usage and consequent release into aquatic environments, the concerns about their potential ecological risks are also increasing. According to this, in the present study, adult polychaetes of the species Ficopomatus enigmaticus were chronically exposed to three concentrations (0.01, 0.1 and 0.5 mg/L) of organic and inorganic filters (Ethylhexyl methoxycinnamate (EHMC) and nanoparticulate Zinc oxide (nZnO), respectively) in order to analyse biochemical responses related to cellular damage, antioxidant defence, biotransformation mechanisms and, lastly, neurotoxicity. Despite major lipid peroxidation caused by EHMC was observed, both UV filters have produced the same response patterns. In details, a clear concentration-dependent activation of glutathione S-transferases and a significant decrease of acetylcholinesterase levels defined an important neurotoxic effect was observed for both contaminants. These results become important to expand the limited scientific literature on biochemical responses of marine and brackish water invertebrates to organic and inorganic UV filters.
Collapse
Affiliation(s)
- Alessia Cuccaro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Matteo Oliva
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy.
| | - Lucia De Marchi
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | | | - Gianluca Bontà Pittaluga
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Valentina Meucci
- Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, Pisa, Italy
| | - Federica Battaglia
- Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, Pisa, Italy
| | - Dario Puppi
- Dipartimento di Chimica & Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa, Italy
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy; Dipartimento di Scienze Veterinarie, Università di Pisa, Via Livornese lato monte, Pisa, Italy
| |
Collapse
|
27
|
Moncaleano-Niño AM, Gómez-Cubillos MC, Luna-Acosta A, Villamil L, Casseres-Ruiz S, Ahrens MJ. Monitoring metallothionein-like protein concentrations and cholinesterase activity in tropical cup oysters as biomarkers of exposure to metals and pesticides in the southern Caribbean, Colombia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25157-25183. [PMID: 34837617 DOI: 10.1007/s11356-021-17644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Metallothionein-like protein concentrations (MT) and three functionally defined fractions of cholinesterase activity (ChE) were quantified in gill and digestive gland homogenates of tropical cup oysters from 5 nearshore locations in the Colombian Caribbean and correlated with sediment and tissue metal (9 metals) and pesticide (22 organophosphates, OPs, and 20 organochlorines-OCPs), as well as water physical-chemical parameters (salinity, pH, temperature, and dissolved oxygen). Tissue and sediment pesticide concentrations were below detection limits in all samples, whereas sediment and tissue metal concentrations exceeded environmental thresholds at several locations. Tissue MT and ChE biomarkers varied by a factor of 5-6 between locations. Inhibition of cholinesterase activity was negligible for all 5 sites, despite spatial-temporal variation in ChE activity, consistent with below-detection OP concentrations. Tissue MT and ChE biomarkers correlated with tissue and metal sediment concentrations, yet, statistically significant covariance between biomarkers and water chemistry parameters was also observed, indicating that both, metal concentrations and physical-chemical variables, are likely to be responsible for generating the observed spatial-temporal variations in biomarker patterns.
Collapse
Affiliation(s)
- Angela M Moncaleano-Niño
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Maria Camila Gómez-Cubillos
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
- Department of Biology, Ichthyology Laboratory, Ecology and Systematics Unit (UNESIS), Pontifical Javeriana University, Transversal 4 No. 42-00, Bogotá, Colombia
| | - Andrea Luna-Acosta
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
- Department of Ecology and Territory, Faculty of Environmental and Rural Studies, Pontifical Javeriana University, Transversal 4 No. 42-00, Bogotá, Colombia
| | - Luisa Villamil
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
- Faculty of Engineering, PhD in Biosciences, La Sabana University, Campus "Puente del Común," Km. 7, Autopista Norte de Bogotá, Chía, Colombia
| | - Samuel Casseres-Ruiz
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia
| | - Michael J Ahrens
- Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota, Colombia.
| |
Collapse
|
28
|
Kim BM, Kim B, Nam SE, Eom HJ, Lee S, Kim K, Rhee JS. Reductive Transformation of Hexavalent Chromium in Ice Decreases Chromium Toxicity in Aquatic Animals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3503-3513. [PMID: 35245034 DOI: 10.1021/acs.est.1c07336] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study, the toxicity of hexavalent chromium [Cr(VI)] reduced by citric acid in ice was measured using representative aquatic model invertebrates (i.e., rotifer, water flea, amphipod, and polychaete) and a vertebrate (zebrafish) by analyzing short- and/or long-term endpoints that are frequently applied to each animal. Cr(VI) reduction in the presence of citric acid was markedly enhanced in the ice phase compared to that in an aqueous solution through the freeze concentration effect. The highly concentrated Cr(VI) and citric acid in ice grain boundaries were also confirmed using in situ cryogenic confocal Raman spectroscopy. Overall, exposure to Cr(VI) resulted in higher acute and/or chronic effects on aquatic animals, such as drastic mortality, growth inhibition, and decrease in offspring number, whereas the animals were increasingly tolerant to Cr(VI) that was reduced in the ice phase. Sublethal concentrations of Cr(VI) significantly decreased the antioxidant capacity in the aquatic animals. However, when the same concentrations of Cr(VI) were reduced in ice, these treatments showed no modulation or increase in the antioxidant defense system. Taken together, our results suggest that Cr(VI) reduction into Cr(III) was successfully achieved in ice and that this methodology can decrease the actual toxicity of Cr(VI) in aquatic animals.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Bomi Kim
- Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - Sang-Eun Nam
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Hye-Jin Eom
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Somyeong Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology (UST), Incheon 21990, Republic of Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
- Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea
- Yellow Sea Research Institute, Incheon 22012, Republic of Korea
| |
Collapse
|
29
|
Makaras T, Stankevičiūtė M. Swimming behaviour in two ecologically similar three-spined (Gasterosteus aculeatus L.) and nine-spined sticklebacks (Pungitius pungitius L.): a comparative approach for modelling the toxicity of metal mixtures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14479-14496. [PMID: 34617211 DOI: 10.1007/s11356-021-16783-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Sticklebacks (Gasterosteiformes) are increasingly used in ecological and evolutionary research and have become well established as role model species for biologists. However, ecotoxicology studies concerning behavioural effects in sticklebacks regarding stress responses, mainly induced by chemical mixtures, have hardly been addressed. For this purpose, we investigated the swimming behaviour (including mortality rate based on 96-h LC50 values) of two ecologically similar three-spined (Gasterosteus aculeatus) and nine-spined sticklebacks (Pungitius pungitius) to short-term (up to 24 h) metal mixture (MIX) exposure. We evaluated the relevance and efficacy of behavioural responses of test species in the early toxicity assessment of chemical mixtures. Fish exposed to six (Zn, Pb, Cd, Cu, Ni, and Cr) metals in the mixture were either singled out by the Water Framework Directive as priority or as relevant substances in surface water, which was prepared according to the environmental quality standards (EQSs) of these metals set for inland waters in the European Union (EU) (Directive 2013/39/EU). The performed behavioural analysis showed the main effect on the interaction between time, species, and treatment variables. Although both species exposed to MIX revealed a decreasing tendency in swimming activity, these species' responsiveness to MIX was somewhat different. Substantial changes in the activity of G. aculeatus were established after a 3-h exposure to MIX solutions, which was 1.43-fold lower, while in the case of P. pungitius, 1.96-fold higher than established 96-h LC50 values for each species. This study demonstrated species-specific differences in response sensitivity to metal-based water pollution, indicating behavioural insensitivity of P. pungitius as model species for aquatic biomonitoring and environmental risk assessments.
Collapse
Affiliation(s)
- Tomas Makaras
- Nature Research Centre, Akademijos Str. 2, 08412, Vilnius, Lithuania.
| | | |
Collapse
|
30
|
Santos GPCD, Assis CRDD, Oliveira VM, Cahu TB, Silva VL, Santos JF, Yogui GT, Bezerra RS. Acetylcholinesterase from the charru mussel Mytella charruana: kinetic characterization, physicochemical properties and potential as in vitro biomarker in environmental monitoring of mollusk extraction areas. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109225. [PMID: 34744030 DOI: 10.1016/j.cbpc.2021.109225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022]
Abstract
Acetylcholinesterase (AChE; EC 3.1.1.7) from aquatic organisms have been used to evaluate the exposure of specimens to pesticides and heavy metals at sublethal levels in environmental samples. AChE of Mytella charruana was extracted to characterize its physicochemical and kinetic properties as well as the effect of organophosphate (dichlorvos, diazinon, chlorpyrifos, methyl-parathion and temephos), carbamates (carbaryl, carbofuran and aldicarb), benzoylureas (diflubenzuron and novaluron), pyrethroid (cypermethrin) and juvenile hormone analog - JHA (pyriproxyfen) and the effect of metal ions: Hg2+, Cd2+, Pb2+, As3+, Cu2+ and Zn2+, in order to evaluate the potential of the enzyme as biomarker. The optimum pH of M. charruana AChE was 8.5 and the maximum activity peak occurred at 48 °C, being highly thermostable maintaining 97.8% of its activity after incubation at 60 °C. The Michaelis-Menten constants (km) for the substrates acetylthiocholine and propionylthiocholine were 2.8 ± 1.26 and 4.94 ± 6.9 mmol·L-1, respectively. The Vmax values for the same substrates were 22.6 ± 0.90 and 10.2 ± 4.94 mU·mg-1, respectively. Specific inhibition results suggest an AChE presenting active site with dimensions between those of AChE and butyrylcholinesterase (BChE). The IC20 values related to the effect of the pesticides on the enzyme showed higher inhibitory power of temephos (0.17 μmol·L-1), followed by aldicarb (0.19 μmol·L-1) and diflubenzuron (0.23 μmol·L-1). Metal ions inhibited M. charruana enzyme in the following order: Hg2+ > Pb2+ > Cd2+ > As3+ > Cu2+ > Zn2+. These data suggest that the enzyme showed potential as in vitro biomarker of the exposure to temephos, mercury, zinc and copper.
Collapse
Affiliation(s)
- Glauber Pereira Carvalho Dos Santos
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica - DBIOq, Universidade Federal de Pernambuco, Recife, Brazil; Instituto de Tecnologia de Pernambuco - ITEP, Recife, Brazil
| | - Caio Rodrigo Dias de Assis
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica - DBIOq, Universidade Federal de Pernambuco, Recife, Brazil; Laboratório de Fisiologia Comparada e Comportamento Animal - LabFCCA, Departamento de Fisiologia e Farmacologia - DFF, Universidade Federal de Pernambuco, Recife, Brazil; Laboratório de Fisioecologia em Aquicultura - LAFAq and Laboratório de Sistemas de Produção Aquícola - LAPAq, Departamento Pesca e Aquicultura - DEPAq, Universidade Federal Rural de Pernambuco, Recife, Brazil; Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos - OrganoMAR, Departamento de Oceanografia - DOCEAN, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Vagne Melo Oliveira
- Laboratório de Tecnologia de Produtos Bioativos - LABTECBIO, Departamento de Morfologia e Fisiologia Animal - DMFA, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Thiago Barbosa Cahu
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica - DBIOq, Universidade Federal de Pernambuco, Recife, Brazil
| | - Valdir Luna Silva
- Laboratório de Fisiologia Comparada e Comportamento Animal - LabFCCA, Departamento de Fisiologia e Farmacologia - DFF, Universidade Federal de Pernambuco, Recife, Brazil
| | - Juliana Ferreira Santos
- Laboratório de Fisioecologia em Aquicultura - LAFAq and Laboratório de Sistemas de Produção Aquícola - LAPAq, Departamento Pesca e Aquicultura - DEPAq, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Gilvan Takeshi Yogui
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos - OrganoMAR, Departamento de Oceanografia - DOCEAN, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ranilson Souza Bezerra
- Laboratório de Enzimologia - LABENZ, Departamento de Bioquímica - DBIOq, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
31
|
Magnetic Molecularly Imprinted Polymer (MMIP) Mediated Bacterial Esterase-Based Assay for Captan Detection in Milk. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
32
|
Sun J, Ma Y, Qin H, Li Z, Pan L. An integrated approach using chemical ecological risk assessment and multi-integrated biomarker indexes approach to assess pollution: A case study of Ruditapes philippinarum in four bays on the Shandong Peninsula in China. ENVIRONMENTAL RESEARCH 2022; 203:111793. [PMID: 34339694 DOI: 10.1016/j.envres.2021.111793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Considering the ecological risks of polycyclic aromatic hydrocarbons (PAHs) to the marine environment, it is urgent to find scientific and effective monitoring methods. In this study, an integrated approach combining chemical ecological risk assessment and multi-integrated biomarker indexes approach was used to assess the marine environment. Samples included seawater, sediments, and clam Ruditapes philippinarum were collected from four bays on the Shandong Peninsula, China in the four seasons of 2019. The concentrations, composition, potential sources, and ecological risk of PAHs were investigated in seawater and sediments. Risk quotient (RQ) and sediment quality guidelines (SQGs) were calculated to assess the ecological risks of PAHs in seawater and sediment, respectively. And then, clam Ruditapes philippinarum's multi-level biological response, including its ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), superoxide dismutase (SOD), lipid peroxidation (LPO), and acetylcholinesterase (AChE) were investigated in-depth, by which multi-integrated biomarker indexes approach were calculated to evaluate marine environmental quality. Taken together, the results showed that the concentration of PAHs was in good agreement with the response of biomarkers, and the usefulness of the combined use of chemical ecological risk assessment and integrated biomarker indexes to assess PAHs pollution was verified.
Collapse
Affiliation(s)
- Jiawei Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, China
| | - Yuanqing Ma
- Shandong Marine Resources and Environment Research Institute, 264006, Yantai, China
| | - Huawei Qin
- Shandong Marine Resources and Environment Research Institute, 264006, Yantai, China
| | - Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003, Qingdao, China.
| |
Collapse
|
33
|
Xu Y, Wang L, Zhu J, Jiang P, Zhang Z, Li L, Wu Q. Chromium induced neurotoxicity by altering metabolism in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112983. [PMID: 34781135 DOI: 10.1016/j.ecoenv.2021.112983] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Recently, both trivalent chromium Cr (III) and hexavalent chromium Cr (VI) have been reported to produce neurotoxicity. However, the underlying mechanisms of the neurotoxicity caused by different chemical valence of chromium remain unclear. OBJECTIVE The purpose of this study was to investigate the mechanism of neurotoxicity induced by exposure to chromium with different valence states based on metabolic disturbance in zebrafish larvae. METHODS Zebrafish embryos were exposed to 1 mg/L Cr (III) and 1 mg/L Cr (VI) for 120 hpf respectively. The related indexes of neural development were observed by stereoscope and behavior analysis system. 8OH-dG were detected using enzyme-linked immunosorbent assay. The generation of reactive oxygen species was detected using an oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate. AChE activity was determined by a colorimetric assay based on hydrolysis of acetylcholine. The expression levels of neurodevelopmental genes and methyltransferase genes in juvenile zebrafish was analyzed by real-time PCR. The methylation status of neurogenin1 and neurod1 genes was detected by bisulfite sequencing PCR. The binding of H3K27me3 was detected by chromatin immunoprecipitation-qPCR. Metabolic profiles and one carbon metabolic analysis were performed by UPLC-MS. RESULTS There were no significant differences in survival rate, hatching rate and spontaneous movement of zebrafish in both Cr-exposed groups compared to the control. The malformation rate in Cr (VI) -exposed group was obviously increased compared to the control and Cr (III) -exposed group. At 48hpf and 72hpf of exposure, the embryonic heart rate in Cr (III)-exposed group was significantly higher than that of Cr (VI)-exposed group and the control. At 120hpf, zebrafish in both Cr-exposed groups exhibited decreasing changes in swimming distance and disturbance of sensitivity to light and dark. 8OH-dG in Cr (VI)-exposed group were significantly higher than that in the control. The generation of ROS in both Cr -exposed groups was significantly higher than that in the control. The activity of AchE was significantly decreased in both Cr-exposed groups compared to the control. Most of early neurogenesis related genes, such as α-tubulin, elavl3, gap43, sox19b, neurogenin1 and neurod1 in Cr-exposed groups were significantly up-regulated compared to those in the control. The expression of dnmt1 and dnmt3 genes was significantly down-regulated in both Cr-exposed groups. BSP-PCR results showed that genic sequences in the neurogenin1 and neurod1 genes have lower levels of DNA methylation in both Cr-exposed groups, especial in Cr (VI)-exposed group. ChIP analysis showed that there was a decrease in H3K27me3 binding within the corresponding region of neurogenin1 in both Cr-exposed groups and that of neurod1 in Cr (III)-exposed group. Untargeted metabolomic analysis showed that significant changes in metabolites induced by Cr exposure were associated with differences in primary bile acid biosynthesis, phospholipid biosynthesis (phosphatidylcholine biosynthesis and phosphatidylethanolamine biosynthesis), linoleic acid metabolism, arachidonic acid metabolism, amino acid metabolism, purine metabolism, betaine metabolism, spermidine and spermine biosynthesis, and folate metabolism, the last four of which are related to one carbon metabolism. Targeted analysis of one carbon metabolites (5-MT, Gly, Met, SAH and Hcy) related with folate cycle and methionine metabolism were significantly decreased upon Cr exposure. The elevated SAM to SAH ratio in both Cr- exposed group indicated the decreasing capacity for methylation reaction. CONCLUSION Cr (III) and Cr (VI) can induce neurotoxicity by interfering with one carbon metabolism and affecting DNA methylation and histone methylation to regulate the expression of neuro-related genes. Cr exposure also influenced primary bile acid biosynthesis and phospholipid biosynthesis, which are associated with neuroprotective effects and need to be further validated.
Collapse
Affiliation(s)
- Yawen Xu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Li Wang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jun Zhu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Ping Jiang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Zhan Zhang
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Lei Li
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Qian Wu
- The Key Laboratory of Modern Toxicology of Ministry of Education and Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
34
|
Queirós V, Azeiteiro UM, Barata C, Santos JL, Alonso E, Soares AMVM, Freitas R. Effects of the antineoplastic drug cyclophosphamide on the biochemical responses of the mussel Mytilus galloprovincialis under different temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117735. [PMID: 34271515 DOI: 10.1016/j.envpol.2021.117735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Cyclophosphamide (CP) is an antineoplastic drug widely used in chemotherapy treatments with high consumption rates and that has been detected in the aquatic environment. After being released into the aquatic environment, CP may cause adverse effects on aquatic organisms since antineoplastics are well-known cytotoxic, genotoxic, mutagenic and teratogenic drugs. Moreover, predicted environmental changes, such as the temperature rising, may alter the impacts caused by CP on organisms. Thus, the present study aimed to assess the effects caused by CP chronic exposure in the mussel Mytilus galloprovincialis, under actual and predicted warming scenarios. Organisms were exposed for 28 days to different concentrations of CP (10, 100, 500 and 1000 ng/L) at control (17 ± 1.0 °C) and increased (21 ± 1.0 °C) temperatures. Biochemical responses related to metabolic capacity, energy reserves, oxidative stress and neurotoxicity were assessed. The results showed that the organisms were able to maintain their metabolic capacity under all exposure conditions. However, their antioxidant defense mechanisms were activated mostly at higher CP concentrations being able to prevent cellular damage, even under the warming scenario. Overall, the present findings suggest that temperature rise may not alter the impacts of CP towards M. galloprovincialis.
Collapse
Affiliation(s)
- Vanessa Queirós
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
35
|
Liu DM, Xu B, Dong C. Recent advances in colorimetric strategies for acetylcholinesterase assay and their applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Vieira M, Nunes B. Cholinesterases of marine fish: characterization and sensitivity towards specific chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48595-48609. [PMID: 33913109 DOI: 10.1007/s11356-021-13748-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Inhibition of cholinesterases has been frequently used as a biomarker for contamination of aquatic environments, because these enzymes are frequent targets for toxic effects of contaminants, such as insecticides derived from phosphoric and carbamic acids. However, this enzyme is also responsive to other contaminants, including metals. The use of cholinesterase inhibition as effect criterion in ecotoxicology studies requires the previous characterization of the specific enzymatic forms that can be present in the different tissues and/or organs of species. This work characterized the soluble ChEs present in the brain and dorsal muscle of three marine fish species, namely Scomber scombrus, Sardina pilchardus and Chelidonichthys lucerna. Pesticides (chlorpyrifos) and metals (copper sulphate) in vitro assays were conducted to quantify the effects of these contaminants on cholinesterases activity. The results of this study showed that acetylcholinesterase (AChE) was the predominant form present in the brain tissues of the three species and in the muscle tissue of one species (Sardina pilchardus). For Scomber scombrus and Chelidonichthys lucerna, the cholinesterase form present in the muscle tissue evidenced properties between the classic acetylcholinesterase and those of pseudocholinesterase forms. The results for the metal (copper) and pesticide (chlorpyrifos) showed that this species may be suitable for monitoring contaminations for these types of contaminants.
Collapse
Affiliation(s)
- Madalena Vieira
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
37
|
Caliani I, Campani T, Conti B, Cosci F, Bedini S, D'Agostino A, Giovanetti L, Di Noi A, Casini S. First application of an Integrated Biological Response index to assess the ecotoxicological status of honeybees from rural and urban areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47418-47428. [PMID: 33891238 PMCID: PMC8384815 DOI: 10.1007/s11356-021-14037-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/16/2021] [Indexed: 05/05/2023]
Abstract
Understanding the effects of environmental contaminants on honeybees is essential to minimize their impacts on these important pollinating insects. The aim of this study was to assess the ecotoxicological status of honeybees in environments undergoing different anthropic pressure: a wood (reference site), an orchard, an agricultural area, and an urban site, using a multi-biomarker approach. To synthetically represent the ecotoxicological status of the honeybees, the responses of the single biomarkers were integrated by the Integrated Biological Response (IBRv2) index. Overall, the strongest alteration of the ecotoxicological status (IBRv2 = 7.52) was detected in the bees from the orchard due to the alteration of metabolic and genotoxicity biomarkers indicating the presence of pesticides, metals, and lipophilic compounds. Honeybees from the cultivated area (IBRv2 = 7.18) revealed an alteration especially in neurotoxicity, metabolic, and genotoxicity biomarkers probably related to the presence of pesticides, especially fungicides. Finally, in the urban area (IBRv2 = 6.60), the biomarker results (GST, lysozyme, and hemocytes) indicated immunosuppression in the honeybees and the effects of the presence of lipophilic compounds and metals in the environment.
Collapse
Affiliation(s)
- Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy.
| | - Barbara Conti
- Department of Agriculture, Food and Environment Entomology, University of Pisa, via del Borghetto, 80, 56124, Pisa, Italy
| | - Francesca Cosci
- Department of Agriculture, Food and Environment Entomology, University of Pisa, via del Borghetto, 80, 56124, Pisa, Italy
| | - Stefano Bedini
- Department of Agriculture, Food and Environment Entomology, University of Pisa, via del Borghetto, 80, 56124, Pisa, Italy
| | - Antonella D'Agostino
- Department of Management and Quantitative Studies, University of Naples "Parthenope", via Generale Parisi, 13, 80132, Napoli, Italy
| | - Laura Giovanetti
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Agata Di Noi
- Department of Life Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| |
Collapse
|
38
|
Capolupo M, Gunaalan K, Booth AM, Sørensen L, Valbonesi P, Fabbri E. The sub-lethal impact of plastic and tire rubber leachates on the Mediterranean mussel Mytilus galloprovincialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117081. [PMID: 33848903 DOI: 10.1016/j.envpol.2021.117081] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Ocean contamination by synthetic polymers can represent a risk for the fitness of marine species due to the leaching of chemical additives. This study evaluated the sub-lethal effects of plastic and rubber leachates on the mussel Mytilus galloprovincialis through a battery of biomarkers encompassing lysosomal endpoints, oxidative stress/detoxification parameters, and specific responses to metals/neurotoxicants. Mussels were exposed for 7 days to leachates from car tire rubber (CTR), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS) and polyvinyl chloride (PVC), containing organic additives and metals in the ng-μg/L range. The leachate exposure affected general stress parameters, including the neutral lipid content (all leachates), the lysosomal membrane stability (PS, PP, PVC and CTR leachates) and lysosomal volume (PP, PVC and TR leachates). An increased content of the lipid peroxidation products malondialdehyde and lipofuscin was observed in mussels exposed to PET, PS and PP leachates, and PP, PVC and CTR leachates, respectively. PET and PP leachates increased the activity of the phase-II metabolism enzyme glutathione S-transferase, while a decreased acetylcholinesterase activity was induced by PVC leachates. Data were integrated in the mussel expert system (MES), which categorizes the organisms' health status based on biomarker responses. The MES assigned healthy status to mussels exposed to PET leachates, low stress to PS leachates, and moderate stress to PP, CTR and PVC leachates. This study shows that additives leached from selected plastic/rubber polymers cause sub-lethal effects in mussels and that the magnitude of these effects may be higher for CTR, PVC and PP due to a higher content and release of metals and organic compounds.
Collapse
Affiliation(s)
- Marco Capolupo
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Kuddithamby Gunaalan
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Andy M Booth
- SINTEF Ocean, Environment and New Resources, Trondheim, Norway
| | - Lisbet Sørensen
- SINTEF Ocean, Environment and New Resources, Trondheim, Norway
| | - Paola Valbonesi
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Elena Fabbri
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy.
| |
Collapse
|
39
|
de Paula AA, Risso WE, Martinez CBDR. Effects of copper on an omnivorous (Astyanax altiparanae) and a carnivorous fish (Hoplias malabaricus): A comparative approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105874. [PMID: 34090247 DOI: 10.1016/j.aquatox.2021.105874] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Copper is an essential metal for life. However, in excess, it can lead to osmoregulatory disorders and oxidative stress in fish and these effects appear to be species specific. In order to evaluate the effects of copper and to compare the sensitivity of two Neotropical fishes that co-occur in nature as prey (Astyaynax altiparanae) and predator (Hoplias malabaricus), the fish were exposed to three concentrations of Cu (5 μg L-1, 10 μg L-1, and 20 μg L-1) for 96 h. At the end of the experimental period, copper concentration in tissues, osmoregulatory parameters, oxidative stress biomarkers, plasma glucose, muscle glycogen and acetylcholinesterase activity were evaluated. Fish mortality (25%) was only observed for A. altiparanae exposed to Cu 20 μg L-1. The results revealed species-specific ionic disturbances. Despite hypocalcemia, H. malabaricus showed an increase in the main gill ATPases, which probably guaranteed the maintenance of plasma Na+. In A. altiparanae, there was no change in ATPase activity in the gills and hyponatremia was observed at all copper concentrations, as well as a decrease in plasma Cl- in the Cu 20 μg L-1 group. The strategy adopted by H. malabaricus seems to have contributed to the absence of copper accumulation in the tissues, in addition to possibly being related to the absence of oxidative stress in this species. On the other hand, there was an increase in the concentration of copper in the gills, liver, and gastrointestinal tract of A. altiparanae, as well as oxidative stress evidenced by increased lipoperoxidation in the liver and damage to erythrocytes DNA. This work reinforces the idea that copper effects are species specific and that a given concentration may not be safe for different species which can coexist in the same environment.
Collapse
Affiliation(s)
- Angélica Alves de Paula
- Department of Physiological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Wagner Ezequiel Risso
- Department of Physiological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | | |
Collapse
|
40
|
Kukkar P, Kukkar D, Younis SA, Singh G, Singh P, Basu S, Kim KH. Colorimetric biosensing of organophosphate pesticides using enzymatic nanoreactor built on zeolitic imdiazolate-8. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Bio S, Nunes B. Twists and turns of an oyster's life: effects of different depuration periods on physiological biochemical functions of oysters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29601-29614. [PMID: 33559825 DOI: 10.1007/s11356-021-12683-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture activities are often established in the vicinity of highly populated, potentially contaminated areas. Animals cultured at such locations, namely bivalves, are frequently used as test organisms in ecotoxicological testing. In this case, a period of depuration is required to allow the normalization of physiological processes, which are likely to be altered after exposure to a multiplicity of waterborne contaminants occurring in the wild. One of the most important species in modern marine aquaculture is the oyster species Crassostrea gigas. The aim of this study was to assess if the current depuration time frame of 24 h (adopted by most aquaculture facilities), is long enough to permit oysters to revert potential toxic effects exerted by environmental contaminants, allowing their use in laboratory-based ecotoxicological studies. The selected approach involved the monitoring of biochemical (antioxidant defence, oxidative damage, phase II metabolism, and neurological homeostasis) and physiological (condition index) parameters, along a period of 42 days. The obtained results showed that a period of 24 h does not revert any of the potential toxic effects caused by environmental contaminants to which animals may have been previously subjected; even a period of 42 days was not long enough for the oysters to completely normalize the levels of their antioxidant defences, namely total GPx activity, which increased over time. Lipid peroxidation was also increased during the depuration period, and the activity of the metabolic isoenzymes GSTs was significantly decreased. Furthermore, AChE activity measured in the adductor muscle of oysters was increased over time. These assumptions suggest that a period of depuration longer than 24 h is mandatory to obtain adequate test organisms of this oyster species, to be used for ecotoxicological testing purposes.
Collapse
Affiliation(s)
- Sofia Bio
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
42
|
Liu Y, Fang K, Zhang X, Liu T, Wang X. Enantioselective toxicity and oxidative stress effects of acetochlor on earthworms (Eisenia fetida) by mediating the signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142630. [PMID: 33069465 DOI: 10.1016/j.scitotenv.2020.142630] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Acetochlor (ACT) as a widely used chiral chloroacetamide herbicide is appropriate to evaluate the potential toxicity in soil ecosystems at enantiomeric level. The acute and subchronic toxicities of R-acetochlor (R-ACT) and S-acetochlor (S-ACT) on earthworms (Eisenia fetida) were investigated in the present study. Residual analyses showed that S-ACT degraded faster than R-ACT in artificial soil with half-lives of 16.5 and 21.7 d, respectively. Additionally, significant enantioselective acute toxicity in earthworms from between S-ACT and R-ACT (p < 0.05) was observed, and the acute toxicity of R-ACT were 1.9 and 1.5 times higher than those of S-ACT in the filter paper test and artificial soil test. The hydroxyl radical (OH-) content, superoxide dismutase (SOD) and antioxidant enzyme catalase (CAT) activities, and cytochrome P450 content in earthworms significantly increased under the influence of ACT enantiomers; however, the acetylcholinesterase (AchE) activity was significantly inhibited after exposure to the two enantiomers. Moreover, lipid peroxidation and DNA damage were induced by ACT enantiomers. The results of transcriptome sequencing indicated that R-ACT induced a stronger oxidative stress effect than S-ACT in earthworms by mediating signaling pathways, which may be the primary reason for the enantioselective toxicity between S-ACT and R-ACT. Overall, the results demonstrated that R-ACT has a higher risk than S-ACT in the soil environment, which is important for understanding the enantioselective behavior of chloroacetamide pesticides.
Collapse
Affiliation(s)
- Yalei Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiaolian Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
43
|
Mahé C, Jumarie C, Boily M. The countryside or the city: Which environment is better for the honeybee? ENVIRONMENTAL RESEARCH 2021; 195:110784. [PMID: 33497676 DOI: 10.1016/j.envres.2021.110784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
For a number of years, the decline of honeybee (Apis mellifera) in North America and Europe has been the subject of much debate. Among the many factors proposed by hundreds of studies to explain this phenomenon is the hypothesis that agricultural activities using pesticides contribute to the weakness of bee colonies. Moreover, while urban beekeeping is presently booming in several cities, we do not know if this environment is more beneficial for bees than the typical, rural area. In the summer of 2018, we sampled honeybees (foragers and larvae) in rural (Laurentians) and urban (city of Montreal) areas and compared them using the following biomarkers: carotenoids, retinoids, α-tocopherol, metallothionein-like proteins (MTLPs), lipid peroxidation, triglycerides, acetylcholinesterase activity (AChE) and proteins. Pesticides, pharmaceuticals and personal care products (PPCPs) and metals were also quantified in honeybees' tissues. Our result revealed that, globally, urban foragers had higher levels of insecticides and PPCPs and that metals were in greater concentrations in urban larvae. Compared to rural foragers, urban foragers had higher concentrations of MTLPs, triglycerides, protein and AChE activity. The multifactorial analysis confirmed that insecticides, some metals and PPCPs were the most influential components in the contaminant‒biomarker relationships for both foragers and larvae.
Collapse
Affiliation(s)
- C Mahé
- Groupe de Recherche en Toxicologie de L'environnement (TOXEN). Département des Sciences Biologiques, Université Du Québec à Montréal (UQAM), C.P. 8888, Succursale Centre-Ville, Montréal, QC, Canada, H3C 3P8
| | - C Jumarie
- Groupe de Recherche en Toxicologie de L'environnement (TOXEN). Département des Sciences Biologiques, Université Du Québec à Montréal (UQAM), C.P. 8888, Succursale Centre-Ville, Montréal, QC, Canada, H3C 3P8
| | - M Boily
- Groupe de Recherche en Toxicologie de L'environnement (TOXEN). Département des Sciences Biologiques, Université Du Québec à Montréal (UQAM), C.P. 8888, Succursale Centre-Ville, Montréal, QC, Canada, H3C 3P8.
| |
Collapse
|
44
|
Acetylcholinesterase (AChE) Activity in Embryos of Zebrafish. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2240:119-124. [PMID: 33423231 DOI: 10.1007/978-1-0716-1091-6_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Acetylcholinesterase (AChE) is a useful biomarker for organophosphate and carbamate pesticides exposure. The inhibition of this enzyme has been associated with neurotoxicity and alterations at higher levels of biological organization, such as behavior and development impairments. In this chapter, we describe the methodologies for analyses of AChE activity in pools of 96 h of embryos of zebrafish (Danio rerio) using a spectrophotometric method adapted to 96-well microtiter plates.
Collapse
|
45
|
Nogueira AF, Nunes B. Cholinesterase characterization and effects of the environmental contaminants chlorpyrifos and carbofuran on two species of marine crabs, Carcinus maenas and Pachygrapsus marmoratus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14681-14693. [PMID: 33216299 DOI: 10.1007/s11356-020-11492-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Among the most frequent targets for toxic effects of modern pesticides, namely organophosphates and carbamates, one may find cholinesterases (ChEs). ChEs exist in a wide variety of animals and have been used actively to discriminate among the environmental effects of different pollutant groups, including the aforementioned pesticides. This study had three purposes, namely (i) identifying the ChE forms present in tissues (eyes and walking legs muscle) of two crab species, Carcinus maenas and Pachygrapsus marmoratus; to (ii) determine the in vitro toxicological effects, and (iii) compare the sensitivity of such enzymatic forms towards commonly used anti-ChE pesticides, namely the organophosphate chlorpyrifos and the carbamate carbofuran. Our results showed that there was not a clear preference for any of the tested substrates in any of the tissues from both species. Furthermore, the ChE activity was almost completely suppressed following incubation with eserine and with the specific inhibitor BW284C51 in all tissues from both species. In vitro exposure to chlorpyrifos promoted a significant decrease in ChE activity in both species. Furthermore, the ChE activity was completely suppressed following incubation with carbofuran and chlorpyrifos. These results suggest that the major ChE forms present in tissues of both crab species show intermediate structural properties and activity patterns, halfway between classic acetylcholinesterase and pseudocholinesterases. However, the sensitivity of the found forms towards ChE inhibitors was established, and the responsiveness of such forms towards common anti-ChE chemicals was established. Both tested species seem to be promising test organisms to be used in marine and coastal scenarios of putative contaminations by anti-ChE chemicals, considering the here reported patterns of response.
Collapse
Affiliation(s)
- Ana Filipa Nogueira
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar, CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
46
|
Abd Rashed A, Abd Rahman AZ, Rathi DNG. Essential Oils as a Potential Neuroprotective Remedy for Age-Related Neurodegenerative Diseases: A Review. Molecules 2021; 26:1107. [PMID: 33669787 PMCID: PMC7922935 DOI: 10.3390/molecules26041107] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the improvements in life expectancy, neurodegenerative conditions have arguably become the most dreaded maladies of older people. The neuroprotective and anti-ageing potentials of essential oils (EOs) are widely evaluated around the globe. The objective of this review is to analyse the effectiveness of EOs as neuroprotective remedies among the four common age-related neurodegenerative diseases. The literature was extracted from three databases (PubMed, Web of Science and Google Scholar) between the years of 2010 to 2020 using the medical subject heading (MeSH) terms "essential oil", crossed with "Alzheimer's disease (AD)", "Huntington's disease (HD)", "Parkinson's disease (PD)" or "amyotrophic lateral sclerosis (ALS)". Eighty three percent (83%) of the studies were focused on AD, while another 12% focused on PD. No classifiable study was recorded on HD or ALS. EO from Salvia officinalis has been recorded as one of the most effective acetylcholinesterase and butyrylcholinesterase inhibitors. However, only Cinnamomum sp. has been assessed for its effectiveness in both AD and PD. Our review provided useful evidence on EOs as potential neuroprotective remedies for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Aswir Abd Rashed
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Ahmad Zuhairi Abd Rahman
- Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Devi Nair Gunasegavan Rathi
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| |
Collapse
|
47
|
Xing Q, Liao H, Peng C, Zheng G, Yang Z, Wang J, Lu W, Huang X, Bao Z. Identification, characterization and expression analyses of cholinesterases genes in Yesso scallop (Patinopecten yessoensis) reveal molecular function allocation in responses to ocean acidification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105736. [PMID: 33422860 DOI: 10.1016/j.aquatox.2020.105736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Cholinesterases are key enzymes in central and peripheral cholinergic nerve system functioning on nerve impulse transmission in animals. Though cholinesterases have been identified in most vertebrates, the knowledge about the variable numbers and multiple functions of the genes is still quite meagre in invertebrates, especially in scallops. In this study, the complete cholinesterase (ChE) family members have been systematically characterized in Yesso scallop (Patinopecten yessoensis) via whole-genome scanning through in silico analysis. Ten ChE family members in the genome of Yesso scallop (designated PyChEs) were identified and potentially acted to be the largest number of ChE in the reported species to date. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of these genes. The expression profiles of PyChEs were determined in all developmental stages, in healthy adult tissues, and in mantles under low pH stress (pH 6.5 and 7.5). Spatiotemporal expression suggested the ubiquitous functional roles of PyChEs in all stages of development, as well as general and tissue-specific functions in scallop tissues. Regulation expressions revealed diverse up- and down-regulated expression patterns at most time points, suggesting different functional specialization of gene superfamily members in response to ocean acidification (OA). Evidences in gene number, phylogenetic relationships and expression patterns of PyChEs revealed that functional innovations and differentiations after gene duplication may result in altered functional constraints among PyChEs gene clusters. Collectively, our results provide the potential clues that the selection pressures coming from the environment were the potential inducement leading to function allocation of ChE family members in scallop.
Collapse
Affiliation(s)
- Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Guiliang Zheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wei Lu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
48
|
Caliani I, Campani T, Conti B, Cosci F, Bedini S, D'Agostino A, Ammendola A, Di Noi A, Gori A, Casini S. Multi-biomarker approach and IBR index to evaluate the effects of different contaminants on the ecotoxicological status of Apis mellifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111486. [PMID: 33130481 DOI: 10.1016/j.ecoenv.2020.111486] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 05/21/2023]
Abstract
The honeybee, Apis mellifera L. (Hymenoptera: Apidae), a keystone pollinator of wild plant species and agricultural crops, is disappearing globally due to parasites and diseases, habitat loss, genetic constraints, beekeeper management issues and to the widespread use of pesticides. Besides insecticides, widely studied in this species, honeybees are also exposed to herbicides and fungicides and heavy metals whose lethal and sublethal effects need to be investigated. In this context, our study aimed to evaluate the effects of fungicides and of heavy metals on honeybees and to develop and apply a multi-biomarker approach that include an Integrated Biological Index (IBRv2) to assess the toxicological status of this species. Biomarkers of neurotoxicity (AChE and CaE), metabolic alteration (ALP, and GST) and immune system (LYS, granulocytes) were measured, following honeybees' exposure to cadmium or to a crop fungicide, using the genotoxic compound EMS as positive control. A biomarker of genotoxicity (NA assay) was developed and applied for the first time in honeybees. At the doses tested, all the contaminants showed sublethal toxicity to the bees, highlighting in particular genotoxic effects. The data collected were analyzed by an IBRv2 index, which integrated the seven biomarkers used in this study. IBRv2 index increased with increasing cadmium or fungicide concentrations. The IBRv2 represents a simple tool for a general description of honeybees ecotoxicological health status. Results highlight the need for more in-depth investigations on the effects of fungicides on non-target organisms, such as honeybees, using sensitive methods for the determination of sublethal effects. This study contributes to the development of a multi-biomarker approach to be used for a more accurate ecotoxicological environmental monitoring of these animals.
Collapse
Affiliation(s)
- Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| | - Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy.
| | - Barbara Conti
- Department of Agriculture, Food and Environment Entomology, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Francesca Cosci
- Department of Agriculture, Food and Environment Entomology, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Stefano Bedini
- Department of Agriculture, Food and Environment Entomology, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Antonella D'Agostino
- Department of Management and Quantitative Studies, University of Naples "Parthenope", via Generale Parisi, 13, 80132 Napoli, Italy
| | - Anna Ammendola
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| | - Agata Di Noi
- Department of Life Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| | - Alessandro Gori
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy
| |
Collapse
|
49
|
Anacardic Acid Complexes as Possible Agents Against Alzheimer's Disease Through Their Antioxidant, In vitro, and In silico Anticholinesterase and Ansiolic Actions. Neurotox Res 2020; 39:467-476. [PMID: 33156514 DOI: 10.1007/s12640-020-00306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
The frequency of Alzheimer's disease (AD) is growing rapidly with longer life expectancy and the consequent increase of people with a high risk of neurodegenerative diseases. Anacardic acid (AA) has several pharmacological actions, such as antioxidants, anticholinesterase, and anti-inflammatory, which are related to the protection against aging disorders. Also, the metals copper and zinc are co-factors of antioxidant enzymes that can be associated with AA to improve brain-protective action. This study aimed to evaluate the potential of AA metal complexes using copper and zinc chelators to produce potential agents against Alzheimer's disease. For this purpose, Cu and Zn were linked to AA in the ratio of 1:1 in a basic medium. The complexes' formation was confirmed by ultraviolet and visible spectroscopy. The toxicity was evaluated in the zebrafish model, and other information related to AD was obtained using the zebrafish model of anxiety. AA-Zn and AA-Cu complexes showed better antioxidant action than free AA. In the anti-AChE activity, AA was like the AA-Cu complex. In models using adult zebrafish, no toxicity for AA complexes was found, and in the locomotor model, AA-Cu demonstrated possible anxiolytic action. In in silico experiments comparing AA and AA-Cu complex, the coupling energy with the enzyme was lower for the AA-Cu complex, showing better interaction, and also the distances of the active site amino acids with this complex were lower, similar to galantamine, the standard anti-AChE inhibitor. Thus, AA-Cu showed interesting results for more detailed study in experiments related to Alzheimer's disease.
Collapse
|
50
|
Plomp RD, Klemish JL, Pyle GG. The Single and Combined Effects of Wildfire Runoff and Sediment-Bound Copper on the Freshwater Amphipod Hyalella azteca. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1988-1997. [PMID: 32678916 DOI: 10.1002/etc.4821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/04/2019] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The frequency of wildfire is expected to increase with time as a function of climate change. Recent studies in our laboratory have demonstrated that pyrogenic polycyclic aromatic hydrocarbons can cause greater-than-additive effects in Hyalella azteca in the presence of low concentrations of Cu. We hypothesized that freshwater animals inhabiting Cu-contaminated sites, such as those in the vicinity of Cu mines, may be vulnerable to nonadditive toxicity from contaminants released by wildfires. To investigate the interaction between Cu and water conditioned by burnt wood ash (fire extract), we exposed H. azteca for 14 d to binary mixtures of 225 mg/kg Cu-enriched artificial sediment (225 mg Cu/kg) and a fire extract dilution series (12.5, 25, 50, 75, and 100%). All binary mixtures of Cu-enriched sediment and fire extract resulted in complete mortality with the exception of Cu-enriched sediment + 12.5% fire extract. The combination of Cu-enriched sediment with 12.5% fire extract had a more-than-additive effect on survival and tissue Cu concentration, but there was no reduction in growth or acetylcholinesterase activity compared to the 225 mg/kg Cu-contaminated sediment or fire extract control, respectively. Acetylcholinesterase activity was significantly reduced in amphipods exposed to fire extract, but the presence of Cu did not exacerbate this effect. The results suggest that Cu-contaminated water bodies that receive runoff from wildfires are at risk of enhanced toxicity. Environ Toxicol Chem 2020;39:1988-1997. © 2020 SETAC.
Collapse
Affiliation(s)
- Raegan D Plomp
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jaimie L Klemish
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|