1
|
Liu Y, Chen Z, Li C, Sun T, Luo X, Jiang B, Liu M, Wang Q, Li T, Cao J, Li Y, Chen Y, Kuai L, Xiao F, Xu H, Cui H. Associations between changes in the gut microbiota and liver cirrhosis: a systematic review and meta-analysis. BMC Gastroenterol 2025; 25:16. [PMID: 39806278 PMCID: PMC11727502 DOI: 10.1186/s12876-025-03589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE Summaries of the relationships between the microbiota and liver cirrhosis and their conclusions are not consistent. This study describes microbial differences in patients with liver cirrhosis by performing a meta-analysis. METHODS We searched PubMed, Embase, Web of Science, and the Cochrane Library and collected related articles published before March 10, 2024. Ratio of autochthonous to non-autochthonous taxa was calculated as the cirrhosis dysbiosis ratio (CDR). Using a random-effects model, the standard mean deviation (SMD) and 95% confidence interval (CI) were calculated. We subsequently performed subgroup, sensitivity, and publication bias analyses. cirrhosis dysbiosis ratio. RESULTS A total of 53 eligible papers including 5076 participants were included. The pooled estimates revealed a moderately significant reduction in gut microbiome richness in patients with liver cirrhosis compared with controls, including the Shannon, Chao1, observed species, ACE, and PD indices, but no significant difference was observed for the Simpson index. Over 80% of the studies reported significant differences in β diversity. Families Enterobacteriaceae and Pasteurellaceae, belonging to the phylum Proteobacteria, along with the family Streptococcaceae and the genera Haemophilus, Streptococcus, and Veillonella, were significantly associated with liver cirrhosis compared to the control group. In contrast, the healthy group exhibited a higher abundance of the class Clostridia, particularly the families Lachnospiraceae and Ruminococcaceae, which are known for their diversity and role as common gut commensals. Furthermore, the class Bacilli, predominantly represented by the genus Streptococcus, was markedly enriched in the cirrhosis group. CONCLUSIONS The microbiota richness of liver cirrhosis patients was lower than that of healthy controls. Alterations in gut microbiota linked to liver cirrhosis were characterized by a decrease in Lachnospiraceae, Ruminococcaceae, and Clostridia and an enrichment of Enterobacteriaceae, Pasteurellaceae, Streptococcaceae, Bacilli, and Streptococcus.
Collapse
Affiliation(s)
- Ye Liu
- Beijing Hospital, Peking University Fifth School of Clinical Medicine, National Center of Gerontology, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Ziwei Chen
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Li
- Beijing Hospital, Peking University Fifth School of Clinical Medicine, National Center of Gerontology, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianhan Sun
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuanmei Luo
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Boyue Jiang
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meilan Liu
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Wang
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tong Li
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianfu Cao
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yayu Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Chen
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lu Kuai
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Xiao
- Beijing Hospital, Peking University Fifth School of Clinical Medicine, National Center of Gerontology, Beijing, China.
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China.
- Clinical Biobank, Beijing Hospital, No. 1 Dahua Road, Dong Dan, Beijing, 100730, China.
| | - Hongtao Xu
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Department of Laboratory Medicine, Beijing Hospital, No. 1 Dahua Road, Dong Dan, Beijing, 100730, China.
| | - Hongyuan Cui
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine , Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Department of General Surgery, Beijing Hospital, No. 1 Dahua Road, Dong Dan, Beijing, 100730, China.
| |
Collapse
|
2
|
Cheng SH, Yang YC, Chen CP, Hsieh HT, Lin YC, Cheng CY, Liao KS, Chu FY, Liu YR. Oncogenic human papillomavirus and anal microbiota in men who have sex with men and are living with HIV in Northern Taiwan. PLoS One 2024; 19:e0304045. [PMID: 39739827 DOI: 10.1371/journal.pone.0304045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/07/2024] [Indexed: 01/02/2025] Open
Abstract
Few studies have demonstrated the interplay between human immunodeficiency virus (HIV), anal human papillomavirus (HPV), and anal microbiota, especially in persons living with HIV who are men who have sex with men. We, therefore, explored these interrelationships in a cohort of persons living with HIV, mainly comprising men who have sex with men. HPV genotyping using a commercial genotyping kit and ThinPrep cytology interpreted by Bethesda systems was performed on samples from 291 patients. Samples were characterized by high-throughput sequencing of dual-index barcoded 16s rRNA (V3-4). Bacterial diversity was diminished in individuals living with HIV with CD4+ T cells <500 cells/μL and anal cytology yielding atypical squamous cells of undetermined significance or higher grades (ASCUS+) with detectable HPV 16/18 compared with those with CD4+ T cells ≥500 cells/μL with ASCUS+ and HPV 16/18 and those with normal anal cytology or inflammation without HPV 16/18. Enterobacteriaceae, Ruminococcus, and Bacilli were significantly abundant in persons living with HIV with CD4+ T cells <500 cells/μL with ASCUS+ and HPV 16/18. Bacterial diversity, composition, and homogeneity of dispersion were different in individuals living with HIV with low CD4+ T cells with ASCUS+ and HPV 16/18, and understanding the interaction among immunocompromised hosts, oncogenic HPVs, and microbiota is essential, and the contribution of these factors to anal precancerous lesions needs more in-depth exploration.
Collapse
Affiliation(s)
- Shu-Hsing Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Pin Chen
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Ting Hsieh
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Yi-Chun Lin
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yu Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuo-Sheng Liao
- Department of Pathology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Fang-Yeh Chu
- Department of Clinical Pathology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, Taiwan
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Sadri M, Shafaghat Z, Roozbehani M, Hoseinzadeh A, Mohammadi F, Arab FL, Minaeian S, Fard SR, Faraji F. Effects of Probiotics on Liver Diseases: Current In Vitro and In Vivo Studies. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10431-z. [PMID: 39739162 DOI: 10.1007/s12602-024-10431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Various types of liver or hepatic diseases cause the death of about 2 million people worldwide every year, of which 1 million die from the complications of cirrhosis and another million from hepatocellular carcinoma and viral hepatitis. Currently, the second most common solid organ transplant is the liver, and the current rate represents less than 10% of global transplant requests. Hence, finding new approaches to treat and prevent liver diseases is essential. In liver diseases, the interaction between the liver, gut, and immune system is crucial, and probiotics positively affect the human microbiota. Probiotics are a non-toxic and biosafe alternative to synthetic chemical compounds. Health promotion by lowering cholesterol levels, stimulating host immunity, the natural gut microbiota, and other functions are some of the activities of probiotics, and their metabolites, including bacteriocins, can exert antimicrobial effects against a broad range of pathogenic bacteria. The present review discusses the available data on the results of preclinical and clinical studies on the effects of probiotic administration on different types of liver diseases.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Hoseinzadeh
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Mohammadi
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Hu B, Yang Y, Yao J, Lin G, He Q, Bo Z, Zhang Z, Li A, Wang Y, Chen G, Shan Y. Gut Microbiota as Mediator and Moderator Between Hepatitis B Virus and Hepatocellular Carcinoma: A Prospective Study. Cancer Med 2024; 13:e70454. [PMID: 39702929 DOI: 10.1002/cam4.70454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/06/2024] [Accepted: 11/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The impact of gut microbiome on hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is unclear. We aimed to evaluate the potential correlation between gut microbiome and HBV-related HCC and introduced novel machine learning (ML) signatures based on gut microbe to predict the risk of HCC. MATERIALS AND METHODS A total of 640 patients with chronic liver diseases or HCC were prospectively recruited between 2019 and 2022. Fecal samples were collected and subjected to 16S rRNA gene sequencing. Univariate and multivariate logistic regression was applied to identify risk characteristics. Several ML methods were employed to construct gut microbe-based models and the predictive performance was evaluated. RESULTS A total of 571 patients were involved in the study, including 374 patients with HCC and 197 patients with chronic liver diseases. After the propensity score matching method, 147 pairs of participants were enrolled in the analysis. Bacteroidia and Bacteroidales were demonstrated to exert mediating effects between HBV and HCC, and the moderating effects varied across Bacilli, Lactobacillales, Erysipelotrichaceae, Actinomyces, and Roseburia. HBV, alpha-fetoprotein, alanine transaminase, triglyceride, and Child-Pugh were identified as independent risk factors for HCC occurrence. Seven ML-based HBV-gut microbe models were established to predict HCC, with AUCs ranging from 0.821 to 0.898 in the training set and 0.813-0.885 in the validation set. Furthermore, the merged clinical-HBV-gut microbe models exhibited a comparable performance to HBV-gut microbe models. CONCLUSIONS Gut microbes are important factors between HBV and HCC through its potential mediating and moderating effects, which can be used as valuable biomarkers for the pathogenesis of HBV-related HCC.
Collapse
Affiliation(s)
- Bingren Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Jiangqiao Yao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ganglian Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qikuan He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Bo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhewei Zhang
- The First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Anlvna Li
- The First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunfeng Shan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Morishima S, Abe A, Okamoto S, Kapoor MP, Osumi M, Oda M, Okubo T, Ozeki M, Nishio M, Inoue R. Partially hydrolyzed guar gum suppresses binge alcohol-induced liver fat accumulation via gut environment modulation in mice. J Gastroenterol Hepatol 2024; 39:2700-2708. [PMID: 39313361 DOI: 10.1111/jgh.16737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Alcohol-associated liver disease (ALD), including alcoholic fatty liver, is a serious problem in many countries, and its economic costs to society are enormous. There is evidence indicating the relations between gut environments and liver disease, and thus, improvement of gut environment is expected to be an effective approach for ALD prevention. In this study, we explored the preventive effect of partially hydrolyzed guar gum (PHGG) on ALD focusing on the gut-liver axis. Two weeks of PHGG pre-feeding suppressed the liver fat accumulation in the experimental binge alcohol model mouse. In cecal microbiome, PHGG pre-feeding increased beneficial Bifidobacterium with its metabolite acetate concentration and suppressed the alcohol-induced increase in the potential pathobiont Streptococcus. PHGG pre-feeding increased colonic gene expression of angiogenin genes, which act as antimicrobial peptides and decreased expression of genes for mast cell protease, which suggests a potential involvement in leaky gut. Correlation network analysis based on evaluated parameters revealed four relations worth noticing. (i) The abundance of Bifidobacterium positively correlated with cecal acetate. (ii) Cecal acetate negatively correlated with Streptococcus via colonic angiogenin expression. (iii) Streptococcus positively correlated with liver fat area. (iv) Cecal acetate had direct negative correlation with liver fat area. Considering these relations comprehensively, acetate produced by Bifidobacterium may be a key mediator in ALD prevention; it inhibited growth of potential pathobiont Streptococcus and also directly regulated liver lipid metabolism reaching through portal vein. This study demonstrated that regularly intake of PHGG may be effective in reducing the risk of alcoholic fatty liver via gut-liver axis.
Collapse
Affiliation(s)
- So Morishima
- Laboratory of Food Function, Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
- Nutrition Division, Taiyo Kagaku Co. Ltd, Yokkaichi, Mie, Japan
| | - Aya Abe
- Nutrition Division, Taiyo Kagaku Co. Ltd, Yokkaichi, Mie, Japan
| | - Saki Okamoto
- Nutrition Division, Taiyo Kagaku Co. Ltd, Yokkaichi, Mie, Japan
| | | | - Masahide Osumi
- Laboratory of Nutritional Chemistry, Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Machi Oda
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| | - Tsutomu Okubo
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Makoto Ozeki
- Laboratory of Food Function, Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
- Nutrition Division, Taiyo Kagaku Co. Ltd, Yokkaichi, Mie, Japan
| | - Masahiro Nishio
- Laboratory of Nutritional Chemistry, Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| |
Collapse
|
6
|
Xue X, Zhou H, Gao J, Li X, Wang J, Bai W, Bai Y, Fan L, Chang H, Shi S. The impact of traditional Chinese medicine and dietary compounds on modulating gut microbiota in hepatic fibrosis: A review. Heliyon 2024; 10:e38339. [PMID: 39391468 PMCID: PMC11466535 DOI: 10.1016/j.heliyon.2024.e38339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Traditional Chinese medicine (TCM) and dietary compounds have a profound influence on the regulation of gut microbiota (GM) in hepatic fibrosis (HF). Certain substances found in both food and herbs that are edible and medicinal, such as dietary fiber, polyphenols, and polysaccharides, can generate beneficial metabolites like short-chain fatty acids (SCFAs), bile acids (BAs), and tryptophan (Trp). These compounds contribute to regulate the GM, reduce levels of endotoxins in the liver, and alleviate fibrosis and inflammation in the liver. Furthermore, they enhance the composition and functionality of GM, promoting the growth of beneficial bacteria while inhibiting the proliferation of harmful bacteria. These mechanisms mitigate the inflammatory response in the intestines and maintain the integrity of the intestinal barrier. The purpose of this review is to analyze how the GM regulates the pathogenesis of HF, evaluate the regulatory effect of TCM and dietary compounds on the intestinal microflora, with a particular emphasis on modulating flora structure, enhancing gut barrier function, and addressing associated pathogenic factors, thereby provide new insights for the treatment of HF.
Collapse
Affiliation(s)
- Xingting Xue
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Hongbing Zhou
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Jiaxing Gao
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Xinghua Li
- Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province, China
| | - Jia Wang
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Wanfu Bai
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Yingchun Bai
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Liya Fan
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
| | - Songli Shi
- Department of Pharmacy, Baotou Medical College, Baotou, 014040, China
- Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou, China
| |
Collapse
|
7
|
Akorli J, Opoku M, Appiah-Twum F, Akpo MS, Ismail RY, Boamah GYK, Obeng-Aboagye E, Adu-Asamoah D, Donkor IO. High abundance of butyrate-producing bacteria in the naso-oropharynx of SARS-CoV-2-infected persons in an African population: implications for low disease severity. BMC Infect Dis 2024; 24:1020. [PMID: 39304808 DOI: 10.1186/s12879-024-09948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The association of the oral microbiome with SARS-CoV-2 infections and disease progression has been documented in European, Asian, and American populations but not in Africa. METHODS We conducted a study in Ghana to evaluate and compare the naso-oropharyngeal microbiome in SARS-CoV-2-infected and uninfected persons before (pre-vaccine) and after vaccine availability (post-vaccine) in the country. 16S rRNA V3-V4 variable region was sequenced and analysed from DNA extracted from naso-oropharyngeal swabs. RESULTS Considering only the infection status, infected and uninfected groups had no difference in their within-group diversity and was evident in the study population pre- and post-vaccine availability. The introduction of vaccines reduced the diversity of the naso-oropharyngeal microbiome particularly among SARS-CoV-2 positive persons and, vaccinated individuals (both infected and uninfected) had higher microbial diversity compared to their unvaccinated counterparts. SARS-CoV-2-positive and -negative individuals were largely compositionally similar varying by 4-7% but considering vaccination*infection statuses, the genetic distance increased to 12% (P = 0.003) and was mainly influenced by vaccination. Common among the pre- and post-vaccine samples, Atopobium and Finegoldia were abundant in infected and uninfected individuals, respectively. Bacteria belonging to major butyrate-producing phyla, Bacillota (particularly class Clostridia) and Bacteroidota showed increased abundance more strikingly in infected individuals before vaccines were available. They reduced significantly after vaccines were introduced into the country with Fusobacterium and Lachnoanaerobaculum being the only common bacteria between pre-vaccine infected persons and vaccinated individuals, suggesting that natural infection and vaccination correlate with high abundance of short-chain fatty acids. CONCLUSION Our results show, in an African cohort, the abundance of bacteria taxa known for their protective pathophysiological processes, especially during infection, suggesting that this population is protected against severe COVID-19. The immune-related roles of the members of Bacillota and Bacteroidota that were found associated with infection and vaccination require further studies, and how these may be linked to ethnicity, diet and age. We also recommend expansion of microbiome-disease association studies across Africa to identify possible bacterial-mediated therapeutics for emerging infections.
Collapse
Affiliation(s)
- Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana.
| | - Millicent Opoku
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
- Present address Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Francis Appiah-Twum
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Margaret Sena Akpo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Rahmat Yusif Ismail
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Georgina Yaa Kwartemaa Boamah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Elizabeth Obeng-Aboagye
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Dina Adu-Asamoah
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Irene Owusu Donkor
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| |
Collapse
|
8
|
Zhang L, Ma Y, Wei Z, Wang L. Toxicity of gold nanoparticles complicated by the co-existence multiscale plastics. Front Microbiol 2024; 15:1447046. [PMID: 39268536 PMCID: PMC11392435 DOI: 10.3389/fmicb.2024.1447046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Gold nanoparticles (AuNPs) have been developed as treatment materials for various diseases and shown magnificent potential. By contrast to the broad toxicological studies on the single exposure (AuNPs), how the other health risks modulate the toxicological profile of AuNPs remains to be investigated. Plastics are among the most common health risks in daily life due to the broad utilization of plastic products. Therefore, in this study, we aimed to reveal the toxicological effects induced by co-exposure of gold nanorod (AuR) and polystyrene micro- and nano-plastics (hereinafter, referred to as AuRmPS and AuRnPS, respectively) in mice. Methods Systematic biochemical characterizations were performed to investigate the hepatotoxicity, nephrotoxicity, neurotoxicity, inflammatory responses, alterations in gut microbiota induced by co-exposure, and to analyze the toxicological phenomena from the roles of reactive oxygen species and gut-organ axis. Results It has been found that hepatotoxicity, nephrotoxicity, neurotoxicity, and inflammation were exacerbated in AuRnPS and AuRmPS, and gut microbiota composition was more severely altered in AuRnPS exposure. These results suggest the necessity of reducing plastics exposure in AuNPs-based therapies. Moreover, protection against the nano-sized plastic particles holds higher priority. Conclusion These findings will facilitate the explorations of methods to reduce therapeutic toxicity and improve biosafety for specific treatments by referring to the orders of importance in protecting different organs.
Collapse
Affiliation(s)
- Lan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yuyang Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhiliang Wei
- Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Maryland, MD, United States
| | - Luyang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
9
|
Kalam N, Balasubramaniam VRMT. Crosstalk between COVID-19 and the gut-brain axis: a gut feeling. Postgrad Med J 2024; 100:539-554. [PMID: 38493312 DOI: 10.1093/postmj/qgae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
The microbes in the gut are crucial for maintaining the body's immune system and overall gut health. However, it is not fully understood how an unstable gut environment can lead to more severe cases of SARS-CoV-2 infection. The gut microbiota also plays a role in the gut-brain axis and interacts with the central nervous system through metabolic and neuroendocrine pathways. The interaction between the microbiota and the host's body involves hormonal, immune, and neural pathways, and any disruption in the balance of gut bacteria can lead to dysbiosis, which contributes to pathogen growth. In this context, we discuss how dysbiosis could contribute to comorbidities that increase susceptibility to SARS-CoV-2. Probiotics and fecal microbiota transplantation have successfully treated infectious and non-infectious inflammatory-related diseases, the most common comorbidities. These treatments could be adjuvant therapies for COVID-19 infection by restoring gut homeostasis and balancing the gut microbiota.
Collapse
Affiliation(s)
- Nida Kalam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Malaysia
| | - Vinod R M T Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
10
|
Pokhrel V, Kuntal BK, Mande SS. Role and significance of virus-bacteria interactions in disease progression. J Appl Microbiol 2024; 135:lxae130. [PMID: 38830797 DOI: 10.1093/jambio/lxae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Understanding disease pathogenesis caused by bacteria/virus, from the perspective of individual pathogen has provided meaningful insights. However, as viral and bacterial counterparts might inhabit the same infection site, it becomes crucial to consider their interactions and contributions in disease onset and progression. The objective of the review is to highlight the importance of considering both viral and bacterial agents during the course of coinfection. The review provides a unique perspective on the general theme of virus-bacteria interactions, which either lead to colocalized infections that are restricted to one anatomical niche, or systemic infections that have a systemic effect on the human host. The sequence, nature, and underlying mechanisms of certain virus-bacteria interactions have been elaborated with relevant examples from literature. It also attempts to address the various applied aspects, including diagnostic and therapeutic strategies for individual infections as well as virus-bacteria coinfections. The review aims to aid researchers in comprehending the intricate interplay between virus and bacteria in disease progression, thereby enhancing understanding of current methodologies and empowering the development of novel health care strategies to tackle coinfections.
Collapse
Affiliation(s)
- Vatsala Pokhrel
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhusan K Kuntal
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
| | - Sharmila S Mande
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
| |
Collapse
|
11
|
Olteanu G, Ciucă-Pană MA, Busnatu ȘS, Lupuliasa D, Neacșu SM, Mititelu M, Musuc AM, Ioniță-Mîndrican CB, Boroghină SC. Unraveling the Microbiome-Human Body Axis: A Comprehensive Examination of Therapeutic Strategies, Interactions and Implications. Int J Mol Sci 2024; 25:5561. [PMID: 38791599 PMCID: PMC11122276 DOI: 10.3390/ijms25105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review scrutinizes the intricate interplay between the microbiome and the human body, exploring its multifaceted dimensions and far-reaching implications. The human microbiome, comprising diverse microbial communities inhabiting various anatomical niches, is increasingly recognized as a critical determinant of human health and disease. Through an extensive examination of current research, this review elucidates the dynamic interactions between the microbiome and host physiology across multiple organ systems. Key topics include the establishment and maintenance of microbiota diversity, the influence of host factors on microbial composition, and the bidirectional communication pathways between microbiota and host cells. Furthermore, we delve into the functional implications of microbiome dysbiosis in disease states, emphasizing its role in shaping immune responses, metabolic processes, and neurological functions. Additionally, this review discusses emerging therapeutic strategies aimed at modulating the microbiome to restore host-microbe homeostasis and promote health. Microbiota fecal transplantation represents a groundbreaking therapeutic approach in the management of dysbiosis-related diseases, offering a promising avenue for restoring microbial balance within the gut ecosystem. This innovative therapy involves the transfer of fecal microbiota from a healthy donor to an individual suffering from dysbiosis, aiming to replenish beneficial microbial populations and mitigate pathological imbalances. By synthesizing findings from diverse fields, this review offers valuable insights into the complex relationship between the microbiome and the human body, highlighting avenues for future research and clinical interventions.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Maria-Alexandra Ciucă-Pană
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania;
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 060021 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Steluța Constanța Boroghină
- Department of Complementary Sciences, History of Medicine and Medical Culture, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
12
|
Pinto E, Meneghel P, Farinati F, Russo FP, Pelizzaro F, Gambato M. Efficacy of immunotherapy in hepatocellular carcinoma: Does liver disease etiology have a role? Dig Liver Dis 2024; 56:579-588. [PMID: 37758610 DOI: 10.1016/j.dld.2023.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The systemic treatment of hepatocellular carcinoma (HCC) is changing rapidly. After a decade of tyrosine kinase inhibitors (TKIs), as the only therapeutic option for the treatment of advanced HCC, in the last few years several phase III trials demonstrated the efficacy of immune checkpoint inhibitors (ICIs). The combination of the anti-PD-L1 atezolizumab and the anti-vascular endothelial growth factor (VEGF) bevacizumab demonstrated the superiority over sorafenib and currently represents the standard of care treatment for advanced HCC. In addition, the combination of durvalumab (an anti-PD-L1) and tremelimumab (an anti-CTLA4) proved to be superior to sorafenib, and in the same trial durvalumab monotherapy showed non-inferiority compared to sorafenib. However, early reports suggest an influence of HCC etiology in modulating the response to these drugs. In particular, a lower effectiveness of ICIs has been suggested in patients with non-viral HCC (in particular non-alcoholic fatty liver disease). Nevertheless, randomized controlled trials available to date have not been stratified for etiology and data suggesting a possible impact of etiology in the outcome of patients managed with ICIs derive from subgroup not pre-specified analyses. In this review, we aim to examine the potential impact of HCC etiology on the response to immunotherapy regimens for HCC.
Collapse
Affiliation(s)
- Elisa Pinto
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy
| | - Paola Meneghel
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy
| | - Fabio Farinati
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy
| | - Francesco Paolo Russo
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy.
| | - Filippo Pelizzaro
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy
| | - Martina Gambato
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy.
| |
Collapse
|
13
|
Liu Y, Kim ES, Guo H. Hepatitis B virus-related hepatocellular carcinoma exhibits distinct intratumoral microbiota and immune microenvironment signatures. J Med Virol 2024; 96:e29485. [PMID: 38377167 PMCID: PMC10916714 DOI: 10.1002/jmv.29485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Emerging evidence supports a high prevalence of cancer type-specific microbiota residing within tumor tissues. The intratumoral microbiome in hepatocellular carcinoma (HCC), especially in viral (hepatitis B virus [HBV]/hepatitis C virus [HCV]) HCC, has not been well characterized for their existence, composition, distribution, and biological functions. We report herein a finding of specific microbial signature in viral HCC as compared to non-HBV/non-HCV (NBNC) HCC. However, the significantly diverse tumor microbiome was only observed in HBV-related HCC, and Cutibacterium was identified as the representative taxa biomarker. Biological function of the unique tumor microbiota in modulating tumor microenvironment (TME) was characterized by using formalin-fixed paraffin-embedded (FFPE) tissue-based multiplex immunofluorescence histochemistry (mIFH) allowing simultaneous in situ detection of the liver cancer cells surrounded with high/low density of microbiota, and the infiltrating immune cells. In HBV_HCC, the intratumoral microbiota are positively associated with increased tumor-infiltrating CD8+ T lymphocytes, but not the CD56+ NK cells. Two subtypes of myeloid-derived suppressor cells (MDSCs): monocytic MDSCs and polymorphonuclear MDSCs, were also found to be positively correlated with the intratumoral microbiota in HBV_HCC, indicating an inhibitory role of these microbial species in antitumor immunity and the contribution to the liver TME in combination of chronic viral hepatitis during HCC development.
Collapse
Affiliation(s)
- Yuanjie Liu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine
- Cancer Microbiome Facility, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine
| | - Elena S. Kim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine
| |
Collapse
|
14
|
Maftei NM, Raileanu CR, Balta AA, Ambrose L, Boev M, Marin DB, Lisa EL. The Potential Impact of Probiotics on Human Health: An Update on Their Health-Promoting Properties. Microorganisms 2024; 12:234. [PMID: 38399637 PMCID: PMC10891645 DOI: 10.3390/microorganisms12020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Probiotics, known to be live microorganisms, have been shown to improve or restore the gut microbiota, which in turn has been linked to improved health. It is believed that probiotics are the modern equivalent of a panacea, with claims that they may treat or prevent different diseases both in children and adults (e.g., from colic in babies to cardiovascular disease, respiratory infection, and cancer in adults). Ever since the early 2000s, probiotic-based fermented foods have had a resurgence in popularity, mostly due to claims made regarding their health benefits. Fermented foods have been associated with the prevention of irritable bowel syndrome, lactose intolerance, gastroenteritis, and obesity, but also other conditions such as chronic diarrhea, allergies, dermatitis, and bacterial and viral infections, all of which are closely related to an unhealthy lifestyle. Recent and ongoing developments in microbiome/microbiota science have given us new research directions for probiotics. The new types, mechanisms, and applications studied so far, and those currently under study, have a great potential to change scientific understanding of probiotics' nutritional applications and human health care. The expansion of fields related to the study of the microbiome and the involvement of probiotics in its improvement foreshadow an era of significant changes. An expanding range of candidate probiotic species is emerging that can address newly elucidated data-driven microbial niches and host targets. In the probiotic field, new variants of microbiome-modulating interventions are being developed, including prebiotics, symbiotics, postbiotics, microbial consortia, live biotherapeutic products, and genetically modified organisms, with renewed interest in polyphenols, fibers, and fermented foods to ensure human health. This manuscript aims to analyze recent, emerging, and anticipated trends in probiotics (sources, doses, mechanism of action, diseases for which probiotics are administered, side effects, and risks) and create a vision for the development of related areas of influence in the field.
Collapse
Affiliation(s)
- Nicoleta-Maricica Maftei
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Clinic Laboratory Department, Clinical Hospital of Children Hospital “Sf. Ioan”, 800487 Galati, Romania
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Cosmin Raducu Raileanu
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (C.R.R.); (L.A.)
| | - Alexia Anastasia Balta
- Medical Department Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania;
| | - Lenuta Ambrose
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (C.R.R.); (L.A.)
| | - Monica Boev
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Denisa Batîr Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| | - Elena Lacramioara Lisa
- Department of Pharmaceutical Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800010 Galati, Romania; (N.-M.M.); (E.L.L.)
- Research Centre in the Medical-Pharmaceutical Field, “Dunarea de Jos” University of Galati, 800010 Galati, Romania
| |
Collapse
|
15
|
Nie G, Zhang H, Xie D, Yan J, Li X. Liver cirrhosis and complications from the perspective of dysbiosis. Front Med (Lausanne) 2024; 10:1320015. [PMID: 38293307 PMCID: PMC10824916 DOI: 10.3389/fmed.2023.1320015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
The gut-liver axis refers to the intimate relationship and rigorous interaction between the gut and the liver. The intestinal barrier's integrity is critical for maintaining liver homeostasis. The liver operates as a second firewall in this interaction, limiting the movement of potentially dangerous compounds from the gut and, as a result, contributing in barrier management. An increasing amount of evidence shows that increased intestinal permeability and subsequent bacterial translocation play a role in liver damage development. The major pathogenic causes in cirrhotic individuals include poor intestinal permeability, nutrition, and intestinal flora dysbiosis. Portal hypertension promotes intestinal permeability and bacterial translocation in advanced liver disease, increasing liver damage. Bacterial dysbiosis is closely related to the development of cirrhosis and its related complications. This article describes the potential mechanisms of dysbiosis in liver cirrhosis and related complications, such as spontaneous bacterial peritonitis, hepatorenal syndrome, portal vein thrombosis, hepatic encephalopathy, and hepatocellular carcinoma, using dysbiosis of the intestinal flora as an entry point.
Collapse
Affiliation(s)
- Guole Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Cancer Prevention and Control Center of Lanzhou University Medical School, Lanzhou, China
- Gansu Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- Gansu Clinical Medical Research Center of General Surgery, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Cancer Prevention and Control Center of Lanzhou University Medical School, Lanzhou, China
- Gansu Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- Gansu Clinical Medical Research Center of General Surgery, Lanzhou, China
| |
Collapse
|
16
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Viral Liver Disease and Intestinal Gut–Liver Axis. GASTROINTESTINAL DISORDERS 2024; 6:64-93. [DOI: 10.3390/gidisord6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The intestinal microbiota is closely related to liver diseases via the intestinal barrier and bile secretion to the gut. Impairment of the barrier can translocate microbes or their components to the liver where they can contribute to liver damage and fibrosis. The components of the barrier are discussed in this review along with the other elements of the so-called gut–liver axis. This bidirectional relation has been widely studied in alcoholic and non-alcoholic liver disease. However, the involvement of microbiota in the pathogenesis and treatment of viral liver diseases have not been extensively studied, and controversial data have been published. Therefore, we reviewed data regarding the integrity and function of the intestinal barrier and the changes of the intestinal microbioma that contribute to progression of Hepatitis B (HBV) and Hepatitis C (HCV) infection. Their consequences, such as cirrhosis and hepatic encephalopathy, were also discussed in connection with therapeutic interventions such as the effects of antiviral eradication and the use of probiotics that may influence the outcome of liver disease. Profound alterations of the microbioma with significant reduction in microbial diversity and changes in the abundance of both beneficial and pathogenic bacteria were found.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Ioannis Tsomidis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
17
|
Jiang S, Ma W, Ma C, Zhang Z, Zhang W, Zhang J. An emerging strategy: probiotics enhance the effectiveness of tumor immunotherapy via mediating the gut microbiome. Gut Microbes 2024; 16:2341717. [PMID: 38717360 PMCID: PMC11085971 DOI: 10.1080/19490976.2024.2341717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
The occurrence and progression of tumors are often accompanied by disruptions in the gut microbiota. Inversely, the impact of the gut microbiota on the initiation and progression of cancer is becoming increasingly evident, influencing the tumor microenvironment (TME) for both local and distant tumors. Moreover, it is even suggested to play a significant role in the process of tumor immunotherapy, contributing to high specificity in therapeutic outcomes and long-term effectiveness across various cancer types. Probiotics, with their generally positive influence on the gut microbiota, may serve as effective agents in synergizing cancer immunotherapy. They play a crucial role in activating the immune system to inhibit tumor growth. In summary, this comprehensive review aims to provide valuable insights into the dynamic interactions between probiotics, gut microbiota, and cancer. Furthermore, we highlight recent advances and mechanisms in using probiotics to improve the effectiveness of cancer immunotherapy. By understanding these complex relationships, we may unlock innovative approaches for cancer diagnosis and treatment while optimizing the effects of immunotherapy.
Collapse
Affiliation(s)
- Shuaiming Jiang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenyao Ma
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Chenchen Ma
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, Shenzhen, PR China
| | - Zeng Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| |
Collapse
|
18
|
Maslennikov R, Poluektova E, Zolnikova O, Sedova A, Kurbatova A, Shulpekova Y, Dzhakhaya N, Kardasheva S, Nadinskaia M, Bueverova E, Nechaev V, Karchevskaya A, Ivashkin V. Gut Microbiota and Bacterial Translocation in the Pathogenesis of Liver Fibrosis. Int J Mol Sci 2023; 24:16502. [PMID: 38003692 PMCID: PMC10671141 DOI: 10.3390/ijms242216502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cirrhosis is the end result of liver fibrosis in chronic liver diseases. Studying the mechanisms of its development and developing measures to slow down and regress it based on this knowledge seem to be important tasks for medicine. Currently, disorders of the gut-liver axis have great importance in the pathogenesis of cirrhosis. However, gut dysbiosis, which manifests as increased proportions in the gut microbiota of Bacilli and Proteobacteria that are capable of bacterial translocation and a decreased proportion of Clostridia that strengthen the intestinal barrier, occurs even at the pre-cirrhotic stage of chronic liver disease. This leads to the development of bacterial translocation, a process by which those microbes enter the blood of the portal vein and then the liver tissue, where they activate Kupffer cells through Toll-like receptor 4. In response, the Kupffer cells produce profibrogenic cytokines, which activate hepatic stellate cells, stimulating their transformation into myofibroblasts that produce collagen and other elements of the extracellular matrix. Blocking bacterial translocation with antibiotics, probiotics, synbiotics, and other methods could slow down the progression of liver fibrosis. This was shown in a number of animal models but requires further verification in long-term randomized controlled trials with humans.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Alla Sedova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Anastasia Kurbatova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Yulia Shulpekova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Natyia Dzhakhaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Svetlana Kardasheva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Maria Nadinskaia
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Elena Bueverova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Vladimir Nechaev
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Anna Karchevskaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| |
Collapse
|
19
|
Shin WS, Xie F, Chen B, Yu J, Lo KW, Tse GMK, To KF, Kang W. Exploring the Microbiome in Gastric Cancer: Assessing Potential Implications and Contextualizing Microorganisms beyond H. pylori and Epstein-Barr Virus. Cancers (Basel) 2023; 15:4993. [PMID: 37894360 PMCID: PMC10605912 DOI: 10.3390/cancers15204993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
While previous research has primarily focused on the impact of H. pylori and Epstein-Barr virus (EBV), emerging evidence suggests that other microbial influences, including viral and fungal infections, may also contribute to gastric cancer (GC) development. The intricate interactions between these microbes and the host's immune response provide a more comprehensive understanding of gastric cancer pathogenesis, diagnosis, and treatment. The review highlights the roles of established players such as H. pylori and EBV and the potential impacts of gut bacteria, mainly Lactobacillus, Streptococcus, hepatitis B virus, hepatitis C virus, and fungi such as Candida albicans. Advanced sequencing technologies offer unprecedented insights into the complexities of the gastric microbiome, from microbial diversity to potential diagnostic applications. Furthermore, the review highlights the potential for advanced GC diagnosis and therapies through a better understanding of the gut microbiome.
Collapse
Affiliation(s)
- Wing Sum Shin
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
| | - Fuda Xie
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- CUHK—Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Bonan Chen
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- CUHK—Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Kwok Wai Lo
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
| | - Gary M. K. Tse
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
| | - Ka Fai To
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Wei Kang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- CUHK—Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| |
Collapse
|
20
|
He K, Liu M, Wang Q, Chen S, Guo X. Combined analysis of 16S rDNA sequencing and metabolomics to find biomarkers of drug-induced liver injury. Sci Rep 2023; 13:15138. [PMID: 37704684 PMCID: PMC10499917 DOI: 10.1038/s41598-023-42312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
Drug induced liver injury (DILI) is a kind of liver dysfunction which caused by drugs, and gut microbiota could affect liver injury. However, the relationship between gut microbiota and its metabolites in DILI patients is not clear. The total gut microbiota DNA was extracted from 28 DILI patient and 28 healthy control volunteers (HC) and 16S rDNA gene were amplified. Next, differentially metabolites were screened. Finally, the correlations between the diagnostic strains and differentially metabolites were studied.The richness and uniformity of the bacterial communities decreased in DILI patients, and the structure of gut microbiota changed obviously. Enterococcus and Veillonella which belong to Firmicutes increased in DILI, and Blautia and Ralstonia which belong to Firmicutes, Dialister which belongs to Proteobacteria increased in HC. In addition, these diagnostic OTUs of DILI were associated with the DILI damage mechanism. On the other hands, there were 66 differentially metabolites between DILI and HC samples, and these metabolites were mainly enriched in pyrimidine metabolism and steroid hormone biosynthesis pathways. Furthermore, the collinear network map of the key microbiota-metabolites were constructed and the results indicated that Cortodoxone, Prostaglandin I1, Bioyclo Prostaglandin E2 and Anacardic acid were positively correlated with Blautia and Ralstonia, and negatively correlated with Veillonella.This study analyzed the changes of DILI from the perspective of gut microbiota and metabolites. Key strains and differentially metabolites of DILI were screened and the correlations between them were studied. This study further illustrated the mechanism of DILI.
Collapse
Affiliation(s)
- Kaini He
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China
| | - Mimi Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China
| | - Qian Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China
| | - Sijie Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China
| | - Xiaoyan Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong, University, Xi'an, Shaanxi, China.
| |
Collapse
|
21
|
Chuaypen N, Jinato T, Avihingsanon A, Nookaew I, Tanaka Y, Tangkijvanich P. Long-term benefit of DAAs on gut dysbiosis and microbial translocation in HCV-infected patients with and without HIV coinfection. Sci Rep 2023; 13:14413. [PMID: 37660163 PMCID: PMC10475021 DOI: 10.1038/s41598-023-41664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023] Open
Abstract
Long-term effect of Direct-acting antivirals (DAAs) on gut microbiota, short-chain fatty acids (SCFAs) and microbial translocation in patients with hepatitis C virus (HCV) infection who achieve sustained virological response (SVR) were limited. A longitudinal study of 50 patients with HCV monoinfection and 19 patients with HCV/HIV coinfection received DAAs were conducted. Fecal specimens collected at baseline and at week 72 after treatment completion (FUw72) were analyzed for 16S rRNA sequencing and the butyryl-CoA:acetateCoA transferase (BCoAT) gene expression using real-time PCR. Plasma lipopolysaccharide binding protein (LBP) and intestinal fatty acid binding protein (I-FABP) were quantified by ELISA assays. SVR rates in mono- and coinfected patients were comparable (94% vs. 100%). The improvement of gut dysbiosis and microbial translocation was found in responders but was not in non-responders. Among responders, significant restoration of alpha-diversity, BCoAT and LBP were observed in HCV patients with low-grade fibrosis (F0-F1), while HCV/HIV patients exhibited partial improvement at FUw72. I-FABP did not decline significantly in responders. Treatment induced microbiota changes with increasing abundance of SCFAs-producing bacteria, including Blautia, Fusicatenibacter, Subdoligranulum and Bifidobacterium. In conclusion, long-term effect of DAAs impacted the restoration of gut dysbiosis and microbial translocation. However, early initiation of DAAs required for an alteration of gut microbiota, enhanced SCFAs-producing bacteria, and could reduce HCV-related complications.
Collapse
Affiliation(s)
- Natthaya Chuaypen
- Department of Biochemistry, Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thananya Jinato
- Department of Biochemistry, Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Doctor of Philosophy Program in Medical Sciences, Graduate Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anchalee Avihingsanon
- The HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), Bangkok, Thailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yasuhito Tanaka
- Division of Integrated Medical and Pharmaceutical Sciences, Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Pisit Tangkijvanich
- Department of Biochemistry, Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
22
|
Efremova I, Maslennikov R, Poluektova E, Zharkova M, Kudryavtseva A, Krasnov G, Fedorova M, Shirokova E, Kozlov E, Levshina A, Ivashkin V. Gut Dysbiosis and Hemodynamic Changes as Links of the Pathogenesis of Complications of Cirrhosis. Microorganisms 2023; 11:2202. [PMID: 37764046 PMCID: PMC10537778 DOI: 10.3390/microorganisms11092202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The aim was to evaluate the relationship between gut dysbiosis and hemodynamic changes (hyperdynamic circulation) in cirrhosis, and between hemodynamic changes and complications of this disease. This study included 47 patients with cirrhosis. Stool microbiome was assessed using 16S rRNA gene sequencing. Echocardiography with a simultaneous assessment of blood pressure and heart rate was performed to assess systemic hemodynamics. Patients with hyperdynamic circulation had more severe cirrhosis, lower albumin, sodium and prothrombin levels, higher C-reactive protein, aspartate aminotransferase and total bilirubin levels, and higher incidences of portopulmonary hypertension, ascites, overt hepatic encephalopathy, hypoalbuminemia, hypoprothrombinemia, systemic inflammation, and severe hyperbilirubinemia than patients with normodynamic circulation. Patients with hyperdynamic circulation compared with those with normodynamic circulation had increased abundance of Proteobacteria, Enterobacteriaceae, Bacilli, Streptococcaceae, Lactobacillaceae, Fusobacteria, Micrococcaceae, Intestinobacter, Clostridium sensu stricto, Proteus and Rumicoccus, and decreased abundance of Bacteroidetes, Bacteroidaceae, Holdemanella, and Butyrivibrio. The systemic vascular resistance and cardiac output values correlated with the abundance of Proteobacteria, Enterobacteriaceae, Bacilli, Streptococcaceae, Lactobacillaceae, Micrococcaceae, and Fusobacteria. Heart rate and cardiac output value were negatively correlated with the abundance of Bacteroidetes. The mean pulmonary artery pressure value was positively correlated with the abundance of Proteobacteria and Micrococcaceae, and negatively with the abundance of Holdemanella.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119991 Moscow, Russia
- Consultative and Diagnostic Center No. 2, Moscow Health Department, 107564 Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119991 Moscow, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
| | - Anna Kudryavtseva
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia (G.K.); (M.F.)
| | - George Krasnov
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia (G.K.); (M.F.)
| | - Maria Fedorova
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia (G.K.); (M.F.)
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
| | - Evgenii Kozlov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, 119991 Moscow, Russia;
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, 119991 Moscow, Russia;
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
| |
Collapse
|
23
|
Sato S, Iino C, Chinda D, Sasada T, Tateda T, Kaizuka M, Nomiya H, Igarashi G, Sawada K, Mikami T, Nakaji S, Sakuraba H, Fukuda S. Effect of Liver Fibrosis on Oral and Gut Microbiota in the Japanese General Population Determined by Evaluating the FibroScan-Aspartate Aminotransferase Score. Int J Mol Sci 2023; 24:13470. [PMID: 37686272 PMCID: PMC10487682 DOI: 10.3390/ijms241713470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The association between liver fibrosis and oral or gut microbiota has been studied before. However, epidemiological studies in the general population are limited owing to the difficulty of noninvasive liver-fibrosis assessment. FibroScan-asparate aminotransferase (FAST) scores can be used to accurately and non-invasively evaluate liver fibrosis. This study aimed to determine the association between liver fibrosis and oral or gut microbiota using the FAST score in the general population. After propensity score matching of 1059 participants based on sex, age, body mass index, homeostasis model assessment of insulin resistance, and triglyceride levels, 125 (non-liver-fibrosis group, 100; liver fibrosis group, 25) were included. The diversity of gut microbiota differed significantly between the two groups; however, no significant differences were noted in their oral microbiota. The liver fibrosis group showed an increase in the relative abundance of Fusobacteria strains and a decrease in the relative abundance of Faecalibacterium, with the presence of Fusicatenibacter in the gut microbiota. Feacalibacterium was not identified as an independent factor of liver fibrosis in adjusting the fatty liver index. In the general population, gut microbiota may be more involved in liver fibrosis than oral microbiota.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Chikara Iino
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Daisuke Chinda
- Division of Endoscopy, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Takafumi Sasada
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Tetsuyuki Tateda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Masatoshi Kaizuka
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Hiroki Nomiya
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Go Igarashi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Kaori Sawada
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (K.S.); (T.M.)
| | - Tatsuya Mikami
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (K.S.); (T.M.)
| | - Shigeyuki Nakaji
- Center of Healthy Aging Innovation, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| |
Collapse
|
24
|
Maslennikov R, Alieva A, Poluektova E, Zharikov Y, Suslov A, Letyagina Y, Vasileva E, Levshina A, Kozlov E, Ivashkin V. Sarcopenia in cirrhosis: Prospects for therapy targeted to gut microbiota. World J Gastroenterol 2023; 29:4236-4251. [PMID: 37545638 PMCID: PMC10401661 DOI: 10.3748/wjg.v29.i27.4236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Decreased muscle mass and function, also known as sarcopenia, is common in patients with cirrhosis and is associated with a poor prognosis. Although the pathogenesis of this disorder has not been fully elucidated, a disordered gut-muscle axis probably plays an important role. Decreased barrier function of the gut and liver, gut dysbiosis, and small intestinal bacterial overgrowth (SIBO) can lead to increased blood levels of ammonia, lipopolysaccharides, pro-inflammatory mediators, and myostatin. These factors have complex negative effects on muscle mass and function. Drug interventions that target the gut microbiota (long-term use of rifaximin, lactulose, lactitol, or probiotics) positively affect most links of the compromised gut-muscle axis in patients with cirrhosis by decreasing the levels of hyperammonemia, bacterial translocation, and systemic inflammation and correcting gut dysbiosis and SIBO. However, although these drugs are promising, they have not yet been investigated in randomized controlled trials specifically for the treatment and prevention of sarcopenia in patients with cirrhosis. No data exist on the effects of fecal transplantation on most links of gut-muscle axis in cirrhosis; however, the results of animal experimental studies are promising.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Aliya Alieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Yury Zharikov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 119435, Russia
| | - Andrey Suslov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 119435, Russia
| | - Yana Letyagina
- Department of Human Anatomy and Histology, Sechenov University, Moscow 119435, Russia
| | - Ekaterina Vasileva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Evgenii Kozlov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| |
Collapse
|
25
|
Svobodová K, Maitre A, Obregón D, Wu-Chuang A, Thaduri S, Locke B, de Miranda JR, Mateos-Hernández L, Krejčí AB, Cabezas-Cruz A. Gut microbiota assembly of Gotland varroa-surviving honey bees excludes major viral pathogens. Microbiol Res 2023; 274:127418. [PMID: 37315341 DOI: 10.1016/j.micres.2023.127418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
The spread of the parasite Varroa destructor and associated viruses has resulted in massive honey bee colony losses with considerable economic and ecological impact. The gut microbiota has a major role in shaping honey bees tolerance and resistance to parasite infestation and viral infection, but the contribution of viruses to the assembly of the host microbiota in the context of varroa resistance and susceptibility remains unclear. Here, we used a network approach including viral and bacterial nodes to characterize the impact of five viruses, Apis Rhabdovirus-1 (ARV-1), Black Queen Cell virus (BQCV), Lake Sinai virus (LSV), Sacbrood virus (SBV) and Deformed wing virus (DWV) on the gut microbiota assembly of varroa-susceptible and Gotland varroa-surviving honey bees. We found that microbiota assembly was different in varroa-surviving and varroa-susceptible honey bees with the network of the latter having a whole module not present in the network of the former. Four viruses, ARV-1, BQCV, LSV, and SBV, were tightly associated with bacterial nodes of the core microbiota of varroa-susceptible honey bees, while only two viruses BQCV and LSV, appeared correlated with bacterial nodes in varroa-surviving honey bees. In silico removal of viral nodes caused major re-arrangement of microbial networks with changes in nodes centrality and significant reduction of the networks' robustness in varroa-susceptible, but not in varroa-surviving honey bees. Comparison of predicted functional pathways in bacterial communities using PICRUSt2 showed the superpathway for heme b biosynthesis from uroporphyrinogen-III and a pathway for arginine, proline, and ornithine interconversion as significantly increased in varroa-surviving honey bees. Notably, heme and its reduction products biliverdin and bilirubin have been reported as antiviral agents. These findings show that viral pathogens are differentially nested in the bacterial communities of varroa-surviving and varroa-susceptible honey bees. These results suggest that Gotland honey bees are associated with minimally-assembled and reduced bacterial communities that exclude viral pathogens and are resilient to viral nodes removal, which, together with the production of antiviral compounds, may explain the resiliency of Gotland honey bees to viral infections. In contrast, the intertwined virus-bacterium interactions in varroa-susceptible networks suggest that the complex assembly of microbial communities in this honey bee strain favor viral infections, which may explain viral persistence in this honey bee strain. Further understanding of protective mechanisms mediated by the microbiota could help developing novel ways to control devastating viral infections affecting honey bees worldwide.
Collapse
Affiliation(s)
- Karolína Svobodová
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France; INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250 Corte, France; EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Srinivas Thaduri
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Alena Bruce Krejčí
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France.
| |
Collapse
|
26
|
Gowri Sankar S, Alwin Prem Anand A, Chattopadhyay B. Editorial: Trends in dengue evolution, immune pathogenesis, and pathology. Front Cell Infect Microbiol 2023; 13:1210316. [PMID: 37305420 PMCID: PMC10248524 DOI: 10.3389/fcimb.2023.1210316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
- S Gowri Sankar
- Department of Molecular Biology, Indian Council of Medical Research (ICMR)-Vector Control Research Center - Field Station, Madurai, India
| | - A Alwin Prem Anand
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
27
|
Elghannam MT, Hassanien MH, Ameen YA, Turky EA, Elattar GM, ElRay AA, Eltalkawy MD. Oral microbiota and liver diseases. Clin Nutr ESPEN 2023; 54:68-72. [PMID: 36963900 DOI: 10.1016/j.clnesp.2022.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
Gut microbiota plays a crucial role in our health and particularly liver diseases, including NAFLD, cirrhosis, and HCC. Oral microbiome and its role in health and disease represent an active field of research. Several lines of evidence have suggested that oral microbiota dysbiosis represents a major factor contributing to the occurrence and progression of many liver diseases. The human microbiome is valuable to the diagnosis of cancer and provides a novel strategy for targeted therapy of HCC. The most studied liver disease in relation to oral-gut-liver axis dysbiosis includes MAFLD; however, other diseases include Precancerous liver disease as viral liver diseases, liver cirrhosis, AIH and liver carcinoma (HCC). It seems that restoring populations of beneficial organisms and correcting dysbiosis appears to improve outcomes in liver disorders. We discuss the possible role of oral microbiota in these diseases.
Collapse
Affiliation(s)
- Maged Tharwat Elghannam
- TBRI, Warak ALHadar, P.O. Box 30 Imbaba, Cairo, Egypt; Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | | | | | | | | | - Ahmed Aly ElRay
- Hepatogastroenterology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | | |
Collapse
|
28
|
Maciel-Fiuza MF, Muller GC, Campos DMS, do Socorro Silva Costa P, Peruzzo J, Bonamigo RR, Veit T, Vianna FSL. Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol 2023; 14:1098386. [PMID: 37051522 PMCID: PMC10083300 DOI: 10.3389/fmicb.2023.1098386] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Thousands of microorganisms compose the human gut microbiota, fighting pathogens in infectious diseases and inhibiting or inducing inflammation in different immunological contexts. The gut microbiome is a dynamic and complex ecosystem that helps in the proliferation, growth, and differentiation of epithelial and immune cells to maintain intestinal homeostasis. Disorders that cause alteration of this microbiota lead to an imbalance in the host’s immune regulation. Growing evidence supports that the gut microbial community is associated with the development and progression of different infectious and inflammatory diseases. Therefore, understanding the interaction between intestinal microbiota and the modulation of the host’s immune system is fundamental to understanding the mechanisms involved in different pathologies, as well as for the search of new treatments. Here we review the main gut bacteria capable of impacting the immune response in different pathologies and we discuss the mechanisms by which this interaction between the immune system and the microbiota can alter disease outcomes.
Collapse
Affiliation(s)
- Miriãn Ferrão Maciel-Fiuza
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Guilherme Cerutti Muller
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Daniel Marques Stuart Campos
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Perpétua do Socorro Silva Costa
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Department of Nursing, Universidade Federal do Maranhão, Imperatriz, Brazil
| | - Juliano Peruzzo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Renan Rangel Bonamigo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Pathology, Universidade Federal De Ciências Da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago Veit
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- *Correspondence: Fernanda Sales Luiz Vianna,
| |
Collapse
|
29
|
Ikeuchi K, Tsutsumi T, Ishizaka A, Mizutani T, Sedohara A, Koga M, Tamaoki S, Yotsuyanagi H. Modulation of duodenal and jejunal microbiota by rifaximin in mice with CCl 4-induced liver fibrosis. Gut Pathog 2023; 15:14. [PMID: 36945059 PMCID: PMC10029291 DOI: 10.1186/s13099-023-00541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Rifaximin is a poorly absorbed broad-spectrum antibiotic used for hepatic encephalopathy. Although increased Lactobacillaceae and decreased Bacteroidetes abundance are characteristic of hepatic encephalopathy, rifaximin does not dramatically alter the stool microbiota. As the antimicrobial effect of rifaximin increases by micellization with bile acids, we hypothesized that rifaximin alters the microbiota in the duodenum and jejunum, where the levels of bile acids are abundant. METHODS AND RESULTS Eight-week-old BALB/c mice were injected with carbon tetrachloride (CCl4) intraperitoneally for 12 weeks to induce liver fibrosis. The mice were grouped into the control (n = 9), CCl4 (n = 13), and rifaximin group in which mice were treated with rifaximin for two weeks after CCl4 administration (n = 13). We analyzed the microbiota of the duodenum, jejunum, ileum, cecum, and stool using 16S ribosomal RNA gene analysis. The content of Lactobacillaceae, the most abundant bacterial family in the duodenum and small intestine, increased in the CCl4 group, especially in the jejunum (median 67.0% vs 87.8%, p = 0.03). Rifaximin significantly decreased Lactobacillaceae content in the duodenum (median 79.4% vs 19.0%, p = 0.006) and jejunum (median 87.8% vs 61.3%, p = 0.03), but not in the ileum, cecum, and stool. Bacteroidetes abundance tended to decrease on CCl4 administration and increased following rifaximin treatment in the duodenum and jejunum. S24_7, the most abundant family in Bacteroidetes, demonstrated a significant inverse correlation with Lactobacillaceae (duodenum, r = - 0.61, p < 0.001; jejunum, r = - 0.72, p < 0.001). In the ileum, cecum, and stool, the effect of rifaximin on the microbiota was minimal, with changes within the same phylum. The percentage of bacterial families, such as Lactobacillaceae and S24_7 in the duodenum and small intestine, did not correlate with that in the stool. CONCLUSIONS The abundance of Lactobacillaceae increased in the jejunum of mice with CCl4-induced liver fibrosis, while rifaximin significantly reduced it in the duodenum and jejunum. Thus, rifaximin possibly exerts its effect by altering the duodenal and jejunal microbiota. Furthermore, changes in the duodenal and small intestinal microbiota were not associated with that of stool, suggesting that the analysis of stool microbiota is insufficient to evaluate upper intestinal microbiota.
Collapse
Affiliation(s)
- Kazuhiko Ikeuchi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
- Department of Infection Control and Prevention, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Taketoshi Mizutani
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Ayako Sedohara
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Satoru Tamaoki
- Medical Affairs Department, ASKA Pharmaceutical Co., Ltd., 2-5-1, Shibaura, Minato-Ku, Tokyo, 108-8532, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| |
Collapse
|
30
|
Gamal-AbdelNaser A, Mohammed WS, ElHefnawi M, AbdAllah M, Elsharkawy A, Zahran FM. The oral microbiome of treated and untreated chronic HCV infection: A preliminary study. Oral Dis 2023; 29:843-852. [PMID: 34396636 DOI: 10.1111/odi.14007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Chronic hepatitis C virus (HCV) infection is a debilitating disease that is lately treated using direct-acting antivirals (DAAs). Changes in the oral microbiome were detected in other liver diseases; however, oral microbiome was never investigated in patients having chronic HCV infection, whether pre- or post-treatment. MATERIALS AND METHODS This case-control preliminary study enrolled three equal groups: Group (I): untreated HCV patients; group (II): HCV patients who achieved viral clearance after DAA administration; and group (III): healthy controls. For each participant, a buccal swab was harvested and its 16S rRNA was sequenced. RESULTS The oral microbiome of chronic HCV patients had a significantly distinct bacterial community compared to healthy controls, characterized by high diversity and abundance of certain pathogenic species. These changes resemble that of oral lichen planus patients. After treatment by DAAs, the oral microbiome shifted to a community with partial similarity to both the diseased and the healthy ones. CONCLUSIONS Chronic HCV is associated with dysbiotic oral microbiome having abundant pathogenic bacteria. With HCV clearance by DAAs, the oral microbiome shifts to approach the healthy composition.
Collapse
Affiliation(s)
- Ayat Gamal-AbdelNaser
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Waleed S Mohammed
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics & Systems Department, National Research Centre, Giza, Egypt
| | - Mohamed AbdAllah
- Medical Research Division, National Research Centre, Giza, Egypt
| | - Aisha Elsharkawy
- Endemic Medicine and Hepatogastroentrology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fat'heya M Zahran
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
31
|
Hashimoto S, Tochio T, Funasaka K, Funahashi K, Hartanto T, Togashi Y, Saito M, Nishimoto Y, Yoshinori M, Nakaoka K, Watanabe A, Nagasaka M, Nakagawa Y, Miyahara R, Shibata T, Hirooka Y. Changes in intestinal bacteria and imbalances of metabolites induced in the intestines of pancreatic ductal adenocarcinoma patients in a Japanese population: a preliminary result. Scand J Gastroenterol 2023; 58:193-198. [PMID: 36036243 DOI: 10.1080/00365521.2022.2114812] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The relationship between pancreatic ductal adenocarcinoma (PDAC) and the intestinal environment is not fully understood. The purpose of this study was to elucidate the characteristics of the intestinal environment in PDAC. METHODS We performed a case-control study of 5 Japanese patients with unresectable PDAC located in the body or tail (PDAC-bt). The number of patients analyzed was limited for this preliminary study. We included 68 healthy subjects, herein control, of pre-printed study in the preliminary study. 16S rRNA amplicon sequencing and metabolomic analysis were performed using fecal samples from the subjects. RESULTS There was no difference in the Shannon index and Principal Coordinate Analysis between PDAC-bt and the control. However, a significant increase in oral-associated bacteria (Actinomyces, Streptococcus, Veillonella, Lactobacillus) was observed. A significant decrease of Anaerostipes was demonstrated in the feces of PDAC-bt compared with the control. The intestinal propionic acid and deoxycholic acid were significantly lower in PDAC-bt compared with the control. CONCLUSIONS We showed that the intestinal environment of PDAC-bt is characterized by an increase in oral-associated bacteria and an imbalance of metabolites but without changes in alpha and beta diversity of the gut microbiota profiles.Clinical Trial Registration: www.umin.ac.jp, UMIN 000041974, 000023675, 000023970.
Collapse
Affiliation(s)
- Senju Hashimoto
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Kohei Funasaka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | | | | | - Yuka Togashi
- Metabologenomics, Inc, Tsuruoka, Yamagata, Japan
| | - Misa Saito
- Metabologenomics, Inc, Tsuruoka, Yamagata, Japan
| | | | | | - Kazunori Nakaoka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Ayako Watanabe
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Mitsuo Nagasaka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Yoshihito Nakagawa
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
32
|
Yang J, He Q, Lu F, Chen K, Ni Z, Wang H, Zhou C, Zhang Y, Chen B, Bo Z, Li J, Yu H, Wang Y, Chen G. A distinct microbiota signature precedes the clinical diagnosis of hepatocellular carcinoma. Gut Microbes 2023; 15:2201159. [PMID: 37089022 PMCID: PMC10128432 DOI: 10.1080/19490976.2023.2201159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Oral, gut, and tumor microbiota have been implicated as important regulators in the carcinogenesis and progression of gastrointestinal malignancies. However, few studies focused on the existence and association of resident microbes within different body regions. Herein, we aim to reveal the durability of the oral-gut-tumor microbiome and its diagnostic performance in hepatocellular carcinoma (HCC). Our study included two cohorts: a retrospective discovery cohort of 364 HBV-HCC patients and 160 controls with oral or fecal samples, a prospective validation cohort of 91 cases, and 124 controls for matching samples, as well as 48 HBV, and 39 HBV-cirrhosis patients for gut microbial patterns examined by 16S rRNA gene sequencing. With the random forest analysis, 10 oral and 9 gut genera that could distinguish HCC from controls in the retrospective cohort were validated among the prospective matching participants, with area under the curve (AUC) values of 0.7971 and 0.8084, respectively. When influential taxa were merged, the AUC of the consistent classifier increased to 0.9405. The performance continued to improve to 0.9811 when combined with serum levels of alpha-fetoprotein (AFP). Specifically, microbial biomarkers represented by Streptococcus displayed a constantly increasing trend during the disease transition. Furthermore, the presence of several dominant microbiota species was confirmed in hepatic tumor and non-tumor tissues with fluorescence in situ hybridization (FISH) and 5 R 16S rRNA gene sequencing. Overall, our findings based on the oral-gut-tumor microbiota provide a reliable approach for the early detection of HCC.
Collapse
Affiliation(s)
- Jinhuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qikuan He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fei Lu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Kaiwen Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - ZhiHao Ni
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Haoyue Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Chen Zhou
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yaosheng Zhang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialiang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University; Chashan High Education Zone, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Liu S, Yang X. Intestinal flora plays a role in the progression of hepatitis-cirrhosis-liver cancer. Front Cell Infect Microbiol 2023; 13:1140126. [PMID: 36968098 PMCID: PMC10034054 DOI: 10.3389/fcimb.2023.1140126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
The liver is a vital metabolism and detoxification organ of human body, which is involved in the biotransformation and metabolism of the organism. Hepatitis - cirrhosis - liver cancer are significant and common part of liver diseases. The pathogenesis of liver diseases is generally as followed: inflammation and other pathogenic factors cause persistent damage to the liver, leading to the activation of hepatic stellate cells (HSCs) and excessive deposition of extracellular matrix. Patients with chronic hepatitis have a high risk of developing into liver fibrosis, cirrhosis, and even life-threatening liver cancer, which poses a great threat to public health.As the first organ to come into contact with blood from the gut, the liver is profoundly affected by the intestinal flora and its metabolites, with leaky gut and flora imbalance being the triggers of the liver's pathological response. So far, no one has reviewed the role of intestinal flora in this process from the perspective of the progression of hepatitis-cirrhosis-liver cancer and this article reviews the evidence supporting the effect of intestinal flora in the progression of liver disease.
Collapse
|
34
|
Morse ZJ, Simister RL, Crowe SA, Horwitz MS, Osborne LC. Virus induced dysbiosis promotes type 1 diabetes onset. Front Immunol 2023; 14:1096323. [PMID: 36742327 PMCID: PMC9892191 DOI: 10.3389/fimmu.2023.1096323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Autoimmune disorders are complex diseases of unclear etiology, although evidence suggests that the convergence of genetic susceptibility and environmental factors are critical. In type 1 diabetes (T1D), enterovirus infection and disruption of the intestinal microbiota are two environmental factors that have been independently associated with T1D onset in both humans and animal models. However, the possible interaction between viral infection and the intestinal microbiota remains unknown. Here, we demonstrate that Coxsackievirus B4 (CVB4), an enterovirus that accelerates T1D onset in non-obese diabetic (NOD) mice, induced restructuring of the intestinal microbiome prior to T1D onset. Microbiome restructuring was associated with an eroded mucosal barrier, bacterial translocation to the pancreatic lymph node, and increased circulating and intestinal commensal-reactive antibodies. The CVB4-induced change in community composition was strikingly similar to that of uninfected NOD mice that spontaneously developed diabetes, implying a mutual "diabetogenic" microbiome. Notably, members of the Bifidobacteria and Akkermansia genera emerged as conspicuous members of this diabetogenic microbiome, implicating these taxa, among others, in diabetes onset. Further, fecal microbiome transfer (FMT) of the diabetogenic microbiota from CVB4-infected mice enhanced T1D susceptibility and led to diminished expression of the short chain fatty acid receptor GPR43 and fewer IL-10-expressing regulatory CD4+ T cells in the intestine of naïve NOD recipients. These findings support an overlap in known environmental risk factors of T1D, and suggest that microbiome disruption and impaired intestinal homeostasis contribute to CVB-enhanced autoreactivity and T1D.
Collapse
Affiliation(s)
- Zachary J Morse
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rachel L Simister
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sean A Crowe
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Marc S Horwitz
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Role of Intestinal Microbes in Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms232012661. [PMID: 36293518 PMCID: PMC9603943 DOI: 10.3390/ijms232012661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
With the recent availability and upgrading of many emerging intestinal microbes sequencing technologies, our research on intestinal microbes is changing rapidly. A variety of investigations have found that intestinal microbes are essential for immune system regulation and energy metabolism homeostasis, which impacts many critical organs. The liver is the first organ to be traversed by the intestinal portal vein, and there is a strong bidirectional link between the liver and intestine. Many intestinal factors, such as intestinal microbes, bacterial composition, and intestinal bacterial metabolites, are deeply involved in liver homeostasis. Intestinal microbial dysbiosis and increased intestinal permeability are associated with the pathogenesis of many chronic liver diseases, such as alcoholic fatty liver disease (AFLD), non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), chronic hepatitis B (CHB), chronic hepatitis C (CHC), autoimmune liver disease (AIH) and the development of hepatocellular carcinoma (HCC). Intestinal permeability and dysbacteriosis often lead to Lipopolysaccharide (LPS) and metabolites entering in serum. Then, Toll-like receptors activation in the liver induces the exposure of the intestine and liver to many small molecules with pro-inflammatory properties. And all of these eventually result in various liver diseases. In this paper, we have discussed the current evidence on the role of various intestinal microbes in different chronic liver diseases. As well as potential new therapeutic approaches are proposed in this review, such as antibiotics, probiotics, and prebiotics, which may have an improvement in liver diseases.
Collapse
|
36
|
Marascio N, De Caro C, Quirino A, Mazzitelli M, Russo E, Torti C, Matera G. The Role of the Microbiota Gut-Liver Axis during HCV Chronic Infection: A Schematic Overview. J Clin Med 2022; 11:5936. [PMID: 36233804 PMCID: PMC9572099 DOI: 10.3390/jcm11195936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatitis C virus (HCV) still represents one of the most important worldwide health care problems. Since 2011, direct-acting antiviral (DAA) drugs have increased the number of people who have achieved a sustained virological response (SVR). Even if the program to eradicate HCV by 2030 is still ongoing, the SARS-CoV-2 pandemic has created a delay due to the reallocation of public health resources. HCV is characterized by high genetic variability and is responsible for hepatic and extra-hepatic diseases. Depending on the HCV genotype/subtype and comorbidities of patients, tailored treatment is necessary. Recently, it has been shown that liver damage impacts gut microbiota, altering the microbial community (dysbiosis) during persistent viral replication. An increasing number of studies are trying to clarify the role of the gut-liver axis during HCV chronic infection. DAA therapy, by restoring the gut microbiota equilibrium, seems to improve liver disease progression in both naïve and treated HCV-positive patients. In this review, we aim to discuss a snapshot of selected peer-reviewed papers concerning the interplay between HCV and the gut-liver axis.
Collapse
Affiliation(s)
- Nadia Marascio
- Clinical Microbiology Unit, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Carmen De Caro
- System and Applied Pharmacology, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Angela Quirino
- Clinical Microbiology Unit, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Maria Mazzitelli
- Infectious and Tropical Diseases Unit, University Hospital of Padua, 35128 Padua, Italy
| | - Emilio Russo
- System and Applied Pharmacology, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Giovanni Matera
- Clinical Microbiology Unit, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| |
Collapse
|
37
|
Shi D, Turroni S, Gong L, Wu W, Yim HCH. Editorial: Manipulation of gut microbiota as a key target to intervene on the onset and progression of digestive system diseases. Front Med (Lausanne) 2022; 9:999005. [PMID: 36106327 PMCID: PMC9465376 DOI: 10.3389/fmed.2022.999005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- *Correspondence: Ding Shi
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical Campus, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Howard Chi Ho Yim
- Microbiome Research Centre, St George and Sutherland Clinical Campus, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
38
|
Maslennikov R, Efremova I, Ivashkin V, Zharkova M, Poluektova E, Shirokova E, Ivashkin K. Effect of probiotics on hemodynamic changes and complications associated with cirrhosis: A pilot randomized controlled trial. World J Hepatol 2022; 14:1667-1677. [PMID: 36157871 PMCID: PMC9453455 DOI: 10.4254/wjh.v14.i8.1667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bacterial translocation exacerbates the hyperdynamic circulation observed in cirrhosis and contributes to a more severe disease course. Probiotics may reduce bacterial translocation and may therefore be useful to redress the circulatory imbalance. AIM To investigate the effect of probiotics on hemodynamic parameters, systemic inflammation, and complications of cirrhosis in this randomized placebo-controlled trial. METHODS This single-blind randomized placebo-controlled study included 40 patients with Child-Pugh class B and C cirrhosis; 24 patients received probiotics (Saccharomyces boulardii) for 3 mo, and 16 patients received a placebo over the same period. Liver function and the systemic hemodynamic status were evaluated pre- and post-intervention. Echocardiography and simultaneous blood pressure and heart rate monitoring were performed to evaluate systemic hemodynamic indicators. Cardiac output and systemic vascular resistance were calculated. RESULTS Following a 3-mo course of probiotics in comparison to the control group, we observed amelioration of hyperdynamic circulation [a decrease in cardiac output (P = 0.026) and an increase in systemic vascular resistance (P = 0.026)] and systemic inflammation [a decrease in serum C-reactive protein levels (P = 0.044)], with improved liver function [an increase in serum albumin (P = 0.001) and a decrease in the value of Child-Pugh score (P = 0.001)] as well as a reduction in the severity of ascites (P = 0.022), hepatic encephalopathy (P = 0.048), and cholestasis [a decrease in serum alkaline phosphatase (P = 0.016) and serum gamma-glutamyl transpeptidase (P = 0.039) activity] and an increase in platelet counts (P < 0.001) and serum sodium level (P = 0.048). CONCLUSION Probiotic administration was associated with amelioration of hyperdynamic circulation and the associated complications of cirrhosis.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Consultative and Diagnostic Center No. 2 of Moscow Health Department , Moscow 107764, Russia.
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Konstantin Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
39
|
Schmid DW, Fackelmann G, Wasimuddin, Rakotondranary J, Ratovonamana YR, Montero BK, Ganzhorn JU, Sommer S. A framework for testing the impact of co-infections on host gut microbiomes. Anim Microbiome 2022; 4:48. [PMID: 35945629 PMCID: PMC9361228 DOI: 10.1186/s42523-022-00198-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Parasitic infections disturb gut microbial communities beyond their natural range of variation, possibly leading to dysbiosis. Yet it remains underappreciated that most infections are accompanied by one or more co-infections and their collective impact is largely unexplored. Here we developed a framework illustrating changes to the host gut microbiome following single infections, and build on it by describing the neutral, synergistic or antagonistic impacts on microbial α- and ß-diversity expected from co-infections. We tested the framework on microbiome data from a non-human primate population co-infected with helminths and Adenovirus, and matched patterns reported in published studies to the introduced framework. In this case study, α-diversity of co-infected Malagasy mouse lemurs (Microcebus griseorufus) did not differ in comparison with that of singly infected or uninfected individuals, even though community composition captured with ß-diversity metrices changed significantly. Explicitly, we record stochastic changes in dispersion, a sign of dysbiosis, following the Anna-Karenina principle rather than deterministic shifts in the microbial gut community. From the literature review and our case study, neutral and synergistic impacts emerged as common outcomes from co-infections, wherein both shifts and dispersion of microbial communities following co-infections were often more severe than after a single infection alone, but microbial α-diversity was not universally altered. Important functions of the microbiome may also suffer from such heavily altered, though no less species-rich microbial community. Lastly, we pose the hypothesis that the reshuffling of host-associated microbial communities due to the impact of various, often coinciding parasitic infections may become a source of novel or zoonotic diseases.
Collapse
|
40
|
Association Between Proton Pump Inhibitor Therapy and Spontaneous Bacterial Peritonitis Occurrence in Cirrhotic Patients: A Clinical Review. Curr Med Sci 2022; 42:673-680. [PMID: 35870102 DOI: 10.1007/s11596-022-2607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/20/2022] [Indexed: 11/26/2022]
|
41
|
Yukawa-Muto Y, Kamiya T, Fujii H, Mori H, Toyoda A, Sato I, Konishi Y, Hirayama A, Hara E, Fukuda S, Kawada N, Ohtani N. Distinct responsiveness to rifaximin in patients with hepatic encephalopathy depends on functional gut microbial species. Hepatol Commun 2022; 6:2090-2104. [PMID: 35429147 PMCID: PMC9315133 DOI: 10.1002/hep4.1954] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 12/11/2022] Open
Abstract
Hepatic encephalopathy (HE) is the neuropsychiatric complication of liver cirrhosis (LC). The influence of gut microbiota on HE pathogenesis has been suggested but not precisely elucidated. Here, we investigate how the gut microbial profile changed in patients with HE to clarify the functional gut microbial species associated with HE. We focused on their responses to rifaximin (RFX), a nonabsorbable antibiotic used in HE therapy. Feces samples were collected from patients with decompensated LC (all HE), patients with compensated LC, and healthy controls, and fecal gut microbial profiles were compared using 16S ribosomal RNA gene amplicon and metagenomic sequencing. The linear discriminant analysis effect size was used to identify specific species. Urease-positive Streptococcus salivarius, which can produce ammonia, was identified as the most significantly abundant gut microbiota in the HE group, and its ability to elevate the levels of blood ammonia as well as brain glutamine was experimentally verified in mice. Urease-negative Ruminococcus gnavus was also identified as a significantly abundant species in patients with RFX-nonresponsive HE after RFX administration. Interestingly, R. gnavus enhanced urease activity of recombinant urease itself, implying that R. gnavus could amplify ammonia production of surrounding urease-positive microbiota. Furthermore, the sensitivity of S. salivarius and R. gnavus to RFX depended on conjugated secondary bile acid levels, suggesting a therapeutic potential of the combined use of secondary bile acid levels with RFX for enhancing the efficacy of RFX. This study identified specific gut bacterial species abundant in patients with HE and verified their functions linked to HE pathophysiology. Targeting these bacteria could be a potentially effective strategy to treat HE.
Collapse
Affiliation(s)
- Yoshimi Yukawa-Muto
- Department of PathophysiologyGraduate School of MedicineOsaka Metropolitan University (formerly, Osaka City University)OsakaJapan.,Department of HepatologyGraduate School of MedicineOsaka Metropolitan University (formerly, Osaka City University)OsakaJapan
| | - Tomonori Kamiya
- Department of PathophysiologyGraduate School of MedicineOsaka Metropolitan University (formerly, Osaka City University)OsakaJapan
| | - Hideki Fujii
- Department of Premier Preventive MedicineGraduate School of MedicineOsaka City UniversityOsakaJapan
| | - Hiroshi Mori
- 26359Advanced Genomics CenterNational Institute of GeneticsMishimaJapan
| | - Atsushi Toyoda
- 26359Advanced Genomics CenterNational Institute of GeneticsMishimaJapan
| | - Ikuya Sato
- Medical Affairs DepartmentASKA Pharmaceutical Co., Ltd.TokyoJapan
| | - Yusuke Konishi
- Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | | | - Eiji Hara
- Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan.,Immunology Frontier Research CenterOsaka UniversitySuitaJapan.,Center for Infectious Disease Education and ResearchOsaka UniversitySuitaJapan
| | - Shinji Fukuda
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan.,Gut Environmental Design GroupKanagawa Institute of Industrial Science and TechnologyKawasakiJapan.,Transborder Medical Research CenterUniversity of TsukubaTsukubaJapan
| | - Norifumi Kawada
- Department of HepatologyGraduate School of MedicineOsaka Metropolitan University (formerly, Osaka City University)OsakaJapan
| | - Naoko Ohtani
- Department of PathophysiologyGraduate School of MedicineOsaka Metropolitan University (formerly, Osaka City University)OsakaJapan.,AMED-CRESTJapan Agency for Medical Research and DevelopmentTokyoJapan
| |
Collapse
|
42
|
Lin D, Song Q, Liu J, Chen F, Zhang Y, Wu Z, Sun X, Wu X. Potential Gut Microbiota Features for Non-Invasive Detection of Schistosomiasis. Front Immunol 2022; 13:941530. [PMID: 35911697 PMCID: PMC9330540 DOI: 10.3389/fimmu.2022.941530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
The gut microbiota has been identified as a predictive biomarker for various diseases. However, few studies focused on the diagnostic accuracy of gut microbiota derived-signature for predicting hepatic injuries in schistosomiasis. Here, we characterized the gut microbiomes from 94 human and mouse stool samples using 16S rRNA gene sequencing. The diversity and composition of gut microbiomes in Schistosoma japonicum infection-induced disease changed significantly. Gut microbes, such as Bacteroides, Blautia, Enterococcus, Alloprevotella, Parabacteroides and Mucispirillum, showed a significant correlation with the level of hepatic granuloma, fibrosis, hydroxyproline, ALT or AST in S. japonicum infection-induced disease. We identified a range of gut bacterial features to distinguish schistosomiasis from hepatic injuries using the random forest classifier model, LEfSe and STAMP analysis. Significant features Bacteroides, Blautia, and Enterococcus and their combinations have a robust predictive accuracy (AUC: from 0.8182 to 0.9639) for detecting liver injuries induced by S. japonicum infection in humans and mice. Our study revealed associations between gut microbiota features and physiopathology and serological shifts of schistosomiasis and provided preliminary evidence for novel gut microbiota-derived features for the non-invasive detection of schistosomiasis.
Collapse
Affiliation(s)
- Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Qiuyue Song
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Department of Clinical Laboratory, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiahua Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Fang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yishu Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Xiaoying Wu
- Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Tan CH, Chang MC, Tsai WF, Chuang WL, Huang JF, Lin ZY, Dai CY, Yeh ML, Li CT, Yu RL. Different profiles of neurocognitive impairment in patients with hepatitis B and C virus infections. Sci Rep 2022; 12:10625. [PMID: 35739162 PMCID: PMC9226189 DOI: 10.1038/s41598-022-14736-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
The direct impact of chronic hepatitis B and hepatitis C on neurocognition remains elusive due to the frequent comorbidities, and the domains of the neurocognitive functions affected have rarely been investigated comprehensively. We cross-sectionally assessed the neurocognitive functions of the individuals with chronic hepatitis B, chronic hepatitis C, treated chronic hepatitis C with a sustained virologic response, and their healthy control counterparts. Laboratory examinations were used to investigate the impact of inflammation on neurocognition, exclude the medical conditions that could interfere with neurocognition assessment, and assess liver function and fibrotic severity of the liver of the participants. This study found the detrimental impact of chronic hepatitis B on language and executive functions. In contrast, individuals with chronic hepatitis C showed deficits in executive functions, psychomotor speed, memory, and attention. Successful elimination of hepatitis C resulted in improved liver function, but not neuropsychological test performance. Moreover, erythrocyte sedimentation rate level was found to mediate the deficits in the attention of individuals with chronic hepatitis C. These results demonstrate the neurocognitive deficits and the difference in the profiles of neurocognitive deficits in individuals with chronic hepatitis B and chronic hepatitis C. Our study also provided results suggesting the mediation by systemic inflammation on the attention deficit in individuals with chronic hepatitis C.
Collapse
Affiliation(s)
- Chun-Hsiang Tan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Chia Chang
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Fang Tsai
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zu-Yau Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Ting Li
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Rwei-Ling Yu
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
44
|
Stella L, Santopaolo F, Gasbarrini A, Pompili M, Ponziani FR. Viral hepatitis and hepatocellular carcinoma: From molecular pathways to the role of clinical surveillance and antiviral treatment. World J Gastroenterol 2022; 28:2251-2281. [PMID: 35800182 PMCID: PMC9185215 DOI: 10.3748/wjg.v28.i21.2251] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/08/2021] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a global health challenge. Due to the high prevalence in low-income countries, hepatitis B virus (HBV) and hepatitis C virus infections remain the main risk factors for HCC occurrence, despite the increasing frequencies of non-viral etiologies. In addition, hepatitis D virus coinfection increases the oncogenic risk in patients with HBV infection. The molecular processes underlying HCC development are complex and various, either independent from liver disease etiology or etiology-related. The reciprocal interlinkage among non-viral and viral risk factors, the damaged cellular microenvironment, the dysregulation of the immune system and the alteration of gut-liver-axis are known to participate in liver cancer induction and progression. Oncogenic mechanisms and pathways change throughout the natural history of viral hepatitis with the worsening of liver fibrosis. The high risk of cancer incidence in chronic viral hepatitis infected patients compared to other liver disease etiologies makes it necessary to implement a proper surveillance, both through clinical-biochemical scores and periodic ultrasound assessment. This review aims to outline viral and microenvironmental factors contributing to HCC occurrence in patients with chronic viral hepatitis and to point out the importance of surveillance programs recommended by international guidelines to promote early diagnosis of HCC.
Collapse
Affiliation(s)
- Leonardo Stella
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| |
Collapse
|
45
|
Dey P, Ray Chaudhuri S. Cancer-Associated Microbiota: From Mechanisms of Disease Causation to Microbiota-Centric Anti-Cancer Approaches. BIOLOGY 2022; 11:757. [PMID: 35625485 PMCID: PMC9138768 DOI: 10.3390/biology11050757] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the only well-established bacterial cause of cancer. However, due to the integral role of tissue-resident commensals in maintaining tissue-specific immunometabolic homeostasis, accumulated evidence suggests that an imbalance of tissue-resident microbiota that are otherwise considered as commensals, can also promote various types of cancers. Therefore, the present review discusses compelling evidence linking tissue-resident microbiota (especially gut bacteria) with cancer initiation and progression. Experimental evidence supporting the cancer-causing role of gut commensal through the modulation of host-specific processes (e.g., bile acid metabolism, hormonal effects) or by direct DNA damage and toxicity has been discussed. The opportunistic role of commensal through pathoadaptive mutation and overcoming colonization resistance is discussed, and how chronic inflammation triggered by microbiota could be an intermediate in cancer-causing infections has been discussed. Finally, we discuss microbiota-centric strategies, including fecal microbiota transplantation, proven to be beneficial in preventing and treating cancers. Collectively, this review provides a comprehensive understanding of the role of tissue-resident microbiota, their cancer-promoting potentials, and how beneficial bacteria can be used against cancers.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh 160036, India;
| |
Collapse
|
46
|
Mizutani T, Ishizaka A, Koga M, Tsutsumi T, Yotsuyanagi H. Role of Microbiota in Viral Infections and Pathological Progression. Viruses 2022; 14:950. [PMID: 35632692 PMCID: PMC9144409 DOI: 10.3390/v14050950] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Viral infections are influenced by various microorganisms in the environment surrounding the target tissue, and the correlation between the type and balance of commensal microbiota is the key to establishment of the infection and pathogenicity. Some commensal microorganisms are known to resist or promote viral infection, while others are involved in pathogenicity. It is also becoming evident that the profile of the commensal microbiota under normal conditions influences the progression of viral diseases. Thus, to understand the pathogenesis underlying viral infections, it is important to elucidate the interactions among viruses, target tissues, and the surrounding environment, including the commensal microbiota, which should have different relationships with each virus. In this review, we outline the role of microorganisms in viral infections. Particularly, we focus on gaining an in-depth understanding of the correlations among viral infections, target tissues, and the surrounding environment, including the commensal microbiota and the gut virome, and discussing the impact of changes in the microbiota (dysbiosis) on the pathological progression of viral infections.
Collapse
Affiliation(s)
- Taketoshi Mizutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (A.I.); (M.K.); (T.T.); (H.Y.)
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
47
|
Stepien M, Lopez-Nogueroles M, Lahoz A, Kühn T, Perlemuter G, Voican C, Ciocan D, Boutron-Ruault MC, Jansen E, Viallon V, Leitzmann M, Tjønneland A, Severi G, Mancini FR, Dong C, Kaaks R, Fortner RT, Bergmann MM, Boeing H, Trichopoulou A, Karakatsani A, Peppa E, Palli D, Krogh V, Tumino R, Sacerdote C, Panico S, Bueno-de-Mesquita HB, Skeie G, Merino S, Ros RZ, Sánchez MJ, Amiano P, Huerta JM, Barricarte A, Sjöberg K, Ohlsson B, Nyström H, Werner M, Perez-Cornago A, Schmidt JA, Freisling H, Scalbert A, Weiderpass E, Christakoudi S, Gunter MJ, Jenab M. Prediagnostic alterations in circulating bile acid profiles in the development of hepatocellular carcinoma. Int J Cancer 2022; 150:1255-1268. [PMID: 34843121 DOI: 10.1002/ijc.33885] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Bile acids (BAs) play different roles in cancer development. Some are carcinogenic and BA signaling is also involved in various metabolic, inflammatory and immune-related processes. The liver is the primary site of BA synthesis. Liver dysfunction and microbiome compositional changes, such as during hepatocellular carcinoma (HCC) development, may modulate BA metabolism increasing concentration of carcinogenic BAs. Observations from prospective cohorts are sparse. We conducted a study (233 HCC case-control pairs) nested within a large observational prospective cohort with blood samples taken at recruitment when healthy with follow-up over time for later cancer development. A targeted metabolomics method was used to quantify 17 BAs (primary/secondary/tertiary; conjugated/unconjugated) in prediagnostic plasma. Odd ratios (OR) for HCC risk associations were calculated by multivariable conditional logistic regression models. Positive HCC risk associations were observed for the molar sum of all BAs (ORdoubling = 2.30, 95% confidence intervals [CI]: 1.76-3.00), and choline- and taurine-conjugated BAs. Relative concentrations of BAs showed positive HCC risk associations for glycoholic acid and most taurine-conjugated BAs. We observe an association between increased HCC risk and higher levels of major circulating BAs, from several years prior to tumor diagnosis and after multivariable adjustment for confounders and liver functionality. Increase in BA concentration is accompanied by a shift in BA profile toward higher proportions of taurine-conjugated BAs, indicating early alterations of BA metabolism with HCC development. Future studies are needed to assess BA profiles for improved stratification of patients at high HCC risk and to determine whether supplementation with certain BAs may ameliorate liver dysfunction.
Collapse
Affiliation(s)
- Magdalena Stepien
- Nutrition and Metabolism Branch (NME), International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | | | - Agustin Lahoz
- Analytical Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gabriel Perlemuter
- INSERM U996, Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Labex LERMIT, Clamart, France
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Service d'hépato-Gastroentérologie, Hôpital Antoine-Béclère, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Clamart, France
| | - Cosmin Voican
- INSERM U996, Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Labex LERMIT, Clamart, France
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Service d'hépato-Gastroentérologie, Hôpital Antoine-Béclère, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Clamart, France
| | - Dragos Ciocan
- INSERM U996, Intestinal Microbiota, Macrophages and Liver Inflammation, DHU Hepatinov, Labex LERMIT, Clamart, France
- Faculté de Médecine Paris-Sud, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Service d'hépato-Gastroentérologie, Hôpital Antoine-Béclère, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Clamart, France
| | - Marie-Christine Boutron-Ruault
- CESP, Faculté de Médecine-Université Paris-Saclay, Faculté de Médecine-UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Eugene Jansen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Vivian Viallon
- Nutrition and Metabolism Branch (NME), International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Michael Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Anne Tjønneland
- Diet, Genes and Environment Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Gianluca Severi
- CESP, Faculté de Médecine-Université Paris-Saclay, Faculté de Médecine-UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Francesca Romana Mancini
- CESP, Faculté de Médecine-Université Paris-Saclay, Faculté de Médecine-UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Catherine Dong
- CESP, Faculté de Médecine-Université Paris-Saclay, Faculté de Médecine-UVSQ, INSERM, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, Villejuif, France
- Department of Gastroenterology, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Manuela M Bergmann
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | | | - Anna Karakatsani
- Hellenic Health Foundation, Athens, Greece
- 2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, Haidari, Greece
| | | | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network-ISPRO, Florence, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori Milano, Milan, Italy
| | - Rosario Tumino
- Department of Cancer Registry and Histopathology, "M.P. Arezzo" Hospital, ASP Ragusa, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - H Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
- Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Guri Skeie
- Department of Community Medicine, UIT-The Arctic University of Norway, Tromsø, Norway
| | | | - Raul Zamora Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Maria Jose Sánchez
- Escuela Andaluza de Salud Pública, Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pilar Amiano
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain
| | - Jose Mª Huerta
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Aurelio Barricarte
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Klas Sjöberg
- Department of Gastroenterology and Nutrition, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Bodil Ohlsson
- Department of Internal Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Hanna Nyström
- Department of Surgery, Umeå University, Umeå, Sweden
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Marten Werner
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Heinz Freisling
- Nutrition and Metabolism Branch (NME), International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Augustin Scalbert
- Nutrition and Metabolism Branch (NME), International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Elisabete Weiderpass
- Office of the Director, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Sofia Christakoudi
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC Centre for Transplantation, King's College London, London, UK
| | - Marc J Gunter
- Nutrition and Metabolism Branch (NME), International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Mazda Jenab
- Nutrition and Metabolism Branch (NME), International Agency for Research on Cancer (IARC-WHO), Lyon, France
| |
Collapse
|
48
|
Hartmann P. Editorial: The Microbiome in Hepatobiliary and Intestinal Disease. Front Physiol 2022; 13:893074. [PMID: 35492588 PMCID: PMC9044070 DOI: 10.3389/fphys.2022.893074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Phillipp Hartmann
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Rady Children’s Hospital San Diego, San Diego, CA, United States
- *Correspondence: Phillipp Hartmann,
| |
Collapse
|
49
|
Compositions of gut microbiota before and shortly after hepatitis C viral eradication by direct antiviral agents. Sci Rep 2022; 12:5481. [PMID: 35361930 PMCID: PMC8971444 DOI: 10.1038/s41598-022-09534-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
It is unclear whether dysbiosis in hepatitis C virus (HCV) infected patients results from the viral infection per se or develops as a result of hepatic dysfunction. We aimed to characterize compositions in gut microbiome before and shortly after HCV clearance. In this prospective cohort study, adult patients with confirmed HCV viremia were screened before receiving direct antiviral agents. Those with recent exposure to antibiotics or probiotics (within one month), prior abdominal surgery, or any malignancy were ineligible. Stool was collected before antiviral therapy started and at 12 weeks after the treatment completed. From the extracted bacterial DNA, 16 s rRNA gene was amplified and sequenced. Each patient was matched 1:2 in age and sex with uninfected controls. A total of 126 individuals were enrolled into analysis. The gut microbiome was significantly different between HCV-infected patients (n = 42), with or without cirrhosis, and their age-and sex-matched controls (n = 84) from the levels of phylum to amplicon sequence variant (all p values < 0.01 by principal coordinates analysis). All patients achieved viral eradication and exhibited no significant changes in the overall composition of gut microbiome following viral eradication (all p values > 0.5), also without significant difference in alpha diversity (all p values > 0.5). For the purpose of exploration, we also reported bacteria found differently abundant before and after HCV eradication, including Coriobacteriaceae, Peptostreptococcaceae, Staphylococcaceae, Morganellaceae, Pasteurellaceae, Succinivibrionaceae, and Moraxellaceae. Gut microbiota is altered in HCV-infected patients as compared with uninfected controls, but the overall microbial compositions do not significantly change shortly after HCV eradication.
Collapse
|
50
|
Marascio N, Rotundo S, Quirino A, Matera G, Liberto MC, Costa C, Russo A, Trecarichi EM, Torti C. Similarities, differences, and possible interactions between hepatitis E and hepatitis C viruses: Relevance for research and clinical practice. World J Gastroenterol 2022; 28:1226-1238. [PMID: 35431515 PMCID: PMC8968488 DOI: 10.3748/wjg.v28.i12.1226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/06/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) and hepatitis C virus (HCV) are both RNA viruses with a tropism for liver parenchyma but are also capable of extrahepatic manifestations. Hepatitis E is usually a viral acute fecal-oral transmitted and self-limiting disease presenting with malaise, jaundice, nausea and vomiting. Rarely, HEV causes a chronic infection in immunocompromised persons and severe fulminant hepatitis in pregnant women. Parenteral HCV infection is typically asymptomatic for decades until chronic complications, such as cirrhosis and cancer, occur. Despite being two very different viruses in terms of phylogenetic and clinical presentations, HEV and HCV show many similarities regarding possible transmission through organ transplantation and blood transfusion, pathogenesis (production of antinuclear antibodies and cryoglobulins) and response to treatment with some direct-acting antiviral drugs. Although both HEV and HCV are well studied individually, there is a lack of knowledge about coinfection and its consequences. The aim of this review is to analyze current literature by evaluating original articles and case reports and to hypothesize some interactions that can be useful for research and clinical practice.
Collapse
Affiliation(s)
- Nadia Marascio
- Department of Health Sciences, Unit of Microbiology, University “Magna Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Salvatore Rotundo
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| | - Angela Quirino
- Department of Health Sciences, Unit of Microbiology, University “Magna Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Giovanni Matera
- Department of Health Sciences, Unit of Microbiology, University “Magna Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Maria Carla Liberto
- Department of Health Sciences, Unit of Microbiology, University “Magna Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Chiara Costa
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| | - Carlo Torti
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|