1
|
Khatri S, Das S, Singh A, Ahmad S, Kashiv M, Laxman S, Kolthur‐Seetharam U. Diurnal variation in skeletal muscle mitochondrial function dictates time-of-day-dependent exercise capacity. FASEB J 2025; 39:e70365. [PMID: 39902884 PMCID: PMC11792768 DOI: 10.1096/fj.202402930r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Exercise impinges on almost all physiological processes at an organismal level and is a potent intervention to treat various diseases. Exercise performance is well established to display diurnal rhythm, peaking during the late active phase. However, the underlying molecular/metabolic factors and mitochondrial energetics that possibly dictate time-of-day exercise capacity remain unknown. Here, we have unraveled the importance of diurnal variation in mitochondrial functions as a determinant of skeletal muscle exercise performance. Our results show that exercise-induced muscle metabolome and mitochondrial energetics are distinct at ZT3 and ZT15. Importantly, we have elucidated key diurnal differences in mitochondrial functions that are well correlated with disparate time-of-day-dependent exercise capacity. Providing causal mechanistic evidence, we illustrate that loss of Sirtuin4 (SIRT4), a well-known mitochondrial regulator, abrogates mitochondrial diurnal variation and consequently abolishes time-of-day-dependent muscle output. Therefore, our findings unequivocally demonstrate the pivotal role of baseline skeletal muscle mitochondrial functions in dictating diurnal exercise capacity.
Collapse
Grants
- 19P0911 Department of Atomic Energy, Government of India (DAE)
- BT/PR29878/PFN/20/1431/2018 Department of Biotechnology, Ministry of Science and Technology, India (DBT)
- Wellcome Trust
- JCB/2022/000036 Department of Science and Technology, Ministry of Science and Technology, India (DST)
- IA/S/21/2/505922 DBT-Wellcome Trust India Alliance Senior Fellowship
- BT/INF/22/SP17358/2016 Department of Biotechnology, Ministry of Science and Technology, India (DBT)
- IA/S/21/2/505922 DBT-Wellcome Trust India Alliance
- 19P0116 Department of Atomic Energy, Government of India (DAE)
- Department of Atomic Energy, Government of India (DAE)
- Department of Science and Technology, Ministry of Science and Technology, India (DST)
- Department of Biotechnology, Ministry of Science and Technology, India (DBT)
Collapse
Affiliation(s)
- Subhash Khatri
- Department of Biological SciencesTata Institute of Fundamental Research (TIFR)MumbaiIndia
| | - Souparno Das
- Department of Biological SciencesTata Institute of Fundamental Research (TIFR)MumbaiIndia
| | - Anshit Singh
- Department of Biological SciencesTata Institute of Fundamental Research (TIFR)MumbaiIndia
| | - Shabbir Ahmad
- Institute for Stem Cell Science and Regenerative Medicine (inSTEM)BangaloreIndia
| | - Mohit Kashiv
- Department of Biological SciencesTata Institute of Fundamental Research (TIFR)MumbaiIndia
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inSTEM)BangaloreIndia
| | - Ullas Kolthur‐Seetharam
- Department of Biological SciencesTata Institute of Fundamental Research (TIFR)MumbaiIndia
- Subject Board of BiologyTata Institute of Fundamental Research (TIFR)HyderabadIndia
- Advanced Research Unit on Metabolism, Development and Ageing (ARUMDA)Tata Institute of Fundamental Research (TIFR)HyderabadIndia
- Centre for DNA Fingerprinting & Diagnostics (CDFD)HyderabadIndia
| |
Collapse
|
2
|
Garnier A, Leroy J, Deloménie C, Mateo P, Viollet B, Veksler V, Mericskay M, Ventura-Clapier R, Piquereau J. Modulation of cardiac cAMP signaling by AMPK and its adjustments in pressure overload-induced myocardial dysfunction in rat and mouse. PLoS One 2023; 18:e0292015. [PMID: 37733758 PMCID: PMC10513315 DOI: 10.1371/journal.pone.0292015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The beta-adrenergic system is a potent stimulus for enhancing cardiac output that may become deleterious when energy metabolism is compromised as in heart failure. We thus examined whether the AMP-activated protein kinase (AMPK) that is activated in response to energy depletion may control the beta-adrenergic pathway. We studied the cardiac response to beta-adrenergic stimulation of AMPKα2-/- mice or to pharmacological AMPK activation on contractile function, calcium current, cAMP content and expression of adenylyl cyclase 5 (AC5), a rate limiting step of the beta-adrenergic pathway. In AMPKα2-/- mice the expression of AC5 (+50%), the dose response curve of left ventricular developed pressure to isoprenaline (p<0.001) or the response to forskolin, an activator of AC (+25%), were significantly increased compared to WT heart. Similarly, the response of L-type calcium current to 3-isobutyl-l-methylxanthine (IBMX), a phosphodiesterase inhibitor was significantly higher in KO (+98%, p<0.01) than WT (+57%) isolated cardiomyocytes. Conversely, pharmacological activation of AMPK by 5-aminoimidazole-4-carboxamide riboside (AICAR) induced a 45% decrease in AC5 expression (p<0.001) and a 40% decrease of cAMP content (P<0.001) as measured by fluorescence resonance energy transfer (FRET) compared to unstimulated rat cardiomyocytes. Finally, in experimental pressure overload-induced cardiac dysfunction, AMPK activation was associated with a decreased expression of AC5 that was blunted in AMPKα2-/- mice. The results show that AMPK activation down-regulates AC5 expression and blunts the beta-adrenergic cascade. This crosstalk between AMPK and beta-adrenergic pathways may participate in a compensatory energy sparing mechanism in dysfunctional myocardium.
Collapse
Affiliation(s)
- Anne Garnier
- UMR-S 1180, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Jérôme Leroy
- UMR-S 1180, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Claudine Deloménie
- ACTAGen, UMS IPSIT, Univ. Paris-Sud, Université Paris Saclay, Orsay, France
| | - Philippe Mateo
- Physics for Medecine, Ecole Supérieure de Physique Chimie Industrielles de Paris, INSERM U1273, CNRS UMR8063, PSL University, Paris, France
| | - Benoit Viollet
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Vladimir Veksler
- UMR-S 1180, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Mathias Mericskay
- UMR-S 1180, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
| | | | - Jérôme Piquereau
- UMR-S 1180, INSERM, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
- Laboratoire PRéTI UR 24184, Université de Poitiers, Poitiers, France
| |
Collapse
|
3
|
Van Huynh T, Rethi L, Rethi L, Chen CH, Chen YJ, Kao YH. The Complex Interplay between Imbalanced Mitochondrial Dynamics and Metabolic Disorders in Type 2 Diabetes. Cells 2023; 12:1223. [PMID: 37174622 PMCID: PMC10177489 DOI: 10.3390/cells12091223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global burden, with an increasing number of people affected and increasing treatment costs. The advances in research and guidelines improve the management of blood glucose and related diseases, but T2DM and its complications are still a big challenge in clinical practice. T2DM is a metabolic disorder in which insulin signaling is impaired from reaching its effectors. Mitochondria are the "powerhouses" that not only generate the energy as adenosine triphosphate (ATP) using pyruvate supplied from glucose, free fatty acid (FFA), and amino acids (AA) but also regulate multiple cellular processes such as calcium homeostasis, redox balance, and apoptosis. Mitochondrial dysfunction leads to various diseases, including cardiovascular diseases, metabolic disorders, and cancer. The mitochondria are highly dynamic in adjusting their functions according to cellular conditions. The shape, morphology, distribution, and number of mitochondria reflect their function through various processes, collectively known as mitochondrial dynamics, including mitochondrial fusion, fission, biogenesis, transport, and mitophagy. These processes determine the overall mitochondrial health and vitality. More evidence supports the idea that dysregulated mitochondrial dynamics play essential roles in the pathophysiology of insulin resistance, obesity, and T2DM, as well as imbalanced mitochondrial dynamics found in T2DM. This review updates and discusses mitochondrial dynamics and the complex interactions between it and metabolic disorders.
Collapse
Affiliation(s)
- Tin Van Huynh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City 700000, Vietnam
| | - Lekha Rethi
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hwa Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Ali AU, Abd-Elkareem M, Kamel AA, Abou Khalil NS, Hamad D, Nasr NEH, Hassan MA, El Faham TH. Impact of porous microsponges in minimizing myotoxic side effects of simvastatin. Sci Rep 2023; 13:5790. [PMID: 37031209 PMCID: PMC10082807 DOI: 10.1038/s41598-023-32545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Simvastatin (SV) is a poorly soluble drug; its oral administration is associated with a significant problem: Myopathy. The present study aims to formulate SV microsponges that have the potential to minimize the myotoxicity accompanying the oral administration of the drug. SV microsponges were prepared by exploiting the emulsion solvent evaporation technique. The % entrapment efficiency (%EE) of the drug approached 82.54 ± 1.27%, the mean particle size of SV microsponges ranged from 53.80 ± 6.35 to 86.03 ± 4.79 µm in diameter, and the % cumulative drug release (%CDR) of SV from microsponges was significantly higher than that from free drug dispersion much more, the specific surface area of the optimized microsponges formulation was found to be 16.6 m2/g revealed the porosity of prepared microsponges. Histological and glycogen histochemical studies in the skeletal muscles of male albino rats revealed that microsponges were safer than free SV in minimizing myotoxicity. These findings were proven by Gene expression of Mitochondrial fusion and fission (Mfn1) & (Fis1) and (Peroxisome proliferator-activated receptor gamma co-activator 1α) PGC-1α. Finally, our study ascertained that SV microsponges significantly decreased the myotoxicity of SV.
Collapse
Affiliation(s)
- Ahmed U Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Merit University, Sohag, Egypt.
| | - Mahmoud Abd-Elkareem
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Amira A Kamel
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nasser S Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - D Hamad
- Department of Physics, Faculty of Science, Assiut University, Assiut, Egypt
| | | | - Maha A Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Tahani H El Faham
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Diaz EC, Adams SH, Weber JL, Cotter M, Børsheim E. Elevated LDL-C, high blood pressure, and low peak V ˙ O 2 associate with platelet mitochondria function in children-The Arkansas Active Kids Study. Front Mol Biosci 2023; 10:1136975. [PMID: 37033448 PMCID: PMC10073692 DOI: 10.3389/fmolb.2023.1136975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose: To evaluate the association of platelet (PL) mitochondria respiration with markers of cardiovascular health in children ages 7-10 years. Methods: PL mitochondrial respiration (n = 91) was assessed by high resolution respirometry (HRR): Routine (R) respiration, complex (C) I linked respiration (CI), and maximal uncoupled electron transport capacity of CII (CIIE) were measured. The respiratory control ratio (RCR) was calculated as the ratio of maximal oxidative phosphorylation capacity of CI and CI leak respiration (PCI/LCI). Peak V ˙ O2 (incremental bike test) and body composition (dual-energy X-ray absorptiometry) were measured. Multiple generalized linear regression analysis was used to model the association of measures by HRR with variables of interest: adiposity, low-density lipoprotein (LDL-C) and triglyceride (TG) status (normal vs. elevated) HOMA2-IR, blood pressure status (normal vs. high), and demographics. Results: R and CI-linked respiration positively associated with adiposity, high blood pressure (HBP), and peak V ˙ O2. R and CI-linked respiration had inverse association with age and elevated LDL-C. CIIE was higher in children with elevated LDL-C (log-β = -0.54, p = 0.010). HBP and peak V ˙ O2 interacted in relation to RCR (log-β = -0.01, p = 0.028). Specifically, RCR was lowest among children with HBP and low aerobic capacity (i.e., mean peak V ˙ O2 -1SD). HOMA2-IR did not associate with measures of PL mitochondria respiration. Conclusion: In PL, R and CI-linked mitochondrial respiration directly associate with adiposity, peak V ˙ O2 and HBP. Elevated LDL-C associates with lower CI-linked respiration which is compensated by increasing CII respiration. PL bioenergetics phenotypes in children associate with whole-body metabolic health status.
Collapse
Affiliation(s)
- Eva C. Diaz
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Eva C. Diaz,
| | - Sean H. Adams
- Department of Surgery, and Center for Alimentary and Metabolic Science, University of California, Davis, School of Medicine, Sacramento, CA, United States
| | - Judith L. Weber
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Nursing Science, College of Nursing, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Matthew Cotter
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
| | - Elisabet Børsheim
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
6
|
Trigo D, Avelar C, Fernandes M, Sá J, da Cruz E Silva O. Mitochondria, energy, and metabolism in neuronal health and disease. FEBS Lett 2022; 596:1095-1110. [PMID: 35088449 DOI: 10.1002/1873-3468.14298] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/09/2022]
Abstract
Mitochondria are associated with various cellular activities critical to homeostasis, particularly in the nervous system. The plastic architecture of the mitochondrial network and its dynamic structure play crucial roles in ensuring that varying energetic demands are rapidly met to maintain neuronal and axonal energy homeostasis. Recent evidence associates ageing and neurodegeneration with anomalous neuronal metabolism, as age-dependent alterations of neuronal metabolism are now believed to occur prior to neurodegeneration. The brain has a high energy demand, which makes it particularly sensitive to mitochondrial dysfunction. Distinct cellular events causing oxidative stress or disruption of metabolism and mitochondrial homeostasis can trigger a neuropathology. This review explores the bioenergetic hypothesis for the neurodegenerative pathomechanisms, discussing factors leading to age-related brain hypometabolism and its contribution to cognitive decline. Recent research on the mitochondrial network in healthy nervous system cells, its response to stress and how it is affected by pathology, as well as current contributions to novel therapeutic approaches will be highlighted.
Collapse
Affiliation(s)
- Diogo Trigo
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.,Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Catarina Avelar
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Miguel Fernandes
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juliana Sá
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete da Cruz E Silva
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.,Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
7
|
Mahmoodzadeh S, Koch K, Schriever C, Xu J, Steinecker M, Leber J, Dworatzek E, Purfürst B, Kunz S, Recchia D, Canepari M, Heuser A, Di Francescantonio S, Morano I. Age-related decline in murine heart and skeletal muscle performance is attenuated by reduced Ahnak1 expression. J Cachexia Sarcopenia Muscle 2021; 12:1249-1265. [PMID: 34212535 PMCID: PMC8517348 DOI: 10.1002/jcsm.12749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/13/2021] [Accepted: 06/08/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Aging is associated with a progressive reduction in cellular function leading to poor health and loss of physical performance. Mitochondrial dysfunction is one of the hallmarks of aging; hence, interventions targeting mitochondrial dysfunction have the potential to provide preventive and therapeutic benefits to elderly individuals. Meta-analyses of age-related gene expression profiles showed that the expression of Ahnak1, a protein regulating several signal-transduction pathways including metabolic homeostasis, is increased with age, which is associated with low VO2MAX and poor muscle fitness. However, the role of Ahnak1 in the aging process remained unknown. Here, we investigated the age-related role of Ahnak1 in murine exercise capacity, mitochondrial function, and contractile function of cardiac and skeletal muscles. METHODS We employed 15- to 16-month-old female and male Ahnak1-knockout (Ahnak1-KO) and wild-type (WT) mice and performed morphometric, biochemical, and bioenergetics assays to evaluate the effects of Ahnak1 on exercise capacity and mitochondrial morphology and function in cardiomyocytes and tibialis anterior (TA) muscle. A human left ventricular (LV) cardiomyocyte cell line (AC16) was used to investigate the direct role of Ahnak1 in cardiomyocytes. RESULTS We found that the level of Ahnak1 protein is significantly up-regulated with age in the murine LV (1.9-fold) and TA (1.8-fold) tissues. The suppression of Ahnak1 was associated with improved exercise tolerance, as all aged adult Ahnak1-KO mice (100%) successfully completed the running programme, whereas approximately 31% male and 8% female WT mice could maintain the required running speed and distance. Transmission electron microscopic studies showed that LV and TA tissue specimens of aged adult Ahnak1-KO of both sexes have significantly more enlarged/elongated mitochondria and less small mitochondria compared with WT littermates (P < 0.01 and P < 0.001, respectively) at basal level. Further, we observed a shift in mitochondrial fission/fusion balance towards fusion in cardiomyocytes and TA muscle from aged adult Ahnak1-KO mice. The maximal and reserve respiratory capacities were significantly higher in cardiomyocytes from aged adult Ahnak1-KO mice compared with the WT counterparts (P < 0.05 and P < 0.01, respectively). Cardiomyocyte contractility and fatigue resistance of TA muscles were significantly increased in Ahnak1-KO mice of both sexes, compared with the WT groups. In vitro studies using AC16 cells have confirmed that the alteration of mitochondrial function is indeed a direct effect of Ahnak1. Finally, we presented Ahnak1 as a novel cardiac mitochondrial membrane-associated protein. CONCLUSIONS Our data suggest that Ahnak1 is involved in age-related cardiac and skeletal muscle dysfunction and could therefore serve as a promising therapeutical target.
Collapse
Affiliation(s)
- Shokoufeh Mahmoodzadeh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Katharina Koch
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Cindy Schriever
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jingman Xu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Heart Institute, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Maria Steinecker
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joachim Leber
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Elke Dworatzek
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, and Berliner Institute of Health, Berlin, Germany
| | - Bettina Purfürst
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Severine Kunz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Deborah Recchia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Arnd Heuser
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Silvia Di Francescantonio
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Ingo Morano
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
8
|
Knuiman P, Straw S, Gierula J, Koshy A, Roberts LD, Witte KK, Ferguson C, Bowen TS. Quantifying the relationship and contribution of mitochondrial respiration to systemic exercise limitation in heart failure. ESC Heart Fail 2021; 8:898-907. [PMID: 33609003 PMCID: PMC8006730 DOI: 10.1002/ehf2.13272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
AIMS Heart failure with reduced ejection fraction (HFrEF) induces skeletal muscle mitochondrial abnormalities that contribute to exercise limitation; however, specific mitochondrial therapeutic targets remain poorly established. This study quantified the relationship and contribution of distinct mitochondrial respiratory states to prognostic whole-body measures of exercise limitation in HFrEF. METHODS AND RESULTS Male patients with HFrEF (n = 22) were prospectively enrolled and underwent ramp-incremental cycle ergometry cardiopulmonary exercise testing to determine exercise variables including peak pulmonary oxygen uptake (V̇O2peak ), lactate threshold (V̇O2LT ), the ventilatory equivalent for carbon dioxide (V̇E /V̇CO2LT ), peak circulatory power (CircPpeak ), and peak oxygen pulse. Pectoralis major was biopsied for assessment of in situ mitochondrial respiration. All mitochondrial states including complexes I, II, and IV and electron transport system (ETS) capacity correlated with V̇O2peak (r = 0.40-0.64; P < 0.05), V̇O2LT (r = 0.52-0.72; P < 0.05), and CircPpeak (r = 0.42-0.60; P < 0.05). Multiple regression analysis revealed that combining age, haemoglobin, and left ventricular ejection fraction with ETS capacity could explain 52% of the variability in V̇O2peak and 80% of the variability in V̇O2LT , respectively, with ETS capacity (P = 0.04) and complex I (P = 0.01) the only significant contributors in the model. CONCLUSIONS Mitochondrial respiratory states from skeletal muscle biopsies of patients with HFrEF were independently correlated to established non-invasive prognostic cycle ergometry cardiopulmonary exercise testing indices including V̇O2peak , V̇O2LT , and CircPpeak . When combined with baseline patient characteristics, over 50% of the variability in V̇O2peak could be explained by the mitochondrial ETS capacity. These data provide optimized mitochondrial targets that may attenuate exercise limitations in HFrEF.
Collapse
Affiliation(s)
- Pim Knuiman
- Leeds School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sam Straw
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - John Gierula
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Aaron Koshy
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Klaus K Witte
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Carrie Ferguson
- Leeds School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Thomas Scott Bowen
- Leeds School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
9
|
Eshima H, Tamura Y, Kakehi S, Kakigi R, Kawamori R, Watada H. Maintenance of contractile force and increased fatigue resistance in slow-twitch skeletal muscle of mice fed a high-fat diet. J Appl Physiol (1985) 2021; 130:528-536. [PMID: 33270511 DOI: 10.1152/japplphysiol.00218.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Consumption of a high-fat diet (HFD) significantly increases exercise endurance performance during treadmill running. However, whether HFD consumption increases endurance capacity via enhanced muscle fatigue resistance has not been clarified. In this study, we investigated the effects of HFDs on contractile force and fatigue resistance of slow-twitch dominant muscles. The soleus (SOL) muscle of male C57BL/6J mice fed an HFD (60% kcal from fat) or a low-fat diet (LFD) for 12 wk was analyzed. Muscle contractile force was measured under resting conditions and during fatigue induced by repeated tetanic contractions (100 Hz, 50 contractions, and 2-s intervals). Differences in muscle twitch or tetanic force were not evident between HFD and LFD groups, whereas fatigue resistance was higher in the HFD groups. The SOL muscle of HFD-fed mice showed increased levels of markers related to oxidative capacity such as succinate dehydrogenase (SDH) and citrate synthase (CS) activity. In addition, electron microscopy analyses indicated that the total number of mitochondria and mitochondrial volume density increased in the SOL muscle of the HFD groups. These findings suggest that HFD consumption induces increased muscle fatigue resistance in slow-twitch dominant muscle fibers. This effect of HFD may be related to elevated oxidative enzyme activity, high mitochondrial content, or both.NEW & NOTEWORTHY In this study, we examined the effects of HFDs on muscle contractile force and fatigue resistance of slow-twitch dominant muscles ex vivo. We found that contractile function was comparable between the HFD groups and the LFD group, whereas fatigue resistance was higher in the HFD groups. This effect of HFD may be related to elevated oxidative enzyme activity, high mitochondrial content, or both.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,The Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Kakehi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Kakigi
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Azevedo Voltarelli V, Coronado M, Gonçalves Fernandes L, Cruz Campos J, Jannig PR, Batista Ferreira JC, Fajardo G, Chakur Brum P, Bernstein D. β 2-Adrenergic Signaling Modulates Mitochondrial Function and Morphology in Skeletal Muscle in Response to Aerobic Exercise. Cells 2021; 10:cells10010146. [PMID: 33450889 PMCID: PMC7828343 DOI: 10.3390/cells10010146] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanisms underlying skeletal muscle mitochondrial adaptations induced by aerobic exercise (AE) are not fully understood. We have previously shown that AE induces mitochondrial adaptations in cardiac muscle, mediated by sympathetic stimulation. Since direct sympathetic innervation of neuromuscular junctions influences skeletal muscle homeostasis, we tested the hypothesis that β2-adrenergic receptor (β2-AR)-mediated sympathetic activation induces mitochondrial adaptations to AE in skeletal muscle. Male FVB mice were subjected to a single bout of AE on a treadmill (80% Vmax, 60 min) under β2-AR blockade with ICI 118,551 (ICI) or vehicle, and parameters of mitochondrial function and morphology/dynamics were evaluated. An acute bout of AE significantly increased maximal mitochondrial respiration in tibialis anterior (TA) isolated fiber bundles, which was prevented by β2-AR blockade. This increased mitochondrial function after AE was accompanied by a change in mitochondrial morphology towards fusion, associated with increased Mfn1 protein expression and activity. β2-AR blockade fully prevented the increase in Mfn1 activity and reduced mitochondrial elongation. To determine the mechanisms involved in mitochondrial modulation by β2-AR activation in skeletal muscle during AE, we used C2C12 myotubes, treated with the non-selective β-AR agonist isoproterenol (ISO) in the presence of the specific β2-AR antagonist ICI or during protein kinase A (PKA) and Gαi protein blockade. Our in vitro data show that β-AR activation significantly increases mitochondrial respiration in myotubes, and this response was dependent on β2-AR activation through a Gαs-PKA signaling cascade. In conclusion, we provide evidence for AE-induced β2-AR activation as a major mechanism leading to alterations in mitochondria function and morphology/dynamics. β2-AR signaling is thus a key-signaling pathway that contributes to skeletal muscle plasticity in response to exercise.
Collapse
Affiliation(s)
- Vanessa Azevedo Voltarelli
- Department of Biodynamics of the Human Body Movement, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, SP, Brazil; (V.A.V.); (L.G.F.); (P.R.J.)
| | - Michael Coronado
- Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (M.C.); (G.F.)
| | - Larissa Gonçalves Fernandes
- Department of Biodynamics of the Human Body Movement, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, SP, Brazil; (V.A.V.); (L.G.F.); (P.R.J.)
| | - Juliane Cruz Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-030, SP, Brazil; (J.C.C.); (J.C.B.F.)
| | - Paulo Roberto Jannig
- Department of Biodynamics of the Human Body Movement, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, SP, Brazil; (V.A.V.); (L.G.F.); (P.R.J.)
| | - Julio Cesar Batista Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-030, SP, Brazil; (J.C.C.); (J.C.B.F.)
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Giovanni Fajardo
- Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (M.C.); (G.F.)
| | - Patricia Chakur Brum
- Department of Biodynamics of the Human Body Movement, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, SP, Brazil; (V.A.V.); (L.G.F.); (P.R.J.)
- Correspondence: or (P.C.B.); (D.B.); Tel.: +55-11-30913136 (P.C.B.); Fax: +55-11-38135921 (P.C.B.)
| | - Daniel Bernstein
- Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (M.C.); (G.F.)
- Correspondence: or (P.C.B.); (D.B.); Tel.: +55-11-30913136 (P.C.B.); Fax: +55-11-38135921 (P.C.B.)
| |
Collapse
|
11
|
Morris G, Walker AJ, Walder K, Berk M, Marx W, Carvalho AF, Maes M, Puri BK. Increasing Nrf2 Activity as a Treatment Approach in Neuropsychiatry. Mol Neurobiol 2021; 58:2158-2182. [PMID: 33411248 DOI: 10.1007/s12035-020-02212-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor encoded by NFE2L2. Under oxidative stress, Nrf2 does not undergo its normal cytoplasmic degradation but instead travels to the nucleus, where it binds to a DNA promoter and initiates transcription of anti-oxidative genes. Nrf2 upregulation is associated with increased cellular levels of glutathione disulfide, glutathione peroxidase, glutathione transferases, thioredoxin and thioredoxin reductase. Given its key role in governing the cellular antioxidant response, upregulation of Nrf2 has been suggested as a common therapeutic target in neuropsychiatric illnesses such as major depressive disorder, bipolar disorder and schizophrenia, which are associated with chronic oxidative and nitrosative stress, characterised by elevated levels of reactive oxygen species, nitric oxide and peroxynitrite. These processes lead to extensive lipid peroxidation, protein oxidation and carbonylation, and oxidative damage to nuclear and mitochondrial DNA. Intake of N-acetylcysteine, coenzyme Q10 and melatonin is accompanied by increased Nrf2 activity. N-acetylcysteine intake is associated with improved cerebral mitochondrial function, decreased central oxidative and nitrosative stress, reduced neuroinflammation, alleviation of endoplasmic reticular stress and suppression of the unfolded protein response. Coenzyme Q10, which acts as a superoxide scavenger in neuroglial mitochondria, instigates mitohormesis, ameliorates lipid peroxidation in the inner mitochondrial membrane, activates uncoupling proteins, promotes mitochondrial biogenesis and has positive effects on the plasma membrane redox system. Melatonin, which scavenges mitochondrial free radicals, inhibits mitochondrial nitric oxide synthase, restores mitochondrial calcium homeostasis, deacetylates and activates mitochondrial SIRT3, ameliorates increased permeability of the blood-brain barrier and intestine and counters neuroinflammation and glutamate excitotoxicity.
Collapse
Affiliation(s)
- G Morris
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - K Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - M Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - W Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - M Maes
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
12
|
Brenmoehl J, Ohde D, Walz C, Langhammer M, Schultz J, Hoeflich A. Analysis of Activity-Dependent Energy Metabolism in Mice Reveals Regulation of Mitochondrial Fission and Fusion mRNA by Voluntary Physical Exercise in Subcutaneous Fat from Male Marathon Mice (DUhTP). Cells 2020; 9:E2697. [PMID: 33339143 PMCID: PMC7765678 DOI: 10.3390/cells9122697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Physical inactivity is considered as one of the main causes of obesity in modern civilizations, and it has been demonstrated that resistance training programs can be used to reduce fat mass. The effects of voluntary exercise on energy metabolism are less clear in adipose tissue. Therefore, the effects of three different voluntary exercise programs on the control of energy metabolism in subcutaneous fat were tested in two different mouse lines. In a cross-over study design, male mice were kept for three or six weeks in the presence or absence of running wheels. For the experiment, mice with increased running capacity (DUhTP) were used and compared to controls (DUC). Body and organ weight, feed intake, and voluntary running wheel activity were recorded. In subcutaneous fat, gene expression of browning markers and mitochondrial energy metabolism were analyzed. Exercise increased heart weight in control mice (p < 0.05) but significantly decreased subcutaneous, epididymal, perinephric, and brown fat mass in both genetic groups (p < 0.05). Gene expression analysis revealed higher expression of browning markers and individual complex subunits present in the electron transport chain in subcutaneous fat of DUhTP mice compared to controls (DUC; p < 0.01), independent of physical activity. While in control mice, voluntary exercise had no effect on markers of mitochondrial fission or fusion, in DUhTP mice, reduced mitochondrial DNA, transcription factor Nrf1, fission- (Dnm1), and fusion-relevant transcripts (Mfn1 and 2) were observed in response to voluntary physical activity (p < 0.05). Our findings indicate that the superior running abilities in DUhTP mice, on one hand, are connected to elevated expression of genetic markers for browning and oxidative phosphorylation in subcutaneous fat. In subcutaneous fat from DUhTP but not in unselected control mice, we further demonstrate reduced expression of genes for mitochondrial fission and fusion in response to voluntary physical activity.
Collapse
Affiliation(s)
- Julia Brenmoehl
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (D.O.); (C.W.)
| | - Daniela Ohde
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (D.O.); (C.W.)
| | - Christina Walz
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (D.O.); (C.W.)
| | - Martina Langhammer
- Lab Animal Facility, Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany;
| | - Julia Schultz
- Institute of Medical Biochemistry and Molecular Biology, University of Rostock, Schillingallee 70, 18057 Rostock, Germany;
| | - Andreas Hoeflich
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (J.B.); (D.O.); (C.W.)
| |
Collapse
|
13
|
Anton SD, Cruz-Almeida Y, Singh A, Alpert J, Bensadon B, Cabrera M, Clark DJ, Ebner NC, Esser KA, Fillingim RB, Goicolea SM, Han SM, Kallas H, Johnson A, Leeuwenburgh C, Liu AC, Manini TM, Marsiske M, Moore F, Qiu P, Mankowski RT, Mardini M, McLaren C, Ranka S, Rashidi P, Saini S, Sibille KT, Someya S, Wohlgemuth S, Tucker C, Xiao R, Pahor M. Innovations in Geroscience to enhance mobility in older adults. Exp Gerontol 2020; 142:111123. [PMID: 33191210 PMCID: PMC7581361 DOI: 10.1016/j.exger.2020.111123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
Aging is the primary risk factor for functional decline; thus, understanding and preventing disability among older adults has emerged as an important public health challenge of the 21st century. The science of gerontology - or geroscience - has the practical purpose of "adding life to the years." The overall goal of geroscience is to increase healthspan, which refers to extending the portion of the lifespan in which the individual experiences enjoyment, satisfaction, and wellness. An important facet of this goal is preserving mobility, defined as the ability to move independently. Despite this clear purpose, this has proven to be a challenging endeavor as mobility and function in later life are influenced by a complex interaction of factors across multiple domains. Moreover, findings over the past decade have highlighted the complexity of walking and how targeting multiple systems, including the brain and sensory organs, as well as the environment in which a person lives, can have a dramatic effect on an older person's mobility and function. For these reasons, behavioral interventions that incorporate complex walking tasks and other activities of daily living appear to be especially helpful for improving mobility function. Other pharmaceutical interventions, such as oxytocin, and complementary and alternative interventions, such as massage therapy, may enhance physical function both through direct effects on biological mechanisms related to mobility, as well as indirectly through modulation of cognitive and socioemotional processes. Thus, the purpose of the present review is to describe evolving interventional approaches to enhance mobility and maintain healthspan in the growing population of older adults in the United States and countries throughout the world. Such interventions are likely to be greatly assisted by technological advances and the widespread adoption of virtual communications during and after the COVID-19 era.
Collapse
Affiliation(s)
- Stephen D Anton
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Yenisel Cruz-Almeida
- University of Florida, Department of Community Dentistry and Behavioral Science, 1329 SW Archer Road, Gainesville, FL 32610, United States.
| | - Arashdeep Singh
- University of Florida, Department of Pharmacodynamics, College of Pharmacy, 1345 Center Drive, Gainesville, FL 32610, United States.
| | - Jordan Alpert
- University of Florida, College of Journalism and Communications, Gainesville, FL 32610, United States.
| | - Benjamin Bensadon
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Melanie Cabrera
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - David J Clark
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Natalie C Ebner
- University of Florida, Department of Psychology, 945 Center Drive, Gainesville, FL 32611, United States.
| | - Karyn A Esser
- University of Florida, Department of Physiology and Functional Genomics, 1345 Center Drive, Gainesville, FL, United States.
| | - Roger B Fillingim
- University of Florida, Department of Community Dentistry and Behavioral Science, 1329 SW Archer Road, Gainesville, FL 32610, United States.
| | - Soamy Montesino Goicolea
- University of Florida, Department of Community Dentistry and Behavioral Science, 1329 SW Archer Road, Gainesville, FL 32610, United States.
| | - Sung Min Han
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Henrique Kallas
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Alisa Johnson
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Christiaan Leeuwenburgh
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Andrew C Liu
- University of Florida, Department of Physiology and Functional Genomics, 1345 Center Drive, Gainesville, FL, United States.
| | - Todd M Manini
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Michael Marsiske
- University of Florida, Department of Clinical & Health Psychology, 1225 Center Drive, Gainesville, FL 32610, United States.
| | - Frederick Moore
- University of Florida, Department of Surgery, Gainesville, FL 32610, United States.
| | - Peihua Qiu
- University of Florida, Department of Biostatistics, Gainesville, FL 32611, United States.
| | - Robert T Mankowski
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Mamoun Mardini
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Christian McLaren
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Sanjay Ranka
- University of Florida, Department of Computer & Information Science & Engineering, Gainesville, FL 32611, United States.
| | - Parisa Rashidi
- University of Florida, Department of Biomedical Engineering. P.O. Box 116131. Gainesville, FL 32610, United States.
| | - Sunil Saini
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Kimberly T Sibille
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Shinichi Someya
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Stephanie Wohlgemuth
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Carolyn Tucker
- University of Florida, Department of Psychology, 945 Center Drive, Gainesville, FL 32611, United States.
| | - Rui Xiao
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| | - Marco Pahor
- University of Florida, Department of Aging and Geriatric Research, 2004 Mowry Road, Gainesville, FL 32611, United States.
| |
Collapse
|
14
|
Preserved Skeletal Muscle Mitochondrial Function, Redox State, Inflammation and Mass in Obese Mice with Chronic Heart Failure. Nutrients 2020; 12:nu12113393. [PMID: 33158222 PMCID: PMC7694273 DOI: 10.3390/nu12113393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Skeletal muscle (SM) mitochondrial dysfunction, oxidative stress, inflammation and muscle mass loss may worsen prognosis in chronic heart failure (CHF). Diet-induced obesity may also cause SM mitochondrial dysfunction as well as oxidative stress and inflammation, but obesity per se may be paradoxically associated with high SM mass and mitochondrial adenosine triphosphate (ATP) production, as well as with enhanced survival in CHF. Methods: We investigated interactions between myocardial infarction(MI)-induced CHF and diet-induced obesity (12-wk 60% vs. standard 10% fat) in modulating gastrocnemius muscle (GM) mitochondrial ATP and tissue superoxide generation, oxidized glutathione (GSSG), cytokines and insulin signalling activation in 10-wk-old mice in the following groups: lean sham-operated, lean CHF (LCHF), obese CHF (ObCHF; all n = 8). The metabolic impact of obesity per se was investigated by pair-feeding ObCHF to standard diet with stabilized excess body weight until sacrifice at wk 8 post-MI. Results: Compared to sham, LCHF had low GM mass, paralleled by low mitochondrial ATP production and high mitochondrial reative oxygen species (ROS) production, pro-oxidative redox state, pro-inflammatory cytokine changes and low insulin signaling (p < 0.05). In contrast, excess body weight in pair-fed ObCHF was associated with high GM mass, preserved mitochondrial ATP and mitochondrial ROS production, unaltered redox state, tissue cytokines and insulin signaling (p = non significant vs. Sham, p < 0.05 vs. LCHF) despite higher superoxide generation from non-mitochondrial sources. Conclusions: CHF disrupts skeletal muscle mitochondrial function in lean rodents with low ATP and high mitochondrial ROS production, associated with tissue pro-inflammatory cytokine profile, low insulin signaling and muscle mass loss. Following CHF onset, obesity per se is associated with high skeletal muscle mass and preserved tissue ATP production, mitochondrial ROS production, redox state, cytokines and insulin signaling. These paradoxical and potentially favorable obesity-associated metabolic patterns could contribute to reported obesity-induced survival advantage in CHF.
Collapse
|
15
|
Urbina-Varela R, Castillo N, Videla LA, del Campo A. Impact of Mitophagy and Mitochondrial Unfolded Protein Response as New Adaptive Mechanisms Underlying Old Pathologies: Sarcopenia and Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:E7704. [PMID: 33081022 PMCID: PMC7589512 DOI: 10.3390/ijms21207704] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are the first-line defense of the cell in the presence of stressing processes that can induce mitochondrial dysfunction. Under these conditions, the activation of two axes is accomplished, namely, (i) the mitochondrial unfolded protein response (UPRmt) to promote cell recovery and survival of the mitochondrial network; (ii) the mitophagy process to eliminate altered or dysfunctional mitochondria. For these purposes, the former response induces the expression of chaperones, proteases, antioxidant components and protein import and assembly factors, whereas the latter is signaled through the activation of the PINK1/Parkin and BNIP3/NIX pathways. These adaptive mechanisms may be compromised during aging, leading to the development of several pathologies including sarcopenia, defined as the loss of skeletal muscle mass and performance; and non-alcoholic fatty liver disease (NAFLD). These age-associated diseases are characterized by the progressive loss of organ function due to the accumulation of reactive oxygen species (ROS)-induced damage to biomolecules, since the ability to counteract the continuous and large generation of ROS becomes increasingly inefficient with aging, resulting in mitochondrial dysfunction as a central pathogenic mechanism. Nevertheless, the role of the integrated stress response (ISR) involving UPRmt and mitophagy in the development and progression of these illnesses is still a matter of debate, considering that some studies indicate that the prolonged exposure to low levels of stress may trigger these mechanisms to maintain mitohormesis, whereas others sustain that chronic activation of them could lead to cell death. In this review, we discuss the available research that contributes to unveil the role of the mitochondrial UPR in the development of sarcopenia, in an attempt to describe changes prior to the manifestation of severe symptoms; and in NAFLD, in order to prevent or reverse fat accumulation and its progression by means of suitable protocols to be addressed in future studies.
Collapse
Affiliation(s)
- Rodrigo Urbina-Varela
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile; (R.U.-V.); (N.C.)
| | - Nataly Castillo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile; (R.U.-V.); (N.C.)
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| | - Andrea del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile; (R.U.-V.); (N.C.)
| |
Collapse
|
16
|
Caspi T, Straw S, Cheng C, Garnham JO, Scragg JL, Smith J, Koshy AO, Levelt E, Sukumar P, Gierula J, Beech DJ, Kearney MT, Cubbon RM, Wheatcroft SB, Witte KK, Roberts LD, Bowen TS. Unique Transcriptome Signature Distinguishes Patients With Heart Failure With Myopathy. J Am Heart Assoc 2020; 9:e017091. [PMID: 32892688 PMCID: PMC7727001 DOI: 10.1161/jaha.120.017091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background People with chronic heart failure (CHF) experience severe skeletal muscle dysfunction, characterized by mitochondrial abnormalities, which exacerbates the primary symptom of exercise intolerance. However, the molecular triggers and characteristics underlying mitochondrial abnormalities caused by CHF remain poorly understood. Methods and Results We recruited 28 patients with CHF caused by reduced ejection fraction and 9 controls. We simultaneously biopsied skeletal muscle from the pectoralis major in the upper limb and from the vastus lateralis in the lower limb. We phenotyped mitochondrial function in permeabilized myofibers from both sites and followed this by complete RNA sequencing to identify novel molecular abnormalities in CHF skeletal muscle. Patients with CHF presented with upper and lower limb skeletal muscle impairments to mitochondrial function that were of a similar deficit and indicative of a myopathy. Mitochondrial abnormalities were strongly correlated to symptoms. Further RNA sequencing revealed a unique transcriptome signature in CHF skeletal muscle characterized by a novel triad of differentially expressed genes related to deficits in energy metabolism including adenosine monophosphate deaminase 3, pyridine nucleotide-disulphide oxidoreductase domain 2, and lactate dehydrogenase C. Conclusions Our data suggest an upper and lower limb metabolic myopathy that is characterized by a unique transcriptome signature in skeletal muscle of humans with CHF.
Collapse
Affiliation(s)
- Talia Caspi
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - Sam Straw
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - Chew Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - Jack O Garnham
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - Jason L Scragg
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - Jessica Smith
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - Aaron O Koshy
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - Eylem Levelt
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - Piruthivi Sukumar
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - John Gierula
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - Klaus K Witte
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds United Kingdom
| | - T Scott Bowen
- School of Biomedical Sciences Faculty of Biological Sciences University of Leeds United Kingdom
| |
Collapse
|
17
|
Tanaka M, Sugimoto K, Fujimoto T, Xie K, Takahashi T, Akasaka H, Yasunobe Y, Takeya Y, Yamamoto K, Hirabayashi T, Fujino H, Rakugi H. Differential effects of pre-exercise on cancer cachexia-induced muscle atrophy in fast- and slow-twitch muscles. FASEB J 2020; 34:14389-14406. [PMID: 32892438 DOI: 10.1096/fj.202001330r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022]
Abstract
We hypothesized that pre-exercise may effectively prevent cancer cachexia-induced muscle atrophy in both fast- and slow-twitch muscle types. Additionally, the fast-twitch muscle may be more affected by cancer cachexia than slow-twitch muscle. This study aimed to evaluate the effects of pre-exercise on cancer cachexia-induced atrophy and on atrophy in fast- and slow-twitch muscles. Twelve male Wistar rats were randomly divided into sedentary and exercise groups, and another 24 rats were randomly divided into control, pre-exercise, cancer cachexia induced by intraperitoneal injections of ascites hepatoma AH130 cells, and pre-exercise plus cancer cachexia groups. We analyzed changes in muscle mass and in gene and protein expression levels of major regulators and indicators of muscle protein degradation and synthesis pathways, angiogenic factors, and mitochondrial function in both the plantaris and soleus muscles. Pre-exercise inhibited muscle mass loss, rescued protein synthesis, prevented capillary regression, and suppressed hypoxia in the plantaris and soleus muscles. Pre-exercise inhibited mitochondrial dysfunction differently in fast- and slow-twitch muscles. These results suggested that pre-exercise has the potential to inhibit cancer-cachexia-induced muscle atrophy in both fast- and slow-twitch muscles. Furthermore, the different progressions of cancer-cachexia-induced muscle atrophy in fast- and slow-twitch muscles are related to differences in mitochondrial function.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Ken Sugimoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taku Fujimoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keyu Xie
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshimasa Takahashi
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Akasaka
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukiko Yasunobe
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Takeya
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hiromi Rakugi
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
18
|
Ji LL, Yeo D, Kang C, Zhang T. The role of mitochondria in redox signaling of muscle homeostasis. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:386-393. [PMID: 32780692 PMCID: PMC7498629 DOI: 10.1016/j.jshs.2020.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/20/2019] [Accepted: 12/12/2019] [Indexed: 05/07/2023]
Abstract
In the past, contraction-induced production of reactive oxygen species (ROS) has been implicated in oxidative stress to skeletal muscle. As research advances, clear evidence has revealed a more complete role of ROS under both physiologic and pathologic conditions. Central to the role of ROS is the redox signaling pathways that control exercise-induced major physiologic and cellular responses and adaptations, such as mitochondrial biogenesis, mitophagy, mitochondrial morphologic dynamics, antioxidant defense, and inflammation. The current review focuses on how muscle contraction and immobilization may activate or inhibit redox signalings and their impact on muscle mitochondrial homeostasis and physiologic implications.
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA.
| | - Dongwook Yeo
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Chounghun Kang
- Department of Physical Education, Inha University, Incheon 22212, Republic of Korea
| | - Tianou Zhang
- Department of Kinesiology, Health and Nutrition, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
19
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
20
|
Dave DT, Patel BM. Mitochondrial Metabolism in Cancer Cachexia: Novel Drug Target. Curr Drug Metab 2020; 20:1141-1153. [PMID: 31418657 DOI: 10.2174/1389200220666190816162658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cancer cachexia is a metabolic syndrome prevalent in the majority of the advanced cancers and is associated with complications such as anorexia, early satiety, weakness, anaemia, and edema, thereby reducing performance and impairing quality of life. Skeletal muscle wasting is a characteristic feature of cancer-cachexia and mitochondria is responsible for regulating total protein turnover in skeletal muscle tissue. METHODS We carried out exhaustive search for cancer cachexia and role of mitochondria in the same in various databases. All the relevant articles were gathered and the pertinent information was extracted out and compiled which was further structured into different sub-sections. RESULTS Various findings on the mitochondrial alterations in connection to its disturbed normal physiology in various models of cancer-cachexia have been recently reported, suggesting a significant role of the organelle in the pathogenesis of the complications involved in the disorder. It has also been reported that reduced mitochondrial oxidative capacity is due to reduced mitochondrial biogenesis as well as altered balance between fusion and fission protein activities. Moreover, autophagy in mitochondria (termed as mitophagy) is reported to play an important role in cancer cachexia. CONCLUSION The present review aims to put forth the changes occurring in mitochondria and hence explore possible targets which can be exploited in cancer-induced cachexia for treatment of such a debilitating condition.
Collapse
Affiliation(s)
- Dhwani T Dave
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382481, Gujarat, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382481, Gujarat, India
| |
Collapse
|
21
|
Kwon I. Protective effects of endurance exercise on skeletal muscle remodeling against doxorubicin-induced myotoxicity in mice. Phys Act Nutr 2020; 24:11-21. [PMID: 32698257 PMCID: PMC7451836 DOI: 10.20463/pan.2020.0010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Doxorubicin (DOX) is a potent anti-cancer drug that appears to have severe myotoxicity due to accumulation. The skeletal muscle has a regeneration capacity through satellite cell activation when exposed to extracellular stimulus or damage. Endurance exercise (EXE) is a therapeutic strategy that improves pathological features and contributes to muscle homeostasis. Thus, this study investigated the effect of EXE training in mitigating chronic DOX-induced myotoxicity. METHODS Male C57BL/6J mice were housed and allowed to acclimatize with free access to food and water. All the mice were randomly divided into four groups: sedentary control (CON, n=9), exercise training (EXE, n=9), doxorubicin treatment (DOX, n=9), doxorubicin treatment and exercise training (DOX+EXE, n=9) groups. The animals were intraperitoneally injected with 5 mg/kg/week of DOX treatment for 4 weeks, and EXE training was initiated for treadmill adaptation for 1 week and then performed for 4 weeks. Both sides of the soleus (SOL) muscle tissues were dissected and weighed after 24 hours of the last training sessions. RESULTS DOX chemotherapy induced an abnormal myofiber's phenotype and transition of myosin heavy chain (MHC) isoforms. The paired box 7 (PAX7) and myoblast determination protein 1 (MYOD) protein levels were triggered by DOX, while no alterations were shown for the myogenin (MYOG). DOX remarkably impaired the a-actinin (ACTN) protein, but the EXE training seems to repair it. DOX-induced myotoxicity stimulated the expression of the forkhead box O3 (FOXO3a) protein, which was accurately controlled and adjusted by the EXE training. However, the FOXO3a-mediated downstream markers were not associated with DOX and EXE. CONCLUSION EXE postconditioning provides protective effects against chronic DOX-induced myotoxicity, and should be recommended to alleviate cancer chemotherapy-induced late-onset myotoxicity.
Collapse
Affiliation(s)
- Insu Kwon
- Research Institute of Sports Science and Industry, Hanyang University, SeoulRepublic of Korea
| |
Collapse
|
22
|
Liu Y, Lang H, Zhou M, Huang L, Hui S, Wang X, Chen K, Mi M. The Preventive Effects of Pterostilbene on the Exercise Intolerance and Circadian Misalignment of Mice Subjected to Sleep Restriction. Mol Nutr Food Res 2020; 64:e1900991. [PMID: 32277569 DOI: 10.1002/mnfr.201900991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/27/2020] [Indexed: 12/12/2022]
Abstract
SCOPE The study investigates the effects of pterostilbene (PTE) on exercise endurance and circadian rhythm in sleep-restricted (SR) mice. METHODS AND RESULTS The SR model is established by keeping mice awake during the first 8 h of light period for 5 d and PTE (100 mg kg-1 d-1 ) is given once a day. PTE improves endurance in SR mice by significantly prolonging the exhaustive swimming time and ameliorating exercise fatigue biochemical parameters, including creatine kinase and lactate dehydrogenase. It is observed that PTE effectively regained mitochondrial function by improving mitochondrial swelling and maintaining oxidative phosphorylation system-related genes expression, and inhibited the decrease of mitochondrial biogenesis-related genes expression. Furthermore, PTE restores rhythms of AMP-activated protein kinase (AMPK) phosphorylation activity, silent information regulator 1 (SIRT1) deacetylation activity, and SIRT1-mediated peroxisome proliferator-activated receptor coactivator 1α (PGC-1α) deacetylation in SR mice. Finally, the results demonstrate that the AMPK/SIRT1/PGC-1α pathway may be correlated with the relationships between mitochondrial function and circadian rhythms, markedly regulating the expression of skeletal muscle clock genes, circadian locomotor output cycles kaput, and brain and muscle arnt-like 1. CONCLUSIONS PTE ameliorates SR-induced exercise intolerance associated with circadian misalignment and mitochondrial dysfunction through AMPK/SIRT1/PGC-1α pathway.
Collapse
Affiliation(s)
- Yang Liu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hedong Lang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Min Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Li Huang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Suocheng Hui
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Xiaolan Wang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
23
|
Garnham JO, Roberts LD, Espino-Gonzalez E, Whitehead A, Swoboda PP, Koshy A, Gierula J, Paton MF, Cubbon RM, Kearney MT, Egginton S, Bowen TS, Witte KK. Chronic heart failure with diabetes mellitus is characterized by a severe skeletal muscle pathology. J Cachexia Sarcopenia Muscle 2020; 11:394-404. [PMID: 31863644 PMCID: PMC7113493 DOI: 10.1002/jcsm.12515] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Patients with coexistent chronic heart failure (CHF) and diabetes mellitus (DM) demonstrate greater exercise limitation and worse prognosis compared with CHF patients without DM, even when corrected for cardiac dysfunction. Understanding the origins of symptoms in this subgroup may facilitate development of targeted treatments. We therefore characterized the skeletal muscle phenotype and its relationship to exercise limitation in patients with diabetic heart failure (D-HF). METHODS In one of the largest muscle sampling studies in a CHF population, pectoralis major biopsies were taken from age-matched controls (n = 25), DM (n = 10), CHF (n = 52), and D-HF (n = 28) patients. In situ mitochondrial function and reactive oxygen species, fibre morphology, capillarity, and gene expression analyses were performed and correlated to whole-body exercise capacity. RESULTS Mitochondrial respiration, content, coupling efficiency, and intrinsic function were lower in D-HF patients compared with other groups (P < 0.05). A unique mitochondrial complex I dysfunction was present in D-HF patients only (P < 0.05), which strongly correlated to exercise capacity (R2 = 0.64; P < 0.001). Mitochondrial impairments in D-HF corresponded to higher levels of mitochondrial reactive oxygen species (P < 0.05) and lower gene expression of anti-oxidative enzyme superoxide dismutase 2 (P < 0.05) and complex I subunit NDUFS1 (P < 0.05). D-HF was also associated with severe fibre atrophy (P < 0.05) and reduced local fibre capillarity (P < 0.05). CONCLUSIONS Patients with D-HF develop a specific skeletal muscle pathology, characterized by mitochondrial impairments, fibre atrophy, and derangements in the capillary network that are linked to exercise intolerance. These novel preliminary data support skeletal muscle as a potential therapeutic target for treating patients with D-HF.
Collapse
Affiliation(s)
- Jack O Garnham
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Ever Espino-Gonzalez
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Anna Whitehead
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Peter P Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Aaron Koshy
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - John Gierula
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Maria F Paton
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Klaus K Witte
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
24
|
Skeletal muscle alterations in tachycardia-induced heart failure are linked to deficient natriuretic peptide signalling and are attenuated by RAS-/NEP-inhibition. PLoS One 2019; 14:e0225937. [PMID: 31800630 PMCID: PMC6892497 DOI: 10.1371/journal.pone.0225937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background Heart failure induced cachexia is highly prevalent. Insights into disease progression are lacking. Methods Early state of left ventricular dysfunction (ELVD) and symptomatic systolic heart failure (HF) were both induced in rabbits by tachypacing. Tissue of limb muscle (LM) was subjected to histologic assessment. For unbiased characterisation of early and late myopathy, a proteomic approach followed by computational pathway-analyses was performed and combined with pathway-focused gene expression analyses. Specimen of thoracic diaphragm (TD) served as control for inactivity-induced skeletal muscle alterations. In a subsequent study, inhibition of the renin-angiotensin-system and neprilysin (RAS-/NEP) was compared to placebo. Results HF was accompanied by loss of protein content (8.7±0.4% vs. 7.0±0.5%, mean±SEM, control vs. HF, p<0.01) and a slow-to-fast fibre type switch, establishing hallmarks of cachexia. In ELVD, the enzymatic set-up of LM and TD shifted to a catabolic state. A disturbed malate-aspartate shuttle went well with increased enzymes of glycolysis, forming the enzymatic basis for enforced anoxic energy regeneration. The histological findings and the pathway analysis of metabolic results drew the picture of suppressed PGC-1α signalling, linked to the natriuretic peptide system. In HF, natriuretic peptide signalling was desensitised, as confirmed by an increase in the ratio of serum BNP to tissue cGMP (57.0±18.6pg/ml/nM/ml vs. 165.8±16.76pg/ml/nM/ml, p<0.05) and a reduced expression of natriuretic peptide receptor-A. In HF, combined RAS-/NEP-inhibition prevented from loss in protein content (8.7±0.3% vs. 6.0±0.6% vs. 8.3±0.9%, Baseline vs. HF-Placebo vs. HF-RAS/NEP, p<0.05 Baseline vs. HF-Placebo, p = 0.7 Baseline vs. HF-RAS/NEP). Conclusions Tachypacing-induced heart failure entails a generalised myopathy, preceding systolic dysfunction. The characterisation of “pre-cachectic” state and its progression is feasible. Early enzymatic alterations of LM depict a catabolic state, rendering LM prone to futile substrate metabolism. A combined RAS-/NEP-inhibition ameliorates cardiac-induced myopathy independent of systolic function, which could be linked to stabilised natriuretic peptide/cGMP/PGC-1α signalling.
Collapse
|
25
|
Vicencio F, Jiménez P, Huerta F, Cofré-Bolados C, Gutiérrez Zamorano S, Garcia-Diaz DF, Rodrigo R, Poblete-Aro C. Effects of physical exercise on oxidative stress biomarkers in hypertensive animals and non-diabetic subjects with prehypertension/hypertension: a review. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-019-00561-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Benzoylaconine induces mitochondrial biogenesis in mice via activating AMPK signaling cascade. Acta Pharmacol Sin 2019; 40:658-665. [PMID: 30315253 DOI: 10.1038/s41401-018-0174-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/16/2018] [Indexed: 12/28/2022]
Abstract
The traditional Chinese medicine "Fuzi" (Aconiti Lateralis Radix Praeparata) and its three representative alkaloids, aconitine (AC), benzoylaconine (BAC), and aconine, have been shown to increase mitochondrial mass. Whether Fuzi has effect on mitochondrial biogenesis and the underlying mechanisms remain unclear. In the present study, we focused on the effect of BAC on mitochondrial biogenesis and the underlying mechanisms. We demonstrated that Fuzi extract and its three components AC, BAC, and aconine at a concentration of 50 μM significantly increased mitochondrial mass in HepG2 cells. BAC (25, 50, 75 μM) dose-dependently promoted mitochondrial mass, mtDNA copy number, cellular ATP production, and the expression of proteins related to the oxidative phosphorylation (OXPHOS) complexes in HepG2 cells. Moreover, BAC dose-dependently increased the expression of proteins involved in AMPK signaling cascade; blocking AMPK signaling abolished BAC-induced mitochondrial biogenesis. We further revealed that BAC treatment increased the cell viability but not the cell proliferation in HepG2 cells. These in vitro results were verified in mice treated with BAC (10 mg/kg per day, ip) for 7 days. We showed that BAC administration increased oxygen consumption rate in mice, but had no significant effect on intrascapular temperature. Meanwhile, BAC administration increased mtDNA copy number and OXPHOS-related protein expression and activated AMPK signaling in the heart, liver, and muscle. These results suggest that BAC induces mitochondrial biogenesis in mice through activating AMPK signaling cascade. BAC may have the potential to be developed as a novel remedy for some diseases associated with mitochondrial dysfunction.
Collapse
|
27
|
Adams V, Linke A. Impact of exercise training on cardiovascular disease and risk. Biochim Biophys Acta Mol Basis Dis 2019; 1865:728-734. [DOI: 10.1016/j.bbadis.2018.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/03/2018] [Accepted: 08/15/2018] [Indexed: 01/07/2023]
|
28
|
Trigo D, Goncalves MB, Corcoran JPT. The regulation of mitochondrial dynamics in neurite outgrowth by retinoic acid receptor β signaling. FASEB J 2019; 33:7225-7235. [PMID: 30857414 PMCID: PMC6529336 DOI: 10.1096/fj.201802097r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuronal regeneration is a highly energy-demanding process that greatly relies on axonal mitochondrial transport to meet the enhanced metabolic requirements. Mature neurons typically fail to regenerate after injury, partly because of mitochondrial motility and energy deficits in injured axons. Retinoic acid receptor (RAR)-β signaling is involved in axonal and neurite regeneration. Here we investigate the effect of RAR-β signaling on mitochondrial trafficking during neurite outgrowth and find that it enhances their proliferation, speed, and movement toward the growing end of the neuron via hypoxia-inducible factor 1α signaling. We also show that RAR-β signaling promotes the binding of the mitochondria to the anchoring protein, glucose-related protein 75, at the growing tip of neurite, thus allowing them to provide energy and metabolic roles required for neurite outgrowth.—Trigo, D., Goncalves, M. B., Corcoran, J. P. T. The regulation of mitochondrial dynamics in neurite outgrowth by retinoic acid receptor β signaling.
Collapse
Affiliation(s)
- Diogo Trigo
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Maria B Goncalves
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Jonathan P T Corcoran
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
29
|
Chaillou T. Skeletal Muscle Fiber Type in Hypoxia: Adaptation to High-Altitude Exposure and Under Conditions of Pathological Hypoxia. Front Physiol 2018; 9:1450. [PMID: 30369887 PMCID: PMC6194176 DOI: 10.3389/fphys.2018.01450] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/24/2018] [Indexed: 01/16/2023] Open
Abstract
Skeletal muscle is able to modify its size, and its metabolic/contractile properties in response to a variety of stimuli, such as mechanical stress, neuronal activity, metabolic and hormonal influences, and environmental factors. A reduced oxygen availability, called hypoxia, has been proposed to induce metabolic adaptations and loss of mass in skeletal muscle. In addition, several evidences indicate that muscle fiber-type composition could be affected by hypoxia. The main purpose of this review is to explore the adaptation of skeletal muscle fiber-type composition to exposure to high altitude (ambient hypoxia) and under conditions of pathological hypoxia, including chronic obstructive pulmonary disease (COPD), chronic heart failure (CHF) and obstructive sleep apnea syndrome (OSAS). The muscle fiber-type composition of both adult animals and humans is not markedly altered during chronic exposure to high altitude. However, the fast-to-slow fiber-type transition observed in hind limb muscles during post-natal development is impaired in growing rats exposed to severe altitude. A slow-to-fast transition in fiber type is commonly found in lower limb muscles from patients with COPD and CHF, whereas a transition toward a slower fiber-type profile is often found in the diaphragm muscle in these two pathologies. A slow-to-fast transformation in fiber type is generally observed in the upper airway muscles in rodent models of OSAS. The factors potentially responsible for the adaptation of fiber type under these hypoxic conditions are also discussed in this review. The impaired locomotor activity most likely explains the changes in fiber type composition in growing rats exposed to severe altitude. Furthermore, chronic inactivity and muscle deconditioning could result in the slow-to-fast fiber-type conversion in lower limb muscles during COPD and CHF, while the factors responsible for the adaptation of muscle fiber type during OSAS remain hypothetical. Finally, the role played by cellular hypoxia, hypoxia-inducible factor-1 alpha (HIF-1α), and other molecular regulators in the adaptation of muscle fiber-type composition is described in response to high altitude exposure and conditions of pathological hypoxia.
Collapse
Affiliation(s)
- Thomas Chaillou
- School of Health Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
30
|
Niemeijer VM, Snijders T, Verdijk LB, van Kranenburg J, Groen BBL, Holwerda AM, Spee RF, Wijn PFF, van Loon LJC, Kemps HMC. Skeletal muscle fiber characteristics in patients with chronic heart failure: impact of disease severity and relation with muscle oxygenation during exercise. J Appl Physiol (1985) 2018; 125:1266-1276. [PMID: 30091667 DOI: 10.1152/japplphysiol.00057.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Skeletal muscle function in patients with heart failure and reduced ejection fraction (HFrEF) greatly determines exercise capacity. However, reports on skeletal muscle fiber dimensions, fiber capillarization, and their physiological importance are inconsistent. METHODS Twenty-five moderately-impaired patients with HFrEF and 25 healthy control (HC) subjects underwent muscle biopsy sampling. Type I and type II muscle fiber characteristics were determined by immunohistochemistry. In patients with HFrEF, enzymatic oxidative capacity was assessed, and pulmonary oxygen uptake (VO2) and skeletal muscle oxygenation during maximal and moderate-intensity exercise were measured using near-infrared spectroscopy. RESULTS While muscle fiber cross-sectional area (CSA) was not different between patients with HFrEF and HC, percentage of type I fibers was higher in HC (46±15% versus 37±12%, respectively, P=0.041). Fiber type distribution and CSA were not different between patients in New York Heart Association (NYHA) class II and III. Type I muscle fiber capillarization was higher in HFrEF compared with controls (capillary-to-fiber perimeter exchange (CFPE) index: 5.70±0.92 versus 5.05±0.82, respectively, P=0.027). Patients in NYHA class III had slower VO2 and muscle deoxygenation kinetics during onset of exercise, and lower muscle oxidative capacity than those in class II (P<0.05). Also, fiber capillarization was lower, but not compared with HC. Higher CFPE index was related to faster deoxygenation (rspearman=-0.682, P=0.001), however, not to muscle oxidative capacity (r=-0.282, P=0.216). CONCLUSIONS Type I muscle fiber capillarization is higher in HFrEF compared with HC, but not in patients with greater exercise impairment. Greater capillarization may positively affect VO2 kinetics by enhancing muscle oxygen diffusion.
Collapse
Affiliation(s)
- Victor M Niemeijer
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands, Netherlands
| | - Tim Snijders
- Human Movement Sciences, Maastricht University Medical Centre+, Netherlands
| | - Lex B Verdijk
- Human Movement Sciences, Maastricht University Medical Centre, Netherlands
| | - Janneau van Kranenburg
- Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+ (MUMC+)
| | - Bart B L Groen
- Department of Human Movement Sciences, Maastricht University Medical Centre, Netherlands
| | | | - Ruud F Spee
- Department of Cardiology, Maxima Medical Center, Netherlands
| | - Pieter F F Wijn
- Department of Applied Physics, Eindhoven University of Technology
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Netherlands
| | | |
Collapse
|
31
|
Mild Hyperthermia-Induced Myogenic Differentiation in Skeletal Muscle Cells: Implications for Local Hyperthermic Therapy for Skeletal Muscle Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2393570. [PMID: 30050646 PMCID: PMC6040271 DOI: 10.1155/2018/2393570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/05/2018] [Indexed: 12/26/2022]
Abstract
The percutaneous application of controlled temperature on damaged muscle is regarded as a prevalent remedy. However, specific mechanisms are not completely understood. Therefore, cellular behaviors of myoblasts were investigated under a physiological hyperthermic temperature. The myoblasts were cultured under no treatment (NT, 37°C, 24 h/day), intermittent heat treatment (IHT, 39°C, 2 h/day), and continuous heat treatment (CHT, 39°C, 24 h/day) during proliferation, migration, or myogenic differentiation. Although the effects of mild heat on migration were not observed, the proliferation was promoted by both IHT and CHT. The myogenic differentiation was also enhanced in a treatment time-dependent manner, as evidenced by an increase in myotube size and fusion index. The gene expressions of mitochondrial biogenesis (Pgc-1α, Nrf1, and Tfam), a subset of mitochondrial dynamics (Mfn1 and Drp1), and a myogenic regulatory factor (myogenin) were increased in a heat treatment time-dependent manner. Interestingly, the mild heat-induced myogenic differentiation and myogenin expression were retarded significantly in PGC-1α-targeted siRNA-transfected cells, suggesting that mild hyperthermia promotes myogenic differentiation via the modulation of PGC-1α. This study provides cellular evidence supporting that local hyperthermic treatment at 39°C is regarded as an effective therapeutic strategy to promote satellite cell activities in regenerating myofibers.
Collapse
|
32
|
Lee H, Lim JY, Choi SJ. Role of l-carnitine and oleate in myogenic differentiation: implications for myofiber regeneration. J Exerc Nutrition Biochem 2018; 22:36-42. [PMID: 30149425 PMCID: PMC6058066 DOI: 10.20463/jenb.2018.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023] Open
Abstract
[Purpose] Myogenic progenitors play a critical role in injury-induced myofiber regeneration. The purpose of this study was to characterize the effects of oleate and L-carnitine on the overall behavior of proliferating myogenic progenitors (myoblasts) and its link to the mitochondrial biogenic process. [Methods] C2C12 myoblasts were cultured either with no treatment, oleate, L-carnitine, or their mixture. Proliferating myoblasts were investigated under a phase-contrast microscope. Myonuclei and myosin heavy chain were stained with DAPI and MF20 antibody, respectively, in differentiated myotubes and visualized under florescence microscopy. Mitochondrial biogenic markers and porin were assessed by qRT-PCR or immunoblotting. [Results] Increased proliferation rate was observed in myoblasts conditioned with oleate or a mixture of oleate and L-carnitine in contrast to that in non-treated (NT) and L-carnitine-treated myoblasts. Myoblast viability was not statistically different among all tested groups. Fusion index and myotube width were greater in oleate- or L-carnitine-conditioned myotubes than those in NT myotubes, with the greatest effect seen in myotubes conditioned with the mixture. The gene expressions of Pgc1-α, Nrf1, and Tfam were the greatest in myotubes conditioned with the mixture, whereas the level of Ncor1 expression was lower compared to those of the other groups. Protein level of porin was the greatest in myotubes conditioned with the mixture, followed by that of individually treated myotubes with oleate and L-carnitine. [Conclusion] These results provide a critical piece of cellular evidence that combined treatment of oleate and L-carnitine could serve as a potential therapeutic strategy to facilitate biological activation of myogenic progenitors.
Collapse
|
33
|
Zhang JY, Wang M, Wang RY, Sun X, Du YY, Ye JX, Sun GB, Sun XB. Salvianolic Acid A Ameliorates Arsenic Trioxide-Induced Cardiotoxicity Through Decreasing Cardiac Mitochondrial Injury and Promotes Its Anticancer Activity. Front Pharmacol 2018; 9:487. [PMID: 29867492 PMCID: PMC5954107 DOI: 10.3389/fphar.2018.00487] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/24/2018] [Indexed: 11/18/2022] Open
Abstract
Arsenic trioxide (ATO) is used as a therapeutic agent in the treatment of acute promyelocytic leukemia (APL). The therapeutic use of arsenic is limited due to its severe cardiovascular side effects. The cardio-protective effect of salvianolic acid A (Sal A) against ATO cardiotoxicity has been reported. However, the distinct role of the mitochondria in the cardio-protection of Sal A is not understood. The aim of this study was to determine whether Sal A preconditioning protects against ATO-induced heart injury by maintaining cardiac mitochondrial function and biogenesis. For the in vivo study, BALB/c mice were treated with ATO and/or Sal A. For the in vitro study, we determined the effects of ATO and/or Sal A in H9c2 cardiomyocytes. Our results showed that ATO induced mitochondrial structural damage, abnormal mitochondrial permeability transition pore (mPTP) opening, overproduction of mitochondrial reactive oxygen species (ROS), and decreased the ATP content. Sal A pretreatment alleviated the ATO-induced mitochondrial structural and functional damage. In this study, ATO decreased the expression level of the peroxisome proliferator activator receptor gamma-coactivator 1 (PGC-1α) and disrupted the normal division and fusion of mitochondria. Sal A pretreatment improved the dynamic balance of the damaged mitochondrial biogenesis. Moreover, the combination treatment of Sal A and ATO significantly enhanced the ATO-induced cytotoxicity of SGC7901, HepaRG, K562 and HL60 cells in vitro. These results indicated that Sal A protects the heart from ATO-induced injury, which correlates with the modulation of mitochondrial function, and the maintenance of normal mitochondrial biogenesis.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Rui-Ying Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Yu-Yang Du
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Jing-Xue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Gui-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| |
Collapse
|
34
|
Wang D, Sun H, Song G, Yang Y, Zou X, Han P, Li S. Resveratrol Improves Muscle Atrophy by Modulating Mitochondrial Quality Control in STZ-Induced Diabetic Mice. Mol Nutr Food Res 2018; 62:e1700941. [PMID: 29578301 PMCID: PMC6001753 DOI: 10.1002/mnfr.201700941] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/10/2018] [Indexed: 12/14/2022]
Abstract
SCOPE In this study, we aim to determine the effects of resveratrol (RSV) on muscle atrophy in streptozocin-induced diabetic mice and to explore mitochondrial quality control (MQC) as a possible mechanism. METHODS AND RESULTS The experimental mice were fed either a control diet or an identical diet containing 0.04% RSV for 8 weeks. Examinations were subsequently carried out, including the effects of RSV on muscle atrophy and muscle function, as well as on the signaling pathways related to protein degradation and MQC processes. The results show that RSV supplementation improves muscle atrophy and muscle function, attenuates the increase in ubiquitin and muscle RING-finger protein-1 (MuRF-1), and simultaneously attenuates LC3-II and cleaved caspase-3 in the skeletal muscle of diabetic mice. Moreover, RSV treatment of diabetic mice results in an increase in mitochondrial biogenesis and inhibition of the activation of mitophagy in skeletal muscle. RSV also protects skeletal muscle against excess mitochondrial fusion and fission in the diabetic mice. CONCLUSION The results suggest that RSV ameliorates diabetes-induced skeletal muscle atrophy by modulating MQC.
Collapse
MESH Headings
- Animals
- Antioxidants/therapeutic use
- Apoptosis
- Autophagy
- Biomarkers/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Dietary Supplements
- Gene Expression Regulation
- Male
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Mitochondria, Muscle/ultrastructure
- Mitochondrial Dynamics
- Muscle Proteins/antagonists & inhibitors
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle Strength
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/ultrastructure
- Muscular Atrophy/complications
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Atrophy/prevention & control
- Muscular Disorders, Atrophic/complications
- Muscular Disorders, Atrophic/metabolism
- Muscular Disorders, Atrophic/pathology
- Muscular Disorders, Atrophic/prevention & control
- Resveratrol/therapeutic use
- Signal Transduction
- Streptozocin
- Tripartite Motif Proteins/antagonists & inhibitors
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Ubiquitin/antagonists & inhibitors
- Ubiquitin/genetics
- Ubiquitin/metabolism
- Ubiquitin-Protein Ligases/antagonists & inhibitors
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Dongtao Wang
- Department of Traditional Chinese MedicineShenzhen HospitalSouthern Medical UniversityShenzhenGuangdong518000China
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
- Department of NephrologyRuikang Affiliated HospitalGuangxi University of Chinese MedicineNanning530011China
| | - Huili Sun
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
| | - Gaofeng Song
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
| | - Yajun Yang
- Department of PharmacologyGuangdong Key Laboratory for R&D of Natural DrugGuangdong Medical CollegeZhanjiang524023China
| | - Xiaohu Zou
- Department of Traditional Chinese MedicineShenzhen HospitalSouthern Medical UniversityShenzhenGuangdong518000China
| | - Pengxun Han
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
| | - Shunmin Li
- Department of NephrologyShenzhen Traditional Chinese Medicine HospitalGuangzhou University of Chinese MedicineShenzhenGuangdong518033China
| |
Collapse
|
35
|
Update on mitochondria and muscle aging: all wrong roads lead to sarcopenia. Biol Chem 2018; 399:421-436. [DOI: 10.1515/hsz-2017-0331] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022]
Abstract
Abstract
Sarcopenia is a well-known geriatric syndrome that has been endorsed over the years as a biomarker allowing for the discrimination, at a clinical level, of biological from chronological age. Multiple candidate mechanisms have been linked to muscle degeneration during sarcopenia. Among them, there is wide consensus on the central role played by the loss of mitochondrial integrity in myocytes, secondary to dysfunctional quality control mechanisms. Indeed, mitochondria establish direct or indirect contacts with other cellular components (e.g. endoplasmic reticulum, peroxisomes, lysosomes/vacuoles) as well as the extracellular environment through the release of several biomolecules. The functional implications of these interactions in the context of muscle physiology and sarcopenia are not yet fully appreciated and represent a promising area of investigation. Here, we present an overview of recent findings concerning the interrelation between mitochondrial quality control processes, inflammation and the metabolic regulation of muscle mass in the pathogenesis of sarcopenia highlighting those pathways that may be exploited for developing preventive and therapeutic interventions against muscle aging.
Collapse
|
36
|
Exercise and Mitochondrial Dynamics: Keeping in Shape with ROS and AMPK. Antioxidants (Basel) 2018; 7:antiox7010007. [PMID: 29316654 PMCID: PMC5789317 DOI: 10.3390/antiox7010007] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 11/25/2022] Open
Abstract
Exercise is a robust stimulus for mitochondrial adaptations in skeletal muscle which consequently plays a central role in enhancing metabolic health. Despite this, the precise molecular events that underpin these beneficial effects remain elusive. In this review, we discuss molecular signals generated during exercise leading to altered mitochondrial morphology and dynamics. In particular, we focus on the interdependence between reactive oxygen species (ROS) and redox homeostasis, the sensing of cellular bioenergetic status via 5’ adenosine monophosphate (AMP)-activated protein kinase (AMPK), and the regulation of mitochondrial fission and fusion. Precisely how exercise regulates the network of these responses and their effects on mitochondrial dynamics is not fully understood at present. We highlight the limitations that exist with the techniques currently available, and discuss novel molecular tools to potentially advance the fields of redox biology and mitochondrial bioenergetics. Ultimately, a greater understanding of these processes may lead to novel mitochondria-targeted therapeutic strategies to augment or mimic exercise in order to attenuate or reverse pathophysiology.
Collapse
|
37
|
Boudia D, Domergue V, Mateo P, Fazal L, Prud'homme M, Prigent H, Delcayre C, Cohen-Solal A, Garnier A, Ventura-Clapier R, Samuel JL. Beneficial effects of exercise training in heart failure are lost in male diabetic rats. J Appl Physiol (1985) 2017; 123:1579-1591. [PMID: 28883044 DOI: 10.1152/japplphysiol.00117.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training has been demonstrated to have beneficial effects in patients with heart failure (HF) or diabetes. However, it is unknown whether diabetic patients with HF will benefit from exercise training. Male Wistar rats were fed either a standard (Sham, n = 53) or high-fat, high-sucrose diet ( n = 66) for 6 mo. After 2 mo of diet, the rats were already diabetic. Rats were then randomly subjected to either myocardial infarction by coronary artery ligation (MI) or sham operation. Two months later, heart failure was documented by echocardiography and animals were randomly subjected to exercise training with treadmill for an additional 8 wk or remained sedentary. At the end, rats were euthanized and tissues were assayed by RT-PCR, immunoblotting, spectrophotometry, and immunohistology. MI induced a similar decrease in ejection fraction in diabetic and lean animals but a higher premature mortality in the diabetic group. Exercise for 8 wk resulted in a higher working power developed by MI animals with diabetes and improved glycaemia but not ejection fraction or pathological phenotype. In contrast, exercise improved the ejection fraction and increased adaptive hypertrophy after MI in the lean group. Trained diabetic rats with MI were nevertheless able to develop cardiomyocyte hypertrophy but without angiogenic responses. Exercise improved stress markers and cardiac energy metabolism in lean but not diabetic-MI rats. Hence, following HF, the benefits of exercise training on cardiac function are blunted in diabetic animals. In conclusion, exercise training only improved the myocardial profile of infarcted lean rats fed the standard diet. NEW & NOTEWORTHY Exercise training is beneficial in patients with heart failure (HF) or diabetes. However, less is known of the possible benefit of exercise training for HF patients with diabetes. Using a rat model where both diabetes and MI had been induced, we showed that 2 mo after MI, 8 wk of exercise training failed to improve cardiac function and metabolism in diabetic animals in contrast to lean animals.
Collapse
Affiliation(s)
- Dalila Boudia
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| | - Valérie Domergue
- UMS IPSIT Animex Platform, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Philippe Mateo
- UMR-S 1180 INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Loubina Fazal
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| | - Mathilde Prud'homme
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| | - Héloïse Prigent
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France.,Cardiology, Assistance Publique-Hópitaux de Paris (AP-HP), Ambroise Paré, Paris
| | - Claude Delcayre
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| | - Alain Cohen-Solal
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France.,Cardiology, Assistance Publique-Hópitaux de Paris (AP-HP), Ambroise Paré, Paris
| | - Anne Garnier
- UMR-S 1180 INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Renée Ventura-Clapier
- UMR-S 1180 INSERM, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jane-Lise Samuel
- UMR-S 942 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris-Diderot, Sorbonne Paris Cité, France
| |
Collapse
|
38
|
Zhang L, Zhou Y, Wu W, Hou L, Chen H, Zuo B, Xiong Y, Yang J. Skeletal Muscle-Specific Overexpression of PGC-1α Induces Fiber-Type Conversion through Enhanced Mitochondrial Respiration and Fatty Acid Oxidation in Mice and Pigs. Int J Biol Sci 2017; 13:1152-1162. [PMID: 29104506 PMCID: PMC5666330 DOI: 10.7150/ijbs.20132] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/17/2017] [Indexed: 11/11/2022] Open
Abstract
Individual skeletal muscles in the animal body are heterogeneous, as each is comprised of different fiber types. Type I muscle fibers are rich with mitochondria, and have high oxidative metabolisms while type IIB fibers have few mitochondria and high glycolytic metabolic capacity. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a transcriptional co-activator that regulates mitochondrial biogenesis and respiratory function, is implicated in muscle fiber-type switching. Over-expression of PGC-1α in transgenic mice increased the proportion of red/oxidative type I fiber. During pig muscle growth, an increased number of type I fibers can give meat more red color. To explore the roles of PGC-1α in regulation of muscle fiber type conversion, we generated skeletal muscle-specific PGC-1α transgenic mice and pig. Ectopic over-expression of PGC-1α was detected in both fast and slow muscle fibers. The transgenic animals displayed a remarkable amount of red/oxidative muscle fibers in major skeletal muscle tissues. Skeletal muscles from transgenic mice and pigs have increased expression levels of oxidative fiber markers such as MHC1, MHC2x, myoglobin and Tnni1, and decreased expressions of glycolytic fiber genes (MHC2a, MHC2b, CASQ-1 and Tnni2). The genes responsible for the TCA cycle and oxidative phosphorylation, cytochrome coxidase 2 and 4, and citrate synthase were also increased in the transgenic mice and pigs. These results suggested that transgenic over-expressed PGC-1α significantly increased muscle mitochondrial biogenesis, resulting in qualitative changes from glycolytic to oxidative energy generation. The transgenic animals also had elevated levels of PDK4 and PPARγ proteins in muscle tissue, which can lead to increased glycogen deposition and fatty acid oxidation. Therefore, the results support a significant role of PGC-1α in conversion of fast glycolytic fibers to slow and oxidative fiber through enhanced mitochondrial respiration and fatty acid oxidation, and transgenic over-expression of PGC-1α in skeletal muscle leads to more red meat production in pigs.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zhou
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liming Hou
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongxing Chen
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanzhu Xiong
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinzeng Yang
- Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences, Huazhong Agricultural University, Wuhan 430070, China.,Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| |
Collapse
|
39
|
Disrupted Skeletal Muscle Mitochondrial Dynamics, Mitophagy, and Biogenesis during Cancer Cachexia: A Role for Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3292087. [PMID: 28785374 PMCID: PMC5530417 DOI: 10.1155/2017/3292087] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/06/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022]
Abstract
Chronic inflammation is a hallmark of cancer cachexia in both patients and preclinical models. Cachexia is prevalent in roughly 80% of cancer patients and accounts for up to 20% of all cancer-related deaths. Proinflammatory cytokines IL-6, TNF-α, and TGF-β have been widely examined for their regulation of cancer cachexia. An established characteristic of cachectic skeletal muscle is a disrupted capacity for oxidative metabolism, which is thought to contribute to cancer patient fatigue, diminished metabolic function, and muscle mass loss. This review's primary objective is to highlight emerging evidence linking cancer-induced inflammation to the dysfunctional regulation of mitochondrial dynamics, mitophagy, and biogenesis in cachectic muscle. The potential for either muscle inactivity or exercise to alter mitochondrial dysfunction during cancer cachexia will also be discussed.
Collapse
|
40
|
Seiler M, Bowen TS, Rolim N, Dieterlen MT, Werner S, Hoshi T, Fischer T, Mangner N, Linke A, Schuler G, Halle M, Wisloff U, Adams V. Skeletal Muscle Alterations Are Exacerbated in Heart Failure With Reduced Compared With Preserved Ejection Fraction: Mediated by Circulating Cytokines? Circ Heart Fail 2017; 9:CIRCHEARTFAILURE.116.003027. [PMID: 27609832 DOI: 10.1161/circheartfailure.116.003027] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/10/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND A greater understanding of the different underlying mechanisms between patients with heart failure with reduced (HFrEF) and with preserved (HFpEF) ejection fraction is urgently needed to better direct future treatment. However, although skeletal muscle impairments, potentially mediated by inflammatory cytokines, are common in both HFrEF and HFpEF, the underlying cellular and molecular alterations that exist between groups are yet to be systematically evaluated. The present study, therefore, used established animal models to compare whether alterations in skeletal muscle (limb and respiratory) were different between HFrEF and HFpEF, while further characterizing inflammatory cytokines. METHODS AND RESULTS Rats were assigned to (1) HFrEF (ligation of the left coronary artery; n=8); (2) HFpEF (high-salt diet; n=10); (3) control (con: no intervention; n=7). Heart failure was confirmed by echocardiography and invasive measures. Soleus tissue in HFrEF, but not in HFpEF, showed a significant increase in markers of (1) muscle atrophy (ie, MuRF1, calpain, and ubiquitin proteasome); (2) oxidative stress (ie, higher nicotinamide adenine dinucleotide phosphate oxidase but lower antioxidative enzyme activities); (3) mitochondrial impairments (ie, a lower succinate dehydrogenase/lactate dehydrogenase ratio and peroxisome proliferator-activated receptor-γ coactivator-1α expression). The diaphragm remained largely unaffected between groups. Plasma concentrations of circulating cytokines were significantly increased in HFrEF for tumor necrosis factor-α, whereas interleukin-1β and interleukin-12 were higher in HFpEF. CONCLUSIONS Our findings suggest, for the first time, that skeletal muscle alterations are exacerbated in HFrEF compared with HFpEF, which predominantly reside in limb, rather than in respiratory, muscle. This disparity may be mediated, in part, by the different circulating inflammatory cytokines that were elevated between HFpEF and HFrEF.
Collapse
Affiliation(s)
- Martin Seiler
- From the Department of Cardiology (M.S., T.S.B., S.W., T.F., N.M., A.L., G.S., V.A.) and Department of Cardiac Surgery (M.-T.D.), University of Leipzig, Heart Center, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway (N.R., U.W.); Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.H.); Department of Prevention, Rehabilitation and Sports Medicine, Else Kröner-Fresenius-Zentrum, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany (M.H.); and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (M.H.)
| | - T Scott Bowen
- From the Department of Cardiology (M.S., T.S.B., S.W., T.F., N.M., A.L., G.S., V.A.) and Department of Cardiac Surgery (M.-T.D.), University of Leipzig, Heart Center, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway (N.R., U.W.); Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.H.); Department of Prevention, Rehabilitation and Sports Medicine, Else Kröner-Fresenius-Zentrum, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany (M.H.); and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (M.H.)
| | - Natale Rolim
- From the Department of Cardiology (M.S., T.S.B., S.W., T.F., N.M., A.L., G.S., V.A.) and Department of Cardiac Surgery (M.-T.D.), University of Leipzig, Heart Center, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway (N.R., U.W.); Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.H.); Department of Prevention, Rehabilitation and Sports Medicine, Else Kröner-Fresenius-Zentrum, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany (M.H.); and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (M.H.)
| | - Maja-Theresa Dieterlen
- From the Department of Cardiology (M.S., T.S.B., S.W., T.F., N.M., A.L., G.S., V.A.) and Department of Cardiac Surgery (M.-T.D.), University of Leipzig, Heart Center, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway (N.R., U.W.); Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.H.); Department of Prevention, Rehabilitation and Sports Medicine, Else Kröner-Fresenius-Zentrum, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany (M.H.); and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (M.H.)
| | - Sarah Werner
- From the Department of Cardiology (M.S., T.S.B., S.W., T.F., N.M., A.L., G.S., V.A.) and Department of Cardiac Surgery (M.-T.D.), University of Leipzig, Heart Center, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway (N.R., U.W.); Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.H.); Department of Prevention, Rehabilitation and Sports Medicine, Else Kröner-Fresenius-Zentrum, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany (M.H.); and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (M.H.)
| | - Tomoya Hoshi
- From the Department of Cardiology (M.S., T.S.B., S.W., T.F., N.M., A.L., G.S., V.A.) and Department of Cardiac Surgery (M.-T.D.), University of Leipzig, Heart Center, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway (N.R., U.W.); Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.H.); Department of Prevention, Rehabilitation and Sports Medicine, Else Kröner-Fresenius-Zentrum, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany (M.H.); and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (M.H.)
| | - Tina Fischer
- From the Department of Cardiology (M.S., T.S.B., S.W., T.F., N.M., A.L., G.S., V.A.) and Department of Cardiac Surgery (M.-T.D.), University of Leipzig, Heart Center, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway (N.R., U.W.); Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.H.); Department of Prevention, Rehabilitation and Sports Medicine, Else Kröner-Fresenius-Zentrum, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany (M.H.); and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (M.H.)
| | - Norman Mangner
- From the Department of Cardiology (M.S., T.S.B., S.W., T.F., N.M., A.L., G.S., V.A.) and Department of Cardiac Surgery (M.-T.D.), University of Leipzig, Heart Center, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway (N.R., U.W.); Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.H.); Department of Prevention, Rehabilitation and Sports Medicine, Else Kröner-Fresenius-Zentrum, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany (M.H.); and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (M.H.)
| | - Axel Linke
- From the Department of Cardiology (M.S., T.S.B., S.W., T.F., N.M., A.L., G.S., V.A.) and Department of Cardiac Surgery (M.-T.D.), University of Leipzig, Heart Center, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway (N.R., U.W.); Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.H.); Department of Prevention, Rehabilitation and Sports Medicine, Else Kröner-Fresenius-Zentrum, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany (M.H.); and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (M.H.)
| | - Gerhard Schuler
- From the Department of Cardiology (M.S., T.S.B., S.W., T.F., N.M., A.L., G.S., V.A.) and Department of Cardiac Surgery (M.-T.D.), University of Leipzig, Heart Center, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway (N.R., U.W.); Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.H.); Department of Prevention, Rehabilitation and Sports Medicine, Else Kröner-Fresenius-Zentrum, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany (M.H.); and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (M.H.)
| | - Martin Halle
- From the Department of Cardiology (M.S., T.S.B., S.W., T.F., N.M., A.L., G.S., V.A.) and Department of Cardiac Surgery (M.-T.D.), University of Leipzig, Heart Center, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway (N.R., U.W.); Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.H.); Department of Prevention, Rehabilitation and Sports Medicine, Else Kröner-Fresenius-Zentrum, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany (M.H.); and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (M.H.)
| | - Ulrik Wisloff
- From the Department of Cardiology (M.S., T.S.B., S.W., T.F., N.M., A.L., G.S., V.A.) and Department of Cardiac Surgery (M.-T.D.), University of Leipzig, Heart Center, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway (N.R., U.W.); Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.H.); Department of Prevention, Rehabilitation and Sports Medicine, Else Kröner-Fresenius-Zentrum, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany (M.H.); and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (M.H.)
| | - Volker Adams
- From the Department of Cardiology (M.S., T.S.B., S.W., T.F., N.M., A.L., G.S., V.A.) and Department of Cardiac Surgery (M.-T.D.), University of Leipzig, Heart Center, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway (N.R., U.W.); Cardiovascular Division, Faculty of Medicine, University of Tsukuba, Japan (T.H.); Department of Prevention, Rehabilitation and Sports Medicine, Else Kröner-Fresenius-Zentrum, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany (M.H.); and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (M.H.).
| |
Collapse
|
41
|
Scribbans TD, Edgett BA, Bonafiglia JT, Baechler BL, Quadrilatero J, Gurd BJ. A systematic upregulation of nuclear and mitochondrial genes is not present in the initial postexercise recovery period in human skeletal muscle. Appl Physiol Nutr Metab 2017; 42:571-578. [DOI: 10.1139/apnm-2016-0455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the current investigation was to determine if an exercise-mediated upregulation of nuclear and mitochondrial-encoded genes targeted by the transcriptional co-activator peroxisome-proliferator-activated receptor gamma co-activator-1 alpha (PGC-1α) occurs in a systematic manner following different exercise intensities in humans. Ten recreationally active males (age: 23 ± 3 years; peak oxygen uptake: 41.8 ± 6.6 mL·kg−1·min−1) completed 2 acute bouts of work-matched interval exercise at ∼73% (low; LO) and ∼100% (high; HI) of work rate at peak oxygen uptake in a randomized crossover design. Muscle biopsies were taken before, immediately after, and 3 h into recovery following each exercise bout. A main effect of time (p < 0.05) was observed for glycogen depletion. PGC-1α messenger RNA (mRNA) increased following both conditions and was significantly (p < 0.05) higher following HI compared with LO (PGC-1α, LO: +442% vs. HI: +845%). PDK4 mRNA increased following LO whereas PPARα, NRF1, and CS increased following HI. However, a systematic upregulation of nuclear and mitochondrial-encoded genes was not present as TFAM, COXIV, COXI, COXII, ND1, and ND4 mRNA were unchanged. However, changes in COXI, COXII, ND1 and ND4 mRNA were positively correlated following LO and COXI, ND1, and ND4 were positively correlated following HI, which suggests mitochondrial-encoded gene expression was coordinated. PGC-1α and ND4 mRNA, as well as PGC-1α mRNA and the change in muscle glycogen, were positively correlated in response to LO. The lack of observed systematic upregulation of nuclear- and mitochondrial-encoded genes suggests that exercise-induced upregulation of PGC-1α targets are differentially regulated during the initial hours following acute exercise in humans.
Collapse
Affiliation(s)
- Trisha D. Scribbans
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Brittany A. Edgett
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Jacob T. Bonafiglia
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| | | | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Brendon J. Gurd
- School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
42
|
Gupta A, Houston B. A comprehensive review of the bioenergetics of fatty acid and glucose metabolism in the healthy and failing heart in nondiabetic condition. Heart Fail Rev 2017; 22:825-842. [DOI: 10.1007/s10741-017-9623-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Saini SK, Mangalhara KC, Prakasam G, Bamezai RNK. DNA Methyltransferase1 (DNMT1) Isoform3 methylates mitochondrial genome and modulates its biology. Sci Rep 2017; 7:1525. [PMID: 28484249 PMCID: PMC5431478 DOI: 10.1038/s41598-017-01743-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
Here we demonstrate localization of the isoform3 of DNA Methyltransferase1 (DNMT1) enzyme to mitochondria, instead of isoform1 as reported earlier. The fused DNMT1-isoform1, reported earlier to localize in mitochondria, surprisingly showed its exclusive presence inside the nucleus after its ectopic expression; and failed to localize in mitochondria. On the other hand, ectopically expressed DNMT1-isoform3 targeted itself to mitochondria and subsequently methylated CpG regions in the mitochondrial genome. In addition, overexpression of DNMT1-isoform3 affected mitochondrial biology and regulated its function. Under different conditions of oxidative and nutritional stress, this isoform was down-regulated, resulting in hypomethylation of mitochondrial genome. Our study reveals how DNMT1-isoform3, instead of isoform1, is responsible for mtDNA methylation, influencing its biology.
Collapse
Affiliation(s)
- Sunil Kumar Saini
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kailash Chandra Mangalhara
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gopinath Prakasam
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - R N K Bamezai
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
44
|
Ong SB, Hausenloy DJ. Mitochondrial Dynamics as a Therapeutic Target for Treating Cardiac Diseases. Handb Exp Pharmacol 2017; 240:251-279. [PMID: 27844171 DOI: 10.1007/164_2016_7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitochondria are dynamic in nature and are able to shift their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins - mitofusins 1 and 2 (Mfn1 and 2), and optic atrophy 1 (Opa1) as well as the mitochondrial fission proteins - dynamin-related peptide 1 (Drp1) and fission protein 1 (Fis1). Despite having a unique spatial arrangement, cardiac mitochondria have been implicated in a variety of disorders including ischemia-reperfusion injury (IRI), heart failure, diabetes, and pulmonary hypertension. In this chapter, we review the influence of mitochondrial dynamics in these cardiac disorders as well as their potential as therapeutic targets in tackling cardiovascular disease.
Collapse
Affiliation(s)
- Sang-Bing Ong
- Cardiovascular and Metabolic Disorders (CVMD) Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders (CVMD) Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
- The Hatter Cardiovascular Institute, University College London Hospitals and Medical School, London, UK
| |
Collapse
|
45
|
Ziaaldini MM, Hosseini SR, Fathi M. Mitochondrial adaptations in aged skeletal muscle: effect of exercise training. Physiol Res 2016; 66:1-14. [PMID: 27982690 DOI: 10.33549/physiolres.933329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aging process is associated with a decline in mitochondrial functions. Mitochondria dysfunction is involved in initiation and progression of many health problems including neuromuscular, metabolic and cardiovascular diseases. It is well known that endurance exercise improves mitochondrial function, especially in the elderly. However, recent studies have demonstrated that resistance training lead also to substantial increases in mitochondrial function in skeletal muscle. A comprehensive understanding of the cellular mechanisms involved in the skeletal muscle mitochondrial adaptations to exercise training in healthy elderly subjects, can help practitioners to design and prescribe more effective exercise trainings.
Collapse
Affiliation(s)
- M M Ziaaldini
- Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | | |
Collapse
|
46
|
Balog J, Mehta SL, Vemuganti R. Mitochondrial fission and fusion in secondary brain damage after CNS insults. J Cereb Blood Flow Metab 2016; 36:2022-2033. [PMID: 27677674 PMCID: PMC5363672 DOI: 10.1177/0271678x16671528] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/15/2016] [Accepted: 09/05/2016] [Indexed: 11/15/2022]
Abstract
Mitochondria are dynamically active organelles, regulated through fission and fusion events to continuously redistribute them across axons, dendrites, and synapses of neurons to meet bioenergetics requirements and to control various functions, including cell proliferation, calcium buffering, neurotransmission, oxidative stress, and apoptosis. However, following acute or chronic injury to CNS, altered expression and function of proteins that mediate fission and fusion lead to mitochondrial dynamic imbalance. Particularly, if the fission is abnormally increased through pro-fission mediators such as Drp1, mitochondrial function will be impaired and mitochondria will become susceptible to insertion of proapototic proteins. This leads to the formation of mitochondrial transition pore, which eventually triggers apoptosis. Thus, mitochondrial dysfunction is a major promoter of neuronal death and secondary brain damage after an insult. This review discusses the implications of mitochondrial dynamic imbalance in neuronal death after acute and chronic CNS insults.
Collapse
Affiliation(s)
- Justin Balog
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA .,Neuroscience Training Program, University of Wisconsin, Madison, WI, USA.,Cellular & Molecular Pathology Training Program, University of Wisconsin, Madison, WI, USA.,William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
47
|
Hesselink MKC, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 2016; 12:633-645. [PMID: 27448057 DOI: 10.1038/nrendo.2016.104] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Low levels of physical activity and the presence of obesity are associated with mitochondrial dysfunction. In addition, mitochondrial dysfunction has been associated with the development of insulin resistance and type 2 diabetes mellitus (T2DM). Although the evidence for a causal relationship between mitochondrial function and insulin resistance is still weak, emerging evidence indicates that boosting mitochondrial function might be beneficial to patient health. Exercise training is probably the most recognized promoter of mitochondrial function and insulin sensitivity and hence is still regarded as the best strategy to prevent and treat T2DM. Animal data, however, have revealed several new insights into the regulation of mitochondrial metabolism, and novel targets for interventions to boost mitochondrial function have emerged. Importantly, many of these targets seem to be regulated by factors such as nutrition, ambient temperature and circadian rhythms, which provides a basis for nonpharmacological strategies to prevent or treat T2DM in humans. Here, we will review the current evidence that mitochondrial function can be targeted therapeutically to improve insulin sensitivity and to prevent T2DM, focusing mainly on human intervention studies.
Collapse
Affiliation(s)
- Matthijs K C Hesselink
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
| | - Vera Schrauwen-Hinderling
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- Department of Radiology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, Netherlands
| | - Patrick Schrauwen
- Department of Human Biology and Human Movement Sciences, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Universiteitsingel 50, 6229 ER, Maastricht, Netherlands
| |
Collapse
|
48
|
Leermakers PA, Gosker HR. Skeletal muscle mitophagy in chronic disease: implications for muscle oxidative capacity? Curr Opin Clin Nutr Metab Care 2016; 19:427-433. [PMID: 27537277 DOI: 10.1097/mco.0000000000000319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Loss of skeletal muscle oxidative capacity is a common feature of chronic diseases such as chronic obstructive pulmonary disease, type 2 diabetes, and congestive heart failure. It may lead to physical impairments and has been suggested to contribute to metabolic inflexibility-induced cardiometabolic risk. The mechanism underlying loss of muscle oxidative capacity is incompletely understood. This review discusses the role of mitophagy as a driving force behind the loss of skeletal muscle oxidative capacity in these patients. RECENT FINDINGS Mitophagy has been studied to a very limited extent in human skeletal muscle. There are, however, clear indications that disease-related factors, including hypoxia, systemic inflammation, muscle inactivity, and iron deficiency are able to induce mitophagy, and that these factors trigger mitophagy via different regulatory mechanisms. Although mitophagy may lead to mitochondrial loss, it is also required to maintain homeostasis through clearance of damaged mitochondria. SUMMARY Based on available evidence, we propose that enhanced mitophagy is involved in chronic disease-induced loss of muscle oxidative capacity. Clearly more research is required to confirm this role and to establish to what extent mitophagy is pathological or a part of physiological adaptation to maintain muscle health.
Collapse
Affiliation(s)
- Pieter A Leermakers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | |
Collapse
|
49
|
Ji LL, Kang C, Zhang Y. Exercise-induced hormesis and skeletal muscle health. Free Radic Biol Med 2016; 98:113-122. [PMID: 26916558 DOI: 10.1016/j.freeradbiomed.2016.02.025] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 12/23/2022]
Abstract
Hormesis refers to the phenomenon that an exposure or repeated exposures of a toxin can elicit adaptive changes within the organism to resist to higher doses of toxin with reduced harm. Skeletal muscle shows considerable plasticity and adaptions in response to a single bout of acute exercise or chronic training, especially in antioxidant defense capacity and metabolic functions mainly due to remodeling of mitochondria. It has thus been hypothesized that contraction-induced production of reactive oxygen species (ROS) may stimulate the hormesis-like adaptations. Furthermore, there has been considerable evidence that select ROS such as hydrogen peroxide and nitric oxide, or even oxidatively degraded macromolecules, may serve as signaling molecules to stimulate such hermetic adaptations due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of nuclear factor (NF) κB, mitogen-activated protein kinase (MAPK), and peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), along with other newly discovered signaling pathways, in some of the most vital biological functions such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. The inability of the cell to maintain proper redox signaling underlies mechanisms of biological aging, during which inflammatory and catabolic pathways prevail. Research evidence and mechanisms connecting exercise-induced hormesis and redox signaling are reviewed.
Collapse
Affiliation(s)
- Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, 1900 University Avenue, Minneapolis, MN 55455, USA.
| | - Chounghun Kang
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, 1900 University Avenue, Minneapolis, MN 55455, USA
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sport Science, Tianjin University of Sport, China
| |
Collapse
|
50
|
Singh SP, Schragenheim J, Cao J, Falck JR, Abraham NG, Bellner L. PGC-1 alpha regulates HO-1 expression, mitochondrial dynamics and biogenesis: Role of epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat 2016; 125:8-18. [PMID: 27418542 DOI: 10.1016/j.prostaglandins.2016.07.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/29/2016] [Accepted: 07/08/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity is a risk factor in the development of type 2 diabetes mellitus (DM2), which is associated with increased morbidity and mortality, predominantly as a result of cardiovascular complications. Increased adiposity is a systemic condition characterized by increased oxidative stress (ROS), increased inflammation, inhibition of anti-oxidant genes such as HO-1 and increased degradation of epoxyeicosatrienoic acids (EETs). We previously demonstrated that EETs attenuate mitochondrial ROS. We postulate that EETs increase peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), which controls mitochondrial function, oxidative metabolism and induction of HO-1. METHODS Cultured murine adipocytes and mice fed a high fat (HF) diet were used to assess functional relationship between EETs, HO-1 and (PGC-1α) using an EET analogue (EET-A) and lentivirus to knock down the PPARGC1A gene. RESULTS EET-A increased PGC-1α and HO-1 in cultured adipocytes and increased the expression of genes involved in thermogenesis and adipocyte browning (UCP1 and PRDM16, respectively). PGC-1α knockdown prevented EET-A-induced HO-1expression, suggesting that PGC-1α is upstream of HO-1. MRI data obtained from fat tissues showed that EET-A administration to mice on a HF diet significantly reduced total body fat content, subcutaneous and visceral fat deposits and reduced the VAT: SAT ratio. Moreover EET-A normalized the VO2 and RQ (VCO2/VO2) in mice fed a HF diet, an effect that was completely prevented in PGC-1α deficient mice. In addition, EET-A increased mitochondrial biogenesis and function as measured by OPA1, MnSOD, Mfn1, Mfn2, and SIRT3, an effect that was inhibited by knockdown of PGC-1α. CONCLUSION Taken together, our findings show that EET-A increased PGC-1α thereby increasing mitochondrial viability, increased fusion potential thereby providing metabolic protection and increased VO2 consumption in HF-induced obesity in mice, thus demonstrating that the EET-mediated increase in HO-1 levels require PGC-1α expression.
Collapse
Affiliation(s)
- Shailendra P Singh
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Joseph Schragenheim
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States
| | - Jian Cao
- First Geriatric Cardiology Division, Chinese PLA General Hospital, Beijing, China
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States; Department of Medicine, New York Medical College, Valhalla, NY 10595, United States; Department of Medicine, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, United States.
| | - Lars Bellner
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|