1
|
Guo M, Watanabe T, Shinoka T. Injectable Stem Cell-Based Therapies for Myocardial Regeneration: A Review of the Literature. J Funct Biomater 2025; 16:152. [PMID: 40422817 DOI: 10.3390/jfb16050152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Stem cell-based therapies are an emerging treatment modality aimed at replenishing lost cardiomyocytes and improving myocardial function after cardiac injury. This review examines the current state of research on injectable stem cell therapies in the setting of cardiovascular disease given their relative simplicity and ability for deep myocardial tissue penetration. Various methods of cell delivery, ranging in level of invasiveness and procedural complexity, have been developed, and numerous cell types have been studied as potential sources of stem cells, each with distinct advantages and disadvantages. We discuss key challenges associated with this approach, including low stem cell retention after transplantation and the innovative biomolecular strategies that have been explored to address this issue. Overall, investigations into the application of stem cells toward cardiac regeneration remain predominantly in the preclinical stage with a number of small, early-phase clinical trials. However, continued scientific advancements in stem cell technology may provide transformative treatment options for patients with heart failure, offering improved survival and quality of life.
Collapse
Affiliation(s)
- Marissa Guo
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tatsuya Watanabe
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
2
|
Abbasi R, Alamdari-Mahd G, Maleki-Kakelar H, Momen-Mesgin R, Ahmadi M, Sharafkhani M, Rezaie J. Recent advances in the application of engineered exosomes from mesenchymal stem cells for regenerative medicine. Eur J Pharmacol 2025; 989:177236. [PMID: 39753159 DOI: 10.1016/j.ejphar.2024.177236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Exosomes, cell-derived vesicles produced by cells, are fascinating and drawing growing interest in biomedical exploration due to their exceptional properties. There is intriguing evidence that exosomes are involved in major biological processes, including diseases and regeneration. Exosomes from mesenchymal stem cells (MSCs) have shown promising outcomes in regenerative medicine. Numerous studies suggest that exosomes have several advantages over conventional synthetic nanocarriers, opening novel frontiers for innovative drug delivery. Regenerative medicine has demonstrated the profound therapeutic outcomes of engineered or loaded exosomes from MSCs. Different methods are being used to modify or/load exosomes. These exosomes can improve cell signaling pathways for bone and cartilage diseases, liver diseases, nerve tissues, kidney diseases, skin tissue, and cardiovascular diseases. Despite extensive research, clinical translation of these exosomes remains a challenge. The optimization of cargo loading methods, efficiency, physiological stability, and the isolation and characterization of exosomes present some challenges. The upcoming examination should include the development of large-scale, quality-controllable production approaches, the modification of drug loading approaches, and numerous in vivo investigations and clinical trials. Here, we provided an informative overview of the extracellular vesicles and modification/loading methods of exosomes. We discuss the last exosome research on regeneration disorders, highlighting the therapeutic applications of MSCs-derived exosomes. We also highlight future directions and challenges, underscoring the significance of addressing the main questions in the field.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | - Ghazal Alamdari-Mahd
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | | | - Mahdi Ahmadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohaddeseh Sharafkhani
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Hodgson-Garms M, Moore MJ, Martino MM, Kelly K, Frith JE. Proteomic profiling of iPSC and tissue-derived MSC secretomes reveal a global signature of inflammatory licensing. NPJ Regen Med 2025; 10:7. [PMID: 39905050 PMCID: PMC11794695 DOI: 10.1038/s41536-024-00382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025] Open
Abstract
Much of the therapeutic potential of mesenchymal stromal cells (MSCs) is underpinned by their secretome which varies significantly with source, donor and microenvironmental cues. Understanding these differences is essential to define the mechanisms of MSC-based tissue repair and optimise cell therapies. This study analysed the secretomes of bone-marrow (BM.MSCs), umbilical-cord (UC.MSCs), adipose-tissue (AT.MSCs) and clinical/commercial-grade induced pluripotent stem cell-derived MSCs (iMSCs), under resting and inflammatory licenced conditions. iMSCs recapitulated the inflammatory licensing process, validating their comparability to tissue-derived MSCs. Overall, resting secretomes were defined by extracellular matrix (ECM) and pro-regenerative proteins, while licensed secretomes were enriched in chemotactic and immunomodulatory proteins. iMSC and UC.MSC secretomes contained proteins indicating proliferative potential and telomere maintenance, whereas adult tissue-derived secretomes contained fibrotic and ECM-related proteins. The data and findings from this study will inform the optimum MSC source for particular applications and underpin further development of MSC therapies.
Collapse
Affiliation(s)
- Margeaux Hodgson-Garms
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC, Australia.
- Cynata Therapeutics, Melbourne, VIC, Australia.
| | - Matthew J Moore
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC, Australia
| | - Mikaël M Martino
- Australian Regenerative Medicine Institute, Melbourne, VIC, Australia
- Victorian Heart Institute, Monash University, Melbourne, VIC, Australia
| | | | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC, Australia.
- Australian Regenerative Medicine Institute, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Li YL, Chen EG, Ren BB. Umbilical cord-derived mesenchymal stromal cells: Promising therapy for heart failure. World J Cardiol 2025; 17:101153. [PMID: 39866217 PMCID: PMC11755126 DOI: 10.4330/wjc.v17.i1.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 01/21/2025] Open
Abstract
Heart failure (HF) is a complex syndrome characterized by the reduced capacity of the heart to adequately fill or eject blood. Currently, HF remains a leading cause of morbidity and mortality worldwide, imposing a substantial burden on global healthcare systems. Recent advancements have highlighted the therapeutic potential of mesenchymal stromal cells (MSCs) in managing HF. Notably, umbilical cord-derived MSCs (UC-MSCs) have demonstrated superior clinical potential compared to traditional bone marrow-derived MSCs; this is evident in their non-invasive collection process, higher proliferation efficacy, and lower immunogenicity and tumorigenicity, as substantiated by preclinical studies. Although the feasibility and safety of UC-MSCs have been tested in animal models, the application of UC-MSCs in HF treatment remains challenged by issues such as inaccurate targeted migration and low survival rates of UC-MSCs. Therefore, further research and clinical trials are imperative to advance the clinical application of UC-MSCs.
Collapse
Affiliation(s)
- Ya-Lun Li
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Medical College, Zhejiang University, Hangzhou 310063, Zhejiang Province, China
| | - En-Guo Chen
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Bing-Bing Ren
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
| |
Collapse
|
5
|
Giannasi C, Cadelano F, Della Morte E, Baserga C, Mazzucato C, Niada S, Baj A. Unlocking the Therapeutic Potential of Adipose-Derived Stem Cell Secretome in Oral and Maxillofacial Medicine: A Composition-Based Perspective. BIOLOGY 2024; 13:1016. [PMID: 39765683 PMCID: PMC11673083 DOI: 10.3390/biology13121016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
The adipose-derived stem cell (ADSC) secretome is widely studied for its immunomodulatory and regenerative properties, yet its potential in maxillofacial medicine remains largely underexplored. This review takes a composition-driven approach, beginning with a list of chemokines, cytokines, receptors, and inflammatory and growth factors quantified in the ADSC secretome to infer its potential applications in this medical field. First, a review of the literature confirmed the presence of 107 bioactive factors in the secretome of ADSCs or other types of mesenchymal stem cells. This list was then analyzed using the Search Tool for Retrieval of Interacting Genes/Proteins (STRING) software, revealing 844 enriched biological processes. From these, key processes were categorized into three major clinical application areas: immunoregulation (73 factors), bone regeneration (13 factors), and wound healing and soft tissue regeneration (27 factors), with several factors relevant to more than one area. The most relevant molecules were discussed in the context of existing literature to explore their therapeutic potential based on available evidence. Among these, TGFB1, IL10, and CSF2 have been shown to modulate immune and inflammatory responses, while OPG, IL6, HGF, and TIMP1 contribute to bone regeneration and tissue repair. Although the ADSC secretome holds great promise in oral and maxillofacial medicine, further research is needed to optimize its application and validate its clinical efficacy.
Collapse
Affiliation(s)
- Chiara Giannasi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Francesca Cadelano
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Elena Della Morte
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Camilla Baserga
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Camilla Mazzucato
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Stefania Niada
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| | - Alessandro Baj
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy; (F.C.); (A.B.)
- IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.B.); (C.M.)
| |
Collapse
|
6
|
Garmany A, Arrell DK, Yamada S, Jeon R, Behfar A, Park S, Terzic A. Decoded cardiopoietic cell secretome linkage to heart repair biosignature. Stem Cells Transl Med 2024; 13:1144-1159. [PMID: 39259666 PMCID: PMC11555478 DOI: 10.1093/stcltm/szae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/03/2024] [Indexed: 09/13/2024] Open
Abstract
Cardiopoiesis-primed human stem cells exert sustained benefit in treating heart failure despite limited retention following myocardial delivery. To assess potential paracrine contribution, the secretome of cardiopoiesis conditioned versus naïve human mesenchymal stromal cells was decoded by directed proteomics augmented with machine learning and systems interrogation. Cardiopoiesis doubled cellular protein output generating a distinct secretome that segregated the conditioned state. Altering the expression of 1035 secreted proteins, cardiopoiesis reshaped the secretome across functional classes. The resolved differential cardiopoietic secretome was enriched in mesoderm development and cardiac progenitor signaling processes, yielding a cardiovasculogenic profile bolstered by upregulated cardiogenic proteins. In tandem, cardiopoiesis enhanced the secretion of immunomodulatory proteins associated with cytokine signaling, leukocyte migration, and chemotaxis. Network analysis integrated the differential secretome within an interactome of 1745 molecules featuring prioritized regenerative processes. Secretome contribution to the repair signature of cardiopoietic cell-treated infarcted hearts was assessed in a murine coronary ligation model. Intramyocardial delivery of cardiopoietic cells improved the performance of failing hearts, with undirected proteomics revealing 50 myocardial proteins responsive to cell therapy. Pathway analysis linked the secretome to cardiac proteome remodeling, pinpointing 17 cardiopoiesis-upregulated secretome proteins directly upstream of 44% of the cell therapy-responsive cardiac proteome. Knockout, in silico, of this 22-protein secretome-dependent myocardial ensemble eliminated indices of the repair signature. Accordingly, in vivo, cell therapy rendered the secretome-dependent myocardial proteome of an infarcted heart indiscernible from healthy counterparts. Thus, the secretagogue effect of cardiopoiesis transforms the human stem cell secretome, endows regenerative competency, and upregulates candidate paracrine effectors of cell therapy-mediated molecular restitution.
Collapse
Affiliation(s)
- Armin Garmany
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Alix School of Medicine, Regenerative Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - D Kent Arrell
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
| | - Satsuki Yamada
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
- Section of Geriatric Medicine & Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ryounghoon Jeon
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Sungjo Park
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
| | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States
- Marriott Heart Disease Research Program, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Medical Genetics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
7
|
Matsuoka T, Dan K, Takanashi K, Ogino A. Early Effects of Porcine Placental Extracts and Stem Cell-Derived Exosomes on Aging Stress in Skin Cells. J Funct Biomater 2024; 15:306. [PMID: 39452604 PMCID: PMC11509013 DOI: 10.3390/jfb15100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
The initial efficacy of placental extracts (Pla-Exts) and human mesenchymal stem-cell-derived exosomes (hMSC-Exo) against aging-induced stress in human dermal fibroblasts (HDFs) was examined. The effect of Pla-Ext alone, hMSC-Exo alone, the combined effect of Pla-Ext and hMSC-Exo, and the effect of hMSC-Exo (Pla/MSC-Exo) recovered from cultures with Pla-Ext added to hMSC were verified using collagen, elastin, and hyaluronic acid synthase mRNA levels for each effect. Cells were subjected to photoaging (UV radiation), glycation (glycation end-product stimulation), and oxidation (H2O2 stimulation) as HDF stressors. Pla-Ext did not significantly affect normal skin fibroblasts with respect to intracellular parameters; however, a pro-proliferative effect was observed. Pla-Ext induced resistance to several stresses in skin fibroblasts (UV irradiation, glycation stimulation, H2O2 stimulation) and inhibited reactive oxygen species accumulation following H2O2 stimulation. Although the effects of hMSC-Exo alone or the combination of hMSC-Exo and Pla-Ext are unknown, pretreated hMSC-Exo stimulated with Pla-Ext showed changes that conferred resistance to aging stress. This suggests that Pla-Ext supplementation may cause some changes in the surface molecules or hMSC-Exo content (e.g., microRNA). In skin cells, the direct action of Pla-Ext and exosomes secreted from cultured hMSCs pretreated with Pla-Ext (Pla/MSC-Exo) also conferred resistance to early aging stress.
Collapse
Affiliation(s)
| | - Katsuaki Dan
- Department of Pathophysiology, Yokohama University of Pharmacy, Yokohama-shi 245-0066, Kanagawa, Japan; (K.D.); (K.T.)
- Division of Research and Development, Research Organization of Biological Activity, Shibuya-ku 150-0001, Tokyo, Japan
| | - Keita Takanashi
- Department of Pathophysiology, Yokohama University of Pharmacy, Yokohama-shi 245-0066, Kanagawa, Japan; (K.D.); (K.T.)
| | - Akihiro Ogino
- Department of Plastic and Reconstructive Surgery, Toho University Omori Medical Center, Ota-ku 143-8541, Tokyo, Japan;
| |
Collapse
|
8
|
Opretzka LCF, Pinto CD, Santos JRDJ, de Lima AA, Soares MBP, Villarreal CF. Mesenchymal stem cell-derived cell-free technologies: a patent landscape. Biotechnol Lett 2024; 46:907-924. [PMID: 38900338 DOI: 10.1007/s10529-024-03506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Mesenchymal stem/stromal cells (MSC) play a pivotal role in regenerative therapies. Recent studies show that factors secreted by MSC can replicate their biological activity, driving the emergence of cell-free therapy, likely to surpass stem cell therapy. Patents are an objective measure of R&D and innovation activities, and patent mapping allows us to verify the state of the art and technology, anticipate trends, and identify emerging lines of research. This review performed a search on Derwent World Patents Index™ and retrieved 269 patent families related to the MSC-derived cell-free products. Analysis reveals an exponential increase in patents from the mid-2010s, primarily focusing on exosomes. The patent's contents offer a great diversity of applications and associated technologies by using the products as medicinal agents or drug delivery systems. Nevertheless, numerous application branches remain unexplored, suggesting vast potential for cell-free technologies alone or combined with other approaches.
Collapse
Affiliation(s)
| | - Cláudio Damasceno Pinto
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, 40296-710, Brazil
| | | | - Alyne Almeida de Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, 40296-710, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, 40296-710, Brazil
- Institute of Advanced Systems in Health, SENAI CIMATEC, Salvador, Bahia, 41650-010, Brazil
| | - Cristiane Flora Villarreal
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, 40170-115, Brazil.
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
9
|
Akyuz E, Aslan FS, Gokce E, Ilmaz O, Topcu F, Kakac S. Extracellular vesicle and CRISPR gene therapy: Current applications in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Eur J Neurosci 2024; 60:6057-6090. [PMID: 39297377 DOI: 10.1111/ejn.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 10/17/2024]
Abstract
Neurodegenerative diseases are characterized by progressive deterioration of the nervous system. Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) are prominently life-threatening examples of neurodegenerative diseases. The complexity of the pathophysiology in neurodegenerative diseases causes difficulties in diagnosing. Although the drugs temporarily help to correct specific symptoms including memory loss and degeneration, a complete treatment has not been found yet. New therapeutic approaches have been developed to understand and treat the underlying pathogenesis of neurodegenerative diseases. With this purpose, clustered-regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) technology has recently suggested a new treatment option. Editing of the genome is carried out by insertion and deletion processes on DNA. Safe delivery of the CRISPR/Cas system to the targeted cells without affecting surrounding cells is frequently investigated. Extracellular vesicles (EVs), that is exosomes, have recently been used in CRISPR/Cas studies. In this review, CRISPR/Cas and EV approaches used for diagnosis and/or treatment in AD, PD, ALS, and HD are reviewed. CRISPR/Cas and EV technologies, which stand out as new therapeutic approaches, may offer a definitive treatment option in neurodegenerative diseases.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Türkiye
| | | | - Enise Gokce
- School of Medicine, Pamukkale University, Denizli, Türkiye
| | - Oguzkan Ilmaz
- School of Medicine, Giresun University, Giresun, Türkiye
| | | | - Seda Kakac
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Türkiye
| |
Collapse
|
10
|
Watanabe T, Hatayama N, Guo M, Yuhara S, Shinoka T. Bridging the Gap: Advances and Challenges in Heart Regeneration from In Vitro to In Vivo Applications. Bioengineering (Basel) 2024; 11:954. [PMID: 39451329 PMCID: PMC11505552 DOI: 10.3390/bioengineering11100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiovascular diseases, particularly ischemic heart disease, area leading cause of morbidity and mortality worldwide. Myocardial infarction (MI) results in extensive cardiomyocyte loss, inflammation, extracellular matrix (ECM) degradation, fibrosis, and ultimately, adverse ventricular remodeling associated with impaired heart function. While heart transplantation is the only definitive treatment for end-stage heart failure, donor organ scarcity necessitates the development of alternative therapies. In such cases, methods to promote endogenous tissue regeneration by stimulating growth factor secretion and vascular formation alone are insufficient. Techniques for the creation and transplantation of viable tissues are therefore highly sought after. Approaches to cardiac regeneration range from stem cell injections to epicardial patches and interposition grafts. While numerous preclinical trials have demonstrated the positive effects of tissue transplantation on vasculogenesis and functional recovery, long-term graft survival in large animal models is rare. Adequate vascularization is essential for the survival of transplanted tissues, yet pre-formed microvasculature often fails to achieve sufficient engraftment. Recent studies report success in enhancing cell survival rates in vitro via tissue perfusion. However, the transition of these techniques to in vivo models remains challenging, especially in large animals. This review aims to highlight the evolution of cardiac patch and stem cell therapies for the treatment of cardiovascular disease, identify discrepancies between in vitro and in vivo studies, and discuss critical factors for establishing effective myocardial tissue regeneration in vivo.
Collapse
Affiliation(s)
- Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Naoyuki Hatayama
- Department of Anatomy, Aichi Medical University, Nagakute 480-1195, Japan;
| | - Marissa Guo
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Satoshi Yuhara
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Toshiharu Shinoka
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
11
|
Cui X, Guo J, Yuan P, Dai Y, Du P, Yu F, Sun Z, Zhang J, Cheng K, Tang J. Bioderived Nanoparticles for Cardiac Repair. ACS NANO 2024; 18:24622-24649. [PMID: 39185722 DOI: 10.1021/acsnano.3c07878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biobased therapy represents a promising strategy for myocardial repair. However, the limitations of using live cells, including the risk of immunogenicity of allogeneic cells and inconsistent therapeutic efficacy of autologous cells together with low stability, result in an unsatisfactory clinical outcomes. Therefore, cell-free strategies for cardiac tissue repair have been proposed as alternative strategies. Cell-free strategies, primarily based on the paracrine effects of cellular therapy, have demonstrated their potential to inhibit apoptosis, reduce inflammation, and promote on-site cell migration and proliferation, as well as angiogenesis, after an infarction and have been explored preclinically and clinically. Among various cell-free modalities, bioderived nanoparticles, including adeno-associated virus (AAV), extracellular vesicles, cell membrane-coated nanoparticles, and exosome-mimetic nanovesicles, have emerged as promising strategies due to their improved biological function and therapeutic effect. The main focus of this review is the development of existing cellular nanoparticles and their fundamental working mechanisms, as well as the challenges and opportunities. The key processes and requirements for cardiac tissue repair are summarized first. Various cellular nanoparticle modalities are further highlighted, together with their advantages and limitations. Finally, we discuss various delivery approaches that offer potential pathways for researchers and clinicians to translate cell-free strategies for cardiac tissue repair into clinical practice.
Collapse
Affiliation(s)
- Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Peiyu Yuan
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pengchong Du
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fengyi Yu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Zhaowei Sun
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| |
Collapse
|
12
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
13
|
Gu Y, Feng J, Shi J, Xiao G, Zhang W, Shao S, Liu B, Guo H. Global Research Trends on Exosome in Cardiovascular Diseases: A Bibliometric-Based Visual Analysis. Vasc Health Risk Manag 2024; 20:377-402. [PMID: 39188326 PMCID: PMC11346494 DOI: 10.2147/vhrm.s473520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024] Open
Abstract
Background Exosomes in cardiovascular diseases (CVDs) have attracted huge attention with substantial value and potential. Our bibliometrics is based on literature from the field of cardiovascular exosomes over the past 30 years, which has been visualized to display the development process, research hotspots, and cutting-edge trends of clinical practices, mechanisms, and management strategies related to psych cardiology. Methods We selected articles and reviews on exosomes in CVDs from the core collection of Web of Science, and generated visual charts by using CiteSpace and VOSviewer software. Results Our research included 1613 publications. The number of exosome articles in CVD fluctuates slightly, but overall shows an increasing trend. The main research institutions were Tongji University and Nanjing Medical University. The International Journal of Molecular Sciences has the highest publication volume, while the Journal of Cellular and Molecular Medicine has the highest citation count. Among all the authors, Eduardo Marban ranks first in terms of publication volume and H-index. The most common keywords are exosome, extracellular vesicles, and angiogenesis. Conclusion This is a bibliometric study on the research hotspots and trends of exosomes in CVD. Exosome research in the field of cardiovascular medicine is on the rise. Some exosome treatment methods may become the focus of future research.
Collapse
Affiliation(s)
- Yunxiao Gu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jiayi Shi
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Guanyi Xiao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Weiwei Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Shuijin Shao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Haidong Guo
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
14
|
Mitra S, Tati V, Basu S, Shukla S. Role of Mesenchymal Stem Cell-Derived Conditioned Medium in Modulating the Benzalkonium Chloride-Induced Cytotoxic Effects in Cultured Corneal Epithelial Cells In Vitro. Curr Eye Res 2024; 49:815-825. [PMID: 38646923 DOI: 10.1080/02713683.2024.2342355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
PURPOSE Benzalkonium chloride (BAK) is a common preservative in ophthalmic formulations that causes cytotoxic damage to the corneal epithelial cells. This study aims to explore the role of mesenchymal stem cell (MSC)-derived conditioned medium in modulating the BAK-induced cytotoxic effects in cultured human corneal epithelial cells (HCECs) as a cell-free therapeutic agent. METHODS The in vitro cultured HCECs derived from a HCE cell line were treated with BAK (0.001% and 0.005%, diluted in DMEM/F12, v/v) for 15 min, washed with 1xPBS, and allowed to recover for 24 h in human bone marrow MSC-derived conditioned medium (MSC-CM: undiluted (100%) and diluted (50%, v/v)). On the other hand, HCECs were co-incubated with BAK (0.005%, v/v) and MSC-CM (100% and 50%, v/v) for 24 h. The HCEC-derived conditioned medium (HCE-CM) was used as an optimal control for MSC-CM, whereas HCECs cultured in DMEM/F12 were used as a control. The DMEM/F12 was used as the base medium for the culture of HCECs and preparation of HCE- and MSC-CM. The role of MSC-CM in modulating the metabolic activity, cell death, epithelial repair, and proliferation, in BAK-treated HCECs was evaluated using MTT assay, Propidium iodide staining, scratch assay, and Ki-67 staining, respectively. RESULTS Compared to the control, recovery of BAK-treated (0.001% and 0.005%, for 15 min) HCECs in MSC-CM showed significantly reduced cell death with enhanced metabolic activity, epithelial repair, and proliferation. However, in comparison with HCE-CM, the beneficial effects of MSC-CM were predominantly observed at lower BAK concentration (0.001%, for 15 min). Whereas the co-incubation of BAK (0.005%) and MSC-CM for a longer duration (24 h) was marginally beneficial. CONCLUSIONS Our results suggest that the MSC-CM is effective in modulating the BAK-induced cell death, retardation of metabolic activity and proliferation in cultured HCECs, particularly at lower concentration (0.001%) and shorter exposure (15 min) of BAK.
Collapse
Affiliation(s)
- Sreya Mitra
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Vasudeva Tati
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sayan Basu
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sachin Shukla
- Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Sudhakar and Sreekanth Ravi Stem Cell Biology Laboratory, Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
15
|
Krupczak B, Farruggio C, Van Vliet KJ. Manufacturing mesenchymal stromal cells in a microcarrier-microbioreactor platform can enhance cell yield and quality attributes: case study for acute respiratory distress syndrome. J Transl Med 2024; 22:614. [PMID: 38956643 PMCID: PMC11220991 DOI: 10.1186/s12967-024-05373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Mesenchymal stem and stromal cells (MSCs) hold potential to treat a broad range of clinical indications, but clinical translation has been limited to date due in part to challenges with batch-to-batch reproducibility of potential critical quality attributes (pCQAs) that can predict potency/efficacy. Here, we designed and implemented a microcarrier-microbioreactor approach to cell therapy manufacturing, specific to anchorage-dependent cells such as MSCs. We sought to assess whether increased control of the biochemical and biophysical environment had the potential to create product with consistent presentation and elevated expression of pCQAs relative to established manufacturing approaches in tissue culture polystyrene (TCPS) flasks. First, we evaluated total cell yield harvested from dissolvable, gelatin microcarriers within a microbioreactor cassette (Mobius Breez) or a flask control with matched initial cell seeding density and culture duration. Next, we identified 24 genes implicated in a therapeutic role for a specific motivating indication, acute respiratory distress syndrome (ARDS); expression of these genes served as our pCQAs for initial in vitro evaluation of product potency. We evaluated mRNA expression for three distinct donors to assess inter-donor repeatability, as well as for one donor in three distinct batches to assess within-donor, inter-batch variability. Finally, we assessed gene expression at the protein level for a subset of the panel to confirm successful translation. Our results indicated that MSCs expanded with this microcarrier-microbioreactor approach exhibited reasonable donor-to-donor repeatability and reliable batch-to-batch reproducibility of pCQAs. Interestingly, the baseline conditions of this microcarrier-microbioreactor approach also significantly improved expression of several key pCQAs at the gene and protein expression levels and reduced total media consumption relative to TCPS culture. This proof-of-concept study illustrates key benefits of this approach to therapeutic cell process development for MSCs and other anchorage-dependent cells that are candidates for cell therapies.
Collapse
Affiliation(s)
- Brandon Krupczak
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Singapore-MIT Alliance for Research and Technology, Critical Analytics for Manufacturing Personalised-medicine, 1 Create Way, Singapore, 138602, Singapore
| | - Camille Farruggio
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA
- Singapore-MIT Alliance for Research and Technology, Critical Analytics for Manufacturing Personalised-medicine, 1 Create Way, Singapore, 138602, Singapore
| | - Krystyn J Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Singapore-MIT Alliance for Research and Technology, Critical Analytics for Manufacturing Personalised-medicine, 1 Create Way, Singapore, 138602, Singapore.
- Departments of Materials Science & Engineering and Biomedical Engineering, Cornell University, 144 Feeney Way, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Lin SL, Lee W, Liu SP, Chang YW, Jeng LB, Shyu WC. Novel Programmed Death Ligand 1-AKT-engineered Mesenchymal Stem Cells Promote Neuroplasticity to Target Stroke Therapy. Mol Neurobiol 2024; 61:3819-3835. [PMID: 38030932 DOI: 10.1007/s12035-023-03779-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Although tissue plasminogen activator (t-PA) and endovascular thrombectomy are well-established treatments for acute ischemic stroke, over half of patients with stroke remain disabled for a long time. Thus, a significant unmet need exists to develop an effective strategy for treating acute stroke. We developed a combination of programmed cell death-ligand 1 (PD-L1) and AKT-modified umbilical cord mesenchymal stem cells (UMSC-PD-L1-AKT) implanted through intravenous (IV) and intracarotid (IA) routes to enhance therapeutic efficacy in a murine stroke model for overcoming the hypoxic environment of the ischemic brain, to prolong stem cell survival, and to attenuate systemic inflammation to protect neuroglial cells from ischemic injury. Higher cellular proliferation and survival upon exposure to toxic agents were observed in UMSC-PD-L1-AKT cells than in UMSCs in vitro. Moreover, increased attenuation of CFSE+ cell proliferation and increased survival of primary cortical cells were verified by the interaction with UMSC-PD-L1-AKT. Consistently, dual-route administration (IV + IA) of UMSC-PD-L1-AKT resulted in a significant reduction in infarction volume and improvement of neurological dysfunction in a stroke model. Furthermore, enhancing CD8+CD122+IL-10+ T-regulatory (Treg) cells and reducing CD11b+CD80+ microglial/macrophages and CD3+CD8+TNF-α+ and CD3+CD8+ IFN-α+ cytotoxic T cells induced an anti-inflammatory microenvironment to protect neuroglial cells in the ischemic brain. Collectively, therapeutic intervention using UMSC-PD-L1-AKT could provide a niche for inducing neuroplastic regeneration in brains after stroke.
Collapse
Affiliation(s)
- Syuan-Ling Lin
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wei Lee
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Ping Liu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Yi-Wen Chang
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
| | - Long-Bin Jeng
- Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.
| | - Woei-Cherng Shyu
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.
- Neuroscience and Brain Disease Center and New Drug Development Center, China Medical University, Taichung, Taiwan.
- Department of Occupational Therapy, Asia University, Taichung, Taiwan.
| |
Collapse
|
17
|
Seth J, Sharma S, Leong CJ, Vaibhav V, Nelson P, Shokravi A, Luo Y, Shirvani D, Laksman Z. The Use of Hematopoietic Stem Cells for Heart Failure: A Systematic Review. Int J Mol Sci 2024; 25:6634. [PMID: 38928341 PMCID: PMC11204149 DOI: 10.3390/ijms25126634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of this review is to summarize the current understanding of the therapeutic effect of stem cell-based therapies, including hematopoietic stem cells, for the treatment of ischemic heart damage. Following PRISMA guidelines, we conducted electronic searches in MEDLINE, and EMBASE. We screened 592 studies, and included RCTs, observational studies, and cohort studies that examined the effect of hematopoietic stem cell therapy in adult patients with heart failure. Studies that involved pediatric patients, mesenchymal stem cell therapy, and non-heart failure (HF) studies were excluded from our review. Out of the 592 studies, 7 studies met our inclusion criteria. Overall, administration of hematopoietic stem cells (via intracoronary or myocardial infarct) led to positive cardiac outcomes such as improvements in pathological left-ventricular remodeling, perfusion following acute myocardial infarction, and NYHA symptom class. Additionally, combined death, rehospitalization for heart failure, and infarction were significantly lower in patients treated with bone marrow-derived hematopoietic stem cells. Our review demonstrates that hematopoietic stem cell administration can lead to positive cardiac outcomes for HF patients. Future studies should aim to increase female representation and non-ischemic HF patients.
Collapse
Affiliation(s)
- Jayant Seth
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.S.); (S.S.); (C.J.L.); (A.S.); (Y.L.); (D.S.)
| | - Sohat Sharma
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.S.); (S.S.); (C.J.L.); (A.S.); (Y.L.); (D.S.)
| | - Cameron J. Leong
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.S.); (S.S.); (C.J.L.); (A.S.); (Y.L.); (D.S.)
| | - Venkat Vaibhav
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (V.V.); (P.N.)
| | - Pierce Nelson
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (V.V.); (P.N.)
| | - Arveen Shokravi
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.S.); (S.S.); (C.J.L.); (A.S.); (Y.L.); (D.S.)
| | - Yuchen Luo
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.S.); (S.S.); (C.J.L.); (A.S.); (Y.L.); (D.S.)
| | - Daniel Shirvani
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.S.); (S.S.); (C.J.L.); (A.S.); (Y.L.); (D.S.)
| | - Zachary Laksman
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (J.S.); (S.S.); (C.J.L.); (A.S.); (Y.L.); (D.S.)
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
18
|
Guerricchio L, Barile L, Bollini S. Evolving Strategies for Extracellular Vesicles as Future Cardiac Therapeutics: From Macro- to Nano-Applications. Int J Mol Sci 2024; 25:6187. [PMID: 38892376 PMCID: PMC11173118 DOI: 10.3390/ijms25116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular disease represents the foremost cause of mortality and morbidity worldwide, with a steadily increasing incidence due to the growth of the ageing population. Cardiac dysfunction leading to heart failure may arise from acute myocardial infarction (MI) as well as inflammatory- and cancer-related chronic cardiomyopathy. Despite pharmacological progress, effective cardiac repair represents an unmet clinical need, with heart transplantation being the only option for end-stage heart failure. The functional profiling of the biological activity of extracellular vesicles (EVs) has recently attracted increasing interest in the field of translational research for cardiac regenerative medicine. The cardioprotective and cardioactive potential of human progenitor stem/cell-derived EVs has been reported in several preclinical studies, and EVs have been suggested as promising paracrine therapy candidates for future clinical translation. Nevertheless, some compelling aspects must be properly addressed, including optimizing delivery strategies to meet patient needs and enhancing targeting specificity to the cardiac tissue. Therefore, in this review, we will discuss the most relevant aspects of the therapeutic potential of EVs released by human progenitors for cardiovascular disease, with a specific focus on the strategies that have been recently implemented to improve myocardial targeting and administration routes.
Collapse
Affiliation(s)
- Laura Guerricchio
- Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, CH-6500 Bellinzona, Switzerland;
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Sveva Bollini
- Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
19
|
Zhu L, Wang Q, Guo M, Fang H, Li T, Zhu Y, Jiang H, Xiao P, Hu M. Mesenchymal Stem Cell-Derived Exosomes in Various Chronic Liver Diseases: Hype or Hope? J Inflamm Res 2024; 17:171-189. [PMID: 38223423 PMCID: PMC10788055 DOI: 10.2147/jir.s439974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024] Open
Abstract
Chronic liver conditions are associated with high mortality rates and have a large adverse effect on human well-being as well as a significant financial burden. Currently, the only effective treatment available for the effects of liver failure and cirrhosis resulting from the progression of several chronic liver diseases is liver transplantation carried out at the original location. This implies that developing novel and effective treatments is imperative. Regenerative medicine has long been associated with stem cell therapy. Mesenchymal stem cells (MSCs), a type of cell with great differentiation potential, have become the preferred source for stem cell therapy. According to recent studies, MSCs' paracrine products-rather than their capacity for differentiation-play a significant therapeutic effect. MSC exosomes, a type of extracellular vesicle (MSC-EV), came into view as the paracrine substances of MSCs. According to research, MSC exosomes can maintain tissue homeostasis, which is necessary for healthy tissue function. All tissues contain them, and they take part in a variety of biological activities that support cellular activity and tissue regeneration in order to preserve tissue homeostasis. The outcomes support the use of MSCs and the exosomes they produce as a therapeutic option for a range of diseases. This review provides a brief overview of the source of MSC-EVs and outlines their physiological roles and biochemical capabilities. The elucidation of the role of MSC-EVs in the recovery and repair of hepatic tissues, as well as their contribution to maintaining tissue homeostasis, is discussed in relation to different chronic liver diseases. This review aims to provide new insights into the unique roles that MSC-EVs play in the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Qin Wang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Maodong Guo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Hao Fang
- Department of Traumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Ting Li
- Department of Emergency Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yin Zhu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, People’s Republic of China
| | - Huimian Jiang
- Department of Infectious Diseases, the First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Peiguang Xiao
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
20
|
Ateeq M, Broadwin M, Sellke FW, Abid MR. Extracellular Vesicles' Role in Angiogenesis and Altering Angiogenic Signaling. Med Sci (Basel) 2024; 12:4. [PMID: 38249080 PMCID: PMC10801520 DOI: 10.3390/medsci12010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Angiogenesis, the process of new blood vessels formation from existing vasculature, plays a vital role in development, wound healing, and various pathophysiological conditions. In recent years, extracellular vesicles (EVs) have emerged as crucial mediators in intercellular communication and have gained significant attention for their role in modulating angiogenic processes. This review explores the multifaceted role of EVs in angiogenesis and their capacity to modulate angiogenic signaling pathways. Through comprehensive analysis of a vast body of literature, this review highlights the potential of utilizing EVs as therapeutic tools to modulate angiogenesis for both physiological and pathological purposes. A good understanding of these concepts holds promise for the development of novel therapeutic interventions targeting angiogenesis-related disorders.
Collapse
Affiliation(s)
- Maryam Ateeq
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA; (M.A.); (M.B.); (F.W.S.)
| |
Collapse
|
21
|
Yang GD, Ma DS, Ma CY, Bai Y. Research Progress on Cardiac Tissue Construction of Mesenchymal Stem Cells for Myocardial Infarction. Curr Stem Cell Res Ther 2024; 19:942-958. [PMID: 37612870 DOI: 10.2174/1574888x18666230823091017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Heart failure is still the main complication affecting the prognosis of acute myocardial infarction (AMI), and mesenchymal stem cells (MSCs) are an effective treatment to replace necrotic myocardium and improve cardiac functioning. However, the transplant survival rate of MSCs still presents challenges. In this review, the biological characteristics of MSCs, the progress of mechanism research in the treatment of myocardial infarction, and the advances in improving the transplant survival rate of MSCs in the replacement of necrotic myocardial infarction are systematically described. From a basic to advanced clinical research, MSC transplants have evolved from a pure injection, an exosome injection, the genetic modification of MSCs prior to injection to the cardiac tissue engineering of MSC patch grafting. This study shows that MSCs have wide clinical applications in the treatment of AMI, suggesting improved myocardial tissue creation. A broader clinical application prospect will be explored and developed to improve the survival rate of MSC transplants and myocardial vascularization.
Collapse
Affiliation(s)
- Guo-Dong Yang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Da-Shi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Ye Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yang Bai
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
22
|
Ren K, Vickers R, Murillo J, Ruparel NB. Revolutionizing orofacial pain management: the promising potential of stem cell therapy. FRONTIERS IN PAIN RESEARCH 2023; 4:1239633. [PMID: 38028430 PMCID: PMC10679438 DOI: 10.3389/fpain.2023.1239633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
Orofacial pain remains a significant health issue in the United States. Pain originating from the orofacial region can be composed of a complex array of unique target tissue that contributes to the varying success of pain management. Long-term use of analgesic drugs includes adverse effects such as physical dependence, gastrointestinal bleeding, and incomplete efficacy. The use of mesenchymal stem cells for their pain relieving properties has garnered increased attention. In addition to the preclinical and clinical results showing stem cell analgesia in non-orofacial pain, studies have also shown promising results for orofacial pain treatment. Here we discuss the outcomes of mesenchymal stem cell treatment for pain and compare the properties of stem cells from different tissues of origin. We also discuss the mechanism underlying these analgesic/anti-nociceptive properties, including the role of immune cells and the endogenous opioid system. Lastly, advancements in the methods and procedures to treat patients experiencing orofacial pain with mesenchymal stem cells are also discussed.
Collapse
Affiliation(s)
- Ke Ren
- Department of Pain and Neural Sciences, University of Maryland, Baltimore, MD, United States
| | - Russel Vickers
- Clinical Stem Cells Pty Ltd., Sydney, NSW, Australia
- Oral Health Center, School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Glycomics, Griffith University Queensland, Southport, QLD, Australia
| | - Josue Murillo
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nikita B. Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
23
|
Tertel T, Dittrich R, Arsène P, Jensen A, Giebel B. EV products obtained from iPSC-derived MSCs show batch-to-batch variations in their ability to modulate allogeneic immune responses in vitro. Front Cell Dev Biol 2023; 11:1282860. [PMID: 37965578 PMCID: PMC10642442 DOI: 10.3389/fcell.2023.1282860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have demonstrated therapeutic potential in diverse clinical settings, largely due to their ability to produce extracellular vesicles (EVs). These EVs play a pivotal role in modulating immune responses, transforming pro-inflammatory cues into regulatory signals that foster a pro-regenerative milieu. Our previous studies identified the variability in the immunomodulatory effects of EVs sourced from primary human bone marrow MSCs as a consistent challenge. Given the limited proliferation of primary MSCs, protocols were advanced to derive MSCs from GMP-compliant induced pluripotent stem cells (iPSCs), producing iPSC-derived MSCs (iMSCs) that satisfied rigorous MSC criteria and exhibited enhanced expansion potential. Intriguingly, even though obtained iMSCs contained the potential to release immunomodulatory active EVs, the iMSC-EV products displayed batch-to-batch functional inconsistencies, mirroring those from bone marrow counterparts. We also discerned variances in EV-specific protein profiles among independent iMSC-EV preparations. Our results underscore that while iMSCs present an expansive growth advantage, they do not overcome the persistent challenge of functional variability of resulting MSC-EV products. Once more, our findings accentuate the crucial need for batch-to-batch functional testing, ensuring discrimination of effective and ineffective MSC-EV products for considered downstream applications.
Collapse
Affiliation(s)
- Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robin Dittrich
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Arne Jensen
- Brain Repair UG Campus Clinic, Gynaecology, Ruhr University Bochum, Bochum, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
24
|
Mazzoni E, Iaquinta MR, Mosaico M, De Pace R, D'Agostino A, Tognon M, Martini F. Human Mesenchymal Stem Cells and Innovative Scaffolds for Bone Tissue Engineering Applications. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:514-531. [PMID: 37212264 DOI: 10.1089/ten.teb.2022.0217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Stem cell-based therapy is a significant topic in regenerative medicine, with a predominant role being played by human mesenchymal stem cells (hMSCs). The hMSCs have been shown to be suitable in regenerative medicine for the treatment of bone tissue. In the last few years, the average lifespan of our population has gradually increased. The need of biocompatible materials, which exhibit high performances, such as efficiency in bone regeneration, has been highlighted by aging. Current studies emphasize the benefit of using biomimetic biomaterials, also known as scaffolds, for bone grafts to speed up bone repair at the fracture site. For the healing of injured bone and bone regeneration, regenerative medicine techniques utilizing a combination of these biomaterials, together with cells and bioactive substances, have drawn a great interest. Cell therapy, based on the use of hMSCs, alongside materials for the healing of damaged bone, has obtained promising results. In this work, several aspects of cell biology, tissue engineering, and biomaterials applied to bone healing/regrowth will be considered. In addition, the role of hMSCs in these fields and recent progress in clinical applications are discussed. Impact Statement The restoration of large bone defects is both a challenging clinical issue and a socioeconomic problem on a global scale. Different therapeutic approaches have been proposed for human mesenchymal stem cells (hMSCs), considering their paracrine effect and potential differentiation into osteoblasts. However, different limitations are still to be overcome in using hMSCs as a therapeutic opportunity in bone fracture repair, including hMSC administration methods. To identify a suitable hMSC delivery system, new strategies have been proposed using innovative biomaterials. This review provides an update of the literature on hMSC/scaffold clinical applications for the management of bone fractures.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, and University of Ferrara, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Dentistry and Maxillo-Facial Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Maria Mosaico
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Raffaella De Pace
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonio D'Agostino
- Dentistry and Maxillo-Facial Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
25
|
Bouche Djatche WH, Zhu H, Ma W, Li Y, Li Z, Zhao H, Liu Z, Qiao H. Potential of mesenchymal stem cell-derived conditioned medium/secretome as a therapeutic option for ocular diseases. Regen Med 2023; 18:795-807. [PMID: 37702008 DOI: 10.2217/rme-2023-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Research has shown that the therapeutic effect of mesenchymal stem cells (MSCs) is partially due to its secreted factors as opposed to the implantation of the cells into the treated tissue or tissue replacement. MSC secretome, especially in the form of conditioned medium (MSC-CM) is now being explored as an alternative to MSCs transplantation. Despite the observed benefits of MSC-CM, only a few clinical trials have evaluated it and other secretome components in the treatment of eye diseases. This review provides insight into the potential therapeutic use of MSC-CM in eye conditions, such as corneal diseases, dry eye, glaucoma, retinal diseases and uveitis. We discuss the current evidence, some limitations, and the progress that remains to be achieved before clinical translation becomes possible.
Collapse
Affiliation(s)
| | - Huimin Zhu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Wenlei Ma
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Yue Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Ziang Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Zhao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhizhen Liu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Hua Qiao
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
26
|
Chen C, Wang J, Liu C, Hu J, Liu L. Pioneering therapies for post-infarction angiogenesis: Insight into molecular mechanisms and preclinical studies. Biomed Pharmacother 2023; 166:115306. [PMID: 37572633 DOI: 10.1016/j.biopha.2023.115306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
Acute myocardial infarction (MI), despite significant progress in its treatment, remains a leading cause of chronic heart failure and cardiovascular events such as cardiac arrest. Promoting angiogenesis in the myocardial tissue after MI to restore blood flow in the ischemic and hypoxic tissue is considered an effective treatment strategy. The repair of the myocardial tissue post-MI involves a robust angiogenic response, with mechanisms involved including endothelial cell proliferation and migration, capillary growth, changes in the extracellular matrix, and stabilization of pericytes for neovascularization. In this review, we provide a detailed overview of six key pathways in angiogenesis post-MI: the PI3K/Akt/mTOR signaling pathway, the Notch signaling pathway, the Wnt/β-catenin signaling pathway, the Hippo signaling pathway, the Sonic Hedgehog signaling pathway, and the JAK/STAT signaling pathway. We also discuss novel therapeutic approaches targeting these pathways, including drug therapy, gene therapy, protein therapy, cell therapy, and extracellular vesicle therapy. A comprehensive understanding of these key pathways and their targeted therapies will aid in our understanding of the pathological and physiological mechanisms of angiogenesis after MI and the development and application of new treatment strategies.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
27
|
Vilar A, Hodgson-Garms M, Kusuma GD, Donderwinkel I, Carthew J, Tan JL, Lim R, Frith JE. Substrate mechanical properties bias MSC paracrine activity and therapeutic potential. Acta Biomater 2023; 168:144-158. [PMID: 37422008 DOI: 10.1016/j.actbio.2023.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Mesenchymal stromal cells (MSCs) have significant therapeutic potential due to their ability to differentiate into musculoskeletal lineages suitable for tissue-engineering, as well as the immunomodulatory and pro-regenerative effects of the paracrine factors that these cells secrete. Cues from the extracellular environment, including physical stimuli such as substrate stiffness, are strong drivers of MSC differentiation, but their effects upon MSC paracrine activity are not well understood. This study, therefore sought to determine the impact of substrate stiffness on the paracrine activity of MSCs, analysing both effects on MSC fate and their effect on T-cell and macrophage activity and angiogenesis. The data show that conditioned medium (CM) from MSCs cultured on 0.2 kPa (soft) and 100 kPa (stiff) polyacrylamide hydrogels have differing effects on MSC proliferation and differentiation, with stiff CM promoting proliferation whilst soft CM promoted differentiation. There were also differences in the effects upon macrophage phagocytosis and angiogenesis, with the most beneficial effects from soft CM. Analysis of the media composition identified differences in the levels of proteins including IL-6, OPG, and TIMP-2. Using recombinant proteins and blocking antibodies, we confirmed a role for OPG in modulating MSC proliferation with a complex combination of factors involved in the regulation of MSC differentiation. Together the data confirm that the physical microenvironment has an important influence on the MSC secretome and that this can alter the differentiation and regenerative potential of the cells. These findings can be used to tailor the culture environment for manufacturing potent MSCs for specific clinical applications or to inform the design of biomaterials that enable the retention of MSC activity after delivery into the body. STATEMENT OF SIGNIFICANCE: • MSCs cultured on 100 kPa matrices produce a secretome that boosts MSC proliferation • MSCs cultured on 0.2 kPa matrices produce a secretome that promotes MSC osteogenesis and adipogenesis, as well as angiogenesis and macrophage phagocytosis • IL-6 secretion is elevated in MSCs on 0.2 kPa substrates • OPG, TIMP-2, MCP-1, and sTNFR1 secretion are elevated in MSCs on 100 kPa substrates.
Collapse
Affiliation(s)
- Aeolus Vilar
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
| | - Margeaux Hodgson-Garms
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Gina D Kusuma
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ilze Donderwinkel
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - James Carthew
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jean L Tan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3800, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3800, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
28
|
Li C, Hu Y. Extracellular Vesicles Derived from Mesenchymal Stem Cells as Cell-Free Therapy for Intrauterine Adhesion. Int J Stem Cells 2023; 16:260-268. [PMID: 37385632 PMCID: PMC10465336 DOI: 10.15283/ijsc21177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/17/2021] [Indexed: 07/01/2023] Open
Abstract
Intrauterine adhesion (IUA) can occur after trauma to the basal layer of the endometrium, contributing to severe complications in females, such as infertility and amenorrhea. To date, the proposed therapeutic strategies are targeted to relieve IUA, such as hysteroscopic adhesiolysis, Foley catheter balloon, and hyaluronic acid injection have been applied in the clinic. However, these approaches showed limited effects in alleviating endometrial fibrosis and thin endometrium. Mesenchymal stem cells (MSCs) can offer the potential for endometrium regeneration owing to reduce inflammation and release growth factors. On this basis, MSCs have been proposed as promising methods to treat intrauterine adhesion. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles released by stem cells is raising increasing interest. The paracrine effect, mediated by MSCs derived extracellular vehicles (MSC-EVs), has recently been suggested as a mechanism for their therapeutic properties. Here, we summarizes the main pathological mechanisms involved in intrauterine adhesion, the biogenesis and characteristics of extracellular vesicles, explaining how these vesicles could provide new opportunities for MSCs.
Collapse
Affiliation(s)
- Chao Li
- Department of Gynecology, Tianjin Medical University, Tianjin, China
- Department of Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yuanjing Hu
- Department of Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| |
Collapse
|
29
|
Reina C, Cardella C, Lo Pinto M, Pucci G, Acuto S, Maggio A, Cavalieri V. Antioxidant, Pro-Survival and Pro-Regenerative Effects of Conditioned Medium from Wharton's Jelly Mesenchymal Stem Cells on Developing Zebrafish Embryos. Int J Mol Sci 2023; 24:13191. [PMID: 37685998 PMCID: PMC10488285 DOI: 10.3390/ijms241713191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Conditioned media harvested from stem cell culturing have the potential to be innovative therapeutic tools against various diseases, due to their high content of growth, trophic and protective factors. The evaluation in vivo of the effects and biosafety of these products is essential, and zebrafish provides an ideal platform for high-throughput toxicological analysis, concurrently allowing the minimization of the use of mammalian models without losing reliability. In this study, we assessed the biological effects elicited by the exposure of zebrafish embryos to a conditioned medium derived from Wharton's jelly mesenchymal stem cells. By a multiparametric investigation combining molecular, embryological, behavioural and in vivo imaging techniques, we found that exposure to a conditioned medium at a non-toxic/non-lethal dosage triggers antioxidant, anti-apoptotic and pro-regenerative effects, by upregulation of a set of genes involved in antioxidant defence (nrf2, brg1, sirt1, sirt6, foxO3a, sod2 and cat), glycolysis (ldha) and cell survival (bcl2l1, mcl1a and bim), coupled to downregulation of pro-apoptotic markers (baxa, caspase-3a and caspase-8). To our knowledge, this is the first study comprehensively addressing the effects of a conditioned medium on a whole organism from a developmental, molecular and behavioural perspective, and we are fairly confident that it will pave the way for future therapeutic application.
Collapse
Affiliation(s)
- Chiara Reina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale Delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Clara Cardella
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale Delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Margot Lo Pinto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale Delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Gaia Pucci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale Delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Santina Acuto
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy
| | - Aurelio Maggio
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Viale Delle Scienze Ed. 16, 90128 Palermo, Italy
- Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
30
|
Jakl V, Popp T, Haupt J, Port M, Roesler R, Wiese S, Friemert B, Rojewski MT, Schrezenmeier H. Effect of Expansion Media on Functional Characteristics of Bone Marrow-Derived Mesenchymal Stromal Cells. Cells 2023; 12:2105. [PMID: 37626914 PMCID: PMC10453497 DOI: 10.3390/cells12162105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFβ, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Julian Haupt
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Reinhild Roesler
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Markus T. Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
31
|
Ouzin M, Kogler G. Mesenchymal Stromal Cells: Heterogeneity and Therapeutical Applications. Cells 2023; 12:2039. [PMID: 37626848 PMCID: PMC10453316 DOI: 10.3390/cells12162039] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stromal cells nowadays emerge as a major player in the field of regenerative medicine and translational research. They constitute, with their derived products, the most frequently used cell type in different therapies. However, their heterogeneity, including different subpopulations, the anatomic source of isolation, and high donor-to-donor variability, constitutes a major controversial issue that affects their use in clinical applications. Furthermore, the intrinsic and extrinsic molecular mechanisms underlying their self-renewal and fate specification are still not completely elucidated. This review dissects the different heterogeneity aspects of the tissue source associated with a distinct developmental origin that need to be considered when generating homogenous products before their usage for clinical applications.
Collapse
Affiliation(s)
- Meryem Ouzin
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| | | |
Collapse
|
32
|
Guru SA, Saha P, Chen L, Tulshyan A, Ge ZD, Baily J, Simons L, Stefanowicz A, Bilewska A, Mehta V, Mishra R, Sharma S, Ali A, Krishnan S, Kaushal S. HSF-1 enhances cardioprotective potential of stem cells via exosome biogenesis and their miRNA cargo enrichment. Stem Cell Rev Rep 2023; 19:2038-2051. [PMID: 37261668 DOI: 10.1007/s12015-023-10565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Stem cell therapy provides a hope to no option heart disease patient group. Stem cells work via different mechanisms of which paracrine mechanism is reported to justify most of the effects. Therefore, identifying the control arms for paracrine cocktail production is necessary to tailor stem cell functions in disease contextual manner. In this study, we describe a novel paracrine cocktail regulatory axis, in stem cells, to enhance their cardioprotective abilities. We identified that HSF1 knockout resulted in reduced cardiac regenerative abilities of mesenchymal stem cells (MSCs) while its overexpression had opposite effects. Altered exosome biognesis and their miRNA cargo enrichment were found to be underlying these altered regenerative abilities. Decreased production of exosomes by MSCs accompanied their loss of HSF1 and vice versa. Moreover, the exosomes derived from HSF1 depleted MSCs showed significantly reduced candidate miRNA expression (miR-145, miR-146, 199-3p, 199b and miR-590) compared to those obtained from HSF1 overexpressing MSCs. We further discovered that HSF1 mediates miRNAs' enrichment into exosomes via Y binding protein 1 (YBX1) and showed, by loss and gain of function strategies, that miRNAs' enrichment in mesenchymal stem cell derived exosomes is deregulated with altered YBX1 expression. It was finally demonstrated that absence of YBX1 in MSCs, with normal HSF1 expression, resulted in significant accumulation of candidate miRNAs into the cells. Together, our data shows that HSF1 plays a critical role in determining the regenerative potential of stem cells. HSF1 does that by affecting exosome biogenesis and miRNA cargo sorting via regulation of YBX1 gene expression.
Collapse
Affiliation(s)
- Sameer Ahmad Guru
- Deininger Lab, Versiti, Blood Research Institute, Milwaukee, WI, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Progyaparamita Saha
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Ling Chen
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Antariksh Tulshyan
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Zhi-Dong Ge
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Jeanette Baily
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Lydia Simons
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Artur Stefanowicz
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Agata Bilewska
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Vivek Mehta
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Rachana Mishra
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Sudhish Sharma
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Asif Ali
- David Pincus lab, Molecular Genetics and Cell Biology Committee on Cancer Biology, Chicago University, Chicago, IL, USA
| | - Swetha Krishnan
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Sunjay Kaushal
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA.
| |
Collapse
|
33
|
Lai RC, Tan TT, Sim WK, Zhang B, Lim SK. A roadmap from research to clinical testing of mesenchymal stromal cell exosomes in the treatment of psoriasis. Cytotherapy 2023; 25:815-820. [PMID: 37115163 DOI: 10.1016/j.jcyt.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
The most clinically trialed cells, mesenchymal stromal cells (MSCs), are now known to mainly exert their therapeutic activity through paracrine secretions, which include exosomes. To mitigate potential regulatory concerns on the scalability and reproducibility in the preparations of MSC exosomes, MSC exosomes were produced using a highly characterized MYC-immortalized monoclonal cell line. These cells do not form tumors in athymic nude mice or exhibit anchorage-independent growth, and their exosomes do not carry MYC protein or promote tumor growth. Unlike intra-peritoneal injections, topical applications of MSC exosomes in a mouse model of IMQ-induced psoriasis alleviate interleukin (IL)-17, IL-23 and terminal complement complex, C5b9 in psoriatic skin. When applied on human skin explants, fluorescence from covalently labeled fluorescent MSC exosomes permeated and persisted in the stratum corneum for about 24 hours with negligible exit out of the stratum corneum into the underlying epidermis. As psoriatic stratum corneums are uniquely characterized by activated complements and Munro microabscesses, we postulated that topically applied exosomes permeate the psoriatic stratum corneum to inhibit C5b9 complement complex through CD59, and this inhibition attenuated neutrophil secretion of IL-17. Consistent with this, we demonstrated that assembly of C5b9 on purified human neutrophils induced IL-17 secretion and this induction was abrogated by MSC exosomes, which was in turn abrogated by a neutralizing anti-CD 59 antibody. We thus established the mechanism of action for the alleviation of psoriatic IL-17 by topically applied exosomes.
Collapse
Affiliation(s)
- Ruenn Chai Lai
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Thong Teck Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wei Kian Sim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Bin Zhang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore C/O NUHS Tower Block, Singapore, Republic of Singapore.
| |
Collapse
|
34
|
Clavellina D, Balkan W, Hare JM. Stem cell therapy for acute myocardial infarction: Mesenchymal Stem Cells and induced Pluripotent Stem Cells. Expert Opin Biol Ther 2023; 23:951-967. [PMID: 37542462 PMCID: PMC10837765 DOI: 10.1080/14712598.2023.2245329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION Acute myocardial infarction (AMI) remains a leading cause of death in the United States. The limited capacity of cardiomyocytes to regenerate and the restricted contractility of scar tissue after AMI are not addressed by current pharmacologic interventions. Mesenchymal stem/stromal cells (MSCs) have emerged as a promising therapeutic approach due to their low antigenicity, ease of harvesting, and efficacy and safety in preclinical and clinical studies, despite their low survival and engraftment rates. Other stem cell types, such as induced pluripotent stem cells (iPSCs) also show promise, and optimizing cardiac repair requires integrating emerging technologies and strategies. AREAS COVERED This review offers insights into advancing cell-based therapies for AMI, emphasizing meticulously planned trials with a standardized definition of AMI, for a bench-to-bedside approach. We critically evaluate fundamental studies and clinical trials to provide a comprehensive overview of the advances, limitations and prospects for cell-based therapy in AMI. EXPERT OPINION MSCs continue to show potential promise for treating AMI and its sequelae, but addressing their low survival and engraftment rates is crucial for clinical success. Integrating emerging technologies such as pluripotent stem cells and conducting well-designed trials will harness the full potential of cell-based therapy in AMI management. Collaborative efforts are vital to developing effective stem cell therapies for AMI patients.
Collapse
Affiliation(s)
- Diana Clavellina
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
35
|
Abubakar M, Masood MF, Javed I, Adil H, Faraz MA, Bhat RR, Fatima M, Abdelkhalek AM, Buccilli B, Raza S, Hajjaj M. Unlocking the Mysteries, Bridging the Gap, and Unveiling the Multifaceted Potential of Stem Cell Therapy for Cardiac Tissue Regeneration: A Narrative Review of Current Literature, Ethical Challenges, and Future Perspectives. Cureus 2023; 15:e41533. [PMID: 37551212 PMCID: PMC10404462 DOI: 10.7759/cureus.41533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
Revolutionary advancements in regenerative medicine have brought stem cell therapy to the forefront, offering promising prospects for the regeneration of ischemic cardiac tissue. Yet, its full efficacy, safety, and role in treating ischemic heart disease (IHD) remain limited. This literature review explores the intricate mechanisms underlying stem cell therapy. Furthermore, we unravel the innovative approaches employed to bolster stem cell survival, enhance differentiation, and seamlessly integrate them within the ischemic cardiac tissue microenvironment. Our comprehensive analysis uncovers how stem cells enhance cell survival, promote angiogenesis, and modulate the immune response. Stem cell therapy harnesses a multifaceted mode of action, encompassing paracrine effects and direct cell replacement. As our review progresses, we underscore the imperative for standardized protocols, comprehensive preclinical and clinical studies, and careful regulatory considerations. Lastly, we explore the integration of tissue engineering and genetic modifications, envisioning a future where stem cell therapy reigns supreme in regenerative medicine.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, PAK
- Department of Internal Medicine, Siddique Sadiq Memorial Trust Hospital, Gujranwala, PAK
| | | | - Izzah Javed
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, PAK
| | - Hira Adil
- Department of Community Medicine, Khyber Girls Medical College, Hayatabad, PAK
| | - Muhammad Ahmad Faraz
- Department of Forensic Medicine, Post Graduate Medical Institute, Lahore General Hospital, Lahore, PAK
| | - Rakshita Ramesh Bhat
- Department of Medical Oncology, Mangalore Institute of Oncology, Mangalore, IND
- Department of Internal Medicine, Bangalore Medical College and Research Institute, Bangalore, IND
| | - Mahek Fatima
- Department of Internal Medicine, Osmania Medical College, Hyderabad, IND
| | | | - Barbara Buccilli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, ITA
| | - Saud Raza
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, PAK
| | - Mohsin Hajjaj
- Department of Internal Medicine, Jinnah Hospital Lahore, Lahore, PAK
| |
Collapse
|
36
|
Yin P, Jiang Y, Fang X, Wang D, Li Y, Chen M, Deng H, Tang P, Zhang L. Cell-Based Therapies for Degenerative Musculoskeletal Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207050. [PMID: 37199688 PMCID: PMC10375105 DOI: 10.1002/advs.202207050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/29/2023] [Indexed: 05/19/2023]
Abstract
Degenerative musculoskeletal diseases (DMDs), including osteoporosis, osteoarthritis, degenerative disc disease, and sarcopenia, present major challenges in the aging population. Patients with DMDs present with pain, functional decline, and reduced exercise tolerance, which result in long-term or permanent deficits in their ability to perform daily activities. Current strategies for dealing with this cluster of diseases focus on relieving pain, but they have a limited capacity to repair function or regenerate tissue. Cell-based therapies have attracted considerable attention in recent years owing to their unique mechanisms of action and remarkable effects on regeneration. In this review, current experimental attempts to use cell-based therapies for DMDs are highlighted, and the modes of action of different cell types and their derivatives, such as exosomes, are generalized. In addition, the latest findings from state-of-the-art clinical trials are reviewed, approaches to improve the efficiency of cell-based therapies are summarized, and unresolved questions and potential future research directions for the translation of cell-based therapies are identified.
Collapse
Affiliation(s)
- Pengbin Yin
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Yuheng Jiang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
- Department of OrthopedicsGeneral Hospital of Southern Theater Command of PLANo. 111, Liuhua AvenueGuangzhou510010China
| | - Xuan Fang
- Department of Anatomy, Histology and EmbryologySchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Daofeng Wang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Yi Li
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Ming Chen
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Hao Deng
- Department of OrthopedicsThird Affiliated Hospital of Jinzhou Medical UniversityJinzhouLiaoning Province121000China
| | - Peifu Tang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| | - Licheng Zhang
- Department of Orthopedicsthe Fourth Medical CenterChinese PLA General HospitalBeijing100853China
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationBeijing100853China
| |
Collapse
|
37
|
Ma H, Siu WS, Leung PC. The Potential of MSC-Based Cell-Free Therapy in Wound Healing-A Thorough Literature Review. Int J Mol Sci 2023; 24:ijms24119356. [PMID: 37298306 DOI: 10.3390/ijms24119356] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
A wound is an interruption of the normal anatomic structure and function of the skin, which is critical in protecting against foreign pathogens, regulating body temperature and water balance. Wound healing is a complex process involving various phases, including coagulation, inflammation, angiogenesis, re-epithelialization, and re-modeling. Factors such as infection, ischemia, and chronic diseases such as diabetes can compromise wound healing, leading to chronic and refractory ulcers. Mesenchymal stem cells (MSCs) have been used to treat various wound models due to their paracrine activity (secretome) and extracellular vehicles (exosomes) that contain several molecules, including long non-coding RNAs (lncRNAs), micro-RNAs (miRNAs), proteins, and lipids. Studies have shown that MSCs-based cell-free therapy using secretome and exosomes has great potential in regenerative medicine compared to MSCs, as there are fewer safety concerns. This review provides an overview of the pathophysiology of cutaneous wounds and the potential of MSCs-based cell-free therapy in each phase of wound healing. It also discusses clinical studies of MSCs-based cell-free therapies.
Collapse
Affiliation(s)
- Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wing-Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
38
|
Davies OG. Extracellular vesicles: From bone development to regenerative orthopedics. Mol Ther 2023; 31:1251-1274. [PMID: 36869588 PMCID: PMC10188641 DOI: 10.1016/j.ymthe.2023.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Regenerative medicine aims to promote the replacement of tissues lost to damage or disease. While positive outcomes have been observed experimentally, challenges remain in their clinical translation. This has led to growing interest in applying extracellular vesicles (EVs) to augment or even replace existing approaches. Through the engineering of culture environments or direct/indirect manipulation of EVs themselves, multiple avenues have emerged to modulate EV production, targeting, and therapeutic potency. Drives to modulate release using material systems or functionalize implants for improved osseointegration have also led to outcomes that could have real-world impact. The purpose of this review is to highlight advantages in applying EVs for the treatment of skeletal defects, outlining the current state of the art in the field and emphasizing avenues for further investigation. Notably, the review identifies inconsistencies in EV nomenclature and outstanding challenges in defining a reproducible therapeutic dose. Challenges also remain in the scalable manufacture of a therapeutically potent and pure EV product, with a need to address scalable cell sources and optimal culture environments. Addressing these issues will be critical if we are to develop regenerative EV therapies that meet the demands of regulators and can be translated from bench to bedside.
Collapse
Affiliation(s)
- Owen G Davies
- School of Sport, Exercise, and Health Sciences, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, UK.
| |
Collapse
|
39
|
de Oliveira Laterza Ribeiro M, Correia VM, Herling de Oliveira LL, Soares PR, Scudeler TL. Evolving Diagnostic and Management Advances in Coronary Heart Disease. Life (Basel) 2023; 13:951. [PMID: 37109480 PMCID: PMC10143565 DOI: 10.3390/life13040951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Despite considerable improvement in diagnostic modalities and therapeutic options over the last few decades, the global burden of ischemic heart disease is steadily rising, remaining a major cause of death worldwide. Thus, new strategies are needed to lessen cardiovascular events. Researchers in different areas such as biotechnology and tissue engineering have developed novel therapeutic strategies such as stem cells, nanotechnology, and robotic surgery, among others (3D printing and drugs). In addition, advances in bioengineering have led to the emergence of new diagnostic and prognostic techniques, such as quantitative flow ratio (QFR), and biomarkers for atherosclerosis. In this review, we explore novel diagnostic invasive and noninvasive modalities that allow a more detailed characterization of coronary disease. We delve into new technological revascularization procedures and pharmacological agents that target several residual cardiovascular risks, including inflammatory, thrombotic, and metabolic pathways.
Collapse
Affiliation(s)
| | | | | | | | - Thiago Luis Scudeler
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| |
Collapse
|
40
|
Kishino Y, Tohyama S, Morita Y, Soma Y, Tani H, Okada M, Kanazawa H, Fukuda K. Cardiac Regenerative Therapy Using Human Pluripotent Stem Cells for Heart Failure: A State-of-the-Art Review. J Card Fail 2023; 29:503-513. [PMID: 37059512 DOI: 10.1016/j.cardfail.2022.10.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 04/16/2023]
Abstract
Heart transplantation (HT) is the only definitive treatment available for patients with end-stage heart failure who are refractory to medical and device therapies. However, HT as a therapeutic option, is limited by a significant shortage of donors. To overcome this shortage, regenerative medicine using human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human-induced pluripotent stem cells (hiPSCs), has been considered an alternative to HT. Several issues, including the methods of large-scale culture and production of hPSCs and cardiomyocytes, the prevention of tumorigenesis secondary to contamination of undifferentiated stem cells and non-cardiomyocytes, and the establishment of an effective transplantation strategy in large-animal models, need to be addressed to fulfill this unmet need. Although post-transplantation arrhythmia and immune rejection remain problems, the ongoing rapid technological advances in hPSC research have been directed toward the clinical application of this technology. Cell therapy using hPSC-derived cardiomyocytes is expected to serve as an integral component of realistic medicine in the near future and is being potentially viewed as a treatment that would revolutionize the management of patients with severe heart failure.
Collapse
Affiliation(s)
- Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Yuika Morita
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Marina Okada
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Ong-Meang V, Blanzat M, Savchenko L, Perquis L, Guardia M, Pizzinat N, Poinsot V. Extracellular Vesicles Produced by the Cardiac Microenvironment Carry Functional Enzymes to Produce Lipid Mediators In Situ. Int J Mol Sci 2023; 24:ijms24065866. [PMID: 36982939 PMCID: PMC10056942 DOI: 10.3390/ijms24065866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
The impact of the polyunsaturated fatty acids (PUFAs) at physiological concentrations on the composition of eicosanoids transported within the extracellular vesicles (EVs) of rat bone marrow mesenchymal stem cells and cardiomyoblasts was reported by our group in 2020. The aim of this article was to extend this observation to cells from the cardiac microenvironment involved in the processes of inflammation, namely mouse J774 macrophages and rat heart mesenchymal stem cells cMSCs. Moreover, to enhance our capacity to understand the paracrine exchange between these orchestrators of cardiac inflammation, we investigated some machinery involved in the eicosanoid’s synthesis transported by the EVs produced by these cells (including the two formerly described cells: bone marrow mesenchymal stem cells BM-MSC and cardiomyoblasts H9c2). We analyzed the oxylipin and the enzymatic content of the EVs collected from cell cultures supplemented (or not) with PUFAs. We prove that large eicosanoid profiles are exported in the EVs by the cardiac microenvironment cells, but also that these EVs carry some critical and functional biosynthetic enzymes, allowing them to synthesize inflammation bioactive compounds by sensing their environment. Moreover, we demonstrate that these are functional. This observation reinforces the hypothesis that EVs are key factors in paracrine signaling, even in the absence of the parent cell. We also reveal a macrophage-specific behavior, as we observed a radical change in the lipid mediator profile when small EVs derived from J774 cells were exposed to PUFAs. To summarize, we prove that the EVs, due to the carried functional enzymes, can alone produce bioactive compounds, in the absence of the parent cell, by sensing their environment. This makes them potential circulating monitoring entities.
Collapse
Affiliation(s)
- Varravaddheay Ong-Meang
- Inserm, CNRS, Institut des Maladies Métaboliques et Cardiovasculaires U1964, Université Toulouse III—Paul Sabatier, BP 84225, CEDEX 4, F-31432 Toulouse, France
| | - Muriel Blanzat
- CNRS, Laboratoire IMRCP UMR 5623, Université Toulouse III—Paul Sabatier, CEDEX 9, F-31062 Toulouse, France
| | - Lesia Savchenko
- Inserm, CNRS, Institut des Maladies Métaboliques et Cardiovasculaires U1964, Université Toulouse III—Paul Sabatier, BP 84225, CEDEX 4, F-31432 Toulouse, France
| | - Lucie Perquis
- CNRS, Laboratoire IMRCP UMR 5623, Université Toulouse III—Paul Sabatier, CEDEX 9, F-31062 Toulouse, France
| | - Mégane Guardia
- Inserm, CNRS, Institut des Maladies Métaboliques et Cardiovasculaires U1964, Université Toulouse III—Paul Sabatier, BP 84225, CEDEX 4, F-31432 Toulouse, France
| | - Nathalie Pizzinat
- Inserm, CNRS, Institut des Maladies Métaboliques et Cardiovasculaires U1964, Université Toulouse III—Paul Sabatier, BP 84225, CEDEX 4, F-31432 Toulouse, France
| | - Verena Poinsot
- Inserm, CNRS, Institut des Maladies Métaboliques et Cardiovasculaires U1964, Université Toulouse III—Paul Sabatier, BP 84225, CEDEX 4, F-31432 Toulouse, France
- Correspondence:
| |
Collapse
|
42
|
Sun Y, Xu H, Tan B, Yi Q, Liu H, Tian J, Zhu J. Andrographolide-treated bone marrow mesenchymal stem cells-derived conditioned medium protects cardiomyocytes from injury by metabolic remodeling. Mol Biol Rep 2023; 50:2651-2662. [PMID: 36641493 DOI: 10.1007/s11033-023-08250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) transplantation therapy providing a great hope for the recovery of myocardial ischemic hypoxic injury. However, the microenvironment after myocardial injury is not conducive to the survival of BMSCs, which limits the therapeutic application of BMSCs. Our previous study has confirmed that the survival of BMSCs cells in the glucose and serum deprivation under hypoxia (GSDH) is increased after Andrographolide (AG) pretreatment, but whether this treatment could improve the effect of BMSCs in repairing of myocardial injury has not been verified. METHODS AND RESULT We first treated H9C2 with GSDH to simulate the microenvironment of myocardial injury in vitro, then we pretreated rat primary BMSCs with AG, and collected conditioned medium derived from BMSCs (BMSCs-CM) and conditioned medium derived from AG-pretreated BMSCs (AG-BMSCs-CM) after GSDH treatment. And they were used to treat H9C2 cells under GSDH to further detect oxidative stress and metabolic changes. The results showed that AG-BMSCs-CM could be more advantageous for cardiomyocyte injury repair than BMSCs-CM, as indicated by the decrease of apoptosis rate and oxidative stress. The changes of mitochondria and lipid droplets results suggested that AG-BMSCs-CM can regulate metabolic remodeling of H9C2 cells to repair cell injury, and that AMPK was activated during this process. CONCLUSIONS This study demonstrates, for the first time, the protective effect of AG-BMSCs-CM on GSDH-induced myocardial cell injury, providing a potential therapeutic strategy for clinical application.
Collapse
Affiliation(s)
- Yanting Sun
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China.,Centre of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hao Xu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China.,Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China
| | - Qin Yi
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China
| | - Huiwen Liu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China
| | - Jie Tian
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China.,Department of Cardiovascular (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China.
| |
Collapse
|
43
|
Pellicer N, Cozzolino M, Diaz-García C, Galliano D, Cobo A, Pellicer A, Herraiz S. Ovarian rescue in women with premature ovarian insufficiency: facts and fiction. Reprod Biomed Online 2023; 46:543-565. [PMID: 36710157 DOI: 10.1016/j.rbmo.2022.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
The ovary has a comparatively short functional lifespan compared with other organs, and genetic and pathological injuries can further shorten its functional life. Thus, preserving ovarian function should be considered in the context of women with threats to ovarian reserve, such as ageing, premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR). Indeed, one-third of women with POI retain resting follicles that can be reactivated to produce competent oocytes, as proved by the in-vitro activation of dormant follicles. This paper discusses mechanisms and clinical data relating to new therapeutic strategies using ovarian fragmentation, stem cells or platelet-rich plasma to regain ovarian function in women of older age (>38 years) or with POI or DOR. Follicle reactivation techniques show promising experimental outcomes and have been successful in some cases, when POI is established or DOR diagnosed; however, there is scarce clinical evidence to warrant their widespread clinical use. Beyond these contexts, also discussed is how new insights into the biological mechanisms governing follicular dynamics and oocyte competence may play a role in reversing ovarian damage, as no technique modifies oocyte quality. Additional studies should focus on increasing follicle number and quality. Finally, there is a small but important subgroup of women lacking residual follicles and requiring oocyte generation from stem cells.
Collapse
Affiliation(s)
| | | | - César Diaz-García
- IVI London, EGA Institute for Women's Health, UCL, London, UK; IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | | | - Ana Cobo
- IVI RMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- IVI RMA Rome, Rome, Italy; IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Sonia Herraiz
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
| |
Collapse
|
44
|
Joshi JM, Muttigi MS, Upadhya R, Seetharam RN. An overview of the current advances in the treatment of inflammatory diseases using mesenchymal stromal cell secretome. Immunopharmacol Immunotoxicol 2023:1-11. [PMID: 36786742 DOI: 10.1080/08923973.2023.2180388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The growing interest in mesenchymal stromal cell (MSC) therapy has been leading to the utilization of its therapeutic properties in a variety of inflammatory diseases. The clinical translation of the related research from bench to bedside is cumbersome due to some obvious limitations of cell therapy. It is evident from the literature that the MSC secretome components mediate their wide range of functions. Cell-free therapy using MSC secretome is being considered as an emerging and promising area of biotherapeutics. The secretome mainly consists of bioactive factors, free nucleic acids, and extracellular vesicles. Constituents of the secretome are greatly influenced by the cell's microenvironment. The broad array of immunomodulatory properties of MSCs are now being employed to target inflammatory diseases. This review focuses on the emerging MSC secretome therapies for various inflammatory diseases. The mechanism of action of the various anti-inflammatory factors is discussed. The potential of MSC secretome as a viable anti-inflammatory therapy is deliberated.
Collapse
Affiliation(s)
- Jahnavy Madhukar Joshi
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manjunatha S Muttigi
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghavendra Upadhya
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
45
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
46
|
Chen W, Wang Y, Zheng J, Chen Y, Zhang C, Yang W, Wu L, Yang Z, Wang Y, Shi C. Characterization of cellular senescence in radiation ulcers and therapeutic effects of mesenchymal stem cell-derived conditioned medium. BURNS & TRAUMA 2023; 11:tkad001. [PMID: 37188110 PMCID: PMC10175947 DOI: 10.1093/burnst/tkad001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Indexed: 05/17/2023]
Abstract
Background Radiation ulcers are a common and severe injury after uncontrolled exposure to ionizing radiation. The most important feature of radiation ulcers is progressive ulceration, which results in the expansion of radiation injury to the nonirradiated area and refractory wounds. Current theories cannot explain the progression of radiation ulcers. Cellular senescence refers to as irreversible growth arrest that occurs after exposure to stress, which contributes to tissue dysfunction by inducing paracrine senescence, stem cell dysfunction and chronic inflammation. However, it is not yet clear how cellular senescence facilitates the continuous progression of radiation ulcers. Here, we aim to investigate the role of cellular senescence in promoting progressive radiation ulcers and indicate a potential therapeutic strategy for radiation ulcers. Methods Radiation ulcer animal models were established by local exposure to 40 Gy X-ray radiation and continuously evaluated for >260 days. The roles of cellular senescence in the progression of radiation ulcers were assessed using pathological analysis, molecular detection and RNA sequencing. Then, the therapeutic effects of conditioned medium from human umbilical cord mesenchymal stem cells (uMSC-CM) were investigated in radiation ulcer models. Results Radiation ulcer animal models with features of clinical patients were established to investigate the primary mechanisms responsible for the progression of radiation ulcers. We have characterized cellular senescence as being closely associated with the progression of radiation ulcers and found that exogenous transplantation of senescent cells significantly aggravated them. Mechanistic studies and RNA sequencing suggested that radiation-induced senescent cell secretions were responsible for facilitating paracrine senescence and promoting the progression of radiation ulcers. Finally, we found that uMSC-CM was effective in mitigating the progression of radiation ulcers by inhibiting cellular senescence. Conclusions Our findings not only characterize the roles of cellular senescence in the progression of radiation ulcers but also indicate the therapeutic potential of senescent cells in their treatment.
Collapse
Affiliation(s)
| | | | - Jiancheng Zheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Wei Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Lingling Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Zeyu Yang
- Breast and Thyroid Surgical Department, Chongqing General Hospital, 401147, Chongqing, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | | |
Collapse
|
47
|
Cai Y, Ji Z, Wang S, Zhang W, Qu J, Belmonte JCI, Liu GH. Genetic enhancement: an avenue to combat aging-related diseases. LIFE MEDICINE 2022; 1:307-318. [PMID: 39872744 PMCID: PMC11749557 DOI: 10.1093/lifemedi/lnac054] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/14/2022] [Indexed: 01/30/2025]
Abstract
Aging is a major risk factor for multiple diseases, including cardiovascular diseases, neurodegenerative disorders, osteoarthritis, and cancer. It is accompanied by the dysregulation of stem cells and other differentiated cells, and the impairment of their microenvironment. Cell therapies to replenish the abovementioned cells provide a promising approach to restore tissue homeostasis and alleviate aging and aging-related chronic diseases. Importantly, by leveraging gene editing technologies, genetic enhancement, an enhanced strategy for cell therapy, can be developed to improve the safety and efficacy of transplanted therapeutic cells. In this review, we provide an overview and discussion of the current progress in the genetic enhancement field, including genetic modifications of mesenchymal stem cells, neural stem cells, hematopoietic stem cells, vascular cells, and T cells to target aging and aging-associated diseases. We also outline questions regarding safety and current limitations that need to be addressed for the continued development of genetic enhancement strategies for cell therapy to enable its further applications in clinical trials to combat aging-related diseases.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zhejun Ji
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| |
Collapse
|
48
|
Application of mesenchymal stem cells combined with nano-polypeptide hydrogel in tissue engineering blood vessel. Regen Ther 2022; 21:277-281. [PMID: 36092503 PMCID: PMC9440265 DOI: 10.1016/j.reth.2022.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/23/2022] [Indexed: 11/21/2022] Open
Abstract
At present, the vascular grafts used in clinic are mainly autologous blood vessels, but they often face the dilemma of no blood vessels available due to limited sources. However, synthetic blood vessels made of polytetrafluoroethylene (ePTFE), which is commonly used in clinic, are prone to thrombosis and intimal hyperplasia, and the long-term patency rate is poor, so its effectiveness is severely limited, which is far from meeting the clinical needs. With the development of nano-materials, stem cells and 3D bio-printing technology, people began to explore the preparation of new endothelialized vascular grafts through this technology. Nano-peptide materials have excellent biocompatibility, can be compounded with different bioactive molecules, and have unique advantages in cultivating stem cells. It has been reported that self-assembled nano-polypeptide hydrogel was successfully constructed, mesenchymal stem cells were correctly isolated and cultured, and their transformation into blood vessels was studied. It was confirmed that the 3D bio-printed nano-polypeptide hydrogel tissue ADMSCs still had strong vascular endothelial differentiation ability. The application of mesenchymal stem cells and nano-polypeptide hydrogel in tissue engineering blood vessels has gradually become a research hotspot, and it is expected to develop a new type of transplanted blood vessel that meets the physiological functions of human body in terms of vascular endothelialization, cell compatibility and histocompatibility, so as to realize the customized and personalized printing of the endothelialized transplanted blood vessel according to the shape of the target blood vessel, which has attractive prospects and far-reaching social and economic benefits.
Collapse
|
49
|
Chang A, Tam J, Agrawal DK, Liu HH, Varadarajan P, Pai R, Thankam FG. Synthetic Fibroblasts: Terra Incognita in Cardiac Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1235-1241. [PMID: 35535856 DOI: 10.1089/ten.teb.2022.0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ischemic heart disease, a major risk factor for myocardial infarction (MI), occurs when the blood vessels supplying oxygen-rich blood to the heart become partially or fully occluded by lipid-rich plaques, resulting in myocardial cell death, remodeling, and scarring. In addition, MI occurs as result of lipid-rich plaque rupture, resulting in thrombosis and vessel occlusion. Cardiac fibroblasts (CFs) and CF-derived growth factors are crucial post-MI in myocardial remodeling. Information regarding the regenerative phenotypes of CFs is scarce; however, regenerative CFs are translationally relevant in myocardial regeneration following MI. The emerging technologies in regenerative cardiology offer cutting-edge translational opportunities, including synthetic cells. In this review, we critically reviewed the current knowledge and the ongoing research efforts on application of synthetic cells for improving cardiac regeneration post-MI. Impact statement Synthetic cells offer tremendous regenerative potential in otherwise deleterious cardiac remodeling postmyocardial infarction. Understanding the role of fibroblasts in cardiac healing and the therapeutic applications of synthetic cells would open a multitude of novel cardiac regenerative approaches. The novel concept of synthetic fibroblasts that emulate native cardiac fibroblasts can provide an effective solution in cardiac healing.
Collapse
Affiliation(s)
- Albert Chang
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Jonathan Tam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Huinan Hannah Liu
- Department of Bioengineering, University of California, Riverside, California, USA
| | - Padmini Varadarajan
- Department of Cardiology, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Ramdas Pai
- Department of Cardiology, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
50
|
de Almeida Fuzeta M, Gonçalves PP, Fernandes-Platzgummer A, Cabral JMS, Bernardes N, da Silva CL. From Promise to Reality: Bioengineering Strategies to Enhance the Therapeutic Potential of Extracellular Vesicles. Bioengineering (Basel) 2022; 9:675. [PMID: 36354586 PMCID: PMC9687169 DOI: 10.3390/bioengineering9110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) have been the focus of great attention over the last decade, considering their promising application as next-generation therapeutics. EVs have emerged as relevant mediators of intercellular communication, being associated with multiple physiological processes, but also in the pathogenesis of several diseases. Given their natural ability to shuttle messages between cells, EVs have been explored both as inherent therapeutics in regenerative medicine and as drug delivery vehicles targeting multiple diseases. However, bioengineering strategies are required to harness the full potential of EVs for therapeutic use. For that purpose, a good understanding of EV biology, from their biogenesis to the way they are able to shuttle messages and establish interactions with recipient cells, is needed. Here, we review the current state-of-the-art on EV biology, complemented by representative examples of EVs roles in several pathophysiological processes, as well as the intrinsic therapeutic properties of EVs and paradigmatic strategies to produce and develop engineered EVs as next-generation drug delivery systems.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro P. Gonçalves
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nuno Bernardes
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|