1
|
Tsinari A, Roumeliotis S, Neofytou IE, Varouktsi G, Veljkovic A, Stamou A, Leivaditis K, Liakopoulos V. The Clinical Utility and Plausibility of Oxidative and Antioxidant Variables in Chronic and End-Stage Kidney Disease: A Review of the Literature. Int J Mol Sci 2025; 26:3376. [PMID: 40244241 PMCID: PMC11989862 DOI: 10.3390/ijms26073376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Oxidative stress (OS) is caused by an imbalance between the production of reactive oxygen species (ROS) in cells and tissues and the ability of the biological system to detoxify these products. In chronic kidney disease (CKD), OS contributes to deterioration of kidney function and disease progression. In patients with end-stage kidney disease undergoing hemodialysis or peritoneal dialysis, OS is further increased and associated with adverse clinical outcomes, including deterioration and subsequent loss of residual renal function, atherosclerosis, hypertension, cardiovascular disease and death. However, currently, there is no consensus or guidelines for the diagnosis and treatment of OS in these patients. Herein, we aim to present the existing data regarding biomarkers of OS, pro-oxidants (oxidized albumin, advanced oxidation protein products, xanthine oxidase/dehydrogenase, nitrite/nitrate, malondialdehyde) and antioxidants (superoxide dismutase, catalase, vitamin E, total antioxidant capacity, N-acetylcysteine) that are most clinically relevant and have been more extensively studied in patients with chronic kidney disease, aiming to provide a clearer understanding of this complex area.
Collapse
Affiliation(s)
- Ariti Tsinari
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.T.); (I.E.N.); (G.V.); (A.S.); (K.L.); (V.L.)
| | - Stefanos Roumeliotis
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.T.); (I.E.N.); (G.V.); (A.S.); (K.L.); (V.L.)
| | - Ioannis E. Neofytou
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.T.); (I.E.N.); (G.V.); (A.S.); (K.L.); (V.L.)
| | - Garyfallia Varouktsi
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.T.); (I.E.N.); (G.V.); (A.S.); (K.L.); (V.L.)
| | - Andrej Veljkovic
- Department of Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Aikaterini Stamou
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.T.); (I.E.N.); (G.V.); (A.S.); (K.L.); (V.L.)
| | - Konstantinos Leivaditis
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.T.); (I.E.N.); (G.V.); (A.S.); (K.L.); (V.L.)
| | - Vassilios Liakopoulos
- 2nd Department of Nephrology, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.T.); (I.E.N.); (G.V.); (A.S.); (K.L.); (V.L.)
| |
Collapse
|
2
|
Izemrane D, Benziane A, Makrelouf M, Hamdis N, Rabia SH, Boudjellaba S, Baz A, Benaziza D. Living donors kidney transplantation and oxidative stress: Nitric oxide as a predictive marker of graft function. PLoS One 2024; 19:e0307824. [PMID: 39312562 PMCID: PMC11419388 DOI: 10.1371/journal.pone.0307824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/10/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Glomerular filtration rate is the best indicator of renal function and a predictor of graft and patient survival after kidney transplantation. METHODS In a single-centre prospective analysis, we assessed the predictive performances of 4 oxidative stress biomarkers in estimating graft function at 6 months and 1 year after kidney transplantation from living donors. Blood samples were achieved on days (D-1, D1, D2, D3, D6 and D8), months (M1, M3 and M6) and after one year (1Y). For donors, a blood sample was collected on D-1. Malondialdehyde (MDA), nitric oxide (NO), glutathione s-transferase (GST), myeloperoxydase (MPO), and creatinine (Cr) were measured by spectrophotometric essays. The estimated glomerular filtration rate by the modification of diet in renal disease equation (MDRD-eGFR) was used to assess renal function in 32 consecutive donor-recipient pairs. Pearson's and Spearman's correlations have been applied to filter out variables and covariables that can be used to build predictive models of graft function at six months and one year. The predictive performances of NO and MPO were tested by multivariable stepwise linear regression to estimate glomerular filtration rate at six months. RESULTS Three models with the highest coefficients of determination stand out, combining the two variables nitric oxide at day 6 and an MDRD-eGFR variable at day 6 or MDRD-eGFR at day 21 or MDRD-eGFR at 3 months, associated for the first two models or not for the third model with donor age as a covariable (P = 0.000, r2 = 0.599, r2adj = 0.549; P = 0.000, r2 = 0.548, r2adj = 0.497; P = 0.000, r2 = 0.553, r2adj = 0.517 respectively). CONCLUSION Quantification of nitric oxide at day six could be useful in predicting graft function at six months in association with donor age and the estimated glomerular filtration rate in recipient at day 6, day 21 and 3 months after transplantation.
Collapse
Affiliation(s)
- Djamila Izemrane
- Laboratory of Biology and Animal Physiology, Higher Normal School, Kouba, Algiers, Algeria
- National Higher Veterinary School, Issad Abbes, Oued Smar, Algiers, Algeria
| | - Ali Benziane
- Department of Nephrology-Hemodialysis and Transplantation, Lamine Debaghine University Hospital, Bab El Oued, Algiers, Algeria
| | - Mohamed Makrelouf
- Central Biology Laboratory, Lamine Debaghine University Hospital, Bab El Oued, Algiers, Algeria
| | - Nacim Hamdis
- Laboratory of Food Technology Research, Faculty of Engineering Sciences-University M’Hamed Bougara, City Frantz Fanon, Boumerdes, Algeria
| | - Samia Hadj Rabia
- Laboratory of Biology and Animal Physiology, Higher Normal School, Kouba, Algiers, Algeria
- Department of Nuclear Applications, Nuclear Research Center, Sebala, Algiers, Algeria
| | - Sofiane Boudjellaba
- National Higher Veterinary School, Issad Abbes, Oued Smar, Algiers, Algeria
- Laboratory of Research Management of Local Animal Resources (GRAL), National Higher Veterinary School, Issad Abbes, Oued Smar, Algiers, Algeria
| | - Ahsene Baz
- Laboratory of Biology and Animal Physiology, Higher Normal School, Kouba, Algiers, Algeria
| | - Djamila Benaziza
- Laboratory of Biology and Animal Physiology, Higher Normal School, Kouba, Algiers, Algeria
| |
Collapse
|
3
|
Yepes-Calderón M, van der Veen Y, Martín Del Campo S F, Kremer D, Sotomayor CG, Knobbe TJ, Vos MJ, Corpeleijn E, de Borst MH, Bakker SJL. Vitamin C deficiency after kidney transplantation: a cohort and cross-sectional study of the TransplantLines biobank. Eur J Nutr 2024; 63:2357-2366. [PMID: 38811416 PMCID: PMC11377669 DOI: 10.1007/s00394-024-03426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Vitamin C deficiency is associated with excess mortality in kidney transplant recipients (KTR). We aim to evaluate plasma vitamin C status at different post-transplantation moments and assess the main characteristics associated with vitamin C deficiency in KTR. METHODS Plasma vitamin C was assessed in 598 KTR at 3-, 6-, 12-, 24-, and 60-months post-transplantation, 374 late KTR with a functioning graft ≥ 1 year, and 395 potential donors. Vitamin C deficiency was defined as plasma vitamin C ≤ 28 µmol/L. Diet was assessed by a 177-item food frequency questionnaire. Data on vitamin C-containing supplements use were extracted from patient records and verified with the patients. RESULTS Vitamin C deficiency ranged from 46% (6-months post-transplantation) to 30% (≥ 1 year post-transplantation). At all time points, KTR had lower plasma vitamin C than potential donors (30-41 µmol/L vs 58 µmol/L). In cross-sectional analyses of the 953 KTR at their first visit ≥ 12 months after transplantation (55 ± 14 years, 62% male, eGFR 55 ± 19 mL/min/1.73 m2), the characteristics with the strongest association with vitamin C deficiency were diabetes and smoking (OR 2.67 [95% CI 1.84-3.87] and OR 1.84 [95% CI 1.16-2.91], respectively). Dietary vitamin C intake and vitamin C supplementation were associated with lower odds (OR per 100 mg/day 0.38, 95% CI 0.24-0.61 and OR 0.21, 95% CI 0.09-0.44, respectively). CONCLUSION Vitamin C deficiency is frequent among KTR regardless of the time after transplantation, especially among those with diabetes and active smokers. The prevalence of vitamin C deficiency was lower among KTR with higher vitamin C intake, both dietary and supplemented. Further research is warranted to assess whether correcting this modifiable risk factor could improve survival in KTR.
Collapse
Affiliation(s)
- Manuela Yepes-Calderón
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands.
| | - Yvonne van der Veen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Fernando Martín Del Campo S
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
- Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Camilo G Sotomayor
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
- Clinical Hospital University of Chile, Independencia, Santiago, Chile
- Institute of Biomedical Sciences, University of Chile, Independencia, Santiago, Chile
| | - Tim J Knobbe
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Michel J Vos
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin H de Borst
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9700 RB, The Netherlands
| |
Collapse
|
4
|
Rodriguez-Sanchez E, Aceves-Ripoll J, Mercado-García E, Navarro-García JA, Andrés A, Aguado JM, Segura J, Ruilope LM, Fernández-Ruiz M, Ruiz-Hurtado G. Donor-Dependent Variations in Systemic Oxidative Stress and Their Association with One-Year Graft Outcomes in Kidney Transplantation. Am J Nephrol 2024; 55:509-519. [PMID: 38857579 DOI: 10.1159/000539509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Oxidative stress has been implicated in complications after kidney transplantation (KT), including delayed graft function (DGF) and rejection. However, its role in long-term posttransplant outcomes remains unclear. METHODS We investigated oxidative damage and antioxidant defense dynamics, and their impact on the graft outcomes, in 41 KT recipients categorized by type of donation over 12 months. Oxidative status was determined using OxyScore and AntioxyScore indexes, which comprise several circulating biomarkers of oxidative damage and antioxidant defense. Donor types included donation after brain death (DBD [61.0%]), donation after circulatory death (DCD [26.8%]), and living donation (LD [12.1%]). RESULTS There was an overall increase in oxidative damage early after transplantation, which was significantly higher in DCD as compared to DBD and LD recipients. The multivariate adjustment confirmed the independent association of OxyScore and type of deceased donation with DGF, donor kidney function, and induction therapy with antithymocyte globulin. There were no differences in terms of antioxidant defense. Lower oxidative damage at day 7 predicted better graft function at 1-year posttransplant only in DBD recipients. CONCLUSION DCD induced greater short-term oxidative damage after KT, whereas the early levels of oxidative damage were predictive of the graft function 1 year after KT among DBD recipients.
Collapse
Affiliation(s)
- Elena Rodriguez-Sanchez
- Cardiorenal Translational Laboratory and Hypertension Unit, Research Institute Hospital "12 de Octubre" (Imas12), Hospital Universitario "12 de Octubre", Madrid, Spain
| | - Jennifer Aceves-Ripoll
- Cardiorenal Translational Laboratory and Hypertension Unit, Research Institute Hospital "12 de Octubre" (Imas12), Hospital Universitario "12 de Octubre", Madrid, Spain
| | - Elisa Mercado-García
- Cardiorenal Translational Laboratory and Hypertension Unit, Research Institute Hospital "12 de Octubre" (Imas12), Hospital Universitario "12 de Octubre", Madrid, Spain
| | - José A Navarro-García
- Cardiorenal Translational Laboratory and Hypertension Unit, Research Institute Hospital "12 de Octubre" (Imas12), Hospital Universitario "12 de Octubre", Madrid, Spain
| | - Amado Andrés
- Department of Nephrology, Hospital Universitario "12 de Octubre", Research Institute Hospital "12 de Octubre" (Imas12), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - José M Aguado
- School of Medicine, Universidad Complutense, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Research Institute Hospital "12 de Octubre" (Imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Julián Segura
- Cardiorenal Translational Laboratory and Hypertension Unit, Research Institute Hospital "12 de Octubre" (Imas12), Hospital Universitario "12 de Octubre", Madrid, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory and Hypertension Unit, Research Institute Hospital "12 de Octubre" (Imas12), Hospital Universitario "12 de Octubre", Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- European University of Madrid, Madrid, Spain
| | - Mario Fernández-Ruiz
- School of Medicine, Universidad Complutense, Madrid, Spain
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Research Institute Hospital "12 de Octubre" (Imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory and Hypertension Unit, Research Institute Hospital "12 de Octubre" (Imas12), Hospital Universitario "12 de Octubre", Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Li S, Fan L, Viktoria U, Oleksandr P, Li Z, Zhang W, Deng B. Effect of resuscitation of cryopreserved porcine adrenal glands at 26 °C on their recovery and functioning under xenotransplantation. Cryobiology 2024; 115:104895. [PMID: 38616031 DOI: 10.1016/j.cryobiol.2024.104895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The study is devoted to the effect of lowered resuscitation temperature (26 °C) on cryopreserved porcine adrenal glands functional activity in vitro and in vivo under xenotransplantation. The adrenals were collected from newborn pigs, cryopreserved with 5 % DMSO at a rate of 1 °C/min, resuscitated at 26 or 37 °C for 48 h (5 % CO2, DMEM), embedded into small intestinal submucosa, and transplanted to bilaterally adrenalectomized rats. It has been shown that the glands resuscitated at 26 °C have suppressed free-radical processes and can produce cortisol and aldosterone in vitro, and may lead to elevated blood levels of these hormones. Moreover, the adrenal grafts maintain blood glucose levels and promote the formation of glycogen stores. Thus, the resuscitation at 26 °C can improve the quality of grafts and favor the introduction and application of the cryopreserved organs and tissues for transplantation in clinical and experimental practice.
Collapse
Affiliation(s)
- Shasha Li
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| | - Lingling Fan
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| | - Ustichenko Viktoria
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - Pakhomov Oleksandr
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - Zhongjie Li
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| | - Wenlu Zhang
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| | - Bo Deng
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| |
Collapse
|
6
|
Ajiboye BO, Famusiwa CD, Nifemi DM, Ayodele BM, Akinlolu OS, Fatoki TH, Ezzat AO, Al-Lohedan HA, Gupta S, Oyinloye BE. Nephroprotective Effect of Hibiscus Sabdariffa Leaf Flavonoid Extracts via KIM-1 and TGF-1β Signaling Pathways in Streptozotocin-Induced Rats. ACS OMEGA 2024; 9:19334-19344. [PMID: 38708257 PMCID: PMC11064007 DOI: 10.1021/acsomega.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
Diabetes-induced kidney damage represents a substantial health hazard, emphasizing the imperative to explore potential therapeutic interventions. This study investigates the nephroprotective activity of flavonoid-rich extracts from Hibiscus sabdariffa leaves in streptozotocin-induced diabetic rats. The flavonoid-rich extracts of H. sabdariffa leaves was obtained using a standard procedure. The animals were induced with streptozotocin and thereafter treated with both low (LDHSFL) and high doses (HDHSFL) of flavonoid-rich extracts from H. sabdariffa leaves and metformin (MET), and other groups are diabetic control (DC) and normal control (NC). The study assesses diverse renal parameters, encompassing kidney redox stress biomarkers, serum electrolyte levels, kidney inflammatory biomarkers, serum concentrations of creatinine, urea, and uric acid, kidney phosphatase activities, renal histopathology, and relative gene expressions of kidney injury molecule-1 (KIM-1) and transforming growth factor beta-1 (TGF-1β), comparing these measurements with normal and diabetic control groups (NC and DC). The findings indicate that the use of extracts from H. sabdariffa leaves markedly (p < 0.05) enhanced renal well-being by mitigating nephropathy, as demonstrated through the adjustment of various biochemical and gene expression biomarkers, indicating a pronounced antioxidative and anti-inflammatory effect, improved kidney morphology, and mitigation of renal dysfunction. These findings suggest that H. sabdariffa leaf flavonoid extracts exhibit nephroprotective properties, presenting a potential natural therapeutic approach for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Basiru Olaitan Ajiboye
- Phytomedicine
and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State 370112, Nigeria
| | - Courage Dele Famusiwa
- Phytomedicine
and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State 370112, Nigeria
| | - Daramola Mercy Nifemi
- Phytomedicine
and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State 370112, Nigeria
| | - Boluwatife Michael Ayodele
- Phytomedicine
and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State 370112, Nigeria
| | - Olapade Samuel Akinlolu
- Department
of Environmental Management and Toxicology, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State 370112, Nigeria
| | - Toluwase Hezekiah Fatoki
- Bioinformatics
and Enzymology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State 370112, Nigeria
| | - Abdelrahman O. Ezzat
- Department
of Chemistry, College of Sciences, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad A. Al-Lohedan
- Department
of Chemistry, College of Sciences, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Sumeet Gupta
- M.M.
College of Pharmacy, Maharishi Markandeshwar
University, Mullana, Haryana 133207, India
| | - Babatunji Emmanuel Oyinloye
- Institute
of Drug Research and Development, SE Bogoro Center, Afe Babalola University, Ado-Ekiti 362103, Nigeria
- Phytomedicine,
Biochemical Toxicology and Biotechnology Research Laboratories, Department
of Biochemistry, College of Sciences, Afe
Babalola University, Ado-Ekiti, Ekiti State 362103, Nigeria
- Biotechnology
and Structural Biology (BSB) Group, Department of Biochemistry and
Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
7
|
El Latif AA, Zahra AEA, Badr A, Elbialy ZI, Alghamdi AAA, Althobaiti NA, Assar DH, Abouzed TK. The potential role of upregulated PARP-1/RIPK1 expressions in amikacin-induced oxidative damage and nephrotoxicity in Wistar rats. Toxicol Res (Camb) 2023; 12:979-989. [PMID: 37915468 PMCID: PMC10615830 DOI: 10.1093/toxres/tfad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 11/03/2023] Open
Abstract
This study aimed to investigate the gene expression levels associated with nephrotoxic action of amikacin, as well as the post-treatment effect of diuretics on its nephrotoxic effects. Sixty male rats were divided equally into six groups, including the control group receiving saline intra-peritoneally (ip), and the five treated groups including therapeutic and double therapeutic dose groups, injected ip (15 and 30 mg/kg b.wt./day) respectively for seven days, and another two rat groups treated as therapeutic and double therapeutic dose groups then administered the diuretic orally for seven days and the last group received amikacin ip at a rate of 15 mg/kg/day for seven days, then given free access to water without diuretics for another seven days and was kept as a self-recovery group. Amikacin caused kidney injury, which was exacerbated by the double therapeutic dose, as evidenced by abnormal serum renal injury biomarkers, elevated renal MDA levels, inhibition of renal catalase and SOD enzyme activities, with renal degenerative and necrotic changes. Moreover, comet assays also revealed renal DNA damage. Interestingly, amikacin administration markedly elevated expression levels of the PARP-1, RIP1, TNF-α, IL-1β, and iNOS genes as compared to the control group. However, compared to the self-recovery group, post-amikacin diuretic treatment modulates amikacin-induced altered findings and alleviates amikacin nephrotoxic effects more efficiently. Our findings suggested the potential role of PARP-1 and RIPK1 expressions that influence the expression of proinflammatory cytokines such as IL-1β and TNF-α by exaggerating oxidative stress which may contribute to the pathogenesis of amikacin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Amera Abd El Latif
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Abo Elnasr A Zahra
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - AlShimaa Badr
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Abdullah A A Alghamdi
- Department of Biology, Faculty of Science, Albaha University, Kafrelsheikh University, El-Gish Street, Albaha 1988, Kingdom of Saudi Arabia
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Kafrelsheikh University, El-Gish Street, El-Gish Street, Al Quwaiiyah 19257, Kingdom of Saudi Arabia
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Tarek kamal Abouzed
- Biochemistry Department, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh, 33516, Egypt
| |
Collapse
|
8
|
Kumar M, Kenwar DB, Sekar A, Singh J, Nada R, Saikia B, Sharma A, Kohli HS, Anand S, Minz RW. Circulating "Neutrophils extra-cellular traps" during the early post-renal transplant period and correlation with graft dysfunction and rejection. Transpl Immunol 2023; 80:101898. [PMID: 37437666 DOI: 10.1016/j.trim.2023.101898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) have a role in infection, autoimmunity, autoinflammation, thrombosis, ischemia-reperfusion injury (IRI), epithelial-mesenchymal transition, vasculitis, and metabolic diseases. However, its role in early graft injury and graft outcome has not been elucidated till now. We evaluated the circulating NETs during early post-transplant periods and their correlation with graft outcome and IRI. METHODS Prospectively, thirty kidney transplants recipient (KTR) were recruited and grouped into non-dysfunction (Group-A) and dysfunction groups (Group-B). Serum levels of circulating NETs were estimated by measuring myeloperoxidase-DNA complex at three-time points: pre-transplant, 8 h post-transplant, and 18 h post-transplant; and correlated with early graft outcome. Malondialdehyde (MDA), a marker of oxidative stress or IRI, was also measured to assess its relation with NETs and early graft outcome. RESULTS Circulating NETs were significantly increased in both non-dysfunctional [Median OD: 0.11 (0.01-0.19) to 0.51 (0.22-0.91); p = 0.001] and dysfunctional [Median OD: 0.16 (0.12-0.27) to 0.38 (0.19-0.68); p = 0.047] KTR during first 8 h of transplant followed by fall at 18 h post-transplant [0.25 (0.18-0.72) and 0.35 (0.26-0.36) respectively]; however, no significant difference were observed between two groups at any time points. Isolated biopsy-proven graft rejection KTR also had higher circulating NETs during the early post-transplant period [Median OD: 0.16 (0.13-0.31) to 0.38 (0.28-1.5); p > 0.05] but no significant difference compared to non-dysfunctional KTR. MDA also displayed similar trends with an early significant rise [9.30 (7.74-12.56) μM to 17.37 (9.11-22.25) μM; p = 0.03 in group-A, and 8.7 (6.04-10.30) μM to 14.66 (13.39-21.63) μM; p = 0.01in group-B] followed by fall at 18 h in both groups [10.21 (7.64-13.90) μM and 11.11 (9.15-17.54) μM respectively]. Despite similar trends of both NETs and MDA, there was no significant correlation between these; however, creatinine exhibits a significant inverse correlation with NETs and MDA both. CONCLUSION Circulating NETs are significantly increased during the early post-transplant period in KTR irrespective of early graft outcome. Similar dynamics of MDA indicate that the early rise of NETs might be a part of IRI. However, molecular studies with large sample sizes and longer follow up are required to reach more defined conclusions.
Collapse
Affiliation(s)
- Mahendra Kumar
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Deepesh B Kenwar
- Department of Renal Transplant Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aravind Sekar
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jagdeep Singh
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Sharma
- Department of Renal Transplant Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Harbir Singh Kohli
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shashi Anand
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana W Minz
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
9
|
Radajewska A, Szyller J, Krzywonos-Zawadzka A, Olejnik A, Sawicki G, Bil-Lula I. Mitoquinone Alleviates Donation after Cardiac Death Kidney Injury during Hypothermic Machine Perfusion in Rat Model. Int J Mol Sci 2023; 24:14772. [PMID: 37834219 PMCID: PMC10572969 DOI: 10.3390/ijms241914772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Transplanted organs are subjected to harmful conditions through stopping blood flow, hypothermic storage of the graft, and subsequent reperfusion. In particular, kidneys donated from patients after cardiac arrest (DCD) are classified as more vulnerable to ischemia-reperfusion injury (IRI). Hypothermic machine perfusion is proposed as a solution for better kidney storage before transplantation, and it is a good platform for additional graft treatment. Antioxidants have gained interest in regenerative medicine due to their ability to scavenge reactive oxygen species (ROS), which play a key role in IRI. We evaluated the effect of Mitoquinone (MitoQ), a strong mitochondria-targeted antioxidant, administered directly to the perfusing buffer. Rat kidneys were isolated, randomly classified into one of the following groups, donation after brainstem death (DBD), DCD, and DCD with MitoQ, and perfused for 22 hours with a hypothermic machine perfusion system. Subsequently, we detected levels of kidney injury (KIM-1) and oxidative stress (ROS/RNS, cytochrome C oxidase, and mitochondrial integrity) markers. We compared the activation of the apoptosis pathway (caspase 3 and 9), the concentration of phosphorylated Akt (pAkt), and the pAkt/total Akt ratio. MitoQ reduces KIM-1 concentration, total ROS/RNS, and the level of caspases. We observed a decrease in pAkt and the pAkt/total Akt ratio after drug administration. The length of warm ischemia time negatively impacts the graft condition. However, MitoQ added to the perfusing system as an 'on pump' therapy mitigates injury to the kidney before transplantation by inhibiting apoptosis and reducing ROS/RNS levels. We propose MitoQ as a potential drug for DCD graft preconditioning.
Collapse
Affiliation(s)
- Anna Radajewska
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.R.); (J.S.); (A.O.); (G.S.)
| | - Jakub Szyller
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.R.); (J.S.); (A.O.); (G.S.)
| | - Anna Krzywonos-Zawadzka
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.R.); (J.S.); (A.O.); (G.S.)
| | - Agnieszka Olejnik
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.R.); (J.S.); (A.O.); (G.S.)
| | - Grzegorz Sawicki
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.R.); (J.S.); (A.O.); (G.S.)
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Iwona Bil-Lula
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.R.); (J.S.); (A.O.); (G.S.)
| |
Collapse
|
10
|
Yepes-Calderón M, Kremer D, Post A, Sotomayor CG, Seidel U, Huebbe P, Knobbe TJ, Lüersen K, Eisenga MF, Corpeleijn E, De Borst MH, Navis GJ, Rimbach G, Bakker SJL. Plasma Copper Concentration Is Associated with Cardiovascular Mortality in Male Kidney Transplant Recipients. Antioxidants (Basel) 2023; 12:454. [PMID: 36830012 PMCID: PMC9952822 DOI: 10.3390/antiox12020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Kidney transplant recipients (KTR) are at increased risk of cardiovascular mortality. We investigated whether, in KTR, post-transplantation copper status is associated with the risk of cardiovascular mortality and potential effect modification by sex. In this cohort study, plasma copper was measured using mass spectrometry in extensively-phenotyped KTR with a functioning allograft >1-year. Cox regression analyses with the inclusion of multiplicative interaction terms were performed. In 660 KTR (53 ± 13 years old, 56% male), the median baseline plasma copper was 15.42 (IQR 13.53-17.63) µmol/L. During a median follow-up of 5 years, 141 KTR died, 53 (38%) due to cardiovascular causes. Higher plasma copper was associated with an increased risk of cardiovascular mortality in the overall KTR population (HR 1.37; 95% CI, 1.07-1.77 per 1-SD, p = 0.01). Sex was a significant effect modifier of this association (Pinteraction = 0.01). Among male KTR, higher plasma copper concentration was independently associated with a two-fold higher risk of cardiovascular mortality (HR 2.09; 95% CI, 1.42-3.07 per 1-SD, p < 0.001). Among female KTR, this association was absent. This evidence offers a rationale for considering a sex-specific assessment of copper's role in cardiovascular risk evaluation. Further studies are warranted to elucidate whether copper-targeted interventions may decrease cardiovascular mortality in male KTR.
Collapse
Affiliation(s)
- Manuela Yepes-Calderón
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Daan Kremer
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Adrian Post
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Camilo G. Sotomayor
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Clinical Hospital University of Chile, University of Chile, Independencia 8380453, Chile
| | - Ulrike Seidel
- Institute of Human Nutrition and Food Science, University of Kiel, 24118 Kiel, Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, 24118 Kiel, Germany
| | - Tim J. Knobbe
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, 24118 Kiel, Germany
| | - Michele F. Eisenga
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Martin H. De Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Gerjan J. Navis
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, 24118 Kiel, Germany
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
11
|
Simona MS, Alessandra V, Emanuela C, Elena T, Michela M, Fulvia G, Vincenzo S, Ilaria B, Federica M, Eloisa A, Massimo A, Maristella G. Evaluation of Oxidative Stress and Metabolic Profile in a Preclinical Kidney Transplantation Model According to Different Preservation Modalities. Int J Mol Sci 2023; 24:ijms24021029. [PMID: 36674540 PMCID: PMC9861050 DOI: 10.3390/ijms24021029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
This study addresses a joint nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy approach to provide a platform for dynamic assessment of kidney viability and metabolism. On porcine kidney models, ROS production, oxidative damage kinetics, and metabolic changes occurring both during the period between organ retrieval and implantation and after kidney graft were examined. The 1H-NMR metabolic profile—valine, alanine, acetate, trimetylamine-N-oxide, glutathione, lactate, and the EPR oxidative stress—resulting from ischemia/reperfusion injury after preservation (8 h) by static cold storage (SCS) and ex vivo machine perfusion (HMP) methods were monitored. The functional recovery after transplantation (14 days) was evaluated by serum creatinine (SCr), oxidative stress (ROS), and damage (thiobarbituric-acid-reactive substances and protein carbonyl enzymatic) assessments. At 8 h of preservation storage, a significantly (p < 0.0001) higher ROS production was measured in the SCS vs. HMP group. Significantly higher concentration data (p < 0.05−0.0001) in HMP vs. SCS for all the monitored metabolites were found as well. The HMP group showed a better function recovery. The comparison of the areas under the SCr curves (AUC) returned a significantly smaller (−12.5 %) AUC in the HMP vs. SCS. EPR-ROS concentration (μmol·g−1) from bioptic kidney tissue samples were significantly lower in HMP vs. SCS. The same result was found for the NMR monitored metabolites: lactate: −59.76%, alanine: −43.17%; valine: −58.56%; and TMAO: −77.96%. No changes were observed in either group under light microscopy. In conclusion, a better and more rapid normalization of oxidative stress and functional recovery after transplantation were observed by HMP utilization.
Collapse
Affiliation(s)
- Mrakic-Sposta Simona
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milano, Italy
| | - Vezzoli Alessandra
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20159 Milano, Italy
- Correspondence: (V.A.); (G.M.)
| | - Cova Emanuela
- Department of Molecular Medicine, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Ticcozzelli Elena
- Department of Surgery, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Montorsi Michela
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Roma, Italy
| | - Greco Fulvia
- Institute of Chemical Sciences and Technologies “G. Natta”, National Research Council (SCITEC-CNR), 20133 Milan, Italy
| | - Sepe Vincenzo
- Department of Molecular Medicine, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Benzoni Ilaria
- Department of Surgery, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Meloni Federica
- Section of Pneumology, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Arbustini Eloisa
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Abelli Massimo
- Department of Surgery, IRCCS Foundation Policlinico San Matteo, 27100 Pavia, Italy
| | - Gussoni Maristella
- Institute of Chemical Sciences and Technologies “G. Natta”, National Research Council (SCITEC-CNR), 20133 Milan, Italy
- Correspondence: (V.A.); (G.M.)
| |
Collapse
|
12
|
Jakubauskiene L, Jakubauskas M, Razanskiene G, Leber B, Ramasauskaite D, Strupas K, Stiegler P, Schemmer P. Experimental Static Cold Storage of the Rat Uterus: Protective Effects of Relaxin- or Erythropoietin-Supplemented HTK-N Solutions. Biomedicines 2022; 10:2730. [PMID: 36359252 PMCID: PMC9687853 DOI: 10.3390/biomedicines10112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 01/12/2025] Open
Abstract
Uterus transplantation (UTx) is the only treatment method for women with absolute uterine infertility. Currently, the number of grafts retrieved from deceased donors is increasing; hence, prolonged cold ischemia time is inevitable. Thus, this study was designed to assess the effect of the novel relaxin (RLN)- or erythropoietin (EPO)-supplemented Custodiol-N (HTK-N) solutions in an experimental uterus static cold storage (SCS) model. A total of 15 Sprague Dawley rats were used. Uterus horns were randomly assigned into three groups (n = 10/group). SCS was performed by keeping samples at 4 °C in HTK-N solution without or with different additives: 10 IU/mL EPO or 20 nM RLN. Tissue samples were taken after 8 and 24 h of preservation. Uterine tissue histology, and biochemical and immunohistochemical markers were analyzed. No significant differences in SCS-induced tissue damage were observed between groups after 8 h of preservation. Uterine tissue histology, MDA, SOD levels and the TUNEL-positive cell number showed severe damage in HTK-N without additives after 24 h of preservation. This damage was significantly attenuated by adding RLN to the preservation solution. EPO showed no favorable effect. Our study shows that RLN as an additive to an HTK-N solution can serve as an effective uterine tissue preservative in the uterus SCS setting.
Collapse
Affiliation(s)
- Lina Jakubauskiene
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Street 21, 03101 Vilnius, Lithuania
| | - Matas Jakubauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Street 21, 03101 Vilnius, Lithuania
| | - Gintare Razanskiene
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Street 21, 03101 Vilnius, Lithuania
- National Centre of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, P. Baublio Street 5, 08406 Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - Diana Ramasauskaite
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Street 21, 03101 Vilnius, Lithuania
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio Street 21, 03101 Vilnius, Lithuania
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| |
Collapse
|
13
|
Wang J, Chen Y. Protective effect of hydroxysafflor yellow A on cyclosporin A-induced renal oxidative stress in vitro and in vivo. Acta Cir Bras 2022; 37:e370305. [PMID: 35730865 PMCID: PMC9211037 DOI: 10.1590/acb370305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To explore the mechanism and investigate the protective effect of hydroxysafflor yellow A (HSYA) on renal oxidative stress, which cyclosporine A (CsA) induces. METHODS HK-2 cells were treated with CsA to get CsA-induced oxidative stress. The effects on oxidative stress and apoptosis of HK-2 cells were detected. The contents of SOD, MDA, GSH-Px, ROS, and CAT in serum were measured, and the expression of apoptosis-related proteins was detected by western blot. Then, established the renal oxidative stress injury rats to verify the efficacy of HSYA. RESULTS HSYA could reduce the ROS and MDA contents induced by CsA. Compared with the CsA group, the activities of SOD, CAT, and GSH-Px increased significantly when treated with HSYA. HSYA could inhibit CsA-induced apoptosis in HK-2 cells, and promote the protein of Bcl-2 and inhibit the expression of Bax. Animal experiments showed that HSYA could reduce CsA-induced renal cell injury by reducing glomerular cell vacuoles and inflammatory factors in tissues. It also decreased serum creatinine (Crea) and blood urea nitrogen, increased Crea clearance significantly. CONCLUSIONS HSYA could significantly improve the antioxidant capacity of the kidney cells and inhibit cell apoptosis, thereby effectively ameliorating CsA-induced oxidative stress in vitro and in vivo.
Collapse
Affiliation(s)
- Jiyuan Wang
- MSc. Second Military Medical University - Shanghai ChangZheng Hospital - Department of Organ Transplantation - Shanghai, China
| | - Yu Chen
- MSc. Second Military Medical University - Shanghai ChangZheng Hospital - Department of Organ Transplantation - Shanghai, China
| |
Collapse
|
14
|
Hamelink TL, Ogurlu B, De Beule J, Lantinga VA, Pool MBF, Venema LH, Leuvenink HGD, Jochmans I, Moers C. Renal Normothermic Machine Perfusion: The Road Toward Clinical Implementation of a Promising Pretransplant Organ Assessment Tool. Transplantation 2022; 106:268-279. [PMID: 33979315 DOI: 10.1097/tp.0000000000003817] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The increased utilization of high-risk renal grafts for transplantation requires optimization of pretransplant organ assessment strategies. Current decision-making methods to accept an organ for transplantation lack overall predictive power and always contain an element of subjectivity. Normothermic machine perfusion (NMP) creates near-physiological conditions, which might facilitate a more objective assessment of organ quality before transplantation. NMP is rapidly gaining popularity, with various transplant centers developing their own NMP protocols and renal viability criteria. However, to date, no validated sets of on-pump viability markers exist nor are there unified NMP protocols. This review provides a critical overview of the fundamentals of current renal NMP protocols and proposes a framework to approach further development of ex vivo organ evaluation. We also comment on the potential logistical implications of routine clinical use of NMP, which is a more complex procedure compared with static cold storage or even hypothermic machine perfusion.
Collapse
Affiliation(s)
- Tim L Hamelink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Baran Ogurlu
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Julie De Beule
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Veerle A Lantinga
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie H Venema
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Tanaka KI, Shimoda M, Kubota M, Takafuji A, Kawahara M, Mizushima T. Novel pharmacological effects of lecithinized superoxide dismutase on ischemia/reperfusion injury in the kidneys of mice. Life Sci 2022; 288:120164. [PMID: 34822794 DOI: 10.1016/j.lfs.2021.120164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022]
Abstract
Renal ischemia/reperfusion (I/R) injury is a major clinical problem because it can cause acute kidney injury (AKI) or lead to the transition from AKI to chronic kidney disease (CKD). Oxidative stress, which involves the production of reactive oxygen species (ROS), plays an important role in the development and exacerbation of I/R-induced kidney injury. However, we have previously reported that lecithinized superoxide dismutase (PC-SOD), a SOD derivative with high tissue affinity and high stability in plasma, has beneficial effects in various disease models because of its inhibitory effect on ROS production. Therefore, we aimed to determine the effects of intravenous PC-SOD administration in a mouse model of renal injury induced by I/R. PC-SOD markedly ameliorated the I/R-induced increases in markers of renal damage (urea nitrogen, creatinine, neutrophil gelatinase-associated lipocalin, and interleukin-6) and tubular necrosis 48 h after the intervention. We also found that PC-SOD significantly ameliorated the I/R-induced increase in ROS production, using an ex vivo imaging system. Furthermore, PC-SOD inhibited the increases in expression of markers of fibrosis (α-smooth muscle actin and collagen 1A1) 96 h after, and renal fibrosis 25 days after I/R was induced. Finally, we found that PC-SOD ameliorated the I/R-induced AKI in mice with high-fat diet-induced prediabetes. These results suggest that PC-SOD inhibits AKI and the transition from AKI to CKD through the inhibition of ROS production. Therefore, we believe that PC-SOD may represent an effective therapeutic agent for I/R-induced renal injury.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| | - Mikako Shimoda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Maho Kubota
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Ayaka Takafuji
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Tohru Mizushima
- LTT Bio-Pharma Co., Ltd, Shiodome Building 3F, 1-2-20 Kaigan, Minato-ku, Tokyo 105-0022, Japan
| |
Collapse
|
16
|
Eerhart MJ, Reyes JA, Blanton CL, Danobeitia JS, Chlebeck PJ, Zitur LJ, Springer M, Polyak E, Coonen J, Capuano S, D’Alessandro AM, Torrealba J, van Amersfoort E, Ponstein Y, Van Kooten C, Burlingham W, Sullivan J, Pozniak M, Zhong W, Yankol Y, Fernandez LA. Complement Blockade in Recipients Prevents Delayed Graft Function and Delays Antibody-mediated Rejection in a Nonhuman Primate Model of Kidney Transplantation. Transplantation 2022; 106:60-71. [PMID: 34905763 PMCID: PMC8674492 DOI: 10.1097/tp.0000000000003754] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Complement activation in kidney transplantation is implicated in the pathogenesis of delayed graft function (DGF). This study evaluated the therapeutic efficacy of high-dose recombinant human C1 esterase inhibitor (rhC1INH) to prevent DGF in a nonhuman primate model of kidney transplantation after brain death and prolonged cold ischemia. METHODS Brain death donors underwent 20 h of conventional management. Procured kidneys were stored on ice for 44-48 h, then transplanted into ABO-compatible major histocompatibility complex-mismatched recipients. Recipients were treated with vehicle (n = 5) or rhC1INH 500 U/kg plus heparin 40 U/kg (n = 8) before reperfusion, 12 h, and 24 h posttransplant. Recipients were followed up for 120 d. RESULTS Of vehicle-treated recipients, 80% (4 of 5) developed DGF versus 12.5% (1 of 8) rhC1INH-treated recipients (P = 0.015). rhC1INH-treated recipients had faster creatinine recovery, superior urinary output, and reduced urinary neutrophil gelatinase-associated lipocalin and tissue inhibitor of metalloproteinases 2-insulin-like growth factor-binding protein 7 throughout the first week, indicating reduced allograft injury. Treated recipients presented lower postreperfusion plasma interleukin (IL)-6, IL-8, tumor necrosis factor-alpha, and IL-18, lower day 4 monocyte chemoattractant protein 1, and trended toward lower C5. Treated recipients exhibited less C3b/C5b-9 deposition on day 7 biopsies. rhC1INH-treated animals also trended toward prolonged mediated rejection-free survival. CONCLUSIONS Our results recommend high-dose C1INH complement blockade in transplant recipients as an effective strategy to reduce kidney injury and inflammation, prevent DGF, delay antibody-mediated rejection development, and improve transplant outcomes.
Collapse
Affiliation(s)
- Michael J. Eerhart
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jose A. Reyes
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Surgery, New York Medical College at Metropolitan Hospital Center, New York, NY, United States
| | - Casi L. Blanton
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Juan S. Danobeitia
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Peter J. Chlebeck
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Laura J. Zitur
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Megan Springer
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Erzsebet Polyak
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jennifer Coonen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Anthony M. D’Alessandro
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jose Torrealba
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Cees Van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - William Burlingham
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jeremy Sullivan
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Myron Pozniak
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Weixiong Zhong
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Yucel Yankol
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Luis A. Fernandez
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
17
|
Natural Antibodies and Alloreactive T Cells Long after Kidney Transplantation. J Transplant 2021; 2021:7005080. [PMID: 34631160 PMCID: PMC8497134 DOI: 10.1155/2021/7005080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Background The relationship between circulating effector memory T and B cells long after transplantation and their susceptibility to immunosuppression are unknown. To investigate the impact of antirejection therapy on T cell-B cell coordinated immune responses, we assessed IFN-γ-producing memory cells and natural antibodies (nAbs) that potentially bind to autoantigens on the graft. Methods Plasma levels of IgG nAbs to malondialdehyde (MDA) were measured in 145 kidney transplant recipients at 5-7 years after transplantation. In 54 of these patients, the number of donor-reactive IFN-γ-producing cells was determined. 35/145 patients experienced rejection, 18 of which occurred within 1 year after transplantation. Results The number of donor-reactive IFN-γ-producing cells and the levels of nAbs were comparable between rejectors and nonrejectors. The nAbs levels were positively correlated with the number of donor-reactive IFN-γ-producing cells (r s = 0.39, p=0.004). The positive correlation was only observed in rejectors (r s = 0.53, p=0.003; nonrejectors: r s = 0.24, p=0.23). Moreover, we observed that intravenous immune globulin treatment affected the level of nAbs and this effect was found in patients who experienced a late ca-ABMR compared to nonrejectors (p=0.008). Conclusion The positive correlation found between alloreactive T cells and nAbs in rejectors suggests an intricate role for both components of the immune response in the rejection process. Treatment with intravenous immune globulin impacted nAbs.
Collapse
|
18
|
Lai C, Yee SY, Ying T, Chadban S. Biomarkers as diagnostic tests for delayed graft function in kidney transplantation. Transpl Int 2021; 34:2431-2441. [PMID: 34626503 DOI: 10.1111/tri.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
Delayed graft function (DGF) after kidney transplantation is associated with inferior outcomes and higher healthcare costs. DGF is currently defined as the requirement for dialysis within seven days post-transplant; however, this definition is subjective and nonspecific. Novel biomarkers have potential to improve objectivity and enable earlier diagnosis of DGF. We reviewed the literature to describe the range of novel biomarkers previously studied to predict DGF. We identified marked heterogeneity and low reporting quality of published studies. Among the novel biomarkers, serum NGAL had the greatest potential as a biomarker to predict DGF, but requires further assessment and validation through larger scale studies of diagnostic test performance. Given inadequacies in the dialysis-based definition, coupled with the high incidence and impact of DGF, such studies should be pursued.
Collapse
Affiliation(s)
- Christina Lai
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Kidney Node, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Seow Yeing Yee
- Nephrology Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Tracey Ying
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Kidney Node, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Steve Chadban
- Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Kidney Node, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Nielsen MB, Jespersen B, Birn H, Krogstrup NV, Bourgonje AR, Leuvenink HGD, van Goor H, Nørregaard R. Elevated plasma free thiols are associated with early and one-year graft function in renal transplant recipients. PLoS One 2021; 16:e0255930. [PMID: 34379701 PMCID: PMC8357095 DOI: 10.1371/journal.pone.0255930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Background Reduced free thiols in plasma are indicative of oxidative stress, which is an important contributor to ischaemia-reperfusion injury (IRI) in kidney transplantation leading to kidney damage and possibly delayed graft function (DGF). In a post-hoc, exploratory analysis of the randomised controlled CONTEXT trial, we investigated whether higher (i.e. less oxidised) plasma levels of free thiols as a biomarker of reduced oxidative stress are associated with a better initial graft function or a higher GFR. Methods Free thiol levels were measured in plasma at baseline, 30 and 90 minutes after reperfusion of the kidney as well as at Day 1, Day 5 and twelve months after kidney transplantation in 217 patients from the CONTEXT study. Free thiol levels were compared to the kidney graft function measured as the estimated time to a 50% reduction in plasma creatinine (tCr50), the risk of DGF and measured GFR (mGFR) at Day 5 and twelve months after transplantation. Results Higher levels of free thiols at Day 1 and Day 5 are associated with higher mGFR at Day 5 (p<0.001, r2adj. = 0.16; p<0.001, r2adj. = 0.25), as well as with mGFR at twelve months (p<0.001, r2adj. = 0.20; p<0.001, r2adj. = 0.16). However, plasma levels of free thiols at 30 minutes and 90 minutes, but not Day 1, were significantly higher among patients experiencing DGF. Conclusion Higher levels of plasma free thiols at Day 1 and Day 5, which are reflective of lower levels of oxidative stress, are associated with better early and late graft function in recipients of a kidney graft from deceased donors. Trial registration ClinicalTrials.gov Identifier:NCT01395719.
Collapse
Affiliation(s)
- Marie B. Nielsen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Henrik Birn
- Department of Renal Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Nicoline V. Krogstrup
- Department of Renal Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Nephrology, Copenhagen University Hospital Rigshospitalet, Copenhagen Ø, Denmark
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, the Netherlands
- * E-mail: (HVG); (RN)
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- * E-mail: (HVG); (RN)
| |
Collapse
|
20
|
Assessment of Oxidative Stress Markers in Hypothermic Preservation of Transplanted Kidneys. Antioxidants (Basel) 2021; 10:antiox10081263. [PMID: 34439511 PMCID: PMC8389232 DOI: 10.3390/antiox10081263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) after renal transplantation is a complex biochemical process. The first component is an ischemic phase during kidney storage. The second is reperfusion, the main source of oxidative stress. This study aimed to analyze the activity of enzymes and concentrations of non-enzymatic compounds involved in the antioxidant defense mechanisms: glutathione (GSH), glutathione peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione transferase (GST), thiobarbituric acid reactive substances (TBARS), malondialdehyde (MDA), measured in preservation fluid before transplantation of human kidneys (KTx) grafted from brain dead donors. The study group (N = 66) was divided according to the method of kidney storage: Group 1—hypothermic machine perfusion (HMP) in LifePort perfusion pump, n1 = 26, and Group 2—static cold storage (SCS), n2 = 40. The measurements of kidney function parameters, blood count, and adverse events were performed at constant time points during 7-day hospitalization and 3-month follow-up. Kidney perfusate in Group 2 was characterized by significantly more acidic pH (p < 0.0001), higher activity of GPX [U/mgHb] (p < 0.05) and higher concentration of MDA [μmol/L] (p < 0.05). There was a statistically significant improvement of kidney function and specific blood count alterations concerning storage method in repeated measures. There were aggregations of significant correlations (p < 0.05) between kidney function parameters after KTx and oxidative stress markers: diuresis & CAT, Na+ & CAT, K+ & GPX, urea & GR. There were aggregations of significant correlations (p < 0.05) between recipient blood count and oxidative stress markers: CAT & MON, SOD & WBC, SOD & MON. Study groups demonstrated differences concerning the method of kidney storage. A significant role of recipient’s gender, gender matching, preservation solution, and perfusate pH was not confirmed, however, basing on analyzed data, the well-established long-term beneficial impact of HMP on the outcome of transplanted kidneys might partially depend on the intensity of IRI ischemic phase and oxidative stress, reflected by the examined biomarkers.
Collapse
|
21
|
Urinary Carnosinase-1 Excretion is Associated with Urinary Carnosine Depletion and Risk of Graft Failure in Kidney Transplant Recipients: Results of the TransplantLines Cohort Study. Antioxidants (Basel) 2021; 10:antiox10071102. [PMID: 34356335 PMCID: PMC8301129 DOI: 10.3390/antiox10071102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Carnosine affords protection against oxidative and carbonyl stress, yet high concentrations of the carnosinase-1 enzyme may limit this. We recently reported that high urinary carnosinase-1 is associated with kidney function decline and albuminuria in patients with chronic kidney disease. We prospectively investigated whether urinary carnosinase-1 is associated with a high risk for development of late graft failure in kidney transplant recipients (KTRs). Carnosine and carnosinase-1 were measured in 24 h urine in a longitudinal cohort of 703 stable KTRs and 257 healthy controls. Cox regression was used to analyze the prospective data. Urinary carnosine excretions were significantly decreased in KTRs (26.5 [IQR 21.4–33.3] µmol/24 h versus 34.8 [IQR 25.6–46.8] µmol/24 h; p < 0.001). In KTRs, high urinary carnosinase-1 concentrations were associated with increased risk of undetectable urinary carnosine (OR 1.24, 95%CI [1.06–1.45]; p = 0.007). During median follow-up for 5.3 [4.5–6.0] years, 84 (12%) KTRs developed graft failure. In Cox regression analyses, high urinary carnosinase-1 excretions were associated with increased risk of graft failure (HR 1.73, 95%CI [1.44–2.08]; p < 0.001) independent of potential confounders. Since urinary carnosine is depleted and urinary carnosinase-1 imparts a higher risk for graft failure in KTRs, future studies determining the potential of carnosine supplementation in these patients are warranted.
Collapse
|
22
|
Tirichen H, Yaigoub H, Xu W, Wu C, Li R, Li Y. Mitochondrial Reactive Oxygen Species and Their Contribution in Chronic Kidney Disease Progression Through Oxidative Stress. Front Physiol 2021; 12:627837. [PMID: 33967820 PMCID: PMC8103168 DOI: 10.3389/fphys.2021.627837] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/08/2021] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are known to generate approximately 90% of cellular reactive oxygen species (ROS). The imbalance between mitochondrial reactive oxygen species (mtROS) production and removal due to overproduction of ROS and/or decreased antioxidants defense activity results in oxidative stress (OS), which leads to oxidative damage that affects several cellular components such as lipids, DNA, and proteins. Since the kidney is a highly energetic organ, it is more vulnerable to damage caused by OS and thus its contribution to the development and progression of chronic kidney disease (CKD). This article aims to review the contribution of mtROS and OS to CKD progression and kidney function deterioration.
Collapse
Affiliation(s)
- Hasna Tirichen
- School of Life Sciences, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Hasnaa Yaigoub
- School of Life Sciences, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Weiwei Xu
- Shanxi Medical University, Taiyuan, China
| | - Changxin Wu
- School of Life Sciences, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Rongshan Li
- Shanxi Medical University, Taiyuan, China.,Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, China.,Precision Medicine Center, Shanxi Provincial People's Hospital, Taiyuan, China
| |
Collapse
|
23
|
Gui T, Li Y, Zhang S, Alecu I, Chen Q, Zhao Y, Hornemann T, Kullak-Ublick GA, Gai Z. Oxidative stress increases 1-deoxysphingolipid levels in chronic kidney disease. Free Radic Biol Med 2021; 164:139-148. [PMID: 33450378 DOI: 10.1016/j.freeradbiomed.2021.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
Chronic kidney disease (CKD) leads to deep changes in lipid metabolism and obvious dyslipidemia. The dysregulation of lipid metabolism in turn results in CKD progression and the complications of cardiovascular diseases. To obtain a profound insight into the associated dyslipidemia in CKD, we performed lipidomic analysis to measure lipid metabolites in the serum from a rat 5/6 nephrectomy (5/6 Nx) model of CKD as well as in the serum from CKD patients. HK-2 cells were also used to examine oxidative stress-induced sphingolipid changes. Totally 182 lipid species were identified in 5/6 Nx rats. We found glycerolipids, total free fatty acids, and sphingolipids levels were significantly upregulated in 5/6 Nx rats. The atypical sphingolipids, 1-deoxysphingolipids, were significantly altered in both CKD animals and human CKD patients. The levels of 1-deoxysphingolipids directly relevant to the level of oxidative stress in vivo and in vitro. These results demonstrate that 1-deoxysphingolipid levels are increased in CKD and this increase directly correlates with increased kidney oxidative stress.
Collapse
Affiliation(s)
- Ting Gui
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; The Third Department of Cardiovascular Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, PR China
| | - Shijun Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Irina Alecu
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, UOttawa Brain and Mind Research Institute, Ottawa, ON, Canada; Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Qingfa Chen
- Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, PR China
| | - Ying Zhao
- Department of Basic Biology, Institute of Biological Sciences, Jining Medical University, Jining, PR China
| | - Thorsten Hornemann
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland.
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Kim MJ, Jung JE, Lee S, Cho EJ, Kim HY. Effects of the fermented Zizyphus jujuba in the amyloid β 25-35-induced Alzheimer's disease mouse model. Nutr Res Pract 2020; 15:173-186. [PMID: 33841722 PMCID: PMC8007403 DOI: 10.4162/nrp.2021.15.2.173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/28/2020] [Accepted: 08/06/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUD/OBJECTIVES Alzheimer's disease (AD) is the most common cause of dementia in the elderly. Due to the increased incidence of dementia, there is a corresponding increase concerning the importance of AD. In this study, we investigated the protective effects conferred by Zizyphus jujuba (Zj) and Zizyphus jujuba fermented by yeast (Zj-Y), on cognitive impairment in an AD mouse model. MATERIALS/METHODS AD was induced by injecting amyloid beta25-35 (Aβ25-35) in ICR mice, and subsequently 200 mg/kg Zj or Zj-Y was administered daily for 14 days. The cognitive ability of AD mice was observed through behavioral experiments in T-maze, novel object recognition, and Morris water maze tests. We subsequently measured the levels of malondialdehyde (MDA), nitric oxide (NO), aspartate aminotransferase, and alanine aminotransferase in either tissues or serum. RESULTS In behavioral tests, deterioration was revealed in the short- and long-term learning and memory functions in the Aβ25-35-injected control group compared to the normal group, indicating that Aβ25-35 injection impairs cognitive functions. However, administration of Zj and Zj-Y improved cognitive function in mice, as compared to the Aβ25-35-injected control mice. In addition, the Aβ25-35 induced elevations of MDA and NO in the brain, kidney, and liver were suppressed after exposure to Zj and Zj-Y. Especially, Zj-Y showed stronger scavenging effect against MDA and NO, as compared to Zj. CONCLUSIONS Results of the present study indicate that Zj-Y exerts a protective effect on cognitive impairment and memory dysfunction, which is exerted by attenuating the oxidative stress induced by Aβ25-35.
Collapse
Affiliation(s)
- Min Jeong Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| | - Ji Eun Jung
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
| | - Hyun Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| |
Collapse
|
25
|
Tanaka R, Imafuku T, Suzuki Y, Nishida K, Matsusaka K, Shin T, Sato Y, Ishima Y, Watanabe H, Mimata H, Maruyama T, Itoh H. Changes in redox state of albumin before and after kidney transplantation in patients with end-stage renal disease. Clin Biochem 2020; 81:20-26. [PMID: 32380091 DOI: 10.1016/j.clinbiochem.2020.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/12/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Cardiovascular disease is one of the major causes of death in patients with end-stage kidney disease who have undergone kidney transplantation. Since the complication of cardiovascular disease in patients with chronic kidney disease is strongly linked to oxidative stress, understanding the oxidative stress condition after kidney transplantation would be of great importance for the prevention of cardiovascular disease. This study examined whether improvement of renal function after kidney transplantation has an impact on the redox state of the Cys34 residue of albumin that reflects the level of oxidative stress in blood. DESIGN & METHODS We enrolled 23 patients with end-stage renal failure who received kidney transplantation. All patients were followed for 180 days after transplantation. The fractions of albumin isoforms were determined by the electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS) method. RESULTS Serum creatinine decreased significantly immediately after kidney transplantation, suggesting successful transplantations. The ESI-TOFMS method identified three albumin isoforms cysteinylated at the Cys34 residue (Cys-Cys34-albumin) and the three corresponding albumin isoforms without Cys34 cysteinylation. The fraction of total Cys-Cys34-albumin decreased transiently after kidney transplantation, and was followed by an elevation at day 7 and gradual decrease thereafter until day 180. Meanwhile, reduced albumin concentration did not change until day 14 after kidney transplantation, then showed a significant increase compared to pre-transplant level at day 30 and remained stably elevated until day 180. CONCLUSIONS Actual reduced albumin levels were found to exceed pre-transplant levels on or after day 30 following kidney transplantation unlike immediate restoration of renal function. Renal function was recovered immediately following kidney transplantation, but reduced albumen concentration increased above the pre-transplant levels only from day 30 after transplantation.
Collapse
Affiliation(s)
- Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Hasama-machi, Oita 879-5593, Japan.
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yosuke Suzuki
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Hasama-machi, Oita 879-5593, Japan
| | - Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Kotaro Matsusaka
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Toshitaka Shin
- Department of Urology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Yuhki Sato
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Hasama-machi, Oita 879-5593, Japan
| | - Yu Ishima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; Center for Clinical Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; Center for Clinical Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiromitsu Mimata
- Department of Urology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; Center for Clinical Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Yufu-shi, Hasama-machi, Oita 879-5593, Japan
| |
Collapse
|
26
|
Yepes-Calderón M, Sotomayor CG, Gans ROB, Berger SP, Leuvenink HGD, Tsikas D, Rodrigo R, Navis GJ, Bakker SJL. Post-transplantation plasma malondialdehyde is associated with cardiovascular mortality in renal transplant recipients: a prospective cohort study. Nephrol Dial Transplant 2020; 35:512-519. [PMID: 32133530 PMCID: PMC7056950 DOI: 10.1093/ndt/gfz288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In renal transplant recipients (RTRs), cardiovascular mortality is the most common cause of long-term renal graft loss. Oxidative stress (OS) has been associated with cardiovascular disease and is known to be enhanced in RTRs. We aimed to prospectively investigate whether the concentration of the OS biomarker malondialdehyde (MDA) is associated with long-term risk of cardiovascular mortality in a large cohort of RTRs. METHODS The plasma MDA concentration was measured using the thiobarbituric acid reaction assay in 604 extensively phenotyped RTRs with a functioning allograft for ≥1 year. The association between MDA and cardiovascular mortality was assessed using Cox proportional hazard regression analyses in the overall cohort and within subgroups according to significant effect modifiers. RESULTS Median circulating MDA concentration at baseline was 5.38 [interquartile range (IQR) 4.31-6.45] μmol/L. During a follow-up period of 6.4 (IQR 5.6-6.8) years, 110 (18%) RTRs died, with 40% of deaths due to cardiovascular causes. MDA concentration was significantly associated with the risk for cardiovascular mortality {hazard ratio [HR] 1.31 [95% confidence interval (CI) 1.03-1.67] per 1-SD increment}, independent of adjustment for potential confounders, including renal function, immunosuppressive therapy, smoking status and blood pressure. The association between MDA concentration and the risk for cardiovascular mortality was stronger in RTRs with relatively lower plasma ascorbic acid concentrations [≤42.5 µmol/L; HR 1.79 (95% CI 1.30-2.48) per 1-SD increment] or relatively lower estimated glomerular filtration rates [≤45 mL/min/1.73 m2; HR 2.09 (95% CI 1.45-3.00) per 1-SD increment]. CONCLUSIONS Circulating MDA concentration is independently associated with long-term risk for cardiovascular mortality, particularly in RTRs with relatively lower ascorbic acid concentrations or renal function. Further studies are warranted to elucidate whether OS-targeted interventions could decrease cardiovascular mortality in RTRs.
Collapse
Affiliation(s)
- Manuela Yepes-Calderón
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Camilo G Sotomayor
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rijk O B Gans
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Gerjan J Navis
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Honda T, Hirakawa Y, Nangaku M. The role of oxidative stress and hypoxia in renal disease. Kidney Res Clin Pract 2019; 38:414-426. [PMID: 31558011 PMCID: PMC6913586 DOI: 10.23876/j.krcp.19.063] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Oxygen is required to sustain aerobic organisms. Reactive oxygen species (ROS) are constantly released during mitochondrial oxygen consumption for energy production. Any imbalance between ROS production and its scavenger system induces oxidative stress. Oxidative stress, a critical contributor to tissue damage, is well-known to be associated with various diseases. The kidney is susceptible to hypoxia, and renal hypoxia is a common final pathway to end stage kidney disease, regardless of the underlying cause. Renal hypoxia aggravates oxidative stress, and elevated oxidative stress, in turn, exacerbates renal hypoxia. Oxidative stress is also enhanced in chronic kidney disease, especially diabetic kidney disease, through various mechanisms. Thus, the vicious cycle between oxidative stress and renal hypoxia critically contributes to the progression of renal injury. This review examines recent evidence connecting chronic hypoxia and oxidative stress in renal disease and subsequently describes several promising therapeutic approaches against oxidative stress.
Collapse
Affiliation(s)
- Tomoko Honda
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Hirakawa
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Urinary Taurine Excretion and Risk of Late Graft Failure in Renal Transplant Recipients. Nutrients 2019; 11:nu11092212. [PMID: 31540245 PMCID: PMC6770760 DOI: 10.3390/nu11092212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022] Open
Abstract
Taurine is a sulfur containing nutrient that has been shown to protect against oxidative stress, which has been implicated in the pathophysiology leading to late graft failure after renal transplantation. We prospectively investigated whether high urinary taurine excretion, reflecting high taurine intake, is associated with low risk for development of late graft failure in renal transplant recipients (RTR). Urinary taurine excretion was measured in a longitudinal cohort of 678 stable RTR. Prospective associations were assessed using Cox regression analyses. Graft failure was defined as the start of dialysis or re-transplantation. In RTR (58% male, 53 ± 13 years old, estimated glomerular filtration rate (eGFR) 45 ± 19 mL/min/1.73 m2), urinary taurine excretion (533 (210–946) µmol/24 h) was significantly associated with serum free sulfhydryl groups (β = 0.126; P = 0.001). During median follow-up for 5.3 (4.5–6.0) years, 83 (12%) patients developed graft failure. In Cox regression analyses, urinary taurine excretion was inversely associated with graft failure (hazard ratio: 0.74 (0.67–0.82); P < 0.001). This association remained significant independent of potential confounders. High urinary taurine excretion is associated with low risk of late graft failure in RTR. Therefore, increasing taurine intake may potentially support graft survival in RTR. Further studies are warranted to determine the underlying mechanisms and the potential of taurine supplementation.
Collapse
|
29
|
Association of Impaired Reactive Aldehyde Metabolism with Delayed Graft Function in Human Kidney Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2018:3704129. [PMID: 30671169 PMCID: PMC6323462 DOI: 10.1155/2018/3704129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/02/2018] [Accepted: 09/27/2018] [Indexed: 11/17/2022]
Abstract
Delayed graft function is an early complication following kidney transplantation with an unclear molecular mechanism. Here we determined whether impaired reactive aldehyde metabolism is associated with delayed graft function. Human kidney biopsies from grafts with delayed graft function were compared with grafts that did not develop delayed graft function by Ingenuity gene pathway analysis. A second series of grafts with delayed graft function (n = 10) were compared to grafts that did not develop delayed graft function (n = 10) by measuring reactive aldehyde metabolism, reactive aldehyde-induced protein adduct formation, and aldehyde dehydrogenase (ALDH) gene and protein expression. In the first series of kidney biopsies, several gene families known for metabolizing reactive aldehydes, such as aldehyde dehydrogenase (ALDH), aldo-keto reductase (AKR), and glutathione-S transferase (GSTA), were upregulated in kidneys that did not develop delayed graft function versus those that did. In the second series of kidney grafts, we focused on measuring aldehyde-induced protein adducts and ALDH enzymatic activity. The reactive aldehyde metabolism by ALDH enzymes was reduced in kidneys with delayed graft function compared to those that did not (37 ± 12∗ vs. 79 ± 5 μg/min/mg tissue, ∗P < 0.005, respectively). ALDH enzymatic activity was also negatively correlated with length of hospital stay after a kidney transplant. Together, our study identifies a reduced ALDH enzymatic activity with kidneys developing delayed graft function compared to those that did not. Measuring ALDH enzymatic activity and reactive aldehyde-induced protein adducts can potentially be further developed as a biomarker to assess for delayed graft function and recovery from a kidney transplant.
Collapse
|
30
|
Unveiling the Role of DNA Methylation in Kidney Transplantation: Novel Perspectives toward Biomarker Identification. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1602539. [PMID: 30766879 PMCID: PMC6350635 DOI: 10.1155/2019/1602539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/30/2018] [Indexed: 12/13/2022]
Abstract
The burden of chronic kidney disease is dramatically rising, making it a major public health concern worldwide. Kidney transplantation is now the best treatment for patients with end-stage renal disease. Although kidney transplantation may improve survival and quality of life, its long-term results are hampered by immune- and/or non-immune-mediated complications. Thus, the identification of transplanted patients with a higher risk of posttransplant complications has become a big challenge for public health. However, current biomarkers of posttransplant complications have a poor predictive value, rising the need to explore novel approaches for the management of transplant patient. In this review we summarize the emerging literature about DNA methylation in kidney transplant complications, in order to highlight its perspectives toward biomarker identification. In the forthcoming future the monitoring of DNA methylation in kidney transplant patients could become a plausible strategy toward the prevention and/or treatment of kidney transplant complications.
Collapse
|
31
|
Sundararaghavan VL, Binepal S, Stec DE, Sindhwani P, Hinds TD. Bilirubin, a new therapeutic for kidney transplant? Transplant Rev (Orlando) 2018; 32:234-240. [PMID: 29983261 PMCID: PMC6535229 DOI: 10.1016/j.trre.2018.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/16/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022]
Abstract
In patients with end-stage renal disease, kidney transplantation has been associated with numerous benefits, including increased daily activity, and better survival rates. However, over 20% of kidney transplants result in rejection within five years. Rejection is primarily due to a hypersensitive immune system and ischemia/reperfusion injury. Bilirubin has been shown to be a potent antioxidant that is capable of potentially reversing or preventing damage from reactive oxygen species generated from ischemia and reperfusion. Additionally, bilirubin has several immunomodulatory effects that can dampen the immune system to promote organ acceptance. Increased bilirubin has also been shown to have a positive impact on renal hemodynamics, which is critical post-transplantation. Lastly, bilirubin levels have been correlated with biomarkers of successful transplantation. In this review, we discuss a multitude of potentially beneficial effects that bilirubin has on kidney acceptance of transplantation based on numerous clinical trials and animal models. Exogenous bilirubin delivery or increasing endogenous levels pre- or post-transplantation may have therapeutic benefits.
Collapse
Affiliation(s)
- Vikram L Sundararaghavan
- Department of Urology and Renal Transplant, Toledo, OH 43614, USA; Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Sivjot Binepal
- Internal Medicine Department, Kettering Medical Center, Kettering, OH 45429, USA
| | - David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Puneet Sindhwani
- Department of Urology and Renal Transplant, Toledo, OH 43614, USA
| | - Terry D Hinds
- Department of Urology and Renal Transplant, Toledo, OH 43614, USA; Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| |
Collapse
|
32
|
Selby PJ, Banks RE, Gregory W, Hewison J, Rosenberg W, Altman DG, Deeks JJ, McCabe C, Parkes J, Sturgeon C, Thompson D, Twiddy M, Bestall J, Bedlington J, Hale T, Dinnes J, Jones M, Lewington A, Messenger MP, Napp V, Sitch A, Tanwar S, Vasudev NS, Baxter P, Bell S, Cairns DA, Calder N, Corrigan N, Del Galdo F, Heudtlass P, Hornigold N, Hulme C, Hutchinson M, Lippiatt C, Livingstone T, Longo R, Potton M, Roberts S, Sim S, Trainor S, Welberry Smith M, Neuberger J, Thorburn D, Richardson P, Christie J, Sheerin N, McKane W, Gibbs P, Edwards A, Soomro N, Adeyoju A, Stewart GD, Hrouda D. Methods for the evaluation of biomarkers in patients with kidney and liver diseases: multicentre research programme including ELUCIDATE RCT. PROGRAMME GRANTS FOR APPLIED RESEARCH 2018. [DOI: 10.3310/pgfar06030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BackgroundProtein biomarkers with associations with the activity and outcomes of diseases are being identified by modern proteomic technologies. They may be simple, accessible, cheap and safe tests that can inform diagnosis, prognosis, treatment selection, monitoring of disease activity and therapy and may substitute for complex, invasive and expensive tests. However, their potential is not yet being realised.Design and methodsThe study consisted of three workstreams to create a framework for research: workstream 1, methodology – to define current practice and explore methodology innovations for biomarkers for monitoring disease; workstream 2, clinical translation – to create a framework of research practice, high-quality samples and related clinical data to evaluate the validity and clinical utility of protein biomarkers; and workstream 3, the ELF to Uncover Cirrhosis as an Indication for Diagnosis and Action for Treatable Event (ELUCIDATE) randomised controlled trial (RCT) – an exemplar RCT of an established test, the ADVIA Centaur® Enhanced Liver Fibrosis (ELF) test (Siemens Healthcare Diagnostics Ltd, Camberley, UK) [consisting of a panel of three markers – (1) serum hyaluronic acid, (2) amino-terminal propeptide of type III procollagen and (3) tissue inhibitor of metalloproteinase 1], for liver cirrhosis to determine its impact on diagnostic timing and the management of cirrhosis and the process of care and improving outcomes.ResultsThe methodology workstream evaluated the quality of recommendations for using prostate-specific antigen to monitor patients, systematically reviewed RCTs of monitoring strategies and reviewed the monitoring biomarker literature and how monitoring can have an impact on outcomes. Simulation studies were conducted to evaluate monitoring and improve the merits of health care. The monitoring biomarker literature is modest and robust conclusions are infrequent. We recommend improvements in research practice. Patients strongly endorsed the need for robust and conclusive research in this area. The clinical translation workstream focused on analytical and clinical validity. Cohorts were established for renal cell carcinoma (RCC) and renal transplantation (RT), with samples and patient data from multiple centres, as a rapid-access resource to evaluate the validity of biomarkers. Candidate biomarkers for RCC and RT were identified from the literature and their quality was evaluated and selected biomarkers were prioritised. The duration of follow-up was a limitation but biomarkers were identified that may be taken forward for clinical utility. In the third workstream, the ELUCIDATE trial registered 1303 patients and randomised 878 patients out of a target of 1000. The trial started late and recruited slowly initially but ultimately recruited with good statistical power to answer the key questions. ELF monitoring altered the patient process of care and may show benefits from the early introduction of interventions with further follow-up. The ELUCIDATE trial was an ‘exemplar’ trial that has demonstrated the challenges of evaluating biomarker strategies in ‘end-to-end’ RCTs and will inform future study designs.ConclusionsThe limitations in the programme were principally that, during the collection and curation of the cohorts of patients with RCC and RT, the pace of discovery of new biomarkers in commercial and non-commercial research was slower than anticipated and so conclusive evaluations using the cohorts are few; however, access to the cohorts will be sustained for future new biomarkers. The ELUCIDATE trial was slow to start and recruit to, with a late surge of recruitment, and so final conclusions about the impact of the ELF test on long-term outcomes await further follow-up. The findings from the three workstreams were used to synthesise a strategy and framework for future biomarker evaluations incorporating innovations in study design, health economics and health informatics.Trial registrationCurrent Controlled Trials ISRCTN74815110, UKCRN ID 9954 and UKCRN ID 11930.FundingThis project was funded by the NIHR Programme Grants for Applied Research programme and will be published in full inProgramme Grants for Applied Research; Vol. 6, No. 3. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Peter J Selby
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Rosamonde E Banks
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Walter Gregory
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Jenny Hewison
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - William Rosenberg
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - Douglas G Altman
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Jonathan J Deeks
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Christopher McCabe
- Department of Emergency Medicine, University of Alberta Hospital, Edmonton, AB, Canada
| | - Julie Parkes
- Primary Care and Population Sciences Academic Unit, University of Southampton, Southampton, UK
| | | | | | - Maureen Twiddy
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Janine Bestall
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | | | - Tilly Hale
- LIVErNORTH Liver Patient Support, Newcastle upon Tyne, UK
| | - Jacqueline Dinnes
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Marc Jones
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | | | | | - Vicky Napp
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Alice Sitch
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sudeep Tanwar
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - Naveen S Vasudev
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Baxter
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sue Bell
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - David A Cairns
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | | | - Neil Corrigan
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Peter Heudtlass
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Nick Hornigold
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Claire Hulme
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Michelle Hutchinson
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Carys Lippiatt
- Department of Specialist Laboratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Roberta Longo
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Matthew Potton
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Stephanie Roberts
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Sheryl Sim
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Sebastian Trainor
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Matthew Welberry Smith
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - James Neuberger
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Paul Richardson
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - John Christie
- Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Neil Sheerin
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - William McKane
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Paul Gibbs
- Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | | | - Naeem Soomro
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Grant D Stewart
- NHS Lothian, Edinburgh, UK
- Academic Urology Group, University of Cambridge, Cambridge, UK
| | - David Hrouda
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
33
|
Modarresi A, Nafar M, Sahraei Z, Salamzadeh J, Chaibakhsh S, Ziaie S, Parvin M, Panahi Y, Einollahi B. N-acetylcysteine decreases urinary level of neutrophil gelatinase-associated lipocalin in deceased-donor renal transplant recipients: a randomized clinical trial. Biomarkers 2018; 23:589-596. [PMID: 29683755 DOI: 10.1080/1354750x.2018.1468823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
CONTEXT Acute kidney injury (AKI) is a common complication after kidney transplantation (KT), especially in recipients from deceased donors. Urinary neutrophil gelatinase-associated lipocalin (u-NGAL) is an early and sensitive marker of AKI after transplantation. OBJECTIVES We assessed the renoprotective effect of N-acetylcysteine (NAC) on u-NGAL levels as an early prognostic marker of graft function immediately after transplantation. MATERIALS AND METHODS A double-blind, randomized, placebo-controlled trial was conducted on 70 deceased-donor KT recipients ( www.irct.ir , trial registration number: IRCT2014090214693N4). Patients received 600 mg oral NAC or placebo twice daily from day 0 to 5 and urine samples were taken before, and on the first and fifth days after transplantation. U-NGAL and early graft function were compared between the two groups. RESULTS NAC significantly reduced u-NGAL levels compared to placebo (p value = 0.02), while improvement in early graft function with NAC did not reach statistical significance. CONCLUSIONS This study showed that NAC administration in deceased-donor KT recipients can reduce tubular kidney injury, evidenced by u-NGAL measurements. Improvement in early graft function needs a larger sample size to reach a statistical conclusion.
Collapse
Affiliation(s)
- Atieh Modarresi
- a Research Center for Rational Use of Drugs, Tehran University of Medical Sciences , Tehran , Iran
| | - Mohsen Nafar
- b Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zahra Sahraei
- c Department of Clinical Pharmacy, School of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Jamshid Salamzadeh
- c Department of Clinical Pharmacy, School of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Samira Chaibakhsh
- a Research Center for Rational Use of Drugs, Tehran University of Medical Sciences , Tehran , Iran.,d Department of Biostatistics , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Shadi Ziaie
- c Department of Clinical Pharmacy, School of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mahmoud Parvin
- b Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Yunes Panahi
- e Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatollah University of Medical Sciences , Tehran , Iran
| | - Behzad Einollahi
- f Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
34
|
See SB, Aubert O, Loupy A, Veras Y, Lebreton X, Gao B, Legendre C, Anglicheau D, Zorn E. Post-Transplant Natural Antibodies Associate with Kidney Allograft Injury and Reduced Long-Term Survival. J Am Soc Nephrol 2018; 29:1761-1770. [PMID: 29602833 DOI: 10.1681/asn.2017111157] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/26/2018] [Indexed: 11/03/2022] Open
Abstract
Background The development of antibodies specific to HLA expressed on donor tissue (donor-specific antibodies [DSAs]) is a prominent risk factor for kidney graft loss. Non-HLA antibodies with pathogenic potential have also been described, including natural antibodies (Nabs). These IgG Nabs bind to immunogenic self-determinants, including oxidation-related antigens.Methods To examine the relationship of Nabs with graft outcomes, we assessed Nabs in blinded serum specimens collected from a retrospective cohort of 635 patients who received a transplant between 2005 and 2010 at Necker Hospital in Paris, France. Serum samples were obtained immediately before transplant and at the time of biopsy-proven rejection within the first year or 1 year after transplant. Nabs were detected by ELISA through reactivity to the generic oxidized epitope malondialdehyde.Results Univariate Cox regression analysis identified the development of post-transplant Nabs (defined as 50% increase in reactivity to malondialdehyde) as a significant risk factor for graft loss (hazard ratio, 2.68; 95% confidence interval, 1.49 to 4.82; P=0.001). Post-transplant Nabs also correlated with increased mean Banff scores for histologic signs of graft injury in post-transplant biopsy specimens. Multivariable Cox analyses confirmed Nabs development as a risk factor independent from anti-HLA DSAs (hazard ratio, 2.07; 95% confidence interval, 1.03 to 4.17; P=0.04). Moreover, patients with Nabs and DSAs had a further increased risk of kidney graft loss.Conclusions These findings reveal an association between Nabs, kidney graft injury, and eventual graft failure, suggesting the involvement of Nabs in immune mechanisms of rejection.
Collapse
Affiliation(s)
- Sarah B See
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Olivier Aubert
- Department of Kidney Transplantation, Hopital Necker, Université Paris Descartes and Assistance Publique Hopitaux de Paris, Paris, France.,Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S970, Paris, France; and
| | - Alexandre Loupy
- Department of Kidney Transplantation, Hopital Necker, Université Paris Descartes and Assistance Publique Hopitaux de Paris, Paris, France.,Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S970, Paris, France; and
| | - Yokarla Veras
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Xavier Lebreton
- Department of Kidney Transplantation, Hopital Necker, Université Paris Descartes and Assistance Publique Hopitaux de Paris, Paris, France
| | - Baoshan Gao
- Department of Urology/Transplant Center, The First Hospital of Jilin University, Changchun, China
| | - Christophe Legendre
- Department of Kidney Transplantation, Hopital Necker, Université Paris Descartes and Assistance Publique Hopitaux de Paris, Paris, France
| | - Dany Anglicheau
- Department of Kidney Transplantation, Hopital Necker, Université Paris Descartes and Assistance Publique Hopitaux de Paris, Paris, France
| | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, New York;
| |
Collapse
|
35
|
Organ-specific responses during brain death: increased aerobic metabolism in the liver and anaerobic metabolism with decreased perfusion in the kidneys. Sci Rep 2018. [PMID: 29535334 PMCID: PMC5849719 DOI: 10.1038/s41598-018-22689-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatic and renal energy status prior to transplantation correlates with graft survival. However, effects of brain death (BD) on organ-specific energy status are largely unknown. We studied metabolism, perfusion, oxygen consumption, and mitochondrial function in the liver and kidneys following BD. BD was induced in mechanically-ventilated rats, inflating an epidurally-placed Fogarty-catheter, with sham-operated rats as controls. A 9.4T-preclinical MRI system measured hourly oxygen availability (BOLD-related R2*) and perfusion (T1-weighted). After 4 hrs, tissue was collected, mitochondria isolated and assessed with high-resolution respirometry. Quantitative proteomics, qPCR, and biochemistry was performed on stored tissue/plasma. Following BD, the liver increased glycolytic gene expression (Pfk-1) with decreased glycogen stores, while the kidneys increased anaerobic- (Ldha) and decreased gluconeogenic-related gene expression (Pck-1). Hepatic oxygen consumption increased, while renal perfusion decreased. ATP levels dropped in both organs while mitochondrial respiration and complex I/ATP synthase activity were unaffected. In conclusion, the liver responds to increased metabolic demands during BD, enhancing aerobic metabolism with functional mitochondria. The kidneys shift towards anaerobic energy production while renal perfusion decreases. Our findings highlight the need for an organ-specific approach to assess and optimise graft quality prior to transplantation, to optimise hepatic metabolic conditions and improve renal perfusion while supporting cellular detoxification.
Collapse
|
36
|
Zhou Q, Lv D, Xia Y, Zhao Z, Zou H. Decreased expression of sirtuin 3 protein correlates with early stage chronic renal allograft dysfunction in a rat kidney model. Exp Ther Med 2018; 15:3725-3732. [PMID: 29581733 PMCID: PMC5863580 DOI: 10.3892/etm.2018.5909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
Chronic renal allograft dysfunction (CRAD) is the primary factor affecting the long-term survival of patients who have undergone renal transplantation. Oxidative stress and inflammation serve an important role in the pathological damage caused by CRAD in the early post-transplantation phase. Previous studies have demonstrated that sirtuin 3 (sirt3) protects cells from oxidative stress and inflammation. A model of renal orthotopic transplantation was established in the current study and kidney samples were harvested from the rats 12 weeks following surgery. Compared with the control groups, there were significantly increased levels of serum creatinine, blood urea nitrogen and 24 h urinary protein in the allograft group (P<0.05). Pathological examinations indicated mononuclear cell infiltration and intimal proliferation in the allograft group, which had a higher Banff score compared with the control groups. There were increased levels of malondialdehyde, decreased sirt3 protein expression and decreased superoxide dismutase enzyme activity in the allograft group compared with the control groups (P<0.05). In addition, there was a negative correlation between the expression of sirt3 and 24 h urinary protein excretion, serum creatinine levels, tubulointerstitial mononuclear cell infiltration, smooth muscle cell migration in the vascular wall and Banff scores. Thus, sirt3 may serve an important protective role in the early stage of CRAD.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Daoyuan Lv
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Yue Xia
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhihong Zhao
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Hequn Zou
- Department of Nephrology, Institute of Nephrology and Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
37
|
Huang J, Yao X, Weng G, Qi H, Ye X. Protective effect of curcumin against cyclosporine A‑induced rat nephrotoxicity. Mol Med Rep 2018; 17:6038-6044. [PMID: 29436671 DOI: 10.3892/mmr.2018.8591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/02/2017] [Indexed: 11/05/2022] Open
Abstract
This study explored the potential value of curcumin, a natural product, in the protection of CsA‑induced nephrotoxicity. The aim of the present study was to investigate the effects of curcumin on Cyclosporine A (CsA)‑induced renal oxidative stress and determine the potential underlying molecular mechanisms of the renal protective effects of Cur. HK‑2 human renal cells were co‑treated with CsA and various doses of Cur. Cell survival rate was determined by an MTT assay, total cellular protein was collected and oxidative stress in cell homogenates was evaluated by determining the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH‑Px) and catalase (CAT), the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), and total antioxidant capacity. Furthermore, Bcl‑2 and Bcl‑2‑associated X (Bax) protein expression was measured by western blot analysis. In addition, a CsA‑induced nephrotoxicity (CAN) rat model was also established. Renal function was analyzed by measuring creatinine (Crea) and blood urea nitrogen (BUN) in the serum of rats, and histopathological examination was performed on renal tissues using hematoxylin and eosin staining, periodic acid‑Schiff staining and nuclear factor‑κB (NF‑κB) immunostaining. The results demonstrated that treatment of HK‑2 cells with CsA significantly increased ROS and MDA levels, and decreased the activities of SOD, GSH‑Px and CAT, compared with the control group. However, these effects of CsA were dose‑dependently improved by treatment with Cur. In addition, Cur treatment increased Bcl‑2 and decreased Bax protein in HK‑2 cells, compared with cells treated with CsA alone. In the CAN rat model CsA (30 mg/kg) treatment significantly elevated serum Crea levels and BUN, but lowered endogenous Crea clearance rate, compared with the control group. Co‑administration of Cur with CsA significantly reversed the effects of CsA on serum Crea levels, BUN and Crea clearance rate (Ccr). Additionally, Cur alleviated CsA‑induced renal cell injury, as less vacuolar degeneration of glomerular cells was observed compared with the CsA alone group. In conclusion, Cur may increase renal antioxidant capacity and reduce the Bax/Bcl‑2 ratio, subsequently improving CsA‑induced renal failure and renal tubular deformation and cell vacuolization.
Collapse
Affiliation(s)
- Jianjun Huang
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Xuping Yao
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Guobin Weng
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Honggang Qi
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| | - Xiaolei Ye
- Ningbo Institute of Medical Sciences, Ningbo University, Ningbo, Zhejiang 315100, P.R. China
| |
Collapse
|
38
|
Tabriziani H, Lipkowitz MS, Vuong N. Chronic kidney disease, kidney transplantation and oxidative stress: a new look to successful kidney transplantation. Clin Kidney J 2018; 11:130-135. [PMID: 29423212 PMCID: PMC5798135 DOI: 10.1093/ckj/sfx091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/10/2017] [Indexed: 01/03/2023] Open
Abstract
Oxidative stress plays a key role in the pathophysiological process of uremia and its complications, particularly in cardiovascular disease. The level of oxidative stress markers is known to increase as chronic kidney disease progresses and correlates significantly with the level of renal function. Hemodialysis and peritoneal dialysis are major modes of renal replacement therapy for end-stage renal disease patients, but unfortunately they are also accompanied by increased oxidative stress. Successful kidney transplantation, however, results in near normalization of the antioxidant status and lipid metabolism by eliminating free radicals despite the surge of oxidative stress caused by the surgical procedure and ischemic injury to the organ during the operation. This success is associated with both improved renal function, reduced cardiovascular complications and overall improved morbidity and mortality. Measuring oxidative stress markers such as malondialdehyde is promising in predicting allograft survival and delayed graft function.
Collapse
Affiliation(s)
- Hossein Tabriziani
- Department of Transplant Nephrology, Loma Linda University, Loma Linda, CA, USA
| | - Michael S Lipkowitz
- Nephrology and Hypertension Division, Georgetown University, Washington, DC, USA
| | - Nhan Vuong
- Internal Medicine Department, Loma Linda University Medical Center, Loma Linda, CA, USA
- Internal Medicine Department, Riverside University Medical Center, Moreno Valley, CA, USA
| |
Collapse
|
39
|
Bontha SV, Maluf DG, Archer KJ, Dumur CI, Dozmorov M, King A, Akalin E, Mueller TF, Gallon L, Mas VR. Effects of DNA Methylation on Progression to Interstitial Fibrosis and Tubular Atrophy in Renal Allograft Biopsies: A Multi-Omics Approach. Am J Transplant 2017; 17:3060-3075. [PMID: 28556588 PMCID: PMC5734859 DOI: 10.1111/ajt.14372] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/01/2017] [Accepted: 05/20/2017] [Indexed: 01/25/2023]
Abstract
Progressive fibrosis of the interstitium is the dominant final pathway in renal destruction in native and transplanted kidneys. Over time, the continuum of molecular events following immunological and nonimmunological insults lead to interstitial fibrosis and tubular atrophy and culminate in kidney failure. We hypothesize that these insults trigger changes in DNA methylation (DNAm) patterns, which in turn could exacerbate injury and slow down the regeneration processes, leading to fibrosis development and graft dysfunction. Herein, we analyzed biopsy samples from kidney allografts collected 24 months posttransplantation and used an integrative multi-omics approach to understand the underlying molecular mechanisms. The role of DNAm and microRNAs on the graft gene expression was evaluated. Enrichment analyses of differentially methylated CpG sites were performed using GenomeRunner. CpGs were strongly enriched in regions that were variably methylated among tissues, implying high tissue specificity in their regulatory impact. Corresponding to this methylation pattern, gene expression data were related to immune response (activated state) and nephrogenesis (inhibited state). Preimplantation biopsies showed similar DNAm patterns to normal allograft biopsies at 2 years posttransplantation. Our findings demonstrate for the first time a relationship among epigenetic modifications and development of interstitial fibrosis, graft function, and inter-individual variation on long-term outcomes.
Collapse
Affiliation(s)
- Sai Vineela Bontha
- Translational Genomics Transplant Laboratory, Transplant Division, University of Virginia, Department of Surgery, PO Box 800625. 409 Lane Rd, Charlottesville, VA, 22908- 0625, USA
| | - Daniel G. Maluf
- Translational Genomics Transplant Laboratory, Transplant Division, University of Virginia, Department of Surgery, PO Box 800625. 409 Lane Rd, Charlottesville, VA, 22908- 0625, USA
| | - Kellie J. Archer
- Division of Biostatistics, The Ohio State University, 1841 Neil Avenue, 240 Cunz Hall, Columbus, OH 43210
| | - Catherine I. Dumur
- Department of Pathology, Virginia Commonwealth University, PO Box 980662, 1101 E. Marshall Street, Richmond, VA 23298-0662
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, One Capitol Square, room 730, 830 East Main Street, Richmond, Virginia 23298
| | - Anne King
- Division of Nephrology, Internal Medicine. Virginia commonwealth University, VA, 1101 E. Marshall Street, Richmond, VA 23298-0662
| | - Enver Akalin
- Departments of Clinical Medicine and Surgery, Albert Einstein College of Medicine Montefiore Medical Center, 11 E 210th St, Bronx, NY 10467
| | - Thomas F. Mueller
- Division of Nephorology, Internal Medicine, University Hospital Zurich, Ramistrasse 100, Zurich-8091
| | - Lorenzo Gallon
- Department of Medicine-Nephrology, Northwestern University676 N St Clair St # 100, Chicago, IL 60611
| | - Valeria R. Mas
- Translational Genomics Transplant Laboratory, Transplant Division, University of Virginia, Department of Surgery, PO Box 800625. 409 Lane Rd, Charlottesville, VA, 22908- 0625, USA
| |
Collapse
|
40
|
Hocher B, Adamski J. Metabolomics for clinical use and research in chronic kidney disease. Nat Rev Nephrol 2017; 13:269-284. [PMID: 28262773 DOI: 10.1038/nrneph.2017.30] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic kidney disease (CKD) has a high prevalence in the general population and is associated with high mortality; a need therefore exists for better biomarkers for diagnosis, monitoring of disease progression and therapy stratification. Moreover, very sensitive biomarkers are needed in drug development and clinical research to increase understanding of the efficacy and safety of potential and existing therapies. Metabolomics analyses can identify and quantify all metabolites present in a given sample, covering hundreds to thousands of metabolites. Sample preparation for metabolomics requires a very fast arrest of biochemical processes. Present key technologies for metabolomics are mass spectrometry and proton nuclear magnetic resonance spectroscopy, which require sophisticated biostatistic and bioinformatic data analyses. The use of metabolomics has been instrumental in identifying new biomarkers of CKD such as acylcarnitines, glycerolipids, dimethylarginines and metabolites of tryptophan, the citric acid cycle and the urea cycle. Biomarkers such as c-mannosyl tryptophan and pseudouridine have better performance in CKD stratification than does creatinine. Future challenges in metabolomics analyses are prospective studies and deconvolution of CKD biomarkers from those of other diseases such as metabolic syndrome, diabetes mellitus, inflammatory conditions, stress and cancer.
Collapse
Affiliation(s)
- Berthold Hocher
- Department of Basic Medicine, Medical College of Hunan University, 410006 Changsha, China
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
41
|
Javedan G, Shidfar F, Davoodi SH, Ajami M, Gorjipour F, Sureda A, Nabavi SM, Daglia M, Pazoki-Toroudi H. Conjugated linoleic acid rat pretreatment reduces renal damage in ischemia/reperfusion injury: Unraveling antiapoptotic mechanisms and regulation of phosphorylated mammalian target of rapamycin. Mol Nutr Food Res 2016; 60:2665-2677. [PMID: 27466783 DOI: 10.1002/mnfr.201600112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023]
Abstract
SCOPE Conjugated linoleic acids (CLAs) are dietary components with beneficial effects on human health. The aim of this study was to evaluate the potential benefits of CLA pretreatment in a rat model of renal ischemia/reperfusion injury (IRI). METHODS AND RESULTS Animals were treated with CLAs (200 mg/kg/day) or water for two weeks prior to sham surgery or to surgery to induce IRI. Renal function, oxidative stress, apoptosis, and cell proliferation markers, were evaluated. Moreover, kidney sections were submitted to histological evaluation. IRI induced increased serum creatinine, blood urea nitrogen, fractional sodium excretion, malondialdehyde, Bax, and phosphorylated mammalian target of rapamycin (P-mTOR), and decreased clearance of creatine, superoxide dismutase and catalase activities, and Bax in comparison with control groups. CLA prefeeding restored, at least in part, the above reported markers to normal levels, increased the anti-apoptotic protein, B-cell lymphoma 2 (Bcl-2), and reduce the histological damage. CONCLUSION The results suggest that the decreased renal tissue damage and improved renal function and oxidative stress, in rats pretreated with CLAs before renal IRI induction, could be associated with downregulation of Bax and P-mTOR, and upregulation of Bcl-2. CLAs pretreatment resulted to protect against IRI through the regulation of signaling pathways involved in apoptosis.
Collapse
Affiliation(s)
- Gholamali Javedan
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Department of Clinical Nutrition and Dietetic, National Institute and Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Ajami
- Department of Food and Nutrition Policy and Planning Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Gorjipour
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, and CIBERobn (Physiopathology of Obesity and Nutrition CB12/03/30038), Palma de Mallorca, Spain
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Costa NA, Gut AL, Azevedo PS, Tanni SE, Cunha NB, Magalhães ES, Silva GB, Polegato BF, Zornoff LAM, de Paiva SAR, Balbi AL, Ponce D, Minicucci MF. Erythrocyte superoxide dismutase as a biomarker of septic acute kidney injury. Ann Intensive Care 2016; 6:95. [PMID: 27709557 PMCID: PMC5052240 DOI: 10.1186/s13613-016-0198-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/29/2016] [Indexed: 12/29/2022] Open
Abstract
Background Oxidative stress is a key feature of sepsis and could be a common pathophysiological pathway between septic shock and acute kidney injury (AKI) Our objective was to evaluate the erythrocyte superoxide dismutase (SOD1) activity as predictor of AKI in patients with septic shock. Methods This is a prospective observational study that evaluated 175 consecutive patients over the age of 18 years with septic shock upon intensive care unit (ICU) admission. However, 43 patients were excluded (27 due to AKI at ICU admission). Thus, 132 patients were enrolled in the study. At the time of the patients’ enrollment, demographic information was recorded. Blood samples were taken within the first 24 h of the patient’s admission to determine the erythrocyte SOD1 activity. All patients were followed throughout the ICU stay, and the development of AKI was evaluated. In addition, we also evaluated 17 control subjects. Results The mean age of patients with septic shock was 63.2 ± 15.7 years, 53 % were male and the median ICU stay was 8 days (4–16). Approximately 50.7 % developed AKI during the ICU stay. The median erythrocyte SOD1 activity was 2.92 (2.19–3.92) U/mg Hb. When compared to control subjects, septic shock patients had a higher serum malondialdehyde concentration and lower erythrocyte SOD1 activity. In univariate analysis, erythrocyte SOD1 activity was lower in patients who developed AKI. The ROC curve analysis revealed that lower erythrocyte SOD1 activity was associated with AKI development (AUC 0.686; CI 95 % 0.595–0.777; p < 0.001) at the cutoff of <3.32 U/mg Hb. In the logistic regression models, SOD1 activity higher than 3.32 U/mg Hb was associated with protection of AKI development when adjusted by hemoglobin, phosphorus and APACHE II score (OR 0.309; CI 95 % 0.137–0.695; p = 0.005) and when adjusted by age, gender, chronic kidney disease, admission category (medical or surgery) and APACHE II score (OR 0.129; CI 95 % 0.033–0.508; p = 0.003). Conclusions In conclusion, our data suggest that erythrocyte SOD1 activity could play a role as an early marker of septic AKI and could be seen as a new research avenue in the field of biomarker in AKI. However, our study did not show a strong correlation between SOD activity and AKI. Nevertheless, these original data do warrant further research in order to confirm or not this hypothesis.
Collapse
Affiliation(s)
- Nara Aline Costa
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Ana Lúcia Gut
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Paula Schmidt Azevedo
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Suzana Erico Tanni
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Natália Baraldi Cunha
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Eloá Siqueira Magalhães
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Graziela Biude Silva
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Bertha Furlan Polegato
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Leonardo Antonio Mamede Zornoff
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Sergio Alberto Rupp de Paiva
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - André Luís Balbi
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Daniela Ponce
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil
| | - Marcos Ferreira Minicucci
- Department of Internal Medicine, Botucatu Medical School, UNESP - Univ Estadual Paulista, Rubião Júnior s/n, Botucatu, SP, CEP: 18618-970, Brazil.
| |
Collapse
|
43
|
Sosa Peña MDP, Lopez-Soler R, Melendez JA. Senescence in chronic allograft nephropathy. Am J Physiol Renal Physiol 2016; 315:F880-F889. [PMID: 27306980 DOI: 10.1152/ajprenal.00195.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite increasing numbers of patients on dialysis, the numbers of renal transplants performed yearly have remained relatively static. During the last 50 years, there have been many advances in the pharmacology of prevention of organ rejection. However, most patients will suffer from a slow but steady decline in renal function leading to graft loss. The most common cause of long-term graft loss is chronic allograft nephropathy (CAN). Therefore, elucidating and understanding the mechanisms involved in CAN is crucial for achieving better posttransplant outcomes. It is thought that the development of epithelial to mesenchymal transition (EMT) in proximal tubules is one of the first steps towards CAN, and has been shown to be a result of cellular senescence. Cells undergoing senescence acquire a senescence associated secretory phenotype (SASP) leading to the production of interleukin-1 alpha (IL-1α), which has been implicated in several degenerative and inflammatory processes including renal disease. A central mediator in SASP activation is the production of reactive oxygen species (ROS), which are produced in response to numerous physiological and pathological stimuli. This review explores the connection between SASP and the development of EMT/CAN in an effort to suggest future directions for research leading to improved long-term graft outcomes.
Collapse
Affiliation(s)
| | - Reynold Lopez-Soler
- Albany Medical Center, Department of Surgery, Division of Transplantation, Albany, New York
| | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, New York
| |
Collapse
|
44
|
Davran F, Yilmaz VT, Erdem BK, Gultekin M, Suleymanlar G, Akbas H. Association of interleukin 18-607A/C and -137C/G polymorphisms with oxidative stress in renal transplant recipients. Ren Fail 2016; 38:717-22. [PMID: 26983036 DOI: 10.3109/0886022x.2016.1158034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objectives IL-18 mediates various inflammatory and oxidative responses including renal injury, fibrosis, and graft rejection. It has been reported that the promoter -607 and -137 polymorphisms of IL-18 influence the level of IL-18. This prospective observational study investigated the association between oxidative stress with IL-18-607 and -137 polymorphisms in renal transplant recipients. Patients and methods This study included 75 renal transplant recipients (28 female, 47 male) from living-related donors. Blood samples were collected immediately before and after transplantation at day 7 and month 1. Serum IL-18, creatinine, cystatin C, CRP, and oxidative stress markers (TOS, TAC) were measured. The Oxidative Stress Index (OSI) was calculated. Polymorphisms of the promoter region of the IL-18 gene, IL18-607A/C, and -137C/G were determined by analysis of a "real-time PCR/Melting curve". Results Serum creatinine, cystatin C, CRP, IL-18, TOS, and OSI levels significantly decreased after transplantation. Post-transplant levels of serum TAC and estimated GFR demonstrated consistent significant increases. Serum IL-18 levels were significantly higher in patients with IL-18-137 GG and IL-18-607 CC genotypes before transplantation. Conclusion Our results indicate that the IL-18-137 GG and -607 CC genotypes contribute to higher IL-18 levels; however, the influence of these polymorphisms on oxidative stress has not been observed.
Collapse
Affiliation(s)
- Fatih Davran
- a Department of Biochemistry, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Vural Taner Yilmaz
- b Division of Nephrology, Department of Internal Medicine, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Bilge Karatoy Erdem
- a Department of Biochemistry, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Meral Gultekin
- c Department of Microbiology, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Gultekin Suleymanlar
- b Division of Nephrology, Department of Internal Medicine, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| | - Halide Akbas
- a Department of Biochemistry, Faculty of Medicine , Akdeniz University , Antalya , Turkey
| |
Collapse
|
45
|
Mourão TB, Mine KL, Campos EF, Medina-Pestana JO, Tedesco-Silva H, Gerbase-DeLima M. Predicting delayed kidney graft function with gene expression in preimplantation biopsies and first-day posttransplant blood. Hum Immunol 2016; 77:353-7. [PMID: 26851369 DOI: 10.1016/j.humimm.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 11/25/2015] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to investigate possible markers for predicting delayed graft function (DGF). To this end we analyzed, in pre-implantation biopsies (PIB) and in first-day post-Tx peripheral blood mononuclear cells (PBMC), the expression of five genes (ACSL4, CUBN, DEFB1, FABP3, GK) through real-time TaqMan PCR assays. These genes were selected from a large scale gene expression study in PIB. DEFB1, FABP3 and GK expression levels in PIB were lower in cases with DGF and, in a multivariate analysis which included these genes and clinical variables, only FABP3 expression remained independently associated with DGF. FABP3 expression lower than -1.32 units of relative expression conferred an odds ratio for DGF of 41.1. Compared to the PBMC of recipients without DGF, recipients with prolonged DGF (pDGF) had lower ACSL4 and higher DEFB1 expression levels. In a multivariate analysis, including PBMC gene expression levels of ACSL4, DEFB1 and TLR4 (data from a previous study with the same patients) and clinical variables, only TLR4 remained independently associated with pDGF. In summary, this study revealed FABP3 expression in PIB as a marker for DGF and disclosed new genes possibly involved in the pathogenesis of DGF.
Collapse
Affiliation(s)
- Tuíla B Mourão
- Instituto de Immunogenética - AFIP, São Paulo, SP, Brazil; Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Karina L Mine
- Instituto de Immunogenética - AFIP, São Paulo, SP, Brazil
| | - Erika F Campos
- Instituto de Immunogenética - AFIP, São Paulo, SP, Brazil; Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Jose O Medina-Pestana
- Universidade Federal de São Paulo, São Paulo, SP, Brazil; Hospital do Rim e Hipertensão, São Paulo, SP, Brazil
| | | | - Maria Gerbase-DeLima
- Instituto de Immunogenética - AFIP, São Paulo, SP, Brazil; Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
46
|
A triple-biomarker approach for the detection of delayed graft function after kidney transplantation using serum creatinine, cystatin C, and malondialdehyde. Clin Biochem 2015; 48:1033-8. [DOI: 10.1016/j.clinbiochem.2015.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 12/28/2022]
|
47
|
Pianta TJ, Peake PW, Pickering JW, Kelleher M, Buckley NA, Endre ZH. Evaluation of biomarkers of cell cycle arrest and inflammation in prediction of dialysis or recovery after kidney transplantation. Transpl Int 2015; 28:1392-404. [DOI: 10.1111/tri.12636] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/30/2014] [Accepted: 07/07/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Timothy J. Pianta
- Prince of Wales Clinical School; University of New South Wales; Sydney NSW Australia
- Northern Clinical School; Melbourne Medical School; University of Melbourne; Epping Vic Australia
| | - Philip W. Peake
- Prince of Wales Clinical School; University of New South Wales; Sydney NSW Australia
| | - John W. Pickering
- Department of Medicine; University of Otago; Christchurch New Zealand
| | - Michaela Kelleher
- Department of Nephrology; Prince of Wales Hospital; Sydney NSW Australia
| | | | - Zoltan H. Endre
- Prince of Wales Clinical School; University of New South Wales; Sydney NSW Australia
- Department of Medicine; University of Otago; Christchurch New Zealand
| |
Collapse
|
48
|
Pianta TJ, Endre ZH, Pickering JW, Buckley NA, Peake PW. Kinetic Estimation of GFR Improves Prediction of Dialysis and Recovery after Kidney Transplantation. PLoS One 2015; 10:e0125669. [PMID: 25938452 PMCID: PMC4418565 DOI: 10.1371/journal.pone.0125669] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/23/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The early prediction of delayed graft function (DGF) would facilitate patient management after kidney transplantation. METHODS In a single-centre retrospective analysis, we investigated kinetic estimated GFR under non-steady-state conditions, KeGFR, in prediction of DGF. KeGFR(sCr) was calculated at 4h, 8h and 12h in 56 recipients of deceased donor kidneys from initial serum creatinine (sCr) concentrations, estimated creatinine production rate, volume of distribution, and the difference between consecutive sCr values. The utility of KeGFR(sCr) for DGF prediction was compared with, sCr, plasma cystatin C (pCysC), and KeGFR(pCysC) similarly derived from pCysC concentrations. RESULTS At 4h, the KeGFR(sCr) area under the receiver operator characteristic curve (AUC) for DGF prediction was 0.69 (95% CI: 0.56-0.83), while sCr was not useful (AUC 0.56, (CI: 0.41-0.72). Integrated discrimination improvement analysis showed that the KeGFR(sCr) improved a validated clinical prediction model at 4h, 8h, and 12h, increasing the AUC from 0.68 (0.52-0.83) to 0.88 (0.78-0.99) at 12h (p = 0.01). KeGFR(pCysC) also improved DGF prediction. In contrast, sCr provided no improvement at any time point. CONCLUSIONS Calculation of KeGFR from sCr facilitates early prediction of DGF within 4 hours of renal transplantation.
Collapse
Affiliation(s)
- Timothy J. Pianta
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
- Melbourne Medical School, University of Melbourne, Melbourne, Australia
| | - Zoltan H. Endre
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - John W. Pickering
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | | | - Philip W. Peake
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
49
|
Miyazaki T, Yamasaki N, Tsuchiya T, Matsumoto K, Takagi K, Izumino H, Nagayasu T. Infectious episodes lead to the oxidative stress response after lung transplantation. AMERICAN JOURNAL OF CASE REPORTS 2015; 16:255-8. [PMID: 25925532 PMCID: PMC4423174 DOI: 10.12659/ajcr.893026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Case series Patient: Male, 30 • Female, 44 Final Diagnosis: Post-transplant respiratory infection Symptoms: Oxidative stress Medication: — Clinical Procedure: — Specialty: Transplantology
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoya Yamasaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Keitaro Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Takagi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroo Izumino
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
50
|
Li X, Zhuang S. Recent advances in renal interstitial fibrosis and tubular atrophy after kidney transplantation. FIBROGENESIS & TISSUE REPAIR 2014; 7:15. [PMID: 25285155 PMCID: PMC4185272 DOI: 10.1186/1755-1536-7-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/29/2014] [Indexed: 01/05/2023]
Abstract
Although kidney transplantation has been an important means for the treatment of patients with end stage of renal disease, the long-term survival rate of the renal allograft remains a challenge. The cause of late renal allograft loss, once known as chronic allograft nephropathy, has been renamed “interstitial fibrosis and tubular atrophy” (IF/TA) to reflect the histologic pattern seen on biopsy. The mechanisms leading to IF/TA in the transplanted kidney include inflammation, activation of renal fibroblasts, and deposition of extracellular matrix proteins. Identifying the mediators and factors that trigger IF/TA may be useful in early diagnosis and development of novel therapeutic strategies for improving long-term renal allograft survival and patient outcomes. In this review, we highlight the recent advances in our understanding of IF/TA from three aspects: pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xiaojun Li
- Department of Nephrology, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China ; Department of Medicine, Alpert Medical School of Brown University, Rhode Island Hospital, Middle House 301, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|