1
|
Li B, Yu K, Zhou X, Sun J, Qi L, Li W, Yang T, Li W, Wang N, Gu X, Cui S, Cao R. Increased TSPO alleviates neuropathic pain by preventing pyroptosis via the AMPK-PGC-1α pathway. J Headache Pain 2025; 26:16. [PMID: 39871133 PMCID: PMC11771075 DOI: 10.1186/s10194-025-01953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Neuropathic pain poses a significant clinical challenge, largely due to the incomplete understanding of its molecular mechanisms, particularly the role of mitochondrial dysfunction. Bioinformatics analysis revealed that pyroptosis and inflammatory responses induced by spared nerve injury (SNI) in the spinal dorsal horn play a critical role in the initiation and persistence of neuropathic pain. Among the factors involved, TSPO (translocator protein) emerged as a key regulator. Our experimental findings showed that TSPO expression was upregulated during neuropathic pain, accompanied by mitochondrial dysfunction, specifically manifested as impaired mitochondrial biogenesis, disrupted mitochondrial dynamics (including insufficient expression of mitochondrial biogenesis and fusion-related proteins, as well as significantly increased expression of fission-related proteins), and activation of pyroptosis. Pharmacological upregulation of TSPO, but not its downregulation, effectively alleviated SNI-induced pain hypersensitivity, improving mitochondrial function and reducing pyroptosis. Immunofluorescence staining confirmed that TSPO was primarily localized in astrocytes, and its expression mirrored the protective effects on mitochondrial health and pyroptosis prevention. PCR array analysis suggested a strong association between TSPO and the mitochondrial regulation pathway AMPK-PGC-1α. Notably, inhibition of AMPK-PGC-1α abolished TSPO effects on mitochondrial balance and pyroptosis suppression. Furthermore, Mendelian randomization analysis of GWAS data indicated that increased TSPO expression was linked to pain relief. Through drug screening, molecular docking, and behavioral assays, we identified zopiclone as a promising TSPO-targeting drug for pain treatment. In summary, this study enhances our understanding of the molecular interplay between TSPO, mitochondrial health, and neuropathic pain, highlighting TSPO as a potential therapeutic target for pain management.
Collapse
Affiliation(s)
- Baolong Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Kaiming Yu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Xiongyao Zhou
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Jialu Sun
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Le Qi
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Weiye Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Tuo Yang
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Weizhen Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Ningning Wang
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| | - Rangjuan Cao
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| |
Collapse
|
2
|
Cazuza RA, Zagrai SM, Grieco AR, Avery TD, Abell AD, Wey HY, Loggia ML, Grace PM. 18 kDa Translocator protein (TSPO) is upregulated in rat brain after peripheral nerve injury and downregulated by diroximel fumarate. Brain Behav Immun 2025; 123:11-27. [PMID: 39218234 PMCID: PMC11624078 DOI: 10.1016/j.bbi.2024.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Neuroimmune signaling is a key process underlying neuropathic pain. Clinical studies have demonstrated that 18 kDa translocator protein (TSPO), a putative marker of neuroinflammation, is upregulated in discrete brain regions of patients with chronic pain. However, no preclinical studies have investigated TSPO dynamics in the brain in the context of neuropathic pain and in response to analgesic treatments. We used positron emission tomography-computed tomography (PET-CT) and [18F]-PBR06 radioligand to measure TSPO levels in the brain across time after chronic constriction injury (CCI) of the sciatic nerve in both male and female rats. Up to 10 weeks post-CCI, TSPO expression was increased in discrete brain regions, including medial prefrontal cortex, somatosensory cortex, insular cortex, anterior cingulate cortex, motor cortex, ventral tegmental area, amygdala, midbrain, pons, medulla, and nucleus accumbens. TSPO was broadly upregulated across these regions at 4 weeks post CCI in males, and 10 weeks in females, though there were regional differences between the sexes. Using immunohistochemistry, we confirmed TSPO expression in these regions. We further demonstrated that TSPO was upregulated principally in microglia in the nucleus accumbens core, and astrocytes and endothelial cells in the nucleus accumbens shell. Finally, we tested whether TSPO upregulation was sensitive to diroximel fumarate, a drug that induces endogenous antioxidants via nuclear factor E2-related factor 2 (Nrf2). Diroximel fumarate alleviated neuropathic pain and reduced TSPO upregulation. Our findings indicate that TSPO is upregulated over the course of neuropathic pain development and is resolved by an antinociceptive intervention in animals with peripheral nerve injury.
Collapse
Affiliation(s)
- Rafael A Cazuza
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Sever M Zagrai
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Anamaria R Grieco
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Thomas D Avery
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, University of Adelaide, Adelaide, Australia
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute for Photonics and Advanced Sensing (IPAS), Department of Chemistry, University of Adelaide, Adelaide, Australia
| | - Hsiao-Ying Wey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
3
|
Scheuren PS, Calvo M. Exploring neuroinflammation: A key driver in neuropathic pain disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:311-338. [PMID: 39580216 DOI: 10.1016/bs.irn.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Inflammation is a fundamental part of the body's natural defense mechanism, involving immune cells and inflammatory mediators to promote healing and protect against harm. In the event of a lesion or disease of the somatosensory nervous system, inflammation, however, triggers a cascade of changes in both the peripheral and central nervous systems, ultimately contributing to chronic neuropathic pain. Substantial evidence links neuroinflammation to various conditions associated with neuropathic pain. This chapter will explore the role of neuroinflammation in the initiation, maintenance, and resolution of peripheral and central neuropathic pain. Additionally, biomarkers of neuroinflammation in humans will be examined, emphasizing their relevance in different neuropathic pain disorders.
Collapse
Affiliation(s)
- Paulina S Scheuren
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Margarita Calvo
- Physiology Department, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| |
Collapse
|
4
|
Loggia ML. "Neuroinflammation": does it have a role in chronic pain? Evidence from human imaging. Pain 2024; 165:S58-S67. [PMID: 39560416 PMCID: PMC11729497 DOI: 10.1097/j.pain.0000000000003342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT Despite hundreds of studies demonstrating the involvement of neuron-glia-immune interactions in the establishment and/or maintenance of persistent pain behaviors in animals, the role (or even occurrence) of so-called "neuroinflammation" in human pain has been an object of contention for decades. Here, I present the results of multiple positron emission tomography (PET) studies measuring the levels of the 18 kDa translocator protein (TSPO), a putative neuroimmune marker, in individuals with various pain conditions. Overall, these studies suggest that brain TSPO PET signal: (1) is elevated, compared to healthy volunteers, in individuals with chronic low back pain (with additional elevations in spinal cord and neuroforamina), fibromyalgia, migraine and other conditions characterized by persistent pain; (2) has a spatial distribution exhibiting a degree of disorder specificity; (3) is parametrically linked to pain characteristics or comorbid symptoms (eg, nociplastic pain, fatigue, depression), as well as measures of brain function (ie, functional connectivity), in a regionally-specific manner. In this narrative, I also discuss important caveats to consider in the interpretation of this work (eg, regarding the cellular source of the signal and the complexities inherent in its acquisition and analysis). While the biological and clinical significance of these findings awaits further work, this emerging preclinical literature supports a role of neuron-glia-immune interactions as possible pathophysiological underpinnings of human chronic pain. Gaining a deeper understanding of the role of neuroimmune function in human pain would likely have important practical implications, possibly paving the way for novel interventions.
Collapse
Affiliation(s)
- Marco L. Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Emvalomenos GM, Kang JWM, Jupp B, Mychasiuk R, Keay KA, Henderson LA. Recent developments and challenges in positron emission tomography imaging of gliosis in chronic neuropathic pain. Pain 2024; 165:2184-2199. [PMID: 38713812 DOI: 10.1097/j.pain.0000000000003247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 05/09/2024]
Abstract
ABSTRACT Understanding the mechanisms that underpin the transition from acute to chronic pain is critical for the development of more effective and targeted treatments. There is growing interest in the contribution of glial cells to this process, with cross-sectional preclinical studies demonstrating specific changes in these cell types capturing targeted timepoints from the acute phase and the chronic phase. In vivo longitudinal assessment of the development and evolution of these changes in experimental animals and humans has presented a significant challenge. Recent technological advances in preclinical and clinical positron emission tomography, including the development of specific radiotracers for gliosis, offer great promise for the field. These advances now permit tracking of glial changes over time and provide the ability to relate these changes to pain-relevant symptomology, comorbid psychiatric conditions, and treatment outcomes at both a group and an individual level. In this article, we summarize evidence for gliosis in the transition from acute to chronic pain and provide an overview of the specific radiotracers available to measure this process, highlighting their potential, particularly when combined with ex vivo / in vitro techniques, to understand the pathophysiology of chronic neuropathic pain. These complementary investigations can be used to bridge the existing gap in the field concerning the contribution of gliosis to neuropathic pain and identify potential targets for interventions.
Collapse
Affiliation(s)
- Gaelle M Emvalomenos
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - James W M Kang
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Bianca Jupp
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Kevin A Keay
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Luke A Henderson
- School of Medical Sciences [Neuroscience], and the Brain and Mind Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
6
|
Peng Y, Zhang Y, Wang W, Liu B, Zhang Z, Gong Z, Zhang X, Xia Y, You X, Wu J. Potential role of remimazolam in alleviating bone cancer pain in mice via modulation of translocator protein in spinal astrocytes. Eur J Pharmacol 2024; 979:176861. [PMID: 39068975 DOI: 10.1016/j.ejphar.2024.176861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Bone cancer pain (BCP) is a complex clinical challenge, with current treatments often falling short of providing adequate relief. Remimazolam, a benzodiazepine receptor agonist recognized for its anxiolytic effects, has emerged as a potential agent in managing BCP. This study explores the analgesic properties of remimazolam and its interaction with the translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, in spinal astrocytes. In the context of BCP, previous research has indicated that TSPO expression in spinal astrocytes may serve a protective regulatory function in neuropathic pain models. Building on this, the BCP mice received various doses of remimazolam on the 15th day post-inoculation, and pain behavior was assessed over time. The results showed that BCP induced an upregulation of TSPO and astrocyte activation in the spinal dorsal horn, alongside increased extracellular signal-regulated kinase (ERK) signaling and inflammatory cytokine expression. Remimazolam administration resulted in a dose-dependent reduction of pain behaviors, which corresponded with a decrease in both ERK pathway activation and inflammatory factor expression. This suggests that remimazolam's analgesic effects are mediated through its action as a TSPO agonist, leading to the attenuation of neuroinflammation and pain signaling pathways. Importantly, the analgesic effects of remimazolam were reversed by the TSPO antagonist PK11195, underscoring the pivotal role of TSPO in the drug's mechanism of action. This reversal also reinstated the heightened levels of ERK activity and inflammatory mediators, further confirming the involvement of TSPO in the modulation of these pain-related processes. These findings open new avenues for the therapeutic management of bone cancer pain, positioning remimazolam as a promising candidate for further investigation and development.
Collapse
Affiliation(s)
- Yuan Peng
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Yuxin Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Wei Wang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Biying Liu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Zuojing Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Zhihao Gong
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Xiaoxuan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuefeng Xia
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Xingji You
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
7
|
Ma B, Xu M, Yang L, Huang X, Wang P, Ji Y, Ma K. Effect of intramuscular diazepam infusion on herpes zoster-related pain in older patients: a randomized, double-blind, placebo-controlled trial. BMC Anesthesiol 2024; 24:193. [PMID: 38811866 PMCID: PMC11134619 DOI: 10.1186/s12871-024-02576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVES This study evaluated the effectiveness, psychological effects, and sleep quality using intramuscular diazepam infusion compared with placebo in patients with herpes zoster (HZ)-related pain. METHODS The patients were randomized to either the diazepam or control group. The diazepam group received an intramuscular injection of diazepam for 3 consecutive days, while the control group received an intramuscular injection of 0.9% normal saline. The primary outcome was pain relief on posttreatment day 4, as measured using the Visual Analog Scale (VAS). Moreover, anxiety and depression were evaluated using the Generalized Anxiety Disorder-7 (GAD7) and Patient Health Questionnaire-9 (PHQ9), respectively. Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI). RESULTS In total, 78 patients were enrolled in the trial. The mean differences in VAS scores between the two groups were 0.62 (P = 0.049) on posttreatment day 3 and 0.66 (P = 0.037) on posttreatment day 4. The effective rates of pain management in the diazepam group ranged from 10.26 to 66.67%, which were higher than those in the control group on posttreatment days 3 and 4 (P < 0.05). The mean difference in PSQI scores between the diazepam and control groups was 1.36 (P = 0.034) on posttreatment day 7. No differences were found in the incidence of analgesia-adverse 1reactions between the diazepam and placebo groups. CONCLUSIONS The intramuscular injection of diazepam for 3 consecutive days provides effective pain management and improves the quality of life. Our study suggests that diazepam is more effective than the placebo in patients with HZ-related pain. TRIAL REGISTRATION The study was prospectively registered at https://www.isrctn.com/trialist(Registration date: 24/01/2018; Trial ID: ISRCTN12682696).
Collapse
Affiliation(s)
- Bingjie Ma
- Department of Pain management, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Meiling Xu
- Department of Pain management, The Fifth People's Hospital of Qinghai Province, Xining city, 810007, Qinghai province, China
| | - Lu Yang
- Department of Anesthesiology, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, 200235, China
| | - Xuehua Huang
- Department of Pain management, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Peiliang Wang
- Department of Pain management, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yun Ji
- Department of Pain management, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Ke Ma
- Department of Pain management, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
8
|
Reyes C, Mokalled MH. Astrocyte-Neuron Interactions in Spinal Cord Injury. ADVANCES IN NEUROBIOLOGY 2024; 39:213-231. [PMID: 39190077 PMCID: PMC11684398 DOI: 10.1007/978-3-031-64839-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Spinal cord injuries cause irreversible loss of sensory and motor functions. In mammals, intrinsic and extrinsic inhibitions of neuronal regeneration obstruct neural repair after spinal cord injury. Although astrocytes have been involved in a growing list of vital homeostatic functions in the nervous system, their roles after injury have fascinated and puzzled scientists for decades. Astrocytes undergo long-lasting morphological and functional changes after injury, referred to as reactive astrogliosis. Although reactive astrogliosis is required to contain spinal cord lesions and restore the blood-spinal cord barrier, reactive astrocytes have detrimental effects that inhibit neuronal repair and remyelination. Intriguingly, elevated regenerative capacity is preserved in some non-mammalian vertebrates, where astrocyte-like glial cells display exclusively pro-regenerative effects after injury. A detailed molecular and phenotypic catalog of the continuum of astrocyte reactivity states is an essential first step toward the development of glial cell manipulations for spinal cord repair.
Collapse
Affiliation(s)
- Catrina Reyes
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
9
|
Gao N, Ma B, Jia H, Hao C, Jin T, Liu X. Translocator protein alleviates allodynia and improves Schwann cell function against diabetic peripheral neuropathy via activation of the Nrf2-dependent antioxidant system and promoting autophagy. Diabet Med 2023; 40:e15090. [PMID: 37013248 DOI: 10.1111/dme.15090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/22/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
AIMS In diabetes, autophagy and the nuclear factor erythroid-derived-2-like 2 (Nrf2)-dependent antioxidant system are impaired. Translocator protein (TSPO) agonist Ro5-4864 alleviates neuropathic pain, including diabetic peripheral neuropathy (DPN). However, the precise mechanisms remain unclear. Thus, we investigated the effects of Ro5-4864 on autophagy and the Nrf2-dependent antioxidant system in the sciatic nerves of DPN rats. METHODS All rats were randomly assigned to Sham or DPN group. After type 2 diabetes modelling (established by high-fat diet and streptozotocin injection) followed by behavioural tests, established DPN rats were randomly assigned to the DPN group, the Ro (TSPO agonist Ro5-4864) group, the Ro + 3-MA (autophagy inhibitor) group and the Ro + ML385 (Nrf2 inhibitor) group. Behavioural assessments were performed at baseline, on days 3, 7, 14, 21 and 28. Sciatic nerves were collected on day 28 for immunofluorescence, morphological and western blot analyses. RESULTS Ro5-4864 alleviated allodynia and increased myelin sheath thickness and myelin protein expression after DPN. Beclin-1 (p < 0.01) and LC3-II/LC3-I ratio (p < 0.01) decreased and p62 (p < 0.01) accumulated in the DPN rats. Ro5-4864 administration increased the Beclin-1 and LC3-II/LC3-I ratio and decreased p62 accumulation. Furthermore, nuclear Nrf2 contents (p < 0.01) and cytoplasmic HO-1 (p < 0.01) and NQO1 (p < 0.01) expressions were significantly inhibited in the DPN rat, which was also improved by Ro5-4864. All the beneficial effects were abrogated by 3-MA or ML385. CONCLUSION TSPO exhibited a potent analgesic effect and improved Schwann cell function and regeneration against DPN by activating the Nrf2-dependent antioxidant system and promoting autophagy.
Collapse
Affiliation(s)
- Nan Gao
- Pain Management Center, Shanghai Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 210092, China
| | - Bingjie Ma
- Pain Management Center, Shanghai Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 210092, China
| | - Hongbin Jia
- Pain Management Center, Nanjing Jinling Hospital, Nanjing, 210002, China
| | - Can Hao
- Pain Management Center, Shanghai Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 210092, China
| | - Tian Jin
- Pain Management Center, Shanghai Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 210092, China
| | - Xiaoming Liu
- Pain Management Center, Shanghai Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 210092, China
| |
Collapse
|
10
|
Pang J, Xin P, Kong Y, Wang Z, Wang X. Resolvin D2 Reduces Chronic Neuropathic Pain and Bone Cancer Pain via Spinal Inhibition of IL-17 Secretion, CXCL1 Release and Astrocyte Activation in Mice. Brain Sci 2023; 13:brainsci13010152. [PMID: 36672133 PMCID: PMC9856778 DOI: 10.3390/brainsci13010152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Chronic pain burdens patients and healthcare systems worldwide. Pain control remains urgently required. IL-17 (interleukin-17)-mediated neuroinflammation is of unique importance in spinal nociceptive transduction in pathological pain development. Recently, resolvin D2 (RvD2), as a bioactive, specialized pro-resolving mediator derived from docosahexaenoic acid, exhibits potent resolution of inflammation in several neurological disorders. This preclinical study evaluates the therapeutic potential and underlying targets of RvD2 in two mouse models of chronic pain, including sciatic nerve ligation-caused neuropathic pain and sarcoma-caused bone cancer pain. Herein, we report that repetitive injections of RvD2 (intrathecal, 500 ng) reduce the initiation of mechanical allodynia and heat hyperalgesia following sciatic nerve damage and bone cancer. Single exposure to RvD2 (intrathecal, 500 ng) attenuates the established neuropathic pain and bone cancer pain. Furthermore, systemic RvD2 (intravenous, 5 μg) therapy is effective in attenuating chronic pain behaviors. Strikingly, RvD2 treatment suppresses spinal IL-17 overexpression, chemokine CXCL1 release and astrocyte activation in mice undergoing sciatic nerve trauma and bone cancer. Pharmacological neutralization of IL-17 ameliorates chronic neuropathic pain and persistent bone cancer pain, as well as reducing spinal CXCL1 release. Recombinant IL-17-evoked acute pain behaviors and spinal CXCL1 release are mitigated after RvD2 administration. In addition, RvD2 treatment dampens exogenous CXCL1-caused transient pain phenotypes. Overall, these current findings identify that RvD2 therapy is effective against the initiation and persistence of long-lasting neuropathic pain and bone cancer pain, which may be through spinal down-modulation of IL-17 secretion, CXCL1 release and astrocyte activation.
Collapse
Affiliation(s)
- Jun Pang
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengfei Xin
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Ying Kong
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaopeng Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
11
|
Yang L, Lu J, Guo J, Chen J, Xiong F, Wang X, Chen L, Yu C. Ventrolateral Periaqueductal Gray Astrocytes Regulate Nociceptive Sensation and Emotional Motivation in Diabetic Neuropathic Pain. J Neurosci 2022; 42:8184-8199. [PMID: 36109166 PMCID: PMC9636999 DOI: 10.1523/jneurosci.0920-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/21/2022] Open
Abstract
Diabetic neuropathic pain (DNP) is a diabetes complication experienced by many patients. Ventrolateral periaqueductal gray (vlPAG) neurons are essential mediators of the descending pain modulation system, yet the role of vlPAG astrocytes in DNP remains unclear. The present study applied a multidimensional approach to elucidate the role of these astrocytes in DNP. We verified the activation of astrocytes in different regions of the PAG in male DNP-model rats. We found that only astrocytes in the vlPAG exhibited increased growth. Furthermore, we described differences in vlPAG astrocyte activity at different time points during DNP progression. After the 14th day of modeling, vlPAG astrocytes exhibited obvious activation and morphologic changes. Furthermore, activation of Gq-designer receptors exclusively activated by a designer drug (Gq-DREADDs) in vlPAG astrocytes in naive male rats induced neuropathic pain-like symptoms and pain-related aversion, whereas activation of Gi-DREADDs in vlPAG astrocytes in male DNP-model rats alleviated sensations of pain and promoted pain-related preference behavior. Thus, bidirectional manipulation of vlPAG astrocytes revealed their potential to regulate pain. Surprisingly, activation of Gi-DREADDs in vlPAG astrocytes also mitigated anxiety-like behavior induced by DNP. Thus, our results provide direct support for the hypothesis that vlPAG astrocytes regulate diabetes-associated neuropathic pain and concomitant anxiety-like behavior.SIGNIFICANCE STATEMENT Many studies examined the association between the ventrolateral periaqueductal gray (vlPAG) and neuropathic pain. However, few studies have focused on the role of vlPAG astrocytes in diabetic neuropathic pain (DNP) and DNP-related emotional changes. This work confirmed the role of vlPAG astrocytes in DNP by applying a more direct and robust approach. We used chemogenetics to bidirectionally manipulate the activity of vlPAG astrocytes and revealed that vlPAG astrocytes regulate DNP and pain-related behavior. In addition, we discovered that activation of Gi-designer receptors exclusively activated by a designer drug in vlPAG astrocytes alleviated anxiety-like behavior induced by DNP. Together, these findings provide new insights into DNP and concomitant anxiety-like behavior and supply new therapeutic targets for treating DNP.
Collapse
Affiliation(s)
- Lan Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
| | - Jingshan Lu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou, 350122, Fujian China
| | - Jianpeng Guo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
| | - Jian Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
| | - Fangfang Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
| | - Xinyao Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, Fujian China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, Fujian China
| |
Collapse
|
12
|
Liu XG. Normalization of Neuroinflammation: A New Strategy for Treatment of Persistent Pain and Memory/Emotional Deficits in Chronic Pain. J Inflamm Res 2022; 15:5201-5233. [PMID: 36110505 PMCID: PMC9469940 DOI: 10.2147/jir.s379093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic pain, which affects around 1/3 of the world population and is often comorbid with memory deficit and mood depression, is a leading source of suffering and disability. Studies in past decades have shown that hyperexcitability of primary sensory neurons resulting from abnormal expression of ion channels and central sensitization mediated pathological synaptic plasticity, such as long-term potentiation in spinal dorsal horn, underlie the persistent pain. The memory/emotional deficits are associated with impaired synaptic connectivity in hippocampus. Dysregulation of numerous endogenous proteins including receptors and intracellular signaling molecules is involved in the pathological processes. However, increasing knowledge contributes little to clinical treatment. Emerging evidence has demonstrated that the neuroinflammation, characterized by overproduction of pro-inflammatory cytokines and glial activation, is reliably detected in humans and animals with chronic pain, and is sufficient to induce persistent pain and memory/emotional deficits. The abnormal expression of ion channels and pathological synaptic plasticity in spinal dorsal horn and in hippocampus are resulting from neuroinflammation. The neuroinflammation is initiated and maintained by the interactions of circulating monocytes, glial cells and neurons. Obviously, unlike infectious diseases and cancer, which are caused by pathogens or malignant cells, chronic pain is resulting from alterations of cells and molecules which have numerous physiological functions. Therefore, normalization (counterbalance) but not simple inhibition of the neuroinflammation is the right strategy for treating neuronal disorders. Currently, no such agent is available in clinic. While experimental studies have demonstrated that intracellular Mg2+ deficiency is a common feature of chronic pain in animal models and supplement Mg2+ are capable of normalizing the neuroinflammation, activation of upregulated proteins that promote recovery, such as translocator protein (18k Da) or liver X receptors, has a similar effect. In this article, relevant experimental and clinical evidence is reviewed and discussed.
Collapse
Affiliation(s)
- Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Translocator Protein 18 kDa (TSPO) as a Novel Therapeutic Target for Chronic Pain. Neural Plast 2022; 2022:8057854. [PMID: 36071748 PMCID: PMC9444456 DOI: 10.1155/2022/8057854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic pain is an enormous modern public health problem, with significant numbers of people debilitated by chronic pain from a variety of etiologies. Translocator protein 18 kDa (TSPO) was discovered in 1977 as a peripheral benzodiazepine receptor. It is a five transmembrane domain protein, mainly localized in the outer mitochondrial membrane. Recent and increasing studies have found changes in TSPO and its ligands in various chronic pain models. Reversing their expressions has been shown to alleviate chronic pain in these models, illustrating the effects of TSPO and its ligands. Herein, we review recent evidence and the mechanisms of TSPO in the development of chronic pain associated with peripheral nerve injury, spinal cord injury, cancer, and inflammatory responses. The cumulative evidence indicates that TSPO-based therapy may become an alternative strategy for treating chronic pain.
Collapse
|
14
|
Dinh SN, Dinh HT. The first experience with fully endoscopic posterior cervical foraminotomy and discectomy for radiculopathy performed in Viet Duc University Hospital. Sci Rep 2022; 12:8314. [PMID: 35585151 PMCID: PMC9117311 DOI: 10.1038/s41598-022-12493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of the article is to present the first experience of applying a full-endoscopic posterior cervical foraminotomy and discectomy performed at Viet Duc University Hospital in Hanoi and describe the outcomes of such surgical intervention. This surgical series includes 20 patients underwent surgery through full-endoscopic posterior cervical foraminotomy and discectomy. The definitive diagnosis of the patients and the evidence for surgical treatment was radiculopathy due to lateral or intraforaminal disk herniation, foraminal stenosis, and lateral recess stenosis. Patients with discogenic cervical radiculopathy but with a contraindication to endoscopic posterior cervical foraminotomy and discectomy were not subject to surgical intervention. All patients underwent a CT and MRT examination of the cervical spine before and after surgery as complementary diagnostic methods. Besides radiological diagnostic methods, electroneuromyography and spondylography were performed with functional samples, i.e., with head tilts in the front and back, to eliminate segmental instability. The timing and degree of the root pain syndrome regression were assessed using a VAS scale (visual and analog scale) with a subsequent comparison of preoperative and postoperative performance. Immediately after the operation, all patients noted a complete or nearly complete regression of the pain syndrome.
Collapse
Affiliation(s)
- Son Ngoc Dinh
- Faculty of Surgery, Ha Noi Medical University, 1 Ton That Tung Str., Dong Da, Ha Noi, Viet Nam.,Spine Surgery Department, Viet Duc University Hospital, 40 Trang Thi Str., Hoan Kiem, Ha Noi, Viet Nam
| | - Hung The Dinh
- Faculty of Surgery, Ha Noi Medical University, 1 Ton That Tung Str., Dong Da, Ha Noi, Viet Nam. .,Spine Surgery Department, Viet Duc University Hospital, 40 Trang Thi Str., Hoan Kiem, Ha Noi, Viet Nam.
| |
Collapse
|
15
|
Miranpuri GS, Bali P, Nguyen J, Kim JJ, Modgil S, Mehra P, Buttar S, Brown G, Yutuc N, Singh H, Wood A, Singh J, Anand A. Role of Microglia and Astrocytes in Spinal Cord Injury Induced Neuropathic Pain. Ann Neurosci 2022; 28:219-228. [PMID: 35341227 PMCID: PMC8948321 DOI: 10.1177/09727531211046367] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Spinal cord injuries incite varying degrees of symptoms in patients, ranging
from weakness and incoordination to paralysis. Common amongst spinal cord
injury (SCI) patients, neuropathic pain (NP) is a debilitating medical
condition. Unfortunately, there remain many clinical impediments in treating
NP because there is a lack of understanding regarding the mechanisms behind
SCI-induced NP (SCINP). Given that more than 450,000 people in the United
States alone suffer from SCI, it is unsatisfactory that current treatments
yield poor results in alleviating and treating NP. Summary: In this review, we briefly discussed the models of SCINP along with the
mechanisms of NP progression. Further, current treatment modalities are
herein explored for SCINP involving pharmacological interventions targeting
glia cells and astrocytes. Key message: The studies presented in this review provide insight for new directions
regarding SCINP alleviation. Given the severity and incapacitating effects
of SCINP, it is imperative to study the pathways involved and find new
therapeutic targets in coordination with stem cell research, and to develop
a new gold-standard in SCINP treatment.
Collapse
Affiliation(s)
- Gurwattan S Miranpuri
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Parul Bali
- Department of Biological Sciences, Indian Institute of Science Education & Research Mohali, India
| | - Justyn Nguyen
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Jason J Kim
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Shweta Modgil
- Neuroscience research lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Priya Mehra
- Neuroscience research lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,Department of Biotechnology, Panjab University, Chandigarh, India
| | - Seah Buttar
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Greta Brown
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Noemi Yutuc
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Harpreet Singh
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Aleksandar Wood
- Department of Neurological Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Akshay Anand
- Neuroscience research lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,CCRYN- Collaborative Centre for Mind Body Intervention through Yoga.,Centre of Phenomenology and Cognitive Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
Huang Y, Su M, Zhang C, Zhan H, Yang F, Gao Z, Zhou X, Liu B. Activation of translocator protein alleviates mechanical allodynia and bladder dysfunction in cyclophosphamide-induced cystitis through repression of BDNF-mediated neuroinflammation. Eur J Pain 2022; 26:1234-1244. [PMID: 35293071 DOI: 10.1002/ejp.1942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Bladder pain syndrome/interstitial cystitis (BPS/IC) is a refractory disease accompanied by bladder-related pain and hyperactivity. Studies have shown that the translocator protein (TSPO) modulates neuroinflammation and central sensitisation associated with pain. Moreover, we previously demonstrated that brain-derived neurotrophic factor (BDNF) regulates neuroinflammation and mechanical allodynia in cyclophosphamide (CYP)-induced cystitis through activation of glial cells. Here, we aimed to explore whether activation of TSPO attenuates mechanical allodynia and bladder dysfunction by regulating BDNF induced neuroinflammation in a CYP-induced cystitis model. METHODS Injection of CYP was performed to form a rat model of BPS/IC. The expression of TSPO was regulated by intrathecal injection of the TSPO agonist Ro5-4864. The von Frey filament test was applied to evaluate suprapubic allodynia. Bladder function was assessed using filling cystometry. Western blotting was used to detect the expression of TSPO, BDNF, GFAP, Iba-1, p-p38, p-JNK, TNF-α, and IL-1β, and double immunofluorescence was performed to localise TSPO in the L6-S1 spinal dorsal horn (SDH). RESULTS TSPO was activated in the SDH after CYP injection and was primarily colocalised with astrocytes. Ro5-4864 reversed mechanical allodynia and bladder dysfunction induced by CYP. Moreover, the upregulation of BDNF and activation of astrocytes and microglia was suppressed by Ro5-4864, resulting in downregulation of p-p38, p-JNK, TNF-α, and IL-1β. CONCLUSIONS Ro5-4864 alleviated mechanical allodynia and bladder dysfunction in the CYP model, possibly by inhibiting the elevation of BDNF and consequent activation of astrocytes and microglia induced neuroinflammation. TSPO may be a potential target for the treatment of BPS/IC.
Collapse
Affiliation(s)
- Yong Huang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Minzhi Su
- Department of Rehabilitation, the Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hailun Zhan
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fei Yang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhentao Gao
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiangfu Zhou
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bolong Liu
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Hao C, Ma B, Gao N, Jin T, Liu X. Translocator Protein (TSPO) Alleviates Neuropathic Pain by Activating Spinal Autophagy and Nuclear SIRT1/PGC-1α Signaling in a Rat L5 SNL Model. J Pain Res 2022; 15:767-778. [PMID: 35356265 PMCID: PMC8959876 DOI: 10.2147/jpr.s359397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022] Open
Abstract
Purpose Recent studies showed promotion of astrocyte autophagy in the spinal cord would provide analgesic effects. Silent information regulator T1 (SIRT1) and α subunit of peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1α) are two master regulators of endogenous antioxidant defense and mitochondrial biogenesis. They play vital roles in both autophagy and neuropathic pain (NP). Our previous study showed that TSPO agonist Ro5-4864 elicited potent analgesic effects against NP, but the mechanisms remain unclear. This study aims to investigate the effects of TSPO agonist Ro5-4864 on autophagy and nuclear SIRT1/PGC-1α signaling in spinal dorsal horn. Methods A rat model of L5 spinal nerve ligation (SNL) was adopted. Rats were randomly assigned to the Sham group, the SNL group, the Ro (TSPO agonist Ro5-4864) group and the Ro+3-MA group. The behavior assessments were conducted at baseline, on Day 1, 3, 7 and 14 after SNL. The autophagy-related proteins (ATG7, Beclin1, LC3, and P62) in spinal dorsal horn were assayed and the nuclear SIRT1/PGC-1α and downstream factors were analyzed. Results Ro5-4864 alleviated the mechanical allodynia induced by SNL (P < 0.01 vs the SNL group), which could be totally abrogated by autophagy inhibitor 3-MA (P < 0.01 vs the Ro group). SNL induced elevated ATG7 (P < 0.01), Beclin1 (P < 0.01) and LC3-II/LC3-I (P < 0.01) contents and P62 accumulation (P < 0.01) on Day 7 and Day 14, which suggested an autophagy flux impairment. Ro5-4864 augmented ATG7 (P < 0.01), Beclin1 (P < 0.01) and LC3-II/LC3-I (P < 0.05) with decreased P62 (P < 0.01), which indicated a more fluent autophagic process. These effects were also totally abrogated by 3-MA (P < 0.01). Furthermore, Ro5-4864 activated the spinal nuclear SIRT1/PGC-1α signaling pathway. Conclusion TSPO improved both autophagy impairment and mitochondrial biogenesis, which may provide a new strategy for the treatment of NP.
Collapse
Affiliation(s)
- Can Hao
- Pain Management Center, Shanghai Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 210092, People’s Republic of China
| | - Bingjie Ma
- Pain Management Center, Shanghai Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 210092, People’s Republic of China
| | - Nan Gao
- Pain Management Center, Shanghai Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 210092, People’s Republic of China
| | - Tian Jin
- Pain Management Center, Shanghai Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 210092, People’s Republic of China
| | - Xiaoming Liu
- Pain Management Center, Shanghai Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 210092, People’s Republic of China
- Correspondence: Xiaoming Liu, Pain Management Center, Shanghai Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665# Kongjiang Road, Shanghai, 210092, People’s Republic of China, Tel +86-17721213706, Fax +86-21-25078707, Email
| |
Collapse
|
18
|
Effect of surgical damage to spinal nerve on dorsal root ganglion genes expression: Comprehensive analysis of differentially expressed genes. Asian J Surg 2022; 45:2618-2625. [PMID: 35184964 DOI: 10.1016/j.asjsur.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Neuropathic pain can cause significant physical and economic burden, and there are no effective long-term treatments. We conducted a bioinformatics analysis to identify mechanisms to determine strategies for more effective treatments of neuropathic pain. METHOD GSE24982 and GSE63442 microarray datasets were extracted from the Gene Expression Omnibus database to analyze transcriptome differences of neuropathic pain in the dorsal root ganglions (DRGs). We filtered the differentially expressed genes (DEGs) in the two datasets and conducted Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the shared DEGs. The Protein-Protein Interaction network was used to determine the hub genes, which were verified in the GSE30691 dataset. miRDB and miRWalk Databases were used to predict potential miRNA of the selected DEGs. We made the spinal nerve ligation (SNL) rat model and qPCR was used to verify the differential expression of hub genes. RESULTS A total of 182 overlapped DEGs were found between GSE24982 and GSE63442 datasets. The GO and KEGG analysis showed that the selected DEGs were enriched in infection, transmembrane transport of ion channels, and synaptic transmission. We identified seven hub genes (Atf3, Aif1, Ctss, Gfap, Scg2, Jun, and Vgf). qPCR verified the expression differences of the hub genes in the DRGs after SNL model. Predicted miRNA targeting each selected hub genes were identified. CONCLUSIONS Seven hub genes related to the pathogenesis of neuropathic pain and potential targeting miRNA were identified, expanding understanding of the mechanism of neuropathic pain and facilitating treatment development.
Collapse
|
19
|
Xiong B, You W, Luo Y, Jin G, Wu M, Xu Y, Yang J, Huang H, Yu C. Investigation of the Possible Allostery of Koumine Extracted From Gelsemium elegans Benth. And Analgesic Mechanism Associated With Neurosteroids. Front Pharmacol 2021; 12:739618. [PMID: 34671258 PMCID: PMC8520994 DOI: 10.3389/fphar.2021.739618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Translocator protein 18 kDa (TSPO) is an evolutionarily conserved 5-transmembrane domain protein, and has been considered as an important therapeutic target for the treatment of pain. We have recently reported the in vitro and in vivo pharmacological characterization of koumine as a TSPO positive allosteric modulator (PAM), more precisely ago-PAM. However, the probe dependence in the allostery of koumine is an important question to resolve, and the possible analgesic mechanism of koumine remains to be clarified. Here, we report the in vivo evaluation of the allostery of koumine when orthosteric ligand PK11195 was used and preliminarily explore the possible analgesic mechanism of koumine associated with neurosteroids. We find that koumine is an ago-PAM of the PK11195-mediated analgesic effect at TSPO, and the analgesic mechanism of this TSPO ago-PAM may be associated with neurosteroids as the analgesic effects of koumine in the formalin-induced inflammatory pain model and chronic constriction injury-induced neuropathic pain model can be antagonized by neurosteroid synthesis inhibitor aminoglutethimide. Although our results cannot fully clarify the allosteric modulatory effect of koumine, it further prove the allostery in TSPO and provide a solid foundation for koumine to be used as a new clinical candidate drug to treat pain.
Collapse
Affiliation(s)
- Bojun Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wenbing You
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yufei Luo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Guilin Jin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Minxia Wu
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Ying Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Huihui Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Xiong B, Jin G, Xu Y, You W, Luo Y, Fang M, Chen B, Huang H, Yang J, Lin X, Yu C. Identification of Koumine as a Translocator Protein 18 kDa Positive Allosteric Modulator for the Treatment of Inflammatory and Neuropathic Pain. Front Pharmacol 2021; 12:692917. [PMID: 34248642 PMCID: PMC8264504 DOI: 10.3389/fphar.2021.692917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Koumine is an alkaloid that displays notable activity against inflammatory and neuropathic pain, but its therapeutic target and molecular mechanism still need further study. Translocator protein 18 kDa (TSPO) is a vital therapeutic target for pain treatment, and recent research implies that there may be allostery in TSPO. Our previous competitive binding assay hint that koumine may function as a TSPO positive allosteric modulator (PAM). Here, for the first time, we report the pharmacological characterization of koumine as a TSPO PAM. The results imply that koumine might be a high-affinity ligand of TSPO and that it likely acts as a PAM since it could delay the dissociation of 3H-PK11195 from TSPO. Importantly, the allostery was retained in vivo, as koumine augmented Ro5-4864-mediated analgesic and anti-inflammatory effects in several acute and chronic inflammatory and neuropathic pain models. Moreover, the positive allosteric modulatory effect of koumine on TSPO was further demonstrated in cell proliferation assays in T98G human glioblastoma cells. In summary, we have identified and characterized koumine as a TSPO PAM for the treatment of inflammatory and neuropathic pain. Our data lay a solid foundation for the use of the clinical candidate koumine to treat inflammatory and neuropathic pain, further demonstrate the allostery in TSPO, and provide the first proof of principle that TSPO PAM may be a novel avenue for the discovery of analgesics.
Collapse
Affiliation(s)
- Bojun Xiong
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guilin Jin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ying Xu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wenbing You
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yufei Luo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Menghan Fang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bing Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Huihui Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Albrecht DS, Kim M, Akeju O, Torrado-Carvajal A, Edwards RR, Zhang Y, Bergan C, Protsenko E, Kucyi A, Wasan AD, Hooker JM, Napadow V, Loggia ML. The neuroinflammatory component of negative affect in patients with chronic pain. Mol Psychiatry 2021; 26:864-874. [PMID: 31138890 PMCID: PMC7001732 DOI: 10.1038/s41380-019-0433-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/05/2019] [Accepted: 04/11/2019] [Indexed: 01/29/2023]
Abstract
Negative affect (NA) is a significant cause of disability for chronic pain patients. While little is known about the mechanism underlying pain-comorbid NA, previous studies have implicated neuroinflammation in the pathophysiology of both depression and chronic pain. Here, we tested the hypothesis that NA in pain patients is linked to elevations in the brain levels of the glial marker 18 kDa translocator protein (TSPO), and changes in functional connectivity. 25 cLBP patients (42.4 ± 13 years old; 13F, 12M) with chronic low back pain (cLBP) and 27 healthy control subjects (48.9 ± 13 years old; 14F, 13M) received an integrated (i.e., simultaneous) positron emission tomography (PET)/magnetic resonance imaging (MRI) brain scan with the second-generation TSPO ligand [11C]PBR28. The relationship between [11C]PBR28 signal and NA was assessed first with regression analyses against Beck Depression Inventory (BDI) scores in patients, and then by comparing cLBP patients with little-to-no, or mild-to-moderate depression against healthy controls. Further, the relationship between PET signal, BDI and frontolimbic functional connectivity was evaluated in patients with mediation models. PET signal was positively associated with BDI scores in patients, and significantly elevated in patients with mild-to-moderate (but not low) depression compared with controls, in anterior middle and pregenual anterior cingulate cortices (aMCC, pgACC). In the pgACC, PET signal was also associated with this region's functional connectivity to the dorsolateral PFC (pgACC-dlPFC), and mediated of the association between pgACC-dlPFC connectivity and BDI. These observations support a role for glial activation in pain-comorbid NA, identifying in neuroinflammation a potential therapeutic target for this condition.
Collapse
Affiliation(s)
- DS Albrecht
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA
| | - M Kim
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA
| | - O Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, MGH / HMS, Boston, MA
| | - A Torrado-Carvajal
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA
| | - RR Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, HMS, Boston, MA
| | - Y Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, MGH / HMS, Boston, MA
| | - C Bergan
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA
| | - E Protsenko
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA
| | - A Kucyi
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA,Department of Neurology, Stanford University Medical Center, Stanford, CA
| | - AD Wasan
- Departments of Anesthesiology and Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - JM Hooker
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA
| | - V Napadow
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, HMS, Boston, MA
| | - ML Loggia
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School (MGH/HMS), Boston, MA,Corresponding author, lead contact: Marco L. Loggia, PhD, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Room 2301, Charlestown, MA 02129,
| |
Collapse
|
22
|
Fisher AS, Lanigan MT, Upton N, Lione LA. Preclinical Neuropathic Pain Assessment; the Importance of Translatability and Bidirectional Research. Front Pharmacol 2021; 11:614990. [PMID: 33628181 PMCID: PMC7897667 DOI: 10.3389/fphar.2020.614990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 02/04/2023] Open
Abstract
For patients suffering with chronic neuropathic pain the need for suitable novel therapies is imperative. Over recent years a contributing factor for the lack of development of new analgesics for neuropathic pain has been the mismatch of primary neuropathic pain assessment endpoints in preclinical vs. clinical trials. Despite continuous forward translation failures across diverse mechanisms, reflexive quantitative sensory testing remains the primary assessment endpoint for neuropathic pain and analgesia in animals. Restricting preclinical evaluation of pain and analgesia to exclusively reflexive outcomes is over simplified and can be argued not clinically relevant due to the continued lack of forward translation and failures in the clinic. The key to developing new analgesic treatments for neuropathic pain therefore lies in the development of clinically relevant endpoints that can translate preclinical animal results to human clinical trials. In this review we discuss this mismatch of primary neuropathic pain assessment endpoints, together with clinical and preclinical evidence that supports how bidirectional research is helping to validate new clinically relevant neuropathic pain assessment endpoints. Ethological behavioral endpoints such as burrowing and facial grimacing and objective measures such as electroencephalography provide improved translatability potential together with currently used quantitative sensory testing endpoints. By tailoring objective and subjective measures of neuropathic pain the translatability of new medicines for patients suffering with neuropathic pain will hopefully be improved.
Collapse
Affiliation(s)
- Amy S. Fisher
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Michael T. Lanigan
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Neil Upton
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Lisa A. Lione
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
23
|
Zheng Y, Jia C, Jiang X, Chen J, Chen XL, Ying X, Wu J, Jiang M, Yang G, Tu W, Zhou K, Jiang S. Electroacupuncture effects on the P2X4R pathway in microglia regulating the excitability of neurons in the substantia gelatinosa region of rats with spinal nerve ligation. Mol Med Rep 2021; 23:175. [PMID: 33398365 PMCID: PMC7821227 DOI: 10.3892/mmr.2020.11814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/05/2020] [Indexed: 01/02/2023] Open
Abstract
Electroacupuncture (EA) has been used to treat neuropathic pain induced by peripheral nerve injury (PNI) by applying an electrical current to acupoints with acupuncture needles. However, the mechanisms by which EA treats pain remain indistinct. High P2X4 receptor (P2X4R) expression levels demonstrate a notable increase in hyperactive microglia in the ipsilateral spinal dorsal horn following PNI. In order to demonstrate the possibility that EA analgesia is mediated in part by P2X4R in hyperactive microglia, the present study performed mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) tests in male Sprague-Dawley rats that had undergone spinal nerve ligation (SNL). The expression levels of spinal P2X4R were determined using reverse transcription-quantitative PCR, western blotting analysis and immunofluorescence staining. Furthermore, spontaneous excitatory postsynaptic currents (sEPSCs) were recorded using whole-cell patch clamp to demonstrate the effect of EA on synaptic transmission in rat spinal substantia gelatinosa (SG) neurons. The results of the present study demonstrated that EA increased the MWT and TWL and decreased overexpression of P2X4R in hyperactive microglia in SNL rats. Moreover, EA attenuated the frequency of sEPSCs in SG neurons in SNL rats. The results of the present study indicate that EA may mediate P2X4R in hyperactive spinal microglia to inhibit nociceptive transmission of SG neurons, thus relieving pain in SNL rats.
Collapse
Affiliation(s)
- Yuyin Zheng
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Chengqian Jia
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xia Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jie Chen
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xiao-Long Chen
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xinwang Ying
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jiayu Wu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Mingchen Jiang
- China‑USA Institute for Acupuncture and Rehabilitation, Integrative and Optimized Medicine Research Center, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Kecheng Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
24
|
The Neuroimmunology of Chronic Pain: From Rodents to Humans. J Neurosci 2020; 41:855-865. [PMID: 33239404 DOI: 10.1523/jneurosci.1650-20.2020] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic pain, encompassing conditions, such as low back pain, arthritis, persistent post-surgical pain, fibromyalgia, and neuropathic pain disorders, is highly prevalent but remains poorly treated. The vast majority of therapeutics are directed solely at neurons, despite the fact that signaling between immune cells, glia, and neurons is now recognized as indispensable for the initiation and maintenance of chronic pain. This review highlights recent advances in understanding fundamental neuroimmune signaling mechanisms and novel therapeutic targets in rodent models of chronic pain. We further discuss new technological developments to study, diagnose, and quantify neuroimmune contributions to chronic pain in patient populations.
Collapse
|
25
|
Longitudinal translocator protein-18 kDa-positron emission tomography imaging of peripheral and central myeloid cells in a mouse model of complex regional pain syndrome. Pain 2020; 160:2136-2148. [PMID: 31095093 PMCID: PMC6527343 DOI: 10.1097/j.pain.0000000000001607] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supplemental Digital Content is Available in the Text. Longitudinal positron emission tomography of translocator protein-18 kDa revealed early central, and persistent peripheral, myeloid activation in a mouse tibial fracture model of complex regional pain syndrome. Complex regional pain syndrome (CRPS) is a severely disabling disease characterized by pain, temperature changes, motor dysfunction, and edema that most often occurs as an atypical response to a minor surgery or fracture. Inflammation involving activation and recruitment of innate immune cells, including both peripheral and central myeloid cells (ie, macrophages and microglia, respectively), is a key feature of CRPS. However, the exact role and time course of these cellular processes relative to the known acute and chronic phases of the disease are not fully understood. Positron emission tomography (PET) of translocator protein-18 kDa (TSPO) is a method for noninvasively tracking these activated innate immune cells. Here, we reveal the temporal dynamics of peripheral and central inflammatory responses over 20 weeks in a tibial fracture/casting mouse model of CRPS through longitudinal TSPO-PET using [18F]GE-180. Positron emission tomography tracer uptake quantification in the tibia revealed increased peripheral inflammation as early as 2 days after fracture and lasting 7 weeks. Centralized inflammation was detected in the spinal cord and brain of fractured mice at 7 and 21 days after injury. Spinal cord tissue immunofluorescent staining revealed TSPO expression in microglia (CD11b+) at 7 days but was restricted mainly to endothelial cells (PECAM1+) at baseline and 7 weeks. Our data suggest early and persistent peripheral myeloid cell activation and transient central microglial activation are limited to the acute phase of CRPS. Moreover, we show that TSPO-PET can be used to noninvasively monitor the spatiotemporal dynamics of myeloid cell activation in CRPS progression with potential to inform disease phase–specific therapeutics.
Collapse
|
26
|
In-vivo imaging of neuroinflammation in veterans with Gulf War illness. Brain Behav Immun 2020; 87:498-507. [PMID: 32027960 PMCID: PMC7864588 DOI: 10.1016/j.bbi.2020.01.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic disorder affecting approximately 30% of the veterans who served in the 1991 Gulf War. It is characterised by a constellation of symptoms including musculoskeletal pain, cognitive problems and fatigue. The cause of GWI is not definitively known but exposure to neurotoxicants, the prophylactic use of pyridostigmine bromide (PB) pills, and/or stressors during deployment have all been suspected to play some pathogenic role. Recent animal models of GWI have suggested that neuroinflammatory mechanisms may be implicated, including a dysregulated activation of microglia and astrocytes. However, neuroinflammation has not previously been directly observed in veterans with GWI. To measure GWI-related neuroinflammation in GW veterans, we conducted a Positron Emission Tomography (PET) study using [11C]PBR28, which binds to the 18 kDa translocator protein (TSPO), a protein upregulated in activated microglia/macrophages and astrocytes. Veterans with GWI (n = 15) and healthy controls (HC, n = 33, including a subgroup of healthy GW veterans, HCVET, n = 8), were examined using integrated [11C]PBR28 PET/MRI. Standardized uptake values normalized by occipital cortex signal (SUVR) were compared across groups and against clinical variables and circulating inflammatory cytokines (TNF-α, IL-6 and IL-1β). SUVR were validated against volume of distribution ratio (n = 13). Whether compared to the whole HC group, or only the HCVET subgroup, veterans with GWI demonstrated widespread cortical elevations in [11C]PBR28 PET signal, in areas including precuneus, prefrontal, primary motor and somatosensory cortices. There were no significant group differences in the plasma levels of the inflammatory cytokines evaluated. There were also no significant correlations between [11C]PBR28 PET signal and clinical variables or circulating inflammatory cytokines. Our study provides the first direct evidence of brain upregulation of the neuroinflammatory marker TSPO in veterans with GWI and supports the exploration of neuroinflammation as a therapeutic target for this disorder.
Collapse
|
27
|
Haight ES, Forman TE, Cordonnier SA, James ML, Tawfik VL. Microglial Modulation as a Target for Chronic Pain: From the Bench to the Bedside and Back. Anesth Analg 2019; 128:737-746. [PMID: 30883419 DOI: 10.1213/ane.0000000000004033] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With a widespread opioid epidemic and profound biopsychosocial implications, chronic pain is a multifaceted public health issue requiring urgent attention. The treatment of chronic pain is particularly important to anesthesiologists given our unique role as perioperative physicians and pain medicine specialists. The present review details the recent shift from a neuronal theory of chronic pain to one that includes complex neuron-glia interactions. In particular, we highlight microglia, the myeloid-lineage cells of the central nervous system, as initiators of a postinjury neuroimmune response that contributes to the acute to chronic pain transition. We discuss ever-advancing preclinical studies, wherein significant success has been made through pharmacologic and genetic modulation of microglia, and we emphasize where these approaches have made the transition to the clinical realm. Furthermore, we highlight the most current, novel efforts to visualize glial activation in vivo using positron emission tomography and improve the diagnosis of chronic pain through radiotracer binding of specific targets, like the 18 kDa translocator protein in microglia and myeloid-lineage cells. Our rapidly advancing knowledge about microglia and their involvement in pain suggests that the era of glial-targeted therapeutics is just beginning so long as we refocus our attention on optimizing preclinical studies using a clinically informed approach, before translation.
Collapse
Affiliation(s)
- Elena S Haight
- From the Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, California
| | - Thomas E Forman
- From the Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, California.,University of Colorado School of Medicine, Denver, Colorado
| | - Stephanie A Cordonnier
- From the Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, California.,College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Michelle L James
- Departments of Radiology and Neurology, Stanford University School of Medicine, Stanford, California
| | - Vivianne L Tawfik
- From the Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
28
|
Zhu B, Gao J, Ouyang Y, Hu Z, Chen X. Overexpression Of miR138 Ameliorates Spared Sciatic Nerve Injury-Induced Neuropathic Pain Through The Anti-Inflammatory Response In Mice. J Pain Res 2019; 12:3135-3145. [PMID: 31819598 PMCID: PMC6874503 DOI: 10.2147/jpr.s219462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Background The emerging role of inflammation in the initiation and maintenance of neuropathic pain has been confirmed. Previous studies have reported that miR138 has neuroprotective and anti-inflammatory effects in animal models of spinal cord injury and in human coronary artery endothelial cell injury, while its effect on neuropathic pain is still not known. As the mechanism of neuropathic pain remains unclear, we investigated whether miR138 is involved in the development of neuropathic pain and the role of miR138 in the modulation of inflammation in the spinal cord in a mouse model of neuropathic pain induced by spared sciatic nerve injury (SNI). Materials and methods Firstly, the expression of miR138 in spinal cord was evaluated on days 1, 3, 5, 7, 9 and 14 after SNI. And then, LV-miR-control and LV-miR138 were intrathecally injected 1 week before the surgery followed by investigation of the expression of miR138, mechanical allodynia and thermal hyperalgesia on day 1, 3, 5, 7, 9, 14 after SNI. Ipsilateral L4-L6 spinal cord tissue was harvested on day 14 post-SNI and detected by Western blotting, enzyme-linked immunosorbent assay or immunohischemistry. Results We observed decreased expression of miR138 and increased expression of proinflammatory cytokines, along with activated microglia, astrocytes and nuclear factor-κВ (NF-κВ), in the spinal cord dorsal horn after SNI. Moreover, the intrathecal upregulation of miR138 significantly alleviated SNI-induced mechanical allodynia and thermal hyperalgesia, downregulated the production of proinflammatory cytokines, and deactivated microglia, astrocytes and NF-κВ. Conclusion The results indicate that miR138 contributes to the development of neuropathic pain and that the overexpression of miR138 alleviates pain hypersensitivity by inhibiting proinflammatory cytokine production and glial activation, which suggests a novel target for reducing neuropathic pain.
Collapse
Affiliation(s)
- Benfan Zhu
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Jie Gao
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China.,Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China.,Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yeling Ouyang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
29
|
Piotrowska A, Rojewska E, Pawlik K, Kreiner G, Ciechanowska A, Makuch W, Nalepa I, Mika J. Pharmacological Blockade of Spinal CXCL3/CXCR2 Signaling by NVP CXCR2 20, a Selective CXCR2 Antagonist, Reduces Neuropathic Pain Following Peripheral Nerve Injury. Front Immunol 2019; 10:2198. [PMID: 31616413 PMCID: PMC6775284 DOI: 10.3389/fimmu.2019.02198] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
Recently, the role of CXCR2 in nociception has been noted. Our studies provide new evidence that the intrathecal administration of its CINC ligands (Cytokine-Induced Neutrophil Chemoattractant; CXCL1-3) induces pain-like behavior in naïve mice, and the effect occurring shortly after administration is associated with the neural location of CXCR2, as confirmed by immunofluorescence. RT-qPCR analysis showed, for the first time, raised levels of spinal CXCR2 after chronic constriction injury (CCI) of the sciatic nerve in rats. Originally, on day 2, we detected escalated levels of the spinal mRNA of all CINCs associated with enhancement of the protein level of CXCL3 lasting until day 7. Intrathecal administration of CXCL3 neutralizing antibody diminished neuropathic pain on day 7 after CCI. Interestingly, CXCL3 is produced in lipopolysaccharide-stimulated microglial, but not astroglial, primary cell cultures. We present the first evidence that chronic intrathecal administrations of the selective CXCR2 antagonist, NVP CXCR2 20, attenuate neuropathic pain symptoms and CXCL3 expression after CCI. Moreover, in naïve mice, this antagonist prevented CXCL3-induced hypersensitivity. However, NVP CXCR2 20 did not diminish glial activation, thus not enhancing morphine/buprenorphine analgesia. These results provide novel insight into the crucial role of CXCR2 in neuropathy based on CXCL3 modulation, which may become a potential therapeutic target in pain treatment.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
30
|
Tozaki-Saitoh H, Tsuda M. Microglia-neuron interactions in the models of neuropathic pain. Biochem Pharmacol 2019; 169:113614. [PMID: 31445020 DOI: 10.1016/j.bcp.2019.08.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022]
Abstract
Chronic pain is a debilitating condition that often emerges as a clinical symptom of inflammatory diseases. It has therefore been widely accepted that the immune system critically contributes to the pathology of chronic pain. Microglia, a type of immune cell in the central nervous system, has attracted researchers' attention because in rodent models of neuropathic pain that develop strong mechanical and thermal hypersensitivity, histologically activated microglia are seen in the dorsal horn of spinal cord. Several kinds of cytokines are generated by damaged peripheral neurons and contribute to microglial activation at the distal site of the injury where damaged neurons send their projections. Microglia are known as key players in the surveillance of the local environment in the central nervous system and have a significant role of circuit remodeling by physical contact to synapses. Key molecules for the pathology of neuropathic pain exist in the activated microglia, but the factors driving pain-inducible microglial activation remain unclear. Therefore, to find the key molecules inducing activation of spinal microglia and to figure out the precise mechanism of how microglia modulate neuronal circuits in the spinal cord to form chronic pain state is a critical step for developing effective treatment of neuropathic pain.
Collapse
Affiliation(s)
- Hidetoshi Tozaki-Saitoh
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
31
|
|
32
|
Cheng Y, Ma XL, Wei YQ, Wei XW. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2019; 1871:289-312. [DOI: 10.1016/j.bbcan.2019.01.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
|
33
|
Wang Q, Ai H, Liu J, Xu M, Zhou Z, Qian C, Xie Y, Yan J. Characterization of novel lnc RNAs in the spinal cord of rats with lumbar disc herniation. J Pain Res 2019; 12:501-512. [PMID: 30787629 PMCID: PMC6365226 DOI: 10.2147/jpr.s164604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Radicular pain, caused by a lesion or autologous nucleus pulposus (NP) implantation, is associated with alteration in gene expression of the pain-signaling pathways. lncRNAs have been shown to play critical roles in neuropathic pain. However, the mechanistic function of lncRNAs in lumbar disc herniation (LDH) remains largely unknown. Identifying different lncRNA expression under sham and NP-implantation conditions in the spinal cord is important for understanding the molecular mechanisms of radicular pain. Methods LDH was induced by implantation of autologous nucleus pulposus (NP), harvested from rat tail, in lumbar 5 and 6 spinal nerve roots. The mRNA and lncRNA microarray analyses demonstrated that the expression profiles of lncRNAs and mRNAs between the LDH and sham groups were markedly altered at 7 days post operation. The expression patterns of several mRNAs and lncRNAs were further proved by qPCR. Results LDH produced persistent mechanical and thermal hyperalgesia. A total of 19 lncRNAs was differentially expressed (>1.5-folds), of which 13 was upregulated and 6 was downregulated. In addition, a total of 103 mRNAs was markedly altered (>1.5-folds), of which 40 was upregulated and 63 downregulated. Biological analyses of these mRNAs further demonstrated that the most significantly upregulated genes in LDH included chemotaxis, immune response, and positive regulation of inflammatory responses, which might be important mechanisms underlying radicular neuropathic pain. These 19 differentially expressed lncRNAs have overlapping mRNAs in the genome, which are related to glutamatergic synapse, cytokine-cytokine receptor interaction, and the oxytocin-signalling pathway. Conclusion Our findings revealed the alteration of expression patterns of mRNAs and lncRNAs in the spinal cord of rats in a radicular pain model of LDH. These mRNAs and lncRNAs might be potential therapeutic targets for the treatment of radicular pain.
Collapse
Affiliation(s)
- Qianliang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Hongzhen Ai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Jinglin Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Min Xu
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Zhuang Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Chen Qian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Ye Xie
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| | - Jun Yan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China Email
| |
Collapse
|
34
|
Endoscopic spine discectomy: indications and outcomes. INTERNATIONAL ORTHOPAEDICS 2019; 43:909-916. [DOI: 10.1007/s00264-018-04283-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
|
35
|
Albrecht DS, Forsberg A, Sandstrom A, Bergan C, Kadetoff D, Protsenko E, Lampa J, Lee YC, Olgart Höglund C, Catana C, Cervenka S, Akeju O, Lekander M, Cohen G, Halldin C, Taylor N, Kim M, Hooker JM, Edwards RR, Napadow V, Kosek E, Loggia ML. Brain glial activation in fibromyalgia - A multi-site positron emission tomography investigation. Brain Behav Immun 2019; 75:72-83. [PMID: 30223011 PMCID: PMC6541932 DOI: 10.1016/j.bbi.2018.09.018] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 12/11/2022] Open
Abstract
Fibromyalgia (FM) is a poorly understood chronic condition characterized by widespread musculoskeletal pain, fatigue, and cognitive difficulties. While mounting evidence suggests a role for neuroinflammation, no study has directly provided evidence of brain glial activation in FM. In this study, we conducted a Positron Emission Tomography (PET) study using [11C]PBR28, which binds to the translocator protein (TSPO), a protein upregulated in activated microglia and astrocytes. To enhance statistical power and generalizability, we combined datasets collected independently at two separate institutions (Massachusetts General Hospital [MGH] and Karolinska Institutet [KI]). In an attempt to disentangle the contributions of different glial cell types to FM, a smaller sample was scanned at KI with [11C]-L-deprenyl-D2 PET, thought to primarily reflect astrocytic (but not microglial) signal. Thirty-one FM patients and 27 healthy controls (HC) were examined using [11C]PBR28 PET. 11 FM patients and 11 HC were scanned using [11C]-L-deprenyl-D2 PET. Standardized uptake values normalized by occipital cortex signal (SUVR) and distribution volume (VT) were computed from the [11C]PBR28 data. [11C]-L-deprenyl-D2 was quantified using λ k3. PET imaging metrics were compared across groups, and when differing across groups, against clinical variables. Compared to HC, FM patients demonstrated widespread cortical elevations, and no decreases, in [11C]PBR28 VT and SUVR, most pronounced in the medial and lateral walls of the frontal and parietal lobes. No regions showed significant group differences in [11C]-L-deprenyl-D2 signal, including those demonstrating elevated [11C]PBR28 signal in patients (p's ≥ 0.53, uncorrected). The elevations in [11C]PBR28 VT and SUVR were correlated both spatially (i.e., were observed in overlapping regions) and, in several areas, also in terms of magnitude. In exploratory, uncorrected analyses, higher subjective ratings of fatigue in FM patients were associated with higher [11C]PBR28 SUVR in the anterior and posterior middle cingulate cortices (p's < 0.03). SUVR was not significantly associated with any other clinical variable. Our work provides the first in vivo evidence supporting a role for glial activation in FM pathophysiology. Given that the elevations in [11C]PBR28 signal were not also accompanied by increased [11C]-L-deprenyl-D2 signal, our data suggests that microglia, but not astrocytes, may be driving the TSPO elevation in these regions. Although [11C]-L-deprenyl-D2 signal was not found to be increased in FM patients, larger studies are needed to further assess the role of possible astrocytic contributions in FM. Overall, our data support glial modulation as a potential therapeutic strategy for FM.
Collapse
Affiliation(s)
- Daniel S. Albrecht
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anton Forsberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Angelica Sandstrom
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Courtney Bergan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Center, Stockholm, Sweden.
| | - Ekaterina Protsenko
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Jon Lampa
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Yvonne C. Lee
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States,Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | - Ciprian Catana
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Mats Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden.
| | - George Cohen
- Department of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Norman Taylor
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | | | | | | | - Vitaly Napadow
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Center, Stockholm, Sweden.
| | - Marco L. Loggia
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
36
|
Cheng XY, Chen C, He SF, Huang CX, Zhang L, Chen ZW, Zhang Y. Spinal NGF induces anti-intrathecal opioid-initiated cardioprotective effect via regulation of TRPV1 expression. Eur J Pharmacol 2018; 844:145-155. [PMID: 30529472 DOI: 10.1016/j.ejphar.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 11/26/2022]
Abstract
Evidences from previous studies confirmed that intrathecal morphine preconditioning (ITMP) reduces the cardiac injury of ischemia-reperfusion (IR) via the central nervous system. However, the molecular mechanism is not fully understood. The breath of central nerve growth factor (NGF) during nociceptive transmission has been well documented, and little is known about the significance of NGF in myocardial injury of IR and intrathecal morphine-induced cardioprotection. To address these questions, we over-expressed or silenced NGF in the spinal cord by using intrathecal injection of lentivirus-NGF or shRNA respectively, accompanied by ITMP in the IR rat model. The levels of NGF and tropomyosin receptor kinase A (Trka) as well as transient receptor potential vanilloid 1 (TRPV1) in the T2-6 spinal cord were evaluated. The results showed that cardiac damage indicators induced by IR, including the increased infarct size, arrhythmia score and serum troponin levels were attenuated after ITMP. However, overexpression of spinal NGF significantly reversed these decreases, as well as reduced the expression and phosphorylation of TRPV1 that was elicited by ITMP. Conversely, silencing of spinal NGF enhanced ITMP-induced cardioprotective effects. Phosphorylation and expression of TRPV1 in the spinal cord were significantly decreased after regional NGF silencing. These findings suggested that the cardioprotective effects of ITMP may implement by mediating through spinal NGF expression, wherein it involves the nociceptor TRPV1. NGF may act as a potential therapeutic target in the development of new agents for the treatment of cardiac injury induced by IR.
Collapse
Affiliation(s)
- Xue-Ying Cheng
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Chen Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Shu-Fang He
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Chun-Xia Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Li Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Wu Chen
- Department of Pharmacology, Anhui Medical University, Hefei, China.
| | - Ye Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
37
|
Gao J, Tang C, Tai LW, Ouyang Y, Li N, Hu Z, Chen X. Pro-resolving mediator maresin 1 ameliorates pain hypersensitivity in a rat spinal nerve ligation model of neuropathic pain. J Pain Res 2018; 11:1511-1519. [PMID: 30127635 PMCID: PMC6089120 DOI: 10.2147/jpr.s160779] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Pro-resolving mediators (PRMs) are considered as emerging analgesics for chronic pain. Maresin 1 (MaR1) is a newly identified member of PRMs, and recent studies implicate its potential role in some pain conditions. As the function of MaR1 in neuropathic pain remains unclear, we investigated the effects of MaR1 on pain hypersensitivity and the underlying mechanism using a rat spinal nerve ligation (SNL) model of neuropathic pain. Materials and methods MaR1 (100 ng/10 μL) or commensurable artificial cerebrospinal fluid was delivered via intrathecal catheter from days 3 to 5 post-SNL followed by assessment of mechanical allodynia and thermal hyperalgesia. Ipsilateral L4–L5 spinal cord tissue was collected on day 7 post-SNL and assessed by Western blotting, enzyme-linked immunosorbent assay or immunohistochemistry. Results Intrathecal MaR1 significantly attenuated mechanical allodynia and thermal hyperalgesia from day 5 to day 7 post-SNL, which was associated with decreased spinal levels of glial markers, GFAP and IBA1. It was also found that intrathecal MaR1 downregulated phosphorylation levels of NF-κB p65 and its nuclear translocation, as well as decreased protein levels of pro-inflammatory cytokines, TNF-α, IL-1β and IL-6. Further, MaR1 treatment restored PSD95 and synapsin II levels, suggesting that MarR1 also protected synaptic integrity. Conclusion Our results indicate that MaR1 ameliorates the SNL-induced neuropathic pain by regulating glial activities and pro-inflammatory cytokines release. The present study offers insight into the potential of MaR1 as a novel intervention to ameliorate neuropathic pain.
Collapse
Affiliation(s)
- Jie Gao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Provence, China.,Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China,
| | - Chaoliang Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.,Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Provence, China
| | - Lydia Wai Tai
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Yeling Ouyang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China, .,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China,
| | - Na Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China, .,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China,
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China, .,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China,
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China, .,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China,
| |
Collapse
|
38
|
Pantaleão L, Rocha GHO, Reutelingsperger C, Tiago M, Maria-Engler SS, Solito E, Farsky SP. Connections of annexin A1 and translocator protein-18 kDa on toll like receptor stimulated BV-2 cells. Exp Cell Res 2018; 367:282-290. [DOI: 10.1016/j.yexcr.2018.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 01/27/2023]
|
39
|
Albrecht D, Ahmed S, Kettner N, Borra R, Cohen-Adad J, Deng H, Houle T, Opalacz A, Roth S, Melo MV, Chen L, Mao J, Hooker J, Loggia ML, Zhang Y. Neuroinflammation of the spinal cord and nerve roots in chronic radicular pain patients. Pain 2018; 159:968-977. [PMID: 29419657 PMCID: PMC5908728 DOI: 10.1097/j.pain.0000000000001171] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous preclinical studies support the role of spinal neuroimmune activation in the pathogenesis of chronic pain, and targeting glia (eg, microglia/astrocyte)- or macrophage-mediated neuroinflammatory responses effectively prevents or reverses the establishment of persistent nocifensive behaviors in laboratory animals. However, thus far, the translation of those findings into novel treatments for clinical use has been hindered by the scarcity of data supporting the role of neuroinflammation in human pain. Here, we show that patients suffering from a common chronic pain disorder (lumbar radiculopathy), compared with healthy volunteers, exhibit elevated levels of the neuroinflammation marker 18 kDa translocator protein, in both the neuroforamina (containing dorsal root ganglion and nerve roots) and spinal cord. These elevations demonstrated a pattern of spatial specificity correlating with the patients' clinical presentation, as they were observed in the neuroforamen ipsilateral to the symptomatic leg (compared with both contralateral neuroforamen in the same patients as well as to healthy controls) and in the most caudal spinal cord segments, which are known to process sensory information from the lumbosacral nerve roots affected in these patients (compared with more superior segments). Furthermore, the neuroforaminal translocator protein signal was associated with responses to fluoroscopy-guided epidural steroid injections, supporting its role as an imaging marker of neuroinflammation, and highlighting the clinical significance of these observations. These results implicate immunoactivation at multiple levels of the nervous system as a potentially important and clinically relevant mechanism in human radicular pain, and suggest that therapies targeting immune cell activation may be beneficial for chronic pain patients.
Collapse
Affiliation(s)
- Daniel Albrecht
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114
| | - Shihab Ahmed
- MGH Translational Pain Research Center, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Norman Kettner
- Department of Radiology, Logan University, Chesterfield, MO, 63017
| | - Ronald Borra
- Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Julien Cohen-Adad
- Department of Electrical Engineering, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, Quebec, Canada
| | - Hao Deng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Timothy Houle
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Arissa Opalacz
- MGH Translational Pain Research Center, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Sarah Roth
- MGH Translational Pain Research Center, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Marcos Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Lucy Chen
- MGH Translational Pain Research Center, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Jianren Mao
- MGH Translational Pain Research Center, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Jacob Hooker
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129
| | - Marco L Loggia
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129
| | - Yi Zhang
- MGH Translational Pain Research Center, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| |
Collapse
|
40
|
Koumine Attenuates Neuroglia Activation and Inflammatory Response to Neuropathic Pain. Neural Plast 2018; 2018:9347696. [PMID: 29770147 PMCID: PMC5889871 DOI: 10.1155/2018/9347696] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 02/13/2018] [Indexed: 01/12/2023] Open
Abstract
Despite decades of studies, the currently available drugs largely fail to control neuropathic pain. Koumine—an alkaloidal constituent derived from the medicinal plant Gelsemium elegans Benth.—has been shown to possess analgesic and anti-inflammatory properties; however, the underlying mechanisms remain unclear. In this study, we aimed to investigate the analgesic and anti-inflammatory effects and the possible underlying mechanisms of koumine. The analgesic and anti-inflammatory effects of koumine were explored by using chronic constriction injury of the sciatic nerve (CCI) neuropathic pain model in vivo and LPS-induced injury in microglia BV2 cells in vitro. Immunofluorescence staining and Western blot analysis were used to assess the modulator effect of koumine on microglia and astrocyte activation after CCI surgery. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate the levels of proinflammatory cytokines. Western blot analysis and quantitative real-time polymerase chain reaction (qPCR) were used to examine the modulator effect of koumine on microglial M1 polarization. We found that single or repeated treatment of koumine can significantly reduce neuropathic pain after nerve injury. Moreover, koumine showed inhibitory effects on CCI-evoked microglia and astrocyte activation and reduced proinflammatory cytokine production in the spinal cord in rat CCI models. In BV2 cells, koumine significantly inhibited microglia M1 polarization. Furthermore, the analgesic effect of koumine was inhibited by a TSPO antagonist PK11195. These findings suggest that the analgesic effects of koumine on CCI-induced neuropathic pain may result from the inhibition of microglia activation and M1 polarization as well as the activation of astrocytes while sparing the anti-inflammatory responses to neuropathic pain.
Collapse
|
41
|
|
42
|
Ma B, Liu X, Huang X, Ji Y, Jin T, Ma K. Translocator protein agonist Ro5-4864 alleviates neuropathic pain and promotes remyelination in the sciatic nerve. Mol Pain 2017; 14:1744806917748019. [PMID: 29212402 PMCID: PMC5805004 DOI: 10.1177/1744806917748019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Our previous study reported the translocator protein to play a critical role in neuropathic pain and the possible mechanisms in the spinal cord. However, its mechanism in the peripheral nervous system is poorly understood. This study was undertaken to explore the distribution of translocator protein in the dorsal root ganglion and the possible mechanisms in peripheral nervous system in a rat model of spared nerve injury. Our results showed that translocator protein was activated in dorsal root ganglion after spared nerve injury. The translocator protein signals were primarily colocalized with neurons in dorsal root ganglion. A single intrathecal (i.t.) injection of translocator protein agonist (7-chloro-5-4-chlorophenyl)-1,3-dihydro-1-methyl-2-H-1,4-benzodiaze-pine-2) (Ro5-4864) exerted remarkable analgesic effect compared with the spared nerve injury group ( P < 0.01). After i.t. administration of 2 µg Ro5-4864 on day 3, the expression of translocator protein in ipsilateral dorsal root ganglion was significantly increased on day 7( P < 0.01) but decreased on day 14 ( P < 0.05) compared with the same point in time in the control group. The duration of translocator protein activation in dorsal root ganglion was remarkably shortened. Ro5-4864 also inhibited the activation of phospho-extracellular signal-regulated kinase 1(p-ERK1) ( P < 0.01), p-ERK2 (D7: P < 0.01, D14: P < 0.05), and brain-derived neurotrophic factor ( P < 0.05) in dorsal root ganglion. Meanwhile, i.t. administration of 2 µg Ro5-4864 on day 3 further accelerated the expression of myelin protein zero(P0) and peripheral myelin protein 22 (PMP22). Our results suggested Ro5-4864 could alleviate neuropathic pain and attenuate p-ERK and brain-derived neurotrophic factor activation in dorsal root ganglion. Furthermore, Ro5-4864 stimulated the expression of myelin regeneration proteins which may also be an important factor against neuropathic pain development. Translocator protein may present a novel target for the treatment of neuropathic pain both in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Bingjie Ma
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Xiaoming Liu
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Xuehua Huang
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Yun Ji
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Tian Jin
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Ke Ma
- Department of Pain management, 91603 Xinhua Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| |
Collapse
|
43
|
Khan N, Muralidharan A, Smith MT. Attenuation of the Infiltration of Angiotensin II Expressing CD3 + T-Cells and the Modulation of Nerve Growth Factor in Lumbar Dorsal Root Ganglia - A Possible Mechanism Underpinning Analgesia Produced by EMA300, An Angiotensin II Type 2 (AT 2) Receptor Antagonist. Front Mol Neurosci 2017; 10:389. [PMID: 29200998 PMCID: PMC5696600 DOI: 10.3389/fnmol.2017.00389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022] Open
Abstract
Recent preclinical and proof-of-concept clinical studies have shown promising analgesic efficacy of selective small molecule angiotensin II type 2 (AT2) receptor antagonists in the alleviation of peripheral neuropathic pain. However, their cellular and molecular mechanism of action requires further investigation. To address this issue, groups of adult male Sprague–Dawley rats with fully developed unilateral hindpaw hypersensitivity, following chronic constriction injury (CCI) of the sciatic nerve, received a single intraperitoneal bolus dose of the small molecule AT2 receptor antagonist, EMA300 (10 mg kg-1), or vehicle. At the time of peak EMA300-mediated analgesia (∼1 h post-dosing), groups of CCI-rats administered either EMA300 or vehicle were euthanized. A separate group of rats that underwent sham surgery were also included. The lumbar (L4–L6) dorsal root ganglia (DRGs) were obtained from all experimental cohorts and processed for immunohistochemistry and western blot studies. In vehicle treated CCI-rats, there was a significant increase in the expression levels of angiotensin II (Ang II), but not the AT2 receptor, in the ipsilateral lumbar DRGs. The elevated levels of Ang II in the ipsilateral lumbar DRGs of CCI-rats were at least in part contributed by CD3+ T-cells, satellite glial cells (SGCs) and subsets of neurons. Our findings suggest that the analgesic effect of EMA300 in CCI-rats involves multimodal actions that appear to be mediated at least in part by a significant reduction in the otherwise increased expression levels of Ang II as well as the number of Ang II-expressing CD3+ T-cells in the ipsilateral lumbar DRGs of CCI-rats. Additionally, the acute anti-allodynic effects of EMA300 in CCI-rats were accompanied by rescue of the otherwise decreased expression of mature nerve growth factor (NGF) in the ipsilateral lumbar DRGs of CCI-rats. In contrast, the increased expression levels of TrkA and glial fibrillary acidic protein in the ipsilateral lumbar DRGs of vehicle-treated CCI-rats were not attenuated by a single bolus dose of EMA300. Consistent with our previous findings, there was also a significant decrease in the augmented levels of the downstream mediators of Ang II/AT2 receptor signaling, i.e., phosphorylated-p38 mitogen-activated protein kinase (MAPK) and phosphorylated-p44/p42 MAPK, in the ipsilateral lumbar DRGs.
Collapse
Affiliation(s)
- Nemat Khan
- UQ Center for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Arjun Muralidharan
- UQ Center for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- UQ Center for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
44
|
Liu X, Liu H, Dai L, Ma B, Ma K. CXCR4 antagonist AMD3100 elicits analgesic effect and restores the GlyRα3 expression against neuropathic pain. J Pain Res 2017; 10:2205-2212. [PMID: 28919816 PMCID: PMC5593393 DOI: 10.2147/jpr.s139619] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective Chemokine CXCL12 and its receptor CXCR4 have been reported to play a critical role in neurogenesis and neuronal differentiation. Recently, some reports have implicated this chemokine signaling in the pathogenesis of many kinds of pain. However, its role in neuropathic pain (NP) is still largely unclear. This study explored the distribution and function of CXCR4 in spinal cord (SC) dorsal horn (DH) in a rat L5 spinal nerve ligation (SNL) model. Methods Rats received repeated intrathecal injection of CXCR4 antagonist AMD3100. Behavioral assessments were conducted using a traditional “up–down” method. The spinal CXCL12 contents were measured by enzyme linked immunosorbent assay. The expression and distribution of CXCR4 in the SC were determined by immunoflurescence and Western blot. GlyRα3 expressions were also measured by Western blot or immunofluorescence. Results SNL induced CXCL12–CXCR4 activation in the spinal DH. Intrathecal administration of AMD3100 alleviated the chronic NP against SNL (P<0.01). CXCR4 was colocalized with GlyRα3-positive neurons in the spinal DH at ratio >97%. Meanwhile, AMD3100 rescued the decrease of GlyRα3 expression (P<0.01 vs the SNL group on Day 14 and Day 21). Conclusion CXCR4 antagonist can elicit analgesic effects and restore the inhibitory neurotransmission such as GlyRα3 against NP.
Collapse
Affiliation(s)
- Xiaoming Liu
- Pain Management Center, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongjun Liu
- Pain Management Center, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lihua Dai
- Pain Management Center, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Bingjie Ma
- Pain Management Center, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ke Ma
- Pain Management Center, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Guo CH, Bai L, Wu HH, Yang J, Cai GH, Zeng SX, Wang X, Wu SX, Ma W. Midazolam and ropivacaine act synergistically to inhibit bone cancer pain with different mechanisms in rats. Oncol Rep 2016; 37:249-258. [PMID: 27841001 DOI: 10.3892/or.2016.5241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/24/2016] [Indexed: 11/06/2022] Open
Abstract
Analgesic strategy of a single drug analgesia in bone cancer pain (BCP) has shifted to combined analgesia with different drugs which have different mechanism. After tumor cell inculation, the activation of signal transducer and activator of transcription (STAT3) and extracellular signal-regulated kinase (ERK) signaling pathway are involved in the development and maintenance of BCP, whereas a decrease in the expression of spinal STAT3 and ERK through using their specific blocker, lead to attenuation of BCP. Hence, in this study, we clarified that intrathecal (i.t.) injection of midazolam (MZL) and ropivacaine (Ropi) induces synergistic analgesia on BCP and is accompanied with different mechanisms of these analgesic effect. Hargreaves heat test was used to detect the analgesic effect of single dose of i.t. MZL, Ropi and their combination on the BCP rats. At consecutive daily administration experiment, thermal hyperalgesia was recorded, and immunohistochemical staining was used to detect the expression of c-Fos, spinal glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule-1 (IBA-1). Then, western blot analysis was used to examine spinal TSPO, GFAP, IBA-1, pERK/ERK and pSTAT3/STAT3 levels on day 14 after tumor cell inoculation. i.t. MZL or Ropi showed a short-term analgesia dose-dependently, and MZL displayed better effect on inhibition of pSTAT3 expression than pERK, but Ropi was just the reverse, then consecutive daily administrations of their combination acted synergistically to attenuate thermal hyperalgesia with downregulated spinal 'neuron-astrocytic activation' in the BCP rats. i.t. co-delivery of MZL and Ropi shows synergistic analgesia on the BCP with the inhibition of spinal 'neuron-astrocytic activation'. Spinal different signaling pathway inhibition for MZL and Ropi may be involved in this process.
Collapse
Affiliation(s)
- Chi-Hua Guo
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lu Bai
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huang-Hui Wu
- Department of Anesthesiology, Fuzhou General Hospital of Nanjing Military Region, Fuzhou, Fujian 350025, P.R. China
| | - Jing Yang
- Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Guo-Hong Cai
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Si-Xiang Zeng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Sheng-Xi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Ma
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
46
|
Kosek E, Martinsen S, Gerdle B, Mannerkorpi K, Löfgren M, Bileviciute-Ljungar I, Fransson P, Schalling M, Ingvar M, Ernberg M, Jensen KB. The translocator protein gene is associated with symptom severity and cerebral pain processing in fibromyalgia. Brain Behav Immun 2016; 58:218-227. [PMID: 27448744 DOI: 10.1016/j.bbi.2016.07.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/17/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
The translocator protein (TSPO) is upregulated during glia activation in chronic pain patients. TSPO constitutes the rate-limiting step in neurosteroid synthesis, thus modulating synaptic transmission. Related serotonergic mechanisms influence if pro- or anti-nociceptive neurosteroids are produced. This study investigated the effects of a functional genetic polymorphism regulating the binding affinity to the TSPO, thus affecting symptom severity and cerebral pain processing in fibromyalgia patients. Gene-to-gene interactions with a functional polymorphism of the serotonin transporter gene were assessed. Fibromyalgia patients (n=126) were genotyped regarding the polymorphisms of the TSPO (rs6971) and the serotonin transporter (5-HTTLPR/rs25531). Functional magnetic resonance imaging (n=24) was used to study brain activation during individually calibrated pressure pain. Compared to mixed/low TSPO affinity binders, the high TSPO affinity binders rated more severe pain (p=0.016) and fibromyalgia symptoms (p=0.02). A significant interaction was found between the TSPO and the serotonin transporter polymorphisms regarding pain severity (p<0.0001). Functional connectivity analyses revealed that the TSPO high affinity binding group had more pronounced pain-evoked functional connectivity in the right frontoparietal network, between the dorsolateral prefrontal area and the parietal cortex. In conclusion, fibromyalgia patients with the TSPO high affinity binding genotype reported a higher pain intensity and more severe fibromyalgia symptoms compared to mixed/low affinity binders, and this was modulated by interaction with the serotonin transporter gene. To our knowledge this is the first evidence of functional genetic polymorphisms affecting pain severity in FM and our findings are in line with proposed glia-related mechanisms. Furthermore, the functional magnetic resonance findings indicated an effect of translocator protein on the affective-motivational components of pain perception.
Collapse
Affiliation(s)
- Eva Kosek
- Department of Clinical Neuroscience and Osher Center, Karolinska Insitutet, Department of Neuroradiology, Karolinska University Hospital, SE-171 77 Stockholm, Sweden; Stockholm Spine Center, Löwenströmska Hospital, 198 84 Upplands Väsby, Sweden.
| | - Sofia Martinsen
- Department of Clinical Neuroscience and Osher Center, Karolinska Insitutet, Department of Neuroradiology, Karolinska University Hospital, SE-171 77 Stockholm, Sweden.
| | - Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| | - Kaisa Mannerkorpi
- Department of Health and Rehabilitation/Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden; University of Gothenburg Centre for Person-centred Care (GPCC), Sahlgrenska Academy, Gothenburg, Sweden.
| | - Monika Löfgren
- Department of Clinical Sciences, Karolinska Institutet and Department of Rehabilitation Medicine, Danderyd Hospital, SE-182 88 Stockholm, Sweden.
| | - Indre Bileviciute-Ljungar
- Department of Clinical Sciences, Karolinska Institutet and Department of Rehabilitation Medicine, Danderyd Hospital, SE-182 88 Stockholm, Sweden.
| | - Peter Fransson
- Department of Clinical Neuroscience and Osher Center, Karolinska Insitutet, Department of Neuroradiology, Karolinska University Hospital, SE-171 77 Stockholm, Sweden.
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Martin Ingvar
- Department of Clinical Neuroscience and Osher Center, Karolinska Insitutet, Department of Neuroradiology, Karolinska University Hospital, SE-171 77 Stockholm, Sweden.
| | - Malin Ernberg
- Department of Dental Medicine, Karolinska Institutet, and Scandinavian Center for Orofacial Neurosciences (SCON), SE-141 04 Huddinge, Sweden.
| | - Karin B Jensen
- Department of Clinical Neuroscience and Osher Center, Karolinska Insitutet, Department of Neuroradiology, Karolinska University Hospital, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
47
|
Won SJ, Kim CH, Chung CK, Choi Y, Park SB, Moon JH, Heo W, Kim SM. Clinical Outcomes of Single-level Posterior Percutaneous Endoscopic Cervical Foraminotomy for Patients with Less Cervical Lordosis. ACTA ACUST UNITED AC 2016. [DOI: 10.21182/jmisst.2016.00073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Li J, Li X, Jiang X, Yang M, Yang R, Burnstock G, Xiang Z, Yuan H. Microvesicles shed from microglia activated by the P2X7-p38 pathway are involved in neuropathic pain induced by spinal nerve ligation in rats. Purinergic Signal 2016; 13:13-26. [PMID: 27683228 DOI: 10.1007/s11302-016-9537-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/12/2016] [Indexed: 12/30/2022] Open
Abstract
Microglia are critical in the pathogenesis of neuropathic pain. In this study, we investigated the role of microvesicles (MVs) in neuropathic pain induced by spinal nerve ligation (SNL) in rats. First, we found that MVs shed from microglia were increased in the cerebrospinal fluid and dorsal horn of the spinal cord after SNL. Next, MVs significantly reduced paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). In addition, the P2X7-p38 pathway was related to the bleb of MVs after SNL. Interleukin (IL)-1β was found to be significantly upregulated in the package of MVs, and PWT and PWL increased following inhibition with shRNA-IL-1β. Finally, the amplitude and frequency of spontaneous excitatory postsynaptic currents increased following stimulation with MVs. Our results indicate that the P2X7-p38 pathway is closely correlated with the shedding of MVs from microglia in neuropathic pain, and MVs had a significant effect on neuropathic pain by participating in the interaction between microglia and neurons.
Collapse
Affiliation(s)
- Jian Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Xiangnan Li
- Department of Anesthesiology, The Third People's Hospital of Yancheng, Yancheng, 224001, China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Rui Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia
| | - Zhenghua Xiang
- Department of Neurobiology, MOE Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai, 200433, China.
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
49
|
Chen C, Chen F, Yao C, Shu S, Feng J, Hu X, Hai Q, Yao S, Chen X. Intrathecal Injection of Human Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorates Neuropathic Pain in Rats. Neurochem Res 2016; 41:3250-3260. [PMID: 27655256 DOI: 10.1007/s11064-016-2051-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/23/2016] [Accepted: 08/27/2016] [Indexed: 02/05/2023]
Abstract
Neuropathic pain (NP) is a clinically incurable disease with miscellaneous causes, complicated mechanisms and available therapies show poor curative effect. Some recent studies have indicated that neuroinflammation plays a vital role in the occurrence and promotion of NP and anti-inflammatory therapy has the potential to relieve the pain. During the past decades, mesenchymal stem cells (MSCs) with properties of multipotentiality, low immunogenicity and anti-inflammatory activity have showed excellent therapeutic effects in cell therapy from animal models to clinical application, thus aroused great attention. However there are no reports about the effect of intrathecal human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) on NP which is induced by peripheral nerve injury. Therefore, in this study, intrathecally transplanted HUC-MSCs were utilized to examine the effect on neuropathic pain induced by a rat model with spinal nerve ligation (SNL), so as to explore the possible mechanism of those effects. As shown in the results, the HUC-MSCs transplantation obviously ameliorated SNL-induced mechanical allodynia and thermal hyperalgesia, which was related to the inhibiting process of neuroinflammation, including the suppression of activated astrocytes and microglia, as well as the significant reduction of pro-inflammatory cytokines Interleukin-1β (IL-1β) and Interleukin -17A (IL-17A) and the up-regulation of anti-inflammatory cytokine Interleukin -10 (IL-10). Therefore, through the effect on glial cells, pro-inflammatory and anti-inflammatory cytokine, the targeting intrathecal HUC-MSCs may offer a novel treatment strategy for NP.
Collapse
Affiliation(s)
- Chunxiu Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengfeng Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengye Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaofang Shu
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Feng
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesia, The First Affiliated Hospital of University of South China, Henyang, China
| | - Xiaoling Hu
- Department of Anesthesia, The First Affiliated Hospital of University of South China, Henyang, China
| | - Quan Hai
- Sichuan Province Regenerative Medicine Engineering Technology Research Center, Chengdu, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
50
|
Coronel MF, Sánchez Granel ML, Raggio MC, Adler NS, De Nicola AF, Labombarda F, González SL. Temporal changes in the expression of the translocator protein TSPO and the steroidogenic enzyme 5α-reductase in the dorsal spinal cord of animals with neuropathic pain: Effects of progesterone administration. Neurosci Lett 2016; 624:23-8. [DOI: 10.1016/j.neulet.2016.04.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/20/2016] [Accepted: 04/30/2016] [Indexed: 02/07/2023]
|