1
|
Hotta K, Fujii Y, Hitosugi N, Takamizawa R, Inoue T, Tamiya H, Tsubaki A. Effects of veno-arterial extracorporeal membrane oxygenation on skeletal muscle function and interstitial PO 2 in contracting muscle of normal rats. Microvasc Res 2025; 160:104813. [PMID: 40280480 DOI: 10.1016/j.mvr.2025.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND This study aimed to clarify the effects of veno-arterial extracorporeal membrane oxygenation (VA-ECMO) on skeletal muscle oxygen pressure and function in rats. METHODS Male Sprague-Dawley rats (2-3 months old, n = 17) were randomized into control and VA-ECMO groups. All animals were anesthetized and mechanically ventilated. The VA-ECMO circuit was established by cannulating the right jugular vein and left carotid artery. Interstitial PO2 in the tibialis anterior (TA) muscle was measured using a phosphorescence quenching technique during electrically induced muscle contractions. Muscle tension was analyzed to evaluate the rate of force development (RFD) and relaxation rate. RESULTS Compared to controls, arterial oxygen pressure (PaO2) was significantly higher, while hemoglobin levels were significantly lower in the VA-ECMO group (both p < 0.01). Interstitial PO2 was significantly reduced at rest and during contractions in the VA-ECMO group (both p < 0.01). Muscle relaxation was delayed, and peak tension was lower in the VA-ECMO group compared to controls (both p < 0.01). CONCLUSIONS VA-ECMO impairs skeletal muscle function and reduces interstitial PO2 in contracting muscles, effects that appear independent of hyperoxemia. These findings provide insight into the microcirculatory and functional consequences of VA-ECMO on skeletal muscle.
Collapse
Affiliation(s)
- Kazuki Hotta
- Department of Rehabilitation Sciences, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan; Department of Rehabilitation, Kitasato University School of Allied Health Sciences, Sagamihara, Japan.
| | - Yutaka Fujii
- Department of Clinical Engineering and Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| | - Naoki Hitosugi
- Department of Rehabilitation Medicine, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan
| | - Ren Takamizawa
- Exercise Biochemistry & Sport Neurobiology Division, Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tatsuro Inoue
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hajime Tamiya
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Atsuhiro Tsubaki
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
2
|
Priest JR, Hebert D, Jutras C. Anticoagulation during extracorporeal membrane oxygenation: A narrative review. Perfusion 2025; 40:547-556. [PMID: 38671589 DOI: 10.1177/02676591241250288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Extracorporeal Membrane Oxygenation (ECMO) is a technology that offers organ support for critically ill patients with respiratory and/or cardiac failure. Despite improvements in recent years in technology and the biocompatibility of circuits, patients on ECMO remain at high risk of hematologic complications, such as bleeding or thrombosis. Anticoagulation is required in most cases to limit the risk of clotting, but questions persist regarding the optimal anticoagulation strategy. More precisely, there is still debate around the best anticoagulation agent and monitoring tools as well as on the transfusion thresholds and appropriate corrective measures when faced with complications. This narrative review provides an overview of hemostasis on ECMO and the impact of circuit size and coating. The benefits and downsides of unfractionated heparin (UHF) and Direct Thrombin Inhibitors (DTIs) as anticoagulation agents are reviewed. Finally, commonly available coagulation tests (activated clotting time, activated partial thrombin time, anti-Xa, and viscoelastic tests) and their limitations are addressed. In conclusion, future research is needed to determine the best anticoagulation strategy for patients on ECMO.
Collapse
Affiliation(s)
- John R Priest
- ECMO Program, Department of Respiratory Care, Lifespan Hospital System, Providence, RI, USA
| | - David Hebert
- ECMO Program, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA, USA
- Innovative ECMO Consults, Bluffton, SC, USA
| | - Camille Jutras
- Department of Anesthesiology, Boston Children's Hospital, Critical Care and Pain Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Fincher SH, Butt W. Red blood cell transfusion in veno-arterial extracorporeal membrane oxygenation - the disconnect between oxygen delivery and tissue oxygenation. Perfusion 2025; 40:15S-28S. [PMID: 40263905 DOI: 10.1177/02676591241239569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
BackgroundRed cell transufion in veno-arterial membrane oxygenation (VA ECMO) has been widely debated.PurposeThis narrative review aims to examine the historical and current approaches of red cell transfusion in veno-arterial extracorporeal membrane oxygenation (VA ECMO) to enhance oxygen delivery. It will explore the potential benefits and pitfalls of red blood cell (RBC) transfusion in VA ECMO, including relationship between haemoglobin (Hb) concentration, tissue oxygenation and patient outcomes associated with transfusion. Following it will review the impact of cardiogenic shock on the microcirculation, performance of transfused RBC and effects of the ECMO circuit on RBC function. It will conclude with an introduction to potential mechanisms by which we might manipulate red cells to improve tissue oxygenation, without augmentation of Hb concentration.ConclusionFurther research is needed to provide insight into optimal RBC transfusion thresholds and strategies to augment red cell function to optimise tissue oxygenation in VA ECMO.
Collapse
Affiliation(s)
- Sophie H Fincher
- Cardiology Department, The Royal Children's Hospital, Melbourne, VIC, Australia
- Intensive Care Unit, The Alfred Hospital, Melbourne, VIC, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia
| | - Warwick Butt
- Cardiology Department, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Division of Clinical Sciences, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Ikeda Y, Ishii S, Nakahara S, Iikura S, Fujita T, Iida Y, Nabeta T, Sato N, Ako J. Device-related adverse events and flow capacity of percutaneous ventricular assist devices. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2025; 14:93-103. [PMID: 39560117 DOI: 10.1093/ehjacc/zuae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
AIMS Complication management is crucial in patients receiving mechanical circulatory devices. However, there are limited data on the association between the risks of complications and device type in patients with percutaneous ventricular assist devices (PVAD). METHODS AND RESULTS The Japanese registry for PVAD (J-PVAD) is a nationwide ongoing registry that enrols consecutive patients with cardiogenic shock treated with PVAD. We analysed 5717 patients in the J-PVAD from 1 February 2020 to 31 December 2022, to compare the incident risks of device-related problems and all-cause mortality within 30 days after PVAD introduction based on flow capacities of first-line PVAD (low: Impella 2.5/CP, n = 5375; high: Impella 5.0/5.5, n = 342). The overall incidence of major device-related problems, including haemolysis, major bleeding, kidney injury, sepsis, and pump stop, was 13%, 21%, 7%, 3%, and 1%, respectively. The all-cause mortality rate was 34%. The incident risks of haemolysis [hazard ratio (HR) 0.38, 95% confidence interval (CI) 0.24-0.58], kidney injury (HR 0.32, 95% CI 0.18-0.57), and pump stop (HR 0.38, 95% CI 0.16-0.91) were lower in patients with high-flow PVAD compared with those with low-flow PVAD. The risks of major bleeding or sepsis did not differ significantly between groups. The risk of all-cause mortality was lower in patients with high-flow PVAD compared with those with low-flow PVAD (HR 0.79, 95% CI 0.65-0.96). CONCLUSION Compared with those with low-flow PVAD, patients with high-flow PVAD had lower incident risks of device-related problems, including haemolysis, kidney injury, and pump stop, as well as lower risk of all-cause mortality.
Collapse
Affiliation(s)
- Yuki Ikeda
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Shunsuke Ishii
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Shohei Nakahara
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Saeko Iikura
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Teppei Fujita
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Yuichiro Iida
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeru Nabeta
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Nobuhiro Sato
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
5
|
Kotani Y, Yamamoto T, Koroki T, Yaguchi T, Nakamura Y, Tonai M, Karumai T, Nardelli P, Landoni G, Hayashi Y. MECHANICAL LEFT VENTRICULAR UNLOADING IN CARDIOGENIC SHOCK TREATED WITH VENOARTERIAL EXTRACORPOREAL MEMBRANE OXYGENATION: A SYSTEMATIC REVIEW AND META-ANALYSIS. Shock 2025; 63:182-188. [PMID: 39194234 DOI: 10.1097/shk.0000000000002463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
ABSTRACT Objective : To evaluate if mechanical left ventricular unloading could reduce mortality in patients with cardiogenic shock undergoing venoarterial extracorporeal membrane oxygenation (VA-ECMO). Methods : We searched MEDLINE, Embase, and the Cochrane Library for randomized controlled trials and propensity score-matched studies published until December 20, 2023. The primary outcome was mortality at the longest follow-up. We used a Mantel-Haenszel random effects meta-analysis and reported the pooled results with a risk ratio (RR) and 95% confidence interval (CI). The review protocol was registered on PROSPERO International prospective register of systematic review (CRD42024498665). Results : We identified two randomized controlled trials and 11 propensity score-matched studies, totaling 9,858 patients. Mechanical left ventricular unloading was significantly associated with reduced mortality at the longest follow-up (RR, 0.89; 95% CI, 0.84-0.94; P = 0.0001; moderate certainty of evidence), which was confirmed in studies using intra-aortic balloon pump. Benefits of mechanical unloading were also observed in terms of successful VA-ECMO weaning (RR, 1.15; 95% CI, 1.02-1.29; P = 0.02; low certainty of evidence) and favorable neurological outcome (two studies; RR, 2.45; 95% CI, 1.62-3.69; P < 0.0001; low certainty of evidence), although we observed an increased incidence of major bleeding (RR, 1.27; 95% CI, 1.02-1.59; P = 0.03; low certainty of evidence) and hemolysis (RR, 1.49; 95% CI, 1.10-2.02; P = 0.01; moderate certainty of evidence). Conclusions : Among adult patients with cardiogenic shock treated with VA-ECMO, mechanical left ventricular unloading was associated with reduced mortality, which was confirmed in studies using intra-aortic balloon pump as an unloading device.
Collapse
Affiliation(s)
| | - Taihei Yamamoto
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Takatoshi Koroki
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Takahiko Yaguchi
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Yuta Nakamura
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Mayuko Tonai
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Toshiyuki Karumai
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Pasquale Nardelli
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Yoshiro Hayashi
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| |
Collapse
|
6
|
Rezoagli E, Bombino M, Ware LB, Carlesso E, Rona R, Grasselli G, Pesenti A, Bellani G, Foti G. Signs of Hemolysis Predict Mortality and Ventilator Associated Pneumonia in Severe Acute Respiratory Distress Syndrome Patients Undergoing Veno-Venous Extracorporeal Membrane Oxygenation. ASAIO J 2025; 71:82-91. [PMID: 39078479 PMCID: PMC11670904 DOI: 10.1097/mat.0000000000002278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Cell-free hemoglobin (CFH) is used to detect hemolysis and was recently suggested to trigger acute lung injury. However, its role has not been elucidated in severe acute respiratory distress syndrome (ARDS) patients undergoing extracorporeal membrane oxygenation (ECMO). We investigated the association of carboxyhemoglobin (COHb) and haptoglobin-two indirect markers of hemolysis-with mortality in critically ill patients undergoing veno-venous ECMO (VV-ECMO) with adjusted and longitudinal models (primary aim). Secondary aims included assessment of association between COHb and haptoglobin with the development of ventilator-associated pneumonia (VAP) and with hemodynamics. We retrospectively collected physiological, laboratory biomarkers, and outcome data in 147 patients undergoing VV-ECMO for severe ARDS. Forty-seven patients (32%) died in the intensive care unit (ICU). Average levels of COHb and haptoglobin were higher and lower, respectively, in patients who died. Higher haptoglobin was associated with lower pulmonary (PVR) and systemic vascular resistance, whereas higher COHb was associated with higher PVR. Carboxyhemoglobin was an independent predictor of VAP. Both haptoglobin and COHb independently predicted ICU mortality. In summary, indirect signs of hemolysis including COHb and haptoglobin are associated with modulation of vascular tone, VAP, and ICU mortality in respiratory ECMO. These findings suggest that CFH may be a mechanism of injury in this patient population.
Collapse
Affiliation(s)
- Emanuele Rezoagli
- From the School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, Monza, Italy
| | - Michela Bombino
- Department of Emergency and Intensive Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, Monza, Italy
| | - Lorraine B. Ware
- Department of Medicine, Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eleonora Carlesso
- Department of Medical Physiopathology and Transplants, University of Milan, Milano, Italy
| | - Roberto Rona
- Department of Emergency and Intensive Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, Monza, Italy
| | - Giacomo Grasselli
- Department of Medical Physiopathology and Transplants, University of Milan, Milano, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Pesenti
- Department of Medical Physiopathology and Transplants, University of Milan, Milano, Italy
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Bellani
- Centre for Medical Sciences—CISMed, University of Trento, Trento, Italy
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Trento, Italy
| | - Giuseppe Foti
- From the School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
7
|
Lamas T, Fernandes SM, Vasques F, Karagiannidis C, Camporota L, Barrett N. Recent Advances and Future Directions in Extracorporeal Carbon Dioxide Removal. J Clin Med 2024; 14:12. [PMID: 39797096 PMCID: PMC11722077 DOI: 10.3390/jcm14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
Extracorporeal carbon dioxide removal (ECCO2R) is an emerging technique designed to reduce carbon dioxide (CO2) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCO2R operates at lower blood flows (0.4-1.5 L/min), making it less invasive, with smaller cannulas and simpler devices. Despite encouraging results in controlling respiratory acidosis, its broader adoption is hindered by complications, including haemolysis, thrombosis, and bleeding. Technological advances, including enhanced membrane design, gas exchange efficiency, and anticoagulation strategies, are essential to improving safety and efficacy. Innovations such as wearable prototypes that adapt CO2 removal to patient activity and catheter-based systems for lower blood flow are expanding the potential applications of ECCO2R, including as a bridge-to-lung transplantation and in outpatient settings. Promising experimental approaches include respiratory dialysis, carbonic anhydrase-coated membranes, and electrodialysis to maximise CO2 removal. Further research is needed to optimise device performance, develop cost-effective systems, and establish standardised protocols for safe clinical implementation. As the technology matures, integration with artificial intelligence (AI) and machine learning may personalise therapy, improving outcomes. Ongoing clinical trials will be pivotal in addressing these challenges, ultimately enhancing the role of ECCO2R in critical care and its accessibility across healthcare settings.
Collapse
Affiliation(s)
- Tomás Lamas
- ICU Department at Hospital Egas Moniz, ULSLO, 1349-019 Lisbon, Portugal
- ICU Department at CUF Tejo, 1350-352 Lisbon, Portugal
| | - Susana M. Fernandes
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
- Serviço de Medicina Intensiva, ULS Santa Maria, 1649-035 Lisbon, Portugal
| | - Francesco Vasques
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 9RT, UK; (F.V.); (L.C.); (N.B.)
- Division of Centre of Human Applied Physiological Sciences, King’s College London, London WC2R 2LS, UK
| | - Christian Karagiannidis
- Department of Pneumology and Critical Care Medicine, ARDS and ECMO Centre, Cologne-Merheim Hospital, 51109 Cologne, Germany;
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 9RT, UK; (F.V.); (L.C.); (N.B.)
- Division of Centre of Human Applied Physiological Sciences, King’s College London, London WC2R 2LS, UK
| | - Nicholas Barrett
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, King’s Health Partners, London SE1 9RT, UK; (F.V.); (L.C.); (N.B.)
| |
Collapse
|
8
|
Budhu G, Morris-Whyte K, Constantinescu AR. Plasmapheresis for extracorporeal membrane oxygenation (ECMO)-induced hemolysis in infants. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2024; 56:211-215. [PMID: 39705586 DOI: 10.1051/ject/2024032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/28/2024] [Indexed: 12/22/2024]
Abstract
BACKGROUND Intravascular hemolysis is a known complication of extracorporeal membrane oxygenation (ECMO). Characterized by elevated plasma-free hemoglobin (PFH), intravascular hemolysis is associated with cytotoxic effects leading to renal replacement therapy (RRT), longer ECMO runs, and mortality. Therapeutic plasma exchange (TPE) in tandem with ECMO was described as a therapy for various pathologic conditions, but there are no Extracorporeal Life Support Organization (ELSO) guidelines for the treatment of ECMO-induced hemolysis. We describe the use of TPE in the management of severe ECMO-induced hemolysis. METHODS Two-term neonates receiving veno-arterial (VA) ECMO developed severe PFH, with peak values over 500 mg/dL. TPE was performed in tandem with the ECMO circuit. Packed red cells were used to prime the TPE circuit, and citrate anticoagulation was added to establish the interface, which could not be achieved with existing heparin in the ECMO circuit. Therapy was completed with saline solution as a decoy for citrate, to avoid hypocalcemia and intracranial bleeding. Plasma volume was replaced by fresh frozen plasma (FFP). RESULTS In one patient PFH fell to 120 mg/dL, but rebounded to close to 500 mg/dL, only to stabilize between 210 and 300 mg/dL after the second TPE. He was liberated from ECMO, but could not survive a respiratory decompensation. The other patient's PFH improved to 360 mg/dL after one TPE and continued to decline to 120 mg/dL over the ensuing days. Despite that improvement, care was withdrawn. CONCLUSION TPE is effective in decreasing the burden of PFH and is well tolerated in tandem with ECMO, and a database of infants with ECMO-induced hemolysis needs to be created to assess the current practice and establish clinical guidelines for its most appropriate therapy.
Collapse
Affiliation(s)
- Gail Budhu
- Pediatric Residency Program, Joe DiMaggio Children's Hospital, Memorial Healthcare System, 1005 Joe DiMaggio Dr. Hollywood, FL 33021, USA
| | - Kaydeen Morris-Whyte
- Pediatric Residency Program, Joe DiMaggio Children's Hospital, Memorial Healthcare System, 1005 Joe DiMaggio Dr. Hollywood, FL 33021, USA
| | - Alexandru R Constantinescu
- Division of Pediatric Nephrology, Joe DiMaggio Children's Hospital, 1131 N35th Ave, Hollywood, FL 33021, USA - Charles E. Schmidt College of Medicine at Florida Atlantic University, 777 Glades Rd BC-71, Boca Raton, FL 33431, USA
| |
Collapse
|
9
|
Weber Z, Yost CC, Cody M, King JM, Henderson C, Christensen RD, Carr NR. Acquired ineffective erythropoiesis in pediatric ECMO patients: Higher than anticipated serum EPO levels and lower than anticipated reticulocytes counts were associated with mortality. Perfusion 2024:2676591241300956. [PMID: 39547654 DOI: 10.1177/02676591241300956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
BACKGROUND ECMO plays a crucial role in treating severe respiratory and cardiac failure in pediatric patients. However, its impact on the regulation of erythropoietin (EPO) and erythropoiesis remains poorly understood. Factors such as improved oxygenation, inflammation, and hemodilution associated with ECMO treatment may influence EPO production and erythropoiesis. This study aimed to examine the effects of ECMO on EPO regulation and erythropoiesis in pediatric patients. METHODS This retrospective study serially quantified EPO serum levels, measured markers of erythropoiesis, and tabulated clinical outcomes of pediatric ECMO patients. Descriptive statistics and Pearson correlation coefficients were used to identify associations between biomarkers and clinical care parameters. RESULTS Preliminary findings suggest a disconnection between elevated EPO levels and reduced markers of erythropoiesis or iron metabolism, indicating ineffective erythropoiesis. Patients receiving more than 10 mL/kg/day of RBC transfusions had higher reticulocyte counts. Non-survivors had sustained elevations of EPO serum levels but reduced erythropoietic activity. CONCLUSION In ECMO-treated pediatric patients, ineffective erythropoiesis is a significant concern and may be associated with higher mortality rates. Understanding the mechanisms behind this pathology could better inform clinical approaches and optimize management strategies. Further research is imperative to uncover the factors resulting in ineffective erythropoiesis in these patients and to develop targeted interventions.
Collapse
Affiliation(s)
| | | | - Mark Cody
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | | | - Robert D Christensen
- University of Utah School of Medicine, Salt Lake City, UT, USA
- Intermountain Health, Salt Lake City, UT, USA
| | - Nicholas R Carr
- University of Utah School of Medicine, Salt Lake City, UT, USA
- Intermountain Health, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Butler M, Maywar A, Ruppert K, Fuhrman D, Kim-Campbell N. Accuracy of the HemoCue® to measure cell-free plasma hemoglobin and detect clinically significant hemolysis. Perfusion 2024:2676591241292674. [PMID: 39404023 DOI: 10.1177/02676591241292674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
INTRODUCTION Monitoring cell-free plasma hemoglobin (PHb) during extracorporeal therapies allows early intervention of significant hemolysis, but timely measurements are often challenging. We thus present an analysis of a rapid benchtop device's ability to detect clinically significant hemolysis (PHb ≥50 mg/dL). METHODS PHb was measured in 419 plasma samples from 88 pediatric patients undergoing cardiopulmonary bypass via both the benchtop device (HemoCue® Plasma/Low Hb system) and the clinical laboratory at the Children's Hospital of Pittsburgh (reference standards). Values of PHb ≥50 mg/dL as measured by the reference standard was defined as the binary outcome of clinically significant hemolysis. Analyses included Pearson correlations, logistic regression, receiver operating characteristic curves, and Bland-Altman. Because the manufacturer specifications identify the measurement range of the HemoCue® system as 30-3000 mg/dL, a secondary analysis was completed using PHb ≥30 mg/dL. RESULTS Using reference measurements, 66/88 subjects had at least one PHb level that fell within the range of detection (≥30 mg/dL) of the benchtop device and 46/88 had significant hemolysis as defined by PHb ≥50 mg/dL. PHb levels ≥30 mg/dL largely correlated with measurements made with the benchtop device (r = 0.82, p < .001). The device was able to predict PHb values ≥30 mg/dL (AUROC 0.9582) and ≥50 mg/dL (AUROC 0.9637). The Bland-Altman demonstrated a mean difference of 7.0 mg/dL with <5% outside the 95% limits of agreement. CONCLUSIONS The HemoCue® system is an effective surrogate for more robust laboratory testing to identify clinically significant hemolysis during cardiopulmonary bypass.
Collapse
Affiliation(s)
- Madison Butler
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Maywar
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristine Ruppert
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana Fuhrman
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nahmah Kim-Campbell
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Wang S, Sun W, Han D, Clark K, Griffith BP, Wu ZJ. In vitro study on device-induced damage to blood cellular components and degradation of von Willebrand factor in a CentriMag pump-assisted circulation. Artif Organs 2024; 48:988-996. [PMID: 38712632 PMCID: PMC11321940 DOI: 10.1111/aor.14766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND High mechanical shear stress (HMSS) generated by blood pumps during mechanical circulatory support induces blood damage (or function alteration) not only of blood cell components but also of plasma proteins. METHODS In the present study, fresh, healthy human blood was used to prime a blood circuit assisted by a CentriMag centrifugal pump at a flow rate of 4.5 L/min under three pump pressure heads (75, 150, and 350 mm Hg) for 4 h. Blood samples were collected for analyses of plasma-free hemoglobin (PFH), von Willebrand factor (VWF) degradation and platelet glycoprotein (GP) IIb/IIIa receptor shedding. RESULTS The extent of all investigated aspects of blood damage increased with increasing cross-pump pressure and duration. Loss of high-molecular-weight multimers (HMWM)-VWF in Loop 2 and Loop 3 significantly increased after 2 h. PFH, loss of HMWM-VWF, and platelet GPIIb/IIIa receptor shedding showed a good linear correlation with mean shear stress corresponding to the three pump pressure heads. CONCLUSIONS HMSS could damage red blood cells, cause pathological VWF degradation, and induce platelet activation and platelet receptor shedding. Different blood components can be damaged to different degrees by HMSS; VWF and VWF-enhanced platelet activation may be more susceptible to HMSS.
Collapse
Affiliation(s)
- Shigang Wang
- Artificial Organ Lab, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wenji Sun
- Artificial Organ Lab, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Dong Han
- Artificial Organ Lab, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kiersten Clark
- Artificial Organ Lab, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bartley P. Griffith
- Artificial Organ Lab, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zhongjun J. Wu
- Artificial Organ Lab, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland
| |
Collapse
|
12
|
Valtchanov H, Cecere R, Atkinson LTJ, Mongrain R. Simulation of the effect of hemolysis on thrombosis in blood-contacting medical devices. Med Eng Phys 2024; 131:104218. [PMID: 39284659 DOI: 10.1016/j.medengphy.2024.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/22/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Heart failure, broadly characterized by the gradual decline of the ability of the heart to maintain adequate blood flow throughout the body's vascular network of veins and arteries, is one of the leading causes of death worldwide. Mechanical Circulatory Support is one of the few available alternative interventions for late-stage heart failure with reduced ejection fraction. A ventricular assist device is surgically implanted and connected to the left and or right heart ventricles to provide additional bloodflow, off-loading the work required by the heart to maintain circulation. Modern mechanical circulatory support devices generate non-physiological flow conditions that can lead to the damage and rupture of blood cells (hemolysis), and the formation of blood clots (thrombosis), which pose severe health risks to the patient. It is essential to improve prediction tools for blood damage to reduce the risk of hemolysis and thrombosis. A simulation-based approach examines the interaction between hemolysis and thrombosis. Incompressible finite-volume computational fluid dynamics simulations are executed on an open-hub axial flow ventricular assist device. A continuum model of thrombosis and the intrinsic coagulation process is extended to include the effect of hemolysis. The model accounts for the effect of activation of platelets by shear stress, paracrine signaling, adhesion, and hemoglobin and ADP released during hemolysis. The effect of hemolysis with thrombosis is modelled by accounting for the hyper-adhesivity of von-Willebrand Factor on extracellular hemoglobin, and the increased rate of platelet activation induced by ADP release. Thrombosis is assessed at varying inflow rates and rotor speeds, and cases are executed where thrombosis is affected by ADP release and Hb-induced hyper-adhesivity. It is found that there is a non-negligible effect from hemolysis on thrombosis across a range of rotor speeds, and that hyperadhesivity plays a dominant role in thrombus formation in the presence of hemolysis.
Collapse
Affiliation(s)
- H Valtchanov
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| | - R Cecere
- Division of Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - L T J Atkinson
- Cardiac Surgery, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - R Mongrain
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Di Muro FM, Bellino M, Esposito L, Attisano T, Meucci F, Mattesini A, Galasso G, Vecchione C, Di Mario C. Role of Mechanical Circulatory Support in Complex High-Risk and Indicated Percutaneous Coronary Intervention: Current Indications, Device Options, and Potential Complications. J Clin Med 2024; 13:4931. [PMID: 39201073 PMCID: PMC11355104 DOI: 10.3390/jcm13164931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Improved expertise and technological advancements have enabled the safe and effective performance of complex and high-risk-indicated percutaneous coronary intervention (CHIP) in patients previously considered inoperable or high-risk. Mechanical circulatory support (MCS) devices play a crucial role in stabilizing hemodynamics during percutaneous coronary intervention (PCI) -related ischemia, thereby reducing the risk of major adverse events and achieving a more complete revascularization. However, the use of MCS devices in protected PCI is not without risks, including peri-procedural myocardial infarction (MI), bleeding, and access-related complications. Despite numerous observational studies, there is a significant lack of randomized clinical trials comparing different MCS devices in various CHIP scenarios and evaluating their long-term safety and efficacy profiles. This review aims to summarize the current evidence regarding the benefits of MCS devices during CHIPs, offer a practical guide for selecting appropriate devices based on clinical scenarios, and highlight the unanswered questions that future trials need to address.
Collapse
Affiliation(s)
- Francesca Maria Di Muro
- Department of Experimental and Clinical Medicine, School of Human Health Sciences, Careggi University Hospital, University of Florence, 50134 Florence, Italy
| | - Michele Bellino
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Baronissi, Italy; (M.B.); (T.A.); (G.G.); (C.V.)
| | - Luca Esposito
- Department of Advanced Biomedical Sciences, University Federico II, 80138 Naples, Italy;
| | - Tiziana Attisano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Baronissi, Italy; (M.B.); (T.A.); (G.G.); (C.V.)
| | - Francesco Meucci
- Division of Structural Interventional Cardiology, Cardiothoracovascular Department, Careggi University Hospital, 50134 Florence, Italy; (F.M.); (A.M.); (C.D.M.)
| | - Alessio Mattesini
- Division of Structural Interventional Cardiology, Cardiothoracovascular Department, Careggi University Hospital, 50134 Florence, Italy; (F.M.); (A.M.); (C.D.M.)
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Baronissi, Italy; (M.B.); (T.A.); (G.G.); (C.V.)
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Baronissi, Italy; (M.B.); (T.A.); (G.G.); (C.V.)
- Vascular Pathophysiology Unit, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Carlo Di Mario
- Division of Structural Interventional Cardiology, Cardiothoracovascular Department, Careggi University Hospital, 50134 Florence, Italy; (F.M.); (A.M.); (C.D.M.)
| |
Collapse
|
14
|
Yang T, Xiao X, Zhang X, Li Y, Liu X, Li X, Pan X, Li W, Xu H, Hao X, Duan S, Li B, Wang X, Li W, Zhao L. Carbon nitride reinforced chitosan/sodium alginate hydrogel as high-performance adsorbents for free hemoglobin removal in vitro and in vivo. Int J Biol Macromol 2024; 274:133278. [PMID: 38906342 DOI: 10.1016/j.ijbiomac.2024.133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Removing free hemoglobin generated during extracorporeal circulation remains a challenge. Currently, there is no adsorbent with specificity and good biosafety for removing hemoglobin. In this study, a new chitosan/sodium alginate/carbon nitride (CS/SA/C3N4) hydrogel adsorbent was prepared by blending SA with C3N4 to drop into CS/CaCl2 solution. The physicochemical properties of CS/SA/C3N4 hydrogel were evaluated using some techniques, including scanning electron microscope, Zeta potential measurement, and thermogravimetric analysis. Hemoglobin adsorption in vitro, stability, hemocompatibility, cell compatibility, inflammatory reaction and blood extracorporeal circulation in vivo were also evaluated. The findings revealed that the CS/SA/C3N4-0.4 % hydrogel exhibited an impressive adsorption capacity of 142.35 mg/g for hemoglobin. The kinetic data of hemoglobin adsorption were well-described by pseudo second-order model, while the isothermal model data conformed to the Langmuir model. The hardness and modulus of CS/SA/C3N4-0.4 % was 11.7 KPa and 94.66 KPa respectively, which indicated robust resistance to breakage. CS/SA/C3N4 demonstrated excellent hemocompatibility, biocompatibility and anti-inflammatory properties. In addition, the results of in vivo rabbit extracorporeal blood circulation experiment demonstrated that CS/SA/C3N4 could adsorb free hemoglobin from blood while maintaining high biosafety standard. Consequently, CS/SA/C3N4 hydrogel emerges as a promising candidate for use as a hemoglobin adsorbent in extracorporeal blood circulation system.
Collapse
Affiliation(s)
- Tuo Yang
- College of Life Science and Technology, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China; Key Laboratory of Medical Protective Equipment in Henan Province, Henan Yadu Industrial Co., Ltd, Xinxiang, China
| | - Xian Xiao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xuewei Zhang
- College of Life Science and Technology, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Yicheng Li
- College of Life Science and Technology, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Xiao Liu
- College of Life Science and Technology, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Xiafei Li
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Xinyu Pan
- Huaihe Hospital, Henan University, Kaifeng, China
| | - Wentao Li
- College of Life Science and Technology, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Hui Xu
- Key Laboratory of Medical Protective Equipment in Henan Province, Henan Yadu Industrial Co., Ltd, Xinxiang, China
| | - Xiaolong Hao
- Key Laboratory of Medical Protective Equipment in Henan Province, Henan Yadu Industrial Co., Ltd, Xinxiang, China
| | - Shuxia Duan
- Key Laboratory of Medical Protective Equipment in Henan Province, Henan Yadu Industrial Co., Ltd, Xinxiang, China
| | - Baochun Li
- College of Life Science and Technology, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Wenbin Li
- College of Life Science and Technology, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China.
| | - Liang Zhao
- College of Life Science and Technology, Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China; Key Laboratory of Medical Protective Equipment in Henan Province, Henan Yadu Industrial Co., Ltd, Xinxiang, China.
| |
Collapse
|
15
|
Imtiaz N, Poskus MD, Stoddard WA, Gaborski TR, Day SW. Empirical and Computational Evaluation of Hemolysis in a Microfluidic Extracorporeal Membrane Oxygenator Prototype. MICROMACHINES 2024; 15:790. [PMID: 38930760 PMCID: PMC11205701 DOI: 10.3390/mi15060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Microfluidic devices promise to overcome the limitations of conventional hemodialysis and oxygenation technologies by incorporating novel membranes with ultra-high permeability into portable devices with low blood volume. However, the characteristically small dimensions of these devices contribute to both non-physiologic shear that could damage blood components and laminar flow that inhibits transport. While many studies have been performed to empirically and computationally study hemolysis in medical devices, such as valves and blood pumps, little is known about blood damage in microfluidic devices. In this study, four variants of a representative microfluidic membrane-based oxygenator and two controls (positive and negative) are introduced, and computational models are used to predict hemolysis. The simulations were performed in ANSYS Fluent for nine shear stress-based parameter sets for the power law hemolysis model. We found that three of the nine tested parameters overpredict (5 to 10×) hemolysis compared to empirical experiments. However, three parameter sets demonstrated higher predictive accuracy for hemolysis values in devices characterized by low shear conditions, while another three parameter sets exhibited better performance for devices operating under higher shear conditions. Empirical testing of the devices in a recirculating loop revealed levels of hemolysis significantly lower (<2 ppm) than the hemolysis ranges observed in conventional oxygenators (>10 ppm). Evaluating the model's ability to predict hemolysis across diverse shearing conditions, both through empirical experiments and computational validation, will provide valuable insights for future micro ECMO device development by directly relating geometric and shear stress with hemolysis levels. We propose that, with an informed selection of hemolysis parameters based on the shear ranges of the test device, computational modeling can complement empirical testing in the development of novel high-flow blood-contacting microfluidic devices, allowing for a more efficient iterative design process. Furthermore, the low device-induced hemolysis measured in our study at physiologically relevant flow rates is promising for the future development of microfluidic oxygenators and dialyzers.
Collapse
Affiliation(s)
- Nayeem Imtiaz
- Rochester Institute of Technology, Kate Gleason College of Engineering, Rochester, NY 14623, USA; (N.I.); (W.A.S.); (T.R.G.)
| | - Matthew D. Poskus
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - William A. Stoddard
- Rochester Institute of Technology, Kate Gleason College of Engineering, Rochester, NY 14623, USA; (N.I.); (W.A.S.); (T.R.G.)
| | - Thomas R. Gaborski
- Rochester Institute of Technology, Kate Gleason College of Engineering, Rochester, NY 14623, USA; (N.I.); (W.A.S.); (T.R.G.)
| | - Steven W. Day
- Rochester Institute of Technology, Kate Gleason College of Engineering, Rochester, NY 14623, USA; (N.I.); (W.A.S.); (T.R.G.)
| |
Collapse
|
16
|
Butt SP, Razzaq N, Saleem Y, Cook B, Abdulaziz S. Improving ECMO therapy: Monitoring oxygenator functionality and identifying key indicators, factors, and considerations for changeout. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2024; 56:20-29. [PMID: 38488715 PMCID: PMC10941833 DOI: 10.1051/ject/2023047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/09/2023] [Indexed: 03/17/2024]
Abstract
INTRODUCTION The optimal timing for extracorporeal membrane oxygenation (ECMO) circuit change-out is crucial for the successful management of patients with severe cardiopulmonary failure. This comprehensive review examines the various factors that influence the timing of oxygenator replacement in the ECMO circuit. By considering these factors, clinicians can make informed decisions to ensure timely and effective change-out, enhancing patient outcomes and optimizing the delivery of ECMO therapy. METHODOLOGY A thorough search of relevant studies on ECMO circuits and oxygenator change-out was conducted using multiple scholarly databases and relevant keywords. Studies published between 2017 and 2023 were included, resulting in 40 studies that met the inclusion criteria. DISCUSSION Thrombosis within the membrane oxygenator and its impact on dysfunction were identified as significant contributors, highlighting the importance of monitoring coagulation parameters and gas exchange. Several factors, including fibrinogen levels, pre and post-membrane blood gases, plasma-free hemoglobin, D-dimers, platelet function, flows and pressures, and anticoagulation strategy, were found to be important considerations when determining the need for an oxygenator or circuit change-out. The involvement of a multidisciplinary team and thorough preparation were also highlighted as crucial aspects of this process. CONCLUSION In conclusion, managing circuit change-outs in ECMO therapy requires considering factors such as fibrinogen levels, blood gases, plasma-free hemoglobin, D-dimers, platelet function, flows, pressures, and anticoagulation strategy. Monitoring these parameters allows for early detection of issues, timely interventions, and optimized ECMO therapy. Standardized protocols, personalized anticoagulation approaches, and non-invasive monitoring techniques can improve the safety and effectiveness of circuit change-outs. Further research and collaboration are needed to advance ECMO management and enhance patient outcomes.
Collapse
Affiliation(s)
- Salman Pervaiz Butt
-
Perfusionist & ECMO Specialist, Heart Vascular and Thoracic Institute, Cleveland Clinic PO BOX: 112412 Abu Dhabi United Arab Emirates
| | - Nabeel Razzaq
-
Perfusion Department, Cleveland Clinic PO BOX: 112412 Abu Dhabi United Arab Emirates
| | - Yasir Saleem
-
Clinical Perfusionist, Department of CTVS, All India Institute of Medical Science Rishikesh
| | - Bill Cook
-
Clinical Perfusionist, Perfusion Department, Glenfield Hospital Leicester UK
| | - Salman Abdulaziz
-
Consultant of Cardiovascular Critical Care, Co-Chair of ECMO Task Force, Department of Health United Arab Emirates
| |
Collapse
|
17
|
Baud B, Dupuy AM, Zozor S, Badiou S, Bargnoux AS, Mathieu O, Cristol JP. Free hemoglobin determination at patients' bedside to evaluate hemolysis. Bioanalysis 2024; 16:65-74. [PMID: 38050368 DOI: 10.4155/bio-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
Background: The authors report the relevance of using a point of care test (Helge®) for free hemoglobin determination and concordance of the values the with Cobas® 8000 and spectrophotometer methods. Results: The within-run of the point of care test was <3%. Good correlations among the three methods were observed and an acceptable concordance for hemolysis index values from 50 mg/dl. An excellent agreement between the Cobas 8000 and the spectrophotometer was found. Conclusion: Automated methods represent methods of choice for free hemoglobin determination. An advantage of the Helge system is that it can be applied to samples experiencing a delay in evaluation due to the long distance between the collection site and the central laboratory. Another advantage is its use at the bedside, in the monitoring of extracorporeal membrane oxygenation patients.
Collapse
Affiliation(s)
- Bastien Baud
- Laboratoire de Biochimie et Hormonologie, CHU Montpellier, Univ Montpellier 1, Montpellier, F-34295, cédex 5, France
| | - Anne Marie Dupuy
- Laboratoire de Biochimie et Hormonologie, CHU Montpellier, Univ Montpellier 1, Montpellier, F-34295, cédex 5, France
| | - Samuel Zozor
- Laboratoire de Biochimie et Hormonologie, CHU Montpellier, Univ Montpellier 1, Montpellier, F-34295, cédex 5, France
| | - Stéphanie Badiou
- Laboratoire de Biochimie et Hormonologie, CHU Montpellier, Univ Montpellier 1, Montpellier, F-34295, cédex 5, France
- Laboratoire de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de Montpellier, Montpellier, F-34295, cédex 5, France
| | - Anne Sophie Bargnoux
- Laboratoire de Biochimie et Hormonologie, CHU Montpellier, Univ Montpellier 1, Montpellier, F-34295, cédex 5, France
- Laboratoire de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de Montpellier, Montpellier, F-34295, cédex 5, France
| | - Olivier Mathieu
- Department of Clinical Pharmacology, University Hospital of Montpellier, Montpellier, F-34295, cédex 5, France
- Hydroscience de Montpellier, UMR 5451, Université de Montpellier, Montpellier, F-34295, cédex 5, France
| | - Jean Paul Cristol
- Laboratoire de Biochimie et Hormonologie, CHU Montpellier, Univ Montpellier 1, Montpellier, F-34295, cédex 5, France
- Laboratoire de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de Montpellier, Montpellier, F-34295, cédex 5, France
| |
Collapse
|
18
|
Simons J, Di Mauro M, Mariani S, Ravaux J, van der Horst ICC, Driessen RGH, Sels JW, Delnoij T, Brodie D, Abrams D, Mueller T, Taccone FS, Belliato M, Broman ML, Malfertheiner MV, Boeken U, Fraser J, Wiedemann D, Belohlavek J, Barrett NA, Tonna JE, Pappalardo F, Barbaro RP, Ramanathan K, MacLaren G, van Mook WNKA, Mees B, Lorusso R. Bilateral Femoral Cannulation Is Associated With Reduced Severe Limb Ischemia-Related Complications Compared With Unilateral Femoral Cannulation in Adult Peripheral Venoarterial Extracorporeal Membrane Oxygenation: Results From the Extracorporeal Life Support Registry. Crit Care Med 2024; 52:80-91. [PMID: 37678211 DOI: 10.1097/ccm.0000000000006040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
OBJECTIVES Peripheral venoarterial extracorporeal membrane oxygenation (ECMO) with femoral access is obtained through unilateral or bilateral groin cannulation. Whether one cannulation strategy is associated with a lower risk for limb ischemia remains unknown. We aim to assess if one strategy is preferable. DESIGN A retrospective cohort study based on the Extracorporeal Life Support Organization registry. SETTING ECMO centers worldwide included in the Extracorporeal Life Support Organization registry. PATIENTS All adult patients (≥ 18 yr) who received peripheral venoarterial ECMO with femoral access and were included from 2014 to 2020. INTERVENTIONS Unilateral or bilateral femoral cannulation. MEASUREMENTS AND MAIN RESULTS The primary outcome was the occurrence of limb ischemia defined as a composite endpoint including the need for a distal perfusion cannula (DPC) after 6 hours from implantation, compartment syndrome/fasciotomy, amputation, revascularization, and thrombectomy. Secondary endpoints included bleeding at the peripheral cannulation site, need for vessel repair, vessel repair after decannulation, and in-hospital death. Propensity score matching was performed to account for confounders. Overall, 19,093 patients underwent peripheral venoarterial ECMO through unilateral ( n = 11,965) or bilateral ( n = 7,128) femoral cannulation. Limb ischemia requiring any intervention was not different between both groups (bilateral vs unilateral: odds ratio [OR], 0.92; 95% CI, 0.82-1.02). However, there was a lower rate of compartment syndrome/fasciotomy in the bilateral group (bilateral vs unilateral: OR, 0.80; 95% CI, 0.66-0.97). Bilateral cannulation was also associated with lower odds of cannulation site bleeding (bilateral vs unilateral: OR, 0.87; 95% CI, 0.76-0.99), vessel repair (bilateral vs unilateral: OR, 0.55; 95% CI, 0.38-0.79), and in-hospital mortality (bilateral vs unilateral: OR, 0.85; 95% CI, 0.81-0.91) compared with unilateral cannulation. These findings were unchanged after propensity matching. CONCLUSIONS This study showed no risk reduction for overall limb ischemia-related events requiring DPC after 6 hours when comparing bilateral to unilateral femoral cannulation in peripheral venoarterial ECMO. However, bilateral cannulation was associated with a reduced risk for compartment syndrome/fasciotomy, lower rates of bleeding and vessel repair during ECMO, and lower in-hospital mortality.
Collapse
Affiliation(s)
- Jorik Simons
- Department of Cardio-Thoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, NY
- Department of Intensive Care Medicine and Pneumology, University Hospital Regensburg, Regensburg, Germany
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of UOC Anestesia e Rianimazione 2, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
- ECMO Center Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Cardiac Surgery, Heinrich-Heine-University, Düsseldorf, Germany
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, QLD, Australia
- Department of Cardiac Surgery, Vienna Medical University, Vienna, Austria
- 2nd Department of Medicine-Department of Cardiovascular Medicine, General University Hospital in Prague, Prague, Czech Republic
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
- Emergency Medicine, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
- Department of Cardiothoracic and Vascular Anesthesia and Intensive Care, AO SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Pediatric Critical Care Medicine and Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, MI
- Cardiothoracic Intensive Care, National University Health System, Singapore
- Department of School of Health Professions Education, Maastricht University, Maastricht, The Netherlands
- Department of Academy for Postgraduate Medical Training, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Michele Di Mauro
- Department of Cardio-Thoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Silvia Mariani
- Department of Cardio-Thoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Justine Ravaux
- Department of Cardio-Thoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Rob G H Driessen
- Department of Cardio-Thoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, NY
- Department of Intensive Care Medicine and Pneumology, University Hospital Regensburg, Regensburg, Germany
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of UOC Anestesia e Rianimazione 2, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
- ECMO Center Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Cardiac Surgery, Heinrich-Heine-University, Düsseldorf, Germany
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, QLD, Australia
- Department of Cardiac Surgery, Vienna Medical University, Vienna, Austria
- 2nd Department of Medicine-Department of Cardiovascular Medicine, General University Hospital in Prague, Prague, Czech Republic
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
- Emergency Medicine, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
- Department of Cardiothoracic and Vascular Anesthesia and Intensive Care, AO SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Pediatric Critical Care Medicine and Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, MI
- Cardiothoracic Intensive Care, National University Health System, Singapore
- Department of School of Health Professions Education, Maastricht University, Maastricht, The Netherlands
- Department of Academy for Postgraduate Medical Training, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Jan Willem Sels
- Department of Cardio-Thoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, NY
- Department of Intensive Care Medicine and Pneumology, University Hospital Regensburg, Regensburg, Germany
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of UOC Anestesia e Rianimazione 2, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
- ECMO Center Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Cardiac Surgery, Heinrich-Heine-University, Düsseldorf, Germany
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, QLD, Australia
- Department of Cardiac Surgery, Vienna Medical University, Vienna, Austria
- 2nd Department of Medicine-Department of Cardiovascular Medicine, General University Hospital in Prague, Prague, Czech Republic
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
- Emergency Medicine, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
- Department of Cardiothoracic and Vascular Anesthesia and Intensive Care, AO SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Pediatric Critical Care Medicine and Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, MI
- Cardiothoracic Intensive Care, National University Health System, Singapore
- Department of School of Health Professions Education, Maastricht University, Maastricht, The Netherlands
- Department of Academy for Postgraduate Medical Training, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Thijs Delnoij
- Department of Cardio-Thoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, NY
- Department of Intensive Care Medicine and Pneumology, University Hospital Regensburg, Regensburg, Germany
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of UOC Anestesia e Rianimazione 2, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
- ECMO Center Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Department of Cardiac Surgery, Heinrich-Heine-University, Düsseldorf, Germany
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, QLD, Australia
- Department of Cardiac Surgery, Vienna Medical University, Vienna, Austria
- 2nd Department of Medicine-Department of Cardiovascular Medicine, General University Hospital in Prague, Prague, Czech Republic
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
- Emergency Medicine, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
- Department of Cardiothoracic and Vascular Anesthesia and Intensive Care, AO SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Department of Pediatric Critical Care Medicine and Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, MI
- Cardiothoracic Intensive Care, National University Health System, Singapore
- Department of School of Health Professions Education, Maastricht University, Maastricht, The Netherlands
- Department of Academy for Postgraduate Medical Training, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Daniel Brodie
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, NY
| | - Darryl Abrams
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, NY
| | - Thomas Mueller
- Department of Intensive Care Medicine and Pneumology, University Hospital Regensburg, Regensburg, Germany
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mirko Belliato
- Department of UOC Anestesia e Rianimazione 2, Foundation IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mike Lars Broman
- ECMO Center Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Maximilian V Malfertheiner
- Department of Intensive Care Medicine and Pneumology, University Hospital Regensburg, Regensburg, Germany
| | - Udo Boeken
- Department of Cardiac Surgery, Heinrich-Heine-University, Düsseldorf, Germany
| | - John Fraser
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Brisbane, QLD, Australia
| | - Dominik Wiedemann
- Department of Cardiac Surgery, Vienna Medical University, Vienna, Austria
| | - Jan Belohlavek
- 2nd Department of Medicine-Department of Cardiovascular Medicine, General University Hospital in Prague, Prague, Czech Republic
| | - Nicholas A Barrett
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Joseph E Tonna
- Cardiothoracic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
- Emergency Medicine, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT
| | - Federico Pappalardo
- Department of Cardiothoracic and Vascular Anesthesia and Intensive Care, AO SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Ryan P Barbaro
- Department of Pediatric Critical Care Medicine and Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, MI
| | | | - Graeme MacLaren
- Cardiothoracic Intensive Care, National University Health System, Singapore
| | - Walther N K A van Mook
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of School of Health Professions Education, Maastricht University, Maastricht, The Netherlands
- Department of Academy for Postgraduate Medical Training, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Barend Mees
- Department of Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Vascular Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Roberto Lorusso
- Department of Cardio-Thoracic Surgery, CARIM School for Cardiovascular Diseases, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| |
Collapse
|
19
|
Salha A, Chowdhury T, Singh S, Luyt J, Harky A. Optimizing Outcomes in Extracorporeal Membrane Oxygenation Postcardiotomy in Pediatric Population. J Pediatr Intensive Care 2023; 12:245-255. [PMID: 37970139 PMCID: PMC10631840 DOI: 10.1055/s-0041-1731682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/29/2021] [Indexed: 10/20/2022] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a rapidly emerging advanced life support technique used in cardiorespiratory failure refractory to other treatments. There has been an influx in the number of studies relating to ECMO in recent years, as the technique becomes more popular. However, there are still significant gaps in the literature including complications and their impacts and methods to predict their development. This review evaluates the available literature on the complications of ECMO postcardiotomy in the pediatric population. Areas explored include renal, cardiovascular, hematological, infection, neurological, and hepatic complications. Incidence, risk factors and potential predictors, and scoring systems for the development of these complications have been evaluated.
Collapse
Affiliation(s)
- Ahmad Salha
- Department of Medicine, St George's Hospital Medical School, London, United Kingdom
| | - Tasnim Chowdhury
- Department of Medicine, St George's Hospital Medical School, London, United Kingdom
| | - Saloni Singh
- School of Medicine, University of Central Lancashire, Preston, United Kingdom
| | - Jessica Luyt
- Department of Paediatric Intensive Care, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Amer Harky
- Department of Cardiac Surgery, Alder Hey Children Hospital, Liverpool, United Kingdom
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| |
Collapse
|
20
|
Orlitová M, Verbelen T, Frick AE, Vanstapel A, Van Beersel D, Ordies S, Van Slambrouck J, Kaes J, Jin X, Coudyzer W, Verleden SE, Verleden GM, Vanaudenaerde BM, Van Raemdonck DE, Vos R, Ceulemans LJ, Claus P, Neyrinck AP. The hemodynamic interplay between pulmonary ischemia-reperfusion injury and right ventricular function in lung transplantation: a translational porcine model. Am J Physiol Lung Cell Mol Physiol 2023; 325:L675-L688. [PMID: 37724349 PMCID: PMC11550898 DOI: 10.1152/ajplung.00281.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023] Open
Abstract
Lung transplantation (LTx) is a challenging procedure. Following the process of ischemia-reperfusion injury, the transplanted pulmonary graft might become severely damaged, resulting in primary graft dysfunction. In addition, during the intraoperative window, the right ventricle (RV) is at risk of acute failure. The interaction of right ventricular function with lung injury is, however, poorly understood. We aimed to address this interaction in a translational porcine model of pulmonary ischemia-reperfusion injury. Advanced pulmonary and hemodynamic assessment was used, including right ventricular pressure-volume loop analysis. The acute model was based on clamping and unclamping of the left lung hilus, respecting the different hemodynamic phases of a clinical lung transplantation. We found that forcing entire right ventricular cardiac output through a lung suffering from ischemia-reperfusion injury increased afterload (pulmonary vascular resistance from baseline to end experiment P < 0.0001) and induced right ventricular failure (RVF) in 5/9 animals. Notably, we identified different compensation patterns in failing versus nonfailing ventricles (arterial elastance P = 0.0008; stroke volume P < 0.0001). Furthermore, increased vascular pressure and flow produced by the right ventricle resulted in higher pulmonary injury, as measured by ex vivo CT density (correlation: pressure r = 0.8; flow r = 0.85). Finally, RV ischemia as measured by troponin-T was negatively correlated with pulmonary injury (r = -0.76); however, troponin-T values did not determine RVF in all animals. In conclusion, we demonstrate a delicate balance between development of pulmonary ischemia-reperfusion injury and right ventricular function during lung transplantation. Furthermore, we provide a physiological basis for potential benefit of extracorporeal life support technology.NEW & NOTEWORTHY In contrast to the abundant literature of mechanical pulmonary artery clamping to increase right ventricular afterload, we developed a model adding a biological factor of pulmonary ischemia-reperfusion injury. We did not only focus on the right ventricular behavior, but also on the interaction with the injured lung. We are the first to describe this interaction while addressing the hemodynamic intraoperative phases of clinical lung transplantation.
Collapse
Affiliation(s)
- Michaela Orlitová
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Tom Verbelen
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Anna E Frick
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Arno Vanstapel
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Dieter Van Beersel
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Sofie Ordies
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Jan Van Slambrouck
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Xin Jin
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Walter Coudyzer
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Stijn E Verleden
- Antwerp Surgical Training, Anatomy and Research Center, University of Antwerp, Antwerp, Belgium
| | - Geert M Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Piet Claus
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Arne P Neyrinck
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Van Edom CJ, Gramegna M, Baldetti L, Beneduce A, Castelein T, Dauwe D, Frederiks P, Giustino G, Jacquemin M, Janssens SP, Panoulas VF, Pöss J, Rosenberg A, Schaubroeck HAI, Schrage B, Tavazzi G, Vanassche T, Vercaemst L, Vlasselaers D, Vranckx P, Belohlavek J, Gorog DA, Huber K, Mebazaa A, Meyns B, Pappalardo F, Scandroglio AM, Stone GW, Westermann D, Chieffo A, Price S, Vandenbriele C. Management of Bleeding and Hemolysis During Percutaneous Microaxial Flow Pump Support: A Practical Approach. JACC Cardiovasc Interv 2023; 16:1707-1720. [PMID: 37495347 DOI: 10.1016/j.jcin.2023.05.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 07/28/2023]
Abstract
Percutaneous ventricular assist devices (pVADs) are increasingly being used because of improved experience and availability. The Impella (Abiomed), a percutaneous microaxial, continuous-flow, short-term ventricular assist device, requires meticulous postimplantation management to avoid the 2 most frequent complications, namely, bleeding and hemolysis. A standardized approach to the prevention, detection, and treatment of these complications is mandatory to improve outcomes. The risk for hemolysis is mostly influenced by pump instability, resulting from patient- or device-related factors. Upfront echocardiographic assessment, frequent monitoring, and prompt intervention are essential. The precarious hemostatic balance during pVAD support results from the combination of a procoagulant state, due to critical illness and contact pathway activation, together with a variety of factors aggravating bleeding risk. Preventive strategies and appropriate management, adapted to the impact of the bleeding, are crucial. This review offers a guide to physicians to tackle these device-related complications in this critically ill pVAD-supported patient population.
Collapse
Affiliation(s)
- Charlotte J Van Edom
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Mario Gramegna
- Cardiac and Cardiac Surgery Intensive Care Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Baldetti
- Cardiac and Cardiac Surgery Intensive Care Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Beneduce
- Interventional Cardiology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Thomas Castelein
- Cardiovascular Center, Onze-Lieve-Vrouwziekenhuis, Aalst, Belgium
| | - Dieter Dauwe
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Pascal Frederiks
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Gennaro Giustino
- Department of Cardiology, The Zena & Michael A. Wiener Cardiovascular Institute, Mount Sinai, New York, New York
| | - Marc Jacquemin
- Department of Laboratory Medicine, University Hospitals of Leuven, Leuven, Belgium
| | - Stefan P Janssens
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Vasileios F Panoulas
- Departments of Cardiology and Critical Care, Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Janine Pöss
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig, Leipzig, Germany
| | - Alexander Rosenberg
- Departments of Cardiology and Critical Care, Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Benedikt Schrage
- Department of Cardiology, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Guido Tavazzi
- Anaesthesia and Intensive Care, Fondazione Policlinico San Matteo IRCCS, Pavia, Italy
| | - Thomas Vanassche
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Leen Vercaemst
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Vlasselaers
- Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Pascal Vranckx
- Department of Cardiology and Intensive Care Medicine, Jessa Ziekenhuis, Hasselt, Belgium
| | - Jan Belohlavek
- Second Department of Medicine-Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Diana A Gorog
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Postgraduate Medical School, University of Hertfordshire, Hertfordshire, United Kingdom
| | - Kurt Huber
- Departments of Cardiology and Intensive Care Medicine, Clinic Ottakring and Sigmund Freud University, Medical School, Vienna, Austria
| | - Alexandre Mebazaa
- Department of Anesthesiology and Critical Care and Burn Unit, Saint-Louis and Lariboisière Hospitals, Paris, France
| | - Bart Meyns
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Federico Pappalardo
- Cardiothoracic and Vascular Anesthesia and Intensive Care, Azienda Ospedaliera Nazionale Santi Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Anna M Scandroglio
- Cardiac and Cardiac Surgery Intensive Care Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gregg W Stone
- Department of Cardiology, The Zena & Michael A. Wiener Cardiovascular Institute, Mount Sinai, New York, New York
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alaide Chieffo
- Interventional Cardiology Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Susanna Price
- Departments of Cardiology and Critical Care, Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Christophe Vandenbriele
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Departments of Cardiology and Critical Care, Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
22
|
Isenberg BC, Vedula EM, Santos J, Lewis DJ, Roberts TR, Harea G, Sutherland D, Landis B, Blumenstiel S, Urban J, Lang D, Teece B, Lai W, Keating R, Chiang D, Batchinsky AI, Borenstein JT. A Clinical-Scale Microfluidic Respiratory Assist Device with 3D Branching Vascular Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207455. [PMID: 37092588 PMCID: PMC10288269 DOI: 10.1002/advs.202207455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Recent global events such as COVID-19 pandemic amid rising rates of chronic lung diseases highlight the need for safer, simpler, and more available treatments for respiratory failure, with increasing interest in extracorporeal membrane oxygenation (ECMO). A key factor limiting use of this technology is the complexity of the blood circuit, resulting in clotting and bleeding and necessitating treatment in specialized care centers. Microfluidic oxygenators represent a promising potential solution, but have not reached the scale or performance required for comparison with conventional hollow fiber membrane oxygenators (HFMOs). Here the development and demonstration of the first microfluidic respiratory assist device at a clinical scale is reported, demonstrating efficient oxygen transfer at blood flow rates of 750 mL min⁻1 , the highest ever reported for a microfluidic device. The central innovation of this technology is a fully 3D branching network of blood channels mimicking key features of the physiological microcirculation by avoiding anomalous blood flows that lead to thrombus formation and blood damage in conventional oxygenators. Low, stable blood pressure drop, low hemolysis, and consistent oxygen transfer, in 24-hour pilot large animal experiments are demonstrated - a key step toward translation of this technology to the clinic for treatment of a range of lung diseases.
Collapse
Affiliation(s)
| | | | - Jose Santos
- Bioengineering DivisionDraperCambridgeMA02139USA
| | | | - Teryn R. Roberts
- Autonomous Reanimation and Evacuation (AREVA) Research ProgramThe Geneva FoundationSan AntonioTX78234USA
| | - George Harea
- Autonomous Reanimation and Evacuation (AREVA) Research ProgramThe Geneva FoundationSan AntonioTX78234USA
| | | | - Beau Landis
- Bioengineering DivisionDraperCambridgeMA02139USA
| | | | - Joseph Urban
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Daniel Lang
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Bryan Teece
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - WeiXuan Lai
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Rose Keating
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Diana Chiang
- Bioengineering DivisionDraperCambridgeMA02139USA
| | - Andriy I. Batchinsky
- Autonomous Reanimation and Evacuation (AREVA) Research ProgramThe Geneva FoundationSan AntonioTX78234USA
| | | |
Collapse
|
23
|
Newbigging AM, Xing R, Braam B, Raizman JE. Ex vivo hemolysis: three cases demonstrating mechanically-induced hemolysis from the extracorporeal circuit during hemodialysis. Clin Biochem 2023; 116:133-137. [PMID: 37146789 DOI: 10.1016/j.clinbiochem.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Sporadic mechanically-induced hemolysis associated with kinks in extracorporeal blood circuits during hemodialysis is a rare but potentially serious complication that exhibits laboratory features consistent with both in vivo and in vitro hemolysis. Misclassification of clinically significant hemolysis as in vitro can lead to inappropriate test cancellation and delayed medical interventions. Here, we report three cases of hemolysis attributed to kinked hemodialysis blood lines, which we have defined as "ex vivo" hemolysis. All three cases demonstrated an initial mixed picture of laboratory features consistent with both classifications of hemolysis. Specifically, absent features of in vivo hemolysis on blood film smear despite normal potassium led to the misclassification of these samples as in vitro hemolysis and their cancellation. A proposed mechanism for these overlapping laboratory features is the recirculation of damaged red blood cells from the kinked or pinched hemodialysis line back into the patient circulation producing an "ex vivo" hemolysis presentation. In two of the three cases, the patients developed acute pancreatitis as a result of hemolysis and required urgent medical follow up. We developed a decision pathway to help laboratories in identifying and handling these samples by recognizing that in vitro and in vivo hemolysis have overlapping laboratory features. These cases highlight the need for laboratorians and the clinical care team to be vigilant about mechanically-induced hemolysis from the extracorporeal circuit during hemodialysis. Communication is critical to identify the cause of hemolysis in these patients and prevent unnecessary delays in result reporting.
Collapse
Affiliation(s)
- Ashley M Newbigging
- Alberta Precision Laboratories, Edmonton, Alberta, Canada; Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Raymond Xing
- Department of Medicine, Division of Nephrology, University of Alberta, Edmonton, Alberta, Canada
| | - Branko Braam
- Department of Medicine, Division of Nephrology, University of Alberta, Edmonton, Alberta, Canada
| | - Joshua E Raizman
- Alberta Precision Laboratories, Edmonton, Alberta, Canada; Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
Costantini S, Belliato M, Ferrari F, Gazzaniga G, Ravasi M, Manera M, De Piero ME, Curcelli A, Cardinale A, Lorusso R. A retrospective analysis of the hemolysis occurrence during extracorporeal membrane oxygenation in a single center. Perfusion 2023; 38:609-621. [PMID: 35225087 DOI: 10.1177/02676591211073768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Extracorporeal membrane oxygenation (ECMO)-associated hemolysis still represents a serious complication. The present study aimed to investigate those predictive factors, such as flow rates, the use of anticoagulants, and circuit connected dialysis, that might play a pivotal role in hemolysis in adult patients. METHODS This is a retrospective single-center case series of 35 consecutive adult patients undergoing veno-venous ECMO support at our center between April 2014 and February 2020. Daily plasma-free hemoglobin (pfHb) and haptoglobin (Hpt) levels were chosen as hemolysis markers and they were analyzed along with patients' characteristics, daily laboratory findings, and corresponding ECMO system variables, as well as continuous renal replacement therapy (CRRT) when administered, looking for factors influencing their trends over time. RESULTS Among the many settings related to the ECMO support, the presence of CRRT connected to the ECMO circuit has been found associated with both higher daily pfHb levels and lower Hpt levels. After correction for potential confounders, hemolysis was ascribable to circuit-related variables, in particular the membrane oxygenation dead space was associated with an Hpt reduction (B = -215.307, p = 0.004). Moreover, a reduction of ECMO blood flow by 1 L/min has been associated with a daily Hpt consumption of 93.371 mg/dL (p = 0.001). CONCLUSIONS Technical-induced hemolysis during ECMO should be monitored not only when suspected but also during quotidian management and check-ups. While considering the clinical complexity of patients on ECMO support, clinicians should not only be aware of and anticipate possible circuitry malfunctions or inadequate flow settings, but they should also take into account the effects of an ECMO circuit-connected CRRT, as an equally important key factor triggering hemolysis.
Collapse
Affiliation(s)
- Silvia Costantini
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, 19001University of Pavia, Pavia, Italy
| | - Mirko Belliato
- UOC Anestesia e Rianimazione II Cardiopolmonare, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Cardio-Thoracic Surgery Department, Heart & Vascular Centre, 199236Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Fiorenza Ferrari
- UOC Anestesia e Rianimazione I, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giulia Gazzaniga
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, 19001University of Pavia, Pavia, Italy
| | - Marta Ravasi
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, 19001University of Pavia, Pavia, Italy
| | - Miriam Manera
- UOC Anestesia e Rianimazione II Cardiopolmonare, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Antonio Curcelli
- Cardiac Anesthesia and Intensive Care ICLAS Rapallo, 18591GVM Care & Res, Rapallo, Italy
| | - Alessandra Cardinale
- Department of Statistical Sciences, 9311Sapienza University of Rome, Rome, Italy
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, 199236Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,118066Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherland
| |
Collapse
|
25
|
Li Y, Zhang Y, Wu X. Liberal or restrictive transfusion for VV ECMO. THE LANCET. RESPIRATORY MEDICINE 2023; 11:e20. [PMID: 36470298 DOI: 10.1016/s2213-2600(22)00477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Affiliation(s)
- Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, 730030 Lanzhou, China
| | - Yanchun Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, 730030 Lanzhou, China
| | - Xiangyang Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, 730030 Lanzhou, China.
| |
Collapse
|
26
|
Schuler MJ, Becker D, Mueller M, Bautista Borrego L, Mancina L, Huwyler F, Binz J, Hagedorn C, Schär B, Gygax E, Weisskopf M, Sousa Da Silva RX, Antunes Crisóstomo JM, Dutkowski P, Rudolf von Rohr P, Clavien PA, Tibbitt MW, Eshmuminov D, Hefti M. Observations and findings during the development of a subnormothermic/normothermic long-term ex vivo liver perfusion machine. Artif Organs 2023; 47:317-329. [PMID: 36106378 DOI: 10.1111/aor.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Ex situliver machine perfusion at subnormothermic/normothermic temperature isincreasingly applied in the field of transplantation to store and evaluateorgans on the machine prior transplantation. Currently, various perfusionconcepts are in clinical and preclinical applications. Over the last 6 years ina multidisciplinary team, a novel blood based perfusion technology wasdeveloped to keep a liver alive and metabolically active outside of the bodyfor at least one week. METHODS Within thismanuscript, we present and compare three scenarios (Group 1, 2 and 3) we werefacing during our research and development (R&D) process, mainly linked tothe measurement of free hemoglobin and lactate in the blood based perfusate. Apartfrom their proven value in liver viability assessment (ex situ), these twoparameters are also helpful in R&D of a long-term liver perfusion machine and moreover supportive in the biomedical engineering process. RESULTS Group 1 ("good" liver on the perfusion machine) represents the best liver clearance capacity for lactate and free hemoglobin wehave observed. In contrast to Group 2 ("poor" liver on the perfusion machine), that has shown the worst clearance capacity for free hemoglobin. Astonishingly,also for Group 2, lactate is cleared till the first day of perfusion andafterwards, rising lactate values are detected due to the poor quality of theliver. These two perfusate parametersclearly highlight the impact of the organ quality/viability on the perfusion process. Whereas Group 3 is a perfusion utilizing a blood loop only (without a liver). CONCLUSION Knowing the feasible ranges (upper- and lower bound) and the courseover time of free hemoglobin and lactate is helpful to evaluate the quality ofthe organ perfusion itself and the maturity of the developed perfusion device. Freehemoglobin in the perfusate is linked to the rate of hemolysis that indicates how optimizing (gentle blood handling, minimizing hemolysis) the perfusion machine actually is. Generally, a reduced lactate clearancecapacity can be an indication for technical problems linked to the blood supplyof the liver and therefore helps to monitor the perfusion experiments.Moreover, the possibility is given to compare, evaluate and optimize developed liverperfusion systems based on the given ranges for these two parameters. Otherresearch groups can compare/quantify their perfusate (blood) parameters withthe ones in this manuscript. The presented data, findings and recommendations willfinally support other researchers in developing their own perfusion machine ormodifying commercially availableperfusion devices according to their needs.
Collapse
Affiliation(s)
- Martin J Schuler
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Dustin Becker
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Matteo Mueller
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Lucia Bautista Borrego
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Leandro Mancina
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Florian Huwyler
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Jonas Binz
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Catherine Hagedorn
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Beatrice Schär
- Entwicklung biomedizinische Anwendungen, Securecell AG, Urdorf, Switzerland
| | - Erich Gygax
- Forschung und Entwicklung, Fumedica AG, Muri, Switzerland
| | - Miriam Weisskopf
- Center of Surgical Research, University Hospital Zürich, University of Zürich, Zurich, Switzerland
| | - Richard Xavier Sousa Da Silva
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Philipp Dutkowski
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Rudolf von Rohr
- Transport Processes and Reactions Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Dilmurodjon Eshmuminov
- Department of Surgery, Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zurich, Zurich, Switzerland
| | - Max Hefti
- Wyss Zurich - ETH Zurich/University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Gao P, Jin Y, Zhang P, Wang W, Hu J, Liu J. Nadir oxygen delivery is associated with postoperative acute kidney injury in low-weight infants undergoing cardiopulmonary bypass. Front Cardiovasc Med 2022; 9:1020846. [PMID: 36588567 PMCID: PMC9800598 DOI: 10.3389/fcvm.2022.1020846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Acute kidney injury (AKI) is common after cardiac surgery with cardiopulmonary bypass (CPB) and is associated with increased mortality and morbidity. Nadir indexed oxygen delivery (DO2i) lower than the critical threshold during CPB is a risk factor for postoperative AKI. The critical DO2i for preventing AKI in children has not been well studied. The study aimed to explore the association between nadir DO2i and postoperative AKI in infant cardiac surgery with CPB. Methods From August 2021 to July 2022, 413 low-weight infants (≤10 kg) undergoing cardiac surgery with CPB were consecutively enrolled in this prospective observational study. Nadir DO2i was calculated during the hypothermia and rewarming phases of CPB, respectively. The association between nadir DO2i and postoperative AKI was investigated in mild hypothermia (32-34°C) and moderate hypothermia (26-32°C). Results A total of 142 (38.3%) patients developed postoperative AKI. In patients undergoing mild hypothermia during CPB, nadir DO2i in hypothermia and rewarming phases was independently associated with postoperative AKI. The cutoff values of nadir DO2i during hypothermia and rewarming phases were 258 mL/min/m2 and 281 mL/min/m2, respectively. There was no significant association between nadir DO2i and postoperative AKI in patients undergoing moderate hypothermia during CPB. Conclusion In low-weight infants undergoing mild hypothermia during CPB, the critical DO2i for preventing AKI was 258 mL/min/m2 in the hypothermia phase and 281 mL/min/m2 for rewarming. Moreover, an individualized critical DO2i threshold should be advocated during CPB.
Collapse
|
28
|
Complications Associated With Venovenous Extracorporeal Membrane Oxygenation-What Can Go Wrong? Crit Care Med 2022; 50:1809-1818. [PMID: 36094523 DOI: 10.1097/ccm.0000000000005673] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Despite increasing use and promising outcomes, venovenous extracorporeal membrane oxygenation (V-V ECMO) introduces the risk of a number of complications across the spectrum of ECMO care. This narrative review describes the variety of short- and long-term complications that can occur during treatment with ECMO and how patient selection and management decisions may influence the risk of these complications. DATA SOURCES English language articles were identified in PubMed using phrases related to V-V ECMO, acute respiratory distress syndrome, severe respiratory failure, and complications. STUDY SELECTION Original research, review articles, commentaries, and published guidelines from the Extracorporeal Life support Organization were considered. DATA EXTRACTION Data from relevant literature were identified, reviewed, and integrated into a concise narrative review. DATA SYNTHESIS Selecting patients for V-V ECMO exposes the patient to a number of complications. Adequate knowledge of these risks is needed to weigh them against the anticipated benefit of treatment. Timing of ECMO initiation and transfer to centers capable of providing ECMO affect patient outcomes. Choosing a configuration that insufficiently addresses the patient's physiologic deficit leads to consequences of inadequate physiologic support. Suboptimal mechanical ventilator management during ECMO may lead to worsening lung injury, delayed lung recovery, or ventilator-associated pneumonia. Premature decannulation from ECMO as lungs recover can lead to clinical worsening, and delayed decannulation can prolong exposure to complications unnecessarily. Short-term complications include bleeding, thrombosis, and hemolysis, renal and neurologic injury, concomitant infections, and technical and mechanical problems. Long-term complications reflect the physical, functional, and neurologic sequelae of critical illness. ECMO can introduce ethical and emotional challenges, particularly when bridging strategies fail. CONCLUSIONS V-V ECMO is associated with a number of complications. ECMO selection, timing of initiation, and management decisions impact the presence and severity of these potential harms.
Collapse
|
29
|
Wang C, Zhang Y. Commentary: Serum total bilirubin with hospital survival in adults during extracorporeal membrane oxygenation. Front Med (Lausanne) 2022; 9:1022207. [PMID: 36250096 PMCID: PMC9554216 DOI: 10.3389/fmed.2022.1022207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric Extracorporeal Life Support Center, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Chunxia Wang
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pediatric Extracorporeal Life Support Center, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
- Yucai Zhang
| |
Collapse
|
30
|
Hemocompatibility challenge of membrane oxygenator for artificial lung technology. Acta Biomater 2022; 152:19-46. [PMID: 36089235 DOI: 10.1016/j.actbio.2022.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022]
Abstract
The artificial lung (AL) technology is one of the membrane-based artificial organs that partly augments lung functions, i.e. blood oxygenation and CO2 removal. It is generally employed as an extracorporeal membrane oxygenation (ECMO) device to treat acute and chronic lung-failure patients, and the recent outbreak of the COVID-19 pandemic has re-emphasized the importance of this technology. The principal component in AL is the polymeric membrane oxygenator that facilitates the O2/CO2 exchange with the blood. Despite the considerable improvement in anti-thrombogenic biomaterials in other applications (e.g., stents), AL research has not advanced at the same rate. This is partly because AL research requires interdisciplinary knowledge in biomaterials and membrane technology. Some of the promising biomaterials with reasonable hemocompatibility - such as emerging fluoropolymers of extremely low surface energy - must first be fabricated into membranes to exhibit effective gas exchange performance. As AL membranes must also demonstrate high hemocompatibility in tandem, it is essential to test the membranes using in-vitro hemocompatibility experiments before in-vivo test. Hence, it is vital to have a reliable in-vitro experimental protocol that can be reasonably correlated with the in-vivo results. However, current in-vitro AL studies are unsystematic to allow a consistent comparison with in-vivo results. More specifically, current literature on AL biomaterial in-vitro hemocompatibility data are not quantitatively comparable due to the use of unstandardized and unreliable protocols. Such a wide gap has been the main bottleneck in the improvement of AL research, preventing promising biomaterials from reaching clinical trials. This review summarizes the current state-of-the-art and status of AL technology from membrane researcher perspectives. Particularly, most of the reported in-vitro experiments to assess AL membrane hemocompatibility are compiled and critically compared to suggest the most reliable method suitable for AL biomaterial research. Also, a brief review of current approaches to improve AL hemocompatibility is summarized. STATEMENT OF SIGNIFICANCE: The importance of Artificial Lung (AL) technology has been re-emphasized in the time of the COVID-19 pandemic. The utmost bottleneck in the current AL technology is the poor hemocompatibility of the polymer membrane used for O2/CO2 gas exchange, limiting its use in the long-term. Unfortunately, most of the in-vitro AL experiments are unsystematic, irreproducible, and unreliable. There are no standardized in-vitro hemocompatibility characterization protocols for quantitative comparison between AL biomaterials. In this review, we tackled this bottleneck by compiling the scattered in-vitro data and suggesting the most suitable experimental protocol to obtain reliable and comparable hemocompatibility results. To the best of our knowledge, this is the first review paper focusing on the hemocompatibility challenge of AL technology.
Collapse
|
31
|
HBOC-301 in Porcine Kidney Normothermic Machine Perfusion and the Effect of Vitamin C on Methemoglobin Formation. Antioxidants (Basel) 2022; 11:antiox11071329. [PMID: 35883821 PMCID: PMC9311674 DOI: 10.3390/antiox11071329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Normothermic machine perfusion (NMP) of kidneys in combination with an optimized perfusate composition may increase donor organ preservation quality, especially in the case of marginal donor grafts. Optimization of currently employed perfusates is still a subject of present research. Due to the advantages of being cell-free, easy to store, and having minimal antigenicity, hemoglobin-based oxygen carriers, such as HBOC-301 (Oxyglobin®, Hemoglobin Oxygen Therapeutics LLC, Souderton, PA, USA), offer an alternative to the commonly used perfusates based on packed red blood cells (pRBC). As previously described, using HBOC results in formation of methemoglobin (metHb) as an adverse effect, inducing hypoxic conditions during the perfusion. As a potential counterpart to metHb formation, the application of the antioxidant ascorbic acid (VitC) is of high interest. Therefore, this study was conducted in four experimental groups, to compare the effect of NMP with (1) HBOC or (3) pRBC, and additionally examine a beneficial effect of VitC in both groups (2) HBOC + VitC and (4) pRBC + VitC. All groups were subjected to NMP for 6 h at a pressure of 75 mmHg. Kidneys in the HBOC groups had a significantly lower renal blood flow and increasing intrarenal resistance, with reduced renal function in comparison to the pRBC groups, as demonstrated by significantly lower creatinine clearance and higher fractional sodium excretion rates. Clinical chemistry markers for tissue damage (LDH, lactate) were higher in the HBOC groups, whereas no significant histological differences were observed. Although the application of VitC decreased oxidative stress levels, it was not able to significantly increase the outcome parameters mentioned above in either group. This study demonstrated that HBOC-301 is inferior to pRBCs in our porcine kidney NMP model, independent of additional VitC administration. Oxidative stress and fragmentation of the hemoglobin polymers could be detected as a possible reason for these results, hence further research, focusing on the use of cell-free oxygen carriers that do not exhibit this complex of issues, is required.
Collapse
|
32
|
Capoferri A, Aloisio E, Pasqualetti S, Panteghini M. More about the random uncertainty of photometric determination of hemolysis index on the Abbott Alinity c platform. Clin Biochem 2022; 105-106:94-95. [PMID: 35460611 DOI: 10.1016/j.clinbiochem.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Alessia Capoferri
- Clinical Pathology Unit, 'Luigi Sacco' University Hospital, Milan, Italy.
| | - Elena Aloisio
- Clinical Pathology Unit, 'Luigi Sacco' University Hospital, Milan, Italy
| | - Sara Pasqualetti
- Clinical Pathology Unit, 'Luigi Sacco' University Hospital, Milan, Italy
| | - Mauro Panteghini
- Clinical Pathology Unit, 'Luigi Sacco' University Hospital, Milan, Italy
| |
Collapse
|
33
|
Chu JH, Sarathy S, Ramesh S, Rudolph K, Raghavan ML, Badheka A. Risk factors for hemolysis with centrifugal pumps in pediatric extracorporeal membrane oxygenation: Is pump replacement an answer? Perfusion 2022; 38:771-780. [PMID: 35354417 DOI: 10.1177/02676591221082499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Hemolysis during pediatric extracorporeal membrane oxygenation (ECMO) is associated with increased risk for renal failure and mortality. OBJECTIVES We aim to describe risk factors for hemolysis in pediatric ECMO supported by centrifugal pumps. METHODS We conducted an analysis of retrospective data collected at an academic children's hospital from January 2017 to December 2019. MEASUREMENTS AND RESULTS Plasma-free hemoglobin (PFH) levels were measured daily, and hemolysis was defined as PFH>50 mg/dL. Of 46 ECMO runs over 528 ECMO days, hemolysis occurred in 23 (58%) patients over a total of 40 (8%) ECMO days. In multivariable logistic regression models, VA-ECMO (aOR=4.69, 95% CI: 1.01-21.83) and higher hemoglobin (aOR = 1.38, 95% CI: 1.06-1.81) were independently associated with hemolysis. There were also non-significant trends toward increased risk for hemolysis with higher rotational pump speed (aOR=2.39, 95% CI: 0.75-7.65), higher packed red blood cell transfusions (aOR=1.15, 95% CI: 0.99-1.34), and higher cryoprecipitate transfusions (aOR=2.01, 95% CI: 0.83-4.86). Isolated pump exchanges that were performed in 12 patients with hemolysis led to significant decreases in PFH levels within 24 h (89 vs 11 mg/dL, p<0.01). CONCLUSIONS Hemolysis is common in pediatric ECMO using centrifugal pumps. Avoidance of high pump speeds and conservative administration of blood products may help to mitigate the risk for hemolysis. Furthermore, pump exchange may be an effective first-line treatment for hemolysis.
Collapse
Affiliation(s)
- Jian H Chu
- 2468University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.,Department of Internal Medicine, 20512Rush University Medical Center, Chicago, IL, USA
| | - Srivats Sarathy
- 4083University of Iowa Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242, USA
| | - Sonali Ramesh
- Division of Pediatric Critical Care, Department of Pediatrics, 21827University of Iowa Stead Family Children's Hospital, Iowa City, IA 52242, USA
| | - Kristina Rudolph
- Heart and Vascular Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Madhavan L Raghavan
- 4083University of Iowa Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242, USA
| | - Aditya Badheka
- Division of Pediatric Critical Care, Department of Pediatrics, 21827University of Iowa Stead Family Children's Hospital, Iowa City, IA 52242, USA
| |
Collapse
|
34
|
Pulmonary Artery Pulsatility Index and Hemolysis during Impella-Incorporated Mechanical Circulatory Support. J Clin Med 2022; 11:jcm11051206. [PMID: 35268295 PMCID: PMC8911137 DOI: 10.3390/jcm11051206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Impella is a percutaneous transcatheter left ventricular assist device. Device-related hemolysis is a serious complication that is sometimes encountered depending on the device position, device speed, and support duration. However, the impact of hemodynamics on the occurrence of hemolysis remains unknown. In this study, we aimed to clarify the relationships between hemodynamics, especially right ventricular function, and the occurrence of hemolysis during Impella-incorporated mechanical circulatory support. Methods: Consecutive patients who received Impella (2.5, CP, and 5.0) support at our institute between March 2018 and July 2021 were retrospectively included. The relationships between the pulmonary artery pulsatility index (PAPi) immediately after Impella insertion and the occurrence of hemolysis were investigated. Results: Forty-two patients (median 71 years old, 60% men) were included. Hemolysis occurred in 20 patients (48%). A cutoff of PAPi to predict hemolysis was calculated as 1.3, with 80.0% sensitivity and 72.7% specificity. Lower PAPi (<1.3) significantly correlated with the occurrence of hemolysis with an odds ratio of 11.65 (95% confidence interval 1.58−85.98, p = 0.017), adjusted for other potential confounders. Survival discharge was significantly lower in patients with lower PAPi (<1.3) (50% vs. 86%, p = 0.019). Conclusions: The results of this study suggest that patients with right ventricular impairment indicated by lower PAPi following the initiation of Impella-incorporated mechanical circulatory support have a higher risk of hemolysis.
Collapse
|
35
|
Impact of the Severity of Acquired von Willebrand Syndrome on the Short-Term Prognosis in Patients with Temporary Mechanical Circulatory Support. Medicina (B Aires) 2022; 58:medicina58020238. [PMID: 35208560 PMCID: PMC8880578 DOI: 10.3390/medicina58020238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Objectives: Acquired von Willebrand syndrome (AVWS) develops not only in patients with durable ventricular assist devices but also in patients receiving temporary mechanical circulatory support (MCS). However, its prognostic implication remains unknown. Materials and Methods: Patients who received temporary MCS in our institute between August 2018 and September 2021 were included in this prospective study and the von Willebrand factor multimer analyses were performed following the initiation of temporary MCS supports. The von Willebrand factor large-multimer index was calculated as a normalized ratio of large-multimer proportion among total von Willebrand factor. Association between the large-multimer index and the 30-day survival was investigated. Results: A total of 31 patients (69 years old, 52% men) were included. Median large-multimer index was 63.0% (56.9%, 75.6%). The index was lowest in patients with extracorporeal membrane oxygenation than those receiving support from other devices. A lower index (<59.9%) was associated with lower 30-day survival (41.7% versus 94.7%, p = 0.001) with an odds ratio 0.044 (95% confidence interval 0.002–0.805, p = 0.035) adjusted for other potential confounders. Conclusions: An advanced AVWS was associated with lower short-term survival in patients with temporary MCS. The clinical implication of AVWS-guided temporary MCS management remains the next concern.
Collapse
|
36
|
|
37
|
Naeem N, Drese KS, Paterson L, Kersaudy-Kerhoas M. Current and Emerging Microfluidic-Based Integrated Solutions for Free Hemoglobin and Hemolysis Detection and Measurement. Anal Chem 2021; 94:75-85. [PMID: 34860012 DOI: 10.1021/acs.analchem.1c04567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Noman Naeem
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Klaus-Stefan Drese
- The Institute of Sensor and Actuator Technology (ISAT), 96450 Coburg, Germany
| | - Lynn Paterson
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Maïwenn Kersaudy-Kerhoas
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.,Infection Medicine, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9YL, U.K
| |
Collapse
|
38
|
Bürki C, Volleberg M, Brunner D, Schmugge M, Hersberger M. Using the hemolysis index of Abbott's Alinity c for the measurement of plasma free hemoglobin in ECMO patients. Clin Biochem 2021; 100:67-70. [PMID: 34826395 DOI: 10.1016/j.clinbiochem.2021.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Quantitative measurement of plasma free hemoglobin (fHb) concentrations is essential for monitoring pediatric ECMO patients, since hemolysis has a great impact on the patient's clinical outcome. The aim of this study was to validate the hemolysis index (HI) assay on Abbott's Alinity c system as a quantitative method to measure fHb. METHODS The performance of the HI assay, based on an automated spectrophotometric method recording the absorption at four different wavelength pairs, was evaluated using the 20 × 2 × 2 design according to the CLSI-EP05-A3 guidelines. LLOQ and LLOD were calculated according to CLSI-EP17 guidelines with CVs set to 10% and 20%, respectively. Furthermore, the method was tested for interferences with bilirubin and Intralipid®. RESULTS Linearity was ensured over an analytical measurement range of 30-7250 mg/L and the calculated LLOQ and LLOD were 80 mg/L and 50 mg/L, respectively. Intra-run and total imprecisions ranged from 0.9-3.4% and 1.0-3.4%, respectively. The HI assay correlated well with the Harboe method (HI (mg/L) = 0.998 * fHb (mg/L) + 28 mg/L, R = 0.998, n = 50) and interference testing showed no impact of bilirubin and Intralipid® up to 709 mg/L and 5580 mg/L, respectively. CONCLUSIONS The HI assay on Abbott's Alinity c system allows a precise and accurate determination of fHb concentrations with no significant interferences in a simple, rapid and cost-effective way.
Collapse
Affiliation(s)
- Carmen Bürki
- Medica Medizinische Laboratorien Dr. F. Kaeppeli AG, Zurich, Switzerland
| | - Martin Volleberg
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Switzerland
| | - David Brunner
- Division of Hematology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Switzerland
| | - Markus Schmugge
- Division of Hematology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Switzerland.
| |
Collapse
|
39
|
Dufour N. H-index and Hemolysis Associated with ECMO: Is This So Simple? ASAIO J 2021; 67:e202-e203. [PMID: 34081053 DOI: 10.1097/mat.0000000000001503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Nicolas Dufour
- Réanimation Médico-chirurgicale, Centre Hospitalier René Dubos, Pontoise, France
| |
Collapse
|
40
|
Bosma M, Scholten E, Rigter S, Hackeng CM. Automated Monitoring of Plasma-free Hemoglobin on Routine Clinical Chemistry Platforms. ASAIO J 2021; 67:e201. [PMID: 34074854 DOI: 10.1097/mat.0000000000001502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Madeleen Bosma
- Department of Clinical Chemistry, St. Antonius Hospital, Nieuwegein/Utrecht, The Netherlands, Department of Clinical Chemistry and Hematology, Gelderland Valley Hospital, Ede, The Netherlands,
| | - Erik Scholten
- Department of Anesthesiology, Intensive Care and Pain Medicine, St. Antonius Hospital, Nieuwegein/Utrecht, The Netherlands
| | - Sander Rigter
- Department of Anesthesiology, Intensive Care and Pain Medicine, St. Antonius Hospital, Nieuwegein/Utrecht, The Netherlands
| | - Chris M Hackeng
- Department of Clinical Chemistry, St. Antonius Hospital, Nieuwegein/Utrecht, The Netherlands
| |
Collapse
|
41
|
Condello I, Santarpino G, Serraino GF, Mastroroberto P, Speziale G, Nasso G. Magnetic levitation pump versus constrained vortex pump: a pilot study on the hemolysis effect during minimal invasive extracorporeal circulation. J Cardiothorac Surg 2021; 16:253. [PMID: 34496921 PMCID: PMC8425047 DOI: 10.1186/s13019-021-01637-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elevated plasma free hemoglobin is associated with multi-organ injury. In this context, minimally invasive extracorporeal technologies represent a way to reduce this complication following cardiac surgery. METHODS We present a pilot study focused on plasma free hemoglobin levels in 40 patients undergoing isolated coronary artery bypass grafting (CABG). The same circuits for minimally invasive extracorporeal circulation (MiECC) were used in all patients. The ECMOLIFE magnetic levitation pump was used in the study group (n = 20), and the AP40 Affinity CP centrifugal blood pump was used in the control group (n = 20). RESULTS In the immediate postoperative period, plasma free hemoglobin (PFH) and lactate dehydrogenase (LDH) were significantly lower in the study group than in the control group (10.6 ± 0.7 vs 19.9 ± 0.3 mg/dL, p = 0.034; and 99.16 ± 1.7 vs 139.17 ± 1.5 IU/L, p = 0.027, respectively). Moreover, patients treated with the magnetic levitation pump showed lower creatinine and indirect bilirubin (0.92 vs 1.29 mg/dL, p = 0.030 and 0.6 ± 0.4 vs 1.5 ± 0.9 mg/dL, p = 0.022, respectively) at 24 h after the procedure, and received fewer transfusions during the whole postoperative period (3 vs 9 red blood cell units (RBC), p = 0.017). CONCLUSION Our pilot study suggests that the use of magnetically levitated centrifugal pumps for extracorporeal circulation support is associated with a lower risk of hemolysis, though larger studies are warranted to confirm our results.
Collapse
Affiliation(s)
- Ignazio Condello
- Department of Cardiac Surgery, GVM Care & Research, Perfusion Service, Anthea Hospital, Via Camillo Rosalba 35/37, 70124, Bari, Italy.
| | - Giuseppe Santarpino
- Department of Cardiac Surgery, GVM Care & Research, Perfusion Service, Anthea Hospital, Via Camillo Rosalba 35/37, 70124, Bari, Italy.,Department of Cardiac Surgery, Paracelsus Medical University, Nuremberg, Germany.,Cardiac Surgery Unit, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Giuseppe Filiberto Serraino
- Cardiac Surgery Unit, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Pasquale Mastroroberto
- Cardiac Surgery Unit, Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Giuseppe Speziale
- Department of Cardiac Surgery, GVM Care & Research, Perfusion Service, Anthea Hospital, Via Camillo Rosalba 35/37, 70124, Bari, Italy
| | - Giuseppe Nasso
- Department of Cardiac Surgery, GVM Care & Research, Perfusion Service, Anthea Hospital, Via Camillo Rosalba 35/37, 70124, Bari, Italy
| |
Collapse
|
42
|
Fischbach A, Wiegand SB, Zazzeron L, Traeger L, di Fenza R, Bagchi A, Farinelli WA, Franco W, Korupolu S, Arens J, Grassi L, Zadek F, Bloch DB, Rox Anderson R, Zapol WM. Veno-venous extracorporeal blood phototherapy increases the rate of carbon monoxide (CO) elimination in CO-poisoned pigs. Lasers Surg Med 2021; 54:256-267. [PMID: 34350599 DOI: 10.1002/lsm.23462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES Carbon monoxide (CO) inhalation is the leading cause of poison-related deaths in the United States. CO binds to hemoglobin (Hb), displaces oxygen, and reduces oxygen delivery to tissues. The optimal treatment for CO poisoning in patients with normal lung function is the administration of hyperbaric oxygen (HBO). However, hyperbaric chambers are only available in medical centers with specialized equipment, resulting in delayed therapy. Visible light dissociates CO from Hb with minimal effect on oxygen binding. In a previous study, we combined a membrane oxygenator with phototherapy at 623 nm to produce a "mini" photo-ECMO (extracorporeal membrane oxygenation) device, which improved CO elimination and survival in CO-poisoned rats. The objective of this study was to develop a larger photo-ECMO device ("maxi" photo-ECMO) and to test its ability to remove CO from a porcine model of CO poisoning. STUDY DESIGN/MATERIALS AND METHODS The "maxi" photo-ECMO device and the photo-ECMO system (six maxi photo-ECMO devices assembled in parallel), were tested in an in vitro circuit of CO poisoning. To assess the ability of the photo-ECMO device and the photo-ECMO system to remove CO from CO-poisoned blood in vitro, the half-life of COHb (COHb-t1/2 ), as well as the percent COHb reduction in a single blood pass through the device, were assessed. In the in vivo studies, we assessed the COHb-t1/2 in a CO-poisoned pig under three conditions: (1) While the pig breathed 100% oxygen through the endotracheal tube; (2) while the pig was connected to the photo-ECMO system with no light exposure; and (3) while the pig was connected to the photo-ECMO system, which was exposed to red light. RESULTS The photo-ECMO device was able to fully oxygenate the blood after a single pass through the device. Compared to ventilation with 100% oxygen alone, illumination with red light together with 100% oxygen was twice as efficient in removing CO from blood. Changes in gas flow rates did not alter CO elimination in one pass through the device. Increases in irradiance up to 214 mW/cm2 were associated with an increased rate of CO elimination. The photo-ECMO device was effective over a range of blood flow rates and with higher blood flow rates, more CO was eliminated. A photo-ECMO system composed of six photo-ECMO devices removed CO faster from CO-poisoned blood than a single photo-ECMO device. In a CO-poisoned pig, the photo-ECMO system increased the rate of CO elimination without significantly increasing the animal's body temperature or causing hemodynamic instability. CONCLUSION In this study, we developed a photo-ECMO system and demonstrated its ability to remove CO from CO-poisoned 45-kg pigs. Technical modifications of the photo-ECMO system, including the development of a compact, portable device, will permit treatment of patients with CO poisoning at the scene of their poisoning, during transit to a local emergency room, and in hospitals that lack HBO facilities.
Collapse
Affiliation(s)
- Anna Fischbach
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Steffen B Wiegand
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Luca Zazzeron
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa Traeger
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raffaele di Fenza
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aranya Bagchi
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William A Farinelli
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts, USA
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts, Lowell, Massachusetts, USA
| | - Sandeep Korupolu
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts, USA
| | - Jutta Arens
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, Twente, The Netherlands
| | - Luigi Grassi
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesco Zadek
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - R Rox Anderson
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts, USA
| | - Warren M Zapol
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Guner YS, Delaplain PT, Schomberg J, Di Nardo M, Yu PT, Lam D, Jancelewicz T, Harting MT, Starr JP, Nguyen DV. Risk Factors for Hemolysis During Extracorporeal Life Support for Congenital Diaphragmatic Hernia. J Surg Res 2021; 263:14-23. [PMID: 33621745 DOI: 10.1016/j.jss.2021.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Neonates receiving extracorporeal life support (ECLS) for congenital diaphragmatic hernia (CDH) require prolonged support compared with neonates with other forms of respiratory failure. Hemolysis is a complication that can be seen during ECLS and can lead to renal failure and potentially to worse outcomes. The purpose of this study was to identify risk factors for the development of hemolysis in CDH patients treated with ECLS. METHODS The Extracorporeal Life Support Organization database was used to identify infants with CDH (2000-2015). The primary outcome was hemolysis (plasma-free hemoglobin >50 mg/dL). Potentially associated variables were identified in the data set. Descriptive statistics and a series of nested multivariable logistic regression models were used to identify associations between hemolysis and demographic, pre-ECLS, and on-ECLS factors. RESULTS There were 4576 infants with a mortality of 52.5%. The overall mean rate of hemolysis was 10.5% during the study period. In earlier years (2000-2005), the hemolysis rates were 6.3% and 52.7% for roller versus centrifugal pumps, whereas in later years (2010-2015), they were 2.9% and 26.5%, respectively. The fully adjusted model demonstrated that the use of centrifugal pumps was a strong predictor of hemolysis (odds ratio: 6.67, 95% confidence interval: 5.14-8.67). In addition, other risk factors for hemolysis included low 5-min Apgar score, on-ECLS complications (renal, metabolic, and cardiovascular), and duration of ECLS. CONCLUSIONS In our cohort of CDH patients receiving ECLS over 15 y, the use of centrifugal pumps increased over time, along with the rate of hemolysis. Patient- and treatment-level risk factors were identified contributing to the development of hemolysis.
Collapse
Affiliation(s)
- Yigit S Guner
- Department of Surgery, University of California Irvine Medical Center, Orange, California; Division of Pediatric Surgery, Children's Hospital of Orange County, Orange, California.
| | - Patrick T Delaplain
- Department of Surgery, University of California Irvine Medical Center, Orange, California
| | - John Schomberg
- Department of Nursing and Trauma Research, Children's Hospital of Orange County, Orange, California
| | - Matteo Di Nardo
- Department of Nursing and Trauma Research, Ospedale Pediatrico Bambino Gesu, Rome, Italy
| | - Peter T Yu
- Department of Surgery, University of California Irvine Medical Center, Orange, California; Division of Pediatric Surgery, Children's Hospital of Orange County, Orange, California
| | - Danny Lam
- Department of Nursing and Trauma Research, Children's Hospital of Orange County, Cardiovacular Intentive Care Unit, Orange, California
| | - Tim Jancelewicz
- Division of Pediatric Surgery, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Matthew T Harting
- Department of Pediatric Surgery, Children's Memorial Hermann Hospital, University of Texas McGovern Medical School, Houston, Texas
| | - Joanne P Starr
- Division of Cardiothoracic Surgery, Children's Hospital of Orange County, Orange, California
| | - Danh V Nguyen
- Department of Medicine, Irvine School of Medicine, University of California, Irvine, California
| | | |
Collapse
|
44
|
Calvaresi EC, La'ulu SL, Snow TM, Allison TR, Genzen JR. Plasma hemoglobin: A method comparison of six assays for hemoglobin and hemolysis index measurement. Int J Lab Hematol 2021; 43:1145-1153. [PMID: 33449436 DOI: 10.1111/ijlh.13457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/04/2020] [Accepted: 12/27/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Plasma hemoglobin (Hb) is measured for assessment of in vivo and in vitro hemolysis. The objective of the present investigation was to conduct a method comparison of five quantitative and one semi-quantitative Hb and H-index (hemolysis index) assays to evaluate their performance measuring plasma Hb in clinical specimens. METHODS One hundred and fourteen clinical specimens previously tested for plasma Hb using a laboratory-developed spectrophotometric assay were also tested for Hb using a HemoCue Plasma/Low Hb assay (azide methemoglobin), a laboratory-modified Pointe Scientific Hb assay (cyanmethemoglobin), tested for H-index measurements using a Roche cobas c501, an Abbott Architect c8000, and a semi-quantitative (binned) H-index measurement on a Beckman AU5800. The reference result was defined as the median Hb score (median of all Hb or H-index results). RESULTS The laboratory-developed spectrophotometric Hb assay and Roche H-index methods mostly closely matched the median Hb score across all data, as well as for lower range median Hb score results ≤2.0 g/L. Two-way frequency table analysis using an Hb (or H-index) cutoff of 0.5 g/L (or 0.5 H-index units) was then performed to compare methods to the median Hb score cutoff. The Beckman method had the highest accuracy at this cutoff, the Roche and Abbott methods had the highest positive predictive value (PPV), and the Beckman, HemoCue, and Pointe methods had the highest negative predictive value (NPV). CONCLUSIONS Plasma Hb and H-index results vary by method. Laboratories should evaluate the performance characteristics of their respective assays when considering adoption of spectrophotometric or chemical methods for plasma Hb assessment.
Collapse
Affiliation(s)
| | - Sonia L La'ulu
- ARUP Institute of Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Taylor M Snow
- ARUP Institute of Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Tiffany R Allison
- ARUP Institute of Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | - Jonathan R Genzen
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,ARUP Institute of Clinical and Experimental Pathology, Salt Lake City, UT, USA.,ARUP Laboratories, Salt Lake City, UT, USA
| |
Collapse
|
45
|
Pokorná P, Šíma M, Tibboel D, Slanař O. Impact of haemolysis on vancomycin disposition in a full-term neonate treated with extracorporeal membrane oxygenation. Perfusion 2020; 36:864-867. [PMID: 33200670 DOI: 10.1177/0267659120973595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Extracorporeal membrane oxygenation (ECMO) is a lifesaving support technology for potentially reversible neonatal cardiac and/or respiratory failure. Pharmacological consequences of ECMO-induced haemolysis in neonates are not well understood. CASE REPORT We report a case report of a full-term neonate treated for congenital diaphragmatic hernia and sepsis with ECMO and with vancomycin. While the population elimination half-life of 7 h was estimated, fitting of the simulated population pharmacokinetic profile to truly observed drug concentration points resulted in the personalized value of 41 h. DISCUSSION The neonate developed ECMO-induced haemolysis with subsequent acute kidney injury resulting in prolonged drug elimination. Whole blood/serum ratio of 0.79 excluded possibility of direct increase of vancomycin serum concentration during haemolysis. CONCLUSION Vancomycin elimination may be severely prolonged due to ECMO-induced haemolysis and acute kidney injury, while hypothesis of direct increase of vancomycin levels by releasing the drug from blood cells during haemolysis has been disproved.
Collapse
Affiliation(s)
- Pavla Pokorná
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Intensive Care and Department of Paediatric Surgery, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Martin Šíma
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Dick Tibboel
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Intensive Care and Department of Paediatric Surgery, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Ondřej Slanař
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
46
|
Venovenous Extracorporeal Membrane Oxygenation. Flow, Pressure, Hematology, and Emergencies. ATS Sch 2020; 2:138-139. [PMID: 33870331 PMCID: PMC8043274 DOI: 10.34197/ats-scholar.2020-0078vo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Garg M. Intravascular Hemolysis and Complications During Extracorporeal Membrane Oxygenation. Neoreviews 2020; 21:e728-e740. [PMID: 33139510 DOI: 10.1542/neo.21-11-e728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Venovenous and venoarterial extracorporeal membrane oxygenation (ECMO) remains a crucial lifesaving therapy for critically ill neonates with severe cardiorespiratory failure. Both the roller pump as well as the centrifugal pump are safe and efficient systems, and some red blood cell breakdown and hemolysis occurs in all ECMO systems. The roller pump functions by gravity whereas the centrifugal pump promotes the flow of blood by a magnetically driven spinning rotor to generate negative pressure. Extracorporeal Life Support Organization data indicate a significant increase in intravascular hemolysis in neonatal and pediatric patients receiving ECMO when the centrifugal pump is used compared with its use in adults. Risk factors for developing hemolysis during ECMO are small cannula size, high negative inlet pressure in the pump head, and thrombosis in the pump head and oxygenator. Excessive red blood cell breakdown and release of plasma free hemoglobin (pfHb) saturate physiologic neutralizing mechanisms such as haptoglobin and hemopexin. The increase in pro-oxidant and proinflammatory pfHb levels causes endothelial dysfunction in a dose-dependent manner. Hemolysis also increases the risk of in-hospital morbidities such as renal injury, direct hyperbilirubinemia, and thrombosis without an increase in mortality in patients receiving ECMO. Hemolysis is an unavoidable side effect of current ECMO technology and there are no approved treatments or treatment guidelines for the neonatal population. Therefore, increased vigilance, recognition of the severity of the hemolytic process, and prompt management are essential to prevent severe endothelial injury leading to proinflammatory and prothrombotic events.
Collapse
Affiliation(s)
- Meena Garg
- Department of Pediatrics, Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
48
|
Pardo LP, Peterlini MAS, Tume LN, Pedreira MLG. Impact of different syringe pumps on red cells during paediatric simulated transfusion. Nurs Crit Care 2020; 27:267-274. [PMID: 33094901 DOI: 10.1111/nicc.12561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Critically ill patients frequently need blood transfusions. For safety, blood must be delivered via syringe infusion pumps, yet this can cause red cell damage and increase the rate of haemolysis. AIMS AND OBJECTIVES To evaluate biochemical and haemolytic markers of red blood cells transfused in three different types of syringe infusion pumps at two different infusion rates (10 and 100 mL/h). DESIGN AND METHODS A lab-based study using aliquots of 16 red blood cell bags was undertaken. Haemolysis markers (total haemoglobin [g/dL], haematocrit [%], free haemoglobin [g/dL], potassium [mmol/L], lactate dehydrogenase [U/L], osmolality [mOsm/kg], pH, degree of haemolysis [%]) were measured before and after red blood cell infusion and exposure. Three different syringe infusion pumps brands (A, B, and C) were compared at two different infusion rates (10 and 100 mL/h). RESULTS Total haemoglobin fell significantly in all red blood cell units during manipulation (pre-infusion: 26.44 ± 5.74; post-exposure: 22.62 ± 4.00; P = .026). The degree of haemolysis significantly increased by 40% after manipulation of the red blood cells. Syringe infusion pump A caused a 3-fold increase in potassium levels (3.78 ± 6.10) when compared with B (-0.14 ± 1.46) and C (1.63 ± 1.98) (P = .015). This pump also produced the worst changes, with an increase in free haemoglobin (0.05 ± 0.05; P = .038) and more haemolysis (0.08 ± 0.07; P = .033). There were significant differences and an increase in the degree of haemolysis (P = .004) at the infusion rate of 100 mL/h. CONCLUSIONS Syringe infusion pumps may cause significant red blood cell damage during infusion, with increases in free haemoglobin, potassium, and the degree of haemolysis. Some pump types, with a cassette mechanism, caused more damage. RELEVANCE TO CLINICAL PRACTICE In many intensive care units, bedside nurses are able to consider infusion pump choice, and understanding the impact of different pump types on red blood cells during a transfusion provides the nurses with more information to enhance decision-making and improve the quality of the transfusion.
Collapse
Affiliation(s)
- Larissa Perez Pardo
- Department of Nursing, Paulista University, Sao Paulo, Brazil.,Paulista Nursing School, Universidade Federal de São Paulo - UNIFESP, Sao Paulo, Brazil
| | - Maria Angélica Sorgini Peterlini
- Department of Paediatric Nursing, Paulista School of Nursing, Universidade Federal de São Paulo - UNIFESP, Sao Paulo, Brazil.,Nursing Postgraduate Program, Paulista School of Nursing, UNIFESP, Sao Paulo, Brazil
| | | | - Mavilde Luz Gonçalves Pedreira
- Department of Paediatric Nursing, Paulista School of Nursing, Universidade Federal de São Paulo - UNIFESP, Sao Paulo, Brazil.,Department of Paediatric Nursing, Paulista School of Nursing, Universidade Federal de São Paulo - UNIFESP, Sao Paulo, Brazil
| |
Collapse
|
49
|
Sniderman J, Monagle P, Annich GM, MacLaren G. Hematologic concerns in extracorporeal membrane oxygenation. Res Pract Thromb Haemost 2020; 4:455-468. [PMID: 32548547 PMCID: PMC7292669 DOI: 10.1002/rth2.12346] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
This ISTH "State of the Art" review aims to critically evaluate the hematologic considerations and complications in extracorporeal membrane oxygenation (ECMO). ECMO is experiencing a rapid increase in clinical use, but many questions remain unanswered. The existing literature does not address or explicitly state many pertinent details that may influence hematologic complications and, ultimately, patient outcomes. This review aims to broadly introduce modern ECMO practices, circuit designs, circuit materials, hematologic complications, transfusion-related considerations, age- and size-related differences, and considerations for choosing outcome measures. Relevant studies from the 2019 ISTH Congress in Melbourne, which further advanced our understanding of these processes, will also be highlighted.
Collapse
Affiliation(s)
| | - Paul Monagle
- Department of PaediatricsDepartment of HaematologyUniversity of MelbourneThe Royal Children's HospitalHaematology Research Murdoch Children’s Research InstituteMelbourneVic.Australia
| | - Gail M. Annich
- Department of Critical Care MedicineThe Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Graeme MacLaren
- Paediatric ICURoyal Children’s HospitalMelbourneVic.Australia
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
- Cardiothoracic ICUNational University Health SystemSingapore CitySingapore
| |
Collapse
|
50
|
Mazzeffi M. Patient Blood Management in Adult Extracorporeal Membrane Oxygenation Patients. CURRENT ANESTHESIOLOGY REPORTS 2020. [DOI: 10.1007/s40140-020-00384-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|