1
|
Rajamanickam G, Hu Z, Liao P. Targeting the TRPM4 Channel for Neurologic Diseases: Opportunity and Challenge. Neuroscientist 2025:10738584251318979. [PMID: 40012174 DOI: 10.1177/10738584251318979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
As a monovalent cation channel, the transient receptor potential melastatin 4 (TRPM4) channel is a unique member of the transient receptor potential family. Abnormal TRPM4 activity has been identified in various neurologic disorders, such as stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, amyotrophic lateral sclerosis, pathologic pain, and epilepsy. Following brain hypoxia/ischemia and inflammation, TRPM4 up-regulation and enhanced activity contribute to the cell death of neurons, vascular endothelial cells, and astrocytes. Enhanced ionic influx via TRPM4 leads to cell volume increase and oncosis. Depolarization of membrane potential following TRPM4 activation and interaction between TRPM4 and N-methyl-d-aspartate receptors exacerbate excitotoxicity during hypoxia. Importantly, TRPM4 expression and activity remain low in healthy neurons, making it an ideal drug target. Current approaches to inhibit or modulate the TRPM4 channel have various limitations that hamper the interpretation of TRPM4 physiology in the nervous system and potentially hinder their translation into therapy. In this review, we discuss the pathophysiologic roles of TRPM4 and the different inhibitors that modulate TRPM4 activity for potential treatment of neurologic diseases.
Collapse
Affiliation(s)
| | - Zhenyu Hu
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
2
|
Windlin IC, da Costa BBS, Mota Telles JP, Oliveira LB, Koterba E, Yamaki VN, Rabelo NN, Solla DJF, Teixeira MJ, Figueiredo EG. The Effects of Glibenclamide on Cognitive Performance, Quality of Life, and Emotional Aspects Among Patients With Aneurysmal Subarachnoid Hemorrhage: A Randomized Controlled Trial. World Neurosurg 2025; 193:345-352. [PMID: 39278541 DOI: 10.1016/j.wneu.2024.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (aSAH) is associated with a high incidence of long-term cognitive impairment, decreased quality of life (QoL), and psychiatric disorders. The effects of glibenclamide on such outcomes in the setting of aSAH are unknown. OBJECTIVE To assess the impact of glibenclamide in patients with aSAH on cognitive performance, QoL, and emotional aspects. METHODS Patients identified with aSAH were randomly allocated to receive 5 mg of glibenclamide for 21 days or placebo, starting within 96 hours of the ictus. After 6 months, patients were evaluated with Montreal Cognitive Assessment test (cognitive performance), Medical Outcomes Short-form Health Survey (QoL), and Hospital Anxiety and Depression Scale and Screen for Post-traumatic Stress Symptoms (emotional aspects). RESULTS The mean Montreal Cognitive Assessment score was 22.5 ± 6.2. No statistically significant difference was found between groups, with a mean score of 21.7 ± 6.4 in the Glibenclamide group and 23.4 ± 6.2 in the placebo group (P = 0.392). A score <23 was observed in 16 patients (35.6%) and its frequency was similar between groups (P = 0.900). The most frequently impaired domains were Attention (N = 21/45; 46.7%) and Visuospatial (18/45; 40.0%). Impairment of each domain was similar between groups (P > 0.05). In each domain, the mean score was similar between groups (P > 0.05). The Hospital Anxiety and Depression Scale scores did not differ between groups (P > 0.05). The mean Screen for Post-traumatic Stress Symptoms score as well as the mean scores of its domains were similar between groups (P > 0.05). CONCLUSIONS Glibenclamide did not improve cognitive performance, QoL, and emotional aspects after 6 months of follow-up of aSAH survivors.
Collapse
Affiliation(s)
- Isabela Costola Windlin
- Department of Neurology, Hospital das Clínicas FMUSP, University of São Paulo, São Paulo, Brazil
| | | | - João Paulo Mota Telles
- Department of Neurology, Hospital das Clínicas FMUSP, University of São Paulo, São Paulo, Brazil
| | - Leonardo B Oliveira
- Department of Neurology, Hospital das Clínicas FMUSP, University of São Paulo, São Paulo, Brazil; Department of Neurosurgery, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Edwin Koterba
- Department of Neurology, Hospital das Clínicas FMUSP, University of São Paulo, São Paulo, Brazil
| | - Vitor Nagai Yamaki
- Department of Neurology, Hospital das Clínicas FMUSP, University of São Paulo, São Paulo, Brazil
| | - Nicollas Nunes Rabelo
- Department of Neurology, Hospital das Clínicas FMUSP, University of São Paulo, São Paulo, Brazil
| | | | - Manoel Jacobsen Teixeira
- Department of Neurology, Hospital das Clínicas FMUSP, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
3
|
Kernan KF, Adkins A, Jha RM, Kochanek PM, Carcillo JA, Berg RA, Wessel D, Pollack MM, Meert K, Hall M, Newth C, Lin JC, Doctor A, Cornell T, Harrison RE, Zuppa AF, Notterman DA, Aneja RK. IMPACT OF ABCC8 AND TRPM4 GENETIC VARIATION IN CENTRAL NERVOUS SYSTEM DYSFUNCTION ASSOCIATED WITH PEDIATRIC SEPSIS. Shock 2024; 62:688-697. [PMID: 39227362 PMCID: PMC12001876 DOI: 10.1097/shk.0000000000002457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
ABSTRACT Background: Sepsis-associated brain injury is associated with deterioration of mental status, persistent cognitive impairment, and morbidity. The SUR1/TRPM4 channel is a nonselective cation channel that is transcriptionally upregulated in the central nervous system with injury, allowing sodium influx, depolarization, cellular swelling, and secondary injury. We hypothesized that genetic variation in ABCC8 (SUR1 gene) and TRPM4 would associate with central nervous system dysfunction in severe pediatric sepsis. Methods: 326 children with severe sepsis underwent whole exome sequencing in an observational cohort. We compared children with and without central nervous system dysfunction (Glasgow Coma Scale <12) to assess for associations with clinical characteristics and pooled rare variants in ABCC8 and TRPM4. Sites of variation were mapped onto protein structure and assessed for phenotypic impact. Results: Pooled rare variants in either ABCC8 or TRPM4 associated with decreased odds of central nervous system dysfunction in severe pediatric sepsis (OR 0.14, 95% CI 0.003-0.87), P = 0.025). This association persisted following adjustment for race, organ failure, viral infection, and continuous renal replacement therapy (aOR 0.11, 95% CI 0.01-0.59, P = 0.038). Structural mapping showed that rare variants concentrated in the nucleotide-binding domains of ABCC8 and N-terminal melastatin homology region of TRPM4 . Conclusion : This study suggests a role for the ABCC8/TRPM4 channel in central nervous system dysfunction in severe pediatric sepsis. Although exploratory, the lack of therapies to prevent or mitigate central nervous system dysfunction in pediatric sepsis warrants further studies to clarify the mechanism and confirm the potential protective effect of these rare ABCC8/TRPM4 variants.
Collapse
Affiliation(s)
- Kate F. Kernan
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Ashley Adkins
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Ruchira M. Jha
- Departments of Neurology, Neurological Surgery, Translational Neuroscience, Barrow Neurological Institute, and St. Joseph’s Hospital and Medical Center, Phoenix, AZ
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of School of Medicine, Pittsburgh, PA
| | - Joseph A. Carcillo
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Robert A. Berg
- Department of Anesthesiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - David Wessel
- Division of Critical Care Medicine, Department of Pediatrics, Children’s National Hospital, Washington, DC
| | - Murray M. Pollack
- Division of Critical Care Medicine, Department of Pediatrics, Children’s National Hospital, Washington, DC
| | - Kathleen Meert
- Division of Critical Care Medicine, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI., Central Michigan University, Mt Pleasant MI
| | - Mark Hall
- Division of Critical Care Medicine, Department of Pediatrics, The Research Institute at Nationwide Children’s Hospital Immune Surveillance Laboratory, and Nationwide Children’s Hospital, Columbus, OH
| | - Christopher Newth
- Division of Pediatric Critical Care Medicine, Department of Anesthesiology and Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA
| | - John C. Lin
- Division of Critical Care Medicine, Department of Pediatrics, St. Louis Children’s Hospital, St. Louis, MO
| | - Allan Doctor
- Division of Critical Care Medicine, Department of Pediatrics, St. Louis Children’s Hospital, St. Louis, MO
| | - Tim Cornell
- Division of Critical Care Medicine, Department of Pediatrics, C. S. Mott Children’s Hospital, Ann Arbor, MI
| | - Rick E. Harrison
- Division of Critical Care Medicine, Department of Pediatrics, Mattel Children’s Hospital at University of California Los Angeles, Los Angeles, CA
| | - Athena F. Zuppa
- Department of Anesthesiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Rajesh K. Aneja
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
- Safar Center for Resuscitation Research, University of School of Medicine, Pittsburgh, PA
| |
Collapse
|
4
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 PMCID: PMC12011104 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
5
|
Razavi SM, Arab ZN, Niknejad A, Hosseini Y, Fouladi A, Khales SD, Shahali M, Momtaz S, Butler AE, Sukhorukov VN, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Therapeutic effects of anti-diabetic drugs on traumatic brain injury. Diabetes Metab Syndr 2024; 18:102949. [PMID: 38308863 DOI: 10.1016/j.dsx.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
AIMS In this narrative review, we have analyzed and synthesized current studies relating to the effects of anti-diabetic drugs on traumatic brain injury (TBI) complications. METHODS Eligible studies were collected from Scopus, Google Scholar, PubMed, and Cochrane Library for clinical, in-vivo, and in-vitro studies published on the impact of anti-diabetic drugs on TBI. RESULTS Traumatic brain injury (TBI) is a serious brain disease that is caused by any type of trauma. The pathophysiology of TBI is not yet fully understood, though physical injury and inflammatory events have been implicated in TBI progression. Several signaling pathways are known to play pivotal roles in TBI injuries, including Nuclear factor erythroid 2-related factor 2 (Nrf2), High mobility group box 1 protein/Nuclear factor kappa B (HMGB1/NF-κB), Adiponectin, Mammalian Target of Rapamycin (mTOR), Toll-Like Receptor (TLR), Wnt/β-catenin, Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Nod-like receptor protein3 (NLRP3) inflammasome, Phosphoglycerate kinase 1/Kelch-like ECH-associated protein 1 (PGK1/KEAP1)/Nrf2, and Mitogen-activated protein kinase (MAPK) . Recent studies suggest that oral anti-diabetic drugs such as biguanides, thiazolidinediones (TZDs), sulfonylureas (SUs), sodium-glucose cotransporter-2 inhibitors (SGLT2is), dipeptidyl peptidase-4 inhibitors (DPPIs), meglitinides, and alpha-glucosidase inhibitors (AGIs) could have beneficial effects in the management of TBI complications. These drugs may downregulate the inflammatory pathways and induce antioxidant signaling pathways, thus alleviating complications of TBI. CONCLUSION Based on this comprehensive literature review, antidiabetic medications might be considered in the TBI treatment protocol. However, evidence from clinical trials in patients with TBI is still warranted.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abtin Fouladi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Darban Khales
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mostafa Shahali
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia; Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Pradhan SP, Sahu PK, Behera A. New insights toward molecular and nanotechnological approaches to antidiabetic agents for Alzheimer's disease. Mol Cell Biochem 2023; 478:2739-2762. [PMID: 36949264 DOI: 10.1007/s11010-023-04696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder affecting a major class of silver citizens. The disorder shares a mutual relationship on account of its cellular and molecular pathophysiology with type-II diabetes mellitus (DM). Chronic DM increases the risk for AD. Emerging evidence recommended that resistance in insulin production develops cognitive dysfunction, which generally leads to AD. Repurposing of antidiabetic drugs can be effective in preventing and treatment of the neurodegenerative disorder. Limitations of antidiabetic drugs restrict the repurposing of the drugs for other disorders. Therefore, nanotechnological intervention plays a significant role in the treatment of neurological disorders. In this review, we discuss the common cellular and molecular pathophysiologies between AD and type-II DM, the relevance of in vivo models of type II DM in the study of AD, and the repurposing of antidiabetic drugs and the nanodelivery systems of antidiabetic drugs against AD.
Collapse
Affiliation(s)
- Sweta Priyadarshini Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Anindita Behera
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus-II, Kalinga Nagar, Bhubaneswar, Odisha, India.
| |
Collapse
|
7
|
Wang Z, Zhang S, Du J, Lachance BB, Chen S, Polster BM, Jia X. Neuroprotection of NSC Therapy is Superior to Glibenclamide in Cardiac Arrest-Induced Brain Injury via Neuroinflammation Regulation. Transl Stroke Res 2023; 14:723-739. [PMID: 35921049 PMCID: PMC9895128 DOI: 10.1007/s12975-022-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/05/2022] [Indexed: 02/05/2023]
Abstract
Cardiac arrest (CA) is common and devastating, and neuroprotective therapies for brain injury after CA remain limited. Neuroinflammation has been a target for two promising but underdeveloped post-CA therapies: neural stem cell (NSC) engrafting and glibenclamide (GBC). It is critical to understand whether one therapy has superior efficacy over the other and to further understand their immunomodulatory mechanisms. In this study, we aimed to evaluate and compare the therapeutic effects of NSC and GBC therapies post-CA. In in vitro studies, BV2 cells underwent oxygen-glucose deprivation (OGD) for three hours and were then treated with GBC or co-cultured with human NSCs (hNSCs). Microglial polarization phenotype and TLR4/NLRP3 inflammatory pathway proteins were detected by immunofluorescence staining. Twenty-four Wistar rats were randomly assigned to three groups (control, GBC, and hNSCs, N = 8/group). After 8 min of asphyxial CA, GBC was injected intraperitoneally or hNSCs were administered intranasally in the treatment groups. Neurological-deficit scores (NDSs) were assessed at 24, 48, and 72 h after return of spontaneous circulation (ROSC). Immunofluorescence was used to track hNSCs and quantitatively evaluate microglial activation subtype and polarization. The expression of TLR4/NLRP3 pathway-related proteins was quantified via Western blot. The in vitro studies showed the highest proportion of activated BV2 cells with an increased expression of TLR4/NLRP3 signaling proteins were found in the OGD group compared to OGD + GBC and OGD + hNSCs groups. NDS showed significant improvement after CA in hNSC and GBC groups compared to controls, and hNSC treatment was superior to GBC treatment. The hNSC group had more inactive morphology and anti-inflammatory phenotype of microglia. The quantified expression of TLR4/NLRP3 pathway-related proteins was significantly suppressed by both treatments, and the suppression was more significant in the hNSC group compared to the GBC group. hNSC and GBC therapy regulate microglial activation and the neuroinflammatory response in the brain after CA through TLR4/NLRP3 signaling and exert multiple neuroprotective effects, including improved neurological function and shortened time of severe neurological deficit. In addition, hNSCs displayed superior inflammatory regulation over GBC.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Songyu Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brian M Polster
- Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Catapano JS, Koester SW, Bond KM, Srinivasan VM, Farhadi DS, Rumalla K, Cole TS, Baranoski JF, Winkler EA, Graffeo CS, Muñoz-Casabella A, Jadhav AP, Ducruet AF, Albuquerque FC, Lawton MT, Jha RM. Outcomes in Patients with Aneurysmal Subarachnoid Hemorrhage Receiving Sulfonylureas: A Propensity-Adjusted Analysis. World Neurosurg 2023; 176:e400-e407. [PMID: 37236313 DOI: 10.1016/j.wneu.2023.05.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Aneurysmal subarachnoid hemorrhage (aSAH) is associated with increased blood-brain barrier permeability, disrupted tight junctions, and increased cerebral edema. Sulfonylureas are associated with reduced tight-junction disturbance and edema and improved functional outcome in aSAH animal models, but human data are scant. We analyzed neurological outcomes in aSAH patients prescribed sulfonylureas for diabetes mellitus. METHODS Patients treated for aSAH at a single institution (August 1, 2007-July 31, 2019) were retrospectively reviewed. Patients with diabetes were grouped by presence or absence of sulfonylurea therapy at hospital admission. The primary outcome was favorable neurologic status at last follow-up (modified Rankin Scale score ≤2). Variables with an unadjusted P-value of <0.20 were included in a propensity-adjusted multivariable logistic regression analysis to identify predictors of favorable outcomes. RESULTS Of 1013 aSAH patients analyzed, 129 (13%) had diabetes at admission, and 16 of these (12%) were receiving sulfonylureas. Fewer diabetic than nondiabetic patients had favorable outcomes (40% [52/129] vs. 51% [453/884], P = 0.03). Among diabetic patients, sulfonylurea use (OR 3.90, 95% CI 1.05-15.9, P = 0.046), Charlson Comorbidity Index <4 (OR 3.66, 95% CI 1.24-12.1, P = 0.02), and absence of delayed cerebral infarction (OR 4.09, 95% CI 1.20-15.5, P = 0.03) were associated with favorable outcomes in the multivariable analysis. CONCLUSIONS Diabetes was strongly associated with unfavorable neurologic outcomes. An unfavorable outcome in this cohort was mitigated by sulfonylureas, supporting some preclinical evidence of a possible neuroprotective role for these medications in aSAH. These results warrant further study on dose, timing, and duration of administration in humans.
Collapse
Affiliation(s)
- Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Stefan W Koester
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kamila M Bond
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Visish M Srinivasan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Dara S Farhadi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kavelin Rumalla
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Tyler S Cole
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Jacob F Baranoski
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ethan A Winkler
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Christopher S Graffeo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Amanda Muñoz-Casabella
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ashutosh P Jadhav
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Andrew F Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Felipe C Albuquerque
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ruchira M Jha
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
9
|
Zhao Q, Li H, Li H, Zhang J. Research progress on pleiotropic neuroprotective drugs for traumatic brain injury. Front Pharmacol 2023; 14:1185533. [PMID: 37475717 PMCID: PMC10354289 DOI: 10.3389/fphar.2023.1185533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Traumatic brain injury (TBI) has become one of the most important causes of death and disability worldwide. A series of neuroinflammatory responses induced after TBI are key factors for persistent neuronal damage, but at the same time, such inflammatory responses can also promote debris removal and tissue repair after TBI. The concept of pleiotropic neuroprotection delves beyond the single-target treatment approach, considering the multifaceted impacts following TBI. This notion embarks deeper into the research-oriented treatment paradigm, focusing on multi-target interventions that inhibit post-TBI neuroinflammation with enhanced therapeutic efficacy. With an enriched comprehension of TBI's physiological mechanisms, this review dissects the advancements in developing pleiotropic neuroprotective pharmaceuticals to mitigate TBI. The aim is to provide insights that may contribute to the early clinical management of the condition.
Collapse
Affiliation(s)
- Qinghui Zhao
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Huige Li
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Hongru Li
- Zhumadian Central Hospital, Zhumadian, China
| | - Jianhua Zhang
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| |
Collapse
|
10
|
Seblani M, Decherchi P, Brezun JM. Edema after CNS Trauma: A Focus on Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24087159. [PMID: 37108324 PMCID: PMC10138956 DOI: 10.3390/ijms24087159] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Edema after spinal cord injury (SCI) is one of the first observations after the primary injury and lasts for few days after trauma. It has serious consequences on the affected tissue and can aggravate the initial devastating condition. To date, the mechanisms of the water content increase after SCI are not fully understood. Edema formation results in a combination of interdependent factors related to mechanical damage after the initial trauma progressing, along with the subacute and acute phases of the secondary lesion. These factors include mechanical disruption and subsequent inflammatory permeabilization of the blood spinal cord barrier, increase in the capillary permeability, deregulation in the hydrostatic pressure, electrolyte-imbalanced membranes and water uptake in the cells. Previous research has attempted to characterize edema formation by focusing mainly on brain swelling. The purpose of this review is to summarize the current understanding of the differences in edema formation in the spinal cord and brain, and to highlight the importance of elucidating the specific mechanisms of edema formation after SCI. Additionally, it outlines findings on the spatiotemporal evolution of edema after spinal cord lesion and provides a general overview of prospective treatment strategies by focusing on insights to prevent edema formation after SCI.
Collapse
Affiliation(s)
- Mostafa Seblani
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, CEDEX 09, France
| | - Patrick Decherchi
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, CEDEX 09, France
| | - Jean-Michel Brezun
- Aix Marseille Univ, CNRS, ISM, UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY, Equipe «Plasticité des Systèmes Nerveux et Musculaire» (PSNM), Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288 Marseille, CEDEX 09, France
| |
Collapse
|
11
|
Precision Effects of Glibenclamide on MRI Endophenotypes in Clinically Relevant Murine Traumatic Brain Injury. Crit Care Med 2023; 51:e45-e59. [PMID: 36661464 PMCID: PMC9848216 DOI: 10.1097/ccm.0000000000005749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Addressing traumatic brain injury (TBI) heterogeneity is increasingly recognized as essential for therapy translation given the long history of failed clinical trials. We evaluated differential effects of a promising treatment (glibenclamide) based on dose, TBI type (patient selection), and imaging endophenotype (outcome selection). Our goal to inform TBI precision medicine is contextually timely given ongoing phase 2/planned phase 3 trials of glibenclamide in brain contusion. DESIGN Blinded randomized controlled preclinical trial of glibenclamide on MRI endophenotypes in two established severe TBI models: controlled cortical impact (CCI, isolated brain contusion) and CCI+hemorrhagic shock (HS, clinically common second insult). SETTING Preclinical laboratory. SUBJECTS Adult male C57BL/6J mice (n = 54). INTERVENTIONS Mice were randomized to naïve, CCI±HS with vehicle/low-dose (20 μg/kg)/high-dose glibenclamide (10 μg/mouse). Seven-day subcutaneous infusions (0.4 μg/hr) were continued. MEASUREMENTS AND MAIN RESULTS Serial MRI (3 hr, 6 hr, 24 hr, and 7 d) measured hematoma and edema volumes, T2 relaxation (vasogenic edema), apparent diffusion coefficient (ADC, cellular/cytotoxic edema), and 7-day T1-post gadolinium values (blood-brain-barrier [BBB] integrity). Linear mixed models assessed temporal changes. Marked heterogeneity was observed between CCI versus CCI+HS in terms of different MRI edema endophenotypes generated (all p < 0.05). Glibenclamide had variable impact. High-dose glibenclamide reduced hematoma volume ~60% after CCI (p = 0.0001) and ~48% after CCI+HS (p = 4.1 × 10-6) versus vehicle. Antiedema benefits were primarily in CCI: high-dose glibenclamide normalized several MRI endophenotypes in ipsilateral cortex (all p < 0.05, hematoma volume, T2, ADC, and T1-post contrast). Acute effects (3 hr) were specific to hematoma (p = 0.001) and cytotoxic edema reduction (p = 0.0045). High-dose glibenclamide reduced hematoma volume after TBI with concomitant HS, but antiedema effects were not robust. Low-dose glibenclamide was not beneficial. CONCLUSIONS High-dose glibenclamide benefitted hematoma volume, vasogenic edema, cytotoxic edema, and BBB integrity after isolated brain contusion. Hematoma and cytotoxic edema effects were acute; longer treatment windows may be possible for vasogenic edema. Our findings provide new insights to inform interpretation of ongoing trials as well as precision design (dose, sample size estimation, patient selection, outcome selection, and Bayesian analysis) of future TBI trials of glibenclamide.
Collapse
|
12
|
Cummings J, Wu YL, Dixon CE, Henchir J, Simard JM, Panigrahy A, Kochanek PM, Jha RM, Aneja RK. Abcc8 (sulfonylurea receptor-1) knockout mice exhibit reduced axonal injury, cytotoxic edema and cognitive dysfunction vs. wild-type in a cecal ligation and puncture model of sepsis. J Neuroinflammation 2023; 20:12. [PMID: 36681815 PMCID: PMC9862964 DOI: 10.1186/s12974-023-02692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Sepsis-associated brain injury (SABI) is characterized by an acute deterioration of mental status resulting in cognitive impairment and acquisition of new and persistent functional limitations in sepsis survivors. Previously, we reported that septic mice had evidence of axonal injury, robust microglial activation, and cytotoxic edema in the cerebral cortex, thalamus, and hippocampus in the absence of blood-brain barrier disruption. A key conceptual advance in the field was identification of sulfonylurea receptor 1 (SUR1), a member of the adenosine triphosphate (ATP)-binding cassette protein superfamily, that associates with the transient receptor potential melastatin 4 (TRPM4) cation channel to play a crucial role in cerebral edema development. Therefore, we hypothesized that knockout (KO) of Abcc8 (Sur1 gene) is associated with a decrease in microglial activation, cerebral edema, and improved neurobehavioral outcomes in a murine cecal ligation and puncture (CLP) model of sepsis. Sepsis was induced in 4-6-week-old Abcc8 KO and wild-type (WT) littermate control male mice by CLP. We used immunohistochemistry to define neuropathology and microglial activation along with parallel studies using magnetic resonance imaging, focusing on cerebral edema on days 1 and 4 after CLP. Abcc8 KO mice exhibited a decrease in axonal injury and cytotoxic edema vs. WT on day 1. Abcc8 KO mice also had decreased microglial activation in the cerebral cortex vs. WT. These findings were associated with improved spatial memory on days 7-8 after CLP. Our study challenges a key concept in sepsis and suggests that brain injury may not occur merely as an extension of systemic inflammation. We advance the field further and demonstrate that deletion of the SUR1 gene ameliorates CNS pathobiology in sepsis including edema, axonal injury, neuroinflammation, and behavioral deficits. Benefits conferred by Abcc8 KO in the murine CLP model warrant studies of pharmacological Abcc8 inhibition as a new potential therapeutic strategy for SABI.
Collapse
Affiliation(s)
- Jessica Cummings
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Yijen L. Wu
- grid.21925.3d0000 0004 1936 9000Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - C. Edward Dixon
- grid.21925.3d0000 0004 1936 9000Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Jeremy Henchir
- grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - J. Marc Simard
- grid.411024.20000 0001 2175 4264Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD USA
| | - Ashok Panigrahy
- grid.239553.b0000 0000 9753 0008Division of Pediatric Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Patrick M. Kochanek
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Ruchira M. Jha
- grid.427785.b0000 0001 0664 3531Barrow Neurological Institute, Phoenix, AZ USA
| | - Rajesh K. Aneja
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine and Pediatrics, School of Medicine, Faculty Pavilion Building, University of Pittsburgh, 2nd Floor, Suite 2112, 4401 Penn Ave, Pittsburgh, PA 15224 USA
| |
Collapse
|
13
|
Abstract
In the view of progressively aging human population and increased occurrence of dysmetabolic disorders, such as diabetes mellitus, cognitive impairment becomes a major threat to the national health. To date, the molecular mechanisms of cognitive dysfunction are partially described for diabetes and diseases of different nature, such as Alzheimer disease or Parkinson disease. The emergence of data pointing towards pleotropic effects of hypoglycaemic medicines indicates involvement of their targets in pathogenesis of cognitive impairment. We are aiming here to review available data on the most widely used hypoglycaemic drug, glibenclamide and find possible relationship of its targets to the pathogenesis of cognitive impairment.
Collapse
Affiliation(s)
- Alexander Zubov
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Zamira Muruzheva
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Maria Tikhomirova
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Marina Karpenko
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| |
Collapse
|
14
|
Zubov AS, Ivleva IS, Pestereva NS, Tiutiunnik TV, Traktirov DS, Karpenko MN. Glibenclamide alters serotonin and dopamine levels in the rat striatum and hippocampus, reducing cognitive impairment. Psychopharmacology (Berl) 2022; 239:2787-2798. [PMID: 35545702 DOI: 10.1007/s00213-022-06159-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 05/01/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE Glibenclamide (GD) is a widely used medical drug; therefore, identifying the mechanisms underlying its pleiotropic effects in the central nervous system is urgent. OBJECTIVES The aim of this work was to determine the ability of GD to modulate serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA) transmission and to assess the dose-dependent effect of GD on cognitive function in rats during natural ageing. METHODS In Experiment 1, rats received 10, 25, or 50 μg/kg GD intraperitoneally for 10 days. In Experiment 2, rats received 50 μg/kg GD intraperitoneally for 30 days. Spatial and working memory was assessed in the MWM and Y-maze tests, respectively. In both experiments, the levels of DA and 5-HT, their metabolites, and turnover rate were analysed by HPLC-ED in the rat hippocampus and striatum. RESULTS Changes in DA and 5-HT levels occurred only with a dose of 50 μg/kg GD. Therefore, in the second experiment, we administered a dose of 50 μg/kg GD. At this dose, GD prevented the development of impairments in spatial and working memory. The hippocampal concentrations of DA and DOPAC decreased, and the striatal concentrations of DA, DOPAC, 5-HT, and 5-HIAA increased. CONCLUSION One of the possible mechanisms of the precognitive effect of GD is its ability to modulate monoamine transmission. Thus, in translating our results to humans, GD can be recommended as a prophylactic agent for natural ageing to reduce the risk of developing cognitive impairments.
Collapse
Affiliation(s)
- Alexander S Zubov
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Irina S Ivleva
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Nina S Pestereva
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Tatiana V Tiutiunnik
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Dmitrtii S Traktirov
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia.
| | - Marina N Karpenko
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| |
Collapse
|
15
|
Costa BBSD, Windlin IC, Koterba E, Yamaki VN, Rabelo NN, Solla DJF, Samaia da Silva Coelho AC, Telles JPM, Teixeira MJ, Figueiredo EG. Glibenclamide in aneurysmal subarachnoid hemorrhage: a randomized controlled clinical trial. J Neurosurg 2022; 137:121-128. [PMID: 34798604 DOI: 10.3171/2021.7.jns21846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/26/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Glibenclamide has been shown to improve outcomes in cerebral ischemia, traumatic brain injury, and subarachnoid hemorrhage (SAH). The authors sought to evaluate glibenclamide's impact on mortality and functional outcomes of patients with aneurysmal SAH (aSAH). METHODS Patients with radiologically confirmed aSAH, aged 18 to 70 years, who presented to the hospital within 96 hours of ictus were randomly allocated to receive 5 mg of oral glibenclamide for 21 days or placebo, in a modified intention-to-treat analysis. Outcomes were mortality and functional status at discharge and 6 months, evaluated using the modified Rankin Scale (mRS). RESULTS A total of 78 patients were randomized and allocated to glibenclamide (n = 38) or placebo (n = 40). Baseline characteristics were similar between groups. The mean patient age was 53.1 years, and the majority of patients were female (75.6%). The median Hunt and Hess, World Federation of Neurosurgical Societies (WFNS), and modified Fisher scale (mFS) scores were 3 (IQR 2-4), 3 (IQR 3-4), and 3 (IQR 1-4), respectively. Glibenclamide did not improve the functional outcome (mRS) after 6 months (ordinal analysis, unadjusted common OR 0.66 [95% CI 0.29-1.48], adjusted common OR 1.25 [95% CI 0.46-3.37]). Similar results were found for analyses considering the dichotomized 6-month mRS score (favorable score 0-2), as well as for the secondary outcomes of discharge mRS score (either ordinal or dichotomized), mortality, and delayed cerebral ischemia. Hypoglycemia was more frequently observed in the glibenclamide group (5.3%). CONCLUSIONS In this study, glibenclamide was not associated with better functional outcomes after aSAH. Mortality and delayed cerebral ischemia rates were also similar compared with placebo.
Collapse
|
16
|
Ferdowsi S, Abdolmaleki A, Asadi A, Zahri S. Glibenclamide promoted functional recovery following sciatic nerve injury in male Wistar rats. Fundam Clin Pharmacol 2022; 36:966-975. [PMID: 35524424 DOI: 10.1111/fcp.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022]
Abstract
The impact of peripheral nerve damage on a patient's quality of life is severe. The most frequent peripheral nerve crush damage is a sciatic nerve injury. Previous research has shown that glibenclamide (GB) has neuroprotective properties in a variety of oxidative stress-related disorders, including Alzheimer and Parkinson. The goal of this study was to see how GB affected nerve regeneration and improved function of the sciatic nerve in a rat model following a crush injury. We evaluated motor function, sensory recovery, gene expression, and histomorphometry following damage at different time points. Additionally, we assessed atrophy in the gastrocnemius muscle using histology and mass ratio analyses. Our results suggest that 2, 4, 6, and 8 weeks following glibenclamide therapy, promotes the recovery of motor and sensory function in the injured site. Following glibenclamid injection, the mRNA levels of neurotrophic factors (NGF and BDNF) are raised. According to histomorphometry assessment, glibenclamide injection also increased the number of myelinated fibers while decreasing their thickness. These results showed that glibenclamide therapy by decreasing the proinflammatory and oxidant factors may enhance the nerve regeneration. It is clear that more research is needed to confirm these findings.
Collapse
Affiliation(s)
- Sevin Ferdowsi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Bioinformatics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saber Zahri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
17
|
Farooq J, Snyder K, Janesko-Feldman K, Gorse K, Vagni V, Kochanek PM, Jackson TC. RNA Binding Motif 5 Gene Deletion Modulates Cell Signaling in a Sex-Dependent Manner but not Hippocampal Cell Death. J Neurotrauma 2022; 39:577-589. [PMID: 35152732 PMCID: PMC8978574 DOI: 10.1089/neu.2021.0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA-binding motif 5 (RBM5) is a pro-death tumor suppressor gene in cancer cells. It remains to be determined if it is neurotoxic in the brain or rather if it plays a fundamentally different role in the central nervous system (CNS). Brain-specific RBM5 knockout (KO) mice were given a controlled cortical impact (CCI) traumatic brain injury (TBI). Markers of acute cellular damage and repair were measured in hippocampal homogenates 48 h post-CCI. Hippocampal CA1/CA3 cell counts were assessed 7 days post-CCI to determine if early changes in injury markers were associated with histological outcome. No genotype-dependent differences were found in the levels of apoptotic markers (caspase 3, caspase 6, and caspase 9). However, KO females had a paradoxical increase in markers of pro-death calpain activation (145/150-spectrin and breakdown products [SBDP]) and in DNA repair/survival markers. (pH2A.x and pCREB). CCI-injured male KOs had a significant increase in phosphorylated calcium/calmodulin-dependent protein kinase II (pCaMKII). Despite sex/genotype-dependent differences in KOs in the levels of acute cell signaling targets involved in cell death pathways, 7 day hippocampal neuronal survival did not differ from that of wild types (WTs). Similarly, no differences in astrogliosis were observed. Finally, gene analysis revealed increased estrogen receptor α (ERα) levels in the KO hippocampus in females and may suggest a novel mechanism to explain sex-dimorphic effects on cell signaling. In summary, RBM5 inhibition did not affect hippocampal survival after a TBI in vivo but did modify targets involved in neural signal transduction/Ca2+ signaling pathways. Findings here support the view that RBM5 may serve a purpose in the CNS that is dissimilar from its traditional pro-death role in cancer.
Collapse
Affiliation(s)
- Jeffrey Farooq
- University of South Florida, 7831, Molecular Pharmacology and Physiology, Tampa, Florida, United States
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, Tampa, Florida, United States
| | - Kara Snyder
- University of South Florida, 7831, Molecular Pharmacology and Physiology, Tampa, Florida, United States
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, Tampa, Florida, United States
| | - Keri Janesko-Feldman
- University of Pittsburgh School of Medicine, Critical Care Medicine, Pittsburgh, Pennsylvania, United States,
| | - Kiersten Gorse
- University of South Florida, 7831, Molecular Pharmacology and Physiology, Tampa, Florida, United States
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, Tampa, Florida, United States
| | - Vincent Vagni
- University of Pittsburgh School of Medicine, Critical Care Medicine, Pittsburgh, Pennsylvania, United States,
| | - Patrick M. Kochanek
- University of Pittsburgh School of Medicine, Critical Care Medicine, John G. Rangos Research Center, Safar Center for Resuscitation Research, 4401 Penn Avenue, Pittsburgh, Pennsylvania, United States, 15224
- United States
| | - Travis C. Jackson
- University of South Florida, 7831, Molecular Pharmacology and Physiology, 4202 E Fowler Ave, Tampa, Florida, United States, 33620-9951
- USF Health Morsani College of Medicine, 33697, USF Health Heart Institute, 560 Channelside Dr, Tampa, Florida, United States, 33602
| |
Collapse
|
18
|
Zhuge CJ, Zhan CP, Wang KW, Yan XJ, Yu GF. Serum Sulfonylurea Receptor-1 Levels After Acute Supratentorial Intracerebral Hemorrhage: Implication for Prognosis. Neuropsychiatr Dis Treat 2022; 18:1117-1126. [PMID: 35685376 PMCID: PMC9173726 DOI: 10.2147/ndt.s368123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Sulfonylurea receptor-1 (SUR1) is implicated in acute brain injury. This study was designed to determine relationship between serum SUR1 levels and severity, early neurologic deterioration (END) plus clinical outcome after intracerebral hemorrhage (ICH). METHODS Serum SUR1 levels of 131 ICH patients and 131 healthy controls were quantified in this prospective, observational study. END was defined as an increase of 4 or more points in the National Institutes of Health Stroke Scale (NIHSS) score or death within 24 hours after admission. Patients with a modified Rankin scale (mRS) score of 3-6 at 90 days following onset were considered to experience a poor outcome. RESULTS Serum SUR1 levels were substantially higher in patients than in controls. Serum SUR1 levels of patients were highly correlated with NIHSS score, Glasgow Coma Scale score, hematoma volume and ICH score. Compared with patients with END or mRS score of 0-2, other remainders had significantly elevated serum SUR1 levels. Serum SUR1 levels independently predicted END and 90-day poor outcome. Under receiver operating characteristic curve, serum SUR1 levels significantly predicted END and a poor outcome at 90 days after hemorrhagic stroke and its predictive value was similar to those of NIHSS score, Glasgow coma scale score, hematoma volume and ICH score. CONCLUSION Serum SUR1 levels are highly correlated with severity, END and poor outcome after hemorrhagic stroke, indicating that serum SUR1 may be useful for risk stratification and prognostic prediction of ICH.
Collapse
Affiliation(s)
- Cheng-Jun Zhuge
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Cheng-Peng Zhan
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, People's Republic of China
| | - Ke-Wei Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Xin-Jiang Yan
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, People's Republic of China
| | - Guo-Feng Yu
- Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, People's Republic of China
| |
Collapse
|
19
|
Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel-Part 2: TRPM4 in Health and Disease. Pharmaceuticals (Basel) 2021; 15:ph15010040. [PMID: 35056097 PMCID: PMC8779181 DOI: 10.3390/ph15010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential melastatin 4 (TRPM4) is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+ sensitive and permeable for monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions; it regulates membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the currently available knowledge about the physiological and pathophysiological roles of TRPM4 in various tissues. These include the physiological functions of TRPM4 in the cells of the Langerhans islets of the pancreas, in various immune functions, in the regulation of vascular tone, in respiratory and other neuronal activities, in chemosensation, and in renal and cardiac physiology. TRPM4 contributes to pathological conditions such as overactive bladder, endothelial dysfunction, various types of malignant diseases and central nervous system conditions including stroke and injuries as well as in cardiac conditions such as arrhythmias, hypertrophy, and ischemia-reperfusion injuries. TRPM4 claims more and more attention and is likely to be the topic of research in the future.
Collapse
|
20
|
Jha RM, Rani A, Desai SM, Raikwar S, Mihaljevic S, Munoz-Casabella A, Kochanek PM, Catapano J, Winkler E, Citerio G, Hemphill JC, Kimberly WT, Narayan R, Sahuquillo J, Sheth KN, Simard JM. Sulfonylurea Receptor 1 in Central Nervous System Injury: An Updated Review. Int J Mol Sci 2021; 22:11899. [PMID: 34769328 PMCID: PMC8584331 DOI: 10.3390/ijms222111899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfonylurea receptor 1 (SUR1) is a member of the adenosine triphosphate (ATP)-binding cassette (ABC) protein superfamily, encoded by Abcc8, and is recognized as a key mediator of central nervous system (CNS) cellular swelling via the transient receptor potential melastatin 4 (TRPM4) channel. Discovered approximately 20 years ago, this channel is normally absent in the CNS but is transcriptionally upregulated after CNS injury. A comprehensive review on the pathophysiology and role of SUR1 in the CNS was published in 2012. Since then, the breadth and depth of understanding of the involvement of this channel in secondary injury has undergone exponential growth: SUR1-TRPM4 inhibition has been shown to decrease cerebral edema and hemorrhage progression in multiple preclinical models as well as in early clinical studies across a range of CNS diseases including ischemic stroke, traumatic brain injury, cardiac arrest, subarachnoid hemorrhage, spinal cord injury, intracerebral hemorrhage, multiple sclerosis, encephalitis, neuromalignancies, pain, liver failure, status epilepticus, retinopathies and HIV-associated neurocognitive disorder. Given these substantial developments, combined with the timeliness of ongoing clinical trials of SUR1 inhibition, now, another decade later, we review advances pertaining to SUR1-TRPM4 pathobiology in this spectrum of CNS disease-providing an overview of the journey from patch-clamp experiments to phase III trials.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Anupama Rani
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Shashvat M. Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (R.M.J.); (S.M.D.)
| | - Sudhanshu Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Sandra Mihaljevic
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Amanda Munoz-Casabella
- Department of Translational Neuroscience, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (A.R.); (S.R.); (S.M.); (A.M.-C.)
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Ethan Winkler
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA; (J.C.); (E.W.)
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy;
- Neurointensive Care Unit, Department of Neuroscience, San Gerardo Hospital, ASST—Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Raj Narayan
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY 11549, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain;
- Neurotraumatology and Neurosurgery Research Unit, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Department of Neurosurgery, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, School of Medicine, Yale University, New Haven, CT 06510, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Traumatic Brain Injury: Ultrastructural Features in Neuronal Ferroptosis, Glial Cell Activation and Polarization, and Blood-Brain Barrier Breakdown. Cells 2021; 10:cells10051009. [PMID: 33923370 PMCID: PMC8146242 DOI: 10.3390/cells10051009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
The secondary injury process after traumatic brain injury (TBI) results in motor dysfunction, cognitive and emotional impairment, and poor outcomes. These injury cascades include excitotoxic injury, mitochondrial dysfunction, oxidative stress, ion imbalance, inflammation, and increased vascular permeability. Electron microscopy is an irreplaceable tool to understand the complex pathogenesis of TBI as the secondary injury is usually accompanied by a series of pathologic changes at the ultra-micro level of the brain cells. These changes include the ultrastructural changes in different parts of the neurons (cell body, axon, and synapses), glial cells, and blood–brain barrier, etc. In view of the current difficulties in the treatment of TBI, identifying the changes in subcellular structures can help us better understand the complex pathologic cascade reactions after TBI and improve clinical diagnosis and treatment. The purpose of this review is to summarize and discuss the ultrastructural changes related to neurons (e.g., condensed mitochondrial membrane in ferroptosis), glial cells, and blood–brain barrier in the existing reports of TBI, to deepen the in-depth study of TBI pathomechanism, hoping to provide a future research direction of pathogenesis and treatment, with the ultimate aim of improving the prognosis of patients with TBI.
Collapse
|
22
|
Lerouet D, Marchand-Leroux C, Besson VC. Neuropharmacology in traumatic brain injury: from preclinical to clinical neuroprotection? Fundam Clin Pharmacol 2021; 35:524-538. [PMID: 33527472 PMCID: PMC9290810 DOI: 10.1111/fcp.12656] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) constitutes a major health problem worldwide and is a leading cause of death and disability in individuals, contributing to devastating socioeconomic consequences. Despite numerous promising pharmacological strategies reported as neuroprotective in preclinical studies, the translation to clinical trials always failed, albeit the great diversity of therapeutic targets evaluated. In this review, first, we described epidemiologic features, causes, and primary and secondary injuries of TBI. Second, we outlined the current literature on animal models of TBI, and we described their goals, their advantages and disadvantages according to the species used, the type of injury induced, and their clinical relevance. Third, we defined the concept of neuroprotection and discussed its evolution. We also identified the reasons that might explain the failure of clinical translation. Then, we reviewed post‐TBI neuroprotective treatments with a focus on the following pleiotropic drugs, considered “low hanging fruit” with high probability of success: glitazones, glibenclamide, statins, erythropoietin, and progesterone, that were largely tested and demonstrated efficient in preclinical models of TBI. Finally, our review stresses the need to establish a close cooperation between basic researchers and clinicians to ensure the best clinical translation for neuroprotective strategies for TBI.
Collapse
Affiliation(s)
- Dominique Lerouet
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Catherine Marchand-Leroux
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Valérie C Besson
- UMR-S1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| |
Collapse
|
23
|
Pergakis M, Badjatia N, Simard JM. An update on the pharmacological management and prevention of cerebral edema: current therapeutic strategies. Expert Opin Pharmacother 2021; 22:1025-1037. [PMID: 33467932 DOI: 10.1080/14656566.2021.1876663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Cerebral edema is a common complication of multiple neurological diseases and is a strong predictor of outcome, especially in traumatic brain injury and large hemispheric infarction.Areas Covered: Traditional and current treatments of cerebral edema include treatment with osmotherapy or decompressive craniectomy at the time of clinical deterioration. The authors discuss preclinical and clinical models of a variety of neurological disease states that have identified receptors, ion transporters, and channels involved in the development of cerebral edema as well as modulation of these receptors with promising agents.Expert opinion: Further study is needed on the safety and efficacy of the agents discussed. IV glibenclamide has shown promise in preclinical and clinical trials of cerebral edema in large hemispheric infarct and traumatic brain injury. Consideration of underlying pathophysiology and pharmacodynamics is vital, as the synergistic use of agents has the potential to drastically mitigate cerebral edema and secondary brain injury thusly transforming our treatment paradigms.
Collapse
Affiliation(s)
- Melissa Pergakis
- Program in Trauma Department of Neurology University of Maryland School of Medicine,Baltimore MD USA
| | - Neeraj Badjatia
- Program in Trauma Department of Neurology University of Maryland School of Medicine,Baltimore MD USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Jha RM, Mondello S, Bramlett HM, Dixon CE, Shear DA, Dietrich WD, Wang KKW, Yang Z, Hayes RL, Poloyac SM, Empey PE, Lafrenaye AD, Yan HQ, Carlson SW, Povlishock JT, Gilsdorf JS, Kochanek PM. Glibenclamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2020; 38:628-645. [PMID: 33203303 DOI: 10.1089/neu.2020.7421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glibenclamide (GLY) is the sixth drug tested by the Operation Brain Trauma Therapy (OBTT) consortium based on substantial pre-clinical evidence of benefit in traumatic brain injury (TBI). Adult Sprague-Dawley rats underwent fluid percussion injury (FPI; n = 45), controlled cortical impact (CCI; n = 30), or penetrating ballistic-like brain injury (PBBI; n = 36). Efficacy of GLY treatment (10-μg/kg intraperitoneal loading dose at 10 min post-injury, followed by a continuous 7-day subcutaneous infusion [0.2 μg/h]) on motor, cognitive, neuropathological, and biomarker outcomes was assessed across models. GLY improved motor outcome versus vehicle in FPI (cylinder task, p < 0.05) and CCI (beam balance, p < 0.05; beam walk, p < 0.05). In FPI, GLY did not benefit any other outcome, whereas in CCI, it reduced 21-day lesion volume versus vehicle (p < 0.05). On Morris water maze testing in CCI, GLY worsened performance on hidden platform latency testing versus sham (p < 0.05), but not versus TBI vehicle. In PBBI, GLY did not improve any outcome. Blood levels of glial fibrillary acidic protein and ubiquitin carboxyl terminal hydrolase-1 at 24 h did not show significant treatment-induced changes. In summary, GLY showed the greatest benefit in CCI, with positive effects on motor and neuropathological outcomes. GLY is the second-highest-scoring agent overall tested by OBTT and the only drug to reduce lesion volume after CCI. Our findings suggest that leveraging the use of a TBI model-based phenotype to guide treatment (i.e., GLY in contusion) might represent a strategic choice to accelerate drug development in clinical trials and, ultimately, achieve precision medicine in TBI.
Collapse
Affiliation(s)
- Ruchira M Jha
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Neurology, Neurobiology, and Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - C Edward Dixon
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, McKnight Brin Institute of the University of Florida, Gainesville, Florida, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, McKnight Brin Institute of the University of Florida, Gainesville, Florida, USA
| | - Ronald L Hayes
- Center for Innovative Research, Center for Proteomics and Biomarkers Research, Banyan Biomarkers, Inc., Alachua, Florida, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Philip E Empey
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hong Q Yan
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W Carlson
- Department of Neurological Surgery, Brain Trauma Research Center, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Pediatrics, Anesthesiology, and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Kochanek PM, Jackson TC, Jha RM, Clark RS, Okonkwo DO, Bayır H, Poloyac SM, Wagner AK, Empey PE, Conley YP, Bell MJ, Kline AE, Bondi CO, Simon DW, Carlson SW, Puccio AM, Horvat CM, Au AK, Elmer J, Treble-Barna A, Ikonomovic MD, Shutter LA, Taylor DL, Stern AM, Graham SH, Kagan VE, Jackson EK, Wisniewski SR, Dixon CE. Paths to Successful Translation of New Therapies for Severe Traumatic Brain Injury in the Golden Age of Traumatic Brain Injury Research: A Pittsburgh Vision. J Neurotrauma 2020; 37:2353-2371. [PMID: 30520681 PMCID: PMC7698994 DOI: 10.1089/neu.2018.6203] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New neuroprotective therapies for severe traumatic brain injury (TBI) have not translated from pre-clinical to clinical success. Numerous explanations have been suggested in both the pre-clinical and clinical arenas. Coverage of TBI in the lay press has reinvigorated interest, creating a golden age of TBI research with innovative strategies to circumvent roadblocks. We discuss the need for more robust therapies. We present concepts for traditional and novel approaches to defining therapeutic targets. We review lessons learned from the ongoing work of the pre-clinical drug and biomarker screening consortium Operation Brain Trauma Therapy and suggest ways to further enhance pre-clinical consortia. Biomarkers have emerged that empower choice and assessment of target engagement by candidate therapies. Drug combinations may be needed, and it may require moving beyond conventional drug therapies. Precision medicine may also link the right therapy to the right patient, including new approaches to TBI classification beyond the Glasgow Coma Scale or anatomical phenotyping-incorporating new genetic and physiologic approaches. Therapeutic breakthroughs may also come from alternative approaches in clinical investigation (comparative effectiveness, adaptive trial design, use of the electronic medical record, and big data). The full continuum of care must also be represented in translational studies, given the important clinical role of pre-hospital events, extracerebral insults in the intensive care unit, and rehabilitation. TBI research from concussion to coma can cross-pollinate and further advancement of new therapies. Misconceptions can stifle/misdirect TBI research and deserve special attention. Finally, we synthesize an approach to deliver therapeutic breakthroughs in this golden age of TBI research.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel M. Poloyac
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Amy K. Wagner
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Philip E. Empey
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Yvette P. Conley
- Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania, USA
| | - Michael J. Bell
- Department of Critical Care Medicine, Children's National Medical Center, Washington, DC, USA
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Christopher M. Horvat
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan Elmer
- Departments of Emergency Medicine and Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Amery Treble-Barna
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Milos D. Ikonomovic
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A. Shutter
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - D. Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew M. Stern
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven H. Graham
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen R. Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Shakkour Z, Habashy KJ, Berro M, Takkoush S, Abdelhady S, Koleilat N, Eid AH, Zibara K, Obeid M, Shear D, Mondello S, Wang KK, Kobeissy F. Drug Repurposing in Neurological Disorders: Implications for Neurotherapy in Traumatic Brain Injury. Neuroscientist 2020; 27:620-649. [PMID: 33089741 DOI: 10.1177/1073858420961078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) remains a significant leading cause of death and disability among adults and children globally. To date, there are no Food and Drug Administration-approved drugs that can substantially attenuate the sequelae of TBI. The innumerable challenges faced by the conventional de novo discovery of new pharmacological agents led to the emergence of alternative paradigm, which is drug repurposing. Repurposing of existing drugs with well-characterized mechanisms of action and human safety profiles is believed to be a promising strategy for novel drug use. Compared to the conventional discovery pathways, drug repurposing is less costly, relatively rapid, and poses minimal risk of the adverse outcomes to study on participants. In recent years, drug repurposing has covered a wide range of neurodegenerative diseases and neurological disorders including brain injury. This review highlights the advances in drug repurposing and presents some of the promising candidate drugs for potential TBI treatment along with their possible mechanisms of neuroprotection. Edaravone, glyburide, ceftriaxone, levetiracetam, and progesterone have been selected due to their potential role as putative TBI neurotherapeutic agents. These drugs are Food and Drug Administration-approved for purposes other than brain injuries; however, preclinical and clinical studies have shown their efficacy in ameliorating the various detrimental outcomes of TBI.
Collapse
Affiliation(s)
- Zaynab Shakkour
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Moussa Berro
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samira Takkoush
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nadia Koleilat
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Makram Obeid
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Deborah Shear
- Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Sicilia, Italy
| | - Kevin K Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Abstract
Cerebral edema is a pathological hallmark of various central nervous system (CNS) insults, including traumatic brain injury (TBI) and excitotoxic injury such as stroke. Due to the rigidity of the skull, edema-induced increase of intracranial fluid significantly complicates severe CNS injuries by raising intracranial pressure and compromising perfusion. Mortality due to cerebral edema is high. With mortality rates up to 80% in severe cases of stroke, it is the leading cause of death within the first week. Similarly, cerebral edema is devastating for patients of TBI, accounting for up to 50% mortality. Currently, the available treatments for cerebral edema include hypothermia, osmotherapy, and surgery. However, these treatments only address the symptoms and often elicit adverse side effects, potentially in part due to non-specificity. There is an urgent need to identify effective pharmacological treatments for cerebral edema. Currently, ion channels represent the third-largest target class for drug development, but their roles in cerebral edema remain ill-defined. The present review aims to provide an overview of the proposed roles of ion channels and transporters (including aquaporins, SUR1-TRPM4, chloride channels, glucose transporters, and proton-sensitive channels) in mediating cerebral edema in acute ischemic stroke and TBI. We also focus on the pharmacological inhibitors for each target and potential therapeutic strategies that may be further pursued for the treatment of cerebral edema.
Collapse
|
28
|
Lee H, Kim E. Repositioning medication for cardiovascular and cerebrovascular disease to delay the onset and prevent progression of Alzheimer's disease. Arch Pharm Res 2020; 43:932-960. [PMID: 32909178 DOI: 10.1007/s12272-020-01268-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a complex, progressive, neurodegenerative disorder. As with other common chronic diseases, multiple risk factors contribute to the onset and progression of AD. Many researchers have evaluated the epidemiologic and pathophysiological association between AD, cardiovascular diseases (CVDs), and cerebrovascular diseases (CBVDs), including commonly reported risk factors such as diabetes, hypertension, and dyslipidemia. Relevant therapies of CVDs/CBVDs for the attenuation of AD have also been empirically investigated. Considering the challenges of new drug development, in terms of cost and time, multifactorial approaches such as therapeutic repositioning of CVD/CBVD medication should be explored to delay the onset and progression of AD. Thus, in this review, we discuss our current understanding of the association between cardiovascular risk factors and AD, as revealed by clinical and non-clinical studies, as well as the therapeutic implications of CVD/CBVD medication that may attenuate AD. Furthermore, we discuss future directions by evaluating ongoing trials in the field.
Collapse
Affiliation(s)
- Heeyoung Lee
- Department of Clinical Medicinal Sciences, Konyang University, 121 Daehakro, Nonsan, 32992, Republic of Korea
| | - EunYoung Kim
- Evidence-Based Research Laboratory, Division of Clinical Pharmacotherapy, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
29
|
Zhou JB, Tang X, Han M, Yang J, Simó R. Impact of antidiabetic agents on dementia risk: A Bayesian network meta-analysis. Metabolism 2020; 109:154265. [PMID: 32446679 DOI: 10.1016/j.metabol.2020.154265] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Dementia is more prevalent among people with type 2 diabetes, but little is known regarding the influence of antidiabetic agents on this association. OBJECTIVE This study assessed the impact of various antidiabetic agents on the risk of dementia among patients with Type 2 diabetes mellitus. METHODS Relevant studies were retrieved from the PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalTrials.gov databases. Nine antidiabetic agents were included in the search. Data were pooled via network meta-analysis and meta-analysis. RESULTS Nine studies were selected for the network meta-analysis with 530,355 individuals and 17 studies for the meta-analysis with 1,258,879 individuals. The analysis excluded glucagon-like peptide 1 (GLP-1) analogs and sodium-dependent glucose transporter 2 (SGLT-2) inhibitors due to the absence of relevant data. The use of dipeptidyl peptidase-4 (DPP-4) inhibitors, metformin, thiazolidinedione, and sulfonylurea was associated with a decreased risk of dementia in comparison to no treatment with antidiabetic agents (hazard ratio [HR] for DPP-4 inhibitors, 0.54; 95% confidence interval [CI], 0.38-0.74, HR for metformin, 0.75; 95% CI, 0.63-0.86; HR for sulfonylurea, 0.85; 95%CI, 0.73-0.98 and HR for thiazolidinedione, 0.70; 95% CI, 0.55-0.89, respectively). However, the node-splitting analysis showed the inconsistency of direct and indirect estimates in sulfonylurea (P = 0.042). DPP-4 inhibitors, metformin, thiazolidinedione, and sulfonylurea exhibited a significant impact on the risk of dementia in diabetics compared with insulin (HR, 0.35; 95%CI, 0.20-0.59, HR, 0.48; 95% CI, 0.30-0.77, HR, 0.45; 95% CI, 0.29-0.73 and HR, 0.55; 95% CI, 0.34-0.88, respectively). DPP-4 inhibitors also exhibited a protective effect on the risk of Alzheimer's dementia compared with the no treatment with antidiabetic agents (HR, 0.48; 95% CI, 0.25-0.92). The meta-analysis demonstrated a protective effect of using metformin and DPP-4 inhibitors on the risk of dementia (HR, 0.86; 95% CI, 0.74-1.00 and HR, 0.65; 95% CI, 0.55-0.76, respectively). Further analysis showed insulin was associated with an increased risk of Alzheimer's dementia (HR, 1.60; 95% CI, 1.13-2.26). Only two case-control studies mentioned GLP-1 analogs and SGLT-2 inhibitors, and the pooled ORs showed no evidence of an association with dementia (GLP-1 analogs: 0.71; 95% CI, 0.46-1.10 and SGLT-2 inhibitors: 0.74; 95% CI, 0.47-1.15). CONCLUSION This analysis indicated that patients with type 2 diabetes under treatment with DPP-4 inhibitors presented with the lowest risk of dementia, followed by those treated with metformin and thiazolidinedione, while treatment with insulin was associated with the highest risk. For the increasing focus on the protective effect on dementia, further specific clinical studies are needed to evaluate the impact of GLP-1 analogs and SGLT-2 inhibitors on the risk of dementia.
Collapse
Affiliation(s)
- Jian-Bo Zhou
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, China.
| | - Xingyao Tang
- Beijing Tongren Hospital, Capital Medical University, China
| | - Min Han
- Department of Nephrology, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jinkui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, China
| | - Rafael Simó
- Endocrinology and Nutrition Department, Hospital Universitari Vall d'Hebron, Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, 119, 08035 Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
30
|
Kuo YY, Lin JK, Lin YT, Chen JC, Kuo YM, Chen PS, Wu SN, Chen PC. Glibenclamide restores dopaminergic reward circuitry in obese mice through interscauplar brown adipose tissue. Psychoneuroendocrinology 2020; 118:104712. [PMID: 32479969 DOI: 10.1016/j.psyneuen.2020.104712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Obesity, a critical feature in metabolic disorders, is associated with medical depression. Recent evidence reveals that brown adipose tissue (BAT) activity may contribute to mood disorders, Adenosine triphosphate (ATP)-sensitive K+ (KATP) channels regulate BAT sympathetic nerve activity. However, the mechanism through which BAT activity affects mood control remains unknown. We hypothesized the BAT is involved in depressive-like symptoms regulation by trafficking KATP channels. METHODS Eight-week-old male B6 mice fed with a high-fat diet (HFD) for 12 weeks exhibited characteristics of metabolic disorders, including hyperglycemia, hyperinsulinemia, and hyperlipidemia, as well as depressive symptoms. In this study, we surgically removed interscapular BAT in mice, and these mice exhibited immobility in the forced swim test and less preference for sugar water compared with other mice. To delineate the role of KATP channels in BAT activity regulation, we implanted a miniosmotic pump containing glibenclamide (GB), a KATP channel blocker, into the interscapular BAT of HFD-fed mice. RESULTS GB infusion improved glucose homeostasis, insulin sensitivity, and depressive-like symptoms. KATP channel expression was lower in HFD-fed mice than in chow-fed mice. Notably, GB infusion in HFD-fed mice restored KATP channel expression. CONCLUSION KATP channels are functionally expressed in BAT, and inhibiting BAT-KATP channels improves metabolic syndromes and reduces depressive symptoms through beta-3-adrenergic receptor-mediated protein kinase A signaling.
Collapse
Affiliation(s)
- Yi-Ying Kuo
- Department of Physiology, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | | | - Ya-Tin Lin
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang-Gung University, Taiwan
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang-Gung University, Taiwan
| | - Yu-Ming Kuo
- Department of Cell Biology and Anatomy, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Po-See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang-Gung University, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Pei-Chun Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang-Gung University, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
31
|
Ju YJ, Kim N, Gee MS, Jeon SH, Lee D, Do J, Ryu JS, Lee JK. Glibenclamide modulates microglial function and attenuates Aβ deposition in 5XFAD mice. Eur J Pharmacol 2020; 884:173416. [PMID: 32721448 DOI: 10.1016/j.ejphar.2020.173416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
Abstract
Severe neuroinflammation is known as a main pathology of neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). In these diseases, excessive microglial activation is one of the main causes of inflammation in the central nervous system. Therefore, inhibition of activated microglia may be suggested as a treatment for neuroinflammatory diseases. Glibenclamide, known as a therapeutics for type 2 diabetes in clinical trials has been shown to be effective in the inhibiting inflammatory conditions of various diseases. However, studies on the effects of glibenclamide for improving AD pathologies are little known. In this study, we tested glibenclamide on microglial cell line BV2 and 5XFAD mice. We found that glibenclamide significantly inhibited nitric oxide (NO) at 10 μM and 40 μM in BV2 cells induced by lipopolysaccharide (LPS) stimulation. In addition, we confirmed that 40 μM of glibenclamide reduced pro-inflammatory cytokines and proteins in the LPS-stimulated microglial cells. The anti-inflammatory effect of glibenclamide was further tested in APP/PS1 transgenic mouse. Although further analysis would be needed to confirm whether glibenclamide affects behavioral performance, our data suggests that glibenclamide may be a therapeutic option for AD treatment.
Collapse
Affiliation(s)
- Yeon-Joo Ju
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Seung Ho Jeon
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Danbi Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jimin Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jong-Sik Ryu
- Exercise Metabolism Laboratory, Department of Physical Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
32
|
Tsymbalyuk S, Smith M, Gore C, Tsymbalyuk O, Ivanova S, Sansur C, Gerzanich V, Simard JM. Brivaracetam attenuates pain behaviors in a murine model of neuropathic pain. Mol Pain 2020; 15:1744806919886503. [PMID: 31615323 PMCID: PMC6880061 DOI: 10.1177/1744806919886503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background The antiseizure racetams may provide novel molecular insights into
neuropathic pain due to their unique mechanism involving synaptic vesicle
glycoprotein 2A. Anti-allodynic effects of levetiracetam have been shown in
animal models of neuropathic pain. Here, we studied the effect of
brivaracetam, which binds to synaptic vesicle glycoprotein 2A with 20-fold
greater affinity, and has fewer off-target effects. Methods Mice underwent unilateral sciatic nerve cuffing and were evaluated for
mechanical sensitivity using von Frey filaments. Pain behaviors were
assessed with prophylactic treatment using levetiracetam (100 or 10 mg/kg)
or brivaracetam (10 or 1 mg/kg) beginning after surgery and continuing for
21 days, or with therapeutic treatment using brivaracetam (10 or 1 mg/kg)
beginning on day 14, after allodynia was established, and continuing for 28
or 63 days. Spinal cord tissues from the prophylaxis experiment with10 mg/kg
brivaracetam were examined for neuroinflammation (Iba1 and tumor necrosis
factor), T-lymphocyte (CD3) infiltration, and synaptic vesicle glycoprotein
2A expression. Results When used prophylactically, levetiracetam, 100 mg/kg, and brivaracetam,
10 mg/kg, prevented the development of allodynia, with lower doses of each
being less effective. When used therapeutically, brivaracetam extinguished
allodynia, requiring 10 days with 10 mg/kg, and six weeks with 1 mg/kg.
Brivaracetam was associated with reduced neuroinflammation and reduced
T-lymphocyte infiltration in the dorsal horn. After sciatic nerve cuffing,
synaptic vesicle glycoprotein 2A expression was identified in neurons,
activated astrocytes, microglia/macrophages, and T lymphocytes in the dorsal
horn. Conclusion Synaptic vesicle glycoprotein 2A may represent a novel target for neuropathic
pain. Brivaracetam may warrant study in humans with neuropathic pain due to
peripheral nerve injury.
Collapse
Affiliation(s)
- Solomiya Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Madeleine Smith
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Charles Gore
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Charles Sansur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Cash A, Theus MH. Mechanisms of Blood-Brain Barrier Dysfunction in Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21093344. [PMID: 32397302 PMCID: PMC7246537 DOI: 10.3390/ijms21093344] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injuries (TBIs) account for the majority of injury-related deaths in the United States with roughly two million TBIs occurring annually. Due to the spectrum of severity and heterogeneity in TBIs, investigation into the secondary injury is necessary in order to formulate an effective treatment. A mechanical consequence of trauma involves dysregulation of the blood–brain barrier (BBB) which contributes to secondary injury and exposure of peripheral components to the brain parenchyma. Recent studies have shed light on the mechanisms of BBB breakdown in TBI including novel intracellular signaling and cell–cell interactions within the BBB niche. The current review provides an overview of the BBB, novel detection methods for disruption, and the cellular and molecular mechanisms implicated in regulating its stability following TBI.
Collapse
Affiliation(s)
- Alison Cash
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
| | - Michelle H. Theus
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
- The Center for Regenerative Medicine, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: 1-540-231-0909; Fax: 1-540-231-7425
| |
Collapse
|
34
|
Zusman BE, Kochanek PM, Jha RM. Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy. Curr Treat Options Neurol 2020; 22:9. [PMID: 34177248 PMCID: PMC8223756 DOI: 10.1007/s11940-020-0614-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets. RECENT FINDINGS Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1. SUMMARY This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.
Collapse
Affiliation(s)
- Benjamin E. Zusman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Ruchira M. Jha
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Jha RM, Bell J, Citerio G, Hemphill JC, Kimberly WT, Narayan RK, Sahuquillo J, Sheth KN, Simard JM. Role of Sulfonylurea Receptor 1 and Glibenclamide in Traumatic Brain Injury: A Review of the Evidence. Int J Mol Sci 2020; 21:E409. [PMID: 31936452 PMCID: PMC7013742 DOI: 10.3390/ijms21020409] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral edema and contusion expansion are major determinants of morbidity and mortality after TBI. Current treatment options are reactive, suboptimal and associated with significant side effects. First discovered in models of focal cerebral ischemia, there is increasing evidence that the sulfonylurea receptor 1 (SUR1)-Transient receptor potential melastatin 4 (TRPM4) channel plays a key role in these critical secondary injury processes after TBI. Targeted SUR1-TRPM4 channel inhibition with glibenclamide has been shown to reduce edema and progression of hemorrhage, particularly in preclinical models of contusional TBI. Results from small clinical trials evaluating glibenclamide in TBI have been encouraging. A Phase-2 study evaluating the safety and efficacy of intravenous glibenclamide (BIIB093) in brain contusion is actively enrolling subjects. In this comprehensive narrative review, we summarize the molecular basis of SUR1-TRPM4 related pathology and discuss TBI-specific expression patterns, biomarker potential, genetic variation, preclinical experiments, and clinical studies evaluating the utility of treatment with glibenclamide in this disease.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | | | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, 20121 Milan, Italy;
- Anaesthesia and Intensive Care, San Gerardo and Desio Hospitals, ASST-Monza, 20900 Monza, Italy
| | - J. Claude Hemphill
- Department of Neurology, University of California, San Francisco, CA 94110, USA;
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Boston, MA 02108, USA;
| | - Raj K. Narayan
- Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA;
| | - Juan Sahuquillo
- Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d′Hebron Research Institute (VHIR), 08001 Barcelona, Spain;
- Department of Neurosurgery, Universitat Autònoma de Barcelona (UAB), 08001 Barcelona, Spain
- Department of Neurosurgery, Vall d′Hebron University Hospital, 08001 Barcelona, Spain
| | - Kevin N. Sheth
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale University School of Medicine, New Haven, CT 06501, USA;
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
36
|
Pergakis M, Badjatia N, Chaturvedi S, Cronin CA, Kimberly WT, Sheth KN, Simard JM. BIIB093 (IV glibenclamide): an investigational compound for the prevention and treatment of severe cerebral edema. Expert Opin Investig Drugs 2019; 28:1031-1040. [PMID: 31623469 DOI: 10.1080/13543784.2019.1681967] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Brain swelling due to edema formation is a major cause of neurological deterioration and death in patients with large hemispheric infarction (LHI) and severe traumatic brain injury (TBI), especially contusion-TBI. Preclinical studies have shown that SUR1-TRPM4 channels play a critical role in edema formation and brain swelling in LHI and TBI. Glibenclamide, a sulfonylurea drug and potent inhibitor of SUR1-TRPM4, was reformulated for intravenous injection, known as BIIB093.Areas covered: We discuss the findings from Phase 2 clinical trials of BIIB093 in patients with LHI (GAMES-Pilot and GAMES-RP) and from a small Phase 2 clinical trial in patients with TBI. For the GAMES trials, we review data on objective biological variables, adjudicated edema-related endpoints, functional outcomes, and mortality which, despite missing the primary endpoint, supported the initiation of a Phase 3 trial in LHI (CHARM). For the TBI trial, we review data on MRI measures of edema and the initiation of a Phase 2 trial in contusion-TBI (ASTRAL).Expert opinion: Emerging clinical data show that BIIB093 has the potential to transform our management of patients with LHI, contusion-TBI and other conditions in which swelling leads to neurological deterioration and death.
Collapse
Affiliation(s)
- Melissa Pergakis
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seemant Chaturvedi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carolyn A Cronin
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin N Sheth
- Division of Neurocritical Care, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Schreibman DL, Hong CM, Keledjian K, Ivanova S, Tsymbalyuk S, Gerzanich V, Simard JM. Mannitol and Hypertonic Saline Reduce Swelling and Modulate Inflammatory Markers in a Rat Model of Intracerebral Hemorrhage. Neurocrit Care 2019; 29:253-263. [PMID: 29700692 DOI: 10.1007/s12028-018-0535-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Spontaneous intracerebral hemorrhage (ICH) leaves most survivors dependent at follow-up. The importance of promoting M2-like microglial responses is increasingly recognized as a key element to ameliorate brain injury following ICH. The osmotherapeutic agents, mannitol and hypertonic saline (HTS), which are routinely used to reduce intracranial pressure, have been shown to reduce neuroinflammation in experimental ischemic and traumatic brain injury, but anti-inflammatory effects of osmotherapies have not been investigated in ICH. METHODS We studied the effects of iso-osmotic mannitol and HTS in rat models of ICH utilizing high-dose and moderate-dose collagenase injections into the basal ganglia, associated with high and low mortality, respectively. We studied the effects of osmotherapies, first given 5 h after ICH induction, and then administered every 12 h thereafter (4 doses total). Immunohistochemistry was used to quantify microglial activation and polarization. RESULTS Compared to controls, mannitol and HTS increased plasma osmolarity 1 h after infusion (301 ± 1.5, 315 ± 4.2 and 310 ± 2.0 mOsm/kg, respectively), reduced mortality at 48 h (82, 36 and 53%, respectively), and reduced hemispheric swelling at 48 h (32, 21, and 17%, respectively). In both perihematomal and contralateral tissues, mannitol and HTS reduced activation of microglia/macrophages (abundance and morphology of Iba1 + cells), and in perihematomal tissues, they reduced markers of the microglia/macrophage M1-like phenotype (nuclear p65, TNF, and NOS2), increased markers of the microglia/macrophage M2-like phenotype (arginase, YM1, and pSTAT3), and reduced infiltration of CD45 + cells. CONCLUSIONS Repeated dosing of osmotherapeutics at regular intervals may be a useful adjunct to reduce neuroinflammation following ICH.
Collapse
Affiliation(s)
- David L Schreibman
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Caron M Hong
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Solomiya Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, 22 S. Greene St., Suite S12D, Baltimore, MD, 21201-1595, USA. .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
38
|
Halstead MR, Geocadin RG. The Medical Management of Cerebral Edema: Past, Present, and Future Therapies. Neurotherapeutics 2019; 16:1133-1148. [PMID: 31512062 PMCID: PMC6985348 DOI: 10.1007/s13311-019-00779-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cerebral edema is commonly associated with cerebral pathology, and the clinical manifestation is largely related to the underlying lesioned tissue. Brain edema usually amplifies the dysfunction of the lesioned tissue and the burden of cerebral edema correlates with increased morbidity and mortality across diseases. Our modern-day approach to the medical management of cerebral edema has largely revolved around, an increasingly artificial distinction between cytotoxic and vasogenic cerebral edema. These nontargeted interventions such as hyperosmolar agents and sedation have been the mainstay in clinical practice and offer noneloquent solutions to a dire problem. Our current understanding of the underlying molecular mechanisms driving cerebral edema is becoming much more advanced, with differences being identified across diseases and populations. As our understanding of the underlying molecular mechanisms in neuronal injury continues to expand, so too is the list of targeted therapies in the pipeline. Here we present a brief review of the molecular mechanisms driving cerebral edema and a current overview of our understanding of the molecular targets being investigated.
Collapse
Affiliation(s)
- Michael R Halstead
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA.
| | - Romergryko G Geocadin
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| |
Collapse
|
39
|
Ohyagi Y, Miyoshi K, Nakamura N. Therapeutic Strategies for Alzheimer's Disease in the View of Diabetes Mellitus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:227-248. [PMID: 31062332 DOI: 10.1007/978-981-13-3540-2_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, Alzheimer's disease (AD) is understood as "diabetes of the brain" or "type 3 diabetes." Recent clinical trials of anti-amyloid β-protein (Aβ) therapies have not proved to be successful. Thus, glucose-insulin metabolism in the brain is thought to be an alternative therapeutic target. Various types of antidiabetic drugs such as insulin, thiazolidinediones, dipeptidyl peptidase-4 (DPP4) inhibitors, glucagon-like peptide-1 (GLP-1) agonists, biguanides, and others have been reported to be effective on cognitive impairment in animal models and patients with DM or AD. Here, recent reports are reviewed. While we identified apomorphine (APO) as a novel drug that promoted intracellular Aβ degradation and improved memory function in an AD mouse model, more recently, we have revealed that APO treatment improves neuronal insulin resistance and activates insulin-degrading enzyme (IDE), a major Aβ-degrading enzyme. In this context, recovery of impaired insulin signaling in AD neurons may be a promising therapeutic strategy for AD dementia.
Collapse
Affiliation(s)
- Yasumasa Ohyagi
- Department of Neurology and Geriatric Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan.
| | - Katsue Miyoshi
- Long-Term Care Health Facility Cosmos, Kushiro-mutsumi, Hokkaido, Japan
| | - Norimichi Nakamura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
40
|
Ma J, Zhang S, Liu J, Liu F, Du F, Li M, Chen AT, Bao Y, Suh HW, Avery J, Deng G, Zhou Y, Wu P, Sheth K, Wang H, Zhou J. Targeted Drug Delivery to Stroke via Chemotactic Recruitment of Nanoparticles Coated with Membrane of Engineered Neural Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902011. [PMID: 31290245 PMCID: PMC11089900 DOI: 10.1002/smll.201902011] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/17/2019] [Indexed: 05/18/2023]
Abstract
Cell membrane coating has recently emerged as a promising biomimetic approach to engineering nanoparticles (NPs) for targeted drug delivery. However, simple cell membrane coating may not meet the need for efficient drug delivery to the brain. Here, a novel molecular engineering strategy to modify the surface of NPs with a cell membrane coating for enhanced brain penetration is reported. By using poly(lactic-co-glycolic) acid NPs as a model, it is shown that delivery of NPs to the ischemic brain is enhanced through surface coating with the membrane of neural stem cells (NSCs), and the delivery efficiency can be further increased using membrane isolated from NSCs engineered for overexpression of CXCR4. It is found that this enhancement is mediated by the chemotactic interaction of CXCR4 with SDF-1, which is enriched in the ischemic microenvironment. It is demonstrated that the resulting CXCR4-overexpressing membrane-coated NPs, termed CMNPs, significantly augment the efficacy of glyburide, an anti-edema agent, for stroke treatment. The study suggests a new approach to improving drug delivery to the ischemic brain and establishes a novel formulation of glyburide that can be potentially translated into clinical applications to improve management of human patients with stroke.
Collapse
Affiliation(s)
- Junning Ma
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Fenyi Du
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Miao Li
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Ann T Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Youmei Bao
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Hee Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06511, USA
| | - Jonathan Avery
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Yu Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Peng Wu
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| | - Kevin Sheth
- Department of Neurology, Yale University, New Haven, CT, 06510, USA
| | - Haijun Wang
- Department of Neurosurgery, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
41
|
da Costa BBS, Windlin IC, Koterba E, Yamaki VN, Rabelo NN, Solla DJF, Teixeira MJ, Figueiredo EG. Glibenclamide in aneurysmatic subarachnoid hemorrhage (GASH): study protocol for a randomized controlled trial. Trials 2019; 20:413. [PMID: 31288831 PMCID: PMC6617901 DOI: 10.1186/s13063-019-3517-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 06/11/2019] [Indexed: 11/21/2022] Open
Abstract
Background Recent findings on the benefits of glibenclamide as a neuroprotective drug have started a new era for prospective studies on sulfonylureas. The effect of glibenclamide blocking the Sur1-Trpm4 channel was examined in models of subarachnoid hemorrhage and stroke, with findings of significantly reduced tight-junction abnormalities, resulting in less edema formation and considerably reduced transsynaptic apoptosis of hippocampal neurons and significantly ameliorated impairments in spatial learning. Based on these data, we plan a clinical trial to establish evidence of glibenclamide as an adjunct treatment in aneurysmal subarachnoid hemorrhage. Methods An estimated 80 patients meeting the inclusion criteria of radiological confirmatory evidence of an aneurysmal subarachnoid hemorrhage, age 18–70 years, and presentation of less than 96 h from the ictus will be allocated randomly into two groups, one receiving 5 mg daily oral intake of glibenclamide for 21 days and another control group receiving a placebo. The study’s primary outcome is the modified Rankin scale (mRS) after 6 months, as favorable (mRS 0–2) or unfavorable (mRS 3–6). The secondary outcomes will be late cognitive status, assessed after 6 months by psychological tests (the Short Form Health Survey Questionnaire and the Montreal Cognitive Assessment), as well as death at 6 months, delayed cerebral ischemia and occurrence of serious adverse events due to study medication. Discussion There is a growing interest in the scientific community regarding glibenclamide in brain edema and traumatic brain injury, but with very little of this interest targeting spontaneous brain hemorrhage, especially aneurism rupture. Positive outcomes are expected for the treatment patients, especially in language and memory preservation, as has been shown in experimental models. Trial registration ClinicalTrials.gov, NCT03569540. Retrospectively registered on 26 June 2018. Electronic supplementary material The online version of this article (10.1186/s13063-019-3517-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Edwin Koterba
- Neurosurgery Department, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
42
|
Jha RM, Desai SM, Zusman BE, Koleck TA, Puccio AM, Okonkwo DO, Park SY, Shutter LA, Kochanek PM, Conley YP. Downstream TRPM4 Polymorphisms Are Associated with Intracranial Hypertension and Statistically Interact with ABCC8 Polymorphisms in a Prospective Cohort of Severe Traumatic Brain Injury. J Neurotrauma 2019; 36:1804-1817. [PMID: 30484364 PMCID: PMC6551973 DOI: 10.1089/neu.2018.6124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sulfonylurea-receptor-1(SUR1) and its associated transient-receptor-potential cation channel subfamily-M (TRPM4) channel are key contributors to cerebral edema and intracranial hypertension in traumatic brain injury (TBI) and other neurological disorders. Channel inhibition by glyburide is clinically promising. ABCC8 (encoding SUR1) single-nucleotide polymorphisms (SNPs) are reported as predictors of raised intracranial pressure (ICP). This project evaluated whether TRPM4 SNPs predicted ICP and TBI outcome. DNA was extracted from 435 consecutively enrolled severe TBI patients. Without a priori selection, all 11 TRPM4 SNPs available on the multiplex platform (Illumina:Human-Core-Exome v1.0) were genotyped spanning the 25 exon gene. A total of 385 patients were analyzed after quality control. Outcomes included ICP and 6 month Glasgow Outcome Scale (GOS) score. Proxy SNPs, spatial modeling, and functional predictions were determined using established software programs. rs8104571 (intron-20) and rs150391806 (exon-24) were predictors of ICP. rs8104571 heterozygotes predicted higher average ICP (β = 10.3 mm Hg, p = 0.00000029), peak ICP (β = 19.6 mm Hg, p = 0.0007), and proportion ICP >25 mm Hg (β = 0.16 p = 0.004). rs150391806 heterozygotes had higher mean (β = 7.2 mm Hg, p = 0.042) and peak (β = 28.9 mm Hg, p = 0.0015) ICPs. rs8104571, rs150391806, and 34 associated proxy SNPs in linkage-disequilibrium clustered downstream. This region encodes TRPM4's channel pore and a region postulated to juxtapose SUR1 sequences encoded by an ABCC8 DNA segment containing previously identified relevant SNPs. There was an interaction effect on ICP between rs8104571 and a cluster of predictive ABCC8 SNPs (rs2237982, rs2283261, rs11024286). Although not significant in univariable or a basic multivariable model, in an expanded model additionally accounting for injury pattern, computed tomographic (CT) appearance, and intracranial hypertension, heterozygous rs8104571 was associated with favorable 6 month GOS (odds ratio [OR] = 16.7, p = 0.007951). This trend persisted in a survivor-only subcohort (OR = 20.67, p = 0.0168). In this cohort, two TRPM4 SNPs predicted increased ICP with large effect sizes. Both clustered downstream, spanning a region encoding the channel pore and interacting with SUR1. If validated, this may guide risk stratification and eventually inform treatment-responder classification for SUR1-TRPM4 inhibition in TBI. Larger studies are warranted.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shashvat M. Desai
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Benjamin E. Zusman
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Ava M. Puccio
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David O. Okonkwo
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Seo-Young Park
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lori A. Shutter
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Anesthesia, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
- University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yvette P. Conley
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Xu F, Shen G, Su Z, He Z, Yuan L. Glibenclamide ameliorates the disrupted blood-brain barrier in experimental intracerebral hemorrhage by inhibiting the activation of NLRP3 inflammasome. Brain Behav 2019; 9:e01254. [PMID: 30859754 PMCID: PMC6456786 DOI: 10.1002/brb3.1254] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/15/2018] [Accepted: 02/09/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Glibenclamide is a widely used sulfonylurea drug prescribed to treat type II diabetes mellitus. Previous studies have demonstrated that glibenclamide has neuroprotective effects in central nervous system injury. However, the exact mechanism by which glibenclamide acts on the blood-brain barrier (BBB) after intracerebral hemorrhage (ICH) remains unclear. The purpose of this study was to validate the neuroprotective effects of glibenclamide on ICH and to explore the mechanisms underlying these effects. METHODS We investigated the effects of glibenclamide on experimental ICH using the autologous blood infusion model. Glibenclamide was administrated either immediately or 2 hr after ICH. Brain edema was quantified using the wet-dry method 3 days after injury. BBB integrity was evaluated by Evans Blue extravasation and degradation of the tight junction protein zona occludens-1 (ZO-1). mRNA levels of inflammatory cytokines were determined by quantitative polymerase chain reaction. Activation of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) inflammasome and cell viability were also measured in cerebral microvascular endothelial b.End3 cells exposed to hemin. Neurological changes were evaluated by the Garcia score and rotarod test. RESULTS After ICH, the brain water content, Evans Blue extravasation, and inflammatory cytokines decreased significantly in the ipsilateral hemisphere of the experimental compared to the vehicle group. Glibenclamide treatment and NLRP3 knockdown significantly reduced hemin-induced activation of the NLRP3 inflammasome, release of extracellular lactate dehydrogenase, apoptosis, and loss of ZO-1 in b.End3 cells. However, NLRP3 knockdown abolished the protective effect of glibenclamide. CONCLUSION Glibenclamide maintained BBB integrity in experimental ICH by inhibiting the activation of the NLRP3 inflammasome in microvessel endothelial cells. Our findings will contribute to elucidating the pharmacological mechanism of action of glibenclamide and to developing a novel therapy for clinical ICH.
Collapse
Affiliation(s)
- Fulin Xu
- Department of Neurosurgery, Minhang District Central hospital, Shanghai, China
| | - Gang Shen
- Department of Neurosurgery, Minhang District Central hospital, Shanghai, China
| | - Zuopeng Su
- Department of Neurosurgery, Minhang District Central hospital, Shanghai, China
| | - Zijian He
- Department of Neurosurgery, Minhang District Central hospital, Shanghai, China
| | - Lutao Yuan
- Department of Neurosurgery, Minhang District Central hospital, Shanghai, China
| |
Collapse
|
44
|
Kochanek PM, Bramlett HM, Dixon CE, Dietrich WD, Mondello S, Wang KKW, Hayes RL, Lafrenaye A, Povlishock JT, Tortella FC, Poloyac SM, Empey P, Shear DA. Operation Brain Trauma Therapy: 2016 Update. Mil Med 2019; 183:303-312. [PMID: 29635589 DOI: 10.1093/milmed/usx184] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
Operation brain trauma therapy (OBTT) is a multi-center, pre-clinical drug and biomarker screening consortium for traumatic brain injury (TBI). Therapies are screened across three rat models (parasagittal fluid percussion injury, controlled cortical impact [CCI], and penetrating ballistic-like brain injury). Operation brain trauma therapy seeks to define therapies that show efficacy across models that should have the best chance in randomized clinical trials (RCTs) and/or to define model-dependent therapeutic effects, including TBI protein biomarker responses, to guide precision medicine-based clinical trials in targeted pathologies. The results of the first five therapies tested by OBTT (nicotinamide, erythropoietin, cyclosporine [CsA], simvastatin, and levetiracetam) were published in the Journal of Neurotrauma. Operation brain trauma therapy now describes preliminary results on four additional therapies (glibenclamide, kollidon-VA64, AER-271, and amantadine). To date, levetiracetam was beneficial on cognitive outcome, histology, and/or biomarkers in two models. The second most successful drug, glibenclamide, improved motor function and histology in CCI. Other therapies showed model-dependent effects (amantadine and CsA). Critically, glial fibrillary acidic protein levels predicted treatment effects. Operation brain trauma therapy suggests that levetiracetam merits additional pre-clinical and clinical evaluation and that glibenclamide and amantadine merit testing in specific TBI phenotypes. Operation brain trauma therapy has established that rigorous, multi-center consortia could revolutionize TBI therapy and biomarker development.
Collapse
Affiliation(s)
- Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224
| | - Helen M Bramlett
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136
| | - C Edward Dixon
- Safar Center for Resuscitation Research, Department of Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224
| | - W Dalton Dietrich
- Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136
| | - Stefania Mondello
- Department of Neurosciences, University of Messina, Via Consolare Valeria 1, Messina 98125, Italy
| | - Kevin K W Wang
- Program for Neuroproteomics and Biomarkers Research, Departments of Psychiatry, Neuroscience, and Chemistry, University of Florida, P.O. Box 100256, Gainesville, FL 32611
| | - Ronald L Hayes
- Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research, Banyan Biomarkers, Inc., 13400 Progress Blvd., Alachua, FL 32615
| | - Audrey Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA 23298
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, VA 23298
| | - Frank C Tortella
- Department of the Army, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500
| | - Samuel M Poloyac
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA 15261
| | - Philip Empey
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences and the Clinical Translational Science Institute, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA 15261
| | - Deborah A Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500
| |
Collapse
|
45
|
Xourgia E, Papazafiropoulou A, Melidonis A. Antidiabetic treatment on memory and spatial learning: From the pancreas to the neuron. World J Diabetes 2019; 10:169-180. [PMID: 30891152 PMCID: PMC6422855 DOI: 10.4239/wjd.v10.i3.169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The detrimental effects of constant hyperglycemia on neural function have been quantitatively and qualitatively evaluated in the setting of diabetes mellitus. Some of the hallmark features of diabetic encephalopathy (DE) are impaired synaptic adaptation and diminished spatial learning capacity. Chronic and progressive cognitive dysfunction, perpetuated by several positive feedback mechanisms in diabetic subjects, facilitates the development of early-onset dementia and Alzheimer's disease. Despite the numerous clinical manifestations of DE having been described in detail and their pathophysiological substrate having been elucidated in both type 1 and type 2 diabetes mellitus, an effective therapeutic approach is yet to be proposed. Therefore, the aim of this review is to summarize the growing body of evidence concerning the effect of current antidiabetic treatment options on diabetic and non-DE.
Collapse
Affiliation(s)
- Eleni Xourgia
- Andreas Melidonis 1st Department of Internal Medicine and Diabetes Center, Tzaneio General Hospital of Piraeus, Athens 18536, Greece
| | - Athanasia Papazafiropoulou
- Andreas Melidonis 1st Department of Internal Medicine and Diabetes Center, Tzaneio General Hospital of Piraeus, Athens 18536, Greece
| | | |
Collapse
|
46
|
Hagos FT, Adams SM, Poloyac SM, Kochanek PM, Horvat CM, Clark RSB, Empey PE. Membrane transporters in traumatic brain injury: Pathological, pharmacotherapeutic, and developmental implications. Exp Neurol 2019; 317:10-21. [PMID: 30797827 DOI: 10.1016/j.expneurol.2019.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Membrane transporters regulate the trafficking of endogenous and exogenous molecules across biological barriers and within the neurovascular unit. In traumatic brain injury (TBI), they moderate the dynamic movement of therapeutic drugs and injury mediators among neurons, endothelial cells and glial cells, thereby becoming important determinants of pathogenesis and effective pharmacotherapy after TBI. There are three ways transporters may impact outcomes in TBI. First, transporters likely play a key role in the clearance of injury mediators. Second, genetic association studies suggest transporters may be important in the transition of TBI from acute brain injury to a chronic neurological disease. Third, transporters dynamically control the brain penetration and efflux of many drugs and their distribution within and elimination from the brain, contributing to pharmacoresistance and possibly in some cases pharmacosensitivity. Understanding the nature of drugs or candidate drugs in development with respect to whether they are a transporter substrate or inhibitor is relevant to understand whether they distribute to their target in sufficient concentrations. Emerging data provide evidence of altered expression and function of transporters in humans after TBI. Genetic variability in expression and/or function of key transporters adds an additional dynamic, as shown in recent clinical studies. In this review, evidence supporting the role of individual membrane transporters in TBI are discussed as well as novel strategies for their modulation as possible therapeutic targets. Since data specifically targeting pediatric TBI are sparse, this review relies mainly on experimental studies using adult animals and clinical studies in adult patients.
Collapse
Affiliation(s)
- Fanuel T Hagos
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America
| | - Solomon M Adams
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America
| | - Samuel M Poloyac
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christopher M Horvat
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Robert S B Clark
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Philip E Empey
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
47
|
Zhou X, Xu C, Zou Z, Shen X, Xie T, Zhang R, Liao L, Dong J. aThe characteristics of glucose metabolism in the sulfonylurea receptor 1 knockout rat model. Mol Med 2019; 25:2. [PMID: 30616503 PMCID: PMC6322298 DOI: 10.1186/s10020-018-0067-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022] Open
Abstract
Background Sulfonylurea receptor 1 (SUR1) is primarily responsible for glucose regulation in normal conditions. Here, we sought to investigate the glucose metabolism characteristics of SUR1−/− rats. Methods The TALEN technique was used to construct a SUR1 gene deficiency rat model. Rats were grouped by SUR1 gene knockout or not and sex difference. Body weight; glucose metabolism indicators, including IPGTT, IPITT, glycogen contents and so on; and other molecule changes were examined. Results Insulin secretion was significantly inhibited by knocking out the SUR1 gene. SUR1−/− rats showed lower body weights compared to wild-type rats, and even SUR1−/− males weighed less than wild-type females. Upon SUR1 gene knockout, the rats showed a peculiar plasma glucose profile. During IPGTT, plasma glucose levels were significantly elevated in SUR1−/− rats at 15 min, which could be explained by SUR1 mainly working in the first phase of insulin secretion. Moreover, SUR1−/− male rats showed obviously impaired glucose tolerance than before and a better insulin sensitivity in the 12th week compared with females, which might be related with excess androgen secretion in adulthood. Increased glycogen content and GLUT4 expression and the inactivation of GSK3 were also observed in SUR1−/− rats, which suggested an enhancement of insulin sensitivity. Conclusions These results reconfirm the role of SUR1 in systemic glucose metabolism. More importantly, our SUR1−/− rat model might be applied in other fields, such as for exploring other hypoglycaemic functions of sulfonylureas. Electronic supplementary material The online version of this article (10.1186/s10020-018-0067-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, People's Republic of China
| | - Chunmei Xu
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, People's Republic of China
| | - Zhiwei Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xue Shen
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Tianyue Xie
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rui Zhang
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, People's Republic of China
| | - Lin Liao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250014, People's Republic of China.
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
48
|
Castro L, Noelia M, Vidal-Jorge M, Sánchez-Ortiz D, Gándara D, Martínez-Saez E, Cicuéndez M, Poca MA, Simard JM, Sahuquillo J. Kir6.2, the Pore-Forming Subunit of ATP-Sensitive K + Channels, Is Overexpressed in Human Posttraumatic Brain Contusions. J Neurotrauma 2019; 36:165-175. [PMID: 29737232 PMCID: PMC7872003 DOI: 10.1089/neu.2017.5619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brain contusions (BCs) are one of the most frequent lesions in patients with moderate and severe traumatic brain injury (TBI). BCs increase their volume due to peri-lesional edema formation and/or hemorrhagic transformation. This may have deleterious consequences and its mechanisms are still poorly understood. We previously identified de novo upregulation sulfonylurea receptor (SUR) 1, the regulatory subunit of adenosine triphosphate (ATP)-sensitive potassium (KATP) channels and other channels, in human BCs. Our aim here was to study the expression of the pore-forming subunit of KATP, Kir6.2, in human BCs, and identify its localization in different cell types. Protein levels of Kir6.2 were detected by western blot (WB) from 33 contusion specimens obtained from 32 TBI patients aged 14-74 years. The evaluation of Kir6.2 expression in different cell types was performed by immunofluorescence in 29 contusion samples obtained from 28 patients with a median age of 42 years. Control samples were obtained from limited brain resections performed to access extra-axial skull base tumors or intraventricular lesions. Contusion specimens showed an increase of Kir6.2 expression in comparison with controls. Regarding cellular location of Kir6.2, there was no expression of this channel subunit in blood vessels, either in control samples or in contusions. The expression of Kir6.2 in neurons and microglia was also analyzed, but the observed differences were not statistically significant. However, a significant increase of Kir6.2 was found in glial fibrillary acidic protein (GFAP)-positive cells in contusion specimens. Our data suggest that further research on SUR1-regulated ionic channels may lead to a better understanding of key mechanisms involved in the pathogenesis of BCs, and may identify novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Lidia Castro
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montoya Noelia
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marian Vidal-Jorge
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David Sánchez-Ortiz
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Darío Gándara
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martínez-Saez
- Department of Pathology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Cicuéndez
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria-Antonia Poca
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J. Marc Simard
- Departments of Neurosurgery, Physiology, and Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Juan Sahuquillo
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
49
|
DeWitt DS, Hawkins BE, Dixon CE, Kochanek PM, Armstead W, Bass CR, Bramlett HM, Buki A, Dietrich WD, Ferguson AR, Hall ED, Hayes RL, Hinds SR, LaPlaca MC, Long JB, Meaney DF, Mondello S, Noble-Haeusslein LJ, Poloyac SM, Prough DS, Robertson CS, Saatman KE, Shultz SR, Shear DA, Smith DH, Valadka AB, VandeVord P, Zhang L. Pre-Clinical Testing of Therapies for Traumatic Brain Injury. J Neurotrauma 2018; 35:2737-2754. [PMID: 29756522 PMCID: PMC8349722 DOI: 10.1089/neu.2018.5778] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the large number of promising neuroprotective agents identified in experimental traumatic brain injury (TBI) studies, none has yet shown meaningful improvements in long-term outcome in clinical trials. To develop recommendations and guidelines for pre-clinical testing of pharmacological or biological therapies for TBI, the Moody Project for Translational Traumatic Brain Injury Research hosted a symposium attended by investigators with extensive experience in pre-clinical TBI testing. The symposium participants discussed issues related to pre-clinical TBI testing including experimental models, therapy and outcome selection, study design, data analysis, and dissemination. Consensus recommendations included the creation of a manual of standard operating procedures with sufficiently detailed descriptions of modeling and outcome measurement procedures to permit replication. The importance of the selection of clinically relevant outcome variables, especially related to behavior testing, was noted. Considering the heterogeneous nature of human TBI, evidence of therapeutic efficacy in multiple, diverse (e.g., diffuse vs. focused) rodent models and a species with a gyrencephalic brain prior to clinical testing was encouraged. Basing drug doses, times, and routes of administration on pharmacokinetic and pharmacodynamic data in the test species was recommended. Symposium participants agreed that the publication of negative results would reduce costly and unnecessary duplication of unsuccessful experiments. Although some of the recommendations are more relevant to multi-center, multi-investigator collaborations, most are applicable to pre-clinical therapy testing in general. The goal of these consensus guidelines is to increase the likelihood that therapies that improve outcomes in pre-clinical studies will also improve outcomes in TBI patients.
Collapse
Affiliation(s)
- Douglas S. DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Bridget E. Hawkins
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - C. Edward Dixon
- Department of Neurological Surgery, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - William Armstead
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cameron R. Bass
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Helen M. Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miami, Florida
| | - Andras Buki
- Department of Neurosurgery, Medical University of Pécs, Pécs, Hungary
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Adam R. Ferguson
- Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco (UCSF), San Francisco, California
| | - Edward D. Hall
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky Medical Center, Lexington, Kentucky
| | - Ronald L. Hayes
- University of Florida, Virginia Commonwealth University, Banyan Biomarkers, Inc., Alachua, Florida
| | - Sidney R. Hinds
- United States Army Medical Research and Materiel Command, Fort Detrick, Maryland
| | | | - Joseph B. Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stefania Mondello
- Department of Neurosciences, University of Messina, Via Consolare Valeria, Messina, Italy
| | - Linda J. Noble-Haeusslein
- Departments of Neurology and Psychology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Samuel M. Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | | | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky
| | - Sandy R. Shultz
- Department of Medicine, Melbourne Brain Center, The University of Melbourne, Parkville, Victoria, Australia
| | - Deborah A. Shear
- Brain Trauma Neuroprotection Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alex B. Valadka
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pamela VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Liying Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| |
Collapse
|
50
|
Jha RM, Kochanek PM. A Precision Medicine Approach to Cerebral Edema and Intracranial Hypertension after Severe Traumatic Brain Injury: Quo Vadis? Curr Neurol Neurosci Rep 2018; 18:105. [PMID: 30406315 PMCID: PMC6589108 DOI: 10.1007/s11910-018-0912-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Standard clinical protocols for treating cerebral edema and intracranial hypertension after severe TBI have remained remarkably similar over decades. Cerebral edema and intracranial hypertension are treated interchangeably when in fact intracranial pressure (ICP) is a proxy for cerebral edema but also other processes such as extent of mass lesions, hydrocephalus, or cerebral blood volume. A complex interplay of multiple molecular mechanisms results in cerebral edema after severe TBI, and these are not measured or targeted by current clinically available tools. Addressing these underpinnings may be key to preventing or treating cerebral edema and improving outcome after severe TBI. RECENT FINDINGS This review begins by outlining basic principles underlying the relationship between edema and ICP including the Monro-Kellie doctrine and concepts of intracranial compliance/elastance. There is a subsequent brief discussion of current guidelines for ICP monitoring/management. We then focus most of the review on an evolving precision medicine approach towards cerebral edema and intracranial hypertension after TBI. Personalization of invasive neuromonitoring parameters including ICP waveform analysis, pulse amplitude, pressure reactivity, and longitudinal trajectories are presented. This is followed by a discussion of cerebral edema subtypes (continuum of ionic/cytotoxic/vasogenic edema and progressive secondary hemorrhage). Mechanisms of potential molecular contributors to cerebral edema after TBI are reviewed. For each target, we present findings from preclinical models, and evaluate their clinical utility as biomarkers and therapeutic targets for cerebral edema reduction. This selection represents promising candidates with evidence from different research groups, overlap/inter-relatedness with other pathways, and clinical/translational potential. We outline an evolving precision medicine and translational approach towards cerebral edema and intracranial hypertension after severe TBI.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA.
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Children's Hospital of Pittsburgh John G. Rangos Research Center, 6th Floor 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| |
Collapse
|