1
|
Ishikita H, Saito K. Photosystem II: Probing Protons and Breaking Barriers. Biochemistry 2025. [PMID: 40193597 DOI: 10.1021/acs.biochem.5c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Photosystem II (PSII) is a multisubunit protein-pigment complex that drives the oxidation of water, producing molecular oxygen essential for life. At the core of PSII, the oxygen-evolving complex (OEC) facilitates sequential four-electron oxidation steps following the Kok cycle. Despite significant progress in structural and spectroscopic studies, fundamental questions remain regarding the precise mechanisms of substrate water incorporation, deprotonation pathways, and oxygen-oxygen bond formation. A key challenge is determining the protonation states of water ligands and oxo bridges in the OEC, as incorrect assignments can eventually lead to misinterpretation of reaction energetics and mechanisms. This Review examines recent structural, spectroscopic, and theoretical studies, with a particular focus on proton transfer pathways and the role of key residues in regulating OEC deprotonation, emphasizing the importance of systematically establishing protonation states at lower S-states before modeling higher oxidation states. By integrating structural data with fundamental chemical principles, we outline essential considerations for constructing a physically meaningful and mechanistically coherent model of water oxidation in PSII.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
2
|
Yamasaki H, Itoh RD, Mizumoto KB, Yoshida YS, Otaki JM, Cohen MF. Spatiotemporal Characteristics Determining the Multifaceted Nature of Reactive Oxygen, Nitrogen, and Sulfur Species in Relation to Proton Homeostasis. Antioxid Redox Signal 2025; 42:421-441. [PMID: 38407968 DOI: 10.1089/ars.2023.0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Significance: Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) act as signaling molecules, regulating gene expression, enzyme activity, and physiological responses. However, excessive amounts of these molecular species can lead to deleterious effects, causing cellular damage and death. This dual nature of ROS, RNS, and RSS presents an intriguing conundrum that calls for a new paradigm. Recent Advances: Recent advancements in the study of photosynthesis have offered significant insights at the molecular level and with high temporal resolution into how the photosystem II oxygen-evolving complex manages to prevent harmful ROS production during the water-splitting process. These findings suggest that a dynamic spatiotemporal arrangement of redox reactions, coupled with strict regulation of proton transfer, is crucial for minimizing unnecessary ROS formation. Critical Issues: To better understand the multifaceted nature of these reactive molecular species in biology, it is worth considering a more holistic view that combines ecological and evolutionary perspectives on ROS, RNS, and RSS. By integrating spatiotemporal perspectives into global, cellular, and biochemical events, we discuss local pH or proton availability as a critical determinant associated with the generation and action of ROS, RNS, and RSS in biological systems. Future Directions: The concept of localized proton availability will not only help explain the multifaceted nature of these ubiquitous simple molecules in diverse systems but also provide a basis for new therapeutic strategies to manage and manipulate these reactive species in neural disorders, pathogenic diseases, and antiaging efforts.
Collapse
Affiliation(s)
- Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Ryuuichi D Itoh
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | | | - Yuki S Yoshida
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Joji M Otaki
- Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Michael F Cohen
- University of California Cooperative Extension, Santa Clara County, San Jose, California, USA
| |
Collapse
|
3
|
Zhang Y, Zheng Q, Warshel A, Bai C. Key Interaction Changes Determine the Activation Process of Human Parathyroid Hormone Type 1 Receptor. J Am Chem Soc 2025; 147:3539-3552. [PMID: 39804793 DOI: 10.1021/jacs.4c15025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The parathyroid hormone type 1 receptor (PTH1R) plays a crucial role in modulating various physiological functions and is considered an effective therapeutic target for osteoporosis. However, a lack of detailed molecular and energetic information about PTH1R limits our comprehensive understanding of its activation process. In this study, we performed computational simulations to explore key events in the activation process, such as conformational changes in PTH1R, Gs protein coupling, and the release of guanosine diphosphate (GDP). Our analysis identified kinetic information, including the rate-determining step, transition state, and energy barriers. Free-energy and structural analyses revealed that GDP could be released from the Gs protein when the binding cavity is partially open. Additionally, we predicted important residues, including potential pathogenic mutations, and verified their significance through site-directed mutations. These findings enhance our understanding of class B GPCR activation mechanisms. Furthermore, the methodology employed in this study can be applied to other biophysical systems.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130012, China
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Qingchuan Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Chenzhu (MoMeD) Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
4
|
Torres-Boy AY, Taccone MI, Ober K, Osenton MBT, Meijer G, von Helden G, Martínez-Haya B. Spectroscopic investigation of proton bonding at sub-kelvin temperatures. Phys Chem Chem Phys 2025; 27:1990-2000. [PMID: 39749536 DOI: 10.1039/d4cp04058a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The proton bond is a pivotal chemical motif in many areas of science and technology. Its quantum chemical description is remarkably challenged by nuclear and charge delocalization effects and the fluxional perturbation that it induces on molecular substrates. This work seeks insights into proton bonding at sub-kelvin temperatures. In this way, intrinsic features of the proton bond are exposed, essentially free from thermal fluctuations of the molecular frame. To this end, a proton is bound within the molecular ring cavity provided by the 12-crown-4 ether. The resulting ion is isolated in a He-droplet at ∼0.4 K, where it is interrogated by infrared laser spectroscopy. The recorded spectrum features narrow vibrational bands, consistent with a robust proton bond bridging ether sites across the cavity of the essentially frozen crown ether. The potential energy surface sustaining the proton bond is broad and markedly anharmonic. In consequence, common modeling methods within the harmonic approximation fail to capture the observed band positions, whose accurate description seems to be even beyond perturbative anharmonic approaches. Calculations show that at elevated temperatures, the crown ether backbone is highly fluxional and that the distance between the oxygen atoms fluctuates in time, modulating the potential that the proton or deuteron is exposed to, and yielding dynamic inhomogeneous broadening and blue shifts with respect to the cryogenic spectra. These observations call for novel computational developments, for which the vibrational signatures outlined in this work should provide a valuable benchmark.
Collapse
Affiliation(s)
| | - Martín I Taccone
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany.
| | - Katja Ober
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany.
| | - Myles B T Osenton
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany.
| | - Gerard Meijer
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany.
| | - Gert von Helden
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany.
| | - Bruno Martínez-Haya
- Center for Nanoscience and Sustainable Technologies (CNATS), Universidad Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
5
|
Wu Y, Xie L, Jiang Y, He A, Li D, Yang L, Xu Y, Liu K, Ozaki Y, Noda I. Further exploration of the physicochemical nature of μ 2-bridge-relevant deprotonations via the elucidation of four kinds of alditol complexes. Phys Chem Chem Phys 2025; 27:1503-1514. [PMID: 39704137 DOI: 10.1039/d4cp03612c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Single-crystal structures of four alditol complexes are presented. In LuCl3/galactitol and ScCl3/myo-inositol complexes, μ2-bridge-relevant deprotonations were observed. The polarization from two rare earth ions in the μ2-bridge activates the chemically inert OH and promotes deprotonation. Additionally, mass spectrometry, pH experiments, and quantum chemistry calculations were conducted to enhance our understanding of the μ2-bridge-relevant deprotonations. A common structural feature of the complexes where μ2-bridge-relevant deprotonation takes place is that two metal ions and two oxygen atoms in two μ2-bridges form an M2O2 cluster. The four atoms in the M2O2 cluster make up a parallelogram. Such a structure is useful to balance the strong coulombic repulsions between two M3+ and between two O-. In the ScCl3/myo-inositol complex, the deprotonation exhibits a characteristic of regional/chiral selectivity. Galactitol is a third alditol ligand where μ2-bridge-relevant deprotonation is observed. The flexible backbone of the galactitol allows the formation of more five-membered chelating rings and six-membered chelating rings, which are used to stabilize the rare earth ions of the μ2-bridge. The coordination makes the backbone of galactitol deviate from the zigzag conformation. The above results are helpful in the rational design of high-performance catalysts.
Collapse
Affiliation(s)
- Yi Wu
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- School of Biology and Medicine, Beijing City University, Beijing 100094, China.
| | - Linchen Xie
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ye Jiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Da Li
- School of Biology and Medicine, Beijing City University, Beijing 100094, China.
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Kexin Liu
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
6
|
Lasham J, Djurabekova A, Kolypetris G, Zickermann V, Vonck J, Sharma V. Assessment of amino acid charge states based on cryo-electron microscopy and molecular dynamics simulations of respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149512. [PMID: 39326541 DOI: 10.1016/j.bbabio.2024.149512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The charge states of titratable amino acid residues play a key role in the function of membrane-bound bioenergetic proteins. However, determination of these charge states both through experimental and computational approaches is extremely challenging. Cryo-EM density maps can provide insights on the charge states of titratable amino acid residues. By performing classical atomistic molecular dynamics simulations on the high resolution cryo-EM structures of respiratory complex I from Yarrowia lipolytica, we analyze the conformational and charge states of a key acidic residue in its ND1 subunit, aspartic acid D203, which is also a mitochondrial disease mutation locus. We suggest that in the native state of respiratory complex I, D203 is negatively charged and maintains a stable hydrogen bond to a conserved arginine residue. Alternatively, upon conformational change in the turnover state of the enzyme, its sidechain attains a charge-neutral status. We discuss the implications of this analysis on the molecular mechanism of respiratory complex I.
Collapse
Affiliation(s)
- Jonathan Lasham
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland.
| | - Amina Djurabekova
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | | | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland; HiLIFE Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
7
|
Sugimoto T, Katayama K, Kandori H. FTIR study of light-induced proton transfer and Ca 2+ binding in T82D mutant of TAT rhodopsin. Biophys J 2024; 123:4245-4255. [PMID: 39118325 DOI: 10.1016/j.bpj.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Proton transfer reactions play important functional roles in many proteins, such as enzymes and transporters, which is also the case in rhodopsins. In fact, functional expression of rhodopsins accompanies intramolecular proton transfer reactions in many cases. One of the exceptional cases can be seen in the protonated form of marine bacterial TAT rhodopsin, which isomerizes the retinal by light but returns to the original state within 10-5 s. Thus, light energy is converted into heat without any function. In contrast, the T82D mutant of TAT rhodopsin conducts the light-induced deprotonation of the Schiff base at high pH. In this article, we report the structural analysis of T82D by means of difference Fourier transform infrared (FTIR) spectroscopy. In the light-induced difference FTIR spectra at 77 K, we observed little hydrogen out-of-plane vibrations for T82D as well as the wild-type (WT), suggesting that the planar chromophore structure itself is not the origin of the reversion from the K intermediate in WT TAT rhodopsin. Upon relaxation of the K intermediate, T82D forms the following intermediate, such as M, whereas K of WT returns to the original state. Present FTIR analysis revealed the proton transfer from the Schiff base to D82 in T82D upon formation of the M intermediate. It is accompanied by the second proton transfer from E54 to the Schiff base, forming the N intermediate, particularly in membranes. The equilibrium between the M and N intermediates corresponds to the protonation equilibrium between E54 and the Schiff base. We also found that Ca2+ binding takes place in T82D as well as WT but with 6 times lower affinity. An altered hydrogen-bonding network would be the origin of low affinity in T82D, where deprotonation of E54 is involved in the Ca2+ binding.
Collapse
Affiliation(s)
- Teppei Sugimoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Kota Katayama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan.
| |
Collapse
|
8
|
Sinha A, Sen S, Singh T, Ghosh A, Saha S, Bandyopadhyay K, Dey A, Banerjee S, Gangopadhyay J. Diverse Self-Assembled Molecular Architectures Promoted by C-H···O and C-H···Cl Hydrogen Bonds in a Triad of α-Diketone, α-Ketoimine, and an Imidorhenium Complex: A Unified Analysis Based on XRD, NEDA, SAPT, QTAIM, and IBSI Studies. ACS OMEGA 2024; 9:45518-45536. [PMID: 39554419 PMCID: PMC11561771 DOI: 10.1021/acsomega.4c07702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
X-ray structural elucidation, supramolecular self-assembly, and energetics of existential noncovalent interactions for a triad comprising α-diketone, α-ketoimine, and an imidorhenium complex are highlighted in this report. Molecular packing reveals a self-assembled 2D network stabilized by the C-H···O H-bonds for the α-diketone (benzil), and the first structural report of Brown and Sadanaga stressing on the prevalence of only the van der Waals forces seems to be an oversimplified conjecture. In the α-ketoimine, the imine nitrogen atom undergoes intramolecular N···H interaction to render itself inert toward intermolecular C-H···N interaction and exhibits two types of C-H···O H-bonds in consequence to generate a self-assembled 2D molecular architecture. The imidorhenium complex features a self-aggregated 3D packing engendered by the interplay of C-H···Cl H-bonds along with the ancillary C-H···π, C···C, and C···Cl contacts. To the best of our knowledge, in rhenium chemistry, this imidorhenium complex unravels the first example of self-associated 3D molecular packing constructed by the directional hydrogen bonds of C-H···Cl type. The presence of characteristic supramolecular synthons, viz., R2 2(12), R2 2(16), and R2 2(14), in the α-diketone, α-ketoimine, and imidorhenium complex, respectively, has prompted us to delve into the energetics of noncovalent interactions. Symmetry-adapted perturbation theory analysis has authenticated a stability order: R2 2(14) > R2 2(12) > R2 2(16) based on the interaction energy values of -25.97, -9.93, and -4.98 kcal/mol, respectively. The respective average contributions of the long-range dispersion, electrostatic, and induction forces are 58.5, 32.8, and 8.7%, respectively, for the intermolecular C-H···O interactions. The C-H···Cl interactions experience comparable contribution from the dispersion force (57.9% on average), although the electrostatic and induction forces contribute much less, 28.0 and 14.1%, respectively, on average. The natural energy decomposition analysis has further attested that the short-range, interfragment charge transfer occurring via the lp(O/Cl) → σ*(C-H) routes contributes 17-25% of the total attractive force for the C-H···O and C-H···Cl interactions. Quantum theory of atoms in molecules analysis unfolds a first-order exponential decay relation (y = 8.1043e -x/0.4095) between the electron density at the bond critical point and the distance of noncovalent interactions. The distances of noncovalent interactions in the lattices are internally governed by the individual packing patterns rather than the chemical nature of the H-bond donors and acceptors. Intrinsic bond strength index analysis shows promise to correlate the electron density at BCP with the SAPT-derived interaction energy for the noncovalent interactions. Two factors: (i) nearly half the HOMO-LUMO energy difference for the imidorhenium complex (∼30 kcal/mol) compared to the organics, and (ii) ∼60% localization of HOMO over the mer-ReCl3 moiety clearly indicate an enhanced polarizability of the complex facilitating the growth of weak C-H···Cl H-bonds.
Collapse
Affiliation(s)
- Ankita Sinha
- Department
of Chemistry, St. Paul’s Cathedral
Mission College, University of Calcutta, 33/1 Raja Rammohan Roy Sarani, Kolkata 700009, India
| | - Suphal Sen
- School
of Applied Material Sciences, Central University
of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Tejender Singh
- Tata
Institute of Fundamental Research, Hyderabad 500046, India
| | - Aniruddha Ghosh
- Department
of Chemistry, St. Paul’s Cathedral
Mission College, University of Calcutta, 33/1 Raja Rammohan Roy Sarani, Kolkata 700009, India
| | - Satyen Saha
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Krishanu Bandyopadhyay
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Arindam Dey
- Department
of Chemistry, Scottish Church College, University
of Calcutta, 1 &
3 Urquhart Street, Kolkata 700006, India
| | - Suparna Banerjee
- Department
of Chemistry, Uluberia College, University
of Calcutta, Howrah 711315, India
| | - Jaydip Gangopadhyay
- Department
of Chemistry, St. Paul’s Cathedral
Mission College, University of Calcutta, 33/1 Raja Rammohan Roy Sarani, Kolkata 700009, India
| |
Collapse
|
9
|
Loe CM, Chatterjee S, Weakly RB, Khalil M. Observing vibronic coupling in a strongly hydrogen bonded system with coherent multidimensional vibrational-electronic spectroscopy. J Chem Phys 2024; 161:174203. [PMID: 39494798 DOI: 10.1063/5.0226236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
The coupled structural and electronic parameters of intramolecular hydrogen bonding play an important role in ultrafast chemical reactions, such as proton transfer processes. We perform one- and two-dimensional vibrational-electronic (1D and 2D VE) spectroscopy experiments to understand the couplings between vibrational and electronic coordinates in 10-Hydroxybenzo[h]quinoline, an ultrafast proton transfer system. The experiments reveal that the OH stretch (νOH) is strongly coupled to the electronic excitation, and Fourier analysis of the 1D data shows coherent oscillations from the low frequency backbone vibrational modes coupled to the νOH mode, resulting in an electronically detected vibronic signal. In-plane low-frequency vibrations at 242 and 386 cm-1 change the hydrogen bond distance and modulate the observed electronic signal in the polarization-selective 1D VE experiment through orientation-dependent coupling with the νOH mode. Resolution of the excitation frequency axis with 2D VE experiments reveals that excitation frequency, detection frequency, and experimental delay affect the frequency and strength of the vibronic transitions observed. Our results demonstrate evidence of direct coupling of the high frequency νOH mode with the S1 ← S0 electronic transition in 10-Hydroxybenzo[h]quinoline (HBQ), and orientation-dependent couplings of the low-frequency 242 and 386 cm-1 modes to the νOH mode and the electronic transition. This demonstration of multidimensional VE spectroscopy on HBQ reveals the potential of using 1D and 2D VE spectroscopy to develop a quantitative understanding of the role of vibronic coupling in hydrogen bonding and ultrafast proton transfer for complex systems.
Collapse
Affiliation(s)
- Caroline M Loe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Srijan Chatterjee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Robert B Weakly
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
10
|
Agogo-Mawuli PS, Mendez J, Oestreich EA, Bosch DE, Siderovski DP. Molecular Modeling and In Vitro Functional Analysis of the RGS12 PDZ Domain Variant Associated with High-Penetrance Familial Bipolar Disorder. Int J Mol Sci 2024; 25:11431. [PMID: 39518985 PMCID: PMC11546610 DOI: 10.3390/ijms252111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Bipolar disorder's etiology involves genetics, environmental factors, and gene-environment interactions, underlying its heterogeneous nature and treatment complexity. In 2020, Forstner and colleagues catalogued 378 sequence variants co-segregating with familial bipolar disorder. A notable candidate was an R59Q missense mutation in the PDZ (PSD-95/Dlg1/ZO-1) domain of RGS12. We previously demonstrated that RGS12 loss removes negative regulation on the kappa opioid receptor, disrupting basal ganglia dopamine homeostasis and dampening responses to dopamine-eliciting psychostimulants. Here, we investigated the R59Q variation in the context of potential PDZ domain functional alterations. We first validated a new target for the wildtype RGS12 PDZ domain-the SAPAP3 C-terminus-by molecular docking, surface plasmon resonance (SPR), and co-immunoprecipitation. While initial molecular dynamics (MD) studies predicted negligible effects of the R59Q variation on ligand binding, SPR showed a significant reduction in binding affinity for the three peptide targets tested. AlphaFold2-generated models predicted a modest reduction in protein-peptide interactions, which is consistent with the reduced binding affinity observed by SPR, suggesting that the substituted glutamine side chain may weaken the affinity of RGS12 for its in vivo binding targets, likely through allosteric changes. This difference may adversely affect the CNS signaling related to dynorphin and dopamine in individuals with this R59Q variation, potentially impacting bipolar disorder pathophysiology.
Collapse
Affiliation(s)
- Percy S. Agogo-Mawuli
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (P.S.A.-M.)
| | - Joseph Mendez
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (P.S.A.-M.)
| | - Emily A. Oestreich
- Department of Biomedical Sciences, Pacific Northwest University of Health Sciences, Yakima, WA 98901, USA
| | - Dustin E. Bosch
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David P. Siderovski
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (P.S.A.-M.)
| |
Collapse
|
11
|
Parra RD. Cooperativity and halonium transfer in the ternary NCI···CH 3I··· -CN halogen-bonded complex: An ab initio gas phase study. J Mol Model 2024; 30:363. [PMID: 39361054 DOI: 10.1007/s00894-024-06160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/14/2024]
Abstract
CONTEXT The strength and nature of the two halogen bonds in the NCI···CH3I···-CN halogen-bonded ternary complex are studied in the gas phase via ab initio calculations. Different indicators of halogen bond strength were employed to examine the interactions including geometries, complexation energies, Natural Bond Order (NBO) Wiberg bond indices, and Atoms in Molecules (AIM)-based charge density topological properties. The results show that the halogen bond is strong and partly covalent in nature when CH3I donates the halogen bond, but weak and noncovalent in nature when CH3I accepts the halogen bond. Significant halogen bond cooperativity emerges in the ternary complex relative to the corresponding heterodimer complexes, NCI···CH3I and CH3I···-CN, respectively. For example, the CCSD(T) complexation energy of the ternary complex (-18.27 kcal/mol) is about twice the sum of the complexation energies of the component dimers (-9.54 kcal/mol). The halonium transfer reaction that converts the ternary complex into an equivalent one was also investigated. The electronic barrier for the halonium transfer was calculated to be 6.70 kcal/mol at the CCSD(T) level. Although the MP2 level underestimates and the MP3 overestimates the barrier, their calculated MP2.5 average barrier (6.44 kcal/mol) is close to that of the more robust CCSD(T) level. Insights on the halonium ion transfer reaction was obtained by examining the reaction energy and force profiles along the intrinsic reaction coordinate, IRC. The corresponding evolution of other properties such as bond lengths, Wiberg bond indices, and Mulliken charges provides specific insight on the extent of structural rearrangements and electronic redistribution throughout the entire IRC space. METHODS The MP2 method was used for geometry optimizations. Energy calculations were performed using the CCSD(T) method. The aug-cc-pVTZ basis set was employed for all atoms other than iodine for which the aug-cc-pVTZ-PP basis set was used instead.
Collapse
Affiliation(s)
- Rubén D Parra
- Department of Chemistry and Biochemistry, DePaul University, Chicago, IL, 60614, USA.
| |
Collapse
|
12
|
Yokoyama T, Takayama Y, Mizuguchi M, Nabeshima Y, Kusaka K. SIRT5 mutants reveal the role of conserved asparagine and glutamine residues in the NAD +-binding pocket. FEBS Lett 2024; 598:2269-2280. [PMID: 39031546 DOI: 10.1002/1873-3468.14961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/22/2024]
Abstract
SIRT5, one of the mammalian sirtuins, specifically recognizes succinyl-lysine residues on proteins and catalyzes the desuccinylation reaction. In this study, we characterized SIRT5 mutants with hydrophobic amino acid substitutions at Q140 and N141, in addition to the catalytic residue H158, known as an active site residue, by the Michaelis-Menten analysis and X-ray crystallography. Kinetic analysis showed that the catalytic efficiency (kcat/Km) of the Q140L and N141V mutants decreased to 0.02 times and 0.0038 times that of the wild-type SIRT5, respectively, with the activity of the N141V mutant becoming comparable to that of the H158M mutant. Our findings indicate that N141 contributes significantly to the desuccinylation reaction.
Collapse
Affiliation(s)
| | - Yuki Takayama
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | | | - Yuko Nabeshima
- Faculty of Pharmaceutical Sciences, University of Toyama, Japan
| | - Katsuhiro Kusaka
- Comprehensive Research Organization for Science and Society (CROSS), Neutron Industrial Application Promotion Center, Tokai, Japan
| |
Collapse
|
13
|
Bautista-Renedo J, Ireta J. Spurious proton transfer in hydrogen bonded dimers. Phys Chem Chem Phys 2024; 26:21468-21475. [PMID: 39081021 DOI: 10.1039/d4cp00907j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In some hydrogen bonded systems, the proton may translocate along the hydrogen bond (hb) upon geometry optimization with electronic structure methods like density functional theory (DFT). Such proton transfer (pt) events, however, may be spurious. In this work, spurious pt events are investigated in a set of hydrogen bonded dimers formed with molecules HXN, where X stands for C, Si, Ge and Sn. It is found that standard approximations to the electronic exchange and correlation (xc) functional either predict spurious pt events or too strong hbs in all the (HXN)2 dimers except the (HCN)2 one. The latter result is revealed by comparing DFT calculations against wave function methods. Such spurious pt events may be avoided by fine-tuning the percentage of exact exchange (ex) in hybrid xc-functionals. It is shown that the minimum amount of ex to avoid a spurious pt event ranged from 8% to 90%, depending on the system, basis set and xc-functional approximation used. However, these fine-tuned xc-functionals inadequately describe the hb in the (HXN)2 dimers. Moreover, it is determined that the spurious pt event originates from a wrong description of the isolated HXN molecules by xc-functionals that do not include ex or a small amount of it. Therefore, it is argued that one can determine if a pt event is spurious by analyzing the geometry and electronic structure of the isolated molecule.
Collapse
Affiliation(s)
- Joanatan Bautista-Renedo
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico.
| | - Joel Ireta
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México 09340, Mexico.
| |
Collapse
|
14
|
Noji T, Chiba Y, Saito K, Ishikita H. Energetics of the H-Bond Network in Exiguobacterium sibiricum Rhodopsin. Biochemistry 2024; 63:1505-1512. [PMID: 38745402 PMCID: PMC11155677 DOI: 10.1021/acs.biochem.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Exiguobacterium sibiricum rhodopsin (ESR) functions as a light-driven proton pump utilizing Lys96 for proton uptake and maintaining its activity over a wide pH range. Using a combination of methodologies including the linear Poisson-Boltzmann equation and a quantum mechanical/molecular mechanical approach with a polarizable continuum model, we explore the microscopic mechanisms underlying its pumping activity. Lys96, the primary proton uptake site, remains deprotonated owing to the loss of solvation in the ESR protein environment. Asp85, serving as a proton acceptor group for Lys96, does not form a low-barrier H-bond with His57. Instead, deprotonated Asp85 forms a salt-bridge with protonated His57, and the proton is predominantly located at the His57 moiety. Glu214, the only acidic residue at the end of the H-bond network exhibits a pKa value of ∼6, slightly elevated due to solvation loss. It seems likely that the H-bond network [Asp85···His57···H2O···Glu214] serves as a proton-conducting pathway toward the protein bulk surface.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Yoshihiro Chiba
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
15
|
Saito K, Chen Y, Ishikita H. Exploring the Deprotonation Process during Incorporation of a Ligand Water Molecule at the Dangling Mn Site in Photosystem II. J Phys Chem B 2024; 128:4728-4734. [PMID: 38693711 PMCID: PMC11104351 DOI: 10.1021/acs.jpcb.4c01997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
The Mn4CaO5 cluster, featuring four ligand water molecules (W1 to W4), serves as the water-splitting site in photosystem II (PSII). X-ray free electron laser (XFEL) structures exhibit an additional oxygen site (O6) adjacent to the O5 site in the fourth lowest oxidation state, S3, forming Mn4CaO6. Here, we investigate the mechanism of the second water ligand molecule at the dangling Mn (W2) as a potential incorporating species, using a quantum mechanical/molecular mechanical (QM/MM) approach. Previous QM/MM calculations demonstrated that W1 releases two protons through a low-barrier H-bond toward D1-Asp61 and subsequently releases an electron during the S2 to S3 transition, resulting in O•- at W1 and protonated D1-Asp61. During the process of Mn4CaO6 formation, O•-, rather than H2O or OH-, best reproduced the O5···O6 distance. Although the catalytic cluster with O•- at O6 is more stable than that with O•- at W1 in S3, it does not occur spontaneously due to the significantly uphill deprotonation process. Assuming O•- at W2 incorporates into the O6 site, an exergonic conversion from Mn1(III)Mn2(IV)Mn3(IV)Mn4(IV) (equivalent to the open-cubane S2 valence state) to Mn1(IV)Mn2(IV)Mn3(IV)Mn4(III) (equivalent to the closed-cubane S2 valence state) occurs. These findings provide energetic insights into the deprotonation and structural conversion events required for the Mn4CaO6 formation.
Collapse
Affiliation(s)
- Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Yang Chen
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
16
|
Van Lijsebetten F, Maes S, Winne JM, Du Prez FE. Thermoswitchable catalysis to inhibit and promote plastic flow in vitrimers. Chem Sci 2024; 15:7061-7071. [PMID: 38756803 PMCID: PMC11095380 DOI: 10.1039/d4sc00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 05/18/2024] Open
Abstract
Acid-base catalysis is a common strategy to induce covalent bond exchanges in dynamic polymer networks. Strong acids or strong bases can promote rapid network rearrangements, and are simultaneously preferred catalysts for chemical reactions where maximum efficiency at the lowest possible temperature is aimed for. However, within the context of dynamic polymer networks, the incorporation of highly active catalysts can negatively affect the longer term application potential. Network dynamicity can diminish through catalyst ageing or quenching and highly active catalysts may prematurely activate bond exchanges, leading to dimensional instability and thus low creep resistance of the polymer networks. Herein, we present several examples where we explicitly explored weak acids (carboxylic acids) as catalysts for dynamic bond exchanges, using vinylogous urethanes (VU) as a well-understood protic acid catalysed vitrimer chemistry. Surprisingly, we have found that the sought-after long-term stability offered by a weak acid does not necessarily bring lower activity at high temperature. In fact, the weak acids show a remarkable thermoswitchable catalytic behaviour, going from an inactive hydrogen bonded state to an active state where the polymer matrix is protonated, with a profound impact on the network reactivity and rheology. Carboxylic acids with different electronic or steric environments show clear reactivity trends and their fine-tuning resulted in the most thermally responsive VU vitrimers studied to date. Our findings point out that catalyst choice and design for vitrimers is only poorly informed by catalyst performance in more traditional chemical reactions (in solvent), and that a more tailored catalyst design holds great promise for the field of vitrimers.
Collapse
Affiliation(s)
- Filip Van Lijsebetten
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Departement of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Stephan Maes
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Departement of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Johan M Winne
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Departement of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Departement of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281-S4 Ghent 9000 Belgium
| |
Collapse
|
17
|
Lasham J, Djurabekova A, Zickermann V, Vonck J, Sharma V. Role of Protonation States in the Stability of Molecular Dynamics Simulations of High-Resolution Membrane Protein Structures. J Phys Chem B 2024; 128:2304-2316. [PMID: 38430110 PMCID: PMC11389979 DOI: 10.1021/acs.jpcb.3c07421] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Classical molecular dynamics (MD) simulations provide unmatched spatial and time resolution of protein structure and function. However, the accuracy of MD simulations often depends on the quality of force field parameters and the time scale of sampling. Another limitation of conventional MD simulations is that the protonation states of titratable amino acid residues remain fixed during simulations, even though protonation state changes coupled to conformational dynamics are central to protein function. Due to the uncertainty in selecting protonation states, classical MD simulations are sometimes performed with all amino acids modeled in their standard charged states at pH 7. Here, we performed and analyzed classical MD simulations on high-resolution cryo-EM structures of two large membrane proteins that transfer protons by catalyzing protonation/deprotonation reactions. In simulations performed with titratable amino acids modeled in their standard protonation (charged) states, the structure diverges far from its starting conformation. In comparison, MD simulations performed with predetermined protonation states of amino acid residues reproduce the structural conformation, protein hydration, and protein-water and protein-protein interactions of the structure much better. The results support the notion that it is crucial to perform basic protonation state calculations, especially on structures where protonation changes play an important functional role, prior to the launch of any conventional MD simulations. Furthermore, the combined approach of fast protonation state prediction and MD simulations can provide valuable information about the charge states of amino acids in the cryo-EM sample. Even though accurate prediction of protonation states in proteinaceous environments currently remains a challenge, we introduce an approach of combining pKa prediction with cryo-EM density map analysis that helps in improving not only the protonation state predictions but also the atomic modeling of density data.
Collapse
Affiliation(s)
- Jonathan Lasham
- Department
of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Amina Djurabekova
- Department
of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Volker Zickermann
- Institute
of Biochemistry II, University Hospital,
Goethe University, 60590 Frankfurt am Main, Germany
- Centre
for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department
of Structural Biology, Max Planck Institute
of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vivek Sharma
- Department
of Physics, University of Helsinki, 00014 Helsinki, Finland
- HiLIFE
Institute of Biotechnology, University of
Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
18
|
Kang XW, Wang K, Zhang X, Zhong D, Ding B. Elementary Reactions in the Functional Triads of the Blue-Light Photoreceptor BLUF Domain. J Phys Chem B 2024; 128:2065-2075. [PMID: 38391132 DOI: 10.1021/acs.jpcb.3c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The blue light using the flavin (BLUF) domain is one of the smallest photoreceptors in nature, which consists of a unique bidirectional electron-coupled proton relay process in its photoactivation reaction cycle. This perspective summarizes our recent efforts in dissecting the photocycle into three elementary processes, including proton-coupled electron transfer (PCET), proton rocking, and proton relay. Using ultrafast spectroscopy, we have determined the temporal sequence, rates, kinetic isotope effects (KIEs), and concertedness of these elementary steps. Our findings provide important implications for illuminating the photoactivation mechanism of the BLUF domain and suggest an engineering platform to characterize intricate reactions involving proton motions that are ubiquitous in nonphotosensitive protein machines.
Collapse
Affiliation(s)
- Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kailin Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofan Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Programs of Chemical Physics, and Programs of Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Wen K, Tao Y, Jiang W, Jiang L, Zhu J, Li Q. (De)carboxylation mechanisms of heteroaromatic substrates catalyzed by prenylated FMN-dependent UbiD decarboxylases: An in-silico study. Int J Biol Macromol 2024; 260:129294. [PMID: 38211929 DOI: 10.1016/j.ijbiomac.2024.129294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
The UbiD enzymes are proposed to catalyze reversible (de)carboxylation reaction of unsaturated carboxylic acids using prenylated flavin mononucleotide (prFMN) as a cofactor. This positions UbiD enzymes as promising candidates for converting CO2 into valuable chemicals. However, their industrial-scale biotransformation is currently constrained by low conversion rates attributed to thermodynamic limitations. To enhance the carboxylation activity of UbiD enzymes, a molecular-level understanding of the (de)carboxylation mechanisms is necessary. In this study, we investigated the reaction mechanisms of heteroaromatic substrates catalyzed by PtHmfF, PaHudA, and AnlnD enzymes using molecular dynamics (MD) simulations and free energy calculations. Our extensive mechanistic study elucidates the mechanisms involved in the formation of the initial prFMN-substrate intermediate. Specifically, we observed nucleophilic attack during decarboxylation, while carboxylation reactions involving furoic acid, pyrrole, and indole tend to favor a 1,3-dipolar cycloaddition mechanism. Furthermore, we identified proton transfer as the rate-limiting step in the carboxylation reaction. In addition, we considered the perspectives of reaction energies and electron transfer to understand the distinct mechanisms underlying decarboxylation and carboxylation. Our calculated free energies are consistent with available experimental kinetics data. Finally, we explored how different rotamers of catalytic residues influence the efficiency of the initial intermediate formation.
Collapse
Affiliation(s)
- Kai Wen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yu Tao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenyan Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Liyan Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jingxuan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; Center for Supramolecular Chemical Biology, Jilin University, Changchun 130012, China.
| |
Collapse
|
20
|
Słabońska J, Sappati S, Marciniak A, Czub J. Low-Barrier Hydrogen Bond Determines Target-Binding Affinity and Specificity of the Antitubercular Drug Bedaquiline. ACS Med Chem Lett 2024; 15:265-269. [PMID: 38352844 PMCID: PMC10860170 DOI: 10.1021/acsmedchemlett.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024] Open
Abstract
The role of short strong hydrogen bonds (SSHBs) in ligand-target binding remains largely unexplored, thereby hindering a potentially important avenue in rational drug design. Here we investigate the interaction between the antituberculosis drug bedaquiline (Bq) and the mycobacterial ATP synthase to unravel the role of a specific hydrogen bond to a conserved acidic residue in the target affinity and specificity. Our ab initio molecular dynamics simulations reveal that this bond belongs to the SSHB category and accounts for a substantial fraction of the target binding free energy. We also demonstrate that the presence of an extra acidic residue, i.e., aspartic acid at position 32 (D32), found exclusively in mycobacteria, cooperatively enhances the HB strength, ensuring specificity for the mycobacterial target. Consistently, we show that the removal of D32 markedly weakens the affinity, leading to Bq resistance associated with mutations of D32 to nonacidic residues. By designing simple Bq analogs, we then explore the possibility to overcome the resistance and potentially broaden the Bq antimicrobial spectrum by making the SSHB independent of the presence of the extra acidic residue.
Collapse
Affiliation(s)
- Joanna Słabońska
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
| | - Subrahmanyam Sappati
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
- BioTechMed
Center, Gdańsk University of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
| | - Antoni Marciniak
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
- Department
of Applied Physics, KTH Royal Institute
of Technology, SE-171 65 Solna, Sweden
| | - Jacek Czub
- Department
of Physical Chemistry, Gdańsk University
of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
- BioTechMed
Center, Gdańsk University of Technology, Narutowicza St 11/12, Gdańsk 80-233, Poland
| |
Collapse
|
21
|
Pathak B, Kesari S, Patwari GN. Enticing a Proton using Single Ammonia Molecule as Bait. J Phys Chem B 2024; 128:1022-1028. [PMID: 38240575 DOI: 10.1021/acs.jpcb.3c06761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In microhydrated acid-solvent clusters, deprotonation of an acid is assisted by a critical number of solvent molecules and a solvent electric field. Born-Oppenheimer molecular dynamics simulations reveal that trifluoroacetic acid undergoes spontaneous proton transfer in water clusters, with the critical number being five. Acetic acid and phenol, on the other hand, do not dissociate even in the presence of a large number of water molecules (in excess of 40). The addition of a single ammonia molecule to the water cluster, which interacts directly with the protic group, lowers the critical number of solvent water molecules required for proton transfer to three and seven in the case of acetic acid and phenol, respectively. The population of the undissociated and the proton-transferred structures get dispersed to form separate islands on the electric field versus the O-H distance representation with the cusp representing the critical values. The critical electric fields for the spontaneous proton transfer are around 254, 237, and 318 MV cm-1 for trifluoroacetic acid, acetic acid, and phenol, respectively. In the case of phenol, the free energy profiles suggest that proton transfer to the ammonia moiety embedded in water promotes proton transfer efficiently due to the higher basicity of ammonia and enhanced hydrogen bonding network of solvent water, vis-à-vis phenol-ammonia clusters.
Collapse
Affiliation(s)
- Bijaya Pathak
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shaivi Kesari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
22
|
Saito K, Nishio S, Ishikita H. Interplay of two low-barrier hydrogen bonds in long-distance proton-coupled electron transfer for water oxidation. PNAS NEXUS 2023; 2:pgad423. [PMID: 38130665 PMCID: PMC10733176 DOI: 10.1093/pnasnexus/pgad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
D1-Tyr161 (TyrZ) forms a low-barrier H-bond with D1-His190 and functions as a redox-active group in photosystem II. When oxidized to the radical form (TyrZ-O•), it accepts an electron from the oxygen-evolving Mn4CaO5 cluster, facilitating an increase in the oxidation state (Sn; n = 0-3). In this study, we investigated the mechanism of how TyrZ-O• drives proton-coupled electron transfer during the S2 to S3 transition using a quantum mechanical/molecular mechanical approach. In response to TyrZ-O• formation and subsequent loss of the low-barrier H-bond, the ligand water molecule at the Ca2+ site (W4) reorients away from TyrZ and donates an H-bond to D1-Glu189 at Mn4 of Mn4CaO5 together with an adjacent water molecule. The H-bond donation to the Mn4CaO5 cluster triggers the release of the proton from the lowest pKa site (W1 at Mn4) along the W1…D1-Asp61 low-barrier H-bond, leading to protonation of D1-Asp61. The interplay of the two low-barrier H-bonds, involving the Ca2+ interface and forming the extended Grotthuss-like network [TyrZ…D1-His190]-[Mn4CaO5]-[W1…D1-Asp61], rather than the direct electrostatic interaction, is likely a basis of the apparent long-distance interaction (11.4 Å) between TyrZ-O• formation and D1-Asp61 protonation.
Collapse
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Shunya Nishio
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
23
|
Tsujimura M, Saito K, Ishikita H. Stretching vibrational frequencies and pK a differences in H-bond networks of protein environments. Biophys J 2023; 122:4336-4347. [PMID: 37838831 PMCID: PMC10722396 DOI: 10.1016/j.bpj.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/22/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
The experimentally measured stretching vibrational frequencies of O-D [νO-D(donor)] and C=O [νC=O(donor)] H-bond donor groups can provide valuable information about the H-bonds in proteins. Here, using a quantum mechanical/molecular mechanical approach, the relationship between these vibrational frequencies and the difference in pKa values between H-bond donor and acceptor groups [ΔpKa(donor … acceptor)] in bacteriorhodopsin and photoactive yellow protein environments was investigated. The results show that νO-D(donor) is correlated with ΔpKa(donor … acceptor), regardless of the specific protein environment. νC=O(donor) is also correlated with ΔpKa(donor … acceptor), although the correlation is weak because the C=O bond does not have a proton. Importantly, the shifts in νO-D(donor) and νC=O(donor) are not caused by changes in pKa(donor) alone, but rather by changes in ΔpKa(donor … acceptor). Specifically, a decrease in ΔpKa(donor … acceptor) can lead to proton release from the H-bond donor group toward the acceptor group, resulting in shifts in the vibrational frequencies of the protein environment. These findings suggest that changes in the stretching vibrational frequencies, in particular νO-D(donor), can be used to monitor proton transfer in protein environments.
Collapse
Affiliation(s)
- Masaki Tsujimura
- Department of Advanced Interdisciplinary Studies, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
24
|
Fufina TY, Vasilieva LG. Role of hydrogen-bond networks on the donor side of photosynthetic reaction centers from purple bacteria. Biophys Rev 2023; 15:921-937. [PMID: 37974998 PMCID: PMC10643783 DOI: 10.1007/s12551-023-01109-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/01/2023] [Indexed: 11/19/2023] Open
Abstract
For the last decades, significant progress has been made in studying the biological functions of H-bond networks in membrane proteins, proton transporters, receptors, and photosynthetic reaction centers. Increasing availability of the X-ray crystal and cryo-electron microscopy structures of photosynthetic complexes resolved with high atomic resolution provides a platform for their comparative analysis. It allows identifying structural factors that are ensuring the high quantum yield of the photochemical reactions and are responsible for the stability of the membrane complexes. The H-bond networks are known to be responsible for proton transport associated with electron transfer from the primary to the secondary quinone as well as in the processes of water oxidation in photosystem II. Participation of such networks in reactions proceeding on the periplasmic side of bacterial photosynthetic reaction centers is less studied. This review summarizes the current understanding of the role of H-bond networks on the donor side of photosynthetic reaction centers from purple bacteria. It is discussed that the networks may be involved in providing close association with mobile electron carriers, in light-induced proton transport, in regulation of the redox properties of bacteriochlorophyll cofactors, and in stabilization of the membrane protein structure at the interface of membrane and soluble phases.
Collapse
Affiliation(s)
- T. Yu. Fufina
- Federal Research Center Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Str, 2, 142290 Pushchino, Russia
| | - L. G. Vasilieva
- Federal Research Center Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Str, 2, 142290 Pushchino, Russia
| |
Collapse
|
25
|
Yang X, Liu S, Yin Z, Chen M, Song J, Li P, Yang L. New insights into the proton pumping mechanism of ba 3 cytochrome c oxidase: the functions of key residues and water. Phys Chem Chem Phys 2023; 25:25105-25115. [PMID: 37461851 DOI: 10.1039/d3cp01334k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
As the terminal oxidase of cell respiration in mitochondria and aerobic bacteria, the proton pumping mechanism of ba3-type cytochrome c oxidase (CcO) of Thermus thermophiles is still not fully understood. Especially, the functions of key residues which were considered as the possible proton loading sites (PLSs) above the catalytic center, as well as water located above and within the catalytic center, remain unclear. In this work, molecular dynamic simulations were performed on a set of designed mutants of key residues (Asp287, Asp372, His376, and Glu126II). The results showed that Asp287 may not be a PLS, but it could modulate the ability of the proton transfer pathway to transfer protons through its salt bridge with Arg225. Maintaining the closed state of the water pool above the catalytic center is necessary for the participation of inside water molecules in proton transfer. Water molecules inside the water pool can form hydrogen bond chains with PLS to facilitate proton transfer. Additional quantum cluster models of the Fe-Cu metal catalytic center are established, indicating that when the proton is transferred from Tyr237, it is more likely to reach the OCu atom directly through only one water molecule. This work provides a more profound understanding of the functions of important residues and specific water molecules in the proton pumping mechanism of CcO.
Collapse
Affiliation(s)
- Xiaoyue Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Shaohui Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Zhili Yin
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Mengguo Chen
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, Illinois 60660, USA
| | - Longhua Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| |
Collapse
|
26
|
Hiromoto T, Nishikawa K, Inoue S, Ogata H, Hori Y, Kusaka K, Hirano Y, Kurihara K, Shigeta Y, Tamada T, Higuchi Y. New insights into the oxidation process from neutron and X-ray crystal structures of an O 2-sensitive [NiFe]-hydrogenase. Chem Sci 2023; 14:9306-9315. [PMID: 37712026 PMCID: PMC10498676 DOI: 10.1039/d3sc02156d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
[NiFe]-hydrogenase from Desulfovibrio vulgaris Miyazaki F is an O2-sensitive enzyme that is inactivated in the presence of O2 but the oxidized enzyme can recover its catalytic activity by reacting with H2 under anaerobic conditions. Here, we report the first neutron structure of [NiFe]-hydrogenase in its oxidized state, determined at a resolution of 2.20 Å. This resolution allowed us to reinvestigate the structure of the oxidized active site and to observe the positions of protons in several short hydrogen bonds. X-ray anomalous scattering data revealed that a part of the Ni ion is dissociated from the active site Ni-Fe complex and forms a new square-planar Ni complex, accompanied by rearrangement of the coordinated thiolate ligands. One of the thiolate Sγ atoms is oxidized to a sulfenate anion but remains attached to the Ni ion, which was evaluated by quantum chemical calculations. These results suggest that the square-planar complex can be generated by the attack of reactive oxygen species derived from O2, as distinct from one-electron oxidation leading to a conventional oxidized form of the Ni-Fe complex. Another major finding of this neutron structure analysis is that the Cys17S thiolate Sγ atom coordinating to the proximal Fe-S cluster forms an unusual hydrogen bond with the main-chain amide N atom of Gly19S with a distance of 3.25 Å, where the amide proton appears to be delocalized between the donor and acceptor atoms. This observation provides insight into the contribution of the coordinated thiolate ligands to the redox reaction of the Fe-S cluster.
Collapse
Affiliation(s)
- Takeshi Hiromoto
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage Chiba 263-8555 Japan
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Kamigori Hyogo 678-1297 Japan
| | - Koji Nishikawa
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Kamigori Hyogo 678-1297 Japan
| | - Seiya Inoue
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Kamigori Hyogo 678-1297 Japan
| | - Hideaki Ogata
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Kamigori Hyogo 678-1297 Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Katsuhiro Kusaka
- Neutron Industrial Application Promotion Center, Comprehensive Research Organization for Science and Society 162-1 Shirakata, Tokai Ibaraki 319-1106 Japan
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage Chiba 263-8555 Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Kazuo Kurihara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage Chiba 263-8555 Japan
| | - Yasuteru Shigeta
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage Chiba 263-8555 Japan
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Taro Tamada
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage Chiba 263-8555 Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Yoshiki Higuchi
- Graduate School of Science, University of Hyogo 3-2-1 Koto, Kamigori Hyogo 678-1297 Japan
| |
Collapse
|
27
|
Nakanishi T, Hori Y, Shigeta Y, Sato H, Kiyanagi R, Munakata K, Ohhara T, Okazawa A, Shimada R, Sakamoto A, Sato O. Development of an Iron(II) Complex Exhibiting Thermal- and Photoinduced Double Proton-Transfer-Coupled Spin Transition in a Short Hydrogen Bond. J Am Chem Soc 2023; 145:19177-19181. [PMID: 37623927 DOI: 10.1021/jacs.3c06323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Multiple proton transfer (PT) controllable by external stimuli plays a crucial role in fundamental chemistry, biological activity, and material science. However, in crystalline systems, controlling multiple PT, which results in a distinct protonation state, remains challenging. In this study, we developed a novel tridentate ligand and iron(II) complex with a short hydrogen bond (HB) that exhibits a PT-coupled spin transition (PCST). Single-crystal X-ray and neutron diffraction measurements revealed that the positions of the two protons in the complex can be controlled by temperature and photoirradiation based on the thermal- and photoinduced PCST. The obtained results suggest that designing molecules that form short HBs is a promising approach for developing multiple PT systems in crystals.
Collapse
Affiliation(s)
- Takumi Nakanishi
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubaracho, Akishima, Tokyo 196-8666, Japan
| | - Ryoji Kiyanagi
- J-PARC center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Koji Munakata
- J-PARC center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Takashi Ohhara
- J-PARC center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Atsushi Okazawa
- Department of Electrical Engineering and Bioscience, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Rintaro Shimada
- Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Akira Sakamoto
- Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
28
|
Gardner AM, Gardner PR. Dioxygen and glucose force motion of the electron-transfer switch in the iron(III) flavohemoglobin-type nitric oxide dioxygenase. J Inorg Biochem 2023; 245:112257. [PMID: 37229820 DOI: 10.1016/j.jinorgbio.2023.112257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Kinetic and structural investigations of the flavohemoglobin-type NO dioxygenase have suggested critical roles for transient Fe(III)O2 complex formation and O2-forced movements affecting hydride transfer to the FAD cofactor and electron-transfer to the Fe(III)O2 complex. Stark-effect theory together with structural models and dipole and internal electrostatic field determinations provided a semi-quantitative spectroscopic method for investigating the proposed Fe(III)O2 complex and O2-forced movements. Deoxygenation of the enzyme causes Stark effects on the ferric heme Soret and charge-transfer bands revealing the Fe(III)O2 complex. Deoxygenation also elicits Stark effects on the FAD that expose forces and motions that create a more restricted NADH access to FAD for hydride transfer and switch electron-transfer off. Glucose also forces the enzyme toward an off state. Amino acid substitutions at the B10, E7, E11, G8, D5, and F7 positions influence the Stark effects of O2 on resting heme spin states and FAD consistent with the proposed roles of the side chains in the enzyme mechanism. Deoxygenation of ferric myoglobin and hemoglobin A also induces Stark effects on the hemes suggesting a common 'oxy-met' state. The ferric myoglobin and hemoglobin heme spectra are also glucose-responsive. A conserved glucose or glucose-6-phosphate binding site is found bridging the BC-corner and G-helix in flavohemoglobin and myoglobin suggesting novel allosteric effector roles for glucose or glucose-6-phosphate in the NO dioxygenase and O2 storage functions. The results support the proposed roles of a ferric O2 intermediate and protein motions in regulating electron-transfer during NO dioxygenase turnover.
Collapse
Affiliation(s)
- Anne M Gardner
- Research and Development Division, Miami Valley Biotech, Suite 2445, 1001 E. 2(nd) Street, Dayton, OH 45402, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, R033, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Paul R Gardner
- Research and Development Division, Miami Valley Biotech, Suite 2445, 1001 E. 2(nd) Street, Dayton, OH 45402, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, R033, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Chemistry and Biochemistry Department, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
| |
Collapse
|
29
|
Zdorevskyi O, Djurabekova A, Lasham J, Sharma V. Horizontal proton transfer across the antiporter-like subunits in mitochondrial respiratory complex I. Chem Sci 2023; 14:6309-6318. [PMID: 37325138 PMCID: PMC10266447 DOI: 10.1039/d3sc01427d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Respiratory complex I is a redox-driven proton pump contributing to about 40% of total proton motive force required for mitochondrial ATP generation. Recent high-resolution cryo-EM structural data revealed the positions of several water molecules in the membrane domain of the large enzyme complex. However, it remains unclear how protons flow in the membrane-bound antiporter-like subunits of complex I. Here, we performed multiscale computer simulations on high-resolution structural data to model explicit proton transfer processes in the ND2 subunit of complex I. Our results show protons can travel the entire width of antiporter-like subunits, including at the subunit-subunit interface, parallel to the membrane. We identify a previously unrecognized role of conserved tyrosine residues in catalyzing horizontal proton transfer, and that long-range electrostatic effects assist in reducing energetic barriers of proton transfer dynamics. Results from our simulations warrant a revision in several prevailing proton pumping models of respiratory complex I.
Collapse
Affiliation(s)
| | | | - Jonathan Lasham
- Department of Physics, University of Helsinki Helsinki Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki Helsinki Finland
- HiLIFE Institute of Biotechnology, University of Helsinki Helsinki Finland
| |
Collapse
|
30
|
Sugo Y, Ishikita H. Mechanism of Asparagine-Mediated Proton Transfer in Photosynthetic Reaction Centers. Biochemistry 2023; 62:1544-1552. [PMID: 37083399 PMCID: PMC10194076 DOI: 10.1021/acs.biochem.3c00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Indexed: 04/22/2023]
Abstract
In photosynthetic reaction centers from purple bacteria (PbRCs), light-induced charge separation leads to the reduction of the terminal electron acceptor quinone, QB. The reduction of QB to QB•- is followed by protonation via Asp-L213 and Ser-L223 in PbRC from Rhodobacter sphaeroides. However, Asp-L213 is replaced with nontitratable Asn-L222 and Asn-L213 in PbRCs from Thermochromatium tepidum and Blastochloris viridis, respectively. Here, we investigated the energetics of proton transfer along the asparagine-involved H-bond network using a quantum mechanical/molecular mechanical approach. The potential energy profile for the H-bond between H3O+ and the carbonyl O site of Asn-L222 shows that the proton is predominantly localized at the Asn-L222 moiety in the T. tepidum PbRC protein environment, easily forming the enol species. The release of the proton from the amide -NH2 site toward Ser-L232 via tautomerization suffers from the energy barrier. Upon reorientation of Asn-L222, the enol -OH site forms a short low-barrier H-bond with Ser-L232, facilitating protonation of QB•- in a Grotthuss-like mechanism. This is a basis of how asparagine or glutamine side chains function as acceptors/donors in proton transfer pathways.
Collapse
Affiliation(s)
- Yu Sugo
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
31
|
Li J, Shi Y, Cheng T. Electronic coupling and electron transfer in hydrogen-bonded mixed-valence compounds. Phys Chem Chem Phys 2023. [PMID: 37158078 DOI: 10.1039/d3cp01337e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Electron transfer provided by hydrogen bonds represents a unique and highly significant area of research, as it has a crucial role to play in a wide variety of chemical and biological systems. The hydrogen-bonded mixed-valence system, in the form of donor-hydrogen bond-acceptor, provides an ideal platform for exploring thermally-induced electron transfer across this non-covalent unit. Over the past decades, ongoing progress has been made in this field. Here we critically assess some studies on the qualitative and quantitative evaluation of electronic coupling and thermal electron transfer across hydrogen bond interface. Additionally, selected experimental examples are discussed in terms of intervalence charge transfer, with particular attention paid to the proton-coupled and often overlooked proton-uncoupled electron transfer pathway in hydrogen-bonded mixed-valence systems. We further highlight the major limitations of this research area and suggest potential directions for future exploration.
Collapse
Affiliation(s)
- Juanjuan Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yuqing Shi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Tao Cheng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
32
|
Hoberg C, Talbot JJ, Shee J, Ockelmann T, Das Mahanta D, Novelli F, Head-Gordon M, Havenith M. Caught in the act: real-time observation of the solvent response that promotes excited-state proton transfer in pyranine. Chem Sci 2023; 14:4048-4058. [PMID: 37063810 PMCID: PMC10094129 DOI: 10.1039/d2sc07126f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Photo-induced excited-state proton transfer (ESPT) reactions are of central importance in many biological and chemical processes. Identifying mechanistic details of the solvent reorganizations that facilitate proton transfer however, is challenging for current experimental and theoretical approaches. Using optical pump THz probe (OPTP) spectroscopy and molecular dynamics simulations, we were able to elucidate the ultrafast changes in the solvation environment for three derivatives of pyranine: the photoacid HPTS, the methoxy derivative MPTS, and the photobase OPTS. Experimentally, we find damped oscillations in the THz signal at short times and our simulations enable their assignment to vibrational energy transfer beatings between the photoexcited chromophore and nearby solvent molecules. The simulations of HPTS reveal strikingly efficient sub-ps energy transfer into a particular solvent mode, that is active near 4 THz, and which can provide the requisite energy required for solvent reorganization promoting proton transfer. Similar oscillations are present in the THz signal for all three derivatives, however the signal is damped rapidly for HPTS (within 0.4 ps) and more slowly for MPTS (within 1.4 ps) and OPTS (within 2.0 ps). For HPTS, we also characterize an additional phonon-like propagation of the proton into the bulk with a 140 ps period and an 83 ps damping time. Thermalization of the solvent occurs on a time scale exceeding 120 ps.
Collapse
Affiliation(s)
- Claudius Hoberg
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Justin J Talbot
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - James Shee
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Thorsten Ockelmann
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Debasish Das Mahanta
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Fabio Novelli
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Martin Head-Gordon
- Department of Chemistry, University of California Berkeley California 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum 44780 Bochum Germany
| |
Collapse
|
33
|
Wei RJ, Khaniya U, Mao J, Liu J, Batista VS, Gunner MR. Tools for analyzing protonation states and for tracing proton transfer pathways with examples from the Rb. sphaeroides photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2023; 156:101-112. [PMID: 36307598 DOI: 10.1007/s11120-022-00973-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Protons participate in many reactions. In proteins, protons need paths to move in and out of buried active sites. The vectorial movement of protons coupled to electron transfer reactions establishes the transmembrane electrochemical gradient used for many reactions, including ATP synthesis. Protons move through hydrogen bonded chains of waters and hydroxy side chains via the Grotthuss mechanism and by proton binding and release from acidic and basic residues. MCCE analysis shows that proteins exist in a large number of protonation states. Knowledge of the equilibrium ensemble can provide a rational basis for setting protonation states in simulations that fix them, such as molecular dynamics (MD). The proton path into the QB site in the bacterial reaction centers (RCs) of Rb. sphaeroides is analyzed by MD to provide an example of the benefits of using protonation states found by the MCCE program. A tangled web of side chains and waters link the cytoplasm to QB. MCCE analysis of snapshots from multiple trajectories shows that changing the input protonation state of a residue in MD biases the trajectory shifting the proton affinity of that residue. However, the proton affinity of some residues is more sensitive to the input structure. The proton transfer networks derived from different trajectories are quite robust. There are some changes in connectivity that are largely restricted to the specific residues whose protonation state is changed. Trajectories with QB•- are compared with earlier results obtained with QB [Wei et. al Photosynthesis Research volume 152, pages153-165 (2022)] showing only modest changes. While introducing new methods the study highlights the difficulty of establishing the connections between protein conformation.
Collapse
Affiliation(s)
- Rongmei Judy Wei
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - M R Gunner
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA.
- Department of Physics, City College of New York, New York, NY, 10031, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
34
|
Saito K, Nakao S, Ishikita H. Identification of the protonation and oxidation states of the oxygen-evolving complex in the low-dose X-ray crystal structure of photosystem II. FRONTIERS IN PLANT SCIENCE 2023; 14:1029674. [PMID: 37008466 PMCID: PMC10061019 DOI: 10.3389/fpls.2023.1029674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/10/2023] [Indexed: 06/19/2023]
Abstract
In photosystem II (PSII), the O3 and O4 sites of the Mn4CaO5 cluster form hydrogen bonds with D1-His337 and a water molecule (W539), respectively. The low-dose X-ray structure shows that these hydrogen bond distances differ between the two homogeneous monomer units (A and B) [Tanaka et al., J. Am Chem. Soc. 2017, 139, 1718]. We investigated the origin of the differences using a quantum mechanical/molecular mechanical (QM/MM) approach. QM/MM calculations show that the short O4-OW539 hydrogen bond (~2.5 Å) of the B monomer is reproduced when O4 is protonated in the S1 state. The short O3-NεHis337 hydrogen bond of the A monomer is due to the formation of a low-barrier hydrogen bond between O3 and doubly-protonated D1-His337 in the overreduced states (S-1 or S-2). It seems plausible that the oxidation state differs between the two monomer units in the crystal.
Collapse
Affiliation(s)
- Keisuke Saito
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan
| | - Shu Nakao
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Chen Z, Kang XW, Zhou Y, Zhou Z, Tang S, Zou S, Wang K, Huang J, Ding B, Zhong D. Dissecting the Ultrafast Stepwise Bidirectional Proton Relay in a Blue-Light Photoreceptor. J Am Chem Soc 2023; 145:3394-3400. [PMID: 36722850 DOI: 10.1021/jacs.2c10206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proton relays through H-bond networks are essential in realizing the functionality of protein machines such as in photosynthesis and photoreceptors. It has been challenging to dissect the rates and energetics of individual proton-transfer steps during the proton relay. Here, we have designed a proton rocking blue light using a flavin (BLUF) domain with the flavin mononucleotide (FMN)-glutamic acid (E)-tryptophan (W) triad and have resolved the four individual proton-transfer steps kinetically using ultrafast spectroscopy. We have found that after the photo-induced charge separation forming FMN·-/E-COOH/WH·+, the proton first rapidly jumps from the bridging E-COOH to FMN- (τfPT2 = 3.8 ps; KIE = 1.0), followed by a second proton transfer from WH·+ to E-COO- (τfPT1 = 336 ps; KIE = 2.6) which immediately rocks back to W· (τrPT1 = 85 ps; KIE = 6.7), followed by a proton return from FMNH· to E-COO- (τrPT2 = 34 ps; KIE = 3.3) with the final charge recombination between FMN·- and WH·+ to close the reaction cycle. Our results revisited the Grotthuss mechanism on the ultrafast timescale using the BLUF domain as a paradigm protein.
Collapse
Affiliation(s)
- Zijing Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiu-Wen Kang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yalin Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhongneng Zhou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Siwei Tang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Shuhua Zou
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Kailin Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Jiulong Huang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China.,Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States.,School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
36
|
Naidu SAG, Mustafa G, Clemens RA, Naidu AS. Plant-Derived Natural Non-Nucleoside Analog Inhibitors (NNAIs) against RNA-Dependent RNA Polymerase Complex (nsp7/nsp8/nsp12) of SARS-CoV-2. J Diet Suppl 2023; 20:254-283. [PMID: 34850656 DOI: 10.1080/19390211.2021.2006387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence of fast-spreading SARS-CoV-2 mutants has sparked a new phase of COVID-19 pandemic. There is a dire necessity for antivirals targeting highly conserved genomic domains on SARS-CoV-2 that are less prone to mutation. The nsp12, also known as the RNA-dependent RNA-polymerase (RdRp), the core component of 'SARS-CoV-2 replication-transcription complex', is a potential well-conserved druggable antiviral target. Several FDA-approved RdRp 'nucleotide analog inhibitors (NAIs)' such as remdesivir, have been repurposed to treat COVID-19 infections. The NAIs target RdRp protein translation and competitively block the nucleotide insertion into the RNA chain, resulting in the inhibition of viral replication. However, the replication proofreading function of nsp14-ExoN could provide resistance to SARS-CoV-2 against many NAIs. Conversely, the 'non-nucleoside analog inhibitors (NNAIs)' bind to allosteric sites on viral polymerase surface, change the redox state; thereby, exert antiviral activity by altering interactions between the enzyme substrate and active core catalytic site of the RdRp. NNAIs neither require metabolic activation (unlike NAIs) nor compete with intracellular pool of nucleotide triphosphates (NTPs) for anti-RdRp activity. The NNAIs from phytonutrient origin are potential antiviral candidates compared to their synthetic counterparts. Several in-silico studies reported the antiviral spectrum of natural phytonutrient-NNAIs such as Suramin, Silibinin (flavonolignan), Theaflavin (tea polyphenol), Baicalein (5,6,7-trihydroxyflavone), Corilagin (gallotannin), Hesperidin (citrus bioflavonoid), Lycorine (pyrrolidine alkaloid), with superior redox characteristics (free binding energy, hydrogen-bonds, etc.) than antiviral drugs (i.e. remdesivir, favipiravir). These phytonutrient-NNAIs also exert anti-inflammatory, antioxidant, immunomodulatory and cardioprotective functions, with multifunctional therapeutic benefits in the clinical management of COVID-19.
Collapse
Affiliation(s)
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
37
|
Nesterov SV, Yaguzhinsky LS, Vasilov RG, Kadantsev VN, Goltsov AN. Contribution of the Collective Excitations to the Coupled Proton and Energy Transport along Mitochondrial Cristae Membrane in Oxidative Phosphorylation System. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1813. [PMID: 36554218 PMCID: PMC9778164 DOI: 10.3390/e24121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The results of many experimental and theoretical works indicate that after transport of protons across the mitochondrial inner membrane (MIM) in the oxidative phosphorylation (OXPHOS) system, they are retained on the membrane-water interface in nonequilibrium state with free energy excess due to low proton surface-to-bulk release. This well-established phenomenon suggests that proton trapping on the membrane interface ensures vectorial lateral transport of protons from proton pumps to ATP synthases (proton acceptors). Despite the key role of the proton transport in bioenergetics, the molecular mechanism of proton transfer in the OXPHOS system is not yet completely established. Here, we developed a dynamics model of long-range transport of energized protons along the MIM accompanied by collective excitation of localized waves propagating on the membrane surface. Our model is based on the new data on the macromolecular organization of the OXPHOS system showing the well-ordered structure of respirasomes and ATP synthases on the cristae membrane folds. We developed a two-component dynamics model of the proton transport considering two coupled subsystems: the ordered hydrogen bond (HB) chain of water molecules and lipid headgroups of MIM. We analytically obtained a two-component soliton solution in this model, which describes the motion of the proton kink, corresponding to successive proton hops in the HB chain, and coherent motion of a compression soliton in the chain of lipid headgroups. The local deformation in a soliton range facilitates proton jumps due to water molecules approaching each other in the HB chain. We suggested that the proton-conducting structures formed along the cristae membrane surface promote direct lateral proton transfer in the OXPHOS system. Collective excitations at the water-membrane interface in a form of two-component soliton ensure the coupled non-dissipative transport of charge carriers and elastic energy of MIM deformation to ATP synthases that may be utilized in ATP synthesis providing maximal efficiency in mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Semen V. Nesterov
- Kurchatov Complex of NBICS-Technologies, National Research Center Kurchatov Institute, 123182 Moscow, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Lev S. Yaguzhinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Department of Bioenergetics, Institute of Cytochemistry and Molecular Pharmacology, 115404 Moscow, Russia
- Belozersky Research Institute for Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Raif G. Vasilov
- Kurchatov Complex of NBICS-Technologies, National Research Center Kurchatov Institute, 123182 Moscow, Russia
| | - Vasiliy N. Kadantsev
- Institute for Artificial Intelligence, Russian Technological University (MIREA), 119454 Moscow, Russia
| | - Alexey N. Goltsov
- Institute for Artificial Intelligence, Russian Technological University (MIREA), 119454 Moscow, Russia
| |
Collapse
|
38
|
Noji T, Ishikita H. Mechanism of Absorption Wavelength Shift of Bacteriorhodopsin During Photocycle. J Phys Chem B 2022; 126:9945-9955. [PMID: 36413506 DOI: 10.1021/acs.jpcb.2c04359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacteriorhodopsin, a light-driven proton pump, alters the absorption wavelengths in the range of 410-617 nm during the photocycle. Here, we report the absorption wavelengths, calculated using 12 bacteriorhodopsin crystal structures (including the BR, BR13-cis, J, K0, KE, KL, L, M, N, and O state structures) and a combined quantum mechanical/molecular mechanical/polarizable continuum model (QM/MM/PCM) approach. The QM/MM/PCM calculations reproduced the experimentally measured absorption wavelengths with a standard deviation of 4 nm. The shifts in the absorption wavelengths can be explained mainly by the following four factors: (i) retinal Schiff base deformation/twist induced by the protein environment, leading to a decrease in the electrostatic interaction between the protein environment and the retinal Schiff base; (ii) changes in the protonation state of the protein environment, directly altering the electrostatic interaction between the protein environment and the retinal Schiff base; (iii) changes in the protonation state; or (iv) isomerization of the retinal Schiff base, where the absorption wavelengths of the isomers originally differ.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan.,Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
| |
Collapse
|
39
|
Volchek VV, Kompankov NB, Sokolov MN, Abramov PA. Proton Affinity in the Chemistry of Beta-Octamolybdate: HPLC-ICP-AES, NMR and Structural Studies. Molecules 2022; 27:8368. [PMID: 36500457 PMCID: PMC9738851 DOI: 10.3390/molecules27238368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The affinity of [β-Mo8O26]4- toward different proton sources has been studied in various conditions. The proposed sites for proton coordination were highlighted with single crystal X-ray diffraction (SCXRD) analysis of (Bu4N)3[β-{Ag(py-NH2)Mo8O26]}] (1) and from analysis of reported structures. Structural rearrangement of [β-Mo8O26]4- as a direct response to protonation was studied in solution with 95Mo NMR and HPLC-ICP-AES techniques. A new type of proton transfer reaction between (Bu4N)4[β-Mo8O26] and (Bu4N)4H2[V10O28] in DMSO results in both polyoxometalates transformation into [V2Mo4O19]4-, which was confirmed by the 95Mo, 51V NMR and HPLC-ICP-AES techniques. The same type of reaction with [H4SiW12O40] in DMSO leads to metal redistribution with formation of [W2Mo4O19]2-.
Collapse
Affiliation(s)
- Victoria V. Volchek
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Nikolay B. Kompankov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University Named after B.N. Yeltsin, 620075 Ekaterinburg, Russia
| |
Collapse
|
40
|
Lawson KE, Dekle JK, Adamczyk AJ. Towards pharmaceutical protein stabilization: DFT and statistical learning studies on non-enzymatic peptide hydrolysis degradation mechanisms. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Sugo Y, Ishikita H. Proton-mediated photoprotection mechanism in photosystem II. FRONTIERS IN PLANT SCIENCE 2022; 13:934736. [PMID: 36161009 PMCID: PMC9490181 DOI: 10.3389/fpls.2022.934736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Photo-induced charge separation, which is terminated by electron transfer from the primary quinone QA to the secondary quinone QB, provides the driving force for O2 evolution in photosystem II (PSII). However, the backward charge recombination using the same electron-transfer pathway leads to the triplet chlorophyll formation, generating harmful singlet-oxygen species. Here, we investigated the molecular mechanism of proton-mediated QA ⋅- stabilization. Quantum mechanical/molecular mechanical (QM/MM) calculations show that in response to the loss of the bicarbonate ligand, a low-barrier H-bond forms between D2-His214 and QA ⋅-. The migration of the proton from D2-His214 toward QA ⋅- stabilizes QA ⋅-. The release of the bicarbonate ligand from the binding Fe2+ site is an energetically uphill process, whereas the bidentate-to-monodentate reorientation is almost isoenergetic. These suggest that the bicarbonate protonation and decomposition may be a basis of the mechanism of photoprotection via QA ⋅-/QAH⋅ stabilization, increasing the QA redox potential and activating a charge-recombination pathway that does not generate the harmful singlet oxygen.
Collapse
Affiliation(s)
- Yu Sugo
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Petrovskaya LE, Lukashev EP, Siletsky SA, Imasheva ES, Wang JM, Mamedov MD, Kryukova EA, Dolgikh DA, Rubin AB, Kirpichnikov MP, Balashov SP, Lanyi JK. Proton transfer reactions in donor site mutants of ESR, a retinal protein from Exiguobacterium sibiricum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112529. [PMID: 35878544 DOI: 10.1016/j.jphotobiol.2022.112529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Light-driven proton transport by microbial retinal proteins such as archaeal bacteriorhodopsin involves carboxylic residues as internal proton donors to the catalytic center which is a retinal Schiff base (SB). The proton donor, Asp96 in bacteriorhodopsin, supplies a proton to the transiently deprotonated Schiff base during the photochemical cycle. Subsequent proton uptake resets the protonated state of the donor. This two step process became a distinctive signature of retinal based proton pumps. Similar steps are observed also in many natural variants of bacterial proteorhodopsins and xanthorhodopsins where glutamic acid residues serve as a proton donor. Recently, however, an exception to this rule was found. A retinal protein from Exiguobacterium sibiricum, ESR, contains a Lys residue in place of Asp or Glu, which facilitates proton transfer from the bulk to the SB. Lys96 can be functionally replaced with the more common donor residues, Asp or Glu. Proton transfer to the SB in the mutants containing these replacements (K96E and K96D/A47T) is much faster than in the proteins lacking the proton donor (K96A and similar mutants), and in the case of K96D/A47T, comparable with that in the wild type, indicating that carboxylic residues can replace Lys96 as proton donors in ESR. We show here that there are important differences in the functioning of these residues in ESR from the way Asp96 functions in bacteriorhodopsin. Reprotonation of the SB and proton uptake from the bulk occur almost simultaneously during the M to N transition (as in the wild type ESR at neutral pH), whereas in bacteriorhodopsin these two steps are well separated in time and occur during the M to N and N to O transitions, respectively.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia.
| | - Evgeniy P Lukashev
- M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Sergey A Siletsky
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation.
| | - Eleonora S Imasheva
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Jennifer M Wang
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Mahir D Mamedov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Elena A Kryukova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow 119334, Russia
| | - Dmitriy A Dolgikh
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia; Emanuel Institute of Biochemical Physics, Kosygina str., 4, Moscow 119334, Russia
| | - Andrei B Rubin
- M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia; M. V. Lomonosov Moscow State University, Department of Biology, Leninskie gory, 1, Moscow 119234, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| | - Janos K Lanyi
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| |
Collapse
|
43
|
Tossounian MA, Baczynska M, Dalton W, Newell C, Ma Y, Das S, Semelak JA, Estrin DA, Filonenko V, Trujillo M, Peak-Chew SY, Skehel M, Fraternali F, Orengo C, Gout I. Profiling the Site of Protein CoAlation and Coenzyme A Stabilization Interactions. Antioxidants (Basel) 2022; 11:antiox11071362. [PMID: 35883853 PMCID: PMC9312308 DOI: 10.3390/antiox11071362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022] Open
Abstract
Coenzyme A (CoA) is a key cellular metabolite known for its diverse functions in metabolism and regulation of gene expression. CoA was recently shown to play an important antioxidant role under various cellular stress conditions by forming a disulfide bond with proteins, termed CoAlation. Using anti-CoA antibodies and liquid chromatography tandem mass spectrometry (LC-MS/MS) methodologies, CoAlated proteins were identified from various organisms/tissues/cell-lines under stress conditions. In this study, we integrated currently known CoAlated proteins into mammalian and bacterial datasets (CoAlomes), resulting in a total of 2093 CoAlated proteins (2862 CoAlation sites). Functional classification of these proteins showed that CoAlation is widespread among proteins involved in cellular metabolism, stress response and protein synthesis. Using 35 published CoAlated protein structures, we studied the stabilization interactions of each CoA segment (adenosine diphosphate (ADP) moiety and pantetheine tail) within the microenvironment of the modified cysteines. Alternating polar-non-polar residues, positively charged residues and hydrophobic interactions mainly stabilize the pantetheine tail, phosphate groups and the ADP moiety, respectively. A flexible nature of CoA is observed in examined structures, allowing it to adapt its conformation through interactions with residues surrounding the CoAlation site. Based on these findings, we propose three modes of CoA binding to proteins. Overall, this study summarizes currently available knowledge on CoAlated proteins, their functional distribution and CoA-protein stabilization interactions.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - William Dalton
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Charlie Newell
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Yilin Ma
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Sayoni Das
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Jonathan Alexis Semelak
- Departmento de Química Inorgánica Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; (J.A.S.); (D.A.E.)
| | - Dario Ariel Estrin
- Departmento de Química Inorgánica Analítica y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina; (J.A.S.); (D.A.E.)
| | - Valeriy Filonenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sew Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| | - Mark Skehel
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK;
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, UK;
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (M.-A.T.); (M.B.); (W.D.); (C.N.); (Y.M.); (S.D.); (C.O.)
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
- Correspondence:
| |
Collapse
|
44
|
Saito K, Xu T, Ishikita H. Correlation between C═O Stretching Vibrational Frequency and p Ka Shift of Carboxylic Acids. J Phys Chem B 2022; 126:4999-5006. [PMID: 35763701 PMCID: PMC9289881 DOI: 10.1021/acs.jpcb.2c02193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Identifying the pKa values of aspartic
acid (Asp) and glutamic acid (Glu) in active sites is essential for
understanding enzyme reaction mechanisms. In this study, we investigated
the correlation between the C=O stretching vibrational frequency
(νC=O) of protonated carboxylic acids and
the pKa values using density functional
theory calculations. In unsaturated carboxylic acids (e.g., benzoic
acid analogues), νC=O decreases as the pKa increases (the negative correlation), whereas
in saturated carboxylic acids (e.g., acetic acid analogues, Asp, and
Glu), νC=O increases as the pKa increases (the positive correlation) as long as the
structure of the H-bond network around the acid is identical. The
negative/positive correlation between νC=O and pKa can be rationalized by the presence
or absence of the C=C double bond. The pKa shift was estimated from the νC=O shift of Asp and Glu in proteins on the basis of the negative correlation
derived from benzoic acids. The previous estimations should be revisited
by using the positive correlation derived in this study, as demonstrated
by quantum mechanical/molecular mechanical calculations of νC=O and electrostatic calculations of pKa on a key Asp85 in the proton-transfer pathway of bacteriorhodopsin.
Collapse
Affiliation(s)
- Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Tianyang Xu
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
45
|
Kobayashi T, Shimada Y, Nagao R, Noguchi T. pH-Dependent Regulation of Electron Flow in Photosystem II by a Histidine Residue at the Stromal Surface. Biochemistry 2022; 61:1351-1362. [PMID: 35686693 DOI: 10.1021/acs.biochem.2c00150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In photosystem II (PSII), the secondary plastoquinone electron acceptor QB functions as a substrate that converts into plastoquinol upon its double reduction by electrons abstracted from water. It has been suggested that a histidine residue, D1-H252, which is located at the stromal surface near QB, is involved in the pH-dependent regulation of electron flow and proton transfer to QB. However, definitive evidence for the involvement of D1-H252 in the QB reactions has not been obtained yet. Here, we studied the roles of D1-H252 in PSII using a cyanobacterial mutant, in which D1-H252 was replaced with Ala. Delayed luminescence (DL) measurement upon a single flash showed a faster QB- decay at higher pH in the thylakoids from the wild-type strain due to the downshift of the redox potential of QB [Em(QB-/QB)]. This pH dependence of the QB- decay was lost in the D1-H252A mutant. The experimental Em(QB-/QB) changes were well reproduced by the density functional theory calculations for models with different protonation states of D1-H252 and with Ala replaced for H252. It was further shown that the period-four oscillation of the DL intensity by successive flashes was significantly diminished in the D1-H252A mutant, suggesting the inhibition of plastoquinone exchange at the QB pocket in this mutant. It is thus concluded that D1-H252 is a key amino acid residue that regulates electron flow in PSII by sensing pH in the stroma and stabilizes the QB binding site to facilitate the quinone exchange reaction.
Collapse
Affiliation(s)
- Tomoyuki Kobayashi
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yuichiro Shimada
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Ryo Nagao
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Takumi Noguchi
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
46
|
Mandal M, Saito K, Ishikita H. Release of a Proton and Formation of a Low-Barrier Hydrogen Bond between Tyrosine D and D2-His189 in Photosystem II. ACS PHYSICAL CHEMISTRY AU 2022; 2:423-429. [PMID: 36855688 PMCID: PMC9955220 DOI: 10.1021/acsphyschemau.2c00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In photosystem II (PSII), the second-lowest oxidation state (S1) of the oxygen-evolving Mn4CaO5 cluster is the most stable, as the radical form of the redox-active D2-Tyr160 is considered to be a candidate that accepts an electron from the lowest oxidation state (S0) in the dark. Using quantum mechanical/molecular mechanical calculations, we investigated the redox potential (E m) of TyrD and its H-bond partner, D2-His189. The potential energy profile indicates that the release of a proton from the TyrD...D2-His189 pair leads to the formation of a low-barrier H-bond. The E m depends on the H+ position along the low-barrier H-bond, e.g., 680 mV when the H+ is at the D2-His189 moiety and 800 mV when the H+ is at the TyrD moiety, which can explain why TyrD mediates both the S0 to S1 oxidation and the S2 to S1 reduction.
Collapse
Affiliation(s)
- Manoj Mandal
- Department
of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, West Bengal, India
| | - Keisuke Saito
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan,Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan,Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan,. Tel: +81-3-5452-5056. Fax: +81-3-5452-5083
| |
Collapse
|
47
|
Urvashi, Senthil Kumar JB, Das P, Tandon V. Development of Azaindole-Based Frameworks as Potential Antiviral Agents and Their Future Perspectives. J Med Chem 2022; 65:6454-6495. [PMID: 35477274 PMCID: PMC9063994 DOI: 10.1021/acs.jmedchem.2c00444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/29/2022]
Abstract
The azaindole (AI) framework continues to play a significant role in the design of new antiviral agents. Modulating the position and isosteric replacement of the nitrogen atom of AI analogs notably influences the intrinsic physicochemical properties of lead compounds. The intra- and intermolecular interactions of AI derivatives with host receptors or viral proteins can also be fine tuned by carefully placing the nitrogen atom in the heterocyclic core. This wide-ranging perspective article focuses on AIs that have considerable utility in drug discovery programs against RNA viruses. The inhibition of influenza A, human immunodeficiency, respiratory syncytial, neurotropic alpha, dengue, ebola, and hepatitis C viruses by AI analogs is extensively reviewed to assess their plausible future potential in antiviral drug discovery. The binding interaction of AIs with the target protein is examined to derive a structural basis for designing new antiviral agents.
Collapse
Affiliation(s)
- Urvashi
- Drug Discovery Laboratory, Special Centre for
Molecular Medicine, Jawaharlal Nehru University, New Delhi 110
067, India
- Department of Chemistry, University of
Delhi, New Delhi 110007, India
| | - J. B. Senthil Kumar
- Drug Discovery Laboratory, Special Centre for
Molecular Medicine, Jawaharlal Nehru University, New Delhi 110
067, India
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute
of Technology (ISM), Dhanbad 826004, India
| | - Vibha Tandon
- Drug Discovery Laboratory, Special Centre for
Molecular Medicine, Jawaharlal Nehru University, New Delhi 110
067, India
| |
Collapse
|
48
|
Absorption wavelength along chromophore low-barrier hydrogen bonds. iScience 2022; 25:104247. [PMID: 35521532 PMCID: PMC9062252 DOI: 10.1016/j.isci.2022.104247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
Abstract
In low-barrier hydrogen bonds (H-bonds), the pKa values for the H-bond donor and acceptor moieties are nearly equal, whereas the redox potential values depend on the H+ position. Spectroscopic details of low-barrier H-bonds remain unclear. Here, we report the absorption wavelength along low-barrier H-bonds in protein environments, using a quantum mechanical/molecular mechanical approach. Low-barrier H-bonds form between Glu46 and p-coumaric acid (pCA) in the intermediate pRCW state of photoactive yellow protein and between Asp116 and the retinal Schiff base in the intermediate M-state of the sodium-pumping rhodopsin KR2. The H+ displacement of only ∼0.4 Å, which does not easily occur without low-barrier H-bonds, is responsible for the ∼50 nm-shift in the absorption wavelength. This may be a basis of how photoreceptor proteins have evolved to proceed photocycles using abundant protons. The low-barrier H-bond formation is a prerequisite for proton transfer How the absorption wavelength changes as H+ moves is an open question The H+ displacement of ∼0.4 Å leads to the absorption wavelength shift of ∼50 nm The localization of the molecular orbitals plays a key role in the wavelength shift
Collapse
|
49
|
Xie L, He A, Li D, Li T, Yang L, Huang K, Xu Y, Zhao G, Liu J, Liu K, Chen J, Ozaki Y, Noda I. Deprotonation from an OH on myo-Inositol Promoted by μ 2-Bridges with Possible Regioselectivity/Chiral Selectivity. Inorg Chem 2022; 61:6138-6148. [PMID: 35412316 DOI: 10.1021/acs.inorgchem.2c00288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-crystal structures of myo-inositol complexes with erbium ([Er2(C6H11O6)2(H2O)5Cl2]Cl2(H2O)4, denoted ErI hereafter) and strontium (Sr(C6H12O6)2(H2O)2Cl2, denoted SrI hereafter) are described. In ErI, deprotonation occurs on an OH of myo-inositol, although the complex is synthesized in an acidic solution, and the pKa values of all of the OHs in myo-inositol are larger than 12. The deprotonated OH is involved in a μ2-bridge. The polarization from two Er3+ ions activates the chemically relatively inert OH and promotes deprotonation. In the stable conformation of myo-inositol, there are five equatorial OHs and one axial OH. The deprotonation occurs on the only axial OH, suggesting that the deprotonation possesses characteristics of regioselectivity/chiral selectivity. Two Er3+ ions in the μ2-bridge are stabilized by five-membered rings formed by chelating Er3+ with an O-C-C-O moiety. As revealed by the X-ray crystallography study, the absolute values of the O-C-C-O torsion angles decrease from ∼60 to ∼45° upon chelating. Since the O-C-C-O moiety is within a six-membered ring, the variation of the torsion angle may exert distortion of the chair conformation. Quantum chemistry calculation results indicate that an axial OH flanked by two equatorial OHs (double ax-eq motif) is favorable for the formation of a μ2-bridge, accounting for the selectivity. The double ax-eq motif may be used in a rational design of high-performance catalysts where deprotonation with high regioselectivity/chiral selectivity is carried out.
Collapse
Affiliation(s)
- Linchen Xie
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,School of Biology and Medicine, Beijing City University, Beijing 100094, China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Da Li
- School of Biology and Medicine, Beijing City University, Beijing 100094, China
| | - Tianyi Li
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Kun Huang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guozhong Zhao
- Department of Physics, Capital Normal University, Beijing Advanced Innovation Center of Imaging Technology, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing 100048, China
| | - Jingyu Liu
- Department of Physics, Capital Normal University, Beijing Advanced Innovation Center of Imaging Technology, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing 100048, China
| | - Kexin Liu
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Jia'er Chen
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
50
|
Quinone binding sites of cyt bc complexes analysed by X-ray crystallography and cryogenic electron microscopy. Biochem Soc Trans 2022; 50:877-893. [PMID: 35356963 PMCID: PMC9162462 DOI: 10.1042/bst20190963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022]
Abstract
Cytochrome (cyt) bc1, bcc and b6f complexes, collectively referred to as cyt bc complexes, are homologous isoprenoid quinol oxidising enzymes present in diverse phylogenetic lineages. Cyt bc1 and bcc complexes are constituents of the electron transport chain (ETC) of cellular respiration, and cyt b6f complex is a component of the photosynthetic ETC. Cyt bc complexes share in general the same Mitchellian Q cycle mechanism, with which they accomplish proton translocation and thus contribute to the generation of proton motive force which drives ATP synthesis. They therefore require a quinol oxidation (Qo) and a quinone reduction (Qi) site. Yet, cyt bc complexes evolved to adapt to specific electrochemical properties of different quinone species and exhibit structural diversity. This review summarises structural information on native quinones and quinone-like inhibitors bound in cyt bc complexes resolved by X-ray crystallography and cryo-EM structures. Although the Qi site architecture of cyt bc1 complex and cyt bcc complex differs considerably, quinone molecules were resolved at the respective Qi sites in very similar distance to haem bH. In contrast, more diverse positions of native quinone molecules were resolved at Qo sites, suggesting multiple quinone binding positions or captured snapshots of trajectories toward the catalytic site. A wide spectrum of inhibitors resolved at Qo or Qi site covers fungicides, antimalarial and antituberculosis medications and drug candidates. The impact of these structures for characterising the Q cycle mechanism, as well as their relevance for the development of medications and agrochemicals are discussed.
Collapse
|