1
|
Chen J, Chitrakar R, Baugh LR. DAF-18/PTEN protects LIN-35/Rb from CLP-1/CAPN-mediated cleavage to promote starvation resistance. Life Sci Alliance 2025; 8:e202403147. [PMID: 40199585 PMCID: PMC11979363 DOI: 10.26508/lsa.202403147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Starvation resistance is a fundamental trait with profound influence on fitness and disease risk. DAF-18, the Caenorhabditis elegans ortholog of the tumor suppressor PTEN, promotes starvation resistance. PTEN is a dual phosphatase, and DAF-18 promotes starvation resistance as a lipid phosphatase by antagonizing insulin/IGF and PI3K signaling, activating the tumor suppressor DAF-16/FoxO. However, if or how DAF-18/PTEN protein-phosphatase activity promotes starvation resistance is unknown. Using genetic, genomic, bioinformatic, and biochemical approaches, we identified the C. elegans retinoblastoma/RB protein homolog, LIN-35/Rb, as a critical mediator of the effect of DAF-18/PTEN on starvation resistance. We show that DAF-18/PTEN protects LIN-35/Rb from cleavage by the μ-Calpain homolog CLP-1/CAPN, and that LIN-35/Rb together with the repressive DREAM complex promotes starvation resistance. We conclude that the tumor suppressors DAF-18/PTEN and LIN-35/Rb function in a linear pathway, with LIN-35/Rb and the rest of the DREAM complex functioning as a transcriptional effector of DAF-18/PTEN protein-phosphatase activity resulting in repression of germline gene expression. This work is significant for revealing a network of tumor suppressors that promote survival during cellular and developmental quiescence.
Collapse
Affiliation(s)
- Jingxian Chen
- Department of Biology, Duke University, Durham, NC, USA
| | | | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Chen J, Chitrakar R, Baugh LR. DAF-18/PTEN protects LIN-35/Rb from CLP-1/CAPN-mediated cleavage to promote starvation resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638677. [PMID: 40027768 PMCID: PMC11870551 DOI: 10.1101/2025.02.17.638677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Starvation resistance is a fundamental trait with profound influence on fitness and disease risk. DAF-18, the C. elegans ortholog of the tumor suppressor PTEN, promotes starvation resistance. PTEN is a dual phosphatase, and DAF-18 promotes starvation resistance as a lipid phosphatase by antagonizing insulin/IGF and PI3K signaling, activating the tumor suppressor DAF-16/FoxO. However, if or how DAF-18/PTEN protein-phosphatase activity promotes starvation resistance is unknown. Using genetic, genomic, bioinformatic, and biochemical approaches, we identified the C. elegans retinoblastoma/RB protein homolog, LIN-35/Rb, as a critical mediator of the effect of DAF-18/PTEN on starvation resistance. We show that DAF-18/PTEN protects LIN-35/Rb from cleavage by the μ-Calpain homolog CLP-1/CAPN, and that LIN-35/Rb together with the repressive DREAM complex promote starvation resistance. We conclude that the tumor suppressors DAF-18/PTEN and LIN-35/Rb function in a linear pathway, with LIN-35/Rb and the rest of the DREAM complex functioning as a transcriptional effector of DAF-18/PTEN protein-phosphatase activity resulting in repression of germline gene expression. This work is significant for revealing a network of tumor suppressors that promote survival during cellular and developmental quiescence.
Collapse
|
3
|
Simonini S. Regulation of cell cycle in plant gametes: when is the right time to divide? Development 2025; 152:dev204217. [PMID: 39831611 PMCID: PMC11829769 DOI: 10.1242/dev.204217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cell division is a fundamental process shared across diverse life forms, from yeast to humans and plants. Multicellular organisms reproduce through the formation of specialized types of cells, the gametes, which at maturity enter a quiescent state that can last decades. At the point of fertilization, signalling lifts the quiescent state and triggers cell cycle reactivation. Studying how the cell cycle is regulated during plant gamete development and fertilization is challenging, and decades of research have provided valuable, yet sometimes contradictory, insights. This Review summarizes the current understanding of plant cell cycle regulation, gamete development, quiescence, and fertilization-triggered reactivation.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH8008, Zurich, Switzerland
| |
Collapse
|
4
|
Hwang YJ, Kim MJ. Emerging Role of the DREAM Complex in Cancer and Therapeutic Opportunities. Int J Mol Sci 2025; 26:322. [PMID: 39796178 PMCID: PMC11719884 DOI: 10.3390/ijms26010322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
The DREAM (dimerization partner, RB-like, E2F, and multi-vulval class B) complex is an evolutionarily conserved transcriptional repression complex that coordinates nearly one thousand target genes, primarily associated with the cell cycle processes. The formation of the DREAM complex consequently inhibits cell cycle progression and induces cellular quiescence. Given its unique role in cell cycle control, the DREAM complex has gained significant interest across various physiological and pathological contexts, particularly in conditions marked by dysregulated cell cycles, such as cancer. However, the specific cancer types most significantly affected by alterations in the DREAM complex are yet to be determined. Moreover, the possibility of restoring or pharmacologically targeting the DREAM complex as a therapeutic intervention against cancer remains a relatively unexplored area of research and is currently under active investigation. In this review, we provide an overview of the latest advances in understanding the DREAM complex, focusing on its role in cancer. We also explore strategies for targeting the DREAM complex as a potential approach for cancer therapeutics. Advances in understanding the precise role of the DREAM complex in cancer, combined with ongoing efforts to develop targeted therapies, may pave the way for new options in cancer therapy.
Collapse
Affiliation(s)
- Ye-Jin Hwang
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| | - Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
5
|
Nganya C, Bryant S, Alnakhalah A, Allen-Boswell T, Cunningham S, Kanu S, Williams A, Philio D, Dang K, Butler E, Player A. Analyses of the MYBL1 Gene in Triple Negative Breast Cancer: Evidence of Regulation of the VCPIP1 Gene and Identification of a Specific Exon Overexpressed in Tumor Cell Lines. Int J Mol Sci 2024; 26:279. [PMID: 39796135 PMCID: PMC11719811 DOI: 10.3390/ijms26010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Previous data show that the knockdown of the MYBL1 gene in the MDA-MB-231 cell line leads to the downregulation of VCPIP1 gene expression. In addition, MYBL1 and VCPIP1 genes are co-expressed and dysregulated in some of the same triple negative breast cancer patient samples. We propose that the co-expression of the two genes is attributed to the MYBL1 transcription factor regulation of the VCPIP1 gene. We identify the MYBL1 transcription factor binding site upstream of the VCPIP1 start site and show that the MYBL1 protein can bind to the sequence identified in the VCPIP1 promoter region. Combined with the results from the knockdown study, these data support the ability of MYBL1 to regulate the VCPIP1 gene. The VCPIP1 gene functions as a deubiquitinating enzyme involved in DNA repair, protein positioning, and the assembly of the Golgi apparatus during mitotic signaling. The transcriptional regulation of VCPIP1 by the MYBL1 gene could implicate MYBL1 in these processes, which might contribute to tumor processes in TNBC. Although both genes are involved in cell cycle regulatory mechanisms, converging signaling mechanisms have not been identified. In a separate study, we performed sequence alignment of the MYBL1 transcript variants and identified an exon unique to the canonical variant. Probes that specifically target the unique MYBL1 exon show that the exon is overexpressed in tumor cell lines compared to non-tumor breast cells. We are classifying this unique MYBL1 exon as a tumor-associated exon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Audrey Player
- Department of Biology, Texas Southern University, Houston, TX 77004, USA; (C.N.); (S.B.); (A.A.); (T.A.-B.); (S.C.); (S.K.); (A.W.); (D.P.); (K.D.); (E.B.)
| |
Collapse
|
6
|
Han F, Guo XY, Jiang MX, Xia NS, Gu Y, Li SW. Structural biology of the human papillomavirus. Structure 2024; 32:1877-1892. [PMID: 39368462 DOI: 10.1016/j.str.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Human papillomavirus (HPV), known for its oncogenic properties, is the primary cause of cervical cancer and significantly contributes to mortality rates. It also plays a considerable role in the globally rising incidences of head and neck cancers. These cancers pose a substantial health burden worldwide. Current limitations in diagnostic and treatment strategies, along with inadequate coverage of preventive vaccines in low- and middle-income countries, hinder the progress toward the World Health Organization (WHO) HPV prevention and control targets set for 2030. In response to these challenges, extensive research in structural virology has explored the properties of HPV proteins, yielding crucial insights into the mechanisms of HPV infection that are important for the development of prevention and therapeutic strategies. This review highlights recent advances in understanding the structures of HPV proteins and discusses achievements and future opportunities for HPV vaccine development.
Collapse
Affiliation(s)
- Feng Han
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Xin-Ying Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ming-Xia Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| | - Shao-Wei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Zhan Y, Zhang Z, Yin A, Su X, Tang N, Chen Y, Zhang Z, Chen W, Wang J, Wang W. RBBP4: A novel diagnostic and prognostic biomarker for non-small-cell lung cancer correlated with autophagic cell death. Cancer Med 2024; 13:e70090. [PMID: 39109577 PMCID: PMC11304277 DOI: 10.1002/cam4.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/07/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) often presents at later stages, typically associated with poor prognosis. Autophagy genes play a role in the progression of tumors. This study investigated the clinical relevance, prognostic value, and biological significance of RBBP4 in NSCLC. METHODS We assessed RBBP4 expression using the GSE30219 and TCGA NSCLC datasets and NSCLC cells, exploring its links with clinical outcomes, tumor immunity, and autophagy genes through bioinformatics analysis after transcriptome sequencing of RBBP4-knockdown and control PC9 cells. We identified differentially expressed genes (DEGs) and conducted Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and protein-protein interaction network analyses. The significance of autophagy-related DEGs was evaluated for diagnosis and prognosis using the GSE30219 dataset. Experiments both in vivo and in vitro explored the biological mechanisms behind RBBP4-mediated autophagic cell death in NSCLC. RESULTS RBBP4 overexpression in NSCLC correlates with a poorer prognosis. Eighteen types of immune cell were significantly enriched in cultures that had low RBBP4 expression compared high expression. DEGs associated with RBBP4 are enriched in autophagy pathways. Transcriptomic profiling of the PC9 cell line identified autophagy-related DEGs associated with RBBP4 that exhibited differential expression in NSCLC, suggesting prognostic applications. In vitro experiments demonstrated that RBBP4 knockdown induced autophagy and apoptosis in PC9 cells, promoting cell death, which was inhibited by 3-MA. In vivo, targeted siRNA against RBBP4 significantly reduced tumor development in PC9 cell-injected nude mice, elevating autophagy-related protein levels and inducing apoptosis and necrosis in tumor tissues. CONCLUSION In NSCLC, RBBP4 upregulation correlates with poor prognosis and altered immunity. Its knockdown induces autophagic cell death in NSCLC cells. These results indicate RBBP4 as a potential NSCLC diagnostic marker and its autophagy modulation as a prospective therapeutic target.
Collapse
Affiliation(s)
- Yajing Zhan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zhiqian Zhang
- Department of Clinical Laboratory CenterShaoxing People's Hospital (Shaoxing Hospital)ShaoxingZhejiangChina
| | - Ankang Yin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Xiyang Su
- Department of Laboratory MedicineThe Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Nan Tang
- Department of Clinical LaboratoryPeople's Hospital of Wangcheng District ChangshaChangshaHunanChina
| | - Yi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zebin Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Wei Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Juan Wang
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Wei Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| |
Collapse
|
8
|
Barrett AK, Shingare MR, Rechtsteiner A, Rodriguez KM, Le QN, Wijeratne TU, Mitchell CE, Membreno MW, Rubin SM, Müller GA. HDAC activity is dispensable for repression of cell-cycle genes by DREAM and E2F:RB complexes. Nat Commun 2024; 15:4450. [PMID: 38789411 PMCID: PMC11126580 DOI: 10.1038/s41467-024-48724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) play a crucial role in transcriptional regulation and are implicated in various diseases, including cancer. They are involved in histone tail deacetylation and canonically linked to transcriptional repression. Previous studies suggested that HDAC recruitment to cell-cycle gene promoters via the retinoblastoma (RB) protein or the DREAM complex through SIN3B is essential for G1/S and G2/M gene repression during cell-cycle arrest and exit. Here we investigate the interplay among DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. Knockout of SIN3B does not globally derepress cell-cycle genes in non-proliferating HCT116 and C2C12 cells. Loss of SIN3A/B moderately upregulates several cell-cycle genes in HCT116 cells but does so independently of DREAM/RB. HDAC inhibition does not induce general upregulation of RB/DREAM target genes in arrested transformed or non-transformed cells. Our findings suggest that E2F:RB and DREAM complexes can repress cell-cycle genes without relying on HDAC activity.
Collapse
Affiliation(s)
- Alison K Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Manisha R Shingare
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Kelsie M Rodriguez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Quynh N Le
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Corbin E Mitchell
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Miles W Membreno
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
9
|
Zhan Y, Yin A, Su X, Tang N, Zhang Z, Chen Y, Wang W, Wang J. Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review). Int J Mol Med 2024; 53:48. [PMID: 38577935 PMCID: PMC10999228 DOI: 10.3892/ijmm.2024.5372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Histone chaperones serve a pivotal role in maintaining human physiological processes. They interact with histones in a stable manner, ensuring the accurate and efficient execution of DNA replication, repair and transcription. Retinoblastoma binding protein (RBBP)4 and RBBP7 represent a crucial pair of histone chaperones, which not only govern the molecular behavior of histones H3 and H4, but also participate in the functions of several protein complexes, such as polycomb repressive complex 2 and nucleosome remodeling and deacetylase, thereby regulating the cell cycle, histone modifications, DNA damage and cell fate. A strong association has been indicated between RBBP4/7 and some major human diseases, such as cancer, age‑related memory loss and infectious diseases. The present review assesses the molecular mechanisms of RBBP4/7 in regulating cellular biological processes, and focuses on the variations in RBBP4/7 expression and their potential mechanisms in various human diseases, thus providing new insights for their diagnosis and treatment.
Collapse
Affiliation(s)
- Yajing Zhan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Ankang Yin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Xiyang Su
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Nan Tang
- Department of Clinical Laboratory, Wangcheng District People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Zebin Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Yi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Wei Wang
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
- Department of Clinical Laboratory, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Juan Wang
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
- Department of Clinical Laboratory, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
10
|
Chauhan M, Arshi SA, Narayanan N, Arfin HU, Sharma A. A mechanistic insight on how Compromised Hydrolysis of Triacylglycerol 7 (CHT7) restrains the involvement of it's CXC domain from quiescence repression. Int J Biol Macromol 2024; 265:130844. [PMID: 38484809 DOI: 10.1016/j.ijbiomac.2024.130844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
CHT7 is a regulator of quiescence repression in Chlamydomonas reinhardtii. Initially, CHT7's repression activity was thought to be managed by its DNA-binding CXC domain. Later, it was found that the CHT7-CXC domain is dispensable for CHT7's activities. Rather, CHT7's predicted protein domains were proposed to be involved in regulation activities by binding to other repressors in the cell. Yet, it remains unclear why and how CHT7 refrains its CXC domain from participating in any transcriptional activities. The question becomes more intriguing, since CXC binding regions are available in promoter regions of some of the misregulated genes in CHT7 mutant (cht7). Through biophysical experiments and molecular dynamics approaches, we studied the DNA recognition behavior of CHT7-CXC. The results indicate that this domain possesses sequence selectivity due to the differential binding abilities of its subdomains. Further, to understand if the case is that CXC loses its DNA binding capabilities in the vicinity of other repressors, we examined CHT7-CXC's DNA binding stability under the spatial constraint conditions created through fusing CHT7-CXC with AsLOV2. The results show limited ability of CHT7-CXC to withstand steric forces and provide insights to why and how algal cells may hold back CHT7-CXC's indulgence in quiescence repression. CLASSIFICATIONS: Biological Sciences, Biophysics and Computational Biology.
Collapse
Affiliation(s)
- Manisha Chauhan
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Syeda Amna Arshi
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, NCR-Cluster Faridabad, Haryana 121001, India
| | - Haseeb Ul Arfin
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Amit Sharma
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
11
|
Hoareau M, Rincheval-Arnold A, Gaumer S, Guénal I. DREAM a little dREAM of DRM: Model organisms and conservation of DREAM-like complexes: Model organisms uncover the mechanisms of DREAM-mediated transcription regulation. Bioessays 2024; 46:e2300125. [PMID: 38059789 DOI: 10.1002/bies.202300125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
DREAM complexes are transcriptional regulators that control the expression of hundreds to thousands of target genes involved in the cell cycle, quiescence, differentiation, and apoptosis. These complexes contain many subunits that can vary according to the considered target genes. Depending on their composition and the nature of the partners they recruit, DREAM complexes control gene expression through diverse mechanisms, including chromatin remodeling, transcription cofactor and factor recruitment at various genomic binding sites. This complexity is particularly high in mammals. Since the discovery of the first dREAM complex (drosophila Rb, E2F, and Myb) in Drosophila melanogaster, model organisms such as Caenorhabditis elegans, and plants allowed a deeper understanding of the processes regulated by DREAM-like complexes. Here, we review the conservation of these complexes. We discuss the contribution of model organisms to the study of DREAM-mediated transcriptional regulatory mechanisms and their relevance in characterizing novel activities of DREAM complexes.
Collapse
Affiliation(s)
- Marion Hoareau
- Université Paris-Saclay, UVSQ, LGBC, Versailles, France
- Université PSL, EPHE, Paris, France
| | | | | | | |
Collapse
|
12
|
Quiroz EJ, Kim S, Gautam LK, Borok Z, Kintner C, Ryan AL. RBL2 represses the transcriptional activity of Multicilin to inhibit multiciliogenesis. Cell Death Dis 2024; 15:81. [PMID: 38253523 PMCID: PMC10803754 DOI: 10.1038/s41419-024-06440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
A core pathophysiologic feature underlying many respiratory diseases is multiciliated cell dysfunction, leading to inadequate mucociliary clearance. Due to the prevalence and highly variable etiology of mucociliary dysfunction in respiratory diseases, it is critical to understand the mechanisms controlling multiciliogenesis that may be targeted to restore functional mucociliary clearance. Multicilin, in a complex with E2F4, is necessary and sufficient to drive multiciliogenesis in airway epithelia, however this does not apply to all cell types, nor does it occur evenly across all cells in the same cell population. In this study we further investigated how co-factors regulate the ability of Multicilin to drive multiciliogenesis. Combining data in mouse embryonic fibroblasts and human bronchial epithelial cells, we identify RBL2 as a repressor of the transcriptional activity of Multicilin. Knockdown of RBL2 in submerged cultures or phosphorylation of RBL2 in response to apical air exposure, in the presence of Multicilin, allows multiciliogenesis to progress. These data demonstrate a dynamic interaction between RBL2 and Multicilin that regulates the capacity of cells to differentiate and multiciliate. Identification of this mechanism has important implications for facilitating MCC differentiation in diseases with impaired mucociliary clearance.
Collapse
Affiliation(s)
- Erik J Quiroz
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52240, USA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Seongjae Kim
- The Salk Institute of Biological Studies, La Jolla, CA, 92093, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA, 92037, USA
| | - Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52240, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA, 92037, USA
| | | | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52240, USA.
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
13
|
Folliero V, Dell’Annunziata F, Chianese A, Morone MV, Mensitieri F, Di Spirito F, Mollo A, Amato M, Galdiero M, Dal Piaz F, Pagliano P, Rinaldi L, Franci G. Epigenetic and Genetic Keys to Fight HPV-Related Cancers. Cancers (Basel) 2023; 15:5583. [PMID: 38067286 PMCID: PMC10705756 DOI: 10.3390/cancers15235583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2024] Open
Abstract
Cervical cancer ranks as the fourth most prevalent cancer among women globally, with approximately 600,000 new cases being diagnosed each year. The principal driver of cervical cancer is the human papillomavirus (HPV), where viral oncoproteins E6 and E7 undertake the role of driving its carcinogenic potential. Despite extensive investigative efforts, numerous facets concerning HPV infection, replication, and pathogenesis remain shrouded in uncertainty. The virus operates through a variety of epigenetic mechanisms, and the epigenetic signature of HPV-related tumors is a major bottleneck in our understanding of the disease. Recent investigations have unveiled the capacity of viral oncoproteins to influence epigenetic changes within HPV-related tumors, and conversely, these tumors exert an influence on the surrounding epigenetic landscape. Given the escalating occurrence of HPV-triggered tumors and the deficiency of efficacious treatments, substantial challenges emerge. A promising avenue to address this challenge lies in epigenetic modulators. This review aggregates and dissects potential epigenetic modulators capable of combatting HPV-associated infections and diseases. By delving into these modulators, novel avenues for therapeutic interventions against HPV-linked cancers have come to the fore.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Federica Di Spirito
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Antonio Mollo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Massimo Amato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| |
Collapse
|
14
|
Barrett A, Shingare MR, Rechtsteiner A, Wijeratne TU, Rodriguez KM, Rubin SM, Müller GA. HDAC activity is dispensable for repression of cell-cycle genes by DREAM and E2F:RB complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564489. [PMID: 37961464 PMCID: PMC10634886 DOI: 10.1101/2023.10.28.564489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Histone deacetylases (HDACs) are pivotal in transcriptional regulation, and their dysregulation has been associated with various diseases including cancer. One of the critical roles of HDAC-containing complexes is the deacetylation of histone tails, which is canonically linked to transcriptional repression. Previous research has indicated that HDACs are recruited to cell-cycle gene promoters through the RB protein or the DREAM complex via SIN3B and that HDAC activity is essential for repressing G1/S and G2/M cell-cycle genes during cell-cycle arrest and exit. In this study, we sought to explore the interdependence of DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. We found that genetic knockout of SIN3B did not lead to derepression of cell-cycle genes in non-proliferating HCT116 and C2C12 cells. A combined loss of SIN3A and SIN3B resulted in a moderate upregulation in mRNA expression of several cell-cycle genes in arrested HCT116 cells, however, these effects appeared to be independent of DREAM or RB. Furthermore, HDAC inhibition did not induce a general upregulation of RB and DREAM target gene expression in arrested transformed or non-transformed cells. Our findings provide evidence that E2F:RB and DREAM complexes can repress cell-cycle genes without reliance on HDAC activity.
Collapse
Affiliation(s)
- Alison Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Current Affiliation: Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
| | - Manisha R. Shingare
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Tilini U. Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Current Affiliation: Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
| | - Kelsie M. Rodriguez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Seth M. Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Gerd A. Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
15
|
Ananthapadmanabhan V, Shows KH, Dickinson AJ, Litovchick L. Insights from the protein interaction Universe of the multifunctional "Goldilocks" kinase DYRK1A. Front Cell Dev Biol 2023; 11:1277537. [PMID: 37900285 PMCID: PMC10600473 DOI: 10.3389/fcell.2023.1277537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Human Dual specificity tyrosine (Y)-Regulated Kinase 1A (DYRK1A) is encoded by a dosage-dependent gene located in the Down syndrome critical region of human chromosome 21. The known substrates of DYRK1A include proteins involved in transcription, cell cycle control, DNA repair and other processes. However, the function and regulation of this kinase is not fully understood, and the current knowledge does not fully explain the dosage-dependent function of this kinase. Several recent proteomic studies identified DYRK1A interacting proteins in several human cell lines. Interestingly, several of known protein substrates of DYRK1A were undetectable in these studies, likely due to a transient nature of the kinase-substrate interaction. It is possible that the stronger-binding DYRK1A interacting proteins, many of which are poorly characterized, are involved in regulatory functions by recruiting DYRK1A to the specific subcellular compartments or distinct signaling pathways. Better understanding of these DYRK1A-interacting proteins could help to decode the cellular processes regulated by this important protein kinase during embryonic development and in the adult organism. Here, we review the current knowledge of the biochemical and functional characterization of the DYRK1A protein-protein interaction network and discuss its involvement in human disease.
Collapse
Affiliation(s)
- Varsha Ananthapadmanabhan
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
| | - Kathryn H. Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Amanda J. Dickinson
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Larisa Litovchick
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Richmond, VA, United States
| |
Collapse
|
16
|
Kumar A, Thirumurugan K. Understanding cellular senescence: pathways involved, therapeutics and longevity aiding. Cell Cycle 2023; 22:2324-2345. [PMID: 38031713 PMCID: PMC10730163 DOI: 10.1080/15384101.2023.2287929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/15/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
A normal somatic cell undergoes cycles of finite cellular divisions. The presence of surveillance checkpoints arrests cell division in response to stress inducers: oxidative stress from excess free radicals, oncogene-induced abnormalities, genotoxic stress, and telomere attrition. When facing such stress when undergoing these damages, there is a brief pause in the cell cycle to enable repair mechanisms. Also, the nature of stress determines whether the cell goes for repair or permanent arrest. As the cells experience transient or permanent stress, they subsequently choose the quiescence or senescence stage, respectively. Quiescence is an essential stage that allows the arrested/damaged cells to go through appropriate repair mechanisms and then revert to the mainstream cell cycle. However, senescent cells are irreversible and accumulate with age, resulting in inflammation and various age-related disorders. In this review, we focus on senescence-associated pathways and therapeutics understanding cellular senescence as a cascade that leads to aging, while discussing the recent details on the molecular pathways involved in regulating senescence and the benefits of therapeutic strategies against accumulated senescent cells and their secretions.
Collapse
Affiliation(s)
- Ashish Kumar
- Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Kavitha Thirumurugan
- Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
17
|
Quiroz EJ, Kim S, Gautam LK, Borok Z, Kintner C, Ryan AL. RBL2 represses the transcriptional activity of Multicilin to inhibit multiciliogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551992. [PMID: 37577572 PMCID: PMC10418160 DOI: 10.1101/2023.08.04.551992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A core pathophysiologic feature underlying many respiratory diseases is multiciliated cell dysfunction, leading to inadequate mucociliary clearance. Due to the prevalence and highly variable etiology of mucociliary dysfunction in respiratory diseases, it is critical to understand the mechanisms controlling multiciliogenesis that may be targeted to restore functional mucociliary clearance. Multicilin, in a complex with E2F4, is necessary and sufficient to drive multiciliogenesis in airway epithelia, however this does not apply to all cell types, nor does it occur evenly across all cells in the same cell population. In this study we further investigated how co-factors regulate the ability of Multicilin to drive multiciliogenesis. Combining data in mouse embryonic fibroblasts and human bronchial epithelial cells, we identify RBL2 as a repressor of the transcriptional activity of Multicilin. Knockdown of RBL2 in submerged cultures or phosphorylation of RBL2 in response to apical air exposure, in the presence of Multicilin, allows multiciliogenesis to progress. These data demonstrate a dynamic interaction between RBL2 and Multicilin that regulates the capacity of cells to differentiate and multiciliate. Identification of this mechanism has important implications for facilitating MCC differentiation in diseases with impaired mucociliary clearance.
Collapse
Affiliation(s)
- Erik J. Quiroz
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033
| | - Seongjae Kim
- The Salk Institute of Biological Studies, La Jolla, CA 92093
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA 92037
| | - Lalit K. Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, San Diego, CA 92037
| | | | - Amy L. Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
18
|
Bujarrabal-Dueso A, Sendtner G, Meyer DH, Chatzinikolaou G, Stratigi K, Garinis GA, Schumacher B. The DREAM complex functions as conserved master regulator of somatic DNA-repair capacities. Nat Struct Mol Biol 2023; 30:475-488. [PMID: 36959262 PMCID: PMC10113156 DOI: 10.1038/s41594-023-00942-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/25/2023]
Abstract
The DNA-repair capacity in somatic cells is limited compared with that in germ cells. It has remained unknown whether not only lesion-type-specific, but overall repair capacities could be improved. Here we show that the DREAM repressor complex curbs the DNA-repair capacities in somatic tissues of Caenorhabditis elegans. Mutations in the DREAM complex induce germline-like expression patterns of multiple mechanisms of DNA repair in the soma. Consequently, DREAM mutants confer resistance to a wide range of DNA-damage types during development and aging. Similarly, inhibition of the DREAM complex in human cells boosts DNA-repair gene expression and resistance to distinct DNA-damage types. DREAM inhibition leads to decreased DNA damage and prevents photoreceptor loss in progeroid Ercc1-/- mice. We show that the DREAM complex transcriptionally represses essentially all DNA-repair systems and thus operates as a highly conserved master regulator of the somatic limitation of DNA-repair capacities.
Collapse
Affiliation(s)
- Arturo Bujarrabal-Dueso
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Georg Sendtner
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - David H Meyer
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
19
|
Conti MM, Li R, Narváez Ramos MA, Zhu LJ, Fazzio TG, Benanti JA. Phosphosite Scanning reveals a complex phosphorylation code underlying CDK-dependent activation of Hcm1. Nat Commun 2023; 14:310. [PMID: 36658165 PMCID: PMC9852432 DOI: 10.1038/s41467-023-36035-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Ordered cell cycle progression is coordinated by cyclin dependent kinases (CDKs). CDKs often phosphorylate substrates at multiple sites clustered within disordered regions. However, for most substrates, it is not known which phosphosites are functionally important. We developed a high-throughput approach, Phosphosite Scanning, that tests the importance of each phosphosite within a multisite phosphorylated domain. We show that Phosphosite Scanning identifies multiple combinations of phosphosites that can regulate protein function and reveals specific phosphorylations that are required for phosphorylation at additional sites within a domain. We applied this approach to the yeast transcription factor Hcm1, a conserved regulator of mitotic genes that is critical for accurate chromosome segregation. Phosphosite Scanning revealed a complex CDK-regulatory circuit that mediates Cks1-dependent phosphorylation of key activating sites in vivo. These results illuminate the mechanism of Hcm1 activation by CDK and establish Phosphosite Scanning as a powerful tool for decoding multisite phosphorylated domains.
Collapse
Affiliation(s)
- Michelle M Conti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Michelle A Narváez Ramos
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jennifer A Benanti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
20
|
Evolution of SLiM-mediated hijack functions in intrinsically disordered viral proteins. Essays Biochem 2022; 66:945-958. [DOI: 10.1042/ebc20220059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/07/2022]
Abstract
Abstract
Viruses and their hosts are involved in an ‘arms race’ where they continually evolve mechanisms to overcome each other. It has long been proposed that intrinsic disorder provides a substrate for the evolution of viral hijack functions and that short linear motifs (SLiMs) are important players in this process. Here, we review evidence in support of this tenet from two model systems: the papillomavirus E7 protein and the adenovirus E1A protein. Phylogenetic reconstructions reveal that SLiMs appear and disappear multiple times across evolution, providing evidence of convergent evolution within individual viral phylogenies. Multiple functionally related SLiMs show strong coevolution signals that persist across long distances in the primary sequence and occur in unrelated viral proteins. Moreover, changes in SLiMs are associated with changes in phenotypic traits such as host range and tropism. Tracking viral evolutionary events reveals that host switch events are associated with the loss of several SLiMs, suggesting that SLiMs are under functional selection and that changes in SLiMs support viral adaptation. Fine-tuning of viral SLiM sequences can improve affinity, allowing them to outcompete host counterparts. However, viral SLiMs are not always competitive by themselves, and tethering of two suboptimal SLiMs by a disordered linker may instead enable viral hijack. Coevolution between the SLiMs and the linker indicates that the evolution of disordered regions may be more constrained than previously thought. In summary, experimental and computational studies support a role for SLiMs and intrinsic disorder in viral hijack functions and in viral adaptive evolution.
Collapse
|
21
|
León-Ruiz JA, Cruz Ramírez A. Predicted landscape of RETINOBLASTOMA-RELATED LxCxE-mediated interactions across the Chloroplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1507-1524. [PMID: 36305297 DOI: 10.1111/tpj.16012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 05/16/2023]
Abstract
The colonization of land by a single streptophyte algae lineage some 450 million years ago has been linked to multiple key innovations such as three-dimensional growth, alternation of generations, the presence of stomata, as well as innovations inherent to the birth of major plant lineages, such as the origins of vascular tissues, roots, seeds and flowers. Multicellularity, which evolved multiple times in the Chloroplastida coupled with precise spatiotemporal control of proliferation and differentiation were instrumental for the evolution of these traits. RETINOBLASTOMA-RELATED (RBR), the plant homolog of the metazoan Retinoblastoma protein (pRB), is a highly conserved and multifunctional core cell cycle regulator that has been implicated in the evolution of multicellularity in the green lineage as well as in plant multicellularity-related processes such as proliferation, differentiation, stem cell regulation and asymmetric cell division. RBR fulfills these roles through context-specific protein-protein interactions with proteins containing the Leu-x-Cys-x-Glu (LxCxE) short-linear motif (SLiM); however, how RBR-LxCxE interactions have changed throughout major innovations in the Viridiplantae kingdom is a question that remains unexplored. Here, we employ an in silico evo-devo approach to predict and analyze potential RBR-LxCxE interactions in different representative species of key Chloroplastida lineages, providing a valuable resource for deciphering RBR-LxCxE multiple functions. Furthermore, our analyses suggest that RBR-LxCxE interactions are an important component of RBR functions and that interactions with chromatin modifiers/remodelers, DNA replication and repair machinery are highly conserved throughout the Viridiplantae, while LxCxE interactions with transcriptional regulators likely diversified throughout the water-to-land transition.
Collapse
Affiliation(s)
- Jesús A León-Ruiz
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| | - Alfredo Cruz Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato, 36821, Guanajuato, Mexico
| |
Collapse
|
22
|
Fischer M, Schade AE, Branigan TB, Müller GA, DeCaprio JA. Coordinating gene expression during the cell cycle. Trends Biochem Sci 2022; 47:1009-1022. [PMID: 35835684 DOI: 10.1016/j.tibs.2022.06.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023]
Abstract
Cell cycle-dependent gene transcription is tightly controlled by the retinoblastoma (RB):E2F and DREAM complexes, which repress all cell cycle genes during quiescence. Cyclin-dependent kinase (CDK) phosphorylation of RB and DREAM allows for the expression of two gene sets. The first set of genes, with peak expression in G1/S, is activated by E2F transcription factors (TFs) and is required for DNA synthesis. The second set, with maximum expression during G2/M, is required for mitosis and is coordinated by the MuvB complex, together with B-MYB and Forkhead box M1 (FOXM1). In this review, we summarize the key findings that established the distinct control mechanisms regulating G1/S and G2/M gene expression in mammals and discuss recent advances in the understanding of the temporal control of these genes.
Collapse
Affiliation(s)
- Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany.
| | - Amy E Schade
- Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Timothy B Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Putta S, Alvarez L, Lüdtke S, Sehr P, Müller GA, Fernandez SM, Tripathi S, Lewis J, Gibson TJ, Chemes LB, Rubin SM. Structural basis for tunable affinity and specificity of LxCxE-dependent protein interactions with the retinoblastoma protein family. Structure 2022; 30:1340-1353.e3. [PMID: 35716663 PMCID: PMC9444907 DOI: 10.1016/j.str.2022.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
The retinoblastoma protein (Rb) and its homologs p107 and p130 are critical regulators of gene expression during the cell cycle and are commonly inactivated in cancer. Rb proteins use their "pocket domain" to bind an LxCxE sequence motif in other proteins, many of which function with Rb proteins to co-regulate transcription. Here, we present binding data and crystal structures of the p107 pocket domain in complex with LxCxE peptides from the transcriptional co-repressor proteins HDAC1, ARID4A, and EID1. Our results explain why Rb and p107 have weaker affinity for cellular LxCxE proteins compared with the E7 protein from human papillomavirus, which has been used as the primary model for understanding LxCxE motif interactions. Our structural and mutagenesis data also identify and explain differences in Rb and p107 affinities for some LxCxE-containing sequences. Our study provides new insights into how Rb proteins bind their cell partners with varying affinity and specificity.
Collapse
Affiliation(s)
- Sivasankar Putta
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Lucia Alvarez
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, Buenos Aires CP1650, Argentina
| | - Stephan Lüdtke
- Belyntic GmbH, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Peter Sehr
- Chemical Biology Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Samantha M Fernandez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Joe Lewis
- Chemical Biology Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Lucia B Chemes
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, Buenos Aires CP1650, Argentina.
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
24
|
Deboever E, Fistrovich A, Hulme C, Dunckley T. The Omnipresence of DYRK1A in Human Diseases. Int J Mol Sci 2022; 23:ijms23169355. [PMID: 36012629 PMCID: PMC9408930 DOI: 10.3390/ijms23169355] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 01/13/2023] Open
Abstract
The increasing population will challenge healthcare, particularly because the worldwide population has never been older. Therapeutic solutions to age-related disease will be increasingly critical. Kinases are key regulators of human health and represent promising therapeutic targets for novel drug candidates. The dual-specificity tyrosine-regulated kinase (DYRKs) family is of particular interest and, among them, DYRK1A has been implicated ubiquitously in varied human diseases. Herein, we focus on the characteristics of DYRK1A, its regulation and functional role in different human diseases, which leads us to an overview of future research on this protein of promising therapeutic potential.
Collapse
Affiliation(s)
- Estelle Deboever
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Correspondence: (E.D.); (T.D.)
| | - Alessandra Fistrovich
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Christopher Hulme
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Travis Dunckley
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Correspondence: (E.D.); (T.D.)
| |
Collapse
|
25
|
Goetsch PD, Strome S. DREAM interrupted: severing LIN-35-MuvB association in Caenorhabditis elegans impairs DREAM function but not its chromatin localization. Genetics 2022; 221:iyac073. [PMID: 35554539 PMCID: PMC9252284 DOI: 10.1093/genetics/iyac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
The mammalian pocket protein family, which includes the Retinoblastoma protein (pRb) and Rb-like pocket proteins p107 and p130, regulates entry into and exit from the cell cycle by repressing cell cycle gene expression. Although pRb plays a dominant role in mammalian systems, p107 and p130 are the ancestral pocket proteins. The Rb-like pocket proteins interact with the highly conserved 5-subunit MuvB complex and an E2F-DP transcription factor heterodimer, forming the DREAM (for Dp, Rb-like, E2F, and MuvB) complex. DREAM complex assembly on chromatin culminates in repression of target genes mediated by the MuvB subcomplex. Here, we examined how the Rb-like pocket protein contributes to DREAM formation and function by disrupting the interaction between the sole Caenorhabditis elegans pocket protein LIN-35 and the MuvB subunit LIN-52 using CRISPR/Cas9 targeted mutagenesis. A triple alanine substitution of LIN-52's LxCxE motif severed LIN-35-MuvB association and caused classical DREAM mutant phenotypes, including synthetic multiple vulvae, high-temperature arrest, and ectopic expression of germline genes in the soma. However, RNA-sequencing revealed limited upregulation of DREAM target genes when LIN-35-MuvB association was severed, as compared with gene upregulation following LIN-35 loss. Based on chromatin immunoprecipitation, disrupting LIN-35-MuvB association did not affect the chromatin localization of E2F-DP, LIN-35, or MuvB components. In a previous study, we showed that in worms lacking LIN-35, E2F-DP, and MuvB chromatin occupancy was reduced genome-wide. With LIN-35 present but unable to associate with MuvB, our study suggests that the E2F-DP-LIN-35 interaction promotes E2F-DP's chromatin localization, which we hypothesize supports MuvB chromatin occupancy indirectly through DNA. Altogether, this study highlights how the pocket protein's association with MuvB supports DREAM function but is not required for DREAM's chromatin occupancy.
Collapse
Affiliation(s)
- Paul D Goetsch
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
26
|
Deep Sequencing of HPV16 E6 Region Reveals Unique Mutation Pattern of HPV16 and Predicts Cervical Cancer. Microbiol Spectr 2022; 10:e0140122. [PMID: 35735983 PMCID: PMC9430801 DOI: 10.1128/spectrum.01401-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic diversity of human papillomavirus (HPV) 16 within cervical cells and tissue is usually associated with persistent virus infection and precancerous lesions. To explore the HPV16 mutation patterns contributing to the cervical cancer (CC) progression, a total of 199 DNA samples from HPV16-positive cervical specimens were collected and divided into high‐grade squamous intraepithelial lesion (HSIL) and the non‐HSIL(NHSIL) groups. The HPV16 E6 region (nt 7125-7566) was sequenced using next-generation sequencing. Based on HPV16 E6 amino acid mutation features selected by Lasso algorithm, four machine learning approaches were used to establish HSIL prediction models. The receiver operating characteristic was used to evaluate the model performance in both training and validation cohorts. Western blot was used to detect the degradation of p53 by the E6 variants. Based on the 13 significant mutation features, the logistic regression (LR) model demonstrated the best predictive performance in the training cohort (AUC = 0.944, 95% CI: 0.913–0.976), and also achieved a high discriminative ability in the independent validation cohort (AUC = 0.802, 95% CI: 0.601–1.000). Among these features, the E6 D32E and H85Y variants have higher ability to degrade p53 compared to the E6 wildtype (P < 0.05). In conclusion, our study provides evidence for the first time that HPV16 E6 sequences contain vital mutation features in predicting HSIL. Moreover, the D32E and H85Y variants of E6 exhibited a significantly higher ability to degrade p53, which may play a vital role in the development of CC. IMPORTANCE The study provides evidence for the first time that HPV16 E6 sequences contain vital mutation features in predicting the high‐grade squamous intraepithelial lesion and can reduce even more unneeded colposcopies without a loss of sensitivity to detect cervical cancer. Moreover, the D32E and H85Y variants of E6 exhibited a significantly higher ability to degrade p53, which may play a vital role in the development of cervical cancer.
Collapse
|
27
|
Inci N, Kamali D, Akyildiz EO, Tahir Turanli E, Bozaykut P. Translation of Cellular Senescence to Novel Therapeutics: Insights From Alternative Tools and Models. FRONTIERS IN AGING 2022; 3:828058. [PMID: 35821852 PMCID: PMC9261353 DOI: 10.3389/fragi.2022.828058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/12/2022] [Indexed: 01/10/2023]
Abstract
Increasing chronological age is the greatest risk factor for human diseases. Cellular senescence (CS), which is characterized by permanent cell-cycle arrest, has recently emerged as a fundamental mechanism in developing aging-related pathologies. During the aging process, senescent cell accumulation results in senescence-associated secretory phenotype (SASP) which plays an essential role in tissue dysfunction. Although discovered very recently, senotherapeutic drugs have been already involved in clinical studies. This review gives a summary of the molecular mechanisms of CS and its role particularly in the development of cardiovascular diseases (CVD) as the leading cause of death. In addition, it addresses alternative research tools including the nonhuman and human models as well as computational techniques for the discovery of novel therapies. Finally, senotherapeutic approaches that are mainly classified as senolytics and senomorphics are discussed.
Collapse
Affiliation(s)
- Nurcan Inci
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Dilanur Kamali
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Erdogan Oguzhan Akyildiz
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Eda Tahir Turanli
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Perinur Bozaykut
- Graduate School of Natural and Applied Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
28
|
Müller GA, Asthana A, Rubin SM. Structure and function of MuvB complexes. Oncogene 2022; 41:2909-2919. [PMID: 35468940 PMCID: PMC9201786 DOI: 10.1038/s41388-022-02321-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/08/2022]
Abstract
Proper progression through the cell-division cycle is critical to normal development and homeostasis and is necessarily misregulated in cancer. The key to cell-cycle regulation is the control of two waves of transcription that occur at the onset of DNA replication (S phase) and mitosis (M phase). MuvB complexes play a central role in the regulation of these genes. When cells are not actively dividing, the MuvB complex DREAM represses G1/S and G2/M genes. Remarkably, MuvB also forms activator complexes together with the oncogenic transcription factors B-MYB and FOXM1 that are required for the expression of the mitotic genes in G2/M. Despite this essential role in the control of cell division and the relationship to cancer, it has been unclear how MuvB complexes inhibit and stimulate gene expression. Here we review recent discoveries of MuvB structure and molecular interactions, including with nucleosomes and other chromatin-binding proteins, which have led to the first mechanistic models for the biochemical function of MuvB complexes.
Collapse
Affiliation(s)
- Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Anushweta Asthana
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
29
|
Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ 2022; 29:946-960. [PMID: 35361964 PMCID: PMC9090780 DOI: 10.1038/s41418-022-00988-z] [Citation(s) in RCA: 553] [Impact Index Per Article: 184.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
The retinoblastoma protein RB and the transcription factor p53 are central tumor suppressors. They are often found inactivated in various tumor types. Both proteins play central roles in regulating the cell division cycle. RB forms complexes with the E2F family of transcription factors and downregulates numerous genes. Among the RB-E2F target genes, a large number code for key cell cycle regulators. Their transcriptional repression by the RB-E2F complex is released through phosphorylation of RB, leading to expression of the cell cycle regulators. The release from repression can be prevented by the cyclin-dependent kinase inhibitor p21/CDKN1A. The CDKN1A gene is transcriptionally activated by p53. Taken together, these elements constitute the p53-p21-RB signaling pathway. Following activation of p53, for example by viral infection or induction of DNA damage, p21 expression is upregulated. High levels of p21 then result in RB-E2F complex formation and downregulation of a large number of cell cycle genes. Thus, p53-dependent transcriptional repression is indirect. The reduced expression of the many regulators leads to cell cycle arrest. Examination of the p53-p21-RB targets and genes controlled by the related p53-p21-DREAM signaling pathway reveals that there is a large overlap of the two groups. Mechanistically this can be explained by replacing RB-E2F complexes with the DREAM transcriptional repressor complex at E2F sites in target promoters. In contrast to RB-E2F, DREAM can downregulate genes also through CHR transcription factor binding sites. This results in a distinct gene set controlled by p53-p21-DREAM signaling independent of RB-E2F. Furthermore, RB has non-canonical functions without binding to E2F and DNA. Such a role of RB supporting DREAM formation may be exerted by the RB-SKP2-p27-cyclin A/E-CDK2-p130-DREAM link. In the current synopsis, the mechanism of regulation by p53-p21-RB signaling is assessed and the overlap with p53-p21-DREAM signaling is examined. ![]()
Collapse
Affiliation(s)
- Kurt Engeland
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstrasse 14, 04103, Leipzig, Germany.
| |
Collapse
|
30
|
Flores M, Goodrich DW. Retinoblastoma Protein Paralogs and Tumor Suppression. Front Genet 2022; 13:818719. [PMID: 35368709 PMCID: PMC8971665 DOI: 10.3389/fgene.2022.818719] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
The retinoblastoma susceptibility gene (RB1) is the first tumor suppressor gene discovered and a prototype for understanding regulatory networks that function in opposition to oncogenic stimuli. More than 3 decades of research has firmly established a widespread and prominent role for RB1 in human cancer. Yet, this gene encodes but one of three structurally and functionally related proteins that comprise the pocket protein family. A central question in the field is whether the additional genes in this family, RBL1 and RBL2, are important tumor suppressor genes. If so, how does their tumor suppressor activity overlap or differ from RB1. Here we revisit these questions by reviewing relevant data from human cancer genome sequencing studies that have been rapidly accumulating in recent years as well as pertinent functional studies in genetically engineered mice. We conclude that RBL1 and RBL2 do have important tumor suppressor activity in some contexts, but RB1 remains the dominant tumor suppressor in the family. Given their similarities, we speculate on why RB1 tumor suppressor activity is unique.
Collapse
Affiliation(s)
| | - David W. Goodrich
- Roswell Park Comprehensive Cancer Center, Department of Pharmacology and Therapeutics, Buffalo, NY, United States
| |
Collapse
|
31
|
Asthana A, Ramanan P, Hirschi A, Guiley KZ, Wijeratne TU, Shelansky R, Doody MJ, Narasimhan H, Boeger H, Tripathi S, Müller GA, Rubin SM. The MuvB complex binds and stabilizes nucleosomes downstream of the transcription start site of cell-cycle dependent genes. Nat Commun 2022; 13:526. [PMID: 35082292 PMCID: PMC8792015 DOI: 10.1038/s41467-022-28094-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
The chromatin architecture in promoters is thought to regulate gene expression, but it remains uncertain how most transcription factors (TFs) impact nucleosome position. The MuvB TF complex regulates cell-cycle dependent gene-expression and is critical for differentiation and proliferation during development and cancer. MuvB can both positively and negatively regulate expression, but the structure of MuvB and its biochemical function are poorly understood. Here we determine the overall architecture of MuvB assembly and the crystal structure of a subcomplex critical for MuvB function in gene repression. We find that the MuvB subunits LIN9 and LIN37 function as scaffolding proteins that arrange the other subunits LIN52, LIN54 and RBAP48 for TF, DNA, and histone binding, respectively. Biochemical and structural data demonstrate that MuvB binds nucleosomes through an interface that is distinct from LIN54-DNA consensus site recognition and that MuvB increases nucleosome occupancy in a reconstituted promoter. We find in arrested cells that MuvB primarily associates with a tightly positioned +1 nucleosome near the transcription start site (TSS) of MuvB-regulated genes. These results support a model that MuvB binds and stabilizes nucleosomes just downstream of the TSS on its target promoters to repress gene expression. The MuvB protein complex regulates genes that are differentially expressed through the cell cycle, yet its precise molecular function has remained unclear. Here the authors reveal MuvB associates with the nucleosome adjacent to the transcription start site of cell-cycle genes and that the tight positioning of this nucleosome correlates with MuvB-dependent gene repression.
Collapse
Affiliation(s)
- Anushweta Asthana
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Parameshwaran Ramanan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Alexander Hirschi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Keelan Z Guiley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Robert Shelansky
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Michael J Doody
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Haritha Narasimhan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Hinrich Boeger
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
32
|
Uxa S, Castillo-Binder P, Kohler R, Stangner K, Müller GA, Engeland K. Ki-67 gene expression. Cell Death Differ 2021; 28:3357-3370. [PMID: 34183782 PMCID: PMC8629999 DOI: 10.1038/s41418-021-00823-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Ki-67 serves as a prominent cancer marker. We describe how expression of the MKI67 gene coding for Ki-67 is controlled during the cell cycle. MKI67 mRNA and Ki-67 protein are maximally expressed in G2 phase and mitosis. Expression is dependent on two CHR elements and one CDE site in the MKI67 promoter. DREAM transcriptional repressor complexes bind to both CHR sites and downregulate the expression in G0/G1 cells. Upregulation of MKI67 transcription coincides with binding of B-MYB-MuvB and FOXM1-MuvB complexes from S phase into G2/M. Importantly, binding of B-MYB to the two CHR elements correlates with loss of CHR-dependent MKI67 promoter activation in B-MYB-knockdown experiments. In knockout cell models, we find that DREAM/MuvB-dependent transcriptional control cooperates with the RB Retinoblastoma tumor suppressor. Furthermore, the p53 tumor suppressor indirectly downregulates transcription of the MKI67 gene. This repression by p53 requires p21/CDKN1A. These results are consistent with a model in which DREAM, B-MYB-MuvB, and FOXM1-MuvB together with RB cooperate in cell cycle-dependent transcription and in transcriptional repression following p53 activation. In conclusion, we present mechanisms how MKI67 gene expression followed by Ki-67 protein synthesis is controlled during the cell cycle and upon induction of DNA damage, as well as upon p53 activation.
Collapse
Affiliation(s)
- Sigrid Uxa
- grid.9647.c0000 0004 7669 9786Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Paola Castillo-Binder
- grid.9647.c0000 0004 7669 9786Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Robin Kohler
- grid.9647.c0000 0004 7669 9786Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Konstanze Stangner
- grid.9647.c0000 0004 7669 9786Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany ,grid.5252.00000 0004 1936 973XPresent Address: Ludwig-Maximilians-Universität München, Anatomische Anstalt, Munich, Germany
| | - Gerd A. Müller
- grid.9647.c0000 0004 7669 9786Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany ,grid.205975.c0000 0001 0740 6917Present Address: Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA USA
| | - Kurt Engeland
- grid.9647.c0000 0004 7669 9786Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| |
Collapse
|
33
|
Simultaneous expression of MMB-FOXM1 complex components enables efficient bypass of senescence. Sci Rep 2021; 11:21506. [PMID: 34728711 PMCID: PMC8563780 DOI: 10.1038/s41598-021-01012-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022] Open
Abstract
Cellular senescence is a stable cell cycle arrest that normal cells undergo after a finite number of divisions, in response to a variety of intrinsic and extrinsic stimuli. Although senescence is largely established and maintained by the p53/p21WAF1/CIP1 and pRB/p16INK4A tumour suppressor pathways, the downstream targets responsible for the stability of the growth arrest are not known. We have employed a stable senescence bypass assay in conditionally immortalised human breast fibroblasts (CL3EcoR) to investigate the role of the DREAM complex and its associated components in senescence. DREAM is a multi-subunit complex comprised of the MuvB core, containing LIN9, LIN37, LIN52, LIN54, and RBBP4, that when bound to p130, an RB1 like protein, and E2F4 inhibits cell cycle-dependent gene expression thereby arresting cell division. Phosphorylation of LIN52 at Serine 28 is required for DREAM assembly. Re-entry into the cell cycle upon phosphorylation of p130 leads to disruption of the DREAM complex and the MuvB core, associating initially to B-MYB and later to FOXM1 to form MMB and MMB-FOXM1 complexes respectively. Here we report that simultaneous expression of MMB-FOXM1 complex components efficiently bypasses senescence with LIN52, B-MYB, and FOXM1 as the crucial components. Moreover, bypass of senescence requires non-phosphorylated LIN52 that disrupts the DREAM complex, thereby indicating a central role for assembly of the DREAM complex in senescence.
Collapse
|
34
|
Kelleher AM, Setlem R, Dantzer F, DeMayo FJ, Lydon JP, Kraus WL. Deficiency of PARP-1 and PARP-2 in the mouse uterus results in decidualization failure and pregnancy loss. Proc Natl Acad Sci U S A 2021; 118:e2109252118. [PMID: 34580230 PMCID: PMC8501838 DOI: 10.1073/pnas.2109252118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Miscarriage is a common complication of pregnancy for which there are few clinical interventions. Deficiency in endometrial stromal cell decidualization is considered a major contributing factor to pregnancy loss; however, our understanding of the underlying mechanisms of decidual deficiency are incomplete. ADP ribosylation by PARP-1 and PARP-2 has been linked to physiological processes essential to successful pregnancy outcomes. Here, we report that the catalytic inhibition or genetic ablation of PARP-1 and PARP-2 in the uterus lead to pregnancy loss in mice. Notably, the absence of PARP-1 and PARP-2 resulted in increased p53 signaling and an increased population of senescent decidual cells. Molecular and histological analysis revealed that embryo attachment and the removal of the luminal epithelium are not altered in uterine Parp1, Parp2 knockout mice, but subsequent decidualization failure results in pregnancy loss. These findings provide evidence for a previously unknown function of PARP-1 and PARP-2 in mediating decidualization for successful pregnancy establishment.
Collapse
Affiliation(s)
- Andrew M Kelleher
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rohit Setlem
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Institut du Médicament de Strasbourg, UMR 7242-Biotechnologie et Signalisation Cellulaire, CNRS/Université de Strasbourg, 67412 Illkirch, France
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
35
|
Lang L, Pettkó-Szandtner A, Tunçay Elbaşı H, Takatsuka H, Nomoto Y, Zaki A, Dorokhov S, De Jaeger G, Eeckhout D, Ito M, Magyar Z, Bögre L, Heese M, Schnittger A. The DREAM complex represses growth in response to DNA damage in Arabidopsis. Life Sci Alliance 2021; 4:4/12/e202101141. [PMID: 34583930 PMCID: PMC8500230 DOI: 10.26508/lsa.202101141] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
The DNA of all organisms is constantly damaged by physiological processes and environmental conditions. Upon persistent damage, plant growth and cell proliferation are reduced. Based on previous findings that RBR1, the only Arabidopsis homolog of the mammalian tumor suppressor gene retinoblastoma, plays a key role in the DNA damage response in plants, we unravel here the network of RBR1 interactors under DNA stress conditions. This led to the identification of homologs of every DREAM component in Arabidopsis, including previously not recognized homologs of LIN52. Interestingly, we also discovered NAC044, a mediator of DNA damage response in plants and close homolog of the major DNA damage regulator SOG1, to directly interact with RBR1 and the DREAM component LIN37B. Consistently, not only mutants in NAC044 but also the double mutant of the two LIN37 homologs and mutants for the DREAM component E2FB showed reduced sensitivities to DNA-damaging conditions. Our work indicates the existence of multiple DREAM complexes that work in conjunction with NAC044 to mediate growth arrest after DNA damage.
Collapse
Affiliation(s)
- Lucas Lang
- Department of Developmental Biology, University of Hamburg, Institute for Plant Sciences and Microbiology, Hamburg, Germany
| | - Aladár Pettkó-Szandtner
- Laboratory of Proteomic Research, Biological Research Centre, Szeged, Hungary.,Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Hasibe Tunçay Elbaşı
- Department of Developmental Biology, University of Hamburg, Institute for Plant Sciences and Microbiology, Hamburg, Germany
| | - Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Yuji Nomoto
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Ahmad Zaki
- Department of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, UK.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Stefan Dorokhov
- Department of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, UK
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, Ghent, Belgium
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - László Bögre
- Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, Ghent, Belgium
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Institute for Plant Sciences and Microbiology, Hamburg, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Institute for Plant Sciences and Microbiology, Hamburg, Germany
| |
Collapse
|
36
|
Abstract
Perfectly orchestrated periodic gene expression during cell cycle progression is essential for maintaining genome integrity and ensuring that cell proliferation can be stopped by environmental signals. Genetic and proteomic studies during the past two decades revealed remarkable evolutionary conservation of the key mechanisms that control cell cycle-regulated gene expression, including multisubunit DNA-binding DREAM complexes. DREAM complexes containing a retinoblastoma family member, an E2F transcription factor and its dimerization partner, and five proteins related to products of Caenorhabditis elegans multivulva (Muv) class B genes lin-9, lin-37, lin-52, lin-53, and lin-54 (comprising the MuvB core) have been described in diverse organisms, from worms to humans. This review summarizes the current knowledge of the structure, function, and regulation of DREAM complexes in different organisms, as well as the role of DREAM in human disease. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hayley Walston
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA;
| | - Audra N Iness
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Larisa Litovchick
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298, USA; .,Division of Hematology, Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA.,Massey Cancer Center, Richmond, Virginia 23298, USA
| |
Collapse
|
37
|
Zhang X, Li M, Jiang X, Ma H, Fan S, Li Y, Yu C, Xu J, Khan R, Jiang H, Shi Q. Nuclear translocation of MTL5 from cytoplasm requires its direct interaction with LIN9 and is essential for male meiosis and fertility. PLoS Genet 2021; 17:e1009753. [PMID: 34388164 PMCID: PMC8386835 DOI: 10.1371/journal.pgen.1009753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/25/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
Meiosis is essential for the generation of gametes and sexual reproduction, yet the factors and underlying mechanisms regulating meiotic progression remain largely unknown. Here, we showed that MTL5 translocates into nuclei of spermatocytes during zygotene-pachytene transition and ensures meiosis advances beyond pachytene stage. MTL5 shows strong interactions with MuvB core complex components, a well-known transcriptional complex regulating mitotic progression, and the zygotene-pachytene transition of MTL5 is mediated by its direct interaction with the component LIN9, through MTL5 C-terminal 443–475 residues. Male Mtl5c-mu/c-mu mice expressing the truncated MTL5 (p.Ser445Arg fs*3) that lacks the interaction with LIN9 and is detained in cytoplasm showed male infertility and spermatogenic arrest at pachytene stage, same as that of Mtl5 knockout mice, indicating that the interaction with LIN9 is essential for the nuclear translocation and function of MTL5 during meiosis. Our data demonstrated MTL5 translocates into nuclei during the zygotene-pachytene transition to initiate its function along with the MuvB core complex in pachytene spermatocytes, highlighting a new mechanism regulating the progression of male meiosis. Meiosis is essential for spermatogenesis and male fertility. However, the factors regulating the progression of meiosis remain largely unknown. We reported the testis specific protein MTL5 translocated into the nuclei of spermatocytes at the zygotene-pachytene transition by direct interaction with LIN9, which is an essential component of MuvB core complex, to promote meiotic progression beyond the pachytene stage. We also showed that MTL5 pulls down MYBL1 and all of the MuvB core complex (except LIN54) in spermatocytes. Given the known role of the MuvB core complex as a cell cycle regulator in mitotic cells, we suggested that MTL5 promotes meiotic progression along with the MuvB core complex to ensure male fertility. Our results indicated a novel function of the MuvB complex in male meiosis and also shed light on the master regulator proteins that control meiotic progression at the pachytene stage. MTL5 is a novel and germ-cell specific regulator of cell cycle progression to function at a specific stage by nuclear translocation in meiosis.
Collapse
Affiliation(s)
- Xingxia Zhang
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China
| | - Ming Li
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China
| | - Xiaohua Jiang
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China
- * E-mail: (XJ); (HJ); (QS)
| | - Hui Ma
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China
| | - Suixing Fan
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China
| | - Yang Li
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China
| | - Changping Yu
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China
| | - Jianze Xu
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China
| | - Ranjha Khan
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China
| | - Hanwei Jiang
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China
- * E-mail: (XJ); (HJ); (QS)
| | - Qinghua Shi
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China
- * E-mail: (XJ); (HJ); (QS)
| |
Collapse
|
38
|
Liu Q, Guo L, Qi H, Lou M, Wang R, Hai B, Xu K, Zhu L, Ding Y, Li C, Xie L, Shen J, Xiang X, Shao J. A MYBL2 complex for RRM2 transactivation and the synthetic effect of MYBL2 knockdown with WEE1 inhibition against colorectal cancer. Cell Death Dis 2021; 12:683. [PMID: 34234118 PMCID: PMC8263627 DOI: 10.1038/s41419-021-03969-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
Ribonucleotide reductase (RR) is a unique enzyme for the reduction of NDPs to dNDPs, the building blocks for DNA synthesis and thus essential for cell proliferation. Pan-cancer profiling studies showed that RRM2, the small subunit M2 of RR, is abnormally overexpressed in multiple types of cancers; however, the underlying regulatory mechanisms in cancers are still unclear. In this study, through searching in cancer-omics databases and immunohistochemistry validation with clinical samples, we showed that the expression of MYBL2, a key oncogenic transcriptional factor, was significantly upregulated correlatively with RRM2 in colorectal cancer (CRC). Ectopic expression and knockdown experiments indicated that MYBL2 was essential for CRC cell proliferation, DNA synthesis, and cell cycle progression in an RRM2-dependent manner. Mechanistically, MYBL2 directly bound to the promoter of RRM2 gene and promoted its transcription during S-phase together with TAF15 and MuvB components. Notably, knockdown of MYBL2 sensitized CRC cells to treatment with MK-1775, a clinical trial drug for inhibition of WEE1, which is involved in a degradation pathway of RRM2. Finally, mouse xenograft experiments showed that the combined suppression of MYBL2 and WEE1 synergistically inhibited CRC growth with a low systemic toxicity in vivo. Therefore, we propose a new regulatory mechanism for RRM2 transcription for CRC proliferation, in which MYBL2 functions by constituting a dynamic S-phase transcription complex following the G1/early S-phase E2Fs complex. Doubly targeting the transcription and degradation machines of RRM2 could produce a synthetic inhibitory effect on RRM2 level with a novel potential for CRC treatment.
Collapse
Affiliation(s)
- Qian Liu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijuan Guo
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyan Qi
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Lou
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Wang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Boning Hai
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kailun Xu
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Zhu
- Key Laboratory of Pancreatic Disease of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongfeng Ding
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pancreatic Disease of Zhejiang Province, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Li
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingdan Xie
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shen
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueping Xiang
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jimin Shao
- Department of Pathology & Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University Cancer Center, Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
39
|
Gandhi S, Nor Rashid N, Mohamad Razif MF, Othman S. Proteasomal degradation of p130 facilitate cell cycle deregulation and impairment of cellular differentiation in high-risk Human Papillomavirus 16 and 18 E7 transfected cells. Mol Biol Rep 2021; 48:5121-5133. [PMID: 34169395 DOI: 10.1007/s11033-021-06509-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
The High-Risk Human Papillomaviruses (HR-HPVs) 16 and 18 are known to cause cervical cancer, which is primarily attributed to E6 and E7 oncoproteins. In addition, recent studies have focused on the vital role of the p130 pocket protein as an oncosuppressor to limit the expression of E2F transcription factors required for cell cycle progression. In view of this, the current study was conducted to investigate the mechanism by which transfection with HPV16/18 E7 leads to the deregulation of the host cell cycle, altering the localisation of p130, and expression of differentiation genes in Human Keratinocytes (HaCaT) cells. Co-immunoprecipitation, Western blot analysis, immunofluorescence microscopy, flow cytometry, quantitative-Polymerase Chain Reaction (qPCR), and the inhibition of p130 by MG132 inhibitor were employed to investigate the loss of p130 and its disruption in HPV 16/18 E7-transfected HaCaT cells. The HPV16- and HPV18-transformed cells, known as CaSki and HeLa, respectively, were also used to complement the ectopic expressions of E7 in HaCaT cells. Normal keratinocytes displayed higher level of p130 expression than HPV-transformed cells. In addition, the immunofluorescence analysis revealed that both HPV 16/18 E7-transfected HaCaT and HPV-transformed cells exhibited higher level of cytoplasmic p130 compared to nuclear p130. A significant increase in the number of S/G2 phase cells in HPV-transformed cells was also recorded since E7 has been shown to stimulate proliferation through the deactivation of Retinoblastoma Protein (pRB)-dependent G1/S checkpoint. Furthermore, the findings recorded the down-regulation of keratinocyte differentiation markers, namely p130, keratin10, and involucrin. The proteasomal degradation of the exported p130 confirmed the cellular localisation pattern of p130, which was commonly observed in cancerous cells. The findings provide strong evidence that the localisation of nuclear p130 nuclear was disrupted by HPV16/18 E7 led to the deregulation of the cell cycle and the impairment of cellular differentiation ultimately lead to cellular transformation.
Collapse
Affiliation(s)
- Sivasangkary Gandhi
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Drug Design and Development Research Group, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Drug Design and Development Research Group, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Koliopoulos MG, Alfieri C. Cell cycle regulation by complex nanomachines. FEBS J 2021; 289:5100-5120. [PMID: 34143558 DOI: 10.1111/febs.16082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
The cell cycle is the essential biological process where one cell replicates its genome and segregates the resulting two copies into the daughter cells during mitosis. Several aspects of this process have fascinated humans since the nineteenth century. Today, the cell cycle is exhaustively investigated because of its profound connections with human diseases and cancer. At the heart of the molecular network controlling the cell cycle, we find the cyclin-dependent kinases (CDKs) acting as an oscillator to impose an orderly and highly regulated progression through the different cell cycle phases. This oscillator integrates both internal and external signals via a multitude of signalling pathways involving posttranslational modifications including phosphorylation, protein ubiquitination and mechanisms of transcriptional regulation. These tasks are specifically performed by multi-subunit complexes, which are intensively studied both biochemically and structurally with the aim to unveil mechanistic insights into their molecular function. The scope of this review is to summarise the structural biology of the cell cycle machinery, with specific focus on the core cell cycle machinery involving the CDK-cyclin oscillator. We highlight the contribution of cryo-electron microscopy, which has started to revolutionise our understanding of the molecular function and dynamics of the key players of the cell cycle.
Collapse
Affiliation(s)
- Marios G Koliopoulos
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| | - Claudio Alfieri
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| |
Collapse
|
41
|
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol 2021; 9:645593. [PMID: 33855023 PMCID: PMC8039141 DOI: 10.3389/fcell.2021.645593] [Citation(s) in RCA: 826] [Impact Index Per Article: 206.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stimuli, as well as developmental signals. Senescence is considered to be a highly dynamic, multi-step process, during which the properties of senescent cells continuously evolve and diversify in a context dependent manner. It is associated with multiple cellular and molecular changes and distinct phenotypic alterations, including a stable proliferation arrest unresponsive to mitogenic stimuli. Senescent cells remain viable, have alterations in metabolic activity and undergo dramatic changes in gene expression and develop a complex senescence-associated secretory phenotype. Cellular senescence can compromise tissue repair and regeneration, thereby contributing toward aging. Removal of senescent cells can attenuate age-related tissue dysfunction and extend health span. Senescence can also act as a potent anti-tumor mechanism, by preventing proliferation of potentially cancerous cells. It is a cellular program which acts as a double-edged sword, with both beneficial and detrimental effects on the health of the organism, and considered to be an example of evolutionary antagonistic pleiotropy. Activation of the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor suppressor pathways play a central role in regulating senescence. Several other pathways have recently been implicated in mediating senescence and the senescent phenotype. Herein we review the molecular mechanisms that underlie cellular senescence and the senescence associated growth arrest with a particular focus on why cells stop dividing, the stability of the growth arrest, the hypersecretory phenotype and how the different pathways are all integrated.
Collapse
Affiliation(s)
- Ruchi Kumari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Parmjit Jat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
42
|
Perampalam P, Hassan HM, Lilly GE, Passos DT, Torchia J, Kiser PK, Bozovic A, Kulasingam V, Dick FA. Disrupting the DREAM transcriptional repressor complex induces apolipoprotein overexpression and systemic amyloidosis in mice. J Clin Invest 2021; 131:140903. [PMID: 33444292 DOI: 10.1172/jci140903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
DREAM (Dp, Rb-like, E2F, and MuvB) is a transcriptional repressor complex that regulates cell proliferation, and its loss causes neonatal lethality in mice. To investigate DREAM function in adult mice, we used an assembly-defective p107 protein and conditional deletion of its redundant family member p130. In the absence of DREAM assembly, mice displayed shortened survival characterized by systemic amyloidosis but no evidence of excessive cellular proliferation. Amyloid deposits were found in the heart, liver, spleen, and kidneys but not the brain or bone marrow. Using laser-capture microdissection followed by mass spectrometry, we identified apolipoproteins as the most abundant components of amyloids. Intriguingly, apoA-IV was the most detected amyloidogenic protein in amyloid deposits, suggesting apoA-IV amyloidosis (AApoAIV). AApoAIV is a recently described form, whereby WT apoA-IV has been shown to predominate in amyloid plaques. We determined by ChIP that DREAM directly regulated Apoa4 and that the histone variant H2AZ was reduced from the Apoa4 gene body in DREAM's absence, leading to overexpression. Collectively, we describe a mechanism by which epigenetic misregulation causes apolipoprotein overexpression and amyloidosis, potentially explaining the origins of nongenetic amyloid subtypes.
Collapse
Affiliation(s)
- Pirunthan Perampalam
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Biochemistry, Western University, London, Ontario, Canada
| | - Haider M Hassan
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| | - Grace E Lilly
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Biochemistry, Western University, London, Ontario, Canada
| | - Daniel T Passos
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Joseph Torchia
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Biochemistry, Western University, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| | - Patti K Kiser
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Andrea Bozovic
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vathany Kulasingam
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Frederick A Dick
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
43
|
James CD, Saini S, Sesay F, Ko K, Felthousen-Rusbasan J, Iness AN, Nulton T, Windle B, Dozmorov MG, Morgan IM, Litovchick L. Restoring the DREAM Complex Inhibits the Proliferation of High-Risk HPV Positive Human Cells. Cancers (Basel) 2021; 13:489. [PMID: 33513914 PMCID: PMC7866234 DOI: 10.3390/cancers13030489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022] Open
Abstract
High-risk (HR) human papillomaviruses are known causative agents in 5% of human cancers including cervical, ano-genital and head and neck carcinomas. In part, HR-HPV causes cancer by targeting host-cell tumor suppressors including retinoblastoma protein (pRb) and RB-like proteins p107 and p130. HR-HPV E7 uses a LxCxE motif to bind RB proteins, impairing their ability to control cell-cycle dependent transcription. E7 disrupts DREAM (Dimerization partner, RB-like, E2F and MuvB), a transcriptional repressor complex that can include p130 or p107, but not pRb, which regulates genes required for cell cycle progression. However, it is not known whether disruption of DREAM plays a significant role in HPV-driven tumorigenesis. In the DREAM complex, LIN52 is an adaptor that binds directly to p130 via an E7-like LxSxE motif. Replacement of the LxSxE sequence in LIN52 with LxCxE (LIN52-S20C) increases p130 binding and partially restores DREAM assembly in HPV-positive keratinocytes and human cervical cancer cells, inhibiting proliferation. Our findings demonstrate that disruption of the DREAM complex by E7 is an important process promoting cellular proliferation by HR-HPV. Restoration of the DREAM complex in HR-HPV positive cells may therefore have therapeutic benefits in HR-HPV positive cancers.
Collapse
Affiliation(s)
- Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
| | - Siddharth Saini
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
| | - Fatmata Sesay
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
| | - Kevin Ko
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
| | - Jessica Felthousen-Rusbasan
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
| | - Audra N. Iness
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
| | - Tara Nulton
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
| | - Brad Windle
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
- Massey Cancer Center, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
- Department of Pathology, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
- Massey Cancer Center, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| | - Larisa Litovchick
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
- Massey Cancer Center, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| |
Collapse
|
44
|
Goodsell DS, Burley SK. RCSB Protein Data Bank tools for 3D structure-guided cancer research: human papillomavirus (HPV) case study. Oncogene 2020; 39:6623-6632. [PMID: 32939013 PMCID: PMC7581513 DOI: 10.1038/s41388-020-01461-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/30/2020] [Accepted: 09/04/2020] [Indexed: 11/21/2022]
Abstract
Atomic-level three-dimensional (3D) structure data for biological macromolecules often prove critical to dissecting and understanding the precise mechanisms of action of cancer-related proteins and their diverse roles in oncogenic transformation, proliferation, and metastasis. They are also used extensively to identify potentially druggable targets and facilitate discovery and development of both small-molecule and biologic drugs that are today benefiting individuals diagnosed with cancer around the world. 3D structures of biomolecules (including proteins, DNA, RNA, and their complexes with one another, drugs, and other small molecules) are freely distributed by the open-access Protein Data Bank (PDB). This global data repository is used by millions of scientists and educators working in the areas of drug discovery, vaccine design, and biomedical and biotechnology research. The US Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) provides an integrated portal to the PDB archive that streamlines access for millions of worldwide PDB data consumers worldwide. Herein, we review online resources made available free of charge by the RCSB PDB to basic and applied researchers, healthcare providers, educators and their students, patients and their families, and the curious public. We exemplify the value of understanding cancer-related proteins in 3D with a case study focused on human papillomavirus.
Collapse
Affiliation(s)
- David S Goodsell
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA. .,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA. .,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA. .,Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA. .,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
45
|
Zluhan-Martínez E, Pérez-Koldenkova V, Ponce-Castañeda MV, Sánchez MDLP, García-Ponce B, Miguel-Hernández S, Álvarez-Buylla ER, Garay-Arroyo A. Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. Int J Mol Sci 2020; 21:E4925. [PMID: 32664691 PMCID: PMC7404004 DOI: 10.3390/ijms21144925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety of organisms. Experimental analysis of pRb's functions in animals and plants has revealed that this protein participates in cell proliferation and differentiation processes. In addition, pRb in animals and its orthologs in plants (RBR), are part of highly conserved protein complexes which suggest the possibility that analogies exist not only between functions carried out by pRb orthologs themselves, but also in the structure and roles of the protein networks where these proteins are involved. Here, we present examples of pRb/RBR participation in cell cycle control, cell differentiation, and in the regulation of epigenetic changes and chromatin remodeling machinery, highlighting the similarities that exist between the composition of such networks in plants and animals.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330. Col. Doctores, Alc. Cuauhtémoc 06720, Mexico;
| | - Martha Verónica Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Sergio Miguel-Hernández
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda, Manuel Stampa 07738, Mexico;
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| |
Collapse
|
46
|
Schade AE, Fischer M, DeCaprio JA. RB, p130 and p107 differentially repress G1/S and G2/M genes after p53 activation. Nucleic Acids Res 2020; 47:11197-11208. [PMID: 31667499 PMCID: PMC6868438 DOI: 10.1093/nar/gkz961] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cell cycle gene expression occurs in two waves. The G1/S genes encode factors required for DNA synthesis and the G2/M genes contribute to mitosis. The Retinoblastoma protein (RB) and DREAM complex (DP, RB-like, E2F4 and MuvB) cooperate to repress all cell cycle genes during G1 and inhibit entry into the cell cycle. DNA damage activates p53 leading to increased levels of p21 and inhibition of cell cycle progression. Whether the G1/S and G2/M genes are differentially repressed by RB and the RB-like proteins p130 and p107 in response to DNA damage is not known. We performed gene expression profiling of primary human fibroblasts upon DNA damage and assessed the effects on G1/S and G2/M genes. Upon p53 activation, p130 and RB cooperated to repress the G1/S genes. In addition, in the absence of RB and p130, p107 contributed to repression of G1/S genes. In contrast, G2/M genes were repressed by p130 and p107 after p53 activation. Furthermore, repression of G2/M genes by p107 and p130 led to reduced entry into mitosis. Our data demonstrates specific roles for RB, p130-DREAM, and p107-DREAM in p53 and p21 mediated repression of cell cycle genes.
Collapse
Affiliation(s)
- Amy E Schade
- Program in Virology, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Boston, MA 02115, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Martin Fischer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany
| | - James A DeCaprio
- Program in Virology, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Boston, MA 02115, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Gründl M, Walz S, Hauf L, Schwab M, Werner KM, Spahr S, Schulte C, Maric HM, Ade CP, Gaubatz S. Interaction of YAP with the Myb-MuvB (MMB) complex defines a transcriptional program to promote the proliferation of cardiomyocytes. PLoS Genet 2020; 16:e1008818. [PMID: 32469866 PMCID: PMC7286521 DOI: 10.1371/journal.pgen.1008818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/10/2020] [Accepted: 05/01/2020] [Indexed: 01/14/2023] Open
Abstract
The Hippo signalling pathway and its central effector YAP regulate proliferation of cardiomyocytes and growth of the heart. Using genetic models in mice we show that the increased proliferation of embryonal and postnatal cardiomyocytes due to loss of the Hippo-signaling component SAV1 depends on the Myb-MuvB (MMB) complex. Similarly, proliferation of postnatal cardiomyocytes induced by constitutive active YAP requires MMB. Genome studies revealed that YAP and MMB regulate an overlapping set of cell cycle genes in cardiomyocytes. Protein-protein interaction studies in cell lines and with recombinant proteins showed that YAP binds directly to B-MYB, a subunit of MMB, in a manner dependent on the YAP WW domains and a PPXY motif in B-MYB. Disruption of the interaction by overexpression of the YAP binding domain of B-MYB strongly inhibits the proliferation of cardiomyocytes. Our results point to MMB as a critical downstream effector of YAP in the control of cardiomyocyte proliferation. YAP, the major downstream transducer of the Hippo pathway, is a potent inducer of proliferation. Here we show that the Myb-MuvB complex (MMB) mediates cardiomyocyte proliferation by YAP. We find that YAP and MMB regulate an overlapping set of pro-proliferative genes which involves binding of MMB to the promoters of these genes. We also identified a direct interaction between the B-MYB subunit of MMB and YAP. Based on the binding studies, we created a tool called MY-COMP that interferes with the association YAP to B-MYB and strongly inhibits proliferation of cardiomyocytes. Together, our data suggests that the YAP-MMB interaction is essential for division of cardiomyocytes, underscoring the functional relevance of the crosstalk between these two pathways for proper heart development.
Collapse
Affiliation(s)
- Marco Gründl
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, Germany
| | - Susanne Walz
- Comprehensive Cancer Center Mainfranken, Core Unit Bioinformatics, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Laura Hauf
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, Germany
| | - Melissa Schwab
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, Germany
| | - Kerstin Marcela Werner
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, Germany
| | - Susanne Spahr
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, Germany
| | - Clemens Schulte
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Wuerzburg, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Wuerzburg, Germany
| | - Carsten P. Ade
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, Germany
| | - Stefan Gaubatz
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
48
|
Vorster PJ, Goetsch P, Wijeratne TU, Guiley KZ, Andrejka L, Tripathi S, Larson BJ, Rubin SM, Strome S, Lipsick JS. A long lost key opens an ancient lock: Drosophila Myb causes a synthetic multivulval phenotype in nematodes. Biol Open 2020; 9:bio051508. [PMID: 32295830 PMCID: PMC7225089 DOI: 10.1242/bio.051508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/05/2020] [Indexed: 01/14/2023] Open
Abstract
The five-protein MuvB core complex is highly conserved in animals. This nuclear complex interacts with RB-family tumor suppressor proteins and E2F-DP transcription factors to form DREAM complexes that repress genes that regulate cell cycle progression and cell fate. The MuvB core complex also interacts with Myb family oncoproteins to form the Myb-MuvB complexes that activate many of the same genes. We show that animal-type Myb genes are present in Bilateria, Cnidaria and Placozoa, the latter including the simplest known animal species. However, bilaterian nematode worms lost their animal-type Myb genes hundreds of millions of years ago. Nevertheless, amino acids in the LIN9 and LIN52 proteins that directly interact with the MuvB-binding domains of human B-Myb and Drosophila Myb are conserved in Caenorhabditiselegans Here, we show that, despite greater than 500 million years since their last common ancestor, the Drosophila melanogaster Myb protein can bind to the nematode LIN9-LIN52 proteins in vitro and can cause a synthetic multivulval (synMuv) phenotype in vivo This phenotype is similar to that caused by loss-of-function mutations in C. elegans synMuvB-class genes including those that encode homologs of the MuvB core, RB, E2F and DP. Furthermore, amino acid substitutions in the MuvB-binding domain of Drosophila Myb that disrupt its functions in vitro and in vivo also disrupt these activities in C. elegans We speculate that nematodes and other animals may contain another protein that can bind to LIN9 and LIN52 in order to activate transcription of genes repressed by DREAM complexes.
Collapse
Affiliation(s)
- Paul J Vorster
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Paul Goetsch
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Keelan Z Guiley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Laura Andrejka
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Braden J Larson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Susan Strome
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Joseph S Lipsick
- Departments of Pathology, Genetics, and Biology, Stanford University, Stanford, CA 94305-5324, USA
| |
Collapse
|
49
|
Uxa S, Bernhart SH, Mages CFS, Fischer M, Kohler R, Hoffmann S, Stadler PF, Engeland K, Müller GA. DREAM and RB cooperate to induce gene repression and cell-cycle arrest in response to p53 activation. Nucleic Acids Res 2019; 47:9087-9103. [PMID: 31400114 PMCID: PMC6753476 DOI: 10.1093/nar/gkz635] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/07/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Most human cancers acquire mutations causing defects in the p53 signaling pathway. The tumor suppressor p53 becomes activated in response to genotoxic stress and is essential for arresting the cell cycle to facilitate DNA repair or to initiate apoptosis. p53-induced cell cycle-arrest is mediated by expression of the CDK inhibitor p21WAF1/Cip1, which prevents phosphorylation and inactivation of the pocket proteins RB, p130, and p107. In a hypophosphorylated state, pocket proteins bind to E2F factors forming RB-E2F and DREAM transcriptional repressor complexes. Here, we analyze the influence of RB and DREAM on p53-induced gene repression and cell-cycle arrest. We show that abrogation of DREAM function by knockout of the DREAM component LIN37 results in a reduced repression of cell-cycle genes. We identify the genes repressed by the p53-DREAM pathway and describe a set of genes that is downregulated by p53 independent of LIN37/DREAM. Most strikingly, p53-dependent repression of cell-cycle genes is completely abrogated in LIN37-/-;RB-/- cells leading to a loss of the G1/S checkpoint. Taken together, we show that DREAM and RB are key factors in the p53 signaling pathway to downregulate a large number of cell-cycle genes and to arrest the cell cycle at the G1/S transition.
Collapse
Affiliation(s)
- Sigrid Uxa
- Molecular Oncology, Department of Gynaecology, Medical School, Leipzig University, 04103 Leipzig, Germany
| | - Stephan H Bernhart
- Transcriptome Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany
| | - Christina F S Mages
- Molecular Oncology, Department of Gynaecology, Medical School, Leipzig University, 04103 Leipzig, Germany
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Robin Kohler
- Molecular Oncology, Department of Gynaecology, Medical School, Leipzig University, 04103 Leipzig, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Peter F Stadler
- Transcriptome Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig Research Center for Civilization Diseases; and Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, Leipzig University, 04107 Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany.,Institute for Theoretical Chemistry, University of Vienna, A-1090 Wien, Austria.,Facultad de Ciencias, Universidad National de Colombia, Sede Bogota, Colombia.,Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Kurt Engeland
- Molecular Oncology, Department of Gynaecology, Medical School, Leipzig University, 04103 Leipzig, Germany
| | - Gerd A Müller
- Molecular Oncology, Department of Gynaecology, Medical School, Leipzig University, 04103 Leipzig, Germany.,Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
50
|
Rotelli MD, Bolling AM, Killion AW, Weinberg AJ, Dixon MJ, Calvi BR. An RNAi Screen for Genes Required for Growth of Drosophila Wing Tissue. G3 (BETHESDA, MD.) 2019; 9:3087-3100. [PMID: 31387856 PMCID: PMC6778782 DOI: 10.1534/g3.119.400581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Cell division and tissue growth must be coordinated with development. Defects in these processes are the basis for a number of diseases, including developmental malformations and cancer. We have conducted an unbiased RNAi screen for genes that are required for growth in the Drosophila wing, using GAL4-inducible short hairpin RNA (shRNA) fly strains made by the Drosophila RNAi Screening Center. shRNA expression down the center of the larval wing disc using dpp-GAL4, and the central region of the adult wing was then scored for tissue growth and wing hair morphology. Out of 4,753 shRNA crosses that survived to adulthood, 18 had impaired wing growth. FlyBase and the new Alliance of Genome Resources knowledgebases were used to determine the known or predicted functions of these genes and the association of their human orthologs with disease. The function of eight of the genes identified has not been previously defined in Drosophila The genes identified included those with known or predicted functions in cell cycle, chromosome segregation, morphogenesis, metabolism, steroid processing, transcription, and translation. All but one of the genes are similar to those in humans, and many are associated with disease. Knockdown of lin-52, a subunit of the Myb-MuvB transcription factor, or βNACtes6, a gene involved in protein folding and trafficking, resulted in a switch from cell proliferation to an endoreplication growth program through which wing tissue grew by an increase in cell size (hypertrophy). It is anticipated that further analysis of the genes that we have identified will reveal new mechanisms that regulate tissue growth during development.
Collapse
Affiliation(s)
- Michael D Rotelli
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | - Anna M Bolling
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | - Andrew W Killion
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | | | - Michael J Dixon
- Department of Biology, Indiana University, Bloomington, IN 47405 and
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405 and
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN 46202
| |
Collapse
|