1
|
Srinivasan A, Magner D, Kozłowski P, Philips A, Kajdasz A, Wojciechowski P, Wojciechowska M. Global dysregulation of circular RNAs in frontal cortex and whole blood from DM1 and DM2. Hum Genet 2025; 144:417-432. [PMID: 39903274 PMCID: PMC12003446 DOI: 10.1007/s00439-025-02729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular disorders associated with expansions of microsatellites, respectively, in DMPK and CNBP. Their pathogenesis is linked to the global aberrant alternative splicing (AAS) of many genes and marks mostly muscular and neuronal tissues, while blood is the least affected. Recent data in DM1 skeletal muscles indicated that abnormalities in RNA metabolism also include global upregulation of circular RNAs (circRNAs). CircRNAs are a heterogeneous group considered splicing errors and by-products of canonical splicing. To elucidate whether circRNA dysregulation is an inherent feature of the myotonic environment, we perform their analysis in the frontal cortex and whole blood of DM1 and DM2 patients. We find a global elevation of circRNAs in both tissues, and its magnitude is neither correlated with the differences in their parental gene expression nor is associated with AAS published earlier. Aberrantly spliced cassette exons of linear transcripts affected in DM1 and DM2 are not among the circularized exons, which unique genomic features prerequisite back-splicing. However, the blueprint of the AAS of linear RNAs is found in a variety of circRNA isoforms. The heterogeneity of circRNAs also originates from the utilization of exonic and intronic cryptic donors/acceptors in back splice junctions, and intron-containing circRNAs are more characteristic of the blood. Overall, this study reveals circRNA dysregulation in various tissues from DM1 and DM2; however, their levels do not correlate with the AAS in linear RNAs, suggesting a potential independent regulatory mechanism underlying circRNA upregulation in myotonic dystrophy.
Collapse
Affiliation(s)
- Arvind Srinivasan
- Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dorota Magner
- Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Biochemistry and Biotechnology, University of Life Sciences, Poznan, Poland
| | - Piotr Kozłowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Philips
- Department of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Arkadiusz Kajdasz
- Department of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Paweł Wojciechowski
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Marzena Wojciechowska
- Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
2
|
Frezza V, Chellini L, Riccioni V, Bonvissuto D, Palombo R, Paronetto M. DHX9 helicase impacts on splicing decisions by modulating U2 snRNP recruitment in Ewing sarcoma cells. Nucleic Acids Res 2025; 53:gkaf068. [PMID: 39970297 PMCID: PMC11826090 DOI: 10.1093/nar/gkaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 12/17/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
Ewing sarcomas (ESs) are biologically aggressive tumours of bone and soft tissues caused by chromosomal translocations yielding in-frame fusion proteins driving the neoplastic transformation. The DNA/RNA helicase DHX9 is an important regulator of cellular processes often deregulated in cancer. Using transcriptome profiling, our study reveals cancer-relevant genes whose splicing is modulated by DHX9. Immunodepletion experiments demonstrate that DHX9 impacts on the recruitment of U2 small nuclear RNP (snRNP) onto the pre-mRNA. Analysis of structure and sequence features of DHX9 target exons reveal that DHX9-sensitive exons display shorter flanking introns and contain HNRNPC and TIA1 consensus motifs. A prominent target of DHX9 is exon 11 in the Cortactin (CTTN) gene, which is alternatively spliced to generate isoforms with different activities in cell migration and tumour invasion. Alternative inclusion of the exon 11 in CTTN gene is one of the most recurrent isoform switches in multiple cancer types, thus highlighting the pivotal role of DHX9 in defining the tumour phenotype. Biochemical analyses reveal that DHX9 binding promotes the recruitment of U2snRNP, SF3B1, and SF3A2 to the splice sites flanking exon 11. These findings uncover a new role of DHX9 in the control of co-transcriptional splicing in ES, which may represent a new druggable target to counteract ES malignancy.
Collapse
Affiliation(s)
- Valentina Frezza
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Lidia Chellini
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Veronica Riccioni
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Davide Bonvissuto
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Ramona Palombo
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135, Rome, Italy
| |
Collapse
|
3
|
Ahi EP, Singh P. Emerging Orchestrator of Ecological Adaptation: m 6A Regulation of Post-Transcriptional Mechanisms. Mol Ecol 2024:e17545. [PMID: 39367666 DOI: 10.1111/mec.17545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
Genetic mechanisms have been at the forefront of our exploration into the substrate of adaptive evolution and phenotypic diversification. However, genetic variation only accounts for a fraction of phenotypic variation. In the last decade, the significance of RNA modification mechanisms has become more apparent in the context of organismal adaptation to rapidly changing environments. RNA m6A methylation, the most abundant form of RNA modification, is emerging as a potentially significant player in various biological processes. Despite its fundamental function to regulate other major post-transcriptional mechanisms such as microRNA and alternative splicing, its role in ecology and evolution has been understudied. This review highlights the potential importance of m6A RNA methylation in ecological adaptation, emphasising the need for further research, especially in natural systems. We focus on how m6A not only affects mRNA fate but also influences miRNA-mediated gene regulation and alternative splicing, potentially contributing to organismal adaptation. The aim of this review is to synthesise key background information to enhance our understanding of m6A mechanisms driving species survival in dynamic environments and motivate future research into the dynamics of adaptive RNA methylation.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Pooja Singh
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| |
Collapse
|
4
|
Villagra UMM, da Cunha BR, Polachini GM, Henrique T, Stefanini ACB, de Castro TB, da Silva CHTP, Feitosa OA, Fukuyama EE, López RVM, Dias-Neto E, Nunes FD, Severino P, Tajara EH. Expression of Truncated Products at the 5'-Terminal Region of RIPK2 and Evolutive Aspects that Support Their Biological Importance. Genome Biol Evol 2024; 16:evae106. [PMID: 38752399 PMCID: PMC11221433 DOI: 10.1093/gbe/evae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Alternative splicing is the process of generating different mRNAs from the same primary transcript, which contributes to increase the transcriptome and proteome diversity. Abnormal splicing has been associated with the development of several diseases including cancer. Given that mutations and abnormal levels of the RIPK2 transcript and RIP-2 protein are frequent in tumors, and that RIP-2 modulates immune and inflammatory responses, we investigated alternative splicing events that result in partial deletions of the kinase domain at the N-terminus of RIP-2. We also investigated the structure and expression of the RIPK2 truncated variants and isoforms in different environments. In addition, we searched data throughout Supraprimates evolution that could support the biological importance of RIPK2 alternatively spliced products. We observed that human variants and isoforms were differentially regulated following temperature stress, and that the truncated transcript was more expressed than the long transcript in tumor samples. The inverse was found for the longer protein isoform. The truncated variant was also detected in chimpanzee, gorilla, hare, pika, mouse, rat, and tree shrew. The fact that the same variant has been preserved in mammals with divergence times up to 70 million years raises the hypothesis that it may have a functional significance.
Collapse
Affiliation(s)
- Ulises M M Villagra
- Faculty of Exact Sciences, Biotechnology and Molecular Biology Institute (IBBM), National University of La Plata-CCT, CONICET, La Plata, Argentina
| | - Bianca R da Cunha
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Giovana M Polachini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Ana Carolina Buzzo Stefanini
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Tialfi Bergamin de Castro
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Microbial Pathogenesis Department, University of Maryland Baltimore, School of Dentistry, Baltimore, MD, USA
| | - Carlos H T P da Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Olavo A Feitosa
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Erica E Fukuyama
- Head and Neck Surgery Department, Arnaldo Vieira de Carvalho Cancer Institute, São Paulo, SP, Brazil
| | - Rossana V M López
- Comprehensive Center for Precision Oncology, Center for Translational Research in Oncology, State of São Paulo Cancer Institute—ICESP, Clinics Hospital, Sao Paulo University Medical School, São Paulo, SP, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Fabio D Nunes
- Department of Stomatology, School of Dentistry, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Patricia Severino
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Eloiza H Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Piazza A, Carlone R, Spencer GE. Non-canonical retinoid signaling in neural development, regeneration and synaptic function. Front Mol Neurosci 2024; 17:1371135. [PMID: 38516042 PMCID: PMC10954794 DOI: 10.3389/fnmol.2024.1371135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Canonical retinoid signaling via nuclear receptors and gene regulation is critical for the initiation of developmental processes such as cellular differentiation, patterning and neurite outgrowth, but also mediates nerve regeneration and synaptic functions in adult nervous systems. In addition to canonical transcriptional regulation, retinoids also exert rapid effects, and there are now multiple lines of evidence supporting non-canonical retinoid actions outside of the nucleus, including in dendrites and axons. Together, canonical and non-canonical retinoid signaling provide the precise temporal and spatial control necessary to achieve the fine cellular coordination required for proper nervous system function. Here, we examine and discuss the evidence supporting non-canonical actions of retinoids in neural development and regeneration as well as synaptic function, including a review of the proposed molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Gaynor E. Spencer
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
6
|
Ebersberger S, Hipp C, Mulorz MM, Buchbender A, Hubrich D, Kang HS, Martínez-Lumbreras S, Kristofori P, Sutandy FXR, Llacsahuanga Allcca L, Schönfeld J, Bakisoglu C, Busch A, Hänel H, Tretow K, Welzel M, Di Liddo A, Möckel MM, Zarnack K, Ebersberger I, Legewie S, Luck K, Sattler M, König J. FUBP1 is a general splicing factor facilitating 3' splice site recognition and splicing of long introns. Mol Cell 2023:S1097-2765(23)00516-6. [PMID: 37506698 DOI: 10.1016/j.molcel.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Splicing of pre-mRNAs critically contributes to gene regulation and proteome expansion in eukaryotes, but our understanding of the recognition and pairing of splice sites during spliceosome assembly lacks detail. Here, we identify the multidomain RNA-binding protein FUBP1 as a key splicing factor that binds to a hitherto unknown cis-regulatory motif. By collecting NMR, structural, and in vivo interaction data, we demonstrate that FUBP1 stabilizes U2AF2 and SF1, key components at the 3' splice site, through multivalent binding interfaces located within its disordered regions. Transcriptional profiling and kinetic modeling reveal that FUBP1 is required for efficient splicing of long introns, which is impaired in cancer patients harboring FUBP1 mutations. Notably, FUBP1 interacts with numerous U1 snRNP-associated proteins, suggesting a unique role for FUBP1 in splice site bridging for long introns. We propose a compelling model for 3' splice site recognition of long introns, which represent 80% of all human introns.
Collapse
Affiliation(s)
| | - Clara Hipp
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Miriam M Mulorz
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | | | - Dalmira Hubrich
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Santiago Martínez-Lumbreras
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany
| | - Panajot Kristofori
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, 70569 Stuttgart, Germany
| | | | | | - Jonas Schönfeld
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Cem Bakisoglu
- Buchmann Institute for Molecular Life Sciences & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Heike Hänel
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Kerstin Tretow
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Mareen Welzel
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | | | - Martin M Möckel
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; CardioPulmonary Institute (CPI), 35392 Gießen, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany; Senckenberg Biodiversity and Climate Research Center (S-BIK-F), 60325 Frankfurt am Main, Germany; LOEWE Center for Translational Biodiversity Genomics (TBG), 60325 Frankfurt am Main, Germany
| | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, 70569 Stuttgart, Germany; Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany.
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany; Bavarian NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85747 Garching, Germany.
| | - Julian König
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany.
| |
Collapse
|
7
|
Zhang L, Shen M, Shu X, Zhou J, Ding J, Zhong C, Pan B, Wang B, Zhang C, Guo W. Intronic position +9 and -9 are potentially splicing sites boundary from intronic variants analysis of whole exome sequencing data. BMC Med Genomics 2023; 16:146. [PMID: 37365551 DOI: 10.1186/s12920-023-01542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Whole exome sequencing (WES) can also detect some intronic variants, which may affect splicing and gene expression, but how to use these intronic variants, and the characteristics about them has not been reported. This study aims to reveal the characteristics of intronic variant in WES data, to further improve the clinical diagnostic value of WES. A total of 269 WES data was analyzed, 688,778 raw variants were called, among these 367,469 intronic variants were in intronic regions flanking exons which was upstream/downstream region of the exon (default is 200 bps). Contrary to expectation, the number of intronic variants with quality control (QC) passed was the lowest at the +2 and -2 positions but not at the +1 and -1 positions. The plausible explanation was that the former had the worst effect on trans-splicing, whereas the latter did not completely abolish splicing. And surprisingly, the number of intronic variants that passed QC was the highest at the +9 and -9 positions, indicating a potential splicing site boundary. The proportion of variants which could not pass QC filtering (false variants) in the intronic regions flanking exons generally accord with "S"-shaped curve. At +5 and -5 positions, the number of variants predicted damaging by software was most. This was also the position at which many pathogenic variants had been reported in recent years. Our study revealed the characteristics of intronic variant in WES data for the first time, we found the +9 and -9 positions might be a potentially splicing sites boundary and +5 and -5 positions were potentially important sites affecting splicing or gene expression, the +2 and -2 positions seem more important splicing site than +1 and -1 positions, and we found variants in intronic regions flanking exons over ± 50 bps may be unreliable. This result can help researchers find more useful variants and demonstrate that WES data is valuable for intronic variants analysis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minna Shen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xianhong Shu
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Jingmin Zhou
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, State Key Laboratory, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Wu X, Zhou C, Li X, Lin J, Aguila LCR, Wen F, Wang L. Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera). BMC Genomics 2023; 24:344. [PMID: 37349677 DOI: 10.1186/s12864-023-09446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Tea geometrid Ectropis grisescens (Geometridae: Lepidoptera), is one of the most destructive defoliators in tea plantations in China. The MAPK cascade is known to be an evolutionarily conserved signaling module, acting as pivotal cores of host-pathogen interactions. Although the chromosome-level reference genome of E. grisescens was published, the whole MAPK cascade gene family has not been fully identified yet, especially the expression patterns of MAPK cascade gene family members upon an ecological biopesticide, Metarhizium anisopliae, remains to be understood. RESULTS In this study, we have identified 19 MAPK cascade gene family members in E. grisescens, including 5 MAPKs, 4 MAP2Ks, 8 MAP3Ks, and 2 MAP4Ks. The molecular evolution characteristics of the whole Eg-MAPK cascade gene family, including gene structures, protein structural organization, chromosomal localization, orthologs construction and gene duplication, were systematically investigated. Our results showed that the members of Eg-MAPK cascade gene family were unevenly distributed in 13 chromosomes, and the clustered members in each group shared similar structures of the genes and proteins. Gene expression data revealed that MAPK cascade genes were expressed in all four developmental stages of E. grisescens and were fairly and evenly distributed in four different larva tissues. Importantly, most of the MAPK cascade genes were induced or constitutively expressed upon M. anisopliae infection. CONCLUSIONS In summary, the present study was one of few studies on MAPK cascade gene in E. grisescens. The characterization and expression profiles of Eg-MAPK cascades genes might help develop new ecofriendly biological insecticides to protect tea trees.
Collapse
Affiliation(s)
- Xiaozhu Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, 239099, China
| | - Chenghua Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaofang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingyi Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Luis Carlos Ramos Aguila
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332000, China.
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Yu H, Ma L, Zhao Y, Naren G, Wu H, Sun Y, Wu L, Zhang L. Characterization of nuclear DNA diversity in an individual Leymus chinensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1157145. [PMID: 37346123 PMCID: PMC10280068 DOI: 10.3389/fpls.2023.1157145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 06/23/2023]
Abstract
Intraorganismal genetic heterogeneity (IGH) exists when an individual organism harbors more than one genotype among its cells. In general, intercellular DNA diversity occurs at a very low frequency and cannot be directly detected by DNA sequencing from bulk tissue. In this study, based on Sanger and high-throughput sequencing, different species, different organs, different DNA segments and a single cell were employed to characterize nucleotide mutations in Leymus chinensis. The results demonstrated that 1) the nuclear DNA showed excessive genetic heterogeneity among cells of an individual leaf or seed but the chloroplast genes remained consistent; 2) a high density of SNPs was found in the variants of the unique DNA sequence, and the similar SNP profile shared between the leaf and seed suggested that nucleotide mutation followed a certain rule and was not random; and 3) the mutation rate decreased from the genomic DNA sequence to the corresponding protein sequence. Our results suggested that Leymus chinensis seemed to consist of a collection of cells with different genetic backgrounds.
Collapse
|
10
|
Girardini KN, Olthof AM, Kanadia RN. Introns: the "dark matter" of the eukaryotic genome. Front Genet 2023; 14:1150212. [PMID: 37260773 PMCID: PMC10228655 DOI: 10.3389/fgene.2023.1150212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
The emergence of introns was a significant evolutionary leap that is a major distinguishing feature between prokaryotic and eukaryotic genomes. While historically introns were regarded merely as the sequences that are removed to produce spliced transcripts encoding functional products, increasingly data suggests that introns play important roles in the regulation of gene expression. Here, we use an intron-centric lens to review the role of introns in eukaryotic gene expression. First, we focus on intron architecture and how it may influence mechanisms of splicing. Second, we focus on the implications of spliceosomal snRNAs and their variants on intron splicing. Finally, we discuss how the presence of introns and the need to splice them influences transcription regulation. Despite the abundance of introns in the eukaryotic genome and their emerging role regulating gene expression, a lot remains unexplored. Therefore, here we refer to introns as the "dark matter" of the eukaryotic genome and discuss some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Kaitlin N. Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
| | - Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
11
|
Franz A, Weber AI, Preußner M, Dimos N, Stumpf A, Ji Y, Moreno-Velasquez L, Voigt A, Schulz F, Neumann A, Kuropka B, Kühn R, Urlaub H, Schmitz D, Wahl MC, Heyd F. Branch point strength controls species-specific CAMK2B alternative splicing and regulates LTP. Life Sci Alliance 2023; 6:6/3/e202201826. [PMID: 36543542 PMCID: PMC9772828 DOI: 10.26508/lsa.202201826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Regulation and functionality of species-specific alternative splicing has remained enigmatic to the present date. Calcium/calmodulin-dependent protein kinase IIβ (CaMKIIβ) is expressed in several splice variants and plays a key role in learning and memory. Here, we identify and characterize several primate-specific CAMK2B splice isoforms, which show altered kinetic properties and changes in substrate specificity. Furthermore, we demonstrate that primate-specific CAMK2B alternative splicing is achieved through branch point weakening during evolution. We show that reducing branch point and splice site strengths during evolution globally renders constitutive exons alternative, thus providing novel mechanistic insight into cis-directed species-specific alternative splicing regulation. Using CRISPR/Cas9, we introduce a weaker, human branch point sequence into the mouse genome, resulting in strongly altered Camk2b splicing in the brains of mutant mice. We observe a strong impairment of long-term potentiation in CA3-CA1 synapses of mutant mice, thus connecting branch point-controlled CAMK2B alternative splicing with a fundamental function in learning and memory.
Collapse
Affiliation(s)
- Andreas Franz
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - A Ioana Weber
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Nicole Dimos
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany
| | - Alexander Stumpf
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yanlong Ji
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Laura Moreno-Velasquez
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Voigt
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frederic Schulz
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Alexander Neumann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Benno Kuropka
- Freie Universität Berlin, Mass Spectrometry Core Facility (BioSupraMol), Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Genome Engineering & Disease Models, Berlin, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dietmar Schmitz
- Neuroscience Research Centre (NWFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| |
Collapse
|
12
|
Martinez-Barnetche J, Godoy-Lozano EE, Saint Remy-Hernández S, Pacheco-Olvera DL, Téllez-Sosa J, Valdovinos-Torres H, Pastelin-Palacios R, Mena H, Zambrano L, López-Macías C. Characterization of immunoglobulin loci in the gigantic genome of Ambystoma mexicanum. Front Immunol 2023; 14:1039274. [PMID: 36776846 PMCID: PMC9911811 DOI: 10.3389/fimmu.2023.1039274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Background The axolotl, Ambystoma mexicanum is a unique biological model for complete tissue regeneration. Is a neotenic endangered species and is highly susceptible to environmental stress, including infectious disease. In contrast to other amphibians, the axolotl is particularly vulnerable to certain viral infections. Like other salamanders, the axolotl genome is one of the largest (32 Gb) and the impact of genome size on Ig loci architecture is unknown. To better understand the immune response in axolotl, we aimed to characterize the immunoglobulin loci of A. mexicanum and compare it with other model vertebrates. Methods The most recently published genome sequence of A. mexicanum (V6) was used for alignment-based annotation and manual curation using previously described axolotl Ig sequences or reference sequences from other vertebrates. Gene models were further curated using A. mexicanum spleen RNA-seq data. Human, Xenopus tropicalis, Danio rerio (zebrafish), and eight tetrapod reference genomes were used for comparison. Results Canonical A. mexicanum heavy chain (IGH), lambda (IGL), sigma (IGS), and the putative surrogate light chain (SLC) loci were identified. No kappa locus was found. More than half of the IGHV genes and the IGHF gene are pseudogenes and there is no clan I IGHV genes. Although the IGH locus size is proportional to genome size, we found local size restriction in the IGHM gene and the V gene intergenic distances. In addition, there were V genes with abnormally large V-intron sizes, which correlated with loss of gene functionality. Conclusion The A. mexicanum immunoglobulin loci share the same general genome architecture as most studied tetrapods. Consistent with its large genome, Ig loci are larger; however, local size restrictions indicate evolutionary constraints likely to be imposed by high transcriptional demand of certain Ig genes, as well as the V(D)J recombination over very long genomic distance ranges. The A. mexicanum has undergone an extensive process of Ig gene loss which partially explains a reduced potential repertoire diversity that may contribute to its impaired antibody response.
Collapse
Affiliation(s)
- Jesús Martinez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico,*Correspondence: Jesús Martinez-Barnetche, ; Constantino López-Macías,
| | | | - Stephanie Saint Remy-Hernández
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico,Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, Mexico
| | - Diana Laura Pacheco-Olvera
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico,Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, Mexico
| | - Juan Téllez-Sosa
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Humberto Valdovinos-Torres
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | | | - Horacio Mena
- Laboratorio de Restauración Ecológica, Instituto de Biología. Universidad Nacional Autónoma de México, México City, Mexico
| | - Luis Zambrano
- Laboratorio de Restauración Ecológica, Instituto de Biología. Universidad Nacional Autónoma de México, México City, Mexico
| | - Constantino López-Macías
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, Mexico,*Correspondence: Jesús Martinez-Barnetche, ; Constantino López-Macías,
| |
Collapse
|
13
|
Co-transcriptional splicing efficiency is a gene-specific feature that can be regulated by TGFβ. Commun Biol 2022; 5:277. [PMID: 35347226 PMCID: PMC8960766 DOI: 10.1038/s42003-022-03224-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/03/2022] [Indexed: 11/26/2022] Open
Abstract
Differential splicing efficiency of specific introns is a mechanism that dramatically increases protein diversity, based on selection of alternative exons for the final mature mRNA. However, it is unclear whether splicing efficiency of introns within the same gene is coordinated and eventually regulated as a mechanism to control mature mRNA levels. Based on nascent chromatin-associated RNA-sequencing data, we now find that co-transcriptional splicing (CTS) efficiency tends to be similar between the different introns of a gene. We establish that two well-differentiated strategies for CTS efficiency exist, at the extremes of a gradient: short genes that produce high levels of pre-mRNA undergo inefficient splicing, while long genes with relatively low levels of pre-mRNA have an efficient splicing. Notably, we observe that genes with efficient CTS display a higher level of mature mRNA relative to their pre-mRNA levels. Further, we show that the TGFβ signal transduction pathway regulates the general CTS efficiency, causing changes in mature mRNA levels. Taken together, our data indicate that CTS efficiency is a gene-specific characteristic that can be regulated to control gene expression. Co-transcriptional splicing efficiency is a gene-specific characteristic that can be regulated by TGFβ to modulate gene expression.
Collapse
|
14
|
Fujita Y, Chokki T, Nishioka T, Morimoto K, Nakayama A, Nakae H, Ogasawara M, Terasaki AG. The emergence of nebulin repeats and evolution of lasp family proteins. Cytoskeleton (Hoboken) 2022; 78:419-435. [PMID: 35224880 DOI: 10.1002/cm.21693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/10/2022]
Abstract
The LIM and SH3 domain protein (lasp) family, the smallest proteins in the nebulin superfamily, consists of vertebrate lasp-1 expressed in various non-muscle tissues, vertebrate lasp-2 expressed in the brain and cardiac muscle, and invertebrate lasp whose functions have been analyzed in Ascidiacea and Insecta. Gene evolution of the lasp family proteins was investigated by multiple alignments, comparison of gene structure, and synteny analyses in eukaryotes in which mRNA expression was confirmed. All invertebrates analyzed in this study belonging to the clade Filasterea, with the exception of Placozoa, have at least one lasp gene. The minimal actin-binding region (LIM domain and first nebulin repeat) and SH3 domain detected in vertebrate lasp-2 were found to be conserved among the lasp family proteins, and we showed that nematode lasp has actin-binding activity. The linker sequences vary among invertebrate lasp proteins, implying that the lasp family proteins have universal and diverse functions. Gene structures and syntenic analyses suggest that a gene fragment encoding two nebulin repeats and a linker emerged in Filasterea or Holozoa, and the first lasp gene was generated following combination of three gene fragments encoding the LIM domain, two nebulin repeats with a linker, and the SH3 domain. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Tamami Chokki
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Tatsuji Nishioka
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Kouta Morimoto
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Ayako Nakayama
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Hiroki Nakae
- BIO-Business Solutions, Hisamoto, Takatsu-ku, Kawasaki, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| | - Asako G Terasaki
- Department of Biology, Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, Japan
| |
Collapse
|
15
|
Abstract
Alternative splicing enables higher eukaryotes to expand mRNA diversity from a finite number of genes through highly combinatorial splice site selection mechanisms that are influenced by the sequence of competing splice sites, cis-regulatory elements binding trans-acting factors, the length of exons and introns harbouring alternative splice sites and RNA secondary structures at putative splice junctions. To test the hypothesis that the intron definition or exon definition modes of splice site recognition direct the selection of alternative splice patterns, we created a database of alternative splice site usage (ALTssDB). When alternative splice sites are embedded within short introns (intron definition), the 5' and 3' splice sites closest to each other across the intron preferentially pair, consistent with previous observations. However, when alternative splice sites are embedded within large flanking introns (exon definition), the 5' and 3' splice sites closest to each other across the exon are preferentially selected. Thus, alternative splicing decisions are influenced by the intron and exon definition modes of splice site recognition. The results demonstrate that the spliceosome pairs splice sites that are closest in proximity within the unit of initial splice site selection.
Collapse
Affiliation(s)
- Francisco Carranza
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, USA
| | - Hossein Shenasa
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, USA
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, USA
| |
Collapse
|
16
|
Yang P, Wang D, Kang L. Alternative splicing level related to intron size and organism complexity. BMC Genomics 2021; 22:853. [PMID: 34819032 PMCID: PMC8614042 DOI: 10.1186/s12864-021-08172-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background Alternative splicing is the process of selecting different combinations of splice sites to produce variably spliced mRNAs. However, the relationships between alternative splicing prevalence and level (ASP/L) and variations of intron size and organism complexity (OC) remain vague. Here, we developed a robust protocol to analyze the relationships between ASP/L and variations of intron size and OC. Approximately 8 Tb raw RNA-Seq data from 37 eumetazoan species were divided into three sets of species based on variations in intron size and OC. Results We found a strong positive correlation between ASP/L and OC, but no correlation between ASP/L and intron size across species. Surprisingly, ASP/L displayed a positive correlation with mean intron size of genes within individual genomes. Moreover, our results revealed that four ASP/L-related pathways contributed to the differences in ASP/L that were associated with OC. In particular, the spliceosome pathway displayed distinct genomic features, such as the highest gene expression level, conservation level, and fraction of disordered regions. Interestingly, lower or no obvious correlations were observed among these genomic features. Conclusions The positive correlation between ASP/L and OC ubiquitously exists in eukaryotes, and this correlation is not affected by the mean intron size of these species. ASP/L-related splicing factors may play an important role in the evolution of OC. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08172-2.
Collapse
Affiliation(s)
- Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Depin Wang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Ametrano A, Gerdol M, Vitale M, Greco S, Oreste U, Coscia MR. The evolutionary puzzle solution for the origins of the partial loss of the Cτ2 exon in notothenioid fishes. FISH & SHELLFISH IMMUNOLOGY 2021; 116:124-139. [PMID: 34038801 DOI: 10.1016/j.fsi.2021.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Cryonotothenioidea is the main group of fishes that thrive in the extremely cold Antarctic environment, thanks to the acquisition of peculiar morphological, physiological and molecular adaptations. We have previously disclosed that IgM, the main immunoglobulin isotype in teleosts, display typical cold-adapted features. Recently, we have analyzed the gene encoding the heavy chain constant region (CH) of the IgT isotype from the Antarctic teleost Trematomus bernacchii (family Nototheniidae), characterized by the near-complete deletion of the CH2 domain. Here, we aimed to track the loss of the CH2 domain along notothenioid phylogeny and to identify its ancestral origins. To this end, we obtained the IgT gene sequences from several species belonging to the Antarctic families Nototheniidae, Bathydraconidae and Artedidraconidae. All species display a CH2 remnant of variable size, encoded by a short Cτ2 exon, which retains functional splicing sites and therefore is included in the mature transcript. We also considered representative species from the three non-Antarctic families: Eleginopsioidea (Eleginops maclovinus), Pseudaphritioidea (Pseudaphritis urvillii) and Bovichtidae (Bovichtus diacanthus and Cottoperca gobio). Even though only E. maclovinus, the sister taxa of Cryonotothenioidea, shared the partial loss of Cτ2, the other non-Antarctic notothenioid species displayed early molecular signatures of this event. These results shed light on the evolutionary path that underlies the origins of this remarkable gene structural modification.
Collapse
Affiliation(s)
- Alessia Ametrano
- Institute of Biochemistry and Cell Biology - National Research Council of Italy, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maria Vitale
- Institute of Biochemistry and Cell Biology - National Research Council of Italy, Naples, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Umberto Oreste
- Institute of Biochemistry and Cell Biology - National Research Council of Italy, Naples, Italy
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology - National Research Council of Italy, Naples, Italy.
| |
Collapse
|
18
|
Márquez Y, Mantica F, Cozzuto L, Burguera D, Hermoso-Pulido A, Ponomarenko J, Roy SW, Irimia M. ExOrthist: a tool to infer exon orthologies at any evolutionary distance. Genome Biol 2021; 22:239. [PMID: 34416914 PMCID: PMC8379844 DOI: 10.1186/s13059-021-02441-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Several bioinformatic tools have been developed for genome-wide identification of orthologous and paralogous genes. However, no corresponding tool allows the detection of exon homology relationships. Here, we present ExOrthist, a fully reproducible Nextflow-based software enabling inference of exon homologs and orthogroups, visualization of evolution of exon-intron structures, and assessment of conservation of alternative splicing patterns. ExOrthist evaluates exon sequence conservation and considers the surrounding exon-intron context to derive genome-wide multi-species exon homologies at any evolutionary distance. We demonstrate its use in different evolutionary scenarios: whole genome duplication in frogs and convergence of Nova-regulated splicing networks (https://github.com/biocorecrg/ExOrthist).
Collapse
Affiliation(s)
- Yamile Márquez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Spain.
| | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Demian Burguera
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Spain.,Department of Zoology, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Antonio Hermoso-Pulido
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Scott W Roy
- San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra, Barcelona, Spain. .,ICREA, Barcelona, Spain.
| |
Collapse
|
19
|
Top O, Milferstaedt SWL, van Gessel N, Hoernstein SNW, Özdemir B, Decker EL, Reski R. Expression of a human cDNA in moss results in spliced mRNAs and fragmentary protein isoforms. Commun Biol 2021; 4:964. [PMID: 34385580 PMCID: PMC8361020 DOI: 10.1038/s42003-021-02486-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 07/26/2021] [Indexed: 12/18/2022] Open
Abstract
Production of biopharmaceuticals relies on the expression of mammalian cDNAs in host organisms. Here we show that the expression of a human cDNA in the moss Physcomitrium patens generates the expected full-length and four additional transcripts due to unexpected splicing. This mRNA splicing results in non-functional protein isoforms, cellular misallocation of the proteins and low product yields. We integrated these results together with the results of our analysis of all 32,926 protein-encoding Physcomitrella genes and their 87,533 annotated transcripts in a web application, physCO, for automatized optimization. A thus optimized cDNA results in about twelve times more protein, which correctly localizes to the ER. An analysis of codon preferences of different production hosts suggests that similar effects occur also in non-plant hosts. We anticipate that the use of our methodology will prevent so far undetected mRNA heterosplicing resulting in maximized functional protein amounts for basic biology and biotechnology.
Collapse
Affiliation(s)
- Oguz Top
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Plant Molecular Cell Biology, Department Biology I, LMU Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Stella W L Milferstaedt
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Bugra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany.
| |
Collapse
|
20
|
Li H, Li A, Shen W, Ye N, Wang G, Zhang J. Global Survey of Alternative Splicing in Rice by Direct RNA Sequencing During Reproductive Development: Landscape and Genetic Regulation. RICE (NEW YORK, N.Y.) 2021; 14:75. [PMID: 34383135 PMCID: PMC8360254 DOI: 10.1186/s12284-021-00516-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/03/2021] [Indexed: 05/14/2023]
Abstract
Alternative splicing is a widespread phenomenon, which generates multiple isoforms of the gene product. Reproductive development is the key process for crop production. Although numerous forms of alternative splicing have been identified in model plants, large-scale study of alternative splicing dynamics during reproductive development in rice has not been conducted. Here, we investigated alternative splicing of reproductive development of young panicles (YP), unfertilized florets (UF) and fertilized florets (F) in rice using direct RNA sequencing, small RNA sequencing, and degradome sequencing. We identified a total of 35,317 alternative splicing (AS) events, among which 67.2% splicing events were identified as novel alternative splicing events. Intron retention (IR) was the most abundant alternative splicing subtype. Splicing factors that differentially expressed and alternatively spliced could result in global alternative splicing. Global analysis of miRNAs-targets prediction revealed that alternative spliced transcripts affected miRNAs' targets during development. Degradome sequencing detected only 6.8% of the differentially alternative splicing transcripts, suggesting a productive transcripts generation during development. In addition, alternative splicing isoforms of Co-like, a transcription factor, interacted with Casein kinase 1-like protein HD1 (CKI) examined in luciferase assay, which could modulate normal male-floral organs development and flowering time. These results reveal that alternative splicing is intensely associated with developmental stages, and a high complexity of gene regulation.
Collapse
Affiliation(s)
- Haoxuan Li
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Aixuan Li
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Shen
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Guanqun Wang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong.
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong.
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
21
|
The upstream 5' splice site remains associated to the transcription machinery during intron synthesis. Nat Commun 2021; 12:4545. [PMID: 34315864 PMCID: PMC8316553 DOI: 10.1038/s41467-021-24774-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022] Open
Abstract
In the earliest step of spliceosome assembly, the two splice sites flanking an intron are brought into proximity by U1 snRNP and U2AF along with other proteins. The mechanism that facilitates this intron looping is poorly understood. Using a CRISPR interference-based approach to halt RNA polymerase II transcription in the middle of introns in human cells, we discovered that the nascent 5′ splice site base pairs with a U1 snRNA that is tethered to RNA polymerase II during intron synthesis. This association functionally corresponds with splicing outcome, involves bona fide 5′ splice sites and cryptic intronic sites, and occurs transcriptome-wide. Overall, our findings reveal that the upstream 5′ splice sites remain attached to the transcriptional machinery during intron synthesis and are thus brought into proximity of the 3′ splice sites; potentially mediating the rapid splicing of long introns. We know that most splicing reactions take place co-transcriptionally, but how the transcription machinery facilitate splicing of introns is unknown. Here the authors show that the 5′ splice site remains associated with the transcription machinery during intron synthesis through U1 snRNP, providing a basis for the rapid splicing reaction of introns.
Collapse
|
22
|
Liu Q, Jiang F, Zhang J, Li X, Kang L. Transcription initiation of distant core promoters in a large-sized genome of an insect. BMC Biol 2021; 19:62. [PMID: 33785021 PMCID: PMC8011201 DOI: 10.1186/s12915-021-01004-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
Background Core promoters have a substantial influence on various steps of transcription, including initiation, elongation, termination, polyadenylation, and finally, translation. The characterization of core promoters is crucial for exploring the regulatory code of transcription initiation. However, the current understanding of insect core promoters is focused on those of Diptera (especially Drosophila) species with small genome sizes. Results Here, we present an analysis of the transcription start sites (TSSs) in the migratory locust, Locusta migratoria, which has a genome size of 6.5 Gb. The genomic differences, including lower precision of transcription initiation and fewer constraints on the distance from transcription factor binding sites or regulatory elements to TSSs, were revealed in locusts compared with Drosophila insects. Furthermore, we found a distinct bimodal log distribution of the distances from the start codons to the core promoters of locust genes. We found stricter constraints on the exon length of mRNA leaders and widespread expression activity of the distant core promoters in locusts compared with fruit flies. We further compared core promoters in seven arthropod species across a broad range of genome sizes to reinforce our results on the emergence of distant core promoters in large-sized genomes. Conclusions In summary, our results provide novel insights into the effects of genome size expansion on distant transcription initiation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01004-5.
Collapse
Affiliation(s)
- Qing Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xiao Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China. .,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
23
|
Královičová J, Borovská I, Pengelly R, Lee E, Abaffy P, Šindelka R, Grutzner F, Vořechovský I. Restriction of an intron size en route to endothermy. Nucleic Acids Res 2021; 49:2460-2487. [PMID: 33550394 PMCID: PMC7969005 DOI: 10.1093/nar/gkab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/15/2022] Open
Abstract
Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5' splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors. The size restriction was imposed by a single dominant dBP in anamniotes that expanded into a conserved constellation of four dBP adenines in amniotes. The amniote clusters exhibit taxon-specific usage of individual dBPs, reflecting accessibility of their extended motifs within a stable RNA hairpin rather than U2 snRNA:dBP base-pairing. The dBP expansion took place in early terrestrial species and was followed by a uridine enrichment of large downstream polypyrimidine tracts in mammals. The dBP-protected megatracts permit reciprocal regulation of exon 4a and 4b by uridine-binding proteins, including TIA-1/TIAR and PUF60, which promote U1 and U2 snRNP recruitment to the 5' splice site and BP, respectively, but do not significantly alter the relative dBP usage. We further show that codons for residues critically contributing to protein binding sites for Ca2+ and other divalent metals confer the exon inclusion order that mirrors the Irving-Williams affinity series, linking the evolution of auxiliary splicing motifs in exons to metallome constraints. Finally, we hypothesize that the dBP-driven selection for Ca2+-dependent ATP provision by E1 facilitated evolution of endothermy by optimizing the aerobic scope in target tissues.
Collapse
Affiliation(s)
- Jana Královičová
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Ivana Borovská
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Reuben Pengelly
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
| | - Eunice Lee
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia
| | - Pavel Abaffy
- Czech Academy of Sciences, Institute of Biotechnology, 25250 Vestec, Czech Republic
| | - Radek Šindelka
- Czech Academy of Sciences, Institute of Biotechnology, 25250 Vestec, Czech Republic
| | - Frank Grutzner
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia
| | - Igor Vořechovský
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
| |
Collapse
|
24
|
Using antisense oligonucleotides for the physiological modulation of the alternative splicing of NF1 exon 23a during PC12 neuronal differentiation. Sci Rep 2021; 11:3661. [PMID: 33574490 PMCID: PMC7878752 DOI: 10.1038/s41598-021-83152-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/29/2021] [Indexed: 01/11/2023] Open
Abstract
Neurofibromatosis Type 1 (NF1) is a genetic condition affecting approximately 1:3500 persons worldwide. The NF1 gene codes for neurofibromin protein, a GTPase activating protein (GAP) and a negative regulator of RAS. The NF1 gene undergoes alternative splicing of exon 23a (E23a) that codes for 21 amino acids placed at the center of the GAP related domain (GRD). E23a-containing type II neurofibromin exhibits a weaker Ras-GAP activity compared to E23a-less type I isoform. Exon E23a has been related with the cognitive impairment present in NF1 individuals. We designed antisense Phosphorodiamidate Morpholino Oligomers (PMOs) to modulate E23a alternative splicing at physiological conditions of gene expression and tested their impact during PC12 cell line neuronal differentiation. Results show that any dynamic modification of the natural ratio between type I and type II isoforms disturbed neuronal differentiation, altering the proper formation of neurites and deregulating both the MAPK/ERK and cAMP/PKA signaling pathways. Our results suggest an opposite regulation of these pathways by neurofibromin and the possible existence of a feedback loop sensing neurofibromin-related signaling. The present work illustrates the utility of PMOs to study alternative splicing that could be applied to other alternatively spliced genes in vitro and in vivo.
Collapse
|
25
|
Abstract
BACKGROUND Eukaryotic protein-coding genes consist of exons and introns. Exon-intron borders are conserved between species and thus their changes might be observed only on quite long evolutionary distances. One of the rarest types of change, in which intron relocates over a short distance, is called "intron sliding", but the reality of this event has been debated for a long time. The main idea of a search for intron sliding is to use the most accurate genome annotation and genome sequence, as well as high-quality transcriptome data. We applied them in a search for sliding introns in mammals in order to widen knowledge about the presence or absence of such phenomena in this group. RESULTS We didn't find any significant evidence of intron sliding in the primate group (human, chimpanzee, rhesus macaque, crab-eating macaque, green monkey, marmoset). Only one possible intron sliding event supported by a set of high quality transcriptomes was observed between EIF1AX human and sheep gene orthologs. Also, we checked a list of previously observed intron sliding events in mammals and showed that most likely they are artifacts of genome annotations and are not shown in subsequent annotation versions as well as are not supported by transcriptomic data. CONCLUSIONS We assume that intron sliding is indeed a very rare evolutionary event if it exists at all. Every case of intron sliding needs a lot of supportive data for detection and confirmation.
Collapse
|
26
|
Jin L, Chen Y, Crossman DK, Datta A, Vu T, Mobley JA, Basu MK, Scarduzio M, Wang H, Chang C, Datta PK. STRAP regulates alternative splicing fidelity during lineage commitment of mouse embryonic stem cells. Nat Commun 2020; 11:5941. [PMID: 33230114 PMCID: PMC7684319 DOI: 10.1038/s41467-020-19698-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing (AS) is involved in cell fate decisions and embryonic development. However, regulation of these processes is poorly understood. Here, we have identified the serine threonine kinase receptor-associated protein (STRAP) as a putative spliceosome-associated factor. Upon Strap deletion, there are numerous AS events observed in mouse embryoid bodies (EBs) undergoing a neuroectoderm-like state. Global mapping of STRAP-RNA binding in mouse embryos by enhanced-CLIP sequencing (eCLIP-seq) reveals that STRAP preferably targets transcripts for nervous system development and regulates AS through preferred binding positions, as demonstrated for two neuronal-specific genes, Nnat and Mark3. We have found that STRAP involves in the assembly of 17S U2 snRNP proteins. Moreover, in Xenopus, loss of Strap leads to impeded lineage differentiation in embryos, delayed neural tube closure, and altered exon skipping. Collectively, our findings reveal a previously unknown function of STRAP in mediating the splicing networks of lineage commitment, alteration of which may be involved in early embryonic lethality in mice.
Collapse
Affiliation(s)
- Lin Jin
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA
| | - Yunjia Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Arunima Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA
| | - Trung Vu
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Malay Kumar Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Mariangela Scarduzio
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutic, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Chenbei Chang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Pran K Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35233, USA.
| |
Collapse
|
27
|
Abstract
Genome-wide analysis of transcriptome data in Chlamydomonas reinhardtii shows periodic patterns in gene expression levels when cultures are grown under alternating light and dark cycles so that G1 of the cell cycle occurs in the light phase and S/M/G0 occurs during the dark phase. However, alternative splicing, a process that enables a greater protein diversity from a limited set of genes, remains largely unexplored by previous transcriptome based studies in C. reinhardtii. In this study, we used existing longitudinal RNA-seq data obtained during the light-dark cycle to investigate the changes in the alternative splicing pattern and found that 3277 genes (19.75% of 17,746 genes) undergo alternative splicing. These splicing events include Alternative 5′ (Alt 5′), Alternative 3′ (Alt 3′) and Exon skipping (ES) events that are referred as alternative site selection (ASS) events and Intron retention (IR) events. By clustering analysis, we identified a subset of events (26 ASS events and 10 IR events) that show periodic changes in the splicing pattern during the cell cycle. About two-thirds of these 36 genes either introduce a pre-termination codon (PTC) or introduce insertions or deletions into functional domains of the proteins, which implicate splicing in altering gene function. These findings suggest that alternative splicing is also regulated during the Chlamydomonas cell cycle, although not as extensively as changes in gene expression. The longitudinal changes in the alternative splicing pattern during the cell cycle captured by this study provides an important resource to investigate alternative splicing in genes of interest during the cell cycle in Chlamydomonas reinhardtii and other eukaryotes.
Collapse
|
28
|
Sequence and Evolutionary Features for the Alternatively Spliced Exons of Eukaryotic Genes. Int J Mol Sci 2019; 20:ijms20153834. [PMID: 31390737 PMCID: PMC6695735 DOI: 10.3390/ijms20153834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Alternative splicing of pre-mRNAs is a crucial mechanism for maintaining protein diversity in eukaryotes without requiring a considerable increase of genes in the number. Due to rapid advances in high-throughput sequencing technologies and computational algorithms, it is anticipated that alternative splicing events will be more intensively studied to address different kinds of biological questions. The occurrences of alternative splicing mean that all exons could be classified to be either constitutively or alternatively spliced depending on whether they are virtually included into all mature mRNAs. From an evolutionary point of view, therefore, the alternatively spliced exons would have been associated with distinctive biological characteristics in comparison with constitutively spliced exons. In this paper, we first outline the representative types of alternative splicing events and exon classification, and then review sequence and evolutionary features for the alternatively spliced exons. The main purpose is to facilitate understanding of the biological implications of alternative splicing in eukaryotes. This knowledge is also helpful to establish computational approaches for predicting the splicing pattern of exons.
Collapse
|
29
|
Comparative Analysis of Brain and Fat Body Gene Splicing Patterns in the Honey Bee, Apis mellifera. G3-GENES GENOMES GENETICS 2019; 9:1055-1063. [PMID: 30792192 PMCID: PMC6469410 DOI: 10.1534/g3.118.200857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA-seq has proven to be a powerful tool to unravel various aspects of the transcriptome, especially the quantification of alternative splicing (AS) that leads to isoform diversity. The honey bee (Apis mellifera) is an important model organism for studying the molecular underpinnings of behavioral plasticity and social behavior, and recent RNA-seq studies of honey bees have revealed AS patterns and their regulation by DNA methylation. However, tissue-specific AS patterns have not been fully explored. In this paper, we characterized AS patterns in two different honey bee tissue types, and also explored their conservation and regulation. We used the RNA-seq data from brain and fat body to improve the existing models of honey bee genes and identified tissue-specific AS patterns. We found that AS genes show high conservation between honey bee and Drosophila melanogaster. We also confirmed and extended previous findings of a correlation between gene body DNA methylation and AS patterns, providing further support for the role of DNA methylation in regulating AS. In addition, our analysis suggests distinct functional roles for tissue-specific alternatively spliced genes. Taken together, our work provides new insights into the conservation and dynamics of AS patterns across different tissue types.
Collapse
|
30
|
Fuertes MA, Rodrigo JR, Alonso C. Conserved Critical Evolutionary Gene Structures in Orthologs. J Mol Evol 2019; 87:93-105. [PMID: 30815710 DOI: 10.1007/s00239-019-09889-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
Abstract
Unravelling gene structure requires the identification and understanding of the constraints that are often associated with the evolutionary history and functional domains of genes. We speculated in this manuscript with the possibility of the existence in orthologs of an emergent highly conserved gene structure that might explain their coordinated evolution during speciation events and their parental function. Here, we will address the following issues: (1) is there any conserved hypothetical structure along ortholog gene sequences? (2) If any, are such conserved structures maintained and conserved during speciation events? The data presented show evidences supporting this hypothesis. We have found that, (1) most orthologs studied share highly conserved compositional structures not observed previously. (2) While the percent identity of nucleotide sequences of orthologs correlates with the percent identity of composon sequences, the number of emergent compositional structures conserved during speciation does not correlate with the percent identity. (3) A broad range of species conserves the emergent compositional stretches. We will also discuss the concept of critical gene structure.
Collapse
Affiliation(s)
- Miguel A Fuertes
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049, Madrid, Spain.
| | | | - Carlos Alonso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
31
|
Venters CC, Oh JM, Di C, So BR, Dreyfuss G. U1 snRNP Telescripting: Suppression of Premature Transcription Termination in Introns as a New Layer of Gene Regulation. Cold Spring Harb Perspect Biol 2019; 11:11/2/a032235. [PMID: 30709878 DOI: 10.1101/cshperspect.a032235] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent observations showed that nascent RNA polymerase II transcripts, pre-mRNAs, and noncoding RNAs are highly susceptible to premature 3'-end cleavage and polyadenylation (PCPA) from numerous intronic cryptic polyadenylation signals (PASs). The importance of this in gene regulation was not previously appreciated as PASs, despite their prevalence, were thought to be active in terminal exons at gene ends. Unexpectedly, antisense oligonucleotide interference with U1 snRNA base-pairing to 5' splice sites, which is necessary for U1 snRNP's (U1) function in splicing, caused widespread PCPA in metazoans. This uncovered U1's PCPA suppression activity, termed telescripting, as crucial for full-length transcription in thousands of vertebrate genes, providing a general role in transcription elongation control. Progressive intron-size expansion in metazoan evolution greatly increased PCPA vulnerability and dependence on U1 telescripting. We describe how these observations unfolded and discuss U1 telescripting's role in shaping the transcriptome.
Collapse
Affiliation(s)
- Christopher C Venters
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Jung-Min Oh
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Chao Di
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Byung Ran So
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
32
|
Shayevitch R, Askayo D, Keydar I, Ast G. The importance of DNA methylation of exons on alternative splicing. RNA (NEW YORK, N.Y.) 2018; 24:1351-1362. [PMID: 30002084 PMCID: PMC6140467 DOI: 10.1261/rna.064865.117] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 07/02/2018] [Indexed: 05/24/2023]
Abstract
Alternative splicing (AS) contributes to proteome diversity. As splicing occurs cotranscriptionally, epigenetic determinants such as DNA methylation likely play a part in regulation of AS. Previously, we have shown that DNA methylation marks exons and that a loss of DNA methylation alters splicing patterns in a genome-wide manner. To investigate the influence of DNA methylation on splicing of individual genes, we developed a method to manipulate DNA methylation in vivo in a site-specific manner using the deactivated endonuclease Cas9 fused to enzymes that methylate or demethylate DNA. We used this system to directly change the DNA methylation pattern of selected exons and introns. We demonstrated that changes in the methylation pattern of alternatively spliced exons, but not constitutively spliced exons or introns, altered inclusion levels. This is the first direct demonstration that DNA methylation of exon-encoding regions is directly involved in regulation of AS.
Collapse
Affiliation(s)
- Ronna Shayevitch
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Dan Askayo
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Ifat Keydar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
33
|
Gotoh O. Modeling one thousand intron length distributions with fitild. Bioinformatics 2018; 34:3258-3264. [PMID: 29722882 PMCID: PMC6157073 DOI: 10.1093/bioinformatics/bty353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Motivation Intron length distribution (ILD) is a specific feature of a genome that exhibits extensive species-specific variation. Whereas ILD contributes to up to 30% of the total information content for intron recognition in some species, rendering it an important component of computational gene prediction, very few studies have been conducted to quantitatively characterize ILDs of various species. Results We developed a set of computer programs (fitild, compild, etc.) to build statistical models of ILDs and compare them with one another. Each ILD of more than 1000 genomes was fitted with fitild to a statistical model consisting of one, two, or three components of Frechet distributions. Several measures of distances between ILDs were calculated by compild. A theoretical model was presented to better understand the origin of the observed shape of an ILD. Availability and implementation The C++ source codes are available at https://github.com/ogotoh/fitild.git/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Osamu Gotoh
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tokyo Waterfront Bio-IT Research Building, Koto-ku, Tokyo, Japan.,Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
34
|
Biamonti G, Maita L, Montecucco A. The Krebs Cycle Connection: Reciprocal Influence Between Alternative Splicing Programs and Cell Metabolism. Front Oncol 2018; 8:408. [PMID: 30319972 PMCID: PMC6168629 DOI: 10.3389/fonc.2018.00408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing is a pervasive mechanism that molds the transcriptome to meet cell and organism needs. However, how this layer of gene expression regulation is coordinated with other aspects of the cell metabolism is still largely undefined. Glucose is the main energy and carbon source of the cell. Not surprisingly, its metabolism is finely tuned to satisfy growth requirements and in response to nutrient availability. A number of studies have begun to unveil the connections between glucose metabolism and splicing programs. Alternative splicing modulates the ratio between M1 and M2 isoforms of pyruvate kinase in this way determining the choice between aerobic glycolysis and complete glucose oxidation in the Krebs cycle. Reciprocally, intermediates in the Krebs cycle may impact splicing programs at different levels by modulating the activity of 2-oxoglutarate-dependent oxidases. In this review we discuss the molecular mechanisms that coordinate alternative splicing programs with glucose metabolism, two aspects with profound implications in human diseases.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Lucia Maita
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | | |
Collapse
|
35
|
Kvist J, Gonçalves Athanàsio C, Shams Solari O, Brown JB, Colbourne JK, Pfrender ME, Mirbahai L. Pattern of DNA Methylation in Daphnia: Evolutionary Perspective. Genome Biol Evol 2018; 10:1988-2007. [PMID: 30060190 PMCID: PMC6097596 DOI: 10.1093/gbe/evy155] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is an evolutionary ancient epigenetic modification that is phylogenetically widespread. Comparative studies of the methylome across a diverse range of non-conventional and conventional model organisms is expected to help reveal how the landscape of DNA methylation and its functions have evolved. Here, we explore the DNA methylation profile of two species of the crustacean Daphnia using whole genome bisulfite sequencing. We then compare our data with the methylomes of two insects and two mammals to achieve a better understanding of the function of DNA methylation in Daphnia. Using RNA-sequencing data for all six species, we investigate the correlation between DNA methylation and gene expression. DNA methylation in Daphnia is mainly enriched within the coding regions of genes, with the highest methylation levels observed at exons 2–4. In contrast, vertebrate genomes are globally methylated, and increase towards the highest methylation levels observed at exon 2, and maintained across the rest of the gene body. Although DNA methylation patterns differ among all species, their methylation profiles share a bimodal distribution across the genomes. Genes with low levels of CpG methylation and gene expression are mainly enriched for species specific genes. In contrast, genes associated with high methylated CpG sites are highly transcribed and evolutionary conserved across all species. Finally, the positive correlation between internal exons and gene expression potentially points to an evolutionary conserved mechanism, whereas the negative regulation of gene expression via methylation of promoters and exon 1 is potentially a secondary mechanism that has been evolved in vertebrates.
Collapse
Affiliation(s)
- Jouni Kvist
- School of Biosciences, University of Birmingham, United Kingdom
| | | | | | - James B Brown
- Department of Statistics, University of California, Berkeley.,Centre for Computational Biology (CCB), University of Birmingham, United Kingdom
| | | | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame
| | - Leda Mirbahai
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
36
|
Pai AA, Henriques T, McCue K, Burkholder A, Adelman K, Burge CB. The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture. eLife 2017; 6:32537. [PMID: 29280736 PMCID: PMC5762160 DOI: 10.7554/elife.32537] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning (‘intron definition’) or exon-spanning (‘exon definition’) pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60–70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. We observed unexpectedly low variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance the rate or accuracy of splicing.
Collapse
Affiliation(s)
- Athma A Pai
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Telmo Henriques
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Kayla McCue
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Adam Burkholder
- Center for Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle, United States
| | - Karen Adelman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Christopher B Burge
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
37
|
Krishnan NM, Panda B. Comparative analyses of putative toxin gene homologs from an Old World viper, Daboia russelii. PeerJ 2017; 5:e4104. [PMID: 29230357 PMCID: PMC5721910 DOI: 10.7717/peerj.4104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/07/2017] [Indexed: 11/25/2022] Open
Abstract
Availability of snake genome sequences has opened up exciting areas of research on comparative genomics and gene diversity. One of the challenges in studying snake genomes is the acquisition of biological material from live animals, especially from the venomous ones, making the process cumbersome and time-consuming. Here, we report comparative sequence analyses of putative toxin gene homologs from Russell’s viper (Daboia russelii) using whole-genome sequencing data obtained from shed skin. When compared with the major venom proteins in Russell’s viper studied previously, we found 45–100% sequence similarity between the venom proteins and their putative homologs in the skin. Additionally, comparative analyses of 20 putative toxin gene family homologs provided evidence of unique sequence motifs in nerve growth factor (NGF), platelet derived growth factor (PDGF), Kunitz/Bovine pancreatic trypsin inhibitor (Kunitz BPTI), cysteine-rich secretory proteins, antigen 5, andpathogenesis-related1 proteins (CAP) and cysteine-rich secretory protein (CRISP). In those derived proteins, we identified V11 and T35 in the NGF domain; F23 and A29 in the PDGF domain; N69, K2 and A5 in the CAP domain; and Q17 in the CRISP domain to be responsible for differences in the largest pockets across the protein domain structures in crotalines, viperines and elapids from the in silico structure-based analysis. Similarly, residues F10, Y11 and E20 appear to play an important role in the protein structures across the kunitz protein domain of viperids and elapids. Our study highlights the usefulness of shed skin in obtaining good quality high-molecular weight DNA for comparative genomic studies, and provides evidence towards the unique features and evolution of putative venom gene homologs in vipers.
Collapse
Affiliation(s)
- Neeraja M Krishnan
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Binay Panda
- Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| |
Collapse
|
38
|
U1 snRNP telescripting regulates a size-function-stratified human genome. Nat Struct Mol Biol 2017; 24:993-999. [PMID: 28967884 DOI: 10.1038/nsmb.3473] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/28/2017] [Indexed: 12/16/2022]
Abstract
U1 snRNP (U1) functions in splicing introns and telescripting, which suppresses premature cleavage and polyadenylation (PCPA). Using U1 inhibition in human cells, we show that U1 telescripting is selectively required for sustaining long-distance transcription elongation in introns of large genes (median 39 kb). Evidence of widespread PCPA in the same locations in normal tissues reveals that large genes incur natural transcription attrition. Underscoring the importance of U1 telescripting as a gene-size-based mRNA-regulation mechanism, small genes were not sensitive to PCPA, and the spliced-mRNA productivity of ∼1,000 small genes (median 6.8 kb) increased upon U1 inhibition. Notably, these small, upregulated genes were enriched in functions related to acute stimuli and cell-survival response, whereas genes subject to PCPA were enriched in cell-cycle progression and developmental functions. This gene size-function polarization increased in metazoan evolution by enormous intron expansion. We propose that telescripting adds an overarching layer of regulation to size-function-stratified genomes, leveraged by selective intron expansion to rapidly shift gene expression priorities.
Collapse
|
39
|
Gelfman S, Wang Q, McSweeney KM, Ren Z, La Carpia F, Halvorsen M, Schoch K, Ratzon F, Heinzen EL, Boland MJ, Petrovski S, Goldstein DB. Annotating pathogenic non-coding variants in genic regions. Nat Commun 2017; 8:236. [PMID: 28794409 PMCID: PMC5550444 DOI: 10.1038/s41467-017-00141-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 06/05/2017] [Indexed: 12/21/2022] Open
Abstract
Identifying the underlying causes of disease requires accurate interpretation of genetic variants. Current methods ineffectively capture pathogenic non-coding variants in genic regions, resulting in overlooking synonymous and intronic variants when searching for disease risk. Here we present the Transcript-inferred Pathogenicity (TraP) score, which uses sequence context alterations to reliably identify non-coding variation that causes disease. High TraP scores single out extremely rare variants with lower minor allele frequencies than missense variants. TraP accurately distinguishes known pathogenic and benign variants in synonymous (AUC = 0.88) and intronic (AUC = 0.83) public datasets, dismissing benign variants with exceptionally high specificity. TraP analysis of 843 exomes from epilepsy family trios identifies synonymous variants in known epilepsy genes, thus pinpointing risk factors of disease from non-coding sequence data. TraP outperforms leading methods in identifying non-coding variants that are pathogenic and is therefore a valuable tool for use in gene discovery and the interpretation of personal genomes. While non-coding synonymous and intronic variants are often not under strong selective constraint, they can be pathogenic through affecting splicing or transcription. Here, the authors develop a score that uses sequence context alterations to predict pathogenicity of synonymous and non-coding genetic variants, and provide a web server of pre-computed scores.
Collapse
Affiliation(s)
- Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA. .,Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA.
| | - Quanli Wang
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA
| | - K Melodi McSweeney
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA
| | - Zhong Ren
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA
| | - Francesca La Carpia
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, 10032, USA
| | - Matt Halvorsen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA
| | - Kelly Schoch
- Department of Pediatrics, Duke University Health System, Durham, North Carolina, 27705, USA
| | - Fanni Ratzon
- Department of Pathology, Lenox Hill Hospital, New York, New York, 10075, USA
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, 10032, USA
| | - Michael J Boland
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Neurology, Columbia University, New York, New York, 10032, USA
| | - Slavé Petrovski
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Medicine, Austin Health and Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, 3050, Australia
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA
| |
Collapse
|
40
|
Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 2017; 18:437-451. [PMID: 28488700 DOI: 10.1038/nrm.2017.27] [Citation(s) in RCA: 868] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alternative splicing of eukaryotic transcripts is a mechanism that enables cells to generate vast protein diversity from a limited number of genes. The mechanisms and outcomes of alternative splicing of individual transcripts are relatively well understood, and recent efforts have been directed towards studying splicing networks. It has become apparent that coordinated splicing networks regulate tissue and organ development, and that alternative splicing has important physiological functions in different developmental processes in humans.
Collapse
|
41
|
Pramanik S, Kutzner A, Heese K. Livebearing or egg-laying mammals: 27 decisive nucleotides of FAM168. Biosci Trends 2017; 11:169-178. [PMID: 28381702 DOI: 10.5582/bst.2016.01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the present study, we determine comprehensive molecular phylogenetic relationships of the novel myelin-associated neurite-outgrowth inhibitor (MANI) gene across the entire eukaryotic lineage. Combined computational genomic and proteomic sequence analyses revealed MANI as one of the two members of the novel family with sequence similarity 168 member (FAM168) genes, consisting of FAM168A and FAM168B, having distinct genetic differences that illustrate diversification in its biological function and genetic taxonomy across the phylogenetic tree. Phylogenetic analyses based on coding sequences of these FAM168 genes revealed that they are paralogs and that the earliest emergence of these genes occurred in jawed vertebrates such as Callorhinchus milii. Surprisingly, these two genes are absent in other chordates that have a notochord at some stage in their lives, such as branchiostoma and tunicates. In the context of phylogenetic relationships among eukaryotic species, our results demonstrate the presence of FAM168 orthologs in vertebrates ranging from Callorhinchus milii to Homo sapiens, displaying distinct taxonomic clusters, comprised of fish, amphibians, reptiles, birds, and mammals. Analyses of individual FAM168 exons in our sample provide new insights into the molecular relationships between FAM168A and FAM168B (MANI) on the one hand and livebearing and egg-laying mammals on the other hand, demonstrating that a distinctive intermediate exon 4, comprised of 27 nucleotides, appears suddenly only in FAM168A and there in the livebearing mammals only but is absent from all other species including the egg-laying mammals.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University
| | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University
| |
Collapse
|
42
|
Fuchs A, Torroba M, Kinkley S. PHF13: A new player involved in RNA polymerase II transcriptional regulation and co-transcriptional splicing. Transcription 2017; 8:106-112. [PMID: 28102760 DOI: 10.1080/21541264.2016.1274813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
We recently identified PHF13 as an H3K4me2/3 chromatin reader and transcriptional co-regulator. We found that PHF13 interacts with RNAPIIS5P and PRC2 stabilizing their association with active and bivalent promoters. Furthermore, mass spectrometry analysis identified ∼50 spliceosomal proteins in PHF13s interactome. Here, we will discuss the potential role of PHF13 in RNAPII pausing and co-transcriptional splicing.
Collapse
Affiliation(s)
- Alisa Fuchs
- a Max Planck Institute for Molecular Genetics , Berlin , Germany
| | - Marcos Torroba
- a Max Planck Institute for Molecular Genetics , Berlin , Germany
| | - Sarah Kinkley
- a Max Planck Institute for Molecular Genetics , Berlin , Germany
| |
Collapse
|
43
|
Kirkconnell KS, Magnuson B, Paulsen MT, Lu B, Bedi K, Ljungman M. Gene length as a biological timer to establish temporal transcriptional regulation. Cell Cycle 2017; 16:259-270. [PMID: 28055303 DOI: 10.1080/15384101.2016.1234550] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Transcriptional timing is inherently influenced by gene length, thus providing a mechanism for temporal regulation of gene expression. While gene size has been shown to be important for the expression timing of specific genes during early development, whether it plays a role in the timing of other global gene expression programs has not been extensively explored. Here, we investigate the role of gene length during the early transcriptional response of human fibroblasts to serum stimulation. Using the nascent sequencing techniques Bru-seq and BruUV-seq, we identified immediate genome-wide transcriptional changes following serum stimulation that were linked to rapid activation of enhancer elements. We identified 873 significantly induced and 209 significantly repressed genes. Variations in gene size allowed for a large group of genes to be simultaneously activated but produce full-length RNAs at different times. The median length of the group of serum-induced genes was significantly larger than the median length of all expressed genes, housekeeping genes, and serum-repressed genes. These gene length relationships were also observed in corresponding mouse orthologs, suggesting that relative gene size is evolutionarily conserved. The sizes of transcription factor and microRNA genes immediately induced after serum stimulation varied dramatically, setting up a cascade mechanism for temporal expression arising from a single activation event. The retention and expansion of large intronic sequences during evolution have likely played important roles in fine-tuning the temporal expression of target genes in various cellular response programs.
Collapse
Affiliation(s)
- Killeen S Kirkconnell
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,b Department of Human Genetics , University of Michigan Medical School , Ann Arbor , MI , USA
| | - Brian Magnuson
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,c Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| | - Michelle T Paulsen
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Brian Lu
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Karan Bedi
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA
| | - Mats Ljungman
- a Department of Radiation Oncology , University of Michigan Comprehensive Cancer Center, Translational Oncology Program, and Center for RNA Biomedicine, University of Michigan , Ann Arbor , MI , USA.,c Department of Environmental Health Sciences , School of Public Health, University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
44
|
Li Y, Xu Y, Ma Z. Comparative Analysis of the Exon-Intron Structure in Eukaryotic Genomes. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ym.2017.11006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Tatarinova TV, Chekalin E, Nikolsky Y, Bruskin S, Chebotarov D, McNally KL, Alexandrov N. Nucleotide diversity analysis highlights functionally important genomic regions. Sci Rep 2016; 6:35730. [PMID: 27774999 PMCID: PMC5075931 DOI: 10.1038/srep35730] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022] Open
Abstract
We analyzed functionality and relative distribution of genetic variants across the complete Oryza sativa genome, using the 40 million single nucleotide polymorphisms (SNPs) dataset from the 3,000 Rice Genomes Project (http://snp-seek.irri.org), the largest and highest density SNP collection for any higher plant. We have shown that the DNA-binding transcription factors (TFs) are the most conserved group of genes, whereas kinases and membrane-localized transporters are the most variable ones. TFs may be conserved because they belong to some of the most connected regulatory hubs that modulate transcription of vast downstream gene networks, whereas signaling kinases and transporters need to adapt rapidly to changing environmental conditions. In general, the observed profound patterns of nucleotide variability reveal functionally important genomic regions. As expected, nucleotide diversity is much higher in intergenic regions than within gene bodies (regions spanning gene models), and protein-coding sequences are more conserved than untranslated gene regions. We have observed a sharp decline in nucleotide diversity that begins at about 250 nucleotides upstream of the transcription start and reaches minimal diversity exactly at the transcription start. We found the transcription termination sites to have remarkably symmetrical patterns of SNP density, implying presence of functional sites near transcription termination. Also, nucleotide diversity was significantly lower near 3′ UTRs, the area rich with regulatory regions.
Collapse
Affiliation(s)
- Tatiana V Tatarinova
- Center for Personalized Medicine and Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Yuri Nikolsky
- Vavilov Institute of General Genetics, Moscow, Russia.,F1 Genomics, San Diego, CA, USA.,School of Systems Biology, George Mason University, VA, USA
| | | | - Dmitry Chebotarov
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | - Kenneth L McNally
- International Rice Research Institute, Los Baños, Laguna 4031, Philippines
| | | |
Collapse
|
46
|
Abstract
Although they do not contribute directly to the proteome, introns frequently contain regulatory elements and can extend the protein coding potential of the genome through alternative splicing. For some genes, the contribution of introns to the time required for transcription can also be functionally significant. We have previously shown that intron length in genes associated with developmental patterning is often highly conserved. In general, sets of genes that require precise coordination in the timing of their expression may be sensitive to changes in transcript length. A prediction of this hypothesis is that evolutionary changes in intron length, when they occur, may be correlated between sets of coordinately expressed genes. To test this hypothesis, we analyzed intron length coevolution in alignments from nine eutherian mammals. Overall, genes that belong to the same protein complex or that are coexpressed were significantly more likely to show evidence of intron length coevolution than matched, randomly sampled genes. Individually, protein complexes involved in the cell cycle showed the strongest evidence of coevolution of intron lengths and clusters of coexpressed genes enriched for cell cycle genes also showed significant evidence of intron length coevolution. Our results reveal a novel aspect of gene coevolution and provide a means to identify genes, protein complexes and biological processes that may be particularly sensitive to changes in transcriptional dynamics.
Collapse
Affiliation(s)
- Peter A. Keane
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| |
Collapse
|
47
|
Hollander D, Naftelberg S, Lev-Maor G, Kornblihtt AR, Ast G. How Are Short Exons Flanked by Long Introns Defined and Committed to Splicing? Trends Genet 2016; 32:596-606. [PMID: 27507607 DOI: 10.1016/j.tig.2016.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 11/19/2022]
Abstract
The splice sites (SSs) delimiting an intron are brought together in the earliest step of spliceosome assembly yet it remains obscure how SS pairing occurs, especially when introns are thousands of nucleotides long. Splicing occurs in vivo in mammals within minutes regardless of intron length, implying that SS pairing can instantly follow transcription. Also, factors required for SS pairing, such as the U1 small nuclear ribonucleoprotein (snRNP) and U2AF65, associate with RNA polymerase II (RNAPII), while nucleosomes preferentially bind exonic sequences and associate with U2 snRNP. Based on recent publications, we assume that the 5' SS-bound U1 snRNP can remain tethered to RNAPII until complete synthesis of the downstream intron and exon. An additional U1 snRNP then binds the downstream 5' SS, whereas the RNAPII-associated U2AF65 binds the upstream 3' SS to facilitate SS pairing along with exon definition. Next, the nucleosome-associated U2 snRNP binds the branch site to advance splicing complex assembly. This may explain how RNAPII and chromatin are involved in spliceosome assembly and how introns lengthened during evolution with a relatively minimal compromise in splicing.
Collapse
Affiliation(s)
- Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shiran Naftelberg
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Alberto R Kornblihtt
- IFIBYNE-UBA-CONICET and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires, Argentina
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
48
|
Fuertes MA, Rodrigo JR, Alonso C. Do Intron and Coding Sequences of Some Human-Mouse Orthologs Evolve as a Single Unit? J Mol Evol 2016; 82:247-50. [PMID: 27220874 DOI: 10.1007/s00239-016-9746-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 11/25/2022]
Abstract
It has been previously suggested that both the coding and the associated non-coding sequences of some human-mouse orthologs could evolve as a single unit. This letter deals with the observation that between mouse and humans some orthologs change significantly their compositional features as an indication that the molecular evolution is a local process. Moreover, the data shown indicate that the coding and the intron sequences of these orthologs do not evolve independently but instead both undergo a concerted evolution, evolving as a single unit, from a compositional cluster in mouse to a different compositional cluster in human.
Collapse
Affiliation(s)
- Miguel Angel Fuertes
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049, Madrid, Spain.
| | | | - Carlos Alonso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
49
|
Niedzicka M, Fijarczyk A, Dudek K, Stuglik M, Babik W. Molecular Inversion Probes for targeted resequencing in non-model organisms. Sci Rep 2016; 6:24051. [PMID: 27046329 PMCID: PMC4820773 DOI: 10.1038/srep24051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/18/2016] [Indexed: 12/21/2022] Open
Abstract
Applications that require resequencing of hundreds or thousands of predefined genomic regions in numerous samples are common in studies of non-model organisms. However few approaches at the scale intermediate between multiplex PCR and sequence capture methods are available. Here we explored the utility of Molecular Inversion Probes (MIPs) for the medium-scale targeted resequencing in a non-model system. Markers targeting 112 bp of exonic sequence were designed from transcriptome of Lissotriton newts. We assessed performance of 248 MIP markers in a sample of 85 individuals. Among the 234 (94.4%) successfully amplified markers 80% had median coverage within one order of magnitude, indicating relatively uniform performance; coverage uniformity across individuals was also high. In the analysis of polymorphism and segregation within family, 77% of 248 tested MIPs were confirmed as single copy Mendelian markers. Genotyping concordance assessed using replicate samples exceeded 99%. MIP markers for targeted resequencing have a number of advantages: high specificity, high multiplexing level, low sample requirement, straightforward laboratory protocol, no need for preparation of genomic libraries and no ascertainment bias. We conclude that MIP markers provide an effective solution for resequencing targets of tens or hundreds of kb in any organism and in a large number of samples.
Collapse
Affiliation(s)
- M Niedzicka
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - A Fijarczyk
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - K Dudek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - M Stuglik
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - W Babik
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
50
|
Medvedeva IV, Demenkov PS, Ivanisenko VA. Computer analysis of protein functional sites projection on exon structure of genes in Metazoa. BMC Genomics 2015; 16 Suppl 13:S2. [PMID: 26693737 PMCID: PMC4686782 DOI: 10.1186/1471-2164-16-s13-s2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Study of the relationship between the structural and functional organization of proteins and their coding genes is necessary for an understanding of the evolution of molecular systems and can provide new knowledge for many applications for designing proteins with improved medical and biological properties. It is well known that the functional properties of proteins are determined by their functional sites. Functional sites are usually represented by a small number of amino acid residues that are distantly located from each other in the amino acid sequence. They are highly conserved within their functional group and vary significantly in structure between such groups. According to this facts analysis of the general properties of the structural organization of the functional sites at the protein level and, at the level of exon-intron structure of the coding gene is still an actual problem. RESULTS One approach to this analysis is the projection of amino acid residue positions of the functional sites along with the exon boundaries to the gene structure. In this paper, we examined the discontinuity of the functional sites in the exon-intron structure of genes and the distribution of lengths and phases of the functional site encoding exons in vertebrate genes. We have shown that the DNA fragments coding the functional sites were in the same exons, or in close exons. The observed tendency to cluster the exons that code functional sites which could be considered as the unit of protein evolution. We studied the characteristics of the structure of the exon boundaries that code, and do not code, functional sites in 11 Metazoa species. This is accompanied by a reduced frequency of intercodon gaps (phase 0) in exons encoding the amino acid residue functional site, which may be evidence of the existence of evolutionary limitations to the exon shuffling. CONCLUSIONS These results characterize the features of the coding exon-intron structure that affect the functionality of the encoded protein and allow a better understanding of the emergence of biological diversity.
Collapse
|