1
|
Chen NJ, Yeh CH, Cao HY, Chen NC, Chen CJ, Chen CY, Tsai YW, Lin JM, Huang YS, Hsiao CN, Chen CC. High-resolution imaging of organic and inorganic nanoparticles at nanometre-scale resolution by X-ray ensemble diffraction microscopy. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:217-224. [PMID: 39692723 PMCID: PMC11708854 DOI: 10.1107/s1600577524010567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/01/2024] [Indexed: 12/19/2024]
Abstract
Coherent diffraction microscopy (CDM) is a robust direct imaging method due to its unique 2D/3D phase retrieval capacity. Nonetheless, its resolution faces limitations due to a diminished signal-to-noise ratio (SNR) in high-frequency regions. Addressing this challenge, X-ray ensemble diffraction microscopy (XEDM) emerges as a viable solution, ensuring an adequate SNR in high-frequency regions and effectively surmounting resolution constraints. In this article, two experiments were conducted to underscore XEDM's superior spatial resolution capabilities. These experiments employed 55 nm-sized silicon-gold nanoparticles (NPs) and 19 nm-sized nodavirus-like particles (NV-LPs) on the coherent X-ray scattering beamline of the Taiwan Photon Source. The core-shell density distribution of the silicon-gold NPs was successfully obtained with a radial resolution of 3.4 nm per pixel, while NV-LPs in solution were reconstructed at a radial resolution of 1.3 nm per pixel. The structural information was directly retrieved from the diffraction intensities without prior knowledge and was subsequently confirmed through transmission electron microscopy.
Collapse
Affiliation(s)
- Ning-Jung Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Chia-Hui Yeh
- Department of PhysicsNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Huai-Yu Cao
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Nai-Chi Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Chun-Jung Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Chun-Yu Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Yi-Wei Tsai
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Jhih-Min Lin
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Yu-Shan Huang
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | | | - Chien-Chun Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
- Taiwan Instrument Research Institute, Hsinchu30076, Taiwan
| |
Collapse
|
2
|
Schultze S, Grubmüller H. Bayesian electron density determination from sparse and noisy single-molecule X-ray scattering images. SCIENCE ADVANCES 2024; 10:eadp4425. [PMID: 39454013 PMCID: PMC11506165 DOI: 10.1126/sciadv.adp4425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/16/2024] [Indexed: 10/27/2024]
Abstract
Single molecule x-ray scattering experiments using free-electron lasers hold the potential to resolve biomolecular structures and structural ensembles. However, molecular electron density determination has so far not been achieved because of low photon counts, high noise levels, and low hit rates. Most approaches therefore focus on large specimen like entire viruses, which scatter sufficiently many photons to allow orientation determination of each image. Small specimens like proteins, however, scatter too few photons for the molecular orientations to be determined. Here, we present a rigorous Bayesian approach to overcome these limitations, additionally taking into account intensity fluctuations, beam polarization, irregular detector shapes, incoherent scattering, and background scattering. We demonstrate using synthetic scattering images that electron density determination of small proteins is possible in this extreme high noise Poisson regime. Tests on published virus data achieved the detector-limited resolution of 9 nm, using only 0.01% of the available photons per image.
Collapse
Affiliation(s)
- Steffen Schultze
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany
| | - Helmut Grubmüller
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany
| |
Collapse
|
3
|
Jiao Z, Geng Z, Ding W. A predicted model-aided one-step classification-multireconstruction algorithm for X-ray free-electron laser single-particle imaging. IUCRJ 2024; 11:891-900. [PMID: 39194258 PMCID: PMC11364030 DOI: 10.1107/s2052252524007851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Ultrafast, high-intensity X-ray free-electron lasers can perform diffraction imaging of single protein molecules. Various algorithms have been developed to determine the orientation of each single-particle diffraction pattern and reconstruct the 3D diffraction intensity. Most of these algorithms rely on the premise that all diffraction patterns originate from identical protein molecules. However, in actual experiments, diffraction patterns from multiple different molecules may be collected simultaneously. Here, we propose a predicted model-aided one-step classification-multireconstruction algorithm that can handle mixed diffraction patterns from various molecules. The algorithm uses predicted structures of different protein molecules as templates to classify diffraction patterns based on correlation coefficients and determines orientations using a correlation maximization method. Tests on simulated data demonstrated high accuracy and efficiency in classification and reconstruction.
Collapse
Affiliation(s)
- Zhichao Jiao
- Laboratory of Soft Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Zhi Geng
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Wei Ding
- Laboratory of Soft Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| |
Collapse
|
4
|
Jiao Z, He Y, Fu X, Zhang X, Geng Z, Ding W. A predicted model-aided reconstruction algorithm for X-ray free-electron laser single-particle imaging. IUCRJ 2024; 11:602-619. [PMID: 38904548 PMCID: PMC11220885 DOI: 10.1107/s2052252524004858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Ultra-intense, ultra-fast X-ray free-electron lasers (XFELs) enable the imaging of single protein molecules under ambient temperature and pressure. A crucial aspect of structure reconstruction involves determining the relative orientations of each diffraction pattern and recovering the missing phase information. In this paper, we introduce a predicted model-aided algorithm for orientation determination and phase retrieval, which has been tested on various simulated datasets and has shown significant improvements in the success rate, accuracy and efficiency of XFEL data reconstruction.
Collapse
Affiliation(s)
- Zhichao Jiao
- Laboratory of Soft Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Yao He
- Research Instrument ScientistNew York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Xingke Fu
- Laboratory of Soft Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Xin Zhang
- The University of Hong KongHong Kong SARPeople’s Republic of China
| | - Zhi Geng
- Beijing Synchrotron Radiation FacilityInstitute of High Energy Physics, Chinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Wei Ding
- Laboratory of Soft Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| |
Collapse
|
5
|
Adams P, Greaves TL, Martin AV. Crystal structure via fluctuation scattering. IUCRJ 2024; 11:538-555. [PMID: 38842120 PMCID: PMC11220891 DOI: 10.1107/s2052252524003932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
Crystallography is a quintessential method for determining the atomic structure of crystals. The most common implementation of crystallography uses single crystals that must be of sufficient size, typically tens of micrometres or larger, depending on the complexity of the crystal structure. The emergence of serial data-collection methods in crystallography, particularly for time-resolved experiments, opens up opportunities to develop new routes to structure determination for nanocrystals and ensembles of crystals. Fluctuation X-ray scattering is a correlation-based approach for single-particle imaging from ensembles of identical particles, but has yet to be applied to crystal structure determination. Here, an iterative algorithm is presented that recovers crystal structure-factor intensities from fluctuation X-ray scattering correlations. The capabilities of this algorithm are demonstrated by recovering the structure of three small-molecule crystals and a protein crystal from simulated fluctuation X-ray scattering correlations. This method could facilitate the recovery of structure-factor intensities from crystals in serial crystallography experiments and relax sample requirements for crystallography experiments.
Collapse
|
6
|
Martin AV, Adams P, Binns J. The pypadf package: computing the pair angle distribution function from fluctuation scattering data. J Appl Crystallogr 2024; 57:877-884. [PMID: 38846774 PMCID: PMC11151669 DOI: 10.1107/s1600576724002796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/27/2024] [Indexed: 06/09/2024] Open
Abstract
The pair angle distribution function (PADF) is a three- and four-atom correlation function that characterizes the local angular structure of disordered materials, particles or nanocrystalline materials. The PADF can be measured using X-ray or electron fluctuation diffraction data, which can be collected by scanning or flowing a structurally disordered sample through a focused beam. It is a natural generalization of established pair distribution methods, which do not provide angular information. The software package pypadf provides tools to calculate the PADF from fluctuation diffraction data. The package includes tools for calculating the intensity correlation function, which is a necessary step in the PADF calculation and also the basis for other fluctuation scattering analysis techniques.
Collapse
Affiliation(s)
- Andrew V. Martin
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Patrick Adams
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jack Binns
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
7
|
Berberich TB, Molodtsov SL, Kurta RP. A workflow for single-particle structure determination via iterative phasing of rotational invariants in fluctuation X-ray scattering. J Appl Crystallogr 2024; 57:324-343. [PMID: 38596737 PMCID: PMC11001396 DOI: 10.1107/s1600576724000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/29/2024] [Indexed: 04/11/2024] Open
Abstract
Fluctuation X-ray scattering (FXS) offers a complementary approach for nano- and bioparticle imaging with an X-ray free-electron laser (XFEL), by extracting structural information from correlations in scattered XFEL pulses. Here a workflow is presented for single-particle structure determination using FXS. The workflow includes procedures for extracting the rotational invariants from FXS patterns, performing structure reconstructions via iterative phasing of the invariants, and aligning and averaging multiple reconstructions. The reconstruction pipeline is implemented in the open-source software xFrame and its functionality is demonstrated on several simulated structures.
Collapse
Affiliation(s)
- Tim B. Berberich
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- I. Institute of Theoretical Physics, University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany
| | - Serguei L. Molodtsov
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Straße 23, 09599 Freiberg, Germany
- Center for Efficient High Temperature Processes and Materials Conversion (ZeHS), TU Bergakademie Freiberg, Winklerstrasse 5, 09599 Freiberg, Germany
| | | |
Collapse
|
8
|
Rafie-Zinedine S, Varma Yenupuri T, Worbs L, Maia FRNC, Heymann M, Schulz J, Bielecki J. Enhancing electrospray ionization efficiency for particle transmission through an aerodynamic lens stack. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:222-232. [PMID: 38306300 PMCID: PMC10914161 DOI: 10.1107/s1600577524000158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
This work investigates the performance of the electrospray aerosol generator at the European X-ray Free Electron Laser (EuXFEL). This generator is, together with an aerodynamic lens stack that transports the particles into the X-ray interaction vacuum chamber, the method of choice to deliver particles for single-particle coherent diffractive imaging (SPI) experiments at the EuXFEL. For these experiments to be successful, it is necessary to achieve high transmission of particles from solution into the vacuum interaction region. Particle transmission is highly dependent on efficient neutralization of the charged aerosol generated by the electrospray mechanism as well as the geometry in the vicinity of the Taylor cone. We report absolute particle transmission values for different neutralizers and geometries while keeping the conditions suitable for SPI experiments. Our findings reveal that a vacuum ultraviolet ionizer demonstrates a transmission efficiency approximately seven times greater than the soft X-ray ionizer used previously. Combined with an optimized orifice size on the counter electrode, we achieve >40% particle transmission from solution into the X-ray interaction region. These findings offer valuable insights for optimizing electrospray aerosol generator configurations and data rates for SPI experiments.
Collapse
Affiliation(s)
- Safi Rafie-Zinedine
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Tej Varma Yenupuri
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), 75124 Uppsala, Sweden
| | - Lena Worbs
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), 75124 Uppsala, Sweden
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), 75124 Uppsala, Sweden
| | - Michael Heymann
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | | | | |
Collapse
|
9
|
Round A, Jungcheng E, Fortmann-Grote C, Giewekemeyer K, Graceffa R, Kim C, Kirkwood H, Mills G, Round E, Sato T, Pascarelli S, Mancuso A. Characterization of Biological Samples Using Ultra-Short and Ultra-Bright XFEL Pulses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:141-162. [PMID: 38507205 DOI: 10.1007/978-3-031-52193-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The advent of X-ray Free Electron Lasers (XFELs) has ushered in a transformative era in the field of structural biology, materials science, and ultrafast physics. These state-of-the-art facilities generate ultra-bright, femtosecond-long X-ray pulses, allowing researchers to delve into the structure and dynamics of molecular systems with unprecedented temporal and spatial resolutions. The unique properties of XFEL pulses have opened new avenues for scientific exploration that were previously considered unattainable. One of the most notable applications of XFELs is in structural biology. Traditional X-ray crystallography, while instrumental in determining the structures of countless biomolecules, often requires large, high-quality crystals and may not capture highly transient states of proteins. XFELs, with their ability to produce diffraction patterns from nanocrystals or even single particles, have provided solutions to these challenges. XFEL has expanded the toolbox of structural biologists by enabling structural determination approaches such as Single Particle Imaging (SPI) and Serial X-ray Crystallography (SFX). Despite their remarkable capabilities, the journey of XFELs is still in its nascent stages, with ongoing advancements aimed at improving their coherence, pulse duration, and wavelength tunability.
Collapse
Affiliation(s)
| | | | | | | | | | - Chan Kim
- European XFEL, Schenefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhao W, Miyashita O, Nakano M, Tama F. Structure determination using high-order spatial correlations in single-particle X-ray scattering. IUCRJ 2024; 11:92-108. [PMID: 38096036 PMCID: PMC10833384 DOI: 10.1107/s2052252523009831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024]
Abstract
Single-particle imaging using X-ray free-electron lasers (XFELs) is a promising technique for observing nanoscale biological samples under near-physiological conditions. However, as the sample's orientation in each diffraction pattern is unknown, advanced algorithms are required to reconstruct the 3D diffraction intensity volume and subsequently the sample's density model. While most approaches perform 3D reconstruction via determining the orientation of each diffraction pattern, a correlation-based approach utilizes the averaged spatial correlations of diffraction intensities over all patterns, making it well suited for processing experimental data with a poor signal-to-noise ratio of individual patterns. Here, a method is proposed to determine the 3D structure of a sample by analyzing the double, triple and quadruple spatial correlations in diffraction patterns. This ab initio method can reconstruct the basic shape of an irregular unsymmetric 3D sample without requiring any prior knowledge of the sample. The impact of background and noise on correlations is investigated and corrected to ensure the success of reconstruction under simulated experimental conditions. Additionally, the feasibility of using the correlation-based approach to process incomplete partial diffraction patterns is demonstrated. The proposed method is a variable addition to existing algorithms for 3D reconstruction and will further promote the development and adoption of XFEL single-particle imaging techniques.
Collapse
Affiliation(s)
- Wenyang Zhao
- Computational Structural Biology Research Team, RIKEN Center for Computational Science, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Osamu Miyashita
- Computational Structural Biology Research Team, RIKEN Center for Computational Science, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Miki Nakano
- Computational Structural Biology Research Team, RIKEN Center for Computational Science, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Florence Tama
- Computational Structural Biology Research Team, RIKEN Center for Computational Science, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
11
|
Vorovitch MF, Samygina VR, Pichkur E, Konarev PV, Peters G, Khvatov EV, Ivanova AL, Tuchynskaya KK, Konyushko OI, Fedotov AY, Armeev G, Shaytan KV, Kovalchuk MV, Osolodkin DI, Egorov AM, Ishmukhametov AA. Preparation and characterization of inactivated tick-borne encephalitis virus samples for single-particle imaging at the European XFEL. Acta Crystallogr D Struct Biol 2024; 80:44-59. [PMID: 38164954 DOI: 10.1107/s2059798323010562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024] Open
Abstract
X-ray imaging of virus particles at the European XFEL could eventually allow their complete structures to be solved, potentially approaching the resolution of other structural virology methods. To achieve this ambitious goal with today's technologies, about 1 ml of purified virus suspension containing at least 1012 particles per millilitre is required. Such large amounts of concentrated suspension have never before been obtained for enveloped viruses. Tick-borne encephalitis virus (TBEV) represents an attractive model system for the development of enveloped virus purification and concentration protocols, given the availability of large amounts of inactivated virus material provided by vaccine-manufacturing facilities. Here, the development of a TBEV vaccine purification and concentration scheme is presented combined with a quality-control protocol that allows substantial amounts of highly concentrated non-aggregated suspension to be obtained. Preliminary single-particle imaging experiments were performed for this sample at the European XFEL, showing distinct diffraction patterns.
Collapse
Affiliation(s)
- Mikhail F Vorovitch
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russian Federation
| | | | - Evgeny Pichkur
- NRC `Kurchatov Insitute', Moscow 123182, Russian Federation
| | | | - Georgy Peters
- NRC `Kurchatov Insitute', Moscow 123182, Russian Federation
| | - Evgeny V Khvatov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Alla L Ivanova
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Ksenia K Tuchynskaya
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Olga I Konyushko
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Anton Y Fedotov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Grigory Armeev
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Konstantin V Shaytan
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | | | - Dmitry I Osolodkin
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Alexey M Egorov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Aydar A Ishmukhametov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| |
Collapse
|
12
|
Trebbin M. Thinner than a knife's edge: 3D-printed liquid sheet jet technology for solution phase XFEL experiments. IUCRJ 2023; 10:638-641. [PMID: 37910141 PMCID: PMC10619446 DOI: 10.1107/s2052252523009429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
In this commentary, we explore the pioneering implementation of 3D-printed thin liquid sheet devices for advanced X-ray scattering and spectroscopy experiments at high-repetition rate XFELs.
Collapse
Affiliation(s)
- Martin Trebbin
- University at Buffalo, Department of Chemistry & Research and Education in eNergy, Environment and Water (RENEW), 760 Natural Sciences Complex, Buffalo, NY 14260, USA
| |
Collapse
|
13
|
Konold PE, You T, Bielecki J, Valerio J, Kloos M, Westphal D, Bellisario A, Varma Yenupuri T, Wollter A, Koliyadu JCP, Koua FH, Letrun R, Round A, Sato T, Mészáros P, Monrroy L, Mutisya J, Bódizs S, Larkiala T, Nimmrich A, Alvarez R, Adams P, Bean R, Ekeberg T, Kirian RA, Martin AV, Westenhoff S, Maia FRNC. 3D-printed sheet jet for stable megahertz liquid sample delivery at X-ray free-electron lasers. IUCRJ 2023; 10:662-670. [PMID: 37721770 PMCID: PMC10619454 DOI: 10.1107/s2052252523007972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
X-ray free-electron lasers (XFELs) can probe chemical and biological reactions as they unfold with unprecedented spatial and temporal resolution. A principal challenge in this pursuit involves the delivery of samples to the X-ray interaction point in such a way that produces data of the highest possible quality and with maximal efficiency. This is hampered by intrinsic constraints posed by the light source and operation within a beamline environment. For liquid samples, the solution typically involves some form of high-speed liquid jet, capable of keeping up with the rate of X-ray pulses. However, conventional jets are not ideal because of radiation-induced explosions of the jet, as well as their cylindrical geometry combined with the X-ray pointing instability of many beamlines which causes the interaction volume to differ for every pulse. This complicates data analysis and contributes to measurement errors. An alternative geometry is a liquid sheet jet which, with its constant thickness over large areas, eliminates the problems related to X-ray pointing. Since liquid sheets can be made very thin, the radiation-induced explosion is reduced, boosting their stability. These are especially attractive for experiments which benefit from small interaction volumes such as fluctuation X-ray scattering and several types of spectroscopy. Although their use has increased for soft X-ray applications in recent years, there has not yet been wide-scale adoption at XFELs. Here, gas-accelerated liquid sheet jet sample injection is demonstrated at the European XFEL SPB/SFX nano focus beamline. Its performance relative to a conventional liquid jet is evaluated and superior performance across several key factors has been found. This includes a thickness profile ranging from hundreds of nanometres to 60 nm, a fourfold increase in background stability and favorable radiation-induced explosion dynamics at high repetition rates up to 1.13 MHz. Its minute thickness also suggests that ultrafast single-particle solution scattering is a possibility.
Collapse
Affiliation(s)
- Patrick E. Konold
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Tong You
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | | | - Joana Valerio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Marco Kloos
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Alfredo Bellisario
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Tej Varma Yenupuri
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - August Wollter
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | | | | | - Romain Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adam Round
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Petra Mészáros
- Department of Chemistry – BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Leonardo Monrroy
- Department of Chemistry – BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Jennifer Mutisya
- Department of Chemistry – BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Szabolcs Bódizs
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Taru Larkiala
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry, University of Washington, Bagley Hall, Seattle, WA 98195, USA
| | - Roberto Alvarez
- Department of Physics, Arizona State University, 550 E. Tyler Drive, Tempe, AZ 85287, USA
| | - Patrick Adams
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tomas Ekeberg
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Richard A. Kirian
- Department of Physics, Arizona State University, 550 E. Tyler Drive, Tempe, AZ 85287, USA
| | - Andrew V. Martin
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sebastian Westenhoff
- Department of Chemistry – BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Blanchet CE, Round A, Mertens HDT, Ayyer K, Graewert M, Awel S, Franke D, Dörner K, Bajt S, Bean R, Custódio TF, de Wijn R, Juncheng E, Henkel A, Gruzinov A, Jeffries CM, Kim Y, Kirkwood H, Kloos M, Knoška J, Koliyadu J, Letrun R, Löw C, Makroczyova J, Mall A, Meijers R, Pena Murillo GE, Oberthür D, Round E, Seuring C, Sikorski M, Vagovic P, Valerio J, Wollweber T, Zhuang Y, Schulz J, Haas H, Chapman HN, Mancuso AP, Svergun D. Form factor determination of biological molecules with X-ray free electron laser small-angle scattering (XFEL-SAS). Commun Biol 2023; 6:1057. [PMID: 37853181 PMCID: PMC10585004 DOI: 10.1038/s42003-023-05416-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Free-electron lasers (FEL) are revolutionizing X-ray-based structural biology methods. While protein crystallography is already routinely performed at FELs, Small Angle X-ray Scattering (SAXS) studies of biological macromolecules are not as prevalent. SAXS allows the study of the shape and overall structure of proteins and nucleic acids in solution, in a quasi-native environment. In solution, chemical and biophysical parameters that have an influence on the structure and dynamics of molecules can be varied and their effect on conformational changes can be monitored in time-resolved XFEL and SAXS experiments. We report here the collection of scattering form factors of proteins in solution using FEL X-rays. The form factors correspond to the scattering signal of the protein ensemble alone; the scattering contributions from the solvent and the instrument are separately measured and accurately subtracted. The experiment was done using a liquid jet for sample delivery. These results pave the way for time-resolved studies and measurements from dilute samples, capitalizing on the intense and short FEL X-ray pulses.
Collapse
Affiliation(s)
- Clement E Blanchet
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany.
| | - Adam Round
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
| | - Kartik Ayyer
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Melissa Graewert
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Daniel Franke
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
- BIOSAXS GmbH, Notkestr. 85, 22607, Hamburg, Germany
| | - Katerina Dörner
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Saša Bajt
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tânia F Custódio
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Raphael de Wijn
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - E Juncheng
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Alessandra Henkel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Andrey Gruzinov
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
| | - Yoonhee Kim
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Henry Kirkwood
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Marco Kloos
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Juraj Knoška
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | | | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Christian Löw
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany
| | | | - Abhishek Mall
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Rob Meijers
- Institute for Protein Innovation (IPI), 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Gisel Esperanza Pena Murillo
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Ekaterina Round
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Carolin Seuring
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - Marcin Sikorski
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Patrik Vagovic
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Joana Valerio
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tamme Wollweber
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Yulong Zhuang
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Henry N Chapman
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Dmitri Svergun
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany.
- BIOSAXS GmbH, Notkestr. 85, 22607, Hamburg, Germany.
| |
Collapse
|
15
|
E J, Stransky M, Shen Z, Jurek Z, Fortmann-Grote C, Bean R, Santra R, Ziaja B, Mancuso AP. Water layer and radiation damage effects on the orientation recovery of proteins in single-particle imaging at an X-ray free-electron laser. Sci Rep 2023; 13:16359. [PMID: 37773512 PMCID: PMC10541445 DOI: 10.1038/s41598-023-43298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
The noise caused by sample heterogeneity (including sample solvent) has been identified as one of the determinant factors for a successful X-ray single-particle imaging experiment. It influences both the radiation damage process that occurs during illumination as well as the scattering patterns captured by the detector. Here, we investigate the impact of water layer thickness and radiation damage on orientation recovery from diffraction patterns of the nitrogenase iron protein. Orientation recovery is a critical step for single-particle imaging. It enables to sort a set of diffraction patterns scattered by identical particles placed at unknown orientations and assemble them into a 3D reciprocal space volume. The recovery quality is characterized by a "disconcurrence" metric. Our results show that while a water layer mitigates protein damage, the noise generated by the scattering from it can introduce challenges for orientation recovery and is anticipated to cause problems in the phase retrieval process to extract the desired protein structure. Compared to these disadvantageous effects due to the thick water layer, the effects of radiation damage on the orientation recovery are relatively small. Therefore, minimizing the amount of residual sample solvent should be considered a crucial step in improving the fidelity and resolution of X-ray single-particle imaging experiments.
Collapse
Affiliation(s)
- Juncheng E
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Michal Stransky
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
| | - Zhou Shen
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Zoltan Jurek
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | | - Richard Bean
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607, Hamburg, Germany
| | - Beata Ziaja
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
16
|
Kurta RP, van Driel TB, Dohn AO, Berberich TB, Nelson S, Zaluzhnyy IA, Mukharamova N, Lapkin D, Zederkof DB, Seaberg M, Pedersen KS, Kjær KS, Rippy GI, Biasin E, Møller KB, Gelisio L, Haldrup K, Vartanyants IA, Nielsen MM. Exploring fingerprints of ultrafast structural dynamics in molecular solutions with an X-ray laser. Phys Chem Chem Phys 2023; 25:23417-23434. [PMID: 37486006 DOI: 10.1039/d3cp01257c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
We apply ultrashort X-ray laser pulses to track optically excited structural dynamics of [Ir2(dimen)4]2+ molecules in solution. In our exploratory study we determine angular correlations in the scattered X-rays, which comprise a complex fingerprint of the ultrafast dynamics. Model-assisted analysis of the experimental correlation data allows us to elucidate various aspects of the photoinduced changes in the excited molecular ensembles. We unambiguously identify that in our experiment the photoinduced transition dipole moments in [Ir2(dimen)4]2+ molecules are oriented perpendicular to the Ir-Ir bond. The analysis also shows that the ground state conformer of [Ir2(dimen)4]2+ with a larger Ir-Ir distance is mostly responsible for the formation of the excited state. We also reveal that the ensemble of solute molecules can be characterized with a substantial structural heterogeneity due to solvent influence. The proposed X-ray correlation approach offers an alternative path for studies of ultrafast structural dynamics of molecular ensembles in the liquid and gas phases.
Collapse
Affiliation(s)
- Ruslan P Kurta
- European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
| | - Tim B van Driel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Asmus O Dohn
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
- Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107 Reykjavík, Iceland
| | | | - Silke Nelson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ivan A Zaluzhnyy
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | | | - Dmitry Lapkin
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Diana B Zederkof
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| | - Matthew Seaberg
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Lyngby, Denmark
| | - Kasper S Kjær
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Geoffery Ian Rippy
- Department of Materials Science and Engineering, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Lyngby, Denmark
| | - Luca Gelisio
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| |
Collapse
|
17
|
Bendory T, Khoo Y, Kileel J, Mickelin O, Singer A. Autocorrelation analysis for cryo-EM with sparsity constraints: Improved sample complexity and projection-based algorithms. Proc Natl Acad Sci U S A 2023; 120:e2216507120. [PMID: 37094135 PMCID: PMC10161091 DOI: 10.1073/pnas.2216507120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/24/2023] [Indexed: 04/26/2023] Open
Abstract
The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography.
Collapse
Affiliation(s)
- Tamir Bendory
- School of Electrical Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Yuehaw Khoo
- Department of Statistics, University of Chicago, Chicago, IL60637
| | - Joe Kileel
- Department of Mathematics, Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX78712
| | - Oscar Mickelin
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ08540
| | - Amit Singer
- Department of Mathematics, Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ08540
| |
Collapse
|
18
|
Szpotkowski K, Wójcik K, Kurzyńska-Kokorniak A. Structural studies of protein-nucleic acid complexes: A brief overview of the selected techniques. Comput Struct Biotechnol J 2023; 21:2858-2872. [PMID: 37216015 PMCID: PMC10195699 DOI: 10.1016/j.csbj.2023.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Protein-nucleic acid complexes are involved in all vital processes, including replication, transcription, translation, regulation of gene expression and cell metabolism. Knowledge of the biological functions and molecular mechanisms beyond the activity of the macromolecular complexes can be determined from their tertiary structures. Undoubtably, performing structural studies of protein-nucleic acid complexes is challenging, mainly because these types of complexes are often unstable. In addition, their individual components may display extremely different surface charges, causing the complexes to precipitate at higher concentrations used in many structural studies. Due to the variety of protein-nucleic acid complexes and their different biophysical properties, no simple and universal guideline exists that helps scientists chose a method to successfully determine the structure of a specific protein-nucleic acid complex. In this review, we provide a summary of the following experimental methods, which can be applied to study the structures of protein-nucleic acid complexes: X-ray and neutron crystallography, nuclear magnetic resonance (NMR) spectroscopy, cryogenic electron microscopy (cryo-EM), atomic force microscopy (AFM), small angle scattering (SAS) methods, circular dichroism (CD) and infrared (IR) spectroscopy. Each method is discussed regarding its historical context, advancements over the past decades and recent years, and weaknesses and strengths. When a single method does not provide satisfactory data on the selected protein-nucleic acid complex, a combination of several methods should be considered as a hybrid approach; thus, specific structural problems can be solved when studying protein-nucleic acid complexes.
Collapse
Affiliation(s)
- Kamil Szpotkowski
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Klaudia Wójcik
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Anna Kurzyńska-Kokorniak
- Department of Ribonucleoprotein Biochemistry, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
19
|
Nakano M, Miyashita O, Tama F. Molecular size dependence on achievable resolution from XFEL single-particle 3D reconstruction. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:024101. [PMID: 36942031 PMCID: PMC10024609 DOI: 10.1063/4.0000175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 05/03/2023]
Abstract
Single-particle analysis using x-ray free-electron lasers (XFELs) is a novel method for obtaining structural information of samples in a state close to nature. In particular, it is suitable for observing the inner structure of large biomolecules by taking advantage of the high transmittance of x-rays. However, systematic studies on the resolution achievable for large molecules are lacking. In this study, the molecular size dependence of the resolution of a three-dimensional (3D) structure resulting from XFEL single-particle reconstruction is evaluated using synthetic data. Evidently, 3D structures of larger molecules can be restored with higher detail (defined relative to the molecular sizes) than smaller ones; however, reconstruction with high absolute resolution (defined in nm-1) is challenging. Our results provide useful information for the experimental design of 3D structure reconstruction using coherent x-ray diffraction patterns of single-particles.
Collapse
Affiliation(s)
- Miki Nakano
- RIKEN Center for Computational Science, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Osamu Miyashita
- RIKEN Center for Computational Science, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | | |
Collapse
|
20
|
Assalauova D, Vartanyants IA. The structure of tick-borne encephalitis virus determined at X-ray free-electron lasers. Simulations. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:24-34. [PMID: 36601923 PMCID: PMC9814066 DOI: 10.1107/s1600577522011341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The study of virus structures by X-ray free-electron lasers (XFELs) has attracted increased attention in recent decades. Such experiments are based on the collection of 2D diffraction patterns measured at the detector following the application of femtosecond X-ray pulses to biological samples. To prepare an experiment at the European XFEL, the diffraction data for the tick-borne encephalitis virus (TBEV) was simulated with different parameters and the optimal values were identified. Following the necessary steps of a well established data-processing pipeline, the structure of TBEV was obtained. In the structure determination presented, a priori knowledge of the simulated virus orientations was used. The efficiency of the proposed pipeline was demonstrated.
Collapse
Affiliation(s)
- Dameli Assalauova
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Ivan A. Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
21
|
E J, Kim Y, Bielecki J, Sikorski M, de Wijn R, Fortmann-Grote C, Sztuk-Dambietz J, Koliyadu JCP, Letrun R, Kirkwood HJ, Sato T, Bean R, Mancuso AP, Kim C. Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:064101. [PMID: 36411869 PMCID: PMC9675053 DOI: 10.1063/4.0000169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 05/15/2023]
Abstract
The unprecedented intensity of x-ray free-electron laser sources has enabled single-particle x-ray diffraction imaging (SPI) of various biological specimens in both two-dimensional projection and three dimensions (3D). The potential of studying protein dynamics in their native conditions, without crystallization or chemical staining, has encouraged researchers to aim for increasingly higher resolutions with this technique. The currently achievable resolution of SPI is limited to the sub-10 nanometer range, mainly due to background effects, such as instrumental noise and parasitic scattering from the carrier gas used for sample delivery. Recent theoretical studies have quantified the effects of x-ray pulse parameters, as well as the required number of diffraction patterns to achieve a certain resolution, in a 3D reconstruction, although the effects of detector noise and the random particle orientation in each diffraction snapshot were not taken into account. In this work, we show these shortcomings and address limitations on achievable image resolution imposed by the adaptive gain integrating pixel detector noise.
Collapse
Affiliation(s)
- Juncheng E
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Y. Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - J. Bielecki
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Sikorski
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R. de Wijn
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | - R. Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - T. Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R. Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - C. Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Author to whom correspondence should be addressed:
| |
Collapse
|
22
|
|
23
|
Peck A, Chang HY, Dujardin A, Ramalingam D, Uervirojnangkoorn M, Wang Z, Mancuso A, Poitevin F, Yoon CH. Skopi: a simulation package for diffractive imaging of noncrystalline biomolecules. J Appl Crystallogr 2022; 55:1002-1010. [PMID: 35974743 PMCID: PMC9348890 DOI: 10.1107/s1600576722005994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
X-ray free-electron lasers (XFELs) have the ability to produce ultra-bright femtosecond X-ray pulses for coherent diffraction imaging of biomolecules. While the development of methods and algorithms for macromolecular crystallography is now mature, XFEL experiments involving aerosolized or solvated biomolecular samples offer new challenges in terms of both experimental design and data processing. Skopi is a simulation package that can generate single-hit diffraction images for reconstruction algorithms, multi-hit diffraction images of aggregated particles for training machine learning classifiers using labeled data, diffraction images of randomly distributed particles for fluctuation X-ray scattering algorithms, and diffraction images of reference and target particles for holographic reconstruction algorithms. Skopi is a resource to aid feasibility studies and advance the development of algorithms for noncrystalline experiments at XFEL facilities.
Collapse
Affiliation(s)
- Ariana Peck
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Hsing-Yin Chang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Antoine Dujardin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Deeban Ramalingam
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Monarin Uervirojnangkoorn
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Zhaoyou Wang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Adrian Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Frédéric Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
24
|
Lapkin D, Shabalin A, Meijer JM, Kurta R, Sprung M, Petukhov AV, Vartanyants IA. Angular X-ray cross-correlation analysis applied to the scattering data in 3D reciprocal space from a single crystal. IUCRJ 2022; 9:425-438. [PMID: 35844483 PMCID: PMC9252153 DOI: 10.1107/s2052252522004250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
An application of angular X-ray cross-correlation analysis (AXCCA) to the scattered intensity distribution measured in 3D reciprocal space from a single-crystalline sample is proposed in this work. Contrary to the conventional application of AXCCA, when averaging over many 2D diffraction patterns collected from different randomly oriented samples is required, the proposed approach provides an insight into the structure of a single specimen. This is particularly useful in studies of defect-rich samples that are unlikely to have the same structure. The application of the method is shown on an example of a qualitative structure determination of a colloidal crystal from simulated as well as experimentally measured 3D scattered intensity distributions.
Collapse
Affiliation(s)
- Dmitry Lapkin
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Anatoly Shabalin
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Janne-Mieke Meijer
- Department of Applied Physics and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Ruslan Kurta
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrei V. Petukhov
- Debye Institute for Nanomaterials Science, Utrecht University, Utrecht 3584 CS, The Netherlands
- Laboratory of Physical Chemistry, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Ivan A. Vartanyants
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
25
|
Lan TY, Boumal N, Singer A. Random conical tilt reconstruction without particle picking in cryo-electron microscopy. Acta Crystallogr A Found Adv 2022; 78:294-301. [PMID: 35781409 DOI: 10.1107/s2053273322005071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
A method is proposed to reconstruct the 3D molecular structure from micrographs collected at just one sample tilt angle in the random conical tilt scheme in cryo-electron microscopy. The method uses autocorrelation analysis on the micrographs to estimate features of the molecule which are invariant under certain nuisance parameters such as the positions of molecular projections in the micrographs. This enables the molecular structure to be reconstructed directly from micrographs, completely circumventing the need for particle picking. Reconstructions are demonstrated with simulated data and the effect of the missing-cone region is investigated. These results show promise to reduce the size limit for single-particle reconstruction in cryo-electron microscopy.
Collapse
Affiliation(s)
- Ti Yen Lan
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
| | - Nicolas Boumal
- Institute of Mathematics, EPFL, CH-1015 Lausanne, Switzerland
| | - Amit Singer
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
26
|
Bendory T, Jaffe A, Leeb W, Sharon N, Singer A. Super-resolution multi-reference alignment. INFORMATION AND INFERENCE : A JOURNAL OF THE IMA 2022; 11:533-555. [PMID: 35966813 PMCID: PMC9374099 DOI: 10.1093/imaiai/iaab003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We study super-resolution multi-reference alignment, the problem of estimating a signal from many circularly shifted, down-sampled and noisy observations. We focus on the low SNR regime, and show that a signal inℝ M is uniquely determined when the number L of samples per observation is of the order of the square root of the signal's length ( L = O ( M ) ). Phrased more informally, one can square the resolution. This result holds if the number of observations is proportional to 1/SNR3. In contrast, with fewer observations recovery is impossible even when the observations are not down-sampled (L = M). The analysis combines tools from statistical signal processing and invariant theory. We design an expectation-maximization algorithm and demonstrate that it can super-resolve the signal in challenging SNR regimes.
Collapse
Affiliation(s)
- Tamir Bendory
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Jaffe
- Applied Mathematics Program, Yale University, New Haven, CT, USA
| | - William Leeb
- School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Nir Sharon
- School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Singer
- Department of Mathematics and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
27
|
Zhuang Y, Awel S, Barty A, Bean R, Bielecki J, Bergemann M, Daurer BJ, Ekeberg T, Estillore AD, Fangohr H, Giewekemeyer K, Hunter MS, Karnevskiy M, Kirian RA, Kirkwood H, Kim Y, Koliyadu J, Lange H, Letrun R, Lübke J, Mall A, Michelat T, Morgan AJ, Roth N, Samanta AK, Sato T, Shen Z, Sikorski M, Schulz F, Spence JCH, Vagovic P, Wollweber T, Worbs L, Xavier PL, Yefanov O, Maia FRNC, Horke DA, Küpper J, Loh ND, Mancuso AP, Chapman HN, Ayyer K. Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging. IUCRJ 2022; 9:204-214. [PMID: 35371510 PMCID: PMC8895023 DOI: 10.1107/s2052252521012707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 06/12/2023]
Abstract
One of the outstanding analytical problems in X-ray single-particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and the fact that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. Proposed here are two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA), provides a rough classification which is essentially parameter free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs), can generate 3D structures of the objects at any point in the structural landscape. Both these methods are implemented in combination with the noise-tolerant expand-maximize-compress (EMC) algorithm and its utility is demonstrated by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern. Both discrete structural classes and continuous deformations are recovered. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility of moving beyond the study of homogeneous sample sets to addressing open questions on topics such as nanocrystal growth and dynamics, as well as phase transitions which have not been externally triggered.
Collapse
Affiliation(s)
- Yulong Zhuang
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | | | - Benedikt J. Daurer
- Center for Bio-Imaging Sciences, National University of Singapore, 117557, Singapore
| | - Tomas Ekeberg
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Armando D. Estillore
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Hans Fangohr
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
- European XFEL, 22869 Schenefeld, Germany
- University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Richard A. Kirian
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | - Holger Lange
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Institute of Physical Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| | | | - Jannik Lübke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Abhishek Mall
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Andrew J. Morgan
- Department of Physics, University of Melbourne, Victoria 3010, Australia
| | - Nils Roth
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Amit K. Samanta
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | - Zhou Shen
- Center for Bio-Imaging Sciences, National University of Singapore, 117557, Singapore
| | - Marcin Sikorski
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Florian Schulz
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Institute of Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - John C. H. Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Patrik Vagovic
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- European XFEL, 22869 Schenefeld, Germany
| | - Tamme Wollweber
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Lena Worbs
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - P. Lourdu Xavier
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Filipe R. N. C. Maia
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel A. Horke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, Netherlands
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| | - N. Duane Loh
- Center for Bio-Imaging Sciences, National University of Singapore, 117557, Singapore
- Department of Physics, National University of Singapore, 117551, Singapore
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Henry N. Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Kartik Ayyer
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
28
|
Binns J, Darmanin C, Kewish CM, Pathirannahalge SK, Berntsen P, Adams PLR, Paporakis S, Wells D, Roque FG, Abbey B, Bryant G, Conn CE, Mudie ST, Hawley AM, Ryan TM, Greaves TL, Martin AV. Preferred orientation and its effects on intensity-correlation measurements. IUCRJ 2022; 9:231-242. [PMID: 35371507 PMCID: PMC8895024 DOI: 10.1107/s2052252521012422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Intensity-correlation measurements allow access to nanostructural information on a range of ordered and disordered materials beyond traditional pair-correlation methods. In real space, this information can be expressed in terms of a pair-angle distribution function (PADF) which encodes three- and four-body distances and angles. To date, correlation-based techniques have not been applied to the analysis of microstructural effects, such as preferred orientation, which are typically investigated by texture analysis. Preferred orientation is regarded as a potential source of error in intensity-correlation experiments and complicates interpretation of the results. Here, the theory of preferred orientation in intensity-correlation techniques is developed, connecting it to the established theory of texture analysis. The preferred-orientation effect is found to scale with the number of crystalline domains in the beam, surpassing the nanostructural signal when the number of domains becomes large. Experimental demonstrations are presented of the orientation-dominant and nanostructure-dominant cases using PADF analysis. The results show that even minor deviations from uniform orientation produce the strongest angular correlation signals when the number of crystalline domains in the beam is large.
Collapse
Affiliation(s)
- Jack Binns
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Connie Darmanin
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria 3086, Australia
| | - Cameron M. Kewish
- Australian Nuclear Science and Technology Organisation, Australian Synchrotron, Victoria 3168, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | | | - Peter Berntsen
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria 3086, Australia
| | | | - Stefan Paporakis
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Daniel Wells
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria 3086, Australia
| | - Francisco Gian Roque
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria 3086, Australia
| | - Brian Abbey
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria 3086, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Charlotte E. Conn
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Stephen T. Mudie
- Australian Nuclear Science and Technology Organisation, Australian Synchrotron, Victoria 3168, Australia
| | - Adrian M. Hawley
- Australian Nuclear Science and Technology Organisation, Australian Synchrotron, Victoria 3168, Australia
| | - Timothy M. Ryan
- Australian Nuclear Science and Technology Organisation, Australian Synchrotron, Victoria 3168, Australia
| | - Tamar L. Greaves
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Andrew V. Martin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
29
|
Eliah Dawod I, Tîmneanu N, Mancuso AP, Caleman C, Grånäs O. Imaging of femtosecond bond breaking and charge dynamics in ultracharged peptides. Phys Chem Chem Phys 2021; 24:1532-1543. [PMID: 34939631 DOI: 10.1039/d1cp03419g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray free-electrons lasers have revolutionized the method of imaging biological macromolecules such as proteins, viruses and cells by opening the door to structural determination of both single particles and crystals at room temperature. By utilizing high intensity X-ray pulses on femtosecond timescales, the effects of radiation damage can be reduced. Achieving high resolution structures will likely require knowledge of how radiation damage affects the structure on an atomic scale, since the experimentally obtained electron densities will be reconstructed in the presence of radiation damage. Detailed understanding of the expected damage scenarios provides further information, in addition to guiding possible corrections that may need to be made to obtain a damage free reconstruction. In this work, we have quantified the effects of ionizing photon-matter interactions using first principles molecular dynamics. We utilize density functional theory to calculate bond breaking and charge dynamics in three ultracharged molecules and two different structural conformations that are important to the structural integrity of biological macromolecules, comparing to our previous studies on amino acids. The effects of the ultracharged states and subsequent bond breaking in real space are studied in reciprocal space using coherent diffractive imaging of an ensemble of aligned biomolecules in the gas phase.
Collapse
Affiliation(s)
- Ibrahim Eliah Dawod
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden. .,European XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany
| | - Nicusor Tîmneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany.,Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden. .,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, DE-22607 Hamburg, Germany
| | - Oscar Grånäs
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| |
Collapse
|
30
|
Low-energy electron holography imaging of conformational variability of single-antibody molecules from electrospray ion beam deposition. Proc Natl Acad Sci U S A 2021; 118:2112651118. [PMID: 34911762 PMCID: PMC8713884 DOI: 10.1073/pnas.2112651118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Molecular imaging at the single-molecule level of large and flexible proteins such as monoclonal IgG antibodies is possible by low-energy electron holography after chemically selective sample preparation by native electrospray ion beam deposition (ES-IBD) from native solution conditions. The single-molecule nature of the measurement allows the mapping of the structural variability of the molecules that originates from their intrinsic flexibility and from different adsorption geometries. Additionally, we can distinguish gas-phase–related conformations and conformations induced by the landing of the molecules on the surface. Our results underpin the relation between the gas-phase structure of protein ions created by native electrospray ionization (ESI) and the native protein structure and are of relevance for structural biology applications in the gas phase. Imaging of proteins at the single-molecule level can reveal conformational variability, which is essential for the understanding of biomolecules. To this end, a biologically relevant state of the sample must be retained during both sample preparation and imaging. Native electrospray ionization (ESI) can transfer even the largest protein complexes into the gas phase while preserving their stoichiometry and overall shape. High-resolution imaging of protein structures following native ESI is thus of fundamental interest for establishing the relation between gas phase and solution structure. Taking advantage of low-energy electron holography’s (LEEH) unique capability of imaging individual proteins with subnanometer resolution, we investigate the conformational flexibility of Herceptin, a monoclonal IgG antibody, deposited by native electrospray mass-selected ion beam deposition (ES-IBD) on graphene. Images reconstructed from holograms reveal a large variety of conformers. Some of these conformations can be mapped to the crystallographic structure of IgG, while others suggest that a compact, gas-phase–related conformation, adopted by the molecules during ES-IBD, is retained. We can steer the ratio of those two types of conformations by changing the landing energy of the protein on the single-layer graphene surface. Overall, we show that LEEH can elucidate the conformational heterogeneity of inherently flexible proteins, exemplified here by IgG antibodies, and thereby distinguish gas-phase collapse from rearrangement on surfaces.
Collapse
|
31
|
In a flash of light: X-ray free electron lasers meet native mass spectrometry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:89-99. [PMID: 34906329 DOI: 10.1016/j.ddtec.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023]
Abstract
During the last years, X-ray free electron lasers (XFELs) have emerged as X-ray sources of unparalleled brightness, delivering extreme amounts of photons in femtosecond pulses. As such, they have opened up completely new possibilities in drug discovery and structural biology, including studying high resolution biomolecular structures and their functioning in a time resolved manner, and diffractive imaging of single particles without the need for their crystallization. In this perspective, we briefly review the operation of XFELs, their immediate uses for drug discovery and focus on the potentially revolutionary single particle diffractive imaging technique and the challenges which remain to be overcome to fully realize its potential to provide high resolution structures without the need for crystallization, freezing or the need to keep proteins stable at extreme concentrations for long periods of time. As the issues have been to a large extent sample delivery related, we outline a way for native mass spectrometry to overcome these and enable so far impossible research with a potentially huge impact on structural biology and drug discovery, such as studying structures of transient intermediate species in viral life cycles or during functioning of molecular machines.
Collapse
|
32
|
Singer A. Wilson statistics: derivation, generalization and applications to electron cryomicroscopy. Acta Crystallogr A Found Adv 2021; 77:472-479. [PMID: 34473100 PMCID: PMC8477642 DOI: 10.1107/s205327332100752x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/22/2021] [Indexed: 11/10/2022] Open
Abstract
The power spectrum of proteins at high frequencies is remarkably well described by the flat Wilson statistics. Wilson statistics therefore plays a significant role in X-ray crystallography and more recently in electron cryomicroscopy (cryo-EM). Specifically, modern computational methods for three-dimensional map sharpening and atomic modelling of macromolecules by single-particle cryo-EM are based on Wilson statistics. Here the first rigorous mathematical derivation of Wilson statistics is provided. The derivation pinpoints the regime of validity of Wilson statistics in terms of the size of the macromolecule. Moreover, the analysis naturally leads to generalizations of the statistics to covariance and higher-order spectra. These in turn provide a theoretical foundation for assumptions underlying the widespread Bayesian inference framework for three-dimensional refinement and for explaining the limitations of autocorrelation-based methods in cryo-EM.
Collapse
Affiliation(s)
- Amit Singer
- Department of Mathematics and PACM, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA
| |
Collapse
|
33
|
Cross-correlation analysis of X-ray photon correlation spectroscopy to extract rotational diffusion coefficients. Proc Natl Acad Sci U S A 2021; 118:2105826118. [PMID: 34408023 PMCID: PMC8403868 DOI: 10.1073/pnas.2105826118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray photon correlation spectroscopy (XPCS) is a powerful technique that can probe a broad range of space and time scales and will become increasingly powerful due to coming advancements in coherence. Assessing translational and rotational diffusion is a key quantity in analyzing material structures and dynamics, with applications across molecular biology, drug discovery, and materials science. While methods for estimating translational diffusion coefficients from XPCS data are well-developed, there are no algorithms for measuring the rotational diffusion. Here, we present a mathematical formulation and algorithm based on angular-temporal cross-correlations for extracting this rotational information, providing tools for data analysis of XPCS. Although we focus on XPCS, the proposed method can be applied to other experimental techniques due to its generality. Coefficients for translational and rotational diffusion characterize the Brownian motion of particles. Emerging X-ray photon correlation spectroscopy (XPCS) experiments probe a broad range of length scales and time scales and are well-suited for investigation of Brownian motion. While methods for estimating the translational diffusion coefficients from XPCS are well-developed, there are no algorithms for measuring the rotational diffusion coefficients based on XPCS, even though the required raw data are accessible from such experiments. In this paper, we propose angular-temporal cross-correlation analysis of XPCS data and show that this information can be used to design a numerical algorithm (Multi-Tiered Estimation for Correlation Spectroscopy [MTECS]) for predicting the rotational diffusion coefficient utilizing the cross-correlation: This approach is applicable to other wavelengths beyond this regime. We verify the accuracy of this algorithmic approach across a range of simulated data.
Collapse
|
34
|
Tiwari SP, Tama F, Miyashita O. Protocol for Retrieving Three-Dimensional Biological Shapes for a Few XFEL Single-Particle Diffraction Patterns. J Chem Inf Model 2021; 61:4108-4119. [PMID: 34357759 DOI: 10.1021/acs.jcim.1c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
X-ray free-electron laser (XFEL) scattering promises to probe single biomolecular complexes without crystallization, enabling the study of biomolecular structures under near-physiological conditions at room temperature. However, such structural determination of biomolecules is extremely challenging thus far. In addition to the large numbers of diffraction patterns required, the orientation of each diffraction pattern needs to be accurately estimated and the missing phase information needs to be recovered for three-dimensional (3D) structure reconstruction. Given the current limitations to the amount and resolution of the data available from single-particle XFEL scattering experiments, we propose an alternative approach to find plausible 3D biological shapes from a limited number of diffraction patterns to serve as a starting point for further analyses. In our proposed strategy, small sets of input (e.g., five) XFEL diffraction patterns were matched against a library of diffraction patterns simulated from 1628 electron microscopy (EM) models to find potential matching 3D models that are consistent with the input diffraction patterns. This approach was tested for three example cases: EMD-3457 (Thermoplasma acidophilum 20S proteasome), EMD-5141 (Escherichia coli 70S ribosome complex), and EMD-5152 (budding yeast Nup84 complex). We observed that choosing the best strategy to define matching regions on the diffraction patterns is critical for identifying correctly matching diffraction patterns. While increasing the number of input diffraction patterns improved the matches in some cases, we found that the resulting matches are more dependent on the uniqueness or complexity of the shape as captured in the individual input diffraction patterns and the availability of a similar 3D biological shape in the search library. The protocol could be useful for finding candidate models for a limited amount of low-resolution data, even when insufficient for reconstruction, performing a quick exploration of new data upon collection, and the analysis of the conformational heterogeneity of the particle of interest as captured within the diffraction patterns.
Collapse
Affiliation(s)
- Sandhya P Tiwari
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Florence Tama
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.,Graduate School of Science, Department of Physics, Nagoya University, Nagoya, Aichi 464-8601, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Osamu Miyashita
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
35
|
Kommera PR, Ramakrishnaiah V, Sweeney C, Donatelli J, Zwart PH. GPU-accelerated multitiered iterative phasing algorithm for fluctuation X-ray scattering. J Appl Crystallogr 2021; 54:1179-1188. [PMID: 34429723 PMCID: PMC8366419 DOI: 10.1107/s1600576721005744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
The multitiered iterative phasing (MTIP) algorithm is used to determine the biological structures of macromolecules from fluctuation scattering data. It is an iterative algorithm that reconstructs the electron density of the sample by matching the computed fluctuation X-ray scattering data to the external observations, and by simultaneously enforcing constraints in real and Fourier space. This paper presents the first ever MTIP algorithm acceleration efforts on contemporary graphics processing units (GPUs). The Compute Unified Device Architecture (CUDA) programming model is used to accelerate the MTIP algorithm on NVIDIA GPUs. The computational performance of the CUDA-based MTIP algorithm implementation outperforms the CPU-based version by an order of magnitude. Furthermore, the Heterogeneous-Compute Interface for Portability (HIP) runtime APIs are used to demonstrate portability by accelerating the MTIP algorithm across NVIDIA and AMD GPUs.
Collapse
Affiliation(s)
- Pranay Reddy Kommera
- Applied Computer Science, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Vinay Ramakrishnaiah
- Applied Computer Science, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Christine Sweeney
- Applied Computer Science, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jeffrey Donatelli
- Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Applied Mathematics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Petrus H. Zwart
- Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
36
|
Sinelnikova A, Mandl T, Agelii H, Grånäs O, Marklund EG, Caleman C, De Santis E. Protein orientation in time-dependent electric fields: orientation before destruction. Biophys J 2021; 120:3709-3717. [PMID: 34303701 PMCID: PMC8456286 DOI: 10.1016/j.bpj.2021.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Proteins often have nonzero electric dipole moments, making them interact with external electric fields and offering a means for controlling their orientation. One application that is known to benefit from orientation control is single-particle imaging with x-ray free-electron lasers, in which diffraction is recorded from proteins in the gas phase to determine their structures. To this point, theoretical investigations into this phenomenon have assumed that the field experienced by the proteins is constant or a perfect step function, whereas any real-world pulse will be smooth. Here, we explore the possibility of orienting gas-phase proteins using time-dependent electric fields. We performed ab initio simulations to estimate the field strength required to break protein bonds, with 45 V/nm as a breaking point value. We then simulated ubiquitin in time-dependent electric fields using classical molecular dynamics. The minimal field strength required for orientation within 10 ns was on the order of 0.5 V/nm. Although high fields can be destructive for the structure, the structures in our simulations were preserved until orientation was achieved regardless of field strength, a principle we denote “orientation before destruction.”
Collapse
Affiliation(s)
- Anna Sinelnikova
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Thomas Mandl
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden; University of Applied Sciences Technikum Wien, Wien, Austria
| | - Harald Agelii
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Oscar Grånäs
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Erik G Marklund
- Department of Chemistry BMC, Uppsala University, Uppsala, Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden; Center for Free-Electron Laser Science, DESY, Hamburg, Germany
| | - Emiliano De Santis
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden; Department of Chemistry BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
37
|
Bobkov SA, Teslyuk AB, Baymukhametov TN, Pichkur EB, Chesnokov YM, Assalauova D, Poyda AA, Novikov AM, Zolotarev SI, Ikonnikova KA, Velikhov VE, Vartanyants IA, Vasiliev AL, Ilyin VA. Advances in Modern Information Technologies for Data Analysis in CRYO-EM and XFEL Experiments. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520060085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Assalauova D, Kim YY, Bobkov S, Khubbutdinov R, Rose M, Alvarez R, Andreasson J, Balaur E, Contreras A, DeMirci H, Gelisio L, Hajdu J, Hunter MS, Kurta RP, Li H, McFadden M, Nazari R, Schwander P, Teslyuk A, Walter P, Xavier PL, Yoon CH, Zaare S, Ilyin VA, Kirian RA, Hogue BG, Aquila A, Vartanyants IA. An advanced workflow for single-particle imaging with the limited data at an X-ray free-electron laser. IUCRJ 2020; 7:1102-1113. [PMID: 33209321 PMCID: PMC7642788 DOI: 10.1107/s2052252520012798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/21/2020] [Indexed: 05/06/2023]
Abstract
An improved analysis for single-particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source as part of the SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from half of the detector and a small fraction of single hits. The general SPI analysis workflow was upgraded with the expectation-maximization based classification of diffraction patterns and mode decomposition on the final virus-structure determination step. The presented processing pipeline allowed us to determine the 3D structure of bacteriophage PR772 without symmetry constraints with a spatial resolution of 6.9 nm. The obtained resolution was limited by the scattering intensity during the experiment and the relatively small number of single hits.
Collapse
Affiliation(s)
- Dameli Assalauova
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Young Yong Kim
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Sergey Bobkov
- National Research Center ‘Kurchatov Institute’, Akademika Kurchatova pl. 1, Moscow, 123182 Russian Federation
| | - Ruslan Khubbutdinov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russian Federation
| | - Max Rose
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Roberto Alvarez
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
- School of Mathematics and Statistical Sciences, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Jakob Andreasson
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Prague, CZ-18221, Czech Republic
| | - Eugeniu Balaur
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| | - Alice Contreras
- School of Life Sciences, Arizona State University, Tempe, Arizona AZ 85287, USA
- Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Hasan DeMirci
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Department of Molecular Biology and Genetics, Koc University, Istanbul, 34450, Turkey
| | - Luca Gelisio
- Center for Free Electron Laser Science (CFEL), DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Janos Hajdu
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Prague, CZ-18221, Czech Republic
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Uppsala, SE-75124, Sweden
| | - Mark S. Hunter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | | | - Haoyuan Li
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Physics Department, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305-2004, USA
| | - Matthew McFadden
- Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Reza Nazari
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | | | - Anton Teslyuk
- National Research Center ‘Kurchatov Institute’, Akademika Kurchatova pl. 1, Moscow, 123182 Russian Federation
- Moscow Institute of Physics and Technology, Moscow, 141700, Russian Federation
| | - Peter Walter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - P. Lourdu Xavier
- Center for Free Electron Laser Science (CFEL), DESY, Notkestraße 85, Hamburg, D-22607, Germany
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg, D-22761, Germany
| | - Chun Hong Yoon
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sahba Zaare
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Viacheslav A. Ilyin
- National Research Center ‘Kurchatov Institute’, Akademika Kurchatova pl. 1, Moscow, 123182 Russian Federation
- Moscow Institute of Physics and Technology, Moscow, 141700, Russian Federation
| | - Richard A. Kirian
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Brenda G. Hogue
- School of Life Sciences, Arizona State University, Tempe, Arizona AZ 85287, USA
- Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona AZ 85287, USA
- Biodesign Institute, Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Andrew Aquila
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ivan A. Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russian Federation
| |
Collapse
|
39
|
Lehmkühler F, Hankiewicz B, Schroer MA, Müller L, Ruta B, Sheyfer D, Sprung M, Tono K, Katayama T, Yabashi M, Ishikawa T, Gutt C, Grübel G. Slowing down of dynamics and orientational order preceding crystallization in hard-sphere systems. SCIENCE ADVANCES 2020; 6:6/43/eabc5916. [PMID: 33087351 PMCID: PMC7577711 DOI: 10.1126/sciadv.abc5916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/04/2020] [Indexed: 05/27/2023]
Abstract
Despite intensive studies in the past decades, the local structure of disordered matter remains widely unknown. We show the results of a coherent x-ray scattering study revealing higher-order correlations in dense colloidal hard-sphere systems in the vicinity of their crystallization and glass transition. With increasing volume fraction, we observe a strong increase in correlations at both medium-range and next-neighbor distances in the supercooled state, both invisible to conventional scattering techniques. Next-neighbor correlations are indicative of ordered precursor clusters preceding crystallization. Furthermore, the increase in such correlations is accompanied by a marked slowing down of the dynamics, proving experimentally a direct relation between orientational order and sample dynamics in a soft matter system. In contrast, correlations continuously increase for nonequilibrated, glassy samples, suggesting that orientational order is reached before the sample slows down to reach (quasi-)equilibrium.
Collapse
Affiliation(s)
- Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Birgit Hankiewicz
- Institute of Physical Chemistry, Hamburg University, Grindelallee 117, 20146 Hamburg, Germany
| | - Martin A Schroer
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Leonard Müller
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Beatrice Ruta
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
- ESRF-The European Synchrotron, 38043 Grenoble cedex, France
| | - Dina Sheyfer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Christian Gutt
- Department of Physics, University of Siegen, Walter-Flex-Str. 3, 57072 Siegen, Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
40
|
Liu J, Engblom S, Nettelblad C. Flash X-ray diffraction imaging in 3D: a proposed analysis pipeline. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:1673-1686. [PMID: 33104615 DOI: 10.1364/josaa.390384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Modern Flash X-ray diffraction Imaging (FXI) acquires diffraction signals from single biomolecules at a high repetition rate from X-ray Free Electron Lasers (XFELs), easily obtaining millions of 2D diffraction patterns from a single experiment. Due to the stochastic nature of FXI experiments and the massive volumes of data, retrieving 3D electron densities from raw 2D diffraction patterns is a challenging and time-consuming task. We propose a semi-automatic data analysis pipeline for FXI experiments, which includes four steps: hit-finding and preliminary filtering, pattern classification, 3D Fourier reconstruction, and post-analysis. We also include a recently developed bootstrap methodology in the post-analysis step for uncertainty analysis and quality control. To achieve the best possible resolution, we further suggest using background subtraction, signal windowing, and convex optimization techniques when retrieving the Fourier phases in the post-analysis step. As an application example, we quantified the 3D electron structure of the PR772 virus using the proposed data analysis pipeline. The retrieved structure was above the detector edge resolution and clearly showed the pseudo-icosahedral capsid of the PR772.
Collapse
|
41
|
Abstract
The continued development of X-ray free-electron lasers and serial crystallography techniques has opened up new experimental frontiers. Nanoscale dynamical processes such as crystal growth can now be probed at unprecedented time and spatial resolutions. Pair-angle distribution function (PADF) analysis is a correlation-based technique that has the potential to extend the limits of current serial crystallography experiments, by relaxing the requirements for crystal order, size and number density per exposure. However, unlike traditional crystallographic methods, the PADF technique does not recover the electron density directly. Instead it encodes substantial information about local three-dimensional structure in the form of three- and four-body correlations. It is not yet known how protein structure maps into the many-body PADF correlations. In this paper, we explore the relationship between the PADF and protein conformation. We calculate correlations in reciprocal and real space for model systems exhibiting increasing degrees of order and secondary structural complexity, from disordered polypeptides, single alpha helices, helix bundles and finally a folded 100 kilodalton protein. These models systems inform us about the distinctive angular correlations generated by bonding, polypeptide chains, secondary structure and tertiary structure. They further indicate the potential to use angular correlations as a sensitive measure of conformation change that is complementary to existing structural analysis techniques.
Collapse
|
42
|
Bielecki J, Maia FRNC, Mancuso AP. Perspectives on single particle imaging with x rays at the advent of high repetition rate x-ray free electron laser sources. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:040901. [PMID: 32818147 PMCID: PMC7413746 DOI: 10.1063/4.0000024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/21/2020] [Indexed: 05/20/2023]
Abstract
X-ray free electron lasers (XFELs) now routinely produce millijoule level pulses of x-ray photons with tens of femtoseconds duration. Such x-ray intensities gave rise to the idea that weakly scattering particles-perhaps single biomolecules or viruses-could be investigated free of radiation damage. Here, we examine elements from the past decade of so-called single particle imaging with hard XFELs. We look at the progress made to date and identify some future possible directions for the field. In particular, we summarize the presently achieved resolutions as well as identifying the bottlenecks and enabling technologies to future resolution improvement, which in turn enables application to samples of scientific interest.
Collapse
Affiliation(s)
- Johan Bielecki
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Author to whom correspondence should be addressed:
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124 Uppsala, Sweden
| | | |
Collapse
|
43
|
Zhao Z, Liu LT, Singer A. Steerable ePCA: Rotationally Invariant Exponential Family PCA. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; 29:10.1109/TIP.2020.2988139. [PMID: 32340944 PMCID: PMC10717790 DOI: 10.1109/tip.2020.2988139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In photon-limited imaging, the pixel intensities are affected by photon count noise. Many applications require an accurate estimation of the covariance of the underlying 2-D clean images. For example, in X-ray free electron laser (XFEL) single molecule imaging, the covariance matrix of 2-D diffraction images is used to reconstruct the 3-D molecular structure. Accurate estimation of the covariance from low-photon-count images must take into account that pixel intensities are Poisson distributed, hence the classical sample covariance estimator is highly biased. Moreover, in single molecule imaging, including in-plane rotated copies of all images could further improve the accuracy of covariance estimation. In this paper we introduce an efficient and accurate algorithm for covariance matrix estimation of count noise 2-D images, including their uniform planar rotations and possibly reflections. Our procedure, steerable ePCA, combines in a novel way two recently introduced innovations. The first is a methodology for principal component analysis (PCA) for Poisson distributions, and more generally, exponential family distributions, called ePCA. The second is steerable PCA, a fast and accurate procedure for including all planar rotations when performing PCA. The resulting principal components are invariant to the rotation and reflection of the input images. We demonstrate the efficiency and accuracy of steerable ePCA in numerical experiments involving simulated XFEL datasets and rotated face images from Yale Face Database B.
Collapse
|
44
|
Niozu A, Kumagai Y, Nishiyama T, Fukuzawa H, Motomura K, Bucher M, Asa K, Sato Y, Ito Y, Takanashi T, You D, Ono T, Li Y, Kukk E, Miron C, Neagu L, Callegari C, Di Fraia M, Rossi G, Galli DE, Pincelli T, Colombo A, Owada S, Tono K, Kameshima T, Joti Y, Katayama T, Togashi T, Yabashi M, Matsuda K, Nagaya K, Bostedt C, Ueda K. Characterizing crystalline defects in single nanoparticles from angular correlations of single-shot diffracted X-rays. IUCRJ 2020; 7:276-286. [PMID: 32148855 PMCID: PMC7055387 DOI: 10.1107/s205225252000144x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Characterizing and controlling the uniformity of nanoparticles is crucial for their application in science and technology because crystalline defects in the nanoparticles strongly affect their unique properties. Recently, ultra-short and ultra-bright X-ray pulses provided by X-ray free-electron lasers (XFELs) opened up the possibility of structure determination of nanometre-scale matter with Å spatial resolution. However, it is often difficult to reconstruct the 3D structural information from single-shot X-ray diffraction patterns owing to the random orientation of the particles. This report proposes an analysis approach for characterizing defects in nanoparticles using wide-angle X-ray scattering (WAXS) data from free-flying single nanoparticles. The analysis method is based on the concept of correlated X-ray scattering, in which correlations of scattered X-ray are used to recover detailed structural information. WAXS experiments of xenon nanoparticles, or clusters, were conducted at an XFEL facility in Japan by using the SPring-8 Ångstrom compact free-electron laser (SACLA). Bragg spots in the recorded single-shot X-ray diffraction patterns showed clear angular correlations, which offered significant structural information on the nanoparticles. The experimental angular correlations were reproduced by numerical simulation in which kinematical theory of diffraction was combined with geometric calculations. We also explain the diffuse scattering intensity as being due to the stacking faults in the xenon clusters.
Collapse
Affiliation(s)
- Akinobu Niozu
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Yoshiaki Kumagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Toshiyuki Nishiyama
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Hironobu Fukuzawa
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Koji Motomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Maximilian Bucher
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Kazuki Asa
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Yuhiro Sato
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Yuta Ito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Tsukasa Takanashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Taishi Ono
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Yiwen Li
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Edwin Kukk
- Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
| | - Catalin Miron
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191, Gif-sur-Yvette, France
- Extreme Light Infrastructure – Nuclear Physics (ELI–NP), Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Magurele, Jud. Ilfov, Romania
| | - Liviu Neagu
- Extreme Light Infrastructure – Nuclear Physics (ELI–NP), Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Magurele, Jud. Ilfov, Romania
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor PO Box MG-36, 077125 Magurele, Jud. Ilfov, Romania
| | - Carlo Callegari
- Elettra – Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - Michele Di Fraia
- Elettra – Sincrotrone Trieste S.C.p.A, 34149 Basovizza, Trieste, Italy
| | - Giorgio Rossi
- Department of Physics, Università degli Studi di Milano, Via G. Celoria 16, I-20133 Milano, Italy
| | - Davide E. Galli
- Department of Physics, Università degli Studi di Milano, Via G. Celoria 16, I-20133 Milano, Italy
| | - Tommaso Pincelli
- Department of Physics, Università degli Studi di Milano, Via G. Celoria 16, I-20133 Milano, Italy
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4–6, 14195 Berlin, Germany
| | - Alessandro Colombo
- Department of Physics, ETH Zürich, Stefano-Franscini-Platz 5, 8049 Zürich, Switzerland
| | | | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Takashi Kameshima
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | | | | | - Kiyonobu Nagaya
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
- Laboratory for Femtochemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kiyoshi Ueda
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
45
|
Suzuki A, Kimura T, Yang Y, Niida Y, Nishioka A, Tachibana T, Takei M, Tono K, Yabashi M, Ishikawa T, Oshima T, Bessho Y, Joti Y, Nishino Y. Design of a liquid cell toward three-dimensional imaging of unidirectionally-aligned particles in solution using X-ray free-electron lasers. Phys Chem Chem Phys 2020; 22:2622-2628. [DOI: 10.1039/c9cp03658j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A liquid cell was designed for coherent diffractive imaging measurements at high tilt angles and tested at SACLA.
Collapse
|
46
|
Ayyer K, Morgan AJ, Aquila A, DeMirci H, Hogue BG, Kirian RA, Xavier PL, Yoon CH, Chapman HN, Barty A. Low-signal limit of X-ray single particle diffractive imaging. OPTICS EXPRESS 2019; 27:37816-37833. [PMID: 31878556 DOI: 10.1364/oe.27.037816] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An outstanding question in X-ray single particle imaging experiments has been the feasibility of imaging sub 10-nm-sized biomolecules under realistic experimental conditions where very few photons are expected to be measured in a single snapshot and instrument background may be significant relative to particle scattering. While analyses of simulated data have shown that the determination of an average image should be feasible using Bayesian methods such as the EMC algorithm, this has yet to be demonstrated using experimental data containing realistic non-isotropic instrument background, sample variability and other experimental factors. In this work, we show that the orientation and phase retrieval steps work at photon counts diluted to the signal levels one expects from smaller molecules or with weaker pulses, using data from experimental measurements of 60-nm PR772 viruses. Even when the signal is reduced to a fraction as little as 1/256, the virus electron density determined using ab initio phasing is of almost the same quality as the high-signal data. However, we are still limited by the total number of patterns collected, which may soon be mitigated by the advent of high repetition-rate sources like the European XFEL and LCLS-II.
Collapse
|
47
|
Angular X-Ray Cross-Correlation Analysis (AXCCA): Basic Concepts and Recent Applications to Soft Matter and Nanomaterials. MATERIALS 2019; 12:ma12213464. [PMID: 31652689 PMCID: PMC6862311 DOI: 10.3390/ma12213464] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 01/25/2023]
Abstract
Angular X-ray cross-correlation analysis (AXCCA) is a technique which allows quantitative measurement of the angular anisotropy of X-ray diffraction patterns and provides insights into the orientational order in the system under investigation. This method is based on the evaluation of the angular cross-correlation function of the scattered intensity distribution on a two-dimensional (2D) detector and further averaging over many diffraction patterns for enhancement of the anisotropic signal. Over the last decade, AXCCA was successfully used to study the anisotropy in various soft matter systems, such as solutions of anisotropic particles, liquid crystals, colloidal crystals, superlattices composed by nanoparticles, etc. This review provides an introduction to the technique and gives a survey of the recent experimental work in which AXCCA in combination with micro- or nanofocused X-ray microscopy was used to study the orientational order in various soft matter systems.
Collapse
|
48
|
Bendory T, Boumal N, Leeb W, Levin E, Singer A. Multi-target detection with application to cryo-electron microscopy. INVERSE PROBLEMS 2019; 35:104003. [PMID: 40017531 PMCID: PMC11867624 DOI: 10.1088/1361-6420/ab2aec] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
We consider the multi-target detection problem of recovering a set of signals that appear multiple times at unknown locations in a noisy measurement. In the low noise regime, one can estimate the signals by first detecting occurrences, then clustering and averaging them. In the high noise regime, however, neither detection nor clustering can be performed reliably, so that strategies along these lines are destined to fail. Notwithstanding, using autocorrelation analysis, we show that the impossibility to detect and cluster signal occurrences in the presence of high noise does not necessarily preclude signal estimation. Specifically, to estimate the signals, we derive simple relations between the autocorrelations of the observation and those of the signals. These autocorrelations can be estimated accurately at any noise level given a sufficiently long measurement. To recover the signals from the observed autocorrelations, we solve a set of polynomial equations through nonlinear least-squares. We provide analysis regarding well-posedness of the task, and demonstrate numerically the effectiveness of the method in a variety of settings. The main goal of this work is to provide theoretical and numerical support for a recently proposed framework to image 3D structures of biological macromolecules using cryo-electron microscopy in extreme noise levels.
Collapse
Affiliation(s)
- Tamir Bendory
- The Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, United States of America
| | - Nicolas Boumal
- Department of Mathematics, Princeton University, Princeton, NJ, United States of America
| | - William Leeb
- School of Mathematics, University of Minnesota, Minneapolis, MN, United States of America
| | - Eitan Levin
- The Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, United States of America
- Department of Mathematics, Princeton University, Princeton, NJ, United States of America
| | - Amit Singer
- The Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, United States of America
- Department of Mathematics, Princeton University, Princeton, NJ, United States of America
| |
Collapse
|
49
|
Dülfer J, Kadek A, Kopicki JD, Krichel B, Uetrecht C. Structural mass spectrometry goes viral. Adv Virus Res 2019; 105:189-238. [PMID: 31522705 DOI: 10.1016/bs.aivir.2019.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the last 20 years, mass spectrometry (MS), with its ability to analyze small sample amounts with high speed and sensitivity, has more and more entered the field of structural virology, aiming to investigate the structure and dynamics of viral proteins as close to their native environment as possible. The use of non-perturbing labels in hydrogen-deuterium exchange MS allows for the analysis of interactions between viral proteins and host cell factors as well as their dynamic responses to the environment. Cross-linking MS, on the other hand, can analyze interactions in viral protein complexes and identify virus-host interactions in cells. Native MS allows transferring viral proteins, complexes and capsids into the gas phase and has broken boundaries to overcome size limitations, so that now even the analysis of intact virions is possible. Different MS approaches not only inform about size, stability, interactions and dynamics of virus assemblies, but also bridge the gap to other biophysical techniques, providing valuable constraints for integrative structural modeling of viral complex assemblies that are often inaccessible by single technique approaches. In this review, recent advances are highlighted, clearly showing that structural MS approaches in virology are moving towards systems biology and ever more experiments are performed on cellular level.
Collapse
Affiliation(s)
- Jasmin Dülfer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Alan Kadek
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; European XFEL GmbH, Schenefeld, Germany
| | - Janine-Denise Kopicki
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Boris Krichel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; European XFEL GmbH, Schenefeld, Germany.
| |
Collapse
|
50
|
Zimmermann J, Langbehn B, Cucini R, Di Fraia M, Finetti P, LaForge AC, Nishiyama T, Ovcharenko Y, Piseri P, Plekan O, Prince KC, Stienkemeier F, Ueda K, Callegari C, Möller T, Rupp D. Deep neural networks for classifying complex features in diffraction images. Phys Rev E 2019; 99:063309. [PMID: 31330687 DOI: 10.1103/physreve.99.063309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 11/07/2022]
Abstract
Intense short-wavelength pulses from free-electron lasers and high-harmonic-generation sources enable diffractive imaging of individual nanosized objects with a single x-ray laser shot. The enormous data sets with up to several million diffraction patterns present a severe problem for data analysis because of the high dimensionality of imaging data. Feature recognition and selection is a crucial step to reduce the dimensionality. Usually, custom-made algorithms are developed at a considerable effort to approximate the particular features connected to an individual specimen, but because they face different experimental conditions, these approaches do not generalize well. On the other hand, deep neural networks are the principal instrument for today's revolution in automated image recognition, a development that has not been adapted to its full potential for data analysis in science. We recently published [Langbehn et al., Phys. Rev. Lett. 121, 255301 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.255301] the application of a deep neural network as a feature extractor for wide-angle diffraction images of helium nanodroplets. Here we present the setup, our modifications, and the training process of the deep neural network for diffraction image classification and its systematic bench marking. We find that deep neural networks significantly outperform previous attempts for sorting and classifying complex diffraction patterns and are a significant improvement for the much-needed assistance during postprocessing of large amounts of experimental coherent diffraction imaging data.
Collapse
Affiliation(s)
- Julian Zimmermann
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Bruno Langbehn
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Michele Di Fraia
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy.,ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - Paola Finetti
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Aaron C LaForge
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany
| | - Toshiyuki Nishiyama
- Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yevheniy Ovcharenko
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany.,European XFEL GmbH, 22869 Schenefeld, Germany
| | - Paolo Piseri
- CIMAINA and Dipartimento di Fisica, University degli Studi di Milano, 20133 Milano, Italy
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy.,Department of Chemistry and Biotechnology, Swinburne University of Technology, Victoria 3122, Australia
| | | | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Carlo Callegari
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy.,ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - Thomas Möller
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Daniela Rupp
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| |
Collapse
|