1
|
Sarkar M, Hossain MT, Ewoldt RH, Laukaitis C, Johnson AW. Stiffening of a fibrous matrix after recovery of contracted inclusions. SOFT MATTER 2025; 21:3314-3330. [PMID: 40183246 DOI: 10.1039/d5sm00087d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Disordered fibrous matrices in living tissues are subjected to forces exerted by cells that contract to pull on matrix fibers. To maintain homeostasis or facilitate disease progression, contracted cells often push on matrix fibers as they recover their original sizes. Recent advances have shown that matrix geometry encodes loading history into mechanical memory independently of plasticity mechanisms such as inter-fiber cohesion or fiber yielding. Conceptualizing cells as inclusions undergoing sequential contraction and recovery, prior work documented matrix remodeling surrounding a solitary recovered inclusion. However, because the remodeling induced by the contraction of multiple inclusions differs from that caused by a single contracted inclusion, we investigate how matrix remodeling occurs when multiple contracted inclusions recover simultaneously, a scenario that more accurately reflects real tissues containing many closely spaced cells. Using mechanics-based computational models of fibrous matrices embedded with clusters of inclusions, we studied the mechanical remodeling of the matrix during the simultaneous recovery of inclusions after contraction. The results revealed permanent mechanical remodeling of the matrix within the cluster, with stiffening observed in areas of the matrix enclosed by closely spaced inclusions. This stiffening was driven by microstructural changes in matrix geometry and was corroborated in experiments, where collagen matrices permanently remodeled by the contraction and recovery of closely spaced embedded cells also exhibited stiffening. By enriching the understanding of memory formation in fibrous matrices, this study opens new possibilities for estimating cell forces on matrix substrates and refining metamaterial design strategies.
Collapse
Affiliation(s)
- Mainak Sarkar
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, USA.
| | - Mohammad Tanver Hossain
- Mechanical Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, USA
| | - Randy H Ewoldt
- Mechanical Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, USA
- Materials Research Laboratory, University of Illinois Urbana-Champaign, USA
| | - Christina Laukaitis
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, USA.
- Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, USA
- Clinical Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, USA
- Carle Health, Urbana, Illinois, USA
| | - Amy Wagoner Johnson
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, USA.
- Mechanical Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, USA
- Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, USA
- CZ Biohub Chicago, LLC, Chicago, Illinois, USA
| |
Collapse
|
2
|
Chen S, Markovich T, MacKintosh FC. Field Theory for Mechanical Criticality in Disordered Fiber Networks. PHYSICAL REVIEW LETTERS 2024; 133:028201. [PMID: 39073948 DOI: 10.1103/physrevlett.133.028201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/30/2024] [Accepted: 05/24/2024] [Indexed: 07/31/2024]
Abstract
Strain-controlled criticality governs the elasticity of jamming and fiber networks. While the upper critical dimension of jamming is believed to be d_{u}=2, non-mean-field exponents are observed in numerical studies of 2D and 3D fiber networks. The origins of this remains unclear. In this study we propose a minimal mean-field model for strain-controlled criticality of fiber networks. We then extend this to a phenomenological field theory, in which non-mean-field behavior emerges as a result of the disorder in the network structure. We predict that the upper critical dimension for such systems is d_{u}=4 using a Gaussian approximation. Moreover, we identify an order parameter for the phase transition, which has been lacking for fiber networks to date.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Tomer Markovich
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Fred C MacKintosh
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- The Isaac Newton Institute for Mathematical Sciences, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
3
|
Shivers JL, MacKintosh FC. Nonlinear Poisson effect in affine semiflexible polymer networks. Phys Rev E 2024; 110:014502. [PMID: 39160898 DOI: 10.1103/physreve.110.014502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Stretching an elastic material along one axis typically induces contraction along the transverse axes, a phenomenon known as the Poisson effect. From these strains, one can compute the specific volume, which generally either increases or, in the incompressible limit, remains constant as the material is stretched. However, in networks of semiflexible or stiff polymers, which are typically highly compressible yet stiffen significantly when stretched, one instead sees a significant reduction in specific volume under finite strains. This volume reduction is accompanied by increasing alignment of filaments along the strain axis and a nonlinear elastic response, with stiffening of the apparent Young's modulus. For semiflexible networks, in which entropic bending elasticity governs the linear elastic regime, the nonlinear Poisson effect is caused by the nonlinear force-extension relationship of the constituent filaments, which produces a highly asymmetric response of the constituent polymers to stretching and compression. The details of this relationship depend on the geometric and elastic properties of the underlying filaments, which can vary greatly in experimental systems. Here, we provide a comprehensive characterization of the nonlinear Poisson effect in an affine network model and explore the influence of filament properties on essential features of both microscopic and macroscopic response, including strain-driven alignment and volume reduction.
Collapse
Affiliation(s)
- Jordan L Shivers
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Fred C MacKintosh
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
4
|
Wang X, Li K, Yuan Y, Zhang N, Zou Z, Wang Y, Yan S, Li X, Zhao P, Li Q. Nonlinear Elasticity of Blood Vessels and Vascular Grafts. ACS Biomater Sci Eng 2024; 10:3631-3654. [PMID: 38815169 DOI: 10.1021/acsbiomaterials.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The transplantation of vascular grafts has emerged as a prevailing approach to address vascular disorders. However, the development of small-diameter vascular grafts is still in progress, as they serve in a more complicated mechanical environment than their counterparts with larger diameters. The biocompatibility and functional characteristics of small-diameter vascular grafts have been well developed; however, mismatch in mechanical properties between the vascular grafts and native arteries has not been accomplished, which might facilitate the long-term patency of small-diameter vascular grafts. From a point of view in mechanics, mimicking the nonlinear elastic mechanical behavior exhibited by natural blood vessels might be the state-of-the-art in designing vascular grafts. This review centers on elucidating the nonlinear elastic behavior of natural blood vessels and vascular grafts. The biological functionality and limitations associated with as-reported vascular grafts are meticulously reviewed and the future trajectory for fabricating biomimetic small-diameter grafts is discussed. This review might provide a different insight from the traditional design and fabrication of artificial vascular grafts.
Collapse
Affiliation(s)
- Xiaofeng Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Yuan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Zhang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zifan Zou
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yun Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shujie Yan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Qian Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Zhang Y, Xing M, Meng F, Zhu L, Huang Q, Ma T, Fang H, Gu X, Huang S, Wu X, Lv G, Guo J, Wu L, Liu X, Chen Z. The mechanical mechanism of angiotensin II induced activation of hepatic stellate cells promoting portal hypertension. Eur J Cell Biol 2024; 103:151427. [PMID: 38820882 DOI: 10.1016/j.ejcb.2024.151427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
In the development of chronic liver disease, the hepatic stellate cell (HSC) plays a pivotal role in increasing intrahepatic vascular resistance (IHVR) and inducing portal hypertension (PH) in cirrhosis. Our research demonstrated that HSC contraction, prompted by angiotensin II (Ang II), significantly contributed to the elevation of type I collagen (COL1A1) expression. This increase was intimately associated with enhanced cell tension and YAP nuclear translocation, mediated through α-smooth muscle actin (α-SMA) expression, microfilaments (MF) polymerization, and stress fibers (SF) assembly. Further investigation revealed that the Rho/ROCK signaling pathway regulated MF polymerization and SF assembly by facilitating the phosphorylation of cofilin and MLC, while Ca2+ chiefly governed SF assembly via MLC. Inhibiting α-SMA-MF-SF assembly changed Ang II-induced cell contraction, YAP nuclear translocation, and COL1A1 expression, findings corroborated in cirrhotic mice models. Overall, our study offers insights into mitigating IHVR and PH through cell mechanics, heralding potential breakthroughs.
Collapse
Affiliation(s)
- Yiheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mulan Xing
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fansheng Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Zhu
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qingchuan Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianle Ma
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huihua Fang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, China
| | - Xujing Gu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suzhou Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinyu Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gaohong Lv
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Guo
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xin Liu
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Zhipeng Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Conboy JP, Istúriz Petitjean I, van der Net A, Koenderink GH. How cytoskeletal crosstalk makes cells move: Bridging cell-free and cell studies. BIOPHYSICS REVIEWS 2024; 5:021307. [PMID: 38840976 PMCID: PMC11151447 DOI: 10.1063/5.0198119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cell migration is a fundamental process for life and is highly dependent on the dynamical and mechanical properties of the cytoskeleton. Intensive physical and biochemical crosstalk among actin, microtubules, and intermediate filaments ensures their coordination to facilitate and enable migration. In this review, we discuss the different mechanical aspects that govern cell migration and provide, for each mechanical aspect, a novel perspective by juxtaposing two complementary approaches to the biophysical study of cytoskeletal crosstalk: live-cell studies (often referred to as top-down studies) and cell-free studies (often referred to as bottom-up studies). We summarize the main findings from both experimental approaches, and we provide our perspective on bridging the two perspectives to address the open questions of how cytoskeletal crosstalk governs cell migration and makes cells move.
Collapse
Affiliation(s)
- James P. Conboy
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Irene Istúriz Petitjean
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
7
|
Gannavarapu A, Arzash S, Muntz I, Shivers JL, Klianeva AM, Koenderink GH, MacKintosh FC. Effects of local incompressibility on the rheology of composite biopolymer networks. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:36. [PMID: 38802588 DOI: 10.1140/epje/s10189-024-00422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024]
Abstract
Fibrous networks such as collagen are common in biological systems. Recent theoretical and experimental efforts have shed light on the mechanics of single component networks. Most real biopolymer networks, however, are composites made of elements with different rigidity. For instance, the extracellular matrix in mammalian tissues consists of stiff collagen fibers in a background matrix of flexible polymers such as hyaluronic acid (HA). The interplay between different biopolymer components in such composite networks remains unclear. In this work, we use 2D coarse-grained models to study the nonlinear strain-stiffening behavior of composites. We introduce a local volume constraint to model the incompressibility of HA. We also perform rheology experiments on composites of collagen with HA. Theoretically and experimentally, we demonstrate that the linear shear modulus of composite networks can be increased by approximately an order of magnitude above the corresponding moduli of the pure components. Our model shows that this synergistic effect can be understood in terms of the local incompressibility of HA, which acts to suppress density fluctuations of the collagen matrix with which it is entangled.
Collapse
Affiliation(s)
- Anupama Gannavarapu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, 77005, TX, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA.
| | - Sadjad Arzash
- Department of Physics, Syracuse University, Syracuse, 13244, NY, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, 16802, PA, USA
| | - Iain Muntz
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jordan L Shivers
- Department of Chemistry, University of Chicago, Chicago, 60637, IL, USA
- James Franck Institute, University of Chicago, Chicago, 60637, IL, USA
| | - Anna-Maria Klianeva
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Fred C MacKintosh
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, 77005, TX, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA.
- Department of Chemistry, Rice University, Houston, 77005, TX, USA.
- Department of Physics and Astronomy, Rice University, Houston, 77005, TX, USA.
| |
Collapse
|
8
|
Dimitriyev MS, Feng X, Thomas EL, Grason GM. Nonaffinity of Liquid Networks and Bicontinuous Mesophases. PHYSICAL REVIEW LETTERS 2024; 132:218201. [PMID: 38856277 DOI: 10.1103/physrevlett.132.218201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/21/2024] [Accepted: 03/28/2024] [Indexed: 06/11/2024]
Abstract
Amphiphiles self-assemble into a variety of bicontinuous mesophases whose equilibrium structures take the form of high-symmetry cubic networks. Here, we show that the symmetry-breaking distortions in these systems give rise to anomalously large, nonaffine collective deformations, which we argue to be a generic consequence of "mass equilibration" within deformed networks. We propose and study a minimal "liquid network" model of bicontinuous networks, in which acubic distortions are modeled by the relaxation of residually stressed mechanical networks with constant-tension bonds. We show that nonaffinity is strongly dependent on the valency of the network as well as the degree of strain-softening or strain-stiffening tension in the bonds. Taking diblock copolymer melts as a model system, liquid network theory captures quantitative features of two bicontinuous phases based on comparison with self-consistent field theory predictions and direct experimental characterization of acubic distortions, which are likely to be pronounced in soft amphiphilic systems more generally.
Collapse
Affiliation(s)
- Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Xueyan Feng
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China 200438
| | - Edwin L Thomas
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
9
|
Lerner E. Effects of coordination and stiffness scale separation in disordered elastic networks. Phys Rev E 2024; 109:054904. [PMID: 38907389 DOI: 10.1103/physreve.109.054904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/26/2024] [Indexed: 06/24/2024]
Abstract
Many fibrous materials are modeled as elastic networks featuring a substantial separation between the stiffness scales that characterize different microscopic deformation modes of the network's constituents. This scale separation has been shown to give rise to emergent complexity in these systems' linear and nonlinear mechanical response. Here we study numerically a simple model featuring said stiffness scale separation in two-dimensions and show that its mechanical response is governed by the competition between the characteristic stiffness of collective nonphononic soft modes of the stiff subsystem, and the characteristic stiffness of the soft interactions. We present and rationalize the behavior of the shear modulus of our complex networks across the unjamming transition at which the stiff subsystem alone loses its macroscopic mechanical rigidity. We further establish a relation in the soft-interaction-dominated regime between the shear modulus, the characteristic frequency of nonphononic vibrational modes, and the mesoscopic correlation length that marks the crossover from a disorder-dominated response to local mechanical perturbations in the near field, to a linear, continuumlike response in the far field. The effects of spatial dimension on the observed scaling behavior are discussed, in addition to the interplay between stiffness scales in strain-stiffened networks, which is relevant to understanding the nonlinear mechanics of non-Brownian fibrous biomatter.
Collapse
|
10
|
Gironella-Torrent M, Bergamaschi G, Sorkin R, Wuite GJL, Ritort F. Viscoelastic phenotyping of red blood cells. Biophys J 2024; 123:770-781. [PMID: 38268191 PMCID: PMC10995428 DOI: 10.1016/j.bpj.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Red blood cells (RBCs) are the simplest cell types with complex dynamical and viscoelastic phenomenology. While the mechanical rigidity and the flickering noise of RBCs have been extensively investigated, an accurate determination of the constitutive equations of the relaxational kinetics is lacking. Here we measure the force relaxation of RBCs under different types of tensional and compressive extension-jump protocols by attaching an optically trapped bead to the RBC membrane. Relaxational kinetics follows linear response from 60 pN (tensional) to -20 pN (compressive) applied forces, exhibiting a triple exponential function with three well-separated timescales over four decades (0.01-100 s). While the fast timescale (τF∼0.02(1)s) corresponds to the relaxation of the membrane, the intermediate and slow timescales (τI=4(1)s; τS=70(8)s) likely arise from the cortex dynamics and the cytosol viscosity. Relaxation is highly heterogeneous across the RBC population, yet the three relaxation times are correlated, showing dynamical scaling. Finally, we find that glucose depletion and laser illumination of RBCs lead to faster triple exponential kinetics and RBC rigidification. Viscoelastic phenotyping is a promising dynamical biomarker applicable to other cell types and active systems.
Collapse
Affiliation(s)
- Marta Gironella-Torrent
- Small Biosystems Lab, Condensed Matter Physics Department, University of Barcelona, Barcelona, Spain; Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Giulia Bergamaschi
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Raya Sorkin
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Felix Ritort
- Small Biosystems Lab, Condensed Matter Physics Department, University of Barcelona, Barcelona, Spain; Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Mohammadkhah M, Klinge S. Review paper: The importance of consideration of collagen cross-links in computational models of collagen-based tissues. J Mech Behav Biomed Mater 2023; 148:106203. [PMID: 37879165 DOI: 10.1016/j.jmbbm.2023.106203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Collagen as the main protein in Extra Cellular Matrix (ECM) is the main load-bearing component of fibrous tissues. Nanostructure and architecture of collagen fibrils play an important role in mechanical behavior of these tissues. Extensive experimental and theoretical studies have so far been performed to capture these properties, but none of the current models realistically represent the complexity of network mechanics because still less is known about the collagen's inner structure and its effect on the mechanical properties of tissues. The goal of this review article is to emphasize the significance of cross-links in computational modeling of different collagen-based tissues, and to reveal the need for continuum models to consider cross-links properties to better reflect the mechanical behavior observed in experiments. In addition, this study outlines the limitations of current investigations and provides potential suggestions for the future work.
Collapse
Affiliation(s)
- Melika Mohammadkhah
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Sandra Klinge
- Technische Universität Berlin, Institute of Mechanics, Chair of Structural Mechanics and Analysis, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
12
|
Arzash S, Gannavarapu A, MacKintosh FC. Mechanical criticality of fiber networks at a finite temperature. Phys Rev E 2023; 108:054403. [PMID: 38115508 DOI: 10.1103/physreve.108.054403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/05/2023] [Indexed: 12/21/2023]
Abstract
At zero temperature, spring networks with connectivity below Maxwell's isostatic threshold undergo a mechanical phase transition from a floppy state at small strains to a rigid state for applied shear strain above a critical strain threshold. Disordered networks in the floppy mechanical regime can be stabilized by entropic effects at finite temperature. We develop a scaling theory for this mechanical phase transition at finite temperature, yielding relationships between various scaling exponents. Using Monte Carlo simulations, we verify these scaling relations and identify anomalous entropic elasticity with sublinear T dependence in the linear elastic regime. While our results are consistent with prior studies of phase behavior near the isostatic point, the present work also makes predictions relevant to the broad class of disordered thermal semiflexible polymer networks for which the connectivity generally lies far below the isostatic threshold.
Collapse
Affiliation(s)
- Sadjad Arzash
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Anupama Gannavarapu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Fred C MacKintosh
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
- Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
13
|
Chen S, Markovich T, MacKintosh FC. Effective medium theory for mechanical phase transitions of fiber networks. SOFT MATTER 2023; 19:8124-8135. [PMID: 37846933 DOI: 10.1039/d3sm00810j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Networks of stiff fibers govern the elasticity of biological structures such as the extracellular matrix of collagen. These networks are known to stiffen nonlinearly under shear or extensional strain. Recently, it has been shown that such stiffening is governed by a strain-controlled athermal but critical phase transition, from a floppy phase below the critical strain to a rigid phase above the critical strain. While this phase transition has been extensively studied numerically and experimentally, a complete analytical theory for this transition remains elusive. Here, we present an effective medium theory (EMT) for this mechanical phase transition of fiber networks. We extend a previous EMT appropriate for linear elasticity to incorporate nonlinear effects via an anharmonic Hamiltonian. The mean-field predictions of this theory, including the critical exponents, scaling relations and non-affine fluctuations qualitatively agree with previous experimental and numerical results.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Tomer Markovich
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Fred C MacKintosh
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
14
|
Anzivino C, Zaccone A. Molecular-Level Relation between the Intraparticle Glass Transition Temperature and the Stability of Colloidal Suspensions. J Phys Chem Lett 2023; 14:8846-8852. [PMID: 37751526 DOI: 10.1021/acs.jpclett.3c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In many colloidal suspensions, the dispersed colloidal particles are amorphous solids, resulting from vitrification. A crucial open problem is understanding how colloidal stability is affected by the intraparticle glass transition. By dealing with the latter process from a solid-state perspective, we estabilish a proportionality relation between the intraparticle glass transition temperature, Tg, and the Hamaker constant, AH, of a generic suspension of nanoparticles. It follows that Tg can be used as a convenient parameter (alternative to AH) for controlling the stability of colloidal systems. Within the Derjaguin-Landau-Verwey-Overbeek theory, we show that the novel relationship, connecting Tg to AH, implies the critical coagulation ionic strength to be a monotonically decreasing function of Tg. We connect our predictions to recent experimental findings.
Collapse
Affiliation(s)
- Carmine Anzivino
- Department of Physics "A. Pontremoli", University of Milan, 20133 Milan, Italy
| | - Alessio Zaccone
- Department of Physics "A. Pontremoli", University of Milan, 20133 Milan, Italy
- I. Physikalisches Institut, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
15
|
Xiong K, Ren J, Marchesoni F, Huang J. Phononic band gap in random spring networks. Phys Rev E 2023; 108:044306. [PMID: 37978624 DOI: 10.1103/physreve.108.044306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/07/2023] [Indexed: 11/19/2023]
Abstract
We investigate the relation between topological and vibrational properties of networked materials by analyzing, both numerically and analytically, the properties of a random spring network model. We establish a pseudodispersion relation, which allows us to predict the existence of distinct transitions from extended to localized vibrational modes in this class of materials. Consequently, we propose an alternative method to control phonon and elastic wave propagation in disordered networks. In particular, the phonon band gap of our spring network model can be enhanced by either increasing its average degree or decreasing its assortativity coefficient. Applications to phonon band engineering and vibrational energy harvesting are briefly discussed.
Collapse
Affiliation(s)
- Kezhao Xiong
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
- College of Sciences, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jie Ren
- MOE Key Laboratory of Advanced Micro-Structured Materials and Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fabio Marchesoni
- MOE Key Laboratory of Advanced Micro-Structured Materials and Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Physics, University of Camerino, 62032 Camerino, Italy
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| |
Collapse
|
16
|
Kumar A, Quint DA, Dasbiswas K. Range and strength of mechanical interactions of force dipoles in elastic fiber networks. SOFT MATTER 2023. [PMID: 37470114 DOI: 10.1039/d3sm00381g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Mechanical forces generated by myosin II molecular motors drive diverse cellular processes, most notably shape change, division and locomotion. These forces may be transmitted over long range through the cytoskeletal medium - a disordered, viscoelastic network of biopolymers. The resulting cell size scale force chains can in principle mediate mechanical interactions between distant actomyosin units, leading to self-organized structural order in the cell cytoskeleton. Inspired by such force transmission through elastic structures in the cytoskeleton, we consider a percolated fiber lattice network, where fibers are represented as linear elastic elements that can both bend and stretch, and the contractile activity of myosin motors is represented by force dipoles. Then, by using a variety of metrics, we show how two such contractile force dipoles interact with each other through their mutual mechanical deformations of the elastic fiber network. As a prelude to two-dipole interactions, we quantify how forces propagate through the network from a single anisotropic force dipole by analyzing clusters of nodes connected by highly strained bonds, as well as through the decay rate of strain energy with distance from a force dipole. We show that predominant fiber bending screens out force propagation, resulting in reduced and strongly network configuration-dependent dipole interactions. On the other hand, stretching-dominated networks support longer-ranged inter-dipole interactions that recapitulate the predictions of linear elasticity theory. By characterizing the differences between tensile and compressive force propagation in the fiber network, we show how inter-dipole interaction depends on the dipoles' mutual separation and orientation. The resulting elastic interaction energy may mediate a force between multiple distant dipoles, leading to their self-organization into ordered configurations. This provides a potential pathway for active mechanical force-driven structural order in elastic biopolymer networks.
Collapse
Affiliation(s)
- Abhinav Kumar
- Department of Physics, University of California, Merced, Merced, CA 95343, USA.
| | - David A Quint
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Kinjal Dasbiswas
- Department of Physics, University of California, Merced, Merced, CA 95343, USA.
| |
Collapse
|
17
|
Chen S, Markovich T, MacKintosh FC. Nonaffine Deformation of Semiflexible Polymer and Fiber Networks. PHYSICAL REVIEW LETTERS 2023; 130:088101. [PMID: 36898114 DOI: 10.1103/physrevlett.130.088101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Networks of semiflexible or stiff polymers such as most biopolymers are known to deform inhomogeneously when sheared. The effects of such nonaffine deformation have been shown to be much stronger than for flexible polymers. To date, our understanding of nonaffinity in such systems is limited to simulations or specific 2D models of athermal fibers. Here, we present an effective medium theory for nonaffine deformation of semiflexible polymer and fiber networks, which is general to both 2D and 3D and in both thermal and athermal limits. The predictions of this model are in good agreement with both prior computational and experimental results for linear elasticity. Moreover, the framework we introduce can be extended to address nonlinear elasticity and network dynamics.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Tomer Markovich
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Fred C MacKintosh
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
18
|
Parvez N, Picu CR. Effect of connectivity on the elasticity of athermal network materials. SOFT MATTER 2022; 19:106-114. [PMID: 36472301 DOI: 10.1039/d2sm01303g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Network materials with stochastic structure are ubiquitous in biology and engineering, which drives the current interest in establishing relations between their structure and mechanical behavior. In this work we focus on the effect of connectivity defined by the number of fibers emerging from a crosslink, z, and compare networks with identical (z-homogeneous) and distinct (z-heterogeneous) z at the crosslinks. We observe that the functional form of strain stiffening is z-independent, and that the central z-dependent parameter is the small strain stiffness, E0. We confirm previous results indicating that the functional form of E0(z) is a power function with 3 regimes and observe that this applies to a broad range of z. However, the scaling exponents are different in the z-homogeneous and z-heterogeneous cases. We confirm that increasing z across the Maxwell's central force isostatic point leads to a transition from bending to axial energy storage. However, we observe that this does not necessarily imply that deformation becomes affine in the large z limit. In fact, networks of fibers with low bending stiffness retain a relaxation mode based on the rotational degree of freedom of the crosslinks which allows E0 in the large z limit to be smaller than the affine model prediction. We also conclude that in the z-heterogeneous case, the mean connectivity z̄ is sufficient to evaluate the effect of connectivity on E0 and that higher moments of the distribution of z are less important.
Collapse
Affiliation(s)
- Nishan Parvez
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Catalin R Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
19
|
Chen W, Kumari J, Yuan H, Yang F, Kouwer PHJ. Toward Tissue-Like Material Properties: Inducing In Situ Adaptive Behavior in Fibrous Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202057. [PMID: 35792703 DOI: 10.1002/adma.202202057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The materials properties of biological tissues are unique. Nature is able to spatially and temporally manipulate (mechanical) properties while maintaining responsiveness toward a variety of cues; all without majorly changing the material's composition. Artificial mimics, synthetic or biomaterial-based are far less advanced and poorly reproduce the natural cell microenvironment. A viable strategy to generate materials with advanced properties combines different materials into nanocomposites. This work describes nanocomposites of a synthetic fibrous hydrogel, based on polyisocyanide (PIC), that is noncovalently linked to a responsive cross-linker. The introduction of the cross-linker transforms the PIC gel from a static fibrous extracellular matrix mimic to a highly dynamic material that maintains biocompatibility, as demonstrated by in situ modification of the (non)linear mechanical properties and efficient self-healing properties. Key in the material design is cross-linking at the fibrillar level using nanoparticles, which, simultaneously may be used to introduce more advanced properties.
Collapse
Affiliation(s)
- Wen Chen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, AJ 6525, The Netherlands
| | - Jyoti Kumari
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, AJ 6525, The Netherlands
| | - Hongbo Yuan
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, Heverlee, 3001, Belgium
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Fan Yang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, AJ 6525, The Netherlands
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, AJ 6525, The Netherlands
| |
Collapse
|
20
|
Spiewak R, Gosselin A, Merinov D, Litvinov RI, Weisel JW, Tutwiler V, Purohit PK. Biomechanical origins of inherent tension in fibrin networks. J Mech Behav Biomed Mater 2022; 133:105328. [PMID: 35803206 PMCID: PMC9434494 DOI: 10.1016/j.jmbbm.2022.105328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/18/2022] [Indexed: 10/17/2022]
Abstract
Blood clots form at the site of vascular injury to seal the wound and prevent bleeding. Clots are in tension as they perform their biological functions and withstand hydrodynamic forces of blood flow, vessel wall fluctuations, extravascular muscle contraction and other forces. There are several mechanisms that generate tension in a blood clot, of which the most well-known is the contraction/retraction caused by activated platelets. Here we show through experiments and modeling that clot tension is generated by the polymerization of fibrin. Our mathematical model is built on the hypothesis that the shape of fibrin monomers having two-fold symmetry and off-axis binding sites is ultimately the source of inherent tension in individual fibers and the clot. As the diameter of a fiber grows during polymerization the fibrin monomers must suffer axial twisting deformation so that they remain in register to form the half-staggered arrangement characteristic of fibrin protofibrils. This deformation results in a pre-strain that causes fiber and network tension. Our results for the pre-strain in single fibrin fibers is in agreement with experiments that measured it by cutting fibers and measuring their relaxed length. We connect the mechanics of a fiber to that of the network using the 8-chain model of polymer elasticity. By combining this with a continuum model of swellable elastomers we can compute the evolution of tension in a constrained fibrin gel. The temporal evolution and tensile stresses predicted by this model are in qualitative agreement with experimental measurements of the inherent tension of fibrin clots polymerized between two fixed rheometer plates. These experiments also revealed that increasing thrombin concentration leads to increasing internal tension in the fibrin network. Our model may be extended to account for other mechanisms that generate pre-strains in individual fibers and cause tension in three-dimensional proteinaceous polymeric networks.
Collapse
Affiliation(s)
- Russell Spiewak
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Gosselin
- Department of Biomedical Engineering, Rutgers - The State University of New Jersey, 599 Taylor Road, Room 209, Piscataway, NJ 08854, USA
| | - Danil Merinov
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1154 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1154 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1154 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, USA.
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers - The State University of New Jersey, 599 Taylor Road, Room 209, Piscataway, NJ 08854, USA.
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
A computational framework for biomaterials containing three-dimensional random fiber networks based on the affine kinematics. Biomech Model Mechanobiol 2022; 21:685-708. [PMID: 35084592 DOI: 10.1007/s10237-022-01557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/06/2022] [Indexed: 11/02/2022]
Abstract
Understanding the structure-function relationship of biomaterials can provide insights into different diseases and advance numerous biomedical applications. This paper presents a finite element-based computational framework to model biomaterials containing a three-dimensional fiber network at the microscopic scale. The fiber network is synthetically generated by a random walk algorithm, which uses several random variables to control the fiber network topology such as fiber orientations and tortuosity. The geometric information of the generated fiber network is stored in an array-like data structure and incorporated into the nonlinear finite element formulation. The proposed computational framework adopts the affine fiber kinematics, based on which the fiber deformation can be expressed by the nodal displacement and the finite element interpolation functions using the isoparametric relationship. A variational approach is developed to linearize the total strain energy function and derive the nodal force residual and the stiffness matrix required by the finite element procedure. Four numerical examples are provided to demonstrate the capabilities of the proposed computational framework, including a numerical investigation about the relationship between the proposed method and a class of anisotropic material models, a set of synthetic examples to explore the influence of fiber locations on material local and global responses, a thorough mesh-sensitivity analysis about the impact of mesh size on various numerical results, and a detailed case study about the influence of material structures on the performance of eggshell-membrane-hydrogel composites. The proposed computational framework provides an efficient approach to investigate the structure-function relationship for biomaterials that follow the affine fiber kinematics.
Collapse
|
22
|
Maxian O, Peláez RP, Mogilner A, Donev A. Simulations of dynamically cross-linked actin networks: Morphology, rheology, and hydrodynamic interactions. PLoS Comput Biol 2021; 17:e1009240. [PMID: 34871298 PMCID: PMC8675935 DOI: 10.1371/journal.pcbi.1009240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/16/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022] Open
Abstract
Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks.
Collapse
Affiliation(s)
- Ondrej Maxian
- Courant Institute, New York University, New York, New York, United States of America
| | - Raúl P Peláez
- Department of Theoretical Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alex Mogilner
- Courant Institute, New York University, New York, New York, United States of America.,Department of Biology, New York University, New York, New York, United States of America
| | - Aleksandar Donev
- Courant Institute, New York University, New York, New York, United States of America
| |
Collapse
|
23
|
Wang C, Li S, Ademiloye AS, Nithiarasu P. Biomechanics of cells and subcellular components: A comprehensive review of computational models and applications. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3520. [PMID: 34390323 DOI: 10.1002/cnm.3520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Cells are a fundamental structural, functional and biological unit for all living organisms. Up till now, considerable efforts have been made to study the responses of single cells and subcellular components to an external load, and understand the biophysics underlying cell rheology, mechanotransduction and cell functions using experimental and in silico approaches. In the last decade, computational simulation has become increasingly attractive due to its critical role in interpreting experimental data, analysing complex cellular/subcellular structures, facilitating diagnostic designs and therapeutic techniques, and developing biomimetic materials. Despite the significant progress, developing comprehensive and accurate models of living cells remains a grand challenge in the 21st century. To understand current state of the art, this review summarises and classifies the vast array of computational biomechanical models for cells. The article covers the cellular components at multi-spatial levels, that is, protein polymers, subcellular components, whole cells and the systems with scale beyond a cell. In addition to the comprehensive review of the topic, this article also provides new insights into the future prospects of developing integrated, active and high-fidelity cell models that are multiscale, multi-physics and multi-disciplinary in nature. This review will be beneficial for the researchers in modelling the biomechanics of subcellular components, cells and multiple cell systems and understanding the cell functions and biological processes from the perspective of cell mechanics.
Collapse
Affiliation(s)
- Chengyuan Wang
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Si Li
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Adesola S Ademiloye
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Perumal Nithiarasu
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| |
Collapse
|
24
|
Grill MJ, Kernes J, Slepukhin VM, Wall WA, Levine AJ. Directed force propagation in semiflexible networks. SOFT MATTER 2021; 17:10223-10241. [PMID: 33367438 DOI: 10.1039/d0sm01177k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We consider the propagation of tension along specific filaments of a semiflexible filament network in response to the application of a point force using a combination of numerical simulations and analytic theory. We find the distribution of force within the network is highly heterogeneous, with a small number of fibers supporting a significant fraction of the applied load over distances of multiple mesh sizes surrounding the point of force application. We suggest that these structures may be thought of as tensile force chains, whose structure we explore via simulation. We develop self-consistent calculations of the point-force response function and introduce a transfer matrix approach to explore the decay of tension (into bending) energy and the branching of tensile force chains in the network.
Collapse
Affiliation(s)
- Maximilian J Grill
- Institute for Computational Mechanics, Technical University of Munich, 85748 Garching, Germany
| | - Jonathan Kernes
- Department of Physics & Astronomy, University of California, Los Angeles, 90095, USA.
| | - Valentin M Slepukhin
- Department of Physics & Astronomy, University of California, Los Angeles, 90095, USA.
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, 85748 Garching, Germany
| | - Alex J Levine
- Department of Physics & Astronomy, University of California, Los Angeles, 90095, USA.
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, 90095, USA
| |
Collapse
|
25
|
Baumgarten K, Tighe BP. Moduli and modes in the Mikado model. SOFT MATTER 2021; 17:10286-10293. [PMID: 34151919 PMCID: PMC8612360 DOI: 10.1039/d1sm00551k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
We determine how low frequency vibrational modes control the elastic shear modulus of Mikado networks, a minimal mechanical model for semi-flexible fiber networks. From prior work it is known that when the fiber bending modulus is sufficiently small, (i) the shear modulus of 2D Mikado networks scales as a power law in the fiber line density, G ∼ ρα+1, and (ii) the networks also possess an anomalous abundance of soft (low-frequency) vibrational modes with a characteristic frequency ωκ ∼ ρβ/2. While it has been suggested that α and β are identical, the preponderance of evidence indicates that α is larger than theoretical predictions for β. We resolve this inconsistency by measuring the vibrational density of states in Mikado networks for the first time. Supported by these results, we then demonstrate analytically that α = β + 1. In so doing, we uncover new insights into the coupling between soft modes and shear, as well as the origin of the crossover from bending- to stretching-dominated response.
Collapse
Affiliation(s)
- Karsten Baumgarten
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
| |
Collapse
|
26
|
Physically-based structural modeling of a typical regenerative tissue analog bridges material macroscale continuum and cellular microscale discreteness and elucidates the hierarchical characteristics of cell-matrix interaction. J Mech Behav Biomed Mater 2021; 126:104956. [PMID: 34930707 DOI: 10.1016/j.jmbbm.2021.104956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022]
Abstract
This paper presents a comprehensive physically-based structural modelling for the passive and active biomechanical processes in a typical engineered tissue - namely, cell-compacted collagen gel. First, it introduces a sinusoidal curve analog for quantifying the mechanical response of the collagen fibrils and a probability distribution function of the characteristic crimp ratio for taking into account the fibrillar geometric entropic effect. The constitutive framework based on these structural characteristics precisely reproduces the nonlinearity, the viscoelasticity, and fairly captures the Poisson effect exhibiting in the macroscale tensile tests; which, therefore, substantially validates the structural modelling for the analysis of the cell-gel interaction during collagen gel compaction. Second, a deterministic molecular clutch model specific to the interaction between the cell pseudopodium and the collagen network is developed, which emphasizes the dependence of traction force on clutch number altering with the retrograde flow velocity, actin polymeric velocity, and the deformation of the stretched fibril. The modelling reveals the hierarchical features of cellular substrate sensing, i.e. a biphasic traction force response to substrate elasticity begins at the level of individual fibrils and develops into the second biphasic sensing by means of the fibrillar number integration at the whole-cell level. Singular in crossing the realms of continuum and discrete mechanics, the methodologies developed in this study for modelling the filamentous materials and cell-fibril interaction deliver deep insight into the temporospatially dynamic 3D cell-matrix interaction, and are able to bridge the cellular microscale and material macroscale in the exploration of related topics in mechanobiology.
Collapse
|
27
|
Arzash S, Shivers JL, MacKintosh FC. Shear-induced phase transition and critical exponents in three-dimensional fiber networks. Phys Rev E 2021; 104:L022402. [PMID: 34525571 DOI: 10.1103/physreve.104.l022402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/29/2021] [Indexed: 11/07/2022]
Abstract
When subject to applied strain, fiber networks exhibit nonlinear elastic stiffening. Recent theory and experiments have shown that this phenomenon is controlled by an underlying mechanical phase transition that is critical in nature. Growing simulation evidence points to non-mean-field behavior for this transition and a hyperscaling relation has been proposed to relate the corresponding critical exponents. Here, we report simulations on two distinct network structures in three dimensions. By performing a finite-size scaling analysis, we test hyperscaling and identify various critical exponents. From the apparent validity of hyperscaling, as well as the non-mean-field exponents we observe, our results suggest that the upper critical dimension for the strain-controlled phase transition is above three, in contrast to the jamming transition that represents another athermal, mechanical phase transition.
Collapse
Affiliation(s)
- Sadjad Arzash
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Jordan L Shivers
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Fred C MacKintosh
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA.,Departments of Chemistry and Physics & Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
28
|
Neubert N, Evans E, Dallon J. How Structural Features of a Spring-Based Model of Fibrous Collagen Tissue Govern the Overall Young's Modulus. J Biomech Eng 2021; 144:1115778. [PMID: 34382641 DOI: 10.1115/1.4052113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/08/2022]
Abstract
While much study has been dedicated to investigating biopolymers' stress-strain response at low strain levels, little research has been done to investigate the linear region of biopolymers' stress-strain response and how the microstructure affects it. We propose a mathematical model of fibrous networks which reproduces qualitative features of collagen gel's stress-strain response and provides insight into the key features which impact the Young's Modulus of similar fibrous tissues. This model analyzes the relationship of the Young's Modulus of the lattice to internodal fiber length, number of connection points or nodes per unit area, and average number of connections to each node. Our results show that fiber length, nodal density, and level of connectivity each uniquely impact the Young's Modulus of the lattice. Furthermore, our model indicates that the Young's Modulus of a lattice can be estimated using the effective resistance of the network, a graph theory technique that measures distances across a network. Our model thus provides insight into how the organization of fibers in a biopolymer impact its linear Young's Modulus.
Collapse
Affiliation(s)
- Nathaniel Neubert
- Department of Mathematics, Brigham Young University, Provo, Utah, 84602
| | - Emily Evans
- Department of Mathematics, Brigham Young University, Provo, Utah, 84602
| | - John Dallon
- Department of Mathematics, Brigham Young University, Provo, Utah, 84602
| |
Collapse
|
29
|
Liu N, Chavoshnejad P, Li S, Razavi MJ, Liu T, Pidaparti R, Wang X. Geometrical nonlinear elasticity of axon under tension: A coarse-grained computational study. Biophys J 2021; 120:3697-3708. [PMID: 34310941 DOI: 10.1016/j.bpj.2021.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Axon bundles cross-linked by microtubule (MT) associate proteins and bounded by a shell skeleton are critical for normal function of neurons. Understanding effects of the complexly geometrical parameters on their mechanical properties can help gain a biomechanical perspective on the neurological functions of axons and thus brain disorders caused by the structural failure of axons. Here, the tensile mechanical properties of MT bundles cross-linked by tau proteins are investigated by systematically tuning MT length, axonal cross-section radius, and tau protein spacing in a bead-spring coarse-grained model. Our results indicate that the stress-strain curves of axons can be divided into two regimes, a nonlinear elastic regime dominated by rigid-body like inter-MT sliding, and a linear elastic regime dominated by affine deformation of both tau proteins and MTs. From the energetic analyses, first, the tau proteins dominate the mechanical performance of axons under tension. In the nonlinear regime, tau proteins undergo a rigid-body like rotating motion rather than elongating, whereas in the nonlinear elastic regime, tau proteins undergo a flexible elongating deformation along the MT axis. Second, as the average spacing between adjacent tau proteins along the MT axial direction increases from 25 to 125 nm, the Young's modulus of axon experiences a linear decrease whereas with the average space varying from 125 to 175 nm, and later reaches a plateau value with a stable fluctuation. Third, the increment of the cross-section radius of the MT bundle leads to a decrease in Young's modulus of axon, which is possibly attributed to the decrease in MT numbers per cross section. Overall, our research findings offer a new perspective into understanding the effects of geometrical parameters on the mechanics of MT bundles as well as serving as a theoretical basis for the development of artificial MT complexes potentially toward medical applications.
Collapse
Affiliation(s)
- Ning Liu
- College of Engineering, University of Georgia, Athens, Georgia
| | - Poorya Chavoshnejad
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | - Shaoheng Li
- College of Engineering, University of Georgia, Athens, Georgia
| | - Mir Jalil Razavi
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | - Tianming Liu
- Department of Computer Science, University of Georgia, Athens, Georgia
| | | | - Xianqiao Wang
- College of Engineering, University of Georgia, Athens, Georgia.
| |
Collapse
|
30
|
Alisafaei F, Chen X, Leahy T, Janmey PA, Shenoy VB. Long-range mechanical signaling in biological systems. SOFT MATTER 2021; 17:241-253. [PMID: 33136113 PMCID: PMC8385661 DOI: 10.1039/d0sm01442g] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cells can respond to signals generated by other cells that are remarkably far away. Studies from at least the 1920's showed that cells move toward each other when the distance between them is on the order of a millimeter, which is many times the cell diameter. Chemical signals generated by molecules diffusing from the cell surface would move too slowly and dissipate too fast to account for these effects, suggesting that they might be physical rather than biochemical. The non-linear elastic responses of sparsely connected networks of stiff or semiflexible filament such as those that form the extracellular matrix (ECM) and the cytoskeleton have unusual properties that suggest multiple mechanisms for long-range signaling in biological tissues. These include not only direct force transmission, but also highly non-uniform local deformations, and force-generated changes in fiber alignment and density. Defining how fibrous networks respond to cell-generated forces can help design new methods to characterize abnormal tissues and can guide development of improved biomimetic materials.
Collapse
Affiliation(s)
- Farid Alisafaei
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xingyu Chen
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Leahy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA and McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA 19104, USA and Departments of Physiology, and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Hatami-Marbini H, Rohanifar M. Nonlinear Mechanical Properties of Prestressed Branched Fibrous Networks. Biophys J 2021; 120:527-538. [PMID: 33412143 DOI: 10.1016/j.bpj.2020.10.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/28/2020] [Accepted: 10/07/2020] [Indexed: 10/22/2022] Open
Abstract
Random fiber networks constitute the solid skeleton of many biological materials such as the cytoskeleton of cells and extracellular matrix of soft tissues. These random networks show unique mechanical properties such as nonlinear shear strain-stiffening and strain softening when subjected to preextension and precompression, respectively. In this study, we perform numerical simulations to characterize the influence of axial prestress on the nonlinear mechanical response of random network structures as a function of their micromechanical and geometrical properties. We build our numerical network models using the microstructure of disordered hexagonal lattices and quantify their nonlinear shear response as a function of uniaxial prestress strain. We consider three different material models for individual fibers and fully characterize their influence on the mechanical response of prestressed networks. Moreover, we investigate both the influence of geometric disorder keeping the network connectivity constant and the influence of the randomness in the stiffness of individual fibers keeping their mean stiffness constant. The effects of network connectivity and bending rigidity of fibers are also determined. Several important conclusions are made, including that the tensile and compressive prestress strains, respectively, increase and decrease the initial network shear stiffness but have no effect on the maximal shear modulus. We discuss the findings in terms of microstructural properties such as the local strain energy distribution.
Collapse
Affiliation(s)
- Hamed Hatami-Marbini
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, Illinois.
| | - Milad Rohanifar
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
32
|
Wang H, Xu X. Continuum elastic models for force transmission in biopolymer gels. SOFT MATTER 2020; 16:10781-10808. [PMID: 33289764 DOI: 10.1039/d0sm01451f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We review continuum elastic models for the transmission of both external forces and internal active cellular forces in biopolymer gels, and relate them to recent experiments. Rather than being exhaustive, we focus on continuum elastic models for small affine deformations and intend to provide a systematic continuum method and some analytical perspectives on the study of force transmission in biopolymer gels. We start from a very brief review of the nonlinear mechanics of individual biopolymers and a summary of constitutive models for the nonlinear elasticity of biopolymer gels. We next show that the simple 3-chain model can give predictions that fit well the shear experiments of some biopolymer gels, including the effects of strain-stiffening and negative normal stress. We then review continuum models for the transmission of internal active forces that are induced by a spherically contracting cell embedded in a three-dimensional biopolymer gel. Various scaling regimes for the decay of cell-induced displacements are identified for linear isotropic and anisotropic materials, and for biopolymer gels with nonlinear compressive-softening and strain-stiffening elasticity, respectively. After that, we present (using an energetic approach) the generic and unified continuum theory proposed in [D. Ben-Yaakov et al., Soft Matter, 2015, 11, 1412] about how the transmission of forces in the biogel matrix can mediate long-range interactions between cells with mechanical homeostasis. We show the predictions of the theory in a special hexagonal multicellular array, and relate them to recent experiments. Finally, we conclude this paper with comments on the limitations and outlook of continuum modeling, and highlight the need for complementary theoretical approaches, such as discrete network simulations, to force transmission in biopolymer gels and phenomenological active gel theories for multicellular systems.
Collapse
Affiliation(s)
- Haiqin Wang
- Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | | |
Collapse
|
33
|
Houghton MR, Walkley MA, Head DA. Anisotropic mechanical response of layered disordered fibrous materials. Phys Rev E 2020; 102:062502. [PMID: 33466009 DOI: 10.1103/physreve.102.062502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Mechanically bonded fabrics account for a significant portion of nonwoven products, and serve many niche areas of nonwoven manufacturing. Such fabrics are characterized by layers of disordered fibrous webs, but we lack an understanding of how such microstructures determine bulk material response. Here we numerically determine the linear shear response of needle-punched fabrics modeled as cross-linked sheets of two-dimensional (2D) Mikado networks. We systematically vary the intra-sheet fiber density, inter-sheet separation distance, and direction of shear, and quantify the macroscopic shear modulus alongside the degree of affinity and energy partition. For shear parallel to the sheets, the response is dominated by intrasheet fibers and follows known trends for 2D Mikado networks. By contrast, shears perpendicular to the sheets induce a softer response dominated by either intrasheet or intersheet fibers depending on a quadratic relation between sheet separation and fiber density. These basic trends are reproduced and elucidated by a simple scaling argument that we provide. We discuss the implications of our findings in the context of real nonwoven fabrics.
Collapse
Affiliation(s)
- M R Houghton
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - M A Walkley
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - D A Head
- School of Computing, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
34
|
Predictive assembling model reveals the self-adaptive elastic properties of lamellipodial actin networks for cell migration. Commun Biol 2020; 3:616. [PMID: 33106551 PMCID: PMC7588425 DOI: 10.1038/s42003-020-01335-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Branched actin network supports cell migration through extracellular microenvironments. However, it is unknown how intracellular proteins adapt the elastic properties of the network to the highly varying extracellular resistance. Here we develop a three-dimensional assembling model to simulate the realistic self-assembling process of the network by encompassing intracellular proteins and their dynamic interactions. Combining this multiscale model with finite element method, we reveal that the network can not only sense the variation of extracellular resistance but also self-adapt its elastic properties through remodeling with intracellular proteins. Such resistance-adaptive elastic behaviours are versatile and essential in supporting cell migration through varying extracellular microenvironments. The bending deformation mechanism and anisotropic Poisson's ratios determine why lamellipodia persistently evolve into sheet-like structures. Our predictions are confirmed by published experiments. The revealed self-adaptive elastic properties of the networks are also applicable to the endocytosis, phagocytosis, vesicle trafficking, intracellular pathogen transport and dendritic spine formation.
Collapse
|
35
|
Elnaggar MA, El-Fawal HAN, Allam NK. Biocompatible PCL-nanofibers scaffold with immobilized fibronectin and laminin for neuronal tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111550. [PMID: 33321614 DOI: 10.1016/j.msec.2020.111550] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Recent advances in regenerative medicine have given hope in overcoming and rehabilitating complex medical conditions. In this regard, the biopolymer poly-ε-caprolactone (PCL) may be a promising candidate for tissue regeneration, despite lacking the essential bioactivity. The present study used PCL nanofibers (NFs) scaffold decorated with the extracellular matrix proteins fibronectin and laminin combined for neuronal regeneration. The potential for the dual proteins to support neuronal cells and promote axonal growth was investigated. Two NFs scaffolds were produced with PLC concentrations of 12% or 15%. Under scanning electron microscopy, both scaffolds evidenced uniform diameter distribution in the range of 358 nm and 887 nm, respectively, with >80% porosity. The Brunauer-Emmett-Teller (BET) test confirmed that the fabricated NFs mats had a high surface area, especially for the 12% NFs with 652 m2/g compared to 254 m2/g for the 15% NFs. The proteins of interest were successfully conjugated to the 12% PCL scaffold through chemical carbodiimide reaction as confirmed by Fourier-transform infrared spectroscopy. The addition of fibronectin and laminin together was shown to be the most favorable for cellular attachment and elongation of neuroblastoma SH-SY5Y cells compared to other formulations. Light microscopy revealed longer neurite outgrowth, higher cellular projected area, and lower shape index for the cells cultured on the combined proteins conjugated fibers, indicating enhanced cellular spread on the scaffold. This preliminary study suggests that PCL nanoscaffolding conjugated with matrix proteins can support neuronal cell viability and neurite growth.
Collapse
Affiliation(s)
- Manar A Elnaggar
- Nanotechnology Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Hassan A N El-Fawal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nageh K Allam
- Nanotechnology Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
36
|
Wang X, Zhu H, Lu Y, Wang Z, Kennedy D. The elastic properties and deformation mechanisms of actin filament networks crosslinked by filamins. J Mech Behav Biomed Mater 2020; 112:104075. [PMID: 32942229 DOI: 10.1016/j.jmbbm.2020.104075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
As a substructure of cell cytoskeleton, the crosslinked actin filament networks (CAFNs) play a major role in different cell functions, however, the elastic properties and the deformation mechanisms of CAFNs still remain to be understood. In this paper, a novel three-dimensional (3D) finite element (FE) model has been developed to mimic the mechanical properties of actin filament (F-actin) networks crosslinked by filamin A (FLNA). The simulation results indicate that although the Young's modulus of CAFNs varies in different directions for each random model, the statistical mean value is in-plane isotropic. The crosslinking density and the actin filament volume fraction are found to strongly affect the in-plane shear modulus of CAFNs. The simulation results agree well with the relevant experimental results. In addition, an L-shaped cantilever beam model has been developed for dimensional analysis on the shear stiffness of CAFNs and for quantifying the deformation mechanisms. It has been demonstrated that the in-plane shear modulus of CAFNs is mainly dominated by FLNA (i.e., cross-linkers), and that the bending and torsion deformations of FLNA have almost the same contribution to the stiffness of CAFNs. It has also been found that the stiffness of CAFNs is almost insensitive to the variation of the Poisson's ratios of FLNA and actin filament in the range from 0.29 to 0.499.
Collapse
Affiliation(s)
- Xiaobo Wang
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Hanxing Zhu
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK.
| | - Yongtao Lu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
| | - David Kennedy
- School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| |
Collapse
|
37
|
Abstract
Tissues commonly consist of cells embedded within a fibrous biopolymer network. Whereas cell-free reconstituted biopolymer networks typically soften under applied uniaxial compression, various tissues, including liver, brain, and fat, have been observed to instead stiffen when compressed. The mechanism for this compression-stiffening effect is not yet clear. Here, we demonstrate that when a material composed of stiff inclusions embedded in a fibrous network is compressed, heterogeneous rearrangement of the inclusions can induce tension within the interstitial network, leading to a macroscopic crossover from an initial bending-dominated softening regime to a stretching-dominated stiffening regime, which occurs before and independently of jamming of the inclusions. Using a coarse-grained particle-network model, we first establish a phase diagram for compression-driven, stretching-dominated stress propagation and jamming in uniaxially compressed two- and three-dimensional systems. Then, we demonstrate that a more detailed computational model of stiff inclusions in a subisostatic semiflexible fiber network exhibits quantitative agreement with the predictions of our coarse-grained model as well as qualitative agreement with experiments.
Collapse
|
38
|
Hatami-Marbini H, Rohanifar M. Mechanical properties of subisostatic random networks composed of nonlinear fibers. SOFT MATTER 2020; 16:7156-7164. [PMID: 32671376 DOI: 10.1039/d0sm00523a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fibrous protein networks provide structural integrity to different biological materials such as soft tissues. These networks display an unusual exponential strain-stiffening behavior when subjected to mechanical loads. This nonlinear strain-stiffening behavior has so far been explained in terms of the network microstructure and the flexibility of constituting fibers. Here, we conduct a comprehensive computational study to characterize the importance of material properties of individual fibers in the overall nonlinear mechanical response of random fiber networks. To this end, we consider three nonlinear material models, ranging from an almost linear form to a highly nonlinear one, for the fibers of subisostatic disordered networks. We characterize the amount of strain-stiffening as a function of bending rigidity of the fibers, the amount of nonlinearity of the fibers, and the connectivity of random networks. We find that networks composed of highly nonlinear fibers exhibit much more strain-stiffening than networks made up of linear fibers. Furthermore, the local strain distribution becomes more homogenous as the amount of nonlinearity in the material models increases. Increasing the network connectivity signifies the importance of the nonlinear material response of individual fibers in the overall mechanical behavior of networks. The constitutive behavior of fibers plays an important role in defining the failure response of networks particularly in the damage initiation and evolution. These important findings for how the mechanical response of individual fibers affects the overall mechanical properties of random networks could find applications in designing new biomimetic materials and could help scientists better understand the mechanical properties of biological materials.
Collapse
Affiliation(s)
- Hamed Hatami-Marbini
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, 2039 Engineering Research Center, 842 West Taylor St, Chicago, IL, USA.
| | | |
Collapse
|
39
|
Arzash S, Shivers JL, MacKintosh FC. Finite size effects in critical fiber networks. SOFT MATTER 2020; 16:6784-6793. [PMID: 32638813 DOI: 10.1039/d0sm00764a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fibrous networks such as collagen are common in physiological systems. One important function of these networks is to provide mechanical stability for cells and tissues. At physiological levels of connectivity, such networks would be mechanically unstable with only central-force interactions. While networks can be stabilized by bending interactions, it has also been shown that they exhibit a critical transition from floppy to rigid as a function of applied strain. Beyond a certain strain threshold, it is predicted that underconstrained networks with only central-force interactions exhibit a discontinuity in the shear modulus. We study the finite-size scaling behavior of this transition and identify both the mechanical discontinuity and critical exponents in the thermodynamic limit. We find both non-mean-field behavior and evidence for a hyperscaling relation for the critical exponents, for which the network stiffness is analogous to the heat capacity for thermal phase transitions. Further evidence for this is also found in the self-averaging properties of fiber networks.
Collapse
Affiliation(s)
- Sadjad Arzash
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005, USA. and Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Jordan L Shivers
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005, USA. and Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Fred C MacKintosh
- Department of Chemical & Biomolecular Engineering, Rice University, Houston, TX 77005, USA. and Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA and Departments of Chemistry and Physics & Astronomy, Rice University, Houston, TX 77005, USA
| |
Collapse
|
40
|
Mirzaali MJ, Pahlavani H, Yarali E, Zadpoor AA. Non-affinity in multi-material mechanical metamaterials. Sci Rep 2020; 10:11488. [PMID: 32661428 PMCID: PMC7359350 DOI: 10.1038/s41598-020-67984-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Non-affine deformations enable mechanical metamaterials to achieve their unusual properties while imposing implications for their structural integrity. The presence of multiple phases with different mechanical properties results in additional non-affinity of the deformations, a phenomenon that has never been studied before in the area of extremal mechanical metamaterials. Here, we studied the degree of non-affinity, [Formula: see text], resulting from the random substitution of a fraction of the struts,[Formula: see text], that make up a lattice structure and are printed using a soft material (elastic modulus = [Formula: see text]) by those printed using a hard material ([Formula: see text]). Depending on the unit cell angle (i.e., [Formula: see text] = 60°, 90°, or 120°), the lattice structures exhibited negative, near-zero, or positive values of the Poisson's ratio, respectively. We found that the auxetic structures exhibit the highest levels of non-affinity, followed by the structures with positive and near-zero values of the Poisson's ratio. We also observed an increase in [Formula: see text] with [Formula: see text] and [Formula: see text] until [Formula: see text] =104 and [Formula: see text]= 75%-90% after which [Formula: see text] saturated. The dependency of [Formula: see text] upon [Formula: see text] was therefore found to be highly asymmetric. The positive and negative values of the Poisson's ratio were strongly correlated with [Formula: see text]. Interestingly, achieving extremely high or extremely low values of the Poisson's ratio required highly affine deformations. In conclusion, our results clearly show the importance of considering non-affinity when trying to achieve a specific set of mechanical properties and underscore the structural integrity implications in multi-material mechanical metamaterials.
Collapse
Affiliation(s)
- M J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - H Pahlavani
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - E Yarali
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands
| |
Collapse
|
41
|
Gandikota MC, Pogoda K, van Oosten A, Engstrom TA, Patteson AE, Janmey PA, Schwarz JM. Loops versus lines and the compression stiffening of cells. SOFT MATTER 2020; 16:4389-4406. [PMID: 32249282 PMCID: PMC7225031 DOI: 10.1039/c9sm01627a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Both animal and plant tissue exhibit a nonlinear rheological phenomenon known as compression stiffening, or an increase in moduli with increasing uniaxial compressive strain. Does such a phenomenon exist in single cells, which are the building blocks of tissues? One expects an individual cell to compression soften since the semiflexible biopolymer-based cytoskeletal network maintains the mechanical integrity of the cell and in vitro semiflexible biopolymer networks typically compression soften. To the contrary, we find that mouse embryonic fibroblasts (mEFs) compression stiffen under uniaxial compression via atomic force microscopy studies. To understand this finding, we uncover several potential mechanisms for compression stiffening. First, we study a single semiflexible polymer loop modeling the actomyosin cortex enclosing a viscous medium modeled as an incompressible fluid. Second, we study a two-dimensional semiflexible polymer/fiber network interspersed with area-conserving loops, which are a proxy for vesicles and fluid-based organelles. Third, we study two-dimensional fiber networks with angular-constraining crosslinks, i.e. semiflexible loops on the mesh scale. In the latter two cases, the loops act as geometric constraints on the fiber network to help stiffen it via increased angular interactions. We find that the single semiflexible polymer loop model agrees well with the experimental cell compression stiffening finding until approximately 35% compressive strain after which bulk fiber network effects may contribute. We also find for the fiber network with area-conserving loops model that the stress-strain curves are sensitive to the packing fraction and size distribution of the area-conserving loops, thereby creating a mechanical fingerprint across different cell types. Finally, we make comparisons between this model and experiments on fibrin networks interlaced with beads as well as discuss implications for single cell compression stiffening at the tissue scale.
Collapse
Affiliation(s)
- M C Gandikota
- Physics Department, Syracuse University, Syracuse, NY 13244, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Kwon S, Kim KS. Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity. Cell Mol Life Sci 2020; 77:1345-1355. [PMID: 31605149 PMCID: PMC11105102 DOI: 10.1007/s00018-019-03328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesiveness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of interactions between the fibers.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
43
|
Shivers JL, Arzash S, MacKintosh FC. Nonlinear Poisson Effect Governed by a Mechanical Critical Transition. PHYSICAL REVIEW LETTERS 2020; 124:038002. [PMID: 32031850 DOI: 10.1103/physrevlett.124.038002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Under extensional strain, fiber networks can exhibit an anomalously large and nonlinear Poisson effect accompanied by a dramatic transverse contraction and volume reduction for applied strains as small as a few percent. We demonstrate that this phenomenon is controlled by a collective mechanical phase transition that occurs at a critical uniaxial strain that depends on network connectivity. This transition is punctuated by an anomalous peak in the apparent Poisson's ratio and other critical signatures such as diverging nonaffine strain fluctuations.
Collapse
Affiliation(s)
- Jordan L Shivers
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Sadjad Arzash
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - F C MacKintosh
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
- Departments of Chemistry and Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
44
|
Elastic Anisotropy Governs the Range of Cell-Induced Displacements. Biophys J 2020; 118:1152-1164. [PMID: 31995739 DOI: 10.1016/j.bpj.2019.12.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022] Open
Abstract
The unique nonlinear mechanics of the fibrous extracellular matrix (ECM) facilitates long-range cell-cell mechanical communications that would be impossible for linear elastic substrates. Past research has described the contribution of two separated effects on the range of force transmission, including ECM elastic nonlinearity and fiber alignment. However, the relation between these different effects is unclear, and how they combine to dictate force transmission range is still elusive. Here, we combine discrete fiber simulations with continuum modeling to study the decay of displacements induced by a contractile cell in fibrous networks. We demonstrate that fiber nonlinearity and fiber reorientation both contribute to the strain-induced elastic anisotropy of the cell's local environment. This elastic anisotropy is a "lumped" parameter that governs the slow decay of displacements, and it depends on the magnitude of applied strain, either an external tension or an internal contraction, as a model of the cell. Furthermore, we show that accounting for artificially prescribed elastic anisotropy dictates the decay of displacements induced by a contracting cell. Our findings unify previous single effects into a mechanical theory that explains force transmission in fibrous networks. This work may provide insights into biological processes that involve communication of distant cells mediated by the ECM, such as those occurring in morphogenesis, wound healing, angiogenesis, and cancer metastasis. It may also provide design parameters for biomaterials to control force transmission between cells as a way to guide morphogenesis in tissue engineering.
Collapse
|
45
|
Ferruzzi J, Zhang Y, Roblyer D, Zaman MH. Multi-scale Mechanics of Collagen Networks: Biomechanical Basis of Matrix Remodeling in Cancer. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Kernes J, Levine AJ. Equilibrium fluctuations of a semiflexible filament cross linked into a network. Phys Rev E 2020; 101:012408. [PMID: 32069614 DOI: 10.1103/physreve.101.012408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Indexed: 06/10/2023]
Abstract
We examine the equilibrium fluctuation spectrum of a semiflexible filament segment in a network. The effect of this cross linking is to modify the mechanical boundary conditions at the end of the filament. We consider the effect of both tensile stress in the network and its elastic compliance. Most significantly, the network's compliance introduces a nonlinear term into the filament Hamiltonian even in the small-bending approximation. We analyze the effect of this nonlinearity upon the filament's fluctuation profile. We also find that there are three principal fluctuation regimes dominated by one of the following: (i) network tension, (ii) filament bending stiffness, or (iii) network compliance. This work provides the theoretical framework necessary to analyze activity microrheology, which uses the observed filament fluctuations as a noninvasive probe of tension in the network.
Collapse
Affiliation(s)
- Jonathan Kernes
- Department of Physics and Astronomy, UCLA, Los Angeles, California 90095-1596, USA
| | - Alex J Levine
- Department of Physics and Astronomy, UCLA, Los Angeles, California 90095-1596, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1596, USA
- Department of Biomathematics, UCLA, Los Angeles, California 90095-1596, USA
| |
Collapse
|
47
|
Salman OU, Vitale G, Truskinovsky L. Continuum theory of bending-to-stretching transition. Phys Rev E 2019; 100:051001. [PMID: 31869905 DOI: 10.1103/physreve.100.051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Indexed: 11/07/2022]
Abstract
Transition from bending-dominated to stretching-dominated elastic response in semiflexible fibrous networks plays an important role in the mechanical behavior of cells and tissues. It is induced by changes in network connectivity and relies on the construction of new cross-links. We propose a simple continuum model of this transition with macroscopic strain playing the role of order parameter. An unusual feature of this Landau-type theory is that it is based on a single-well potential. The theory predicts that bending-to-stretching transition should proceed through propagation of the fronts separating domains with affine and nonaffine elastic response.
Collapse
Affiliation(s)
- O U Salman
- CNRS, LSPM UPR3407, Université Paris 13, Sorbonne Paris Cité, 93430 Villetaneuse, France
| | - G Vitale
- Laboratoire de Mécanique des Solides, CNRS-UMR 7649, Ecole Polytechnique, Route de Saclay, F-91128 Palaiseau Cedex, France
| | - L Truskinovsky
- PMMH, CNRS-UMR 7636 PSL-ESPCI, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
48
|
Mann A, Sopher RS, Goren S, Shelah O, Tchaicheeyan O, Lesman A. Force chains in cell-cell mechanical communication. J R Soc Interface 2019; 16:20190348. [PMID: 31662075 DOI: 10.1098/rsif.2019.0348] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Force chains (FCs) are a key determinant of the micromechanical properties and behaviour of heterogeneous materials, such as granular systems. However, less is known about FCs in fibrous materials, such as the networks composing the extracellular matrix (ECM) of biological systems. Using a finite-element computational model, we simulated the contraction of a single cell and two nearby cells embedded in two-dimensional fibrous elastic networks and analysed the tensile FCs that developed in the ECM. The role of ECM nonlinear elasticity on FC formation was evaluated by considering linear and nonlinear, i.e. exhibiting 'buckling' and/or 'strain-stiffening', stress-strain curves. The effect of the degree of cell contraction and network coordination value was assessed. We found that nonlinear elasticity of the ECM fibres influenced the structure of the FCs, facilitating the transition towards more distinct chains that were less branched and more radially oriented than the chains formed in linear elastic networks. When two neighbouring cells contract, a larger number of FCs bridged between the cells in nonlinear networks, and these chains had a larger effective rigidity than the chains that did not reach a neighbouring cell. These results suggest that FCs function as a route for mechanical communication between distant cells and highlight the contribution of ECM fibre nonlinear elasticity to the formation of FCs.
Collapse
Affiliation(s)
- Amots Mann
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ran S Sopher
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Goren
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Shelah
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Oren Tchaicheeyan
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
49
|
Ricketts SN, Francis ML, Farhadi L, Rust MJ, Das M, Ross JL, Robertson-Anderson RM. Varying crosslinking motifs drive the mesoscale mechanics of actin-microtubule composites. Sci Rep 2019; 9:12831. [PMID: 31492892 PMCID: PMC6731314 DOI: 10.1038/s41598-019-49236-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
The cytoskeleton precisely tunes its mechanics by altering interactions between semiflexible actin filaments, rigid microtubules, and crosslinking proteins. We use optical tweezers microrheology and confocal microscopy to characterize how varying crosslinking motifs impact the mesoscale mechanics and mobility of actin-microtubule composites. We show that, upon subtle changes in crosslinking patterns, composites can exhibit two distinct classes of force response - primarily elastic versus more viscous. For example, a composite in which actin and microtubules are crosslinked to each other but not to themselves is markedly more elastic than one in which both filaments are independently crosslinked. Notably, this distinction only emerges at mesoscopic scales in response to nonlinear forcing, whereas varying crosslinking motifs have little impact on the microscale mechanics and mobility. Our unexpected scale-dependent results not only inform the physics underlying key cytoskeleton processes and structures, but, more generally, provide valuable perspective to materials engineering endeavors focused on polymer composites.
Collapse
Affiliation(s)
- Shea N Ricketts
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Madison L Francis
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Leila Farhadi
- Department of Physics, University of Massachusetts, Amherst, 666N. Pleasant St., Amherst, MA, 01003, USA
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, University of Chicago, 900 E 57th St., Chicago, IL, 60637, USA
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY, 14623, USA
| | - Jennifer L Ross
- Department of Physics, University of Massachusetts, Amherst, 666N. Pleasant St., Amherst, MA, 01003, USA
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA, 92110, USA.
| |
Collapse
|
50
|
Deogekar S, Islam M, Picu R. Parameters controlling the strength of stochastic fibrous materials. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 2019; 168:194-202. [PMID: 31395989 PMCID: PMC6687067 DOI: 10.1016/j.ijsolstr.2019.03.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many materials of everyday use are fibrous and their strength is important in most applications. In this work we study the dependence of the strength of random fiber networks on structural parameters such as the network density, cross-link density, fiber tortuosity, and the strength of the inter-fiber cross-links. Athermal networks of cellular and fibrous type are considered. We conclude that the network strength scales linearly with the cross-link number density and with the cross-link strength for a broad range of network parameters, and for both types of networks considered. Network strength is independent of fiber material properties and of fiber tortuosity. This information can be used to design fiber networks for specified strength and, generally, to understand the mechanical behavior of fibrous materials.
Collapse
Affiliation(s)
| | | | - R.C. Picu
- Corresponding author, , Tel: 1 518 276 2195
| |
Collapse
|