1
|
Wang J, Li H, Tang W, Liang K, Zhao C, Yu F, Qiu F. A candidate association study of transcription factors in maize revealed the ZmPLATZ15-ZmEREB200 module as a key regulator of waterlogging tolerance at the seedling stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109664. [PMID: 40010256 DOI: 10.1016/j.plaphy.2025.109664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Soil waterlogging is a major abiotic stress that severely impairs maize growth and development by inducing hypoxic conditions that disrupt essential physiological processes. Transcription factors (TFs) play crucial roles in modulating plant responses to waterlogging stress by regulating the expression of stress-related genes that enhance or diminish stress tolerance. In this study, we conducted an association analysis to identify 11 TFs closely associated with waterlogging stress in maize. Notably, the PLATZ family emerged as a novel and significant contributor to waterlogging stress. Overexpression of ZmPLATZ15 resulted in increased sensitivity to waterlogging at maize seedlings. Conversely, ZmEREB200, a member of the maize Group VII ERF (ZmERFVII) family, was significantly downregulated in the ZmPLATZ15 overexpression lines under waterlogging stress. Promoter analysis revealed that ZmPLATZ15 regulates ZmEREB200 by binding to the A/T-rich motifs in the ZmEREB200 promoter. Interestingly, overexpression of ZmEREB200 was found to enhance waterlogging tolerance at maize seedlings. To further elucidate their roles, we analyzed the transcriptomic profiles of ZmPLATZ15 and ZmEREB200 overexpression lines under waterlogging stress. The overlapping differentially expressed genes in both ZmPLATZ15 and ZmEREB200 overexpression lines were significantly enriched in pathways associated with redox balance and salicylic acid metabolism, both of which are crucial for modulating waterlogging tolerance at maize seedlings. Metabolomic analysis revealed that antioxidant enzyme activity, salicylic acid, and glutathione levels were decreased in OE-ZmPLATZ15, while these metabolites were significantly increased in OE-ZmEREB200. These contrasting metabolic responses in overexpression lines may underlie their different tolerances to waterlogging stress. Our findings provide valuable insights into the regulatory mechanisms underlying maize's response to waterlogging stress and highlight the potential of TFs as tools for developing maize varieties with enhanced waterlogging tolerance.
Collapse
Affiliation(s)
- Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanyu Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenbin Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Kun Liang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenxu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Wu X, Liu M, Wang L, Tong P, Xing Q, Qi H. An ethylene response factor negatively regulates red light induced resistance of melon to powdery mildew by inhibiting ethylene biosynthesis. Int J Biol Macromol 2025; 307:141867. [PMID: 40068749 DOI: 10.1016/j.ijbiomac.2025.141867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Powdery mildew is a common serious disease threatening global melon production. Red light can improve plant resistance to powdery mildew by inducing endogenous ethylene synthesis; however, the underlying molecular mechanism requires elucidation. In this study, an ERF transcription factor CmRAP2-13 was identified, silencing it significantly improved melon seedlings resistance to powdery mildew. Further research found that CmRAP2-13 inhibited the expression of key ethylene synthesis genes CmACS10 and CmERF27 by binding to GCC-box in the promoters, thus inhibiting ethylene biosynthesis. At the same time, protein-level interaction between CmRAP2-13 and CmERF27 also occurred. When CmRAP2-13 existed, the transcriptional activation of CmERF27 on CmACS10 was interfered and weakened. However, red light pretreatment notably decreased the expression of CmRAP2-13, and this process was influenced by phytochrome B, the red light receptor. Analysis of defence-related gene expression following ethephon application and CmRAP2-13 silencing revealed that CmRAP2-13 acted as a negative regulator of melon seedling resistance to powdery mildew, functioning as a convergence point for red light and ethylene signalling. Taken together, red light induced CmRAP2-13 and played a negative role in regulating Podosphaera xanthii infection in melons. Powdery mildew infection produced ethylene, which further inhibited CmRAP2-13 expression and formed a feedback regulation loop to participate in disease resistance. Our research on CmRAP2-13 deciphers the important regulatory network of red light-induced ethylene production in melon powdery mildew resistance, which can be used as a potential target of genetic engineering to enhance plant protection against powdery mildew.
Collapse
Affiliation(s)
- Xutong Wu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China.
| | - Motong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China.
| | - Lixia Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China.
| | - Pucheng Tong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Qiaojuan Xing
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China.
| |
Collapse
|
3
|
Yan Z, Yang S, Lin C, Yan J, Liu M, Tang S, Jia W, Liu J, Liu H. Advances in plant oxygen sensing: endogenous and exogenous mechanisms. J Genet Genomics 2025; 52:615-627. [PMID: 39638088 DOI: 10.1016/j.jgg.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Oxygen is essential for the biochemical processes that sustain life in eukaryotic organisms. Although plants produce oxygen through photosynthesis, they often struggle to survive in low-oxygen environments, such as during flooding or submergence. To endure these conditions, they must reprogram their developmental and metabolic networks, and the adaptation process involves the continuous detection of both exogenous hypoxic signals and endogenous oxygen gradients. Recent research has significantly advanced our understanding of how plants respond to both endogenous and exogenous hypoxia signals. In this review, we explore advancements in both areas, comparing them to responses in animals, with a primary focus on how plants perceive and respond to exogenous hypoxic conditions, particularly those caused by flooding or submergence, as well as the hypoxia signaling pathways in different crops. Additionally, we discuss the interplay between endogenous and exogenous hypoxia signals in plants. Finally, we discuss future research directions aimed at improving crop resilience to flooding by integrating the perception and responses to both endogenous and exogenous signals. Through these efforts, we aspire to contribute to the development of crop varieties that are not only highly resistant but also experience minimal growth and yield penalties, thereby making substantial contributions to agricultural science.
Collapse
Affiliation(s)
- Zhen Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, Sichuan 610065, China
| | - Songyi Yang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jin Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Meng Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Si Tang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Weitao Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, Sichuan 610065, China.
| |
Collapse
|
4
|
Kumari M, Kumar P, Saini V, Joshi R, Shankar R, Kumar R. Transcriptional landscape illustrates the diversified adaptation of medicinal plants to multifactorial stress combinations linked with high altitude. PLANTA 2025; 261:111. [PMID: 40234266 DOI: 10.1007/s00425-025-04686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
MAIN CONCLUSION This study at high-altitude alpine environment reveals the molecular signatures associated with stress response and secondary metabolite accumulation, contributing to Picrorhiza kurroa adaptation, which is primarily regulated by a strong interplay of phytohormones. The high-altitude alpine environment is an extreme and variable environment with unique combinations of abiotic/biotic stresses. Despite progress about plant response to individual and combined abiotic stress in controlled conditions, our knowledge of plant adaptations to multifactorial stress combinations that typically occur in alpine environments is limiting. Here, we utilized the high-altitude medicinal herb Picrorhiza kurroa to investigate how multifactorial stress combinations prevailing along the high-altitude gradient at the western Himalayas affect gene expression and cellular pathways. Leaf transcriptional dynamics identified 7,388 differentially expressed unigenes (DEGs), highlighting unique gene expression patterns, specific pathways, and processes that play a crucial role in plant response to the complex micro-environment of high-altitude. Gene regulatory response largely relies on basic helix-loop-helix (bHLH), no apical meristem (NAC), and ethylene responsive factor (ERF) transcription factor families. Further, unigenes associated with secondary metabolism, multiple abiotic/biotic stress responses, and a variety of cellular and reproductive developmental processes were activated through complex cross-talk among plant hormonal signal transduction pathways. The weak correlation between gene expression and corresponding protein accumulation could predict stress-responsive protein abundance largely under different post-transcriptional/translational regulation. These findings recognize an array of new candidate genes for climate resilience, which would contribute to further our research on high-altitude alpine plant adaptations.
Collapse
Affiliation(s)
- Manglesh Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prakash Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Studio of Computational Biology & Bioinformatics (Biotech Division), The Himalayan Centre for High-throughput Computational Biology, Biotechnology Division, CSIR-IHBT, Palampur, 176061, (H.P.), India
- ICAR-Indian Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Vishal Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rohit Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, (H.P.), India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Shankar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, (H.P.), India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Studio of Computational Biology & Bioinformatics (Biotech Division), The Himalayan Centre for High-throughput Computational Biology, Biotechnology Division, CSIR-IHBT, Palampur, 176061, (H.P.), India.
| | - Rajiv Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, 176061, (H.P.), India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Wang LN, Wang WC, Liao K, Xu LJ, Xie DX, Xie RH, Xiao S. Survival mechanisms of plants under hypoxic stress: Physiological acclimation and molecular regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:440-454. [PMID: 40052431 DOI: 10.1111/jipb.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 03/29/2025]
Abstract
Hypoxia (low-oxygen tension) caused by complete submergence or waterlogging is an abiotic stress factor that severely affects the yield and distribution of plants. To adapt to and survive under hypoxic conditions, plants employ several physiological and molecular strategies that integrate morphological acclimation, metabolic shifts, and signaling networks. Group VII ETHYLENE RESPONSE FACTORS (ERF-VIIs), master transcription factors, have emerged as a molecular hub for regulating plant hypoxia sensing and signaling. Several mitogen-activated protein kinases and calcium-dependent protein kinases have recently been reported to be involved in potentiating hypoxia signaling via interaction with and phosphorylation of ERF-VIIs. Here, we provide an overview of the current knowledge on the regulatory network of ERF-VIIs and their post-translational regulation in determining plant responses to hypoxia and reoxygenation, with a primary focus on recent advancements in understanding how signaling molecules, including ethylene, long-chain acyl-CoA, phosphatidic acid, and nitric oxide, are involved in the regulation of ERV-VII activities. Furthermore, we propose future directions for investigating the intricate crosstalk between plant growth and hypoxic resilience, which is central to guiding breeding and agricultural management strategies for promoting flooding and submergence stress tolerance in plants.
Collapse
Affiliation(s)
- Lin-Na Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei-Cheng Wang
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ke Liao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ling-Jing Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dao-Xin Xie
- MOE Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ruo-Han Xie
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518017, China
| | - Shi Xiao
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518017, China
| |
Collapse
|
6
|
Shi Z, Wu J, Mo H, Xue W, Zhang Z, Pang X. Identification of an ethylene-responsive and cell wall-secreting β-1,3-glucanase, VvGLU1, in the early cell regrowth of grape winter buds triggered by exogenous dormancy releasers. BMC Biol 2025; 23:22. [PMID: 39849520 PMCID: PMC11756123 DOI: 10.1186/s12915-025-02120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Grape (Vitis vinifera) crops encounter significant challenges in overcoming bud endodormancy in warm winter areas worldwide. Research on the mechanisms governing bud dormancy release has focused primarily on stress regulation; however, cell wall regulation of bud meristem regrowth mechanism during the dormancy release remains obscure. RESULTS In this study, transmission electron microscopy revealed significant changes in the grape bud cell wall following hydrogen cyanamide (HC) treatment, accompanied by an increase in β-1,3-glucanase activity. We then investigated the potential contribution of β-1,3-glucanases (GLUs) to the regulation of cell wall remodeling. Forty-eight VvGLUs distributed in clades α, β, and γ were identified and nominated based on the genome data of V. vinifera. Three γ-clade VvGLUs (VvGLU1, VvGLU16, and VvGLU32) were upregulated by dormancy-releasing stimuli, including HC, sodium azide (AZ), ethylene and hypoxia. Among these, VvGLU1 presented increased gene transcription and protein expression in response to HC and ethylene treatment. The VvGLU1 promoter positively responded to ethylene, and its activity could be activated by VvERF57. Using both immunogold labeling and GFP fusion protein analysis, we observed that VvGLU1 localized in the endoplasmic reticulum, accumulated in the vacuole, and was secreted into the cell wall during HC-triggered dormancy release. CONCLUSIONS Based on these findings, we propose that ethylene-regulated VvGLU1 plays a pivotal role in cell wall remodeling, thereby facilitating the regrowth of the bud meristem.
Collapse
Affiliation(s)
- Zhaowan Shi
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Jiamin Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hairuo Mo
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weiwen Xue
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoqi Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xuequn Pang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Liang R, Tan L, Guo X, Lou S, Dan X, Han Y, Zeng C, Zhang H, Yang K, Chen L, Liang X, Liu M, Guo M, Yin K, Tang S, Song Y, Gao X, Gu S, Hou J, Yao Y, Zhang R, Yan J, Fu W, Li X, Hu Y, Liu Y, Liu W, Wu Q, Yan Z, Jia W, Hu B, Wang J, Liu J, Liu H. Allelic variation in the promoter of WRKY22 enhances humid adaptation of Arabidopsis thaliana. MOLECULAR PLANT 2025; 18:42-58. [PMID: 39614612 DOI: 10.1016/j.molp.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/03/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Submergence stress tolerance is a complex trait governed by multiple loci. Because of its wide distribution across arid and humid regions, Arabidopsis thaliana offers an opportunity to explore the genetic components and their action mechanisms underlying plant adaptation to submergence stress. In this study, using map-based cloning we identified WRKY22 that activates RAP2.12, a locus previously identified to contribute to the submergence stress response, to regulate plant humid adaptation possibly through ethylene signal transduction in Arabidopsis. WRKY22 expression is inhibited by ARABIDOPSIS RESPONSE REGULATORs (ARRs) but activated by the WRKY70 transcription factor. In accessions from humid environments, a two-nucleotide deletion in the WRKY22 promoter region prevents binding of phosphorylated ARRs, thereby maintaining its high expression. Loss of the ARR-binding element in the WRKY22 promoter underwent strong positive selection during colonization of A. thaliana in the humid Yangtze River basin. However, the WRKY70-binding motif in the WRKY22 promoter shows no variation between accessions from humid and arid regions. These findings together establish a novel signaling axis wherein WRKY22 plays a key role in regulating the adaptive response that enables A. thaliana to colonize contrasting habitats. Notably, we further showed functional conservation of this locus in Brassica napus, suggesting that modulating this axis might be useful in the breeding of flood-tolerant crop varieties.
Collapse
Affiliation(s)
- Ruyun Liang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Luna Tan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiang Guo
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shangling Lou
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuming Dan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yu Han
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Cheng Zeng
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Han Zhang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Kai Yang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Liyang Chen
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xin Liang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Meng Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Mengyun Guo
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Kangqun Yin
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Si Tang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yan Song
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuemeng Gao
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shaobo Gu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Hou
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yingjun Yao
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ruijia Zhang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jin Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wensen Fu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuerui Li
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yongqi Hu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yao Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wei Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qiusai Wu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhen Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Weitao Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Binhua Hu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Jing Wang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
8
|
Li T, Peng Z, Kangxi D, Inzé D, Dubois M. ETHYLENE RESPONSE FACTOR6, A Central Regulator of Plant Growth in Response to Stress. PLANT, CELL & ENVIRONMENT 2025; 48:882-892. [PMID: 39360583 DOI: 10.1111/pce.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
ETHYLENE RESPONSE FACTOR6 (ERF6) has emerged as a central player in stress-induced plant growth inhibition. It orchestrates complex pathways that enable plants to acclimate and thrive in challenging environments. In response to various abiotic and biotic stresses, ERF6 is promptly activated through both ethylene-dependent and -independent pathways, and contributes to enhanced stress tolerance mechanisms by activating a broad spectrum of genes at various developmental stages. Despite the crucial role of ERF6, there is currently a lack of published comprehensive insights into its function in plant growth and stress response. In this respect, based on the tight connection between ethylene and ERF6, we review the latest research findings on how ethylene regulates stress responses and the mechanisms involved. In addition, we summarize the trends and advances in ERF6-mediated plant performance under optimal and stressful conditions. Finally, we also highlight key questions and suggest potential paths to unravel the ERF6 regulon in future research.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Zhen Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Du Kangxi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
9
|
Safavi-Rizi V, Uhlig T, Lutter F, Safavi-Rizi H, Krajinski-Barth F, Sasso S. Reciprocal modulation of responses to nitrate starvation and hypoxia in roots and leaves of Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2024; 19:2300228. [PMID: 38165809 PMCID: PMC10763642 DOI: 10.1080/15592324.2023.2300228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 01/04/2024]
Abstract
The flooding of agricultural land leads to hypoxia and nitrate leaching. While understanding the plant's response to these conditions is essential for crop improvement, the effect of extended nitrate limitation on subsequent hypoxia has not been studied in an organ-specific manner. We cultivated Arabidopsis thaliana without nitrate for 1 week before inducing hypoxia by bubbling the hydroponic solution with nitrogen gas for 16 h. In the roots, the transcripts of two transcription factor genes (HRA1, HRE2) and three genes involved in fermentation (SUS4, PDC1, ADH1) were ~10- to 100-fold upregulated by simultaneous hypoxia and nitrate starvation compared to the control condition (replete nitrate and oxygen). In contrast, this hypoxic upregulation was ~5 to 10 times stronger when nitrate was available. The phytoglobin genes PGB1 and PGB2, involved in nitric oxide (NO) scavenging, were massively downregulated by nitrate starvation (~1000-fold and 105-fold, respectively), but only under ambient oxygen levels; this was reflected in a 2.5-fold increase in NO concentration. In the leaves, HRA1, SUS4, and RAP2.3 were upregulated ~20-fold by hypoxia under nitrate starvation, whereas this upregulation was virtually absent in the presence of nitrate. Our results highlight that the plant's responses to nitrate starvation and hypoxia can influence each other.
Collapse
Affiliation(s)
- Vajiheh Safavi-Rizi
- Institute of Biology, Department of Plant Physiology, Leipzig University, Leipzig, Germany
- Institute of Biology, Department of General and Applied Botany, Leipzig University, Leipzig, Germany
| | - Tina Uhlig
- Institute of Biology, Department of Plant Physiology, Leipzig University, Leipzig, Germany
| | - Felix Lutter
- Institute of Biology, Department of General and Applied Botany, Leipzig University, Leipzig, Germany
| | - Hamid Safavi-Rizi
- Department of Information Technology Engineering, Institute of Information Technology and Computer Engineering, University of Payame Noor, Isfahan, Iran
| | - Franziska Krajinski-Barth
- Institute of Biology, Department of General and Applied Botany, Leipzig University, Leipzig, Germany
| | - Severin Sasso
- Institute of Biology, Department of Plant Physiology, Leipzig University, Leipzig, Germany
| |
Collapse
|
10
|
Brunello L, Kunkowska AB, Olmi E, Triozzi PM, Castellana S, Perata P, Loreti E. The transcription factor ORA59 represses hypoxia responses during Botrytis cinerea infection and reoxygenation. PLANT PHYSIOLOGY 2024; 197:kiae677. [PMID: 39704305 PMCID: PMC11707877 DOI: 10.1093/plphys/kiae677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
Transcription factors belonging to the large ethylene response factor (ERF) family are involved in plant responses to biotic and abiotic stresses. Among the ERFs, OCTADECANOID-RESPONSIVE ARABIDOPSIS 59 (ORA59) integrates ethylene and jasmonic acid signaling to regulate resistance to necrotrophic pathogens. The ERF group ERFVII encodes oxygen-labile proteins that are required for oxygen sensing and are stabilized by hypoxia established at the site of Botrytis (Botrytis cinerea) infection. Here, we show that ORA59 represses ERFVII protein activity to induce the expression of hypoxia-responsive genes in Arabidopsis (Arabidopsis thaliana). Moreover, inhibition of ethanol fermentation enhances plant tolerance to Botrytis, indicating a trade-off between the hypoxia and defense responses. In addition, ERFVII members and ORA59 are both involved in the downregulation of hypoxia-responsive genes during reoxygenation. Taken together, our results reveal that the ERFVII transcription factor-ORA59 module ensures that the multiple roles of ERFVII proteins are correctly balanced to favor plant tolerance to biotic or abiotic stresses.
Collapse
Affiliation(s)
- Luca Brunello
- PlantLab, Institute of Plant Sciences, Sant’Anna School of Advanced Studies, Via Guidiccioni 10, 56010 San Giuliano Terme (Pisa), Italy
| | - Alicja B Kunkowska
- PlantLab, Institute of Plant Sciences, Sant’Anna School of Advanced Studies, Via Guidiccioni 10, 56010 San Giuliano Terme (Pisa), Italy
| | - Emma Olmi
- PlantLab, Institute of Plant Sciences, Sant’Anna School of Advanced Studies, Via Guidiccioni 10, 56010 San Giuliano Terme (Pisa), Italy
| | - Paolo M Triozzi
- PlantLab, Institute of Plant Sciences, Sant’Anna School of Advanced Studies, Via Guidiccioni 10, 56010 San Giuliano Terme (Pisa), Italy
| | - Simone Castellana
- PlantLab, Institute of Plant Sciences, Sant’Anna School of Advanced Studies, Via Guidiccioni 10, 56010 San Giuliano Terme (Pisa), Italy
| | - Pierdomenico Perata
- PlantLab, Institute of Plant Sciences, Sant’Anna School of Advanced Studies, Via Guidiccioni 10, 56010 San Giuliano Terme (Pisa), Italy
| | - Elena Loreti
- CNR, National Research Council, Institute of Agricultural Biology and Biotechnology, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
11
|
Deng M, Zhang L, Yang C, Zeng Q, Zhong L, Guo X. GmERFVII transcription factors upregulate PATHOGENESIS-RELATED10 and contribute to soybean cyst nematode resistance. PLANT PHYSIOLOGY 2024; 197:kiae548. [PMID: 39575886 DOI: 10.1093/plphys/kiae548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/22/2024] [Indexed: 12/24/2024]
Abstract
Low oxygen availability within plant cells arises during plant development but is exacerbated under environmental stress conditions. The group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factors have been identified as pivotal regulators in the hypoxia response to abiotic stress. However, their roles in transcriptional regulation during biotic stresses remain less defined. In this study, we investigated the biological function and regulatory mechanism of soybean (Glycine max) ERFVII transcription factors during soybean cyst nematode (Heterodera glycines Ichinohe) infection. We provide evidence that soybean cyst nematode infection induces responses at the infection sites similar to those induced by hypoxia, characterized by the stabilization of ERFVII proteins and increased expression of hypoxia-responsive genes. Hypoxia pretreatment of soybeans enhances their resistance to nematode infection. We demonstrate that ERFVII members GmRAP2.12 and GmRAP2.3 act as transcriptional activators to drive the expression of GmPR10-09g, a member of the PR10 gene family highly induced by soybean cyst nematode and positively impacting nematode resistance. Transgenic hairy root analysis of nematode infection for either GmRAP2.12 or N-end rule pathway components (GmATE or GmPRT6) indicates a positive role of ERFVIIs in soybean defense responses against cyst nematode. The results of our study emphasize the important functions of GmERFVIIs in strengthening soybean's immune responses against cyst nematode by transcriptional activation of GmPR10.
Collapse
Affiliation(s)
- Miaomiao Deng
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lei Zhang
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chao Yang
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qian Zeng
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Linlin Zhong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaoli Guo
- National Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
12
|
Kaji M, Katano K, Anee TI, Nitta H, Yamaji R, Shimizu R, Shigaki S, Suzuki H, Suzuki N. Response of Arabidopsis thaliana to Flooding with Physical Flow. PLANTS (BASEL, SWITZERLAND) 2024; 13:3508. [PMID: 39771206 PMCID: PMC11678080 DOI: 10.3390/plants13243508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Flooding causes severe yield losses worldwide, making it urgent to enhance crop tolerance to this stress. Since natural flooding often involves physical flow, we hypothesized that the effects of submergence on plants could change when combined with physical flow. In this study, we analyzed the growth and transcriptome of Arabidopsis thaliana exposed to submergence or flooding with physical flow. Plants exposed to flooding with physical flow had smaller rosette diameters, especially at faster flow rates. Transcriptome analysis revealed that "defense response" transcripts were highly up-regulated in response to flooding with physical flow. In addition, up-regulation of transcripts encoding ROS-producing enzymes, SA synthesis, JA synthesis, and ethylene signaling was more pronounced under flooding with physical flow when compared to submergence. Although H2O2 accumulation changed in response to submergence or flooding with physical flow, it did not lead to lipid peroxidation, suggesting a role for ROS as signaling molecules under these conditions. Multiple regression analysis indicated possible links between rosette diameter under flooding with physical flow and the expression of Rbohs and SA synthesis transcripts. These findings suggest that pathogen defense responses, regulated by SA and ROS signaling, play crucial roles in plant responses to flooding with physical flow.
Collapse
Affiliation(s)
- Momoko Kaji
- National Institute of Technology, Ishikawa College, Tsubata 929-0392, Ishikawa, Japan; (M.K.); (H.N.); (R.Y.)
- Division of Environmental Design, Graduate School of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Kazuma Katano
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan;
| | - Taufika Islam Anee
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo 102-8554, Japan;
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Hiroshi Nitta
- National Institute of Technology, Ishikawa College, Tsubata 929-0392, Ishikawa, Japan; (M.K.); (H.N.); (R.Y.)
| | - Ryotaro Yamaji
- National Institute of Technology, Ishikawa College, Tsubata 929-0392, Ishikawa, Japan; (M.K.); (H.N.); (R.Y.)
| | - Rio Shimizu
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Shunsuke Shigaki
- Principles of Informatics Research Division, National Institute of Informatics, Chiyoda, Tokyo 101-8430, Japan;
| | - Hiroyuki Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, Hokkai-Gakuen University, Sapporo 062-8605, Hokkaido, Japan;
| | - Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo 102-8554, Japan;
| |
Collapse
|
13
|
Hadish JA, Hargarten HL, Zhang H, Mattheis JP, Ficklin SP, Honaas LA. Transcriptomics of long-term, low oxygen storage coupled with ethylene signaling interference suggests neofunctionalization of hypoxia response pathways in apple ( Malus domestica). PLANT DIRECT 2024; 8:e70025. [PMID: 39712348 PMCID: PMC11660084 DOI: 10.1002/pld3.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 12/24/2024]
Abstract
Research on how plants respond to hypoxia has concentrated on model organisms where tissues can only survive hypoxic conditions for a few hours to a few days. In contrast, hypoxic conditions are used commercially as a method to prolong the shelf life of Malus domestica (apple) fruit for up to a year of storage without substantial changes in fruit quality, not to mention a lack of tissue death. This ability of apples to withstand protracted hypoxic conditions is an interesting adaptation that has had limited molecular investigation despite its economic importance. Here, we investigate the long-term apple hypoxia response using a time-course RNA-seq analysis of several postharvest storage conditions. We use phylogenetics, differential expression, and regulatory networks to identify genes that regulate and are regulated by the hypoxia response. We identify potential neofunctionalization of core-hypoxia response genes in apples, including novel regulation of group VII ethylene response factor (ERF VII) and plant cysteine oxidase (PCO) family members.
Collapse
Affiliation(s)
- John A. Hadish
- Molecular Plant Science ProgramWashington State UniversityPullmanWAUSA
- Department of HorticultureWashington State UniversityPullmanWAUSA
| | - Heidi L. Hargarten
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits ResearchWenatcheeWAUSA
| | - Huiting Zhang
- Department of HorticultureWashington State UniversityPullmanWAUSA
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits ResearchWenatcheeWAUSA
| | - James P. Mattheis
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits ResearchWenatcheeWAUSA
| | - Stephen P. Ficklin
- Molecular Plant Science ProgramWashington State UniversityPullmanWAUSA
- Department of HorticultureWashington State UniversityPullmanWAUSA
| | - Loren A. Honaas
- USDA Agricultural Research Service Physiology and Pathology of Tree Fruits ResearchWenatcheeWAUSA
| |
Collapse
|
14
|
Wei J, Zhou Q, Zhang J, Wu M, Li G, Yang L. Dual RNA-seq reveals distinct families of co-regulated and structurally conserved effectors in Botrytis cinerea infection of Arabidopsis thaliana. BMC Biol 2024; 22:239. [PMID: 39428503 PMCID: PMC11492575 DOI: 10.1186/s12915-024-02043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Botrytis cinerea is a broad-host-range pathogen causing gray mold disease and significant yield losses of numerous crops. However, the mechanisms underlying its rapid invasion and efficient killing of plant cells remain unclear. RESULTS In this study, we elucidated the dynamics of B. cinerea infection in Arabidopsis thaliana by live cell imaging and dual RNA sequencing. We found extensive transcriptional reprogramming events in both the pathogen and the host, which involved metabolic pathways, signaling cascades, and transcriptional regulation. For the pathogen, we identified 591 candidate effector proteins (CEPs) and comprehensively analyzed their co-expression, sequence similarity, and structural conservation. The results revealed temporal co-regulation patterns of these CEPs, indicating coordinated deployment of effectors during B. cinerea infection. Through functional screening of 48 selected CEPs in Nicotiana benthamiana, we identified 11 cell death-inducing proteins (CDIPs) in B. cinerea. CONCLUSIONS The findings provide important insights into the transcriptional dynamics and effector biology driving B. cinerea pathogenesis. The rapid infection of this pathogen involves the temporal co-regulation of CEPs and the prominent role of CDIPs in host cell death. This work highlights significant changes in gene expression associated with gray mold disease, underscoring the importance of a diverse repertoire of effectors crucial for successful infection.
Collapse
Affiliation(s)
- Jinfeng Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
15
|
Schippers JHM, von Bongartz K, Laritzki L, Frohn S, Frings S, Renziehausen T, Augstein F, Winkels K, Sprangers K, Sasidharan R, Vertommen D, Van Breusegem F, Hartman S, Beemster GTS, Mhamdi A, van Dongen JT, Schmidt-Schippers RR. ERFVII-controlled hypoxia responses are in part facilitated by MEDIATOR SUBUNIT 25 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:748-768. [PMID: 39259461 DOI: 10.1111/tpj.17018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Flooding impairs plant growth through oxygen deprivation, which activates plant survival and acclimation responses. Transcriptional responses to low oxygen are generally associated with the activation of group VII ETHYLENE-RESPONSE FACTOR (ERFVII) transcription factors. However, the exact mechanisms and molecular components by which ERFVII factors initiate gene expression are not fully elucidated. Here, we show that the ERFVII factors RELATED TO APETALA 2.2 (RAP2.2) and RAP2.12 cooperate with the Mediator complex subunit AtMED25 to coordinate gene expression under hypoxia in Arabidopsis thaliana. Respective med25 knock-out mutants display reduced low-oxygen stress tolerance. AtMED25 physically associates with a distinct set of hypoxia core genes and its loss partially impairs transcription under hypoxia due to decreased RNA polymerase II recruitment. Association of AtMED25 with target genes requires the presence of ERFVII transcription factors. Next to ERFVII protein stabilisation, also the composition of the Mediator complex including AtMED25 is potentially affected by hypoxia stress as shown by protein-complex pulldown assays. The dynamic response of the Mediator complex to hypoxia is furthermore supported by the fact that two subunits, AtMED8 and AtMED16, are not involved in the establishment of hypoxia tolerance, whilst both act in coordination with AtMED25 under other environmental conditions. We furthermore show that AtMED25 function under hypoxia is independent of ethylene signalling. Finally, functional conservation at the molecular level was found for the MED25-ERFVII module between A. thaliana and the monocot species Oryza sativa, pointing to a potentially universal role of MED25 in coordinating ERFVII-dependent transcript responses to hypoxia in plants.
Collapse
Affiliation(s)
- Jos H M Schippers
- Department of Molecular Genetics, Seed Development, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland, 06466, Germany
| | - Kira von Bongartz
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Lisa Laritzki
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Stephanie Frohn
- Department of Molecular Genetics, Seed Development, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland, 06466, Germany
| | - Stephanie Frings
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Universitätsstraße 25, Bielefeld, 33615, Germany
- Center for Biotechnology, University of Bielefeld, Universitätsstraße 27, Bielefeld, 33615, Germany
| | - Tilo Renziehausen
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Universitätsstraße 25, Bielefeld, 33615, Germany
- Center for Biotechnology, University of Bielefeld, Universitätsstraße 27, Bielefeld, 33615, Germany
| | - Frauke Augstein
- Department of Organismal Biology, Physiological Botany, and Linnean Centre for Plant Biology, Uppsala University, Ullsv. 24E, Uppsala, SE-75651, Sweden
| | - Katharina Winkels
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Katrien Sprangers
- IMPRES Research Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, G.U.613, Antwerpen, 2020, Belgium
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Didier Vertommen
- de Duve Institute and MASSPROT platform, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels, 1200, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Sjon Hartman
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, Freiburg, 79104, Germany
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, Schänzlestraße 1, Freiburg, 79104, Germany
| | - Gerrit T S Beemster
- IMPRES Research Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, G.U.613, Antwerpen, 2020, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, 9052, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), Center for Plant Systems Biology, Technologiepark 71, Ghent, 9052, Belgium
| | - Joost T van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Romy R Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, Universitätsstraße 25, Bielefeld, 33615, Germany
- Center for Biotechnology, University of Bielefeld, Universitätsstraße 27, Bielefeld, 33615, Germany
| |
Collapse
|
16
|
Yoo YH, Cho SY, Lee I, Kim N, Lee SK, Cho KS, Kim EY, Jung KH, Hong WJ. Characterization of the Regulatory Network under Waterlogging Stress in Soybean Roots via Transcriptome Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2538. [PMID: 39339513 PMCID: PMC11435190 DOI: 10.3390/plants13182538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Flooding stress caused by climate change is a serious threat to crop productivity. To enhance our understanding of flooding stress in soybean, we analyzed the transcriptome of the roots of soybean plants after waterlogging treatment for 10 days at the V2 growth stage. Through RNA sequencing analysis, 870 upregulated and 1129 downregulated differentially expressed genes (DEGs) were identified and characterized using Gene Ontology (GO) and MapMan software (version 3.6.0RC1). In the functional classification analysis, "alcohol biosynthetic process" was the most significantly enriched GO term in downregulated DEGs, and phytohormone-related genes such as ABA, cytokinin, and gibberellin were upregulated. Among the transcription factors (TFs) in DEGs, AP2/ERFs were the most abundant. Furthermore, our DEGs encompassed eight soybean orthologs from Arabidopsis and rice, such as 1-aminocyclopropane-1-carboxylate oxidase. Along with a co-functional network consisting of the TF and orthologs, the expression changes of those genes were tested in a waterlogging-resistant cultivar, PI567343. These findings contribute to the identification of candidate genes for waterlogging tolerance in soybean, which can enhance our understanding of waterlogging tolerance.
Collapse
Affiliation(s)
- Yo-Han Yoo
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Republic of Korea; (Y.-H.Y.); (I.L.); (N.K.); (S.-K.L.); (K.-S.C.)
| | - Seung-Yeon Cho
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea; (S.-Y.C.); (E.Y.K.)
| | - Inhye Lee
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Republic of Korea; (Y.-H.Y.); (I.L.); (N.K.); (S.-K.L.); (K.-S.C.)
| | - Namgeol Kim
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Republic of Korea; (Y.-H.Y.); (I.L.); (N.K.); (S.-K.L.); (K.-S.C.)
| | - Seuk-Ki Lee
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Republic of Korea; (Y.-H.Y.); (I.L.); (N.K.); (S.-K.L.); (K.-S.C.)
| | - Kwang-Soo Cho
- Central Area Crop Breeding Division, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon 16429, Republic of Korea; (Y.-H.Y.); (I.L.); (N.K.); (S.-K.L.); (K.-S.C.)
| | - Eun Young Kim
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea; (S.-Y.C.); (E.Y.K.)
| | - Ki-Hong Jung
- Graduate School of Green Bio-Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Woo-Jong Hong
- Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea; (S.-Y.C.); (E.Y.K.)
- Graduate School of Green Bio-Science & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea;
| |
Collapse
|
17
|
Kumari R, Kapoor P, Mir BA, Singh M, Parrey ZA, Rakhra G, Parihar P, Khan MN, Rakhra G. Unlocking the versatility of nitric oxide in plants and insights into its molecular interplays under biotic and abiotic stress. Nitric Oxide 2024; 150:1-17. [PMID: 38972538 DOI: 10.1016/j.niox.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
In plants, nitric oxide (NO) has become a versatile signaling molecule essential for mediating a wide range of physiological processes under various biotic and abiotic stress conditions. The fundamental function of NO under various stress scenarios has led to a paradigm shift in which NO is now seen as both a free radical liberated from the toxic product of oxidative metabolism and an agent that aids in plant sustenance. Numerous studies on NO biology have shown that NO is an important signal for germination, leaf senescence, photosynthesis, plant growth, pollen growth, and other processes. It is implicated in defense responses against pathogensas well as adaptation of plants in response to environmental cues like salinity, drought, and temperature extremes which demonstrates its multifaceted role. NO can carry out its biological action in a variety of ways, including interaction with protein kinases, modifying gene expression, and releasing secondary messengers. In addition to these signaling events, NO may also be in charge of the chromatin modifications, nitration, and S-nitrosylation-induced posttranslational modifications (PTM) of target proteins. Deciphering the molecular mechanism behind its essential function is essential to unravel the regulatory networks controlling the responses of plants to various environmental stimuli. Taking into consideration the versatile role of NO, an effort has been made to interpret its mode of action based on the post-translational modifications and to cover shreds of evidence for increased growth parameters along with an altered gene expression.
Collapse
Affiliation(s)
- Ritu Kumari
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Preedhi Kapoor
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Bilal Ahmad Mir
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Maninder Singh
- Department of Biotechnology and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zubair Ahmad Parrey
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Gurseen Rakhra
- Department of Nutrition & Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, 121004, India
| | - Parul Parihar
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 47913, Saudi Arabia
| | - Gurmeen Rakhra
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
18
|
Samant SB, Yadav N, Swain J, Joseph J, Kumari A, Praveen A, Sahoo RK, Manjunatha G, Seth CS, Singla-Pareek SL, Foyer CH, Pareek A, Gupta KJ. Nitric oxide, energy, and redox-dependent responses to hypoxia. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4573-4588. [PMID: 38557811 DOI: 10.1093/jxb/erae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Hypoxia occurs when oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally induced hypoxia poses significant challenges for metabolically active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2) and reactive nitrogen species (RNS), such as nitric oxide (·NO), nitrogen dioxide (·NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots, and the hyponastic response. NO and H2O2 participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the γ-aminobutyric acid (GABA) shunt, and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents in energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge of the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.
Collapse
Affiliation(s)
- Sanjib Bal Samant
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jagannath Swain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Josepheena Joseph
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ranjan Kumar Sahoo
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | | |
Collapse
|
19
|
Qu K, Wang J, Cheng Y, Bai B, Xia X, Geng H. Identification of quantitative trait loci and candidate genes for grain superoxide dismutase activity in wheat. BMC PLANT BIOLOGY 2024; 24:716. [PMID: 39060949 PMCID: PMC11282854 DOI: 10.1186/s12870-024-05367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Superoxide dismutase (SOD) can greatly scavenge reactive oxygen species (ROS) in plants. SOD activity is highly related to plant stress tolerance that can be improved by overexpression of SOD genes. Identification of SOD activity-related loci and potential candidate genes is essential for improvement of grain quality in wheat breeding. However, the loci and candidate genes for relating SOD in wheat grains are largely unknown. In the present study, grain SOD activities of 309 recombinant inbred lines (RILs) derived from the 'Berkut' × 'Worrakatta' cross were assayed by photoreduction method with nitro-blue tetrazolium (NBT) in four environments. Quantitative trait loci (QTL) of SOD activity were identified using inclusive composite interval mapping (ICIM) with the genotypic data of 50 K single nucleotide polymorphism (SNP) array. RESULTS Six QTL for SOD activity were mapped on chromosomes 1BL, 4DS, 5AL (2), and 5DL (2), respectively, explaining 2.2 ~ 7.4% of the phenotypic variances. Moreover, QSOD.xjau-1BL, QSOD.xjau-4DS, QSOD.xjau-5 A.1, QSOD.xjau-5 A.2, and QSOD.xjau-5DL.2 identified are likely to be new loci for SOD activity. Four candidate genes TraesCS4D01G059500, TraesCS5A01G371600, TraesCS5D01G299900, TraesCS5D01G343100LC, were identified for QSOD.xjau-4DS, QSOD.xjau-5AL.1, and QSOD.xjau-5DL.1 (2), respectively, including three SOD genes and a gene associated with SOD activity. Based on genetic effect analysis, this can be used to identify desirable alleles and excellent allele variations in wheat cultivars. CONCLUSION These candidate genes are annotated for promoting SOD production and inhibiting the accumulation of ROS during plant growth. Therefore, lines with high SOD activity identified in this study may be preferred for future wheat breeding.
Collapse
Affiliation(s)
- Kejia Qu
- College of Agriculture, The Engineering and Technology Research Center for High-quality, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jiqing Wang
- College of Agriculture, The Engineering and Technology Research Center for High-quality, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yukun Cheng
- College of Agriculture, The Engineering and Technology Research Center for High-quality, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Hongwei Geng
- College of Agriculture, The Engineering and Technology Research Center for High-quality, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
20
|
Ma L, Shi Q, Ma Q, Wang X, Chen X, Han P, Luo Y, Hu H, Fei X, Wei A. Genome-wide analysis of AP2/ERF transcription factors that regulate fruit development of Chinese prickly ash. BMC PLANT BIOLOGY 2024; 24:565. [PMID: 38879490 PMCID: PMC11179286 DOI: 10.1186/s12870-024-05244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/04/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND AP2/ERF is a large family of plant transcription factor proteins that play essential roles in signal transduction, plant growth and development, and responses to various stresses. The AP2/ERF family has been identified and verified by functional analysis in various plants, but so far there has been no comprehensive study of these factors in Chinese prickly ash. Phylogenetic, motif, and functional analyses combined with transcriptome analysis of Chinese prickly ash fruits at different developmental stages (30, 60, and 90 days after anthesis) were conducted in this study. RESULTS The analysis identified 146 ZbAP2/ERF genes that could be classified into 15 subgroups. The motif analysis revealed the presence of different motifs or elements in each group that may explain the functional differences between the groups. ZbERF13.2, ZbRAP2-12, and ZbERF2.1 showed high levels of expression in the early stages of fruit development. ZbRAP2-4, and ZbERF3.1 were significantly expressed at the fruit coloring stage (R2 and G2). ZbERF16 were significantly expressed at fruit ripening and expression level increased as the fruit continued to develop. Relative gene expression levels of 6 representative ZbAP2/ERFs assessed by RT-qPCR agreed with transcriptome analysis results. CONCLUSIONS These genes identified by screening can be used as candidate genes that affect fruit development. The results of the analysis can help guide future genetic improvement of Chinese prickly ash and enrich our understanding of AP2/ERF transcription factors and their regulatory functions in plants.
Collapse
Affiliation(s)
- Lei Ma
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
| | - Qin Ma
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xiaona Wang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xin Chen
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Peilin Han
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Yingli Luo
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Haichao Hu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China
| | - Xitong Fei
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| | - Anzhi Wei
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Xianyang, 712100, China.
- Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, Yangling, Xianyang, 712100, China.
| |
Collapse
|
21
|
Lu Y, Zhang S, Xiang P, Yin Y, Yu C, Hua J, Shi Q, Chen T, Zhou Z, Yu W, Creech DL, Lu Z. Integrated small RNA, transcriptome and physiological approaches provide insight into Taxodium hybrid 'Zhongshanshan' roots in acclimation to prolonged flooding. TREE PHYSIOLOGY 2024; 44:tpae031. [PMID: 38498333 DOI: 10.1093/treephys/tpae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Although Taxodium hybrid 'Zhongshanshan' 406 (Taxodium mucronatum Tenore × Taxodium distichum; Taxodium 406) is an extremely flooding-tolerant woody plant, the physiological and molecular mechanisms underlying acclimation of its roots to long-term flooding remain largely unknown. Thus, we exposed saplings of Taxodium 406 to either non-flooding (control) or flooding for 2 months. Flooding resulted in reduced root biomass, which is in line with lower concentrations of citrate, α-ketoglutaric acid, fumaric acid, malic acid and adenosine triphosphate (ATP) in Taxodium 406 roots. Flooding led to elevated activities of pyruvate decarboxylase, alcohol dehydrogenase and lactate dehydrogenase, which is consistent with higher lactate concentration in the roots of Taxodium 406. Flooding brought about stimulated activities of superoxide dismutase and catalase and elevated reduced glutathione (GSH) concentration and GSH/oxidized glutathione, which is in agreement with reduced concentrations of O2- and H2O2 in Taxodium 406 roots. The levels of starch, soluble protein, indole-3-acetic acid, gibberellin A4 and jasmonate were decreased, whereas the concentrations of glucose, total non-structural carbohydrates, most amino acids and 1-aminocyclopropane-1-carboxylate (ACC) were improved in the roots of flooding-treated Taxodium 406. Underlying these changes in growth and physiological characteristics, 12,420 mRNAs and 42 miRNAs were significantly differentially expressed, and 886 miRNA-mRNA pairs were identified in the roots of flooding-exposed Taxodium 406. For instance, 1-aminocyclopropane-1-carboxylate synthase 8 (ACS8) was a target of Th-miR162-3p and 1-aminocyclopropane-1-carboxylate oxidase 4 (ACO4) was a target of Th-miR166i, and the downregulation of Th-miR162-3p and Th-miR166i results in the upregulation of ACS8 and ACO4, probably bringing about higher ACC content in flooding-treated roots. Overall, these results indicate that differentially expressed mRNA and miRNAs are involved in regulating tricarboxylic acid cycle, ATP production, fermentation, and metabolism of carbohydrates, amino acids and phytohormones, as well as reactive oxygen species detoxification of Taxodium 406 roots. These processes play pivotal roles in acclimation to flooding stress. These results will improve our understanding of the molecular and physiological bases underlying woody plant flooding acclimation and provide valuable insights into breeding-flooding tolerant trees.
Collapse
Affiliation(s)
- Yan Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Shuqing Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Peng Xiang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yunlong Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Chaoguang Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Jianfeng Hua
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Qin Shi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Tingting Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Zhidong Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| | - Wanwen Yu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - David L Creech
- Department of Agriculture, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, 1936 North St, Nacogdoches, TX 75962-3000, USA
| | - Zhiguo Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1 Qianhu Houcun, Zhongshanmen Wai, Nanjing 210014, China
| |
Collapse
|
22
|
Wu W, Feng X, Wang N, Shao S, Liu M, Si F, Chen L, Jin C, Xu S, Guo Z, Zhong C, Shi S, He Z. Genomic analysis of Nypa fruticans elucidates its intertidal adaptations and early palm evolution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:824-843. [PMID: 38372488 DOI: 10.1111/jipb.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Nypa fruticans (Wurmb), a mangrove palm species with origins dating back to the Late Cretaceous period, is a unique species for investigating long-term adaptation strategies to intertidal environments and the early evolution of palms. Here, we present a chromosome-level genome sequence and assembly for N. fruticans. We integrated the genomes of N. fruticans and other palm family members for a comparative genomic analysis, which confirmed that the common ancestor of all palms experienced a whole-genome duplication event around 89 million years ago, shaping the distinctive characteristics observed in this clade. We also inferred a low mutation rate for the N. fruticans genome, which underwent strong purifying selection and evolved slowly, thus contributing to its stability over a long evolutionary period. Moreover, ancient duplicates were preferentially retained, with critical genes having experienced positive selection, enhancing waterlogging tolerance in N. fruticans. Furthermore, we discovered that the pseudogenization of Early Methionine-labelled 1 (EM1) and EM6 in N. fruticans underly its crypto-vivipary characteristics, reflecting its intertidal adaptation. Our study provides valuable genomic insights into the evolutionary history, genome stability, and adaptive evolution of the mangrove palm. Our results also shed light on the long-term adaptation of this species and contribute to our understanding of the evolutionary dynamics in the palm family.
Collapse
Affiliation(s)
- Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Greater Bay Area Institute of Precision Medicine, School of Life Sciences, Fudan University, Guangzhou, 511462, China
| | - Nan Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fa Si
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Linhao Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuanfeng Jin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
23
|
Fagerstedt KV, Pucciariello C, Pedersen O, Perata P. Recent progress in understanding the cellular and genetic basis of plant responses to low oxygen holds promise for developing flood-resilient crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1217-1233. [PMID: 37991267 PMCID: PMC10901210 DOI: 10.1093/jxb/erad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
With recent progress in active research on flooding and hypoxia/anoxia tolerance in native and agricultural crop plants, vast knowledge has been gained on both individual tolerance mechanisms and the general mechanisms of flooding tolerance in plants. Research on carbohydrate consumption, ethanolic and lactic acid fermentation, and their regulation under stress conditions has been accompanied by investigations on aerenchyma development and the emergence of the radial oxygen loss barrier in some plant species under flooded conditions. The discovery of the oxygen-sensing mechanism in plants and unravelling the intricacies of this mechanism have boosted this very international research effort. Recent studies have highlighted the importance of oxygen availability as a signalling component during plant development. The latest developments in determining actual oxygen concentrations using minute probes and molecular sensors in tissues and even within cells have provided new insights into the intracellular effects of flooding. The information amassed during recent years has been used in the breeding of new flood-tolerant crop cultivars. With the wealth of metabolic, anatomical, and genetic information, novel holistic approaches can be used to enhance crop species and their productivity under increasing stress conditions due to climate change and the subsequent changes in the environment.
Collapse
Affiliation(s)
- Kurt V Fagerstedt
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, PO Box 65, FI-00014, University of Helsinki, Finland
| | - Chiara Pucciariello
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, 6009 WA, Australia
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy
| |
Collapse
|
24
|
Liu H, Lan Y, Wang L, Jiang N, Zhang X, Wu M, Xiang Y. CiAP2/ERF65 and CiAP2/ERF106, a pair of homologous genes in pecan (Carya illinoensis), regulate plant responses during submergence in transgenic Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154166. [PMID: 38163387 DOI: 10.1016/j.jplph.2023.154166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
When plants are entirely submerged, photosynthesis and respiration are severely restricted, affecting plant growth and potentially even causing plant death. The AP2/ERF superfamily has been widely reported to play a vital role in plant growth, development and resistance to biotic and abiotic stresses. However, no relevant studies exist on flooding stress in pecan. In this investigation, we observed that CiAP2/ERF65 positively modulated the hypoxia response during submergence, whereas CiAP2/ERF106 was sensitive to submergence. The levels of physiological and biochemical indicators, such as POD, CAT and among others, in CiAP2/ERF65-OE lines were significantly higher than those in wild-type Arabidopsis thaliana, indicating that the antioxidant capacity of CiAP2/ERF65-OE lines was enhanced under submergence. The RNA-seq results revealed that the maintenance of the expression levels of the antenna protein gene, different signaling pathways for regulation, as well as the storage and consumption of ATP, might account for the opposite phenotypes of CiAP2/ERF65 and CiAP2/ERF106. Furthermore, the expression of some stress-related genes was altered during submergence and reoxygenation. Overall, these findings enhance our understanding of submergence stress in pecan, providing important candidate genes for the molecular design and breeding of hypoxia resistant in plants.
Collapse
Affiliation(s)
- Hongxia Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Linna Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Nianqin Jiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoyue Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
25
|
Ma Z, Hu L, Jiang W. Understanding AP2/ERF Transcription Factor Responses and Tolerance to Various Abiotic Stresses in Plants: A Comprehensive Review. Int J Mol Sci 2024; 25:893. [PMID: 38255967 PMCID: PMC10815832 DOI: 10.3390/ijms25020893] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Abiotic stress is an adverse environmental factor that severely affects plant growth and development, and plants have developed complex regulatory mechanisms to adapt to these unfavourable conditions through long-term evolution. In recent years, many transcription factor families of genes have been identified to regulate the ability of plants to respond to abiotic stresses. Among them, the AP2/ERF (APETALA2/ethylene responsive factor) family is a large class of plant-specific proteins that regulate plant response to abiotic stresses and can also play a role in regulating plant growth and development. This paper reviews the structural features and classification of AP2/ERF transcription factors that are involved in transcriptional regulation, reciprocal proteins, downstream genes, and hormone-dependent signalling and hormone-independent signalling pathways in response to abiotic stress. The AP2/ERF transcription factors can synergise with hormone signalling to form cross-regulatory networks in response to and tolerance of abiotic stresses. Many of the AP2/ERF transcription factors activate the expression of abiotic stress-responsive genes that are dependent or independent of abscisic acid and ethylene in response to abscisic acid and ethylene. In addition, the AP2/ERF transcription factors are involved in gibberellin, auxin, brassinosteroid, and cytokinin-mediated abiotic stress responses. The study of AP2/ERF transcription factors and interacting proteins, as well as the identification of their downstream target genes, can provide us with a more comprehensive understanding of the mechanism of plant action in response to abiotic stress, which can improve plants' ability to tolerate abiotic stress and provide a more theoretical basis for increasing plant yield under abiotic stress.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Lanjuan Hu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Wenzhu Jiang
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| |
Collapse
|
26
|
Yao S, Kim SC, Li J, Tang S, Wang X. Phosphatidic acid signaling and function in nuclei. Prog Lipid Res 2024; 93:101267. [PMID: 38154743 PMCID: PMC10843600 DOI: 10.1016/j.plipres.2023.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Membrane lipidomes are dynamic and their changes generate lipid mediators affecting various biological processes. Phosphatidic acid (PA) has emerged as an important class of lipid mediators involved in a wide range of cellular and physiological responses in plants, animals, and microbes. The regulatory functions of PA have been studied primarily outside the nuclei, but an increasing number of recent studies indicates that some of the PA effects result from its action in nuclei. PA levels in nuclei are dynamic in response to stimuli. Changes in nuclear PA levels can result from activities of enzymes associated with nuclei and/or from movements of PA generated extranuclearly. PA has also been found to interact with proteins involved in nuclear functions, such as transcription factors and proteins undergoing nuclear translocation in response to stimuli. The nuclear action of PA affects various aspects of plant growth, development, and response to stress and environmental changes.
Collapse
Affiliation(s)
- Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Sang-Chul Kim
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Jianwu Li
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shan Tang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
27
|
Qi F, Wang F, Xiaoyang C, Wang Z, Lin Y, Peng Z, Zhang J, Wang N, Zhang J. Gene Expression Analysis of Different Organs and Identification of AP2 Transcription Factors in Flax ( Linum usitatissimum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3260. [PMID: 37765422 PMCID: PMC10535939 DOI: 10.3390/plants12183260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Flax (Linum usitatissimum L.) is an important oilseed crop widely cultivated for its oil and fiber. This study conducted transcriptome analysis to analyze the gene expression profiles of roots, leaves, stamens, pistils, and fruits in the flax cultivar Longya10. A total of 43,471 genes were detected in the RNA-seq data, with 34,497 genes showing differential expression levels between different organs. Gene expression patterns varied across different organs, with differences observed in expression-regulating genes within specific organs. However, 23,448 genes were found to be commonly expressed across all organs. Further analysis revealed organ-specific gene expressions, with 236, 690, 544, 909, and 1212 genes identified in pistils, fruits, leaves, roots, and stamens, respectively. Gene Ontology (GO) enrichment analysis was performed on these organ-specific genes, and significant enrichment was observed in various biological processes, cellular components, and molecular functions, providing new insights for the specific growth patterns of flax organs. Furthermore, we investigated the expression differences of AP2 transcription factors in various tissues and organs of Longya10. We identified 96 AP2 genes that were differentially expressed in different organs and annotated them into various biological pathways. Our results suggest that AP2 transcription factors may play important roles in regulating the growth and development of flax organs including stress response. In summary, our study provides a comprehensive analysis of gene expression patterns in different organs and tissues of flax plant and identifies potential critical regulators of flax organ growth and development. These findings contribute to a better understanding of the molecular mechanisms underlying flax organ development and may have important implications for the genetic improvement of flax crops.
Collapse
Affiliation(s)
- Fan Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
| | - Fu Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
| | - Chunxiao Xiaoyang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
| | - Yujie Lin
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
| | - Zhanwu Peng
- Information Center, Jilin Agricultural University, Changchun 130000, China;
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
| | - Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (F.Q.); (F.W.); (C.X.); (Z.W.); (Y.L.); (J.Z.)
- Department of Biology, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
28
|
Geng S, Lin Z, Xie S, Xiao J, Wang H, Zhao X, Zhou Y, Duan L. Ethylene enhanced waterlogging tolerance by changing root architecture and inducing aerenchyma formation in maize seedlings. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154042. [PMID: 37348450 DOI: 10.1016/j.jplph.2023.154042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Waterlogging negatively affects maize growth and yield. In this study, we found that ethylene played a vital role in plant adaptation to waterlogging. ET promotes better growth in seedlings under waterlogging conditions by altering root architecture and increasing lateral root formation by 42.1%. What's more, plants with high endogenous ethylene levels exhibited reduced sensitivity to waterlogging stress. ET also induced the formation of aerenchyma, a specialized tissue that facilitates gas exchange, in a different pattern compared to aerenchyma formed under waterlogging. Aerenchyma induced by ET was mainly located in the medial cortex of the roots and was not prone to decay. ethylene inhibited root elongation under normal conditions, but this inhibition was not alleviated under waterlogging stress. Upon activation of the ET signaling pathway, the transcription factor EREB90 promoted aerenchyma formation by enhancing the programmed cell death process. Overexpression of EREB90 resulted in increased waterlogging tolerance compared to wild type plants. Our findings suggest that pre-treatment of maize seedlings with ET before waterlogging stress can trigger the programmed cell death process and induce aerenchyma formation, thus improving waterlogging resistance.
Collapse
Affiliation(s)
- Shiying Geng
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing, 100193, China; State Key Laboratory of Plant Environmental Resilience, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing, 100193, China
| | - Ziqing Lin
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing, 100193, China; State Key Laboratory of Plant Environmental Resilience, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing, 100193, China
| | - Shipeng Xie
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing, 100193, China; State Key Laboratory of Plant Environmental Resilience, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing, 100193, China
| | - Jinzhong Xiao
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing, 100193, China; State Key Laboratory of Plant Environmental Resilience, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing, 100193, China
| | - Haiyan Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing, 100193, China
| | - Xi Zhao
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing, 100193, China
| | - Yuyi Zhou
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing, 100193, China; State Key Laboratory of Plant Environmental Resilience, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing, 100193, China.
| | - Liusheng Duan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing, 100193, China; State Key Laboratory of Plant Environmental Resilience, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing, 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
29
|
Manivannan A, Cheeran Amal T. Deciphering the complex cotton genome for improving fiber traits and abiotic stress resilience in sustainable agriculture. Mol Biol Rep 2023; 50:6937-6953. [PMID: 37349608 DOI: 10.1007/s11033-023-08565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Understanding the complex cotton genome is of paramount importance in devising a strategy for sustainable agriculture. Cotton is probably the most economically important cash crop known for its cellulose-rich fiber content. The cotton genome has become an ideal model for deciphering polyploidization due to its polyploidy, setting it apart from other major crops. However, the main challenge in understanding the functional and regulatory functions of many genes in cotton is still the complex cotton polyploidy genome, which is not limited to a single role. Cotton production is vulnerable to the sensitive effects of climate change, which can alter or aggravate soil, pests, and diseases. Thus, conventional plant breeding coupled with advanced technologies has led to substantial progress being made in cotton production. GENOMICS APPROACHES IN COTTON In the frontier areas of genomics research, cotton genomics has gained momentum accomplished by robust high-throughput sequencing platforms combined with novel computational tools to make the cotton genome more tractable. Advances in long-read sequencing have allowed for the generation of the complete set of cotton gene transcripts giving incisive scientific knowledge in cotton improvement. In contrast, the integration of the latest sequencing platforms has been used to generate multiple high-quality reference genomes in diploid and tetraploid cotton. While pan-genome and 3D genomic studies are still in the early stages in cotton, it is anticipated that rapid advances in sequencing, assembly algorithms, and analysis pipelines will have a greater impact on advanced cotton research. CONCLUSIONS This review article briefly compiles substantial contributions in different areas of the cotton genome, which include genome sequencing, genes, and their molecular regulatory networks in fiber development and stress tolerance mechanism. This will greatly help us in understanding the robust genomic organization which in turn will help unearth candidate genes for functionally important agronomic traits.
Collapse
Affiliation(s)
- Alagarsamy Manivannan
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, 641 003, Tamil Nadu, India.
| | - Thomas Cheeran Amal
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, 641 003, Tamil Nadu, India
| |
Collapse
|
30
|
Gu L, Chen X, Hou Y, Wang H, Wang H, Zhu B, Du X. ZmWRKY70 activates the expression of hypoxic responsive genes in maize and enhances tolerance to submergence in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107861. [PMID: 37364509 DOI: 10.1016/j.plaphy.2023.107861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/29/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Hypoxic stress due to submergence is a serious threat to the growth and development of maize. WRKY transcription factors are significant regulators of plant responses to various abiotic and biotic stresses. Nevertheless, their function and regulatory mechanisms in the resistance of maize to submergence stress remain unclear. Here we report the cloning of a maize WRKY transcription factor gene, ZmWRKY70, transcripts of which accumulate under submergence stress in maize seedlings. Subcellular localization analysis and yeast transcriptional activation assay indicated that ZmWRKY70 was localized in the nucleus and had transcriptional activation activity. Heterologous overexpression of ZmWRKY70 in Arabidopsis increased the tolerance of seeds and seedlings to submergence stress by upregulating the transcripts of several key genes involved in anaerobic respiration, such as group VII ethylene-responsive factor (ERFVII) (AtRAP2.2), alcohol dehydrogenase (AtADH1), pyruvate decarboxylase (AtPDC1/2), and sucrose synthase (AtSUS4), under submergence conditions. Moreover, the overexpression of ZmWRKY70 in maize mesophyll protoplasts enhanced the expression of ZmERFVII members (ZmERF148, ZmERF179, and ZmERF193), ZmADH1, ZmPDC2/3, and ZmSUS1. Yeast one-hybrid and dual-luciferase activity assays further confirmed that ZmWRKY70 enhanced the expression of ZmERF148 by binding to the W box motif located in the promoter region of ZmERF148. Together, these results indicate that ZmWRKY70 plays a significant role in tolerance of submergence stress. This work provides a theoretical basis, and suggests excellent genes, for biotechnological breeding to improve the tolerance of maize to submergence through the regulation of ZmWRKY genes.
Collapse
Affiliation(s)
- Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Xuanxuan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Yunyan Hou
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Heyan Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
31
|
Bian X, Cao Y, Zhi X, Ma N. Genome-Wide Identification and Analysis of the Plant Cysteine Oxidase (PCO) Gene Family in Brassica napus and Its Role in Abiotic Stress Response. Int J Mol Sci 2023; 24:11242. [PMID: 37511002 PMCID: PMC10379087 DOI: 10.3390/ijms241411242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Plant Cysteine Oxidase (PCO) is a plant O2-sensing enzyme catalyzing the oxidation of cysteine to Cys-sulfinic acid at the N-termini of target proteins. To better understand the Brassica napus PCO gene family, PCO genes in B. napus and related species were analyzed. In this study, 20, 7 and 8 PCO genes were identified in Brassica napus, Brassica rapa and Brassica oleracea, respectively. According to phylogenetic analysis, the PCOs were divided into five groups: PCO1, PCO2, PCO3, PCO4 and PCO5. Gene organization and motif distribution analysis suggested that the PCO gene family was relatively conserved during evolution. According to the public expression data, PCO genes were expressed in different tissues at different developmental stages. Moreover, qRT-PCR data showed that most of the Bna/Bra/BoPCO5 members were expressed in leaves, roots, flowers and siliques, suggesting an important role in both vegetative and reproductive development. Expression of BnaPCO was induced by various abiotic stress, especially waterlogging stress, which was consistent with the result of cis-element analysis. In this study, the PCO gene family of Brassicaceae was analyzed for the first time, which contributes to a comprehensive understanding of the origin and evolution of PCO genes in Brassicaceae and the function of BnaPCO in abiotic stress responses.
Collapse
Affiliation(s)
- Xiaohua Bian
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yifan Cao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ximin Zhi
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Ma
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
32
|
Thapa R, Tabien RE, Johnson CD, Septiningsih EM. Comparative transcriptomic analysis of germinating rice seedlings to individual and combined anaerobic and cold stress. BMC Genomics 2023; 24:185. [PMID: 37024819 PMCID: PMC10080786 DOI: 10.1186/s12864-023-09262-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Rice is one of the most important cereals consumed worldwide. Two major abiotic factors affecting rice plants in different growth stages are flooding stress and cold stress. These abiotic stresses can take place independently or simultaneously and significantly affect rice plants during germination and seedling growth. Fortunately, a wide array of phenotypic responses conferring flooding stress and chilling stress tolerance exist within the rice germplasm, indicating the presence of different molecular mechanisms underlying tolerance to these stresses. Understanding these differences may assist in developing improved rice cultivars having higher tolerance to both stresses. In this study, we conducted a comparative global gene expression analysis of two rice genotypes with contrasting phenotypes under cold stress, anaerobic stress, and combined cold and anaerobic stress during germination. RESULTS The differential gene expression analysis revealed that 5571 differentially expressed genes (DEGs), 7206 DEGs, and 13279 DEGs were identified under anaerobic stress, cold stress, and combined stress, respectively. Genes involved in the carbohydrate metabolic process, glucosyltransferase activity, regulation of nitrogen compound metabolic process, protein metabolic process, lipid metabolic process, cellular nitrogen compound biosynthetic process, lipid biosynthetic process, and a microtubule-based process were enriched across all stresses. Notably, the common Gene Ontology (GO) analysis identified three hub genes, namely Os08g0176800 (similar to mRNA-associated protein mrnp 41), Os11g0454200 (dehydrin), and OS10g0505900 (expressed protein). CONCLUSION A large number of differentially expressed genes were identified under anaerobic, cold conditions during germination and the combination of the two stress conditions in rice. These results will assist in the identification of promising candidate genes for possible manipulation toward rice crops that are more tolerant under flooding and cold during germination, both independently and concurrently.
Collapse
Affiliation(s)
- Ranjita Thapa
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Present address: Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Charles D Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Endang M Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
33
|
Pérez-Llorca M, Pollmann S, Müller M. Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress. Int J Mol Sci 2023; 24:5990. [PMID: 36983071 PMCID: PMC10051637 DOI: 10.3390/ijms24065990] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Ali-Mentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
34
|
Advances of Apetala2/Ethylene Response Factors in Regulating Development and Stress Response in Maize. Int J Mol Sci 2023; 24:ijms24065416. [PMID: 36982510 PMCID: PMC10049130 DOI: 10.3390/ijms24065416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Apetala2/ethylene response factor (AP2/ERF) is one of the largest families of transcription factors, regulating growth, development, and stress response in plants. Several studies have been conducted to clarify their roles in Arabidopsis and rice. However, less research has been carried out on maize. In this review, we systematically identified the AP2/ERFs in the maize genome and summarized the research progress related to AP2/ERF genes. The potential roles were predicted from rice homologs based on phylogenetic and collinear analysis. The putative regulatory interactions mediated by maize AP2/ERFs were discovered according to integrated data sources, implying that they involved complex networks in biological activities. This will facilitate the functional assignment of AP2/ERFs and their applications in breeding strategy.
Collapse
|
35
|
Dalle Carbonare L, Jiménez JDLC, Lichtenauer S, van Veen H. Plant responses to limited aeration: Advances and future challenges. PLANT DIRECT 2023; 7:e488. [PMID: 36993903 PMCID: PMC10040318 DOI: 10.1002/pld3.488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Limited aeration that is caused by tissue geometry, diffusion barriers, high elevation, or a flooding event poses major challenges to plants and is often, but not exclusively, associated with low oxygen. These processes span a broad interest in the research community ranging from whole plant and crop responses, post-harvest physiology, plant morphology and anatomy, fermentative metabolism, plant developmental processes, oxygen sensing by ERF-VIIs, gene expression profiles, the gaseous hormone ethylene, and O2 dynamics at cellular resolution. The International Society for Plant Anaerobiosis (ISPA) gathers researchers from all over the world contributing to understand the causes, responses, and consequences of limited aeration in plants. During the 14th ISPA meeting, major research progress was related to the evolution of O2 sensing mechanisms and the intricate network that balances low O2 signaling. Here, the work moved beyond flooding stress and emphasized novel underexplored roles of low O2 and limited aeration in altitude adaptation, fruit development and storage, and the vegetative development of growth apices. Regarding tolerance towards flooding, the meeting stressed the relevance and regulation of developmental plasticity, aerenchyma, and barrier formation to improve internal aeration. Additional newly explored flood tolerance traits concerned resource balance, senescence, and the exploration of natural genetic variation for novel tolerance loci. In this report, we summarize and synthesize the major progress and future challenges for low O2 and aeration research presented at the conference.
Collapse
Affiliation(s)
| | | | - Sophie Lichtenauer
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünsterGermany
| | - Hans van Veen
- Plant Stress Resilience, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
36
|
Rovere M, Pucciariello C, Castella C, Berger A, Forgia M, Guyet TA, Bosseno M, Pacoud M, Brouquisse R, Perata P, Boscari A. Group VII ethylene response factors, MtERF74 and MtERF75, sustain nitrogen fixation in Medicago truncatula microoxic nodules. PLANT, CELL & ENVIRONMENT 2023; 46:607-620. [PMID: 36479691 DOI: 10.1111/pce.14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Group VII ethylene response factors (ERF-VII) are plant-specific transcription factors (TFs) known for their role in the activation of hypoxia-responsive genes under low oxygen stress but also in plant endogenous hypoxic niches. However, their function in the microaerophilic nitrogen-fixing nodules of legumes has not yet been investigated. We investigated regulation and the function of the two Medicago truncatula ERF-VII TFs (MtERF74 and MtERF75) in roots and nodules, MtERF74 and MtERF75 in response to hypoxia stress and during the nodulation process using an RNA interference strategy and targeted proteolysis of MtERF75. Knockdown of MtERF74 and MtERF75 partially blocked the induction of hypoxia-responsive genes in roots exposed to hypoxia stress. In addition, a significant reduction in nodulation capacity and nitrogen fixation activity was observed in mature nodules of double knockdown transgenic roots. Overall, the results indicate that MtERF74 and MtERF75 are involved in the induction of MtNR1 and Pgb1.1 expression for efficient Phytogb-nitric oxide respiration in the nodule.
Collapse
Affiliation(s)
- Martina Rovere
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claude Castella
- INRAE, UR1115 Plantes et Systèmes de culture Horticoles (PSH), Site Agroparc, Avignon, France
| | - Antoine Berger
- Agroécologie, AgroSup Dijon, CNRS, INRAE, University of Bourgogne Franche-Comté, Dijon, France
| | - Marco Forgia
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Tran A Guyet
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Marc Bosseno
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Marie Pacoud
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | | | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
37
|
Luan H, Chen C, Yang J, Qiao H, Li H, Li S, Zheng J, Shen H, Xu X, Wang J. Genome-wide association scan and transcriptome analysis reveal candidate genes for waterlogging tolerance in cultivated barley. FRONTIERS IN PLANT SCIENCE 2022; 13:1048939. [PMID: 36589094 PMCID: PMC9798782 DOI: 10.3389/fpls.2022.1048939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Waterlogging is the primary abiotic factor that destabilizes the yield and quality of barley (Hordeum vulgare L.). However, the genetic basis of waterlogging tolerance remains poorly understood. In this study, we conducted a genome-wide association study (GWAS) by involving 106,131 single-nucleotide polymorphisms (SNPs) with a waterlogging score (WLS) of 250 barley accessions in two years. Out of 72 SNPs that were found to be associated with WLS, 34 were detected in at least two environments. We further performed the transcriptome analysis in root samples from TX9425 (waterlogging tolerant) and Franklin (waterlogging sensitive), resulting in the identification of 5,693 and 8,462 differentially expressed genes (DEGs) in these genotypes, respectively. The identified DEGs included various transcription factor (TF) genes, primarily including AP2/ERF, bZIP and MYB. By combining GWAS and RNA-seq, we identified 27 candidate genes associated with waterlogging, of which three TFs (HvDnaJ, HvMADS and HvERF1) were detected in multiple treatments. Moreover, by overexpressing barley HvERF1 in Arabidopsis, the transgenic lines were detected with enhanced waterlogging tolerance. Altogether, our results provide new insights into the genetic mechanisms of waterlogging, which have implications in the molecular breeding of waterlogging-tolerant barley varieties.
Collapse
Affiliation(s)
- Haiye Luan
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Changyu Chen
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Ju Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Hailong Qiao
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, China
| | - Hongtao Li
- Lianyungang academy of agricultural sciences, Lianyungang, China
| | - Shufeng Li
- Lianyungang academy of agricultural sciences, Lianyungang, China
| | - Junyi Zheng
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, China
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng, Jiangsu, China
| | - Huiquan Shen
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, China
| | - Xiao Xu
- Institute of Agricultural Science in Jiangsu Coastal Areas, Yancheng, China
| | - Jun Wang
- Lianyungang academy of agricultural sciences, Lianyungang, China
| |
Collapse
|
38
|
Pereira Neto LG, Rossini BC, Marino CL, Toorop PE, Silva EAA. Comparative Seeds Storage Transcriptome Analysis of Astronium fraxinifolium Schott, a Threatened Tree Species from Brazil. Int J Mol Sci 2022; 23:ijms232213852. [PMID: 36430327 PMCID: PMC9696909 DOI: 10.3390/ijms232213852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
Astronium fraxinifolium Schott (Anacardiaceae), also known as a 'gonçalo-alves', is a tree of the American tropics, with distribution in Mexico, part of Central America, Argentina, Bolivia, Brazil and Paraguay. In Brazil it is an endangered species that occurs in the Cerrado, Caatinga and in the Amazon biomes. In support of ex situ conservation, this work aimed to study two accessions with different longevity (p50) of A. fraxinifolium collected from two different geographic regions, and to evaluate the transcriptome during aging of the seeds in order to identify genes related to seed longevity. Artificial ageing was performed at a constant temperature of 45 °C and 60% relative humidity. RNA was extracted from 100 embryonic axes exposed to control and aging conditions for 21 days. The transcriptome analysis revealed differentially expressed genes such as Late Embryogenesis Abundant (LEA) genes, genes involved in the photosystem, glycine rich protein (GRP) genes, and several transcription factors associated with embryo development and ubiquitin-conjugating enzymes. Thus, these results contribute to understanding which genes play a role in seed ageing, and may serve as a basis for future functional characterization of the seed aging process in A. fraxinifolium.
Collapse
Affiliation(s)
| | - Bruno Cesar Rossini
- Biotechnology Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18607-440, Brazil
- Correspondence:
| | - Celso Luis Marino
- Biotechnology Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18607-440, Brazil
- Departament of Biological and Chemical Sciences, Biosciences Institute, São Paulo State University “Júlio de Mesquita Filho”, Botucatu 18618-689, Brazil
| | - Peter E. Toorop
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| | - Edvaldo Aparecido Amaral Silva
- Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu 18610-034, Brazil
| |
Collapse
|
39
|
Identification of Functional Genetic Variations Underlying Flooding Tolerance in Brazilian Soybean Genotypes. Int J Mol Sci 2022; 23:ijms231810611. [PMID: 36142529 PMCID: PMC9502317 DOI: 10.3390/ijms231810611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Flooding is a frequent environmental stress that reduces soybean (Glycine max) growth and grain yield in many producing areas in the world, such as, e.g., in the United States, Southeast Asia and Southern Brazil. In these regions, soybean is frequently cultivated in lowland areas by rotating with rice (Oryza sativa), which provides numerous technical, economic and environmental benefits. Given these realities, this work aimed to characterize physiological responses, identify genes differentially expressed under flooding stress in Brazilian soybean genotypes with contrasting flooding tolerance, and select SNPs with potential use for marker-assisted selection. Soybean cultivars TECIRGA 6070 (flooding tolerant) and FUNDACEP 62 (flooding sensitive) were grown up to the V6 growth stage and then flooding stress was imposed. Total RNA was extracted from leaves 24 h after the stress was imposed and sequenced. In total, 421 induced and 291 repressed genes were identified in both genotypes. TECIRGA 6070 presented 284 and 460 genes up- and down-regulated, respectively, under flooding conditions. Of those, 100 and 148 genes were exclusively up- and down-regulated, respectively, in the tolerant genotype. Based on the RNA sequencing data, SNPs in differentially expressed genes in response to flooding stress were identified. Finally, 38 SNPs, located in genes with functional annotation for response to abiotic stresses, were found in TECIRGA 6070 and absent in FUNDACEP 62. To validate them, 22 SNPs were selected for designing KASP assays that were used to genotype a panel of 11 contrasting genotypes with known phenotypes. In addition, the phenotypic and grain yield impacts were analyzed in four field experiments using a panel of 166 Brazilian soybean genotypes. Five SNPs possibly related to flooding tolerance in Brazilian soybean genotypes were identified. The information generated from this research will be useful to develop soybean genotypes adapted to poorly drained soils or areas subject to flooding.
Collapse
|
40
|
Sharma S, Bhatt U, Sharma J, Kalaji H, Mojski J, Soni V. Ultrastructure, adaptability, and alleviation mechanisms of photosynthetic apparatus in plants under waterlogging: A review. PHOTOSYNTHETICA 2022; 60:430-444. [PMID: 39650110 PMCID: PMC11558593 DOI: 10.32615/ps.2022.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2024]
Abstract
Photosynthesis is a process highly sensitive to various abiotic and biotic stresses in plants. Among them, the major abiotic stress, waterlogging, affects the crop's growth and productivity. Under waterlogging, the photosynthetic apparatus of plants was destroyed. Waterlogging reduced chlorophyll content and the net photosynthetic rate. Therefore, this updated review summarized the effect of waterlogging on chloroplast ultrastructure, photosynthetic characteristics, and chlorophyll fluorescence attributes of plant species. By studying various research papers, we found that intercellular concentration of available carbon dioxide in mesophyll cells, assimilation of carbon, and the net photosynthetic ratio declined under waterlogging. The chlorophyll fluorescence efficiency of plants decreased under waterlogging. Thus, the study of photosynthesis in plants under waterlogging should be done with respect to changing climate. Moreover, the recognition of photosynthetic characteristics present in tolerant species will be beneficial for designing the waterlogging-tolerant crop plant in changing environments.
Collapse
Affiliation(s)
- S. Sharma
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, 31300 Udaipur, India
| | - U. Bhatt
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, 31300 Udaipur, India
| | - J. Sharma
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, 31300 Udaipur, India
| | - H.M. Kalaji
- Institute of Technology and Life Sciences, National Research Institute, Falenty, Aleja Hrabska 3, 05-090 Raszyn, Poland
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - J. Mojski
- Twoj Swiat Jacek Mojski, Stefana Okrzei 39, 21-400 Lukow, Poland
- Fundacja Zielona Infrastuktura, Wiatraki 3E, 21-400 Lukow, Poland
| | - V. Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, 31300 Udaipur, India
| |
Collapse
|
41
|
Singh L, Dhillon GS, Kaur S, Dhaliwal SK, Kaur A, Malik P, Kumar A, Gill RK, Kaur S. Genome-wide Association Study for Yield and Yield-Related Traits in Diverse Blackgram Panel (Vigna mungo L. Hepper) Reveals Novel Putative Alleles for Future Breeding Programs. Front Genet 2022; 13:849016. [PMID: 35899191 PMCID: PMC9310006 DOI: 10.3389/fgene.2022.849016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Blackgram (Vigna mungo L. Hepper) is an important tropical and sub-tropical short-duration legume that is rich in dietary protein and micronutrients. Producing high-yielding blackgram varieties is hampered by insufficient genetic variability, absence of suitable ideotypes, low harvest index and susceptibility to biotic-abiotic stresses. Seed yield, a complex trait resulting from the expression and interaction of multiple genes, necessitates the evaluation of diverse germplasm for the identification of novel yield contributing traits. Henceforth, a panel of 100 blackgram genotypes was evaluated at two locations (Ludhiana and Gurdaspur) across two seasons (Spring 2019 and Spring 2020) for 14 different yield related traits. A wide range of variability, high broad-sense heritability and a high correlation of grain yield were observed for 12 out of 14 traits studied among all environments. Investigation of population structure in the panel using a set of 4,623 filtered SNPs led to identification of four sub-populations based on ad-hoc delta K and Cross entropy value. Using Farm CPU model and Mixed Linear Model algorithms, a total of 49 significant SNP associations representing 42 QTLs were identified. Allelic effects were found to be statistically significant at 37 out of 42 QTLs and 50 known candidate genes were identified in 24 of QTLs.
Collapse
Affiliation(s)
- Lovejit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Sarabjit Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Sandeep Kaur Dhaliwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Palvi Malik
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, India
| | - Ranjit Kaur Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Satinder Kaur,
| |
Collapse
|
42
|
Xu H, Zhang H, Fan Y, Wang R, Cui R, Liu X, Chu S, Jiao Y, Zhang X, Zhang D. The purple acid phosphatase GmPAP17 predominantly enhances phosphorus use efficiency in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111283. [PMID: 35643608 DOI: 10.1016/j.plantsci.2022.111283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Purple acid phosphatase (PAP) is an important plant acid phosphatase, which can secrete to the rhizosphere to decompose organophosphorus, promote phosphorus use efficiency, plant growth and development. However, little is known about the functions of intracellular PAP in plants, especially for soybean. Our previous study integrating QTL mapping and transcriptome analysis identified an promising low phosphorus (LP)-induced gene GmPAP17. Here, we determined that GmPAP17 was mainly expressed in roots and had a strong response to LP stress. Furthermore, and the relative expression in the root of LP tolerant genotypes NN94-156 was significantly greater than that of LP sensitive genotype Bogao after LP stress treatment. The overexpression of GmPAP17 significantly enhanced both acid phosphatase activity and growth performance of hairy roots under LP stress condition, it was vice versa for RNAi interference of GmPAP17, indicating that GmPAP17 plays an important role in P use efficiency. Moreover, yeast two-hybrid and bimolecular fluorescence complementation analysis showed that GmRAP2.2 was involved in the regulation network of GmPAP17. Taken together, our results suggest that GmPAP17 is a novel plant PAP that functions in the adaptation of soybean to LP stress, possibly through its involvement in P recycling in plants.
Collapse
Affiliation(s)
- Huanqing Xu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hengyou Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yukun Fan
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruiyang Wang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruifan Cui
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoqian Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xingguo Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
43
|
Li L, Huang G, Xiang W, Zhu H, Zhang H, Zhang J, Ding Z, Liu J, Wu D. Integrated Transcriptomic and Proteomic Analyses Uncover the Regulatory Mechanisms of Myricaria laxiflora Under Flooding Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:924490. [PMID: 35755690 PMCID: PMC9226631 DOI: 10.3389/fpls.2022.924490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 06/01/2023]
Abstract
Flooding is one of the major environmental stresses that severely influence plant survival and development. However, the regulatory mechanisms underlying flooding stress remain largely unknown in Myricaria laxiflora, an endangered plant mainly distributed in the flood zone of the Yangtze River, China. In this work, transcriptome and proteome were performed in parallel in roots of M. laxiflora during nine time-points under the flooding and post-flooding recovery treatments. Overall, highly dynamic and stage-specific expression profiles of genes/proteins were observed during flooding and post-flooding recovery treatment. Genes related to auxin, cell wall, calcium signaling, and MAP kinase signaling were greatly down-regulated exclusively at the transcriptomic level during the early stages of flooding. Glycolysis and major CHO metabolism genes, which were regulated at the transcriptomic and/or proteomic levels with low expression correlations, mainly functioned during the late stages of flooding. Genes involved in reactive oxygen species (ROS) scavenging, mitochondrial metabolism, and development were also regulated exclusively at the transcriptomic level, but their expression levels were highly up-regulated upon post-flooding recovery. Moreover, the comprehensive expression profiles of genes/proteins related to redox, hormones, and transcriptional factors were also investigated. Finally, the regulatory networks of M. laxiflora in response to flooding and post-flooding recovery were discussed. The findings deepen our understanding of the molecular mechanisms of flooding stress and shed light on the genes and pathways for the preservation of M. laxiflora and other endangered plants in the flood zone.
Collapse
Affiliation(s)
- Linbao Li
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Guiyun Huang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Weibo Xiang
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Haofei Zhu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Haibo Zhang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Jun Zhang
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| | - Zehong Ding
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Jihong Liu
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Di Wu
- Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang, China
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, Beijing, China
| |
Collapse
|
44
|
Strawberry FaSnRK1α Regulates Anaerobic Respiratory Metabolism under Waterlogging. Int J Mol Sci 2022; 23:ijms23094914. [PMID: 35563305 PMCID: PMC9101944 DOI: 10.3390/ijms23094914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Sucrose nonfermenting-1-related protein kinase 1 (SnRK1) is a central integrator of plant stress and energy starvation signalling pathways. We found that the FaSnRK1α-overexpression (OE) roots had a higher respiratory rate and tolerance to waterlogging than the FaSnRK1α-RNAi roots, suggesting that FaSnRK1α plays a positive role in the regulation of anaerobic respiration under waterlogging. FaSnRK1α upregulated the activity of anaerobic respiration-related enzymes including hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). FaSnRK1α also enhanced the ability to quench reactive oxygen species (ROS) by increasing antioxidant enzyme activities. We sequenced the transcriptomes of the roots of both wild-type (WT) and FaSnRK1α-RNAi plants, and the differentially expressed genes (DEGs) were clearly enriched in the defence response, response to biotic stimuli, and cellular carbohydrate metabolic process. In addition, 42 genes involved in glycolysis and 30 genes involved in pyruvate metabolism were significantly regulated in FaSnRK1α-RNAi roots. We analysed the transcript levels of two anoxia-related genes and three ERFVIIs, and the results showed that FaADH1, FaPDC1, FaHRE2 and FaRAP2.12 were upregulated in response to FaSnRK1α, indicating that FaSnRK1α may be involved in the ethylene signalling pathway to improve waterlogging tolerance. In conclusion, FaSnRK1α increases the expression of ERFVIIs and further activates anoxia response genes, thereby enhancing anaerobic respiration metabolism in response to low-oxygen conditions during waterlogging.
Collapse
|
45
|
Zhu P, Chen Y, Wu F, Meng M, Ji K. Expression and promoter analysis of MEP pathway enzyme-encoding genes in Pinus massoniana Lamb. PeerJ 2022; 10:e13266. [PMID: 35433125 PMCID: PMC9012177 DOI: 10.7717/peerj.13266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
The methylerythritol phosphate (MEP) pathway provides the universal basic blocks for the biosynthesis of terpenoids and plays a critical role in the growth and development of higher plants. Pinus massoniana is the most valuable oleoresin producer tree with an extensive terrestrial range. It has the potential to produce more oleoresin with commercial value, while being resistant to pine wood nematode (PWN) disease. For this study, eleven MEP pathway associated enzyme-encoding genes and ten promoters were isolated from P. massoniana. Three PmDXS and two PmHDR existed as multi-copy genes, whereas the other six genes existed as single copies. All eleven of these MEP enzymes exhibited chloroplast localization with transient expression. Most of the MEP genes showed higher expression in the needles, while PmDXS2, PmDXS3, and PmHDR1 had high expression in the roots. The expressions of a few MEP genes could be induced under exogenous elicitor conditions. The functional complementation in a dxs-mutant Escherichia coli strain showed the DXS enzymatic activities of the three PmDXSs. High throughput TAIL PCR was employed to obtain the upstream sequences of the genes encoding for enzymes in the MEP pathway, whereby abundant light responsive cis-elements and transcription factor (TF) binding sites were identified within the ten promoters. This study provides a theoretical basis for research on the functionality and transcriptional regulation of MEP enzymes, as well as a potential strategy for high-resin generation and improved genetic resistance in P. massoniana.
Collapse
|
46
|
Wang Z, Xue JY, Hu SY, Zhang F, Yu R, Chen D, Van de Peer Y, Jiang J, Song A, Ni L, Hua J, Lu Z, Yu C, Yin Y, Gu C. The genome of hibiscus hamabo reveals its adaptation to saline and waterlogged habitat. HORTICULTURE RESEARCH 2022; 9:uhac067. [PMID: 35480957 PMCID: PMC9039499 DOI: 10.1093/hr/uhac067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Hibiscus hamabo is a semi-mangrove species with strong tolerance to salt and waterlogging stress. However, the molecular basis and mechanisms that underlie this strong adaptability to harsh environments remain poorly understood. Here, we assembled a high-quality, chromosome-level genome of this semi-mangrove plant and analyzed its transcriptome under different stress treatments to reveal regulatory responses and mechanisms. Our analyses suggested that H. hamabo has undergone two recent successive polyploidy events, a whole-genome duplication followed by a whole-genome triplication, resulting in an unusually large gene number (107 309 genes). Comparison of the H. hamabo genome with that of its close relative Hibiscus cannabinus, which has not experienced a recent WGT, indicated that genes associated with high stress resistance have been preferentially preserved in the H. hamabo genome, suggesting an underlying association between polyploidy and stronger stress resistance. Transcriptomic data indicated that genes in the roots and leaves responded differently to stress. In roots, genes that regulate ion channels involved in biosynthetic and metabolic processes responded quickly to adjust the ion concentration and provide metabolic products to protect root cells, whereas no such rapid response was observed from genes in leaves. Using co-expression networks, potential stress resistance genes were identified for use in future functional investigations. The genome sequence, along with several transcriptome datasets, provide insights into genome evolution and the mechanism of salt and waterlogging tolerance in H. hamabo, suggesting the importance of polyploidization for environmental adaptation.
Collapse
Affiliation(s)
- Zhiquan Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai-Ya Hu
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yves Van de Peer
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB-UGent Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Longjie Ni
- College of Forest Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianfeng Hua
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Zhiguo Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Chaoguang Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Chunsun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
- College of Forest Sciences, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Utilization of Agricultural Germplasm, Nanjing, 210014, China
| |
Collapse
|
47
|
Chen Y, Dai Y, Li Y, Yang J, Jiang Y, Liu G, Yu C, Zhong F, Lian B, Zhang J. Overexpression of the Salix matsudana SmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5. BMC PLANT BIOLOGY 2022; 22:102. [PMID: 35255820 PMCID: PMC8900321 DOI: 10.1186/s12870-022-03487-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Salix matsudana (Koidz.) is a widely planted ornamental allotetraploid tree species. Genetic engineering can be used to enhance the tolerance of this species to soil salinization, endowing varieties with the ability to grow along coastlines, thereby mitigating afforestation and protecting the environment. The AP2/ERF family of transcription factors (TFs) plays multidimensional roles in plant biotic/abiotic stress tolerance and plant development. In this study, we cloned the SmAP2-17 gene and performed functional analysis of its role in salt tolerance. This study aims to identify key genes for future breeding of stress-resistant varieties of Salix matsudana. RESULTS SmAP2-17 was predicted to be a homolog of AP2-like ethylene-responsive transcription factor ANT isoform X2 from Arabidopsis, with a predicted ORF of 2058 bp encoding an estimated protein of 685 amino acids containing two conserved AP2 domains (PF00847.20). SmAP2-17 had a constitutive expression pattern and was localized to the nucleus. The overexpression of the native SmAP2-17 CDS sequence in Arabidopsis did not increase salt tolerance because of the reduced expression level of ectopic SmAP2-17, potentially caused by salt-induced RNAi. Transgenic lines with high expression of optimized SmAP2-17 CDS under salt stress showed enhanced tolerance to salt. Moreover, the expression of general stress marker genes and important salt stress signaling genes, including RD29A, ABI5, SOS3, AtHKT1, and RBohF, were upregulated in SmAP2-17-overexpressed lines, with expression levels consistent with that of SmAP2-17 or optimized SmAP2-17. Promoter activity analysis using dual luciferase analysis showed that SmAP2-17 could bind the promoters of SOS3 and ABI5 to activate their expression, which plays a key role in regulating salt tolerance. CONCLUSIONS The SmAP2-17 gene isolated from Salix matsudana (Koidz.) is a positive regulator that improves the resistance of transgenic plants to salt stress by upregulating SOS3 and ABI5 genes. This study provides a potential functional gene resource for future generation of salt-resistant Salix lines by genetic engineering.
Collapse
Affiliation(s)
- Yanhong Chen
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Yuanhao Dai
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Yixin Li
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Jie Yang
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Yuna Jiang
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Guoyuan Liu
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Chunmei Yu
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Zhong
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Bolin Lian
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Zhang
- Key Lab of Landscape Plant Genetics and Breeding, School of Life Science, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
48
|
Tian W, Huang Y, Li D, Meng L, He T, He G. Identification of StAP2/ERF genes of potato (Solanum tuberosum) and their multiple functions in detoxification and accumulation of cadmium in yest: Implication for Genetic-based phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152322. [PMID: 34902403 DOI: 10.1016/j.scitotenv.2021.152322] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 05/02/2023]
Abstract
The discovery of genes responsible for the tolerance to heavy metals is critical for genome-based phytotechnologies. In this study, we exposed potato (Solanum tuberosum L.) to Cd/Pb/Zn/Ni/Cu as an approach to explore the potential genes associated with stress tolerance. Using genome-wide analysis, we identified 181 potential StAP2/ERF genes that were classified into three subgroups. These StAP2/ERF genes were significantly related to heavy metal stress and are more specifically related to Cd tolerance in yeast. Yeast complementation tests showed that the StAP2/ERF129/139 genes (Subgroup 1) decreased Cd accumulation (Cd reduction-type), whilst the StAP2/ERF044/180 genes (Subgroup 2) promoted Cd accumulation in yeast which showed inhibited growth (Cd accumulation-type). The StAP2/ERF075/077/126 genes (Subgroup 3) promoted Cd accumulation and yeast growth (Cd detoxification-type). We used phylogenetic analysis to classify the 181 genes into three Cd tolerant types defined above in which the numbers of Cd reduction, accumulation, and detoxification type genes were 81, 65 and 35 respectively. Also, we performed tandem duplication, phylogenetic, and conserved motifs analysis to characterization the StAP2/ERF genes and results supported their functions in Cd tolerance. Our study showed that StAP2/ERFs is indispensable in Cd uptake and tolerance, and may be useful towards designing gene-modified plants with improved Cd tolerances.
Collapse
Affiliation(s)
- Weijun Tian
- Agricultural College of Guizhou University, Guiyang 550025, PR China
| | - Yun Huang
- Agricultural College of Guizhou University, Guiyang 550025, PR China
| | - Dandan Li
- Agricultural College of Guizhou University, Guiyang 550025, PR China
| | - Lulu Meng
- Agricultural College of Guizhou University, Guiyang 550025, PR China
| | - Tengbing He
- Agricultural College of Guizhou University, Guiyang 550025, PR China; Institute of New Rural Development of Guizhou University, Guiyang 550025, PR China.
| | - Guandi He
- Agricultural College of Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
49
|
Abstract
Drought and waterlogging seriously affect the growth of plants and are considered severe constraints on agricultural and forestry productivity; their frequency and degree have increased over time due to global climate change. The morphology, photosynthetic activity, antioxidant enzyme system and hormone levels of plants could change in response to water stress. The mechanisms of these changes are introduced in this review, along with research on key transcription factors and genes. Both drought and waterlogging stress similarly impact leaf morphology (such as wilting and crimping) and inhibit photosynthesis. The former affects the absorption and transportation mechanisms of plants, and the lack of water and nutrients inhibits the formation of chlorophyll, which leads to reduced photosynthetic capacity. Constitutive overexpression of 9-cis-epoxydioxygenase (NCED) and acetaldehyde dehydrogenase (ALDH), key enzymes in abscisic acid (ABA) biosynthesis, increases drought resistance. The latter forces leaf stomata to close in response to chemical signals, which are produced by the roots and transferred aboveground, affecting the absorption capacity of CO2, and reducing photosynthetic substrates. The root system produces adventitious roots and forms aerenchymal to adapt the stresses. Ethylene (ETH) is the main response hormone of plants to waterlogging stress, and is a member of the ERFVII subfamily, which includes response factors involved in hypoxia-induced gene expression, and responds to energy expenditure through anaerobic respiration. There are two potential adaptation mechanisms of plants (“static” or “escape”) through ETH-mediated gibberellin (GA) dynamic equilibrium to waterlogging stress in the present studies. Plant signal transduction pathways, after receiving stress stimulus signals as well as the regulatory mechanism of the subsequent synthesis of pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) enzymes to produce ethanol under a hypoxic environment caused by waterlogging, should be considered. This review provides a theoretical basis for plants to improve water stress tolerance and water-resistant breeding.
Collapse
|
50
|
Chen Y, Yang J, Guo H, Du Y, Liu G, Yu C, Zhong F, Lian B, Zhang J. Comparative transcriptomic analysis reveals potential mechanisms for high tolerance to submergence in arbor willows. PeerJ 2022; 10:e12881. [PMID: 35186476 PMCID: PMC8818271 DOI: 10.7717/peerj.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/13/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Submergence threatens plant growth and survival by decreasing or eliminating oxygen supply. Uncovering the complex regulatory network underlying the tolerance of Salix to submergence and identifying the key regulators are important for molecular-assisted breeding of Salix. METHODS In this study, we screened germplasm resources of arbor willows and discovered both submergence-tolerant and submergence-sensitive varieties. Then, by performing RNA-seq, we compared the differences between the transcriptomes of two varieties, i.e., the submergence-tolerant variety "Suliu 795" and the submergence-sensitive variety "Yanliu No. 1," and the different submergence treatment time points to identify the potential mechanisms of submergence in Salix and the unique approaches by which the variety "Suliu 795" possessed a higher tolerance compared to "Yanliu No. 1". RESULTS A total of 22,790 differentially expressed genes were identified from 25 comparisons. Using gene ontology annotation and pathway enrichment analysis, the expression pattern of transcriptional factors, important players in hormone signaling, carbohydrate metabolism, and the anaerobic respiration pathway were found to differ significantly between the two varieties. The principal component analysis and qRT-PCR results verified the reliability of the RNA sequencing data. The results of further analysis indicated that "Suliu 795" had higher submergence tolerant activity than "Yanliu No. 1" because of three characteristics: (1) high sensitivity to the probable low oxygen stress and initiation of appropriate responding mechanisms in advance; (2) maintenance of energy homeostasis to prevent energy depletion under hypoxic stress; and (3) keep "quiescence" through fine-tuning the equilibrium between phytohormones GA, SA and ethylene.
Collapse
Affiliation(s)
- Yanhong Chen
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Jie Yang
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Hongyi Guo
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Yawen Du
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Guoyuan Liu
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Chunmei Yu
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Fei Zhong
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Bolin Lian
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| | - Jian Zhang
- School of Life Science, Nantong University, Nantong, Jiangsu Province, China,Key Lab of Landscape Plant Genetics and Breeding, Nantong, China
| |
Collapse
|