1
|
Liu S, Ding SW. Antiviral RNA interference inhibits virus vertical transmission in plants. Cell Host Microbe 2024; 32:1691-1704.e4. [PMID: 39243759 DOI: 10.1016/j.chom.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
Known for over a century, seed transmission of plant viruses promotes trans-continental virus dissemination and provides the source of infection to trigger devastating disease epidemics in crops. However, it remains unknown whether there is a genetically defined immune pathway to suppress virus vertical transmission in plants. Here, we demonstrate potent immunosuppression of cucumber mosaic virus (CMV) seed transmission in its natural host Arabidopsis thaliana by antiviral RNA interference (RNAi) pathway. Immunofluorescence microscopy reveals predominant embryo infection at four stages of embryo development. We show that antiviral RNAi confers resistance to seed infection with different genetic requirements and drastically enhanced potency compared with the inhibition of systemic infection of whole plants. Moreover, we detect efficient seed transmission of a mutant CMV lacking its RNAi suppressor gene in mutant plants defective in antiviral RNAi, providing further support for the immunosuppression of seed transmission by antiviral RNAi.
Collapse
Affiliation(s)
- Si Liu
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
2
|
Chekan JR, Mydy LS, Pasquale MA, Kersten RD. Plant peptides - redefining an area of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2024; 41:1020-1059. [PMID: 38411572 PMCID: PMC11253845 DOI: 10.1039/d3np00042g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 02/28/2024]
Abstract
Covering 1965 to February 2024Plants are prolific peptide chemists and are known to make thousands of different peptidic molecules. These peptides vary dramatically in their size, chemistry, and bioactivity. Despite their differences, all plant peptides to date are biosynthesized as ribosomally synthesized and post-translationally modified peptides (RiPPs). Decades of research in plant RiPP biosynthesis have extended the definition and scope of RiPPs from microbial sources, establishing paradigms and discovering new families of biosynthetic enzymes. The discovery and elucidation of plant peptide pathways is challenging due to repurposing and evolution of housekeeping genes as both precursor peptides and biosynthetic enzymes and due to the low rates of gene clustering in plants. In this review, we highlight the chemistry, biosynthesis, and function of the known RiPP classes from plants and recommend a nomenclature for the recent addition of BURP-domain-derived RiPPs termed burpitides. Burpitides are an emerging family of cyclic plant RiPPs characterized by macrocyclic crosslinks between tyrosine or tryptophan side chains and other amino acid side chains or their peptide backbone that are formed by copper-dependent BURP-domain-containing proteins termed burpitide cyclases. Finally, we review the discovery of plant RiPPs through bioactivity-guided, structure-guided, and gene-guided approaches.
Collapse
Affiliation(s)
- Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Michael A Pasquale
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Coppola M, Mach L, Gallois P. Plant cathepsin B, a versatile protease. FRONTIERS IN PLANT SCIENCE 2024; 15:1305855. [PMID: 38463572 PMCID: PMC10920296 DOI: 10.3389/fpls.2024.1305855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/19/2024] [Indexed: 03/12/2024]
Abstract
Plant proteases are essential enzymes that play key roles during crucial phases of plant life. Some proteases are mainly involved in general protein turnover and recycle amino acids for protein synthesis. Other proteases are involved in cell signalling, cleave specific substrates and are key players during important genetically controlled molecular processes. Cathepsin B is a cysteine protease that can do both because of its exopeptidase and endopeptidase activities. Animal cathepsin B has been investigated for many years, and much is known about its mode of action and substrate preferences, but much remains to be discovered about this potent protease in plants. Cathepsin B is involved in plant development, germination, senescence, microspore embryogenesis, pathogen defence and responses to abiotic stress, including programmed cell death. This review discusses the structural features, the activity of the enzyme and the differences between the plant and animal forms. We discuss its maturation and subcellular localisation and provide a detailed overview of the involvement of cathepsin B in important plant life processes. A greater understanding of the cell signalling processes involving cathepsin B is needed for applied discoveries in plant biotechnology.
Collapse
Affiliation(s)
- Marianna Coppola
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Patrick Gallois
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Liu Q, Zhao Y, Rahman S, She M, Zhang J, Yang R, Islam S, O'Hara G, Varshney RK, Liu H, Ma H, Ma W. The putative vacuolar processing enzyme gene TaVPE3cB is a candidate gene for wheat stem pith-thickness. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:138. [PMID: 37233825 DOI: 10.1007/s00122-023-04372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE The vacuolar processing enzyme gene TaVPE3cB is identified as a candidate gene for a QTL of wheat pith-thickness on chromosome 3B by BSR-seq and differential expression analyses. The high pith-thickness (PT) of the wheat stem could greatly enhance stem mechanical strength, especially the basal internodes which support the heavier upper part, such as upper stems, leaves and spikes. A QTL for PT in wheat was previously discovered on 3BL in a double haploid population of 'Westonia' × 'Kauz'. Here, a bulked segregant RNA-seq analysis was applied to identify candidate genes and develop associated SNP markers for PT. In this study, we aimed at screening differentially expressed genes (DEGs) and SNPs in the 3BL QTL interval. Sixteen DEGs were obtained based on BSR-seq and differential expression analyses. Twenty-four high-probability SNPs in eight genes were identified by comparing the allelic polymorphism in mRNA sequences between the high PT and low PT samples. Among them, six genes were confirmed to be associated with PT by qRT-PCR and sequencing. A putative vacuolar processing enzyme gene TaVPE3cB was screened out as a potential PT candidate gene in Australian wheat 'Westonia'. A robust SNP marker associated with TaVPE3cB was developed, which can assist in the introgression of TaVPE3cB.b in wheat breeding programs. In addition, we also discussed the function of other DEGs which may be related to pith development and programmed cell death (PCD). A five-level hierarchical regulation mechanism of stem pith PCD in wheat was proposed.
Collapse
Affiliation(s)
- Qier Liu
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
- Provincial Key Laboratory of Agrobiology, and Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Yun Zhao
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, People's Republic of China
| | - Shanjida Rahman
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Maoyun She
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Jingjuan Zhang
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Rongchang Yang
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Shahidul Islam
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Graham O'Hara
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Hang Liu
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Hongxiang Ma
- Provincial Key Laboratory of Agrobiology, and Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Wujun Ma
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia.
- College of Agronomy, Qingdao Agriculture University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
5
|
Hemu X, Zhang X, Chang HY, Poh JE, Tam JP. Consensus design and engineering of an efficient and high-yield peptide asparaginyl ligase for protein cyclization and ligation. J Biol Chem 2023; 299:102997. [PMID: 36764523 PMCID: PMC10017362 DOI: 10.1016/j.jbc.2023.102997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Plant legumains are Asn/Asp-specific endopeptidases that have diverse functions in plants. Peptide asparaginyl ligases (PALs) are a special legumain subtype that primarily catalyze peptide bond formation rather than hydrolysis. PALs are versatile protein engineering tools but are rarely found in nature. To overcome this limitation, here we describe a two-step method to design and engineer a high-yield and efficient recombinant PAL based on commonly found asparaginyl endopeptidases. We first constructed a consensus sequence derived from 1500 plant legumains to design the evolutionarily stable legumain conLEG that could be produced in E. coli with 20-fold higher yield relative to that for natural legumains. We then applied the ligase-activity determinant hypothesis to exploit conserved residues in PAL substrate-binding pockets and convert conLEG into conPAL1-3. Functional studies showed that conLEG is primarily a hydrolase, whereas conPALs are ligases. Importantly, conPAL3 is a superefficient and broadly active PAL for protein cyclization and ligation.
Collapse
Affiliation(s)
- Xinya Hemu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaohong Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hong Yi Chang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Jin En Poh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
6
|
Liu Z, Wang J, Jing H, Li X, Liu T, Ma J, Hu H, Chen M. Linum usitatissimum ABI3 enhances the accumulation of seed storage reserves and tolerance to environmental stresses during seed germination and seedling establishment in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153893. [PMID: 36502559 DOI: 10.1016/j.jplph.2022.153893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Flax (Linum usitatissimum) is an important oil crop in arid and semi-arid regions of North and Northwest China, and its seeds are rich in nutritious storage reserves, such as polyunsaturated fatty acids (FAs) and proteins. However, the regulatory networks that control the accumulation of seed storage reserves in flax are still largely unknown. In this study, we found that LuABI3-1 and LuABI3-2 homologs from the flax cultivar 'Longya 10' play important roles in regulating the accumulation of seed storage reserves in Arabidopsis thaliana. The results of subcellular localization and transcriptional activity assays showed that both LuABI3-1 and LuABI3-2 function as transcription factors. Overexpression of either LuABI3-1 or LuABI3-2 resulted in the significant increase in the contents of total seed FAs and storage proteins, but did not alter other key agronomic traits in A. thaliana. Accordingly, the expression of key genes involved in the biosynthesis of FAs and storage proteins was also greatly up-regulated in the developing seeds of LuABI3-1-overexpression lines. Additionally, both LuABI3-1 and LuABI3-2 enhanced the tolerance to the high salt and mannitol stresses during seed germination and seedling establishment in A. thaliana. These results increase our understanding of the LuABI3 regulatory functions and provide promising targets for genetic manipulation of L. usitatissimum to innovate the germplasm resources and cultivate high yield and quality varieties.
Collapse
Affiliation(s)
- Zijin Liu
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianjun Wang
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huafei Jing
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinye Li
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tiantian Liu
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jun Ma
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huan Hu
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingxun Chen
- National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Jackson MA, Chan LY, Harding MD, Craik DJ, Gilding EK. Rational domestication of a plant-based recombinant expression system expands its biosynthetic range. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6103-6114. [PMID: 35724659 PMCID: PMC9578353 DOI: 10.1093/jxb/erac273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/20/2022] [Indexed: 05/22/2023]
Abstract
Plant molecular farming aims to provide a green, flexible, and rapid alternative to conventional recombinant expression systems, capable of producing complex biologics such as enzymes, vaccines, and antibodies. Historically, the recombinant expression of therapeutic peptides in plants has proven difficult, largely due to their small size and instability. However, some plant species harbour the capacity for peptide backbone cyclization, a feature inherent in stable therapeutic peptides. One obstacle to realizing the potential of plant-based therapeutic peptide production is the proteolysis of the precursor before it is matured into its final stabilized form. Here we demonstrate the rational domestication of Nicotiana benthamiana within two generations to endow this plant molecular farming host with an expanded repertoire of peptide sequence space. The in planta production of molecules including an insecticidal peptide, a prostate cancer therapeutic lead, and an orally active analgesic is demonstrated.
Collapse
Affiliation(s)
- Mark A Jackson
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Maxim D Harding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Huai B, Liang MJ, Bai M, He HJ, Chen JZ, Wu H. Localization of CgVPE1 in secondary cell wall formation during tracheary element differentiation in the pericarp of Citrus grandis 'Tomentosa' fruits. PLANTA 2022; 256:89. [PMID: 36169724 DOI: 10.1007/s00425-022-04001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
CgVPE1 is important in the differentiation of TE cells in C. grandis 'Tomentosa' fruits as it may directly affects secondary cell wall construction while participating in PCD. The vacuolar processing enzyme (VPE) plays an important role in both developmental and environmentally inducible programmed cell death (PCD); it was originally identified as a cysteine protease localized in the vacuole to activate and mature vacuolar proteins in plants. Interestingly, we found a VPE called CgVPE1 to be associated with deposition of the secondary cell wall in tracheary element (TE) cells in the pericarp of Citrus grandis 'Tomentosa' fruits. We then used ultrathin sections and the TUNEL assay to verify that PCD is involved in TE development. Furthermore, CgVPE1 was found to be mainly expressed in secretory cavities and TEs in the pericarp of Citrus grandis 'Tomentosa' fruits. Immunolocalization of CgVPE1 in the pericarp indicated that CgVPE1 is mainly distributed in the central large vacuole, endoplasmic reticulum, Golgi vesicles, cytosol, and secondary wall before TE maturation. CgVPE1 appeared earlier in the endoplasmic reticulum and Golgi vesicles of TEs cells. The vesicles containing CgVPE1 near the large central vacuole and secondary wall were observed, respectively. CgVPE1 proteins content in the cytoplasm decreased sharply, while the CgVPE1 content in the secondary cell wall did not change significantly after vacuole rupture. CgVPE1 protein contents in the secondary cell wall were significantly reduced until the TE cells developed into hollow thick-walled cells. Furthermore, labeling of VPE homologues in Arabidopsis thaliana using immunoelectron microscopy with anti-CgVPE1 antibody revealed that VPE homologues were specifically distributed in the secondary cell wall of stem TEs. Overall, these results suggested that CgVPE1 is not only involved PCD during TE cell development; furthermore, it may directly participate in the construction of plant secondary cell walls.
Collapse
Affiliation(s)
- B Huai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - M J Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - M Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - H J He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - J Z Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - H Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Zheng P, Zheng C, Otegui MS, Li F. Endomembrane mediated-trafficking of seed storage proteins: from Arabidopsis to cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1312-1326. [PMID: 34849750 DOI: 10.1093/jxb/erab519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Seed storage proteins (SSPs) are of great importance in plant science and agriculture, particularly in cereal crops, due to their nutritional value and their impact on food properties. During seed maturation, massive amounts of SSPs are synthesized and deposited either within protein bodies derived from the endoplasmic reticulum, or into specialized protein storage vacuoles (PSVs). The processing and trafficking of SSPs vary among plant species, tissues, and even developmental stages, as well as being influenced by SSP composition. The different trafficking routes, which affect the amount of SSPs that seeds accumulate and their composition and modifications, rely on a highly dynamic and functionally specialized endomembrane system. Although the general steps in SSP trafficking have been studied in various plants, including cereals, the detailed underlying molecular and regulatory mechanisms are still elusive. In this review, we discuss the main endomembrane routes involved in SSP trafficking to the PSV in Arabidopsis and other eudicots, and compare and contrast the SSP trafficking pathways in major cereal crops, particularly in rice and maize. In addition, we explore the challenges and strategies for analyzing the endomembrane system in cereal crops.
Collapse
Affiliation(s)
- Ping Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- School of Life Science, Huizhou University, Huizhou, China
| | - Chunyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Marisa S Otegui
- Department of Botany, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WIUSA
| | - Faqiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Wan Abdullah WMAN, Saidi NB, Yusof MT, Wee CY, Loh HS, Ong-Abdullah J, Lai KS. Vacuolar Processing Enzymes Modulating Susceptibility Response to Fusarium oxysporum f. sp. cubense Tropical Race 4 Infections in Banana. FRONTIERS IN PLANT SCIENCE 2022; 12:769855. [PMID: 35095950 PMCID: PMC8790485 DOI: 10.3389/fpls.2021.769855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Fusarium oxysporum f. sp. cubense tropical race 4 (FocTR4) is a destructive necrotrophic fungal pathogen afflicting global banana production. Infection process involves the activation of programmed cell death (PCD). In this study, seven Musa acuminata vacuolar processing enzyme (MaVPE1-MaVPE7) genes associated with PCD were successfully identified. Phylogenetic analysis and tissue-specific expression categorized these MaVPEs into the seed and vegetative types. FocTR4 infection induced the majority of MaVPE expressions in the susceptible cultivar "Berangan" as compared to the resistant cultivar "Jari Buaya." Consistently, upon FocTR4 infection, high caspase-1 activity was detected in the susceptible cultivar, while low level of caspase-1 activity was recorded in the resistant cultivar. Furthermore, inhibition of MaVPE activities via caspase-1 inhibitor in the susceptible cultivar reduced tonoplast rupture, decreased lesion formation, and enhanced stress tolerance against FocTR4 infection. Additionally, the Arabidopsis VPE-null mutant exhibited higher tolerance to FocTR4 infection, indicated by reduced sporulation rate, low levels of H2O2 content, and high levels of cell viability. Comparative proteomic profiling analysis revealed increase in the abundance of cysteine proteinase in the inoculated susceptible cultivar, as opposed to cysteine proteinase inhibitors in the resistant cultivar. In conclusion, the increase in vacuolar processing enzyme (VPE)-mediated PCD played a crucial role in modulating susceptibility response during compatible interaction, which facilitated FocTR4 colonization in the host.
Collapse
Affiliation(s)
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chien-Yeong Wee
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, Serdang, Malaysia
| | - Hwei-San Loh
- Faculty of Science, School of Biosciences, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
- Biotechnology Research Centre, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Janna Ong-Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Wang Y, Chen Q, Li Y, Guo Z, Liu C, Wan Y, Hawkesford M, Zhu J, Wu W, Wei M, Zhao K, Jiang Y, Zhang Y, Xu Q, Kong L, Pu Z, Deng M, Jiang Q, Lan X, Wang J, Chen G, Ma J, Zheng Y, Wei Y, Qi P. Post-translational cleavage of HMW-GS Dy10 allele improves the cookie-making quality in common wheat ( Triticum aestivum). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:49. [PMID: 37309542 PMCID: PMC10236088 DOI: 10.1007/s11032-021-01238-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/15/2021] [Indexed: 06/14/2023]
Abstract
Wheat is a major staple food crop worldwide because of the unique properties of wheat flour. High molecular weight glutenin subunits (HMW-GSs), which are among the most critical determinants of wheat flour quality, are responsible for the formation of glutenin polymeric structures via interchain disulfide bonds. We herein describe the identification of a new HMW-GS Dy10 allele (Dy10-m619SN). The amino acid substitution (serine-to-asparagine) encoded in this allele resulted in a partial post-translational cleavage that produced two new peptides. These new peptides disrupted the interactions among gluten proteins because of the associated changes to the number of available cysteine residues for interchain disulfide bonds. Consequently, Dy10-m619SN expression decreased the size of glutenin polymers and weakened glutens, which resulted in wheat dough with improved cookie-making quality, without changes to the glutenin-to-gliadin ratio. In this study, we clarified the post-translational processing of HMW-GSs and revealed a new genetic resource useful for wheat breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01238-9.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
| | - Qing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yang Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zhenru Guo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Caihong Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yongfang Wan
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| | | | - Jing Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Wang Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Meiqiao Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Kan Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yazhou Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Qiang Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Li Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zhien Pu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ UK
| |
Collapse
|
12
|
Nonis SG, Haywood J, Mylne JS. Plant asparaginyl endopeptidases and their structural determinants of function. Biochem Soc Trans 2021; 49:965-976. [PMID: 33666219 PMCID: PMC8106488 DOI: 10.1042/bst20200908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Asparaginyl endopeptidases (AEPs) are versatile enzymes that in biological systems are involved in producing three different catalytic outcomes for proteins, namely (i) routine cleavage by bond hydrolysis, (ii) peptide maturation, including macrocyclisation by a cleavage-coupled intramolecular transpeptidation and (iii) circular permutation involving separate cleavage and transpeptidation reactions resulting in a major reshuffling of protein sequence. AEPs differ in their preference for cleavage or transpeptidation reactions, catalytic efficiency, and preference for asparagine or aspartate target residues. We look at structural analyses of various AEPs that have laid the groundwork for identifying important determinants of AEP function in recent years, with much of the research impetus arising from the potential biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Samuel G. Nonis
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Joel Haywood
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Joshua S. Mylne
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
13
|
Dolui AK, Vijayakumar AK, Rajasekharan R, Vijayaraj P. Activity-based protein profiling of rice (Oryza sativa L.) bran serine hydrolases. Sci Rep 2020; 10:15191. [PMID: 32938958 PMCID: PMC7494864 DOI: 10.1038/s41598-020-72002-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022] Open
Abstract
Rice bran is an underutilized agricultural by-product with economic importance. The unique phytochemicals and fatty acid compositions of bran have been targeted for nutraceutical development. The endogenous lipases and hydrolases are responsible for the rapid deterioration of rice bran. Hence, we attempted to provide the first comprehensive profiling of active serine hydrolases (SHs) present in rice bran proteome by activity-based protein profiling (ABPP) strategy. The active site-directed fluorophosphonate probe (rhodamine and biotin-conjugated) was used for the detection and identification of active SHs. ABPP revealed 55 uncharacterized active-SHs and are representing five different known enzyme families. Based on motif and domain analyses, one of the uncharacterized and miss annotated SHs (Os12Ssp, storage protein) was selected for biochemical characterization by overexpressing in yeast. The purified recombinant protein authenticated the serine protease activity in time and protein-dependent studies. Os12Ssp exhibited the maximum activity at a pH between 7.0 and 8.0. The protease activity was inhibited by the covalent serine protease inhibitor, which suggests that the ABPP approach is indeed reliable than the sequence-based annotations. Collectively, the comprehensive knowledge generated from this study would be useful in expanding the current understanding of rice bran SHs and paves the way for better utilization/stabilization of rice bran.
Collapse
Affiliation(s)
- Achintya Kumar Dolui
- Lipid and Nutrition Laboratory, Department of Lipid Science, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Arun Kumar Vijayakumar
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- CSIR-Central Food Technological Research Institute, Resource Centre Lucknow, Lucknow, 226018, India
| | - Ram Rajasekharan
- Lipid and Nutrition Laboratory, Department of Lipid Science, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- School of Life Sciences, Central University of Tamil Nadu, Tamil Nadu, Neelakudi, Thiruvarur, 610 005, India
| | - Panneerselvam Vijayaraj
- Lipid and Nutrition Laboratory, Department of Lipid Science, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, 570020, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
14
|
Dall E, Zauner FB, Soh WT, Demir F, Dahms SO, Cabrele C, Huesgen PF, Brandstetter H. Structural and functional studies of Arabidopsis thaliana legumain beta reveal isoform specific mechanisms of activation and substrate recognition. J Biol Chem 2020; 295:13047-13064. [PMID: 32719006 PMCID: PMC7489914 DOI: 10.1074/jbc.ra120.014478] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/14/2020] [Indexed: 01/19/2023] Open
Abstract
The vacuolar cysteine protease legumain plays important functions in seed maturation and plant programmed cell death. Because of their dual protease and ligase activity, plant legumains have become of particular biotechnological interest, e.g. for the synthesis of cyclic peptides for drug design or for protein engineering. However, the molecular mechanisms behind their dual protease and ligase activities are still poorly understood, limiting their applications. Here, we present the crystal structure of Arabidopsis thaliana legumain isoform β (AtLEGβ) in its zymogen state. Combining structural and biochemical experiments, we show for the first time that plant legumains encode distinct, isoform-specific activation mechanisms. Whereas the autocatalytic activation of isoform γ (AtLEGγ) is controlled by the latency-conferring dimer state, the activation of the monomeric AtLEGβ is concentration independent. Additionally, in AtLEGβ the plant-characteristic two-chain intermediate state is stabilized by hydrophobic rather than ionic interactions, as in AtLEGγ, resulting in significantly different pH stability profiles. The crystal structure of AtLEGβ revealed unrestricted nonprime substrate binding pockets, consistent with the broad substrate specificity, as determined by degradomic assays. Further to its protease activity, we show that AtLEGβ exhibits a true peptide ligase activity. Whereas cleavage-dependent transpeptidase activity has been reported for other plant legumains, AtLEGβ is the first example of a plant legumain capable of linking free termini. The discovery of these isoform-specific differences will allow us to identify and rationally design efficient ligases with application in biotechnology and drug development.
Collapse
Affiliation(s)
- Elfriede Dall
- Department of Biosciences, University of Salzburg, Salzburg, Austria.
| | - Florian B Zauner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Wai Tuck Soh
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Sven O Dahms
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Chiara Cabrele
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany; CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany; Institute for Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
15
|
Yamada K, Basak AK, Goto-Yamada S, Tarnawska-Glatt K, Hara-Nishimura I. Vacuolar processing enzymes in the plant life cycle. THE NEW PHYTOLOGIST 2020; 226:21-31. [PMID: 31679161 DOI: 10.1111/nph.16306] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/14/2019] [Indexed: 05/23/2023]
Abstract
Vacuolar processing enzyme (VPE) is a cysteine-type endopeptidase that has a substrate-specificity for asparagine or aspartic acid residues and cleaves peptide bonds at their carboxyl-terminal side. Various vacuolar proteins are synthesized as larger proprotein precursors, and VPE is an important initiator of maturation and activation of these proteins. It mediates programmed cell death (PCD) by provoking vacuolar rupture and initiating the proteolytic cascade leading to PCD. Vacuolar processing enzyme also possesses a peptide ligation activity, which is responsible for producing cyclic peptides in several plant species. These unique functions of VPE support developmental and environmental responses in plants. The number of VPE homologues is higher in angiosperm species, indicating that there has been differentiation and specialization of VPE function over the course of evolution. Angiosperm VPEs are separated into two major types: the γ-type VPEs, which are expressed mainly in vegetative organs, and the β-type VPEs, whose expression occurs mainly in storage organs; in eudicots, the δ-type VPEs are further separated within γ-type VPEs. This review also considers the importance of processing and peptide ligation by VPE in vacuolar protein maturation.
Collapse
Affiliation(s)
- Kenji Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | - Arpan Kumar Basak
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, 30-387, Poland
| | - Shino Goto-Yamada
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, 30-387, Poland
| | | | | |
Collapse
|
16
|
Du J, Yap K, Chan LY, Rehm FBH, Looi FY, Poth AG, Gilding EK, Kaas Q, Durek T, Craik DJ. A bifunctional asparaginyl endopeptidase efficiently catalyzes both cleavage and cyclization of cyclic trypsin inhibitors. Nat Commun 2020; 11:1575. [PMID: 32221295 PMCID: PMC7101308 DOI: 10.1038/s41467-020-15418-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/06/2020] [Indexed: 01/08/2023] Open
Abstract
Asparaginyl endopeptidases (AEPs) catalyze the key backbone cyclization step during the biosynthesis of plant-derived cyclic peptides. Here, we report the identification of two AEPs from Momordica cochinchinensis and biochemically characterize MCoAEP2 that catalyzes the maturation of trypsin inhibitor cyclotides. Recombinantly produced MCoAEP2 catalyzes the backbone cyclization of a linear cyclotide precursor (MCoTI-II-NAL) with a kcat/Km of 620 mM−1 s−1, making it one of the fastest cyclases reported to date. We show that MCoAEP2 can mediate both the N-terminal excision and C-terminal cyclization of cyclotide precursors in vitro. The rate of cyclization/hydrolysis is primarily influenced by varying pH, which could potentially control the succession of AEP-mediated processing events in vivo. Furthermore, MCoAEP2 efficiently catalyzes the backbone cyclization of an engineered MCoTI-II analog with anti-angiogenic activity. MCoAEP2 provides enhanced synthetic access to structures previously inaccessible by direct chemistry approaches and enables the wider application of trypsin inhibitor cyclotides in biotechnology applications. Asparaginyl endopeptidases (AEPs) catalyze the cyclization step during the biosynthesis of cyclic peptides in plants. Here, the authors report a recombinantly produced AEP that catalyzes the backbone cyclization of a linear cyclotide precursor and an engineered analog with high efficiency and in a pH-dependent manner.
Collapse
Affiliation(s)
- Junqiao Du
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Lai Yue Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Fabian B H Rehm
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Fong Yang Looi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Aaron G Poth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
17
|
Cu ST, Guild G, Nicolson A, Velu G, Singh R, Stangoulis J. Genetic dissection of zinc, iron, copper, manganese and phosphorus in wheat (Triticum aestivum L.) grain and rachis at two developmental stages. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110338. [PMID: 31928667 DOI: 10.1016/j.plantsci.2019.110338] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 05/13/2023]
Abstract
The development of high-yielding wheat genotypes containing micronutrient-dense grains are the main priorities of biofortification programs. At the International Maize and Wheat Improvement Center, breeders have successfully crossed high zinc progenitors including synthetic hexaploid wheat, T. dicoccum, T. spelta and landraces to generate high-zinc varieties. In this study, we report a genome-wide association using a wheat diversity panel to dissect the genetics controlling zinc, iron, copper, manganese and phosphorus concentrations in the grain and rachis during grain development and at physiological maturity. Significant marker-trait associations (MTAs) were identified for each nutrient using multi-locus mixed model methodologies. For mature grain, markers that showed significant pleiotropic effects were found on chromosomes 1A, 3B and 5B, of which those on chromosome 5B at ∼95.5 cM were consistent over two growing seasons. Co-located MTAs were identified for the nutrient concentrations in developing grain, rachis and mature grain on multiple chromosomes. The identified genomic regions included putative candidate genes involved in metal uptake and transport and storage protein processing. These findings add to our understanding of the genetics of the five important nutrients in wheat grain and provide information on genetic markers for selecting high micronutrient genotypes.
Collapse
Affiliation(s)
- Suong T Cu
- College of Science and Engineering, Flinders University, SA 5042, Australia.
| | - Georgia Guild
- College of Science and Engineering, Flinders University, SA 5042, Australia
| | - Alison Nicolson
- College of Science and Engineering, Flinders University, SA 5042, Australia
| | - Govindan Velu
- International Maize and Wheat Improvement Centre (CIMMYT), Apdo Postal 6‑641, Mexico, DF, Mexico
| | - Ravi Singh
- International Maize and Wheat Improvement Centre (CIMMYT), Apdo Postal 6‑641, Mexico, DF, Mexico
| | - James Stangoulis
- College of Science and Engineering, Flinders University, SA 5042, Australia
| |
Collapse
|
18
|
Weng SSH, Demir F, Ergin EK, Dirnberger S, Uzozie A, Tuscher D, Nierves L, Tsui J, Huesgen PF, Lange PF. Sensitive Determination of Proteolytic Proteoforms in Limited Microscale Proteome Samples. Mol Cell Proteomics 2019; 18:2335-2347. [PMID: 31471496 PMCID: PMC6823850 DOI: 10.1074/mcp.tir119.001560] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/09/2019] [Indexed: 12/15/2022] Open
Abstract
Protein N termini unambiguously identify truncated, alternatively translated or modified proteoforms with distinct functions and reveal perturbations in disease. Selective enrichment of N-terminal peptides is necessary to achieve proteome-wide coverage for unbiased identification of site-specific regulatory proteolytic processing and protease substrates. However, many proteolytic processes are strictly confined in time and space and therefore can only be analyzed in minute samples that provide insufficient starting material for current enrichment protocols. Here we present High-efficiency Undecanal-based N Termini EnRichment (HUNTER), a robust, sensitive and scalable method for the analysis of previously inaccessible microscale samples. HUNTER achieved identification of >1000 N termini from as little as 2 μg raw HeLa cell lysate. Broad applicability is demonstrated by the first N-terminome analysis of sorted human primary immune cells and enriched mitochondrial fractions from pediatric cancer patients, as well as protease substrate identification from individual Arabidopsis thaliana wild type and Vacuolar Processing Enzyme-deficient mutant seedlings. We further implemented the workflow on a liquid handling system and demonstrate the feasibility of clinical degradomics by automated processing of liquid biopsies from pediatric cancer patients.
Collapse
Affiliation(s)
- Samuel S H Weng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
| | - Enes K Ergin
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Sabrina Dirnberger
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
| | - Anuli Uzozie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Domenic Tuscher
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany
| | - Lorenz Nierves
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Janice Tsui
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany.
| | - Philipp F Lange
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada.
| |
Collapse
|
19
|
Cheng Z, Zhang J, Yin B, Liu Y, Wang B, Li H, Lu H. γVPE plays an important role in programmed cell death for xylem fiber cells by activating protease CEP1 maturation in Arabidopsis thaliana. Int J Biol Macromol 2019; 137:703-711. [PMID: 31279878 DOI: 10.1016/j.ijbiomac.2019.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/28/2022]
Abstract
The vacuolar processing enzyme (VPE) plays an important role in PCD and was originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants. We found that γVPE is involved in PCD of xylem fiber cells through the activation of CEP1 proproteases into mature protease in Arabidopsis. The γVPE protein was expressed specifically in cambium cells cambium, the primary phloem and the primary xylem during stem development. The recombinant γVPE appearing as a proenzyme at pH 7.0, and then transforming into a 40-kD mature enzyme at pH 5.5 in vitro by self-cleaving. The mature γVPE protein activated CEP1 maturation in vitro, whereas this activity was inhibited in the γvpe mutant. Transmission electron microscopy showed delayed PCD in fiber cells and thickening of secondary fiber cell walls in the γvpe mutant. Transcriptome analysis showed that the expression of 2001 genes was significantly altered expression in the γvpe mutants, and most of them are important for secondary cell wall formation and PCD. Our results demonstrate that γVPE is a crucial processing enzyme for xylem fiber cells PCD during stem development.
Collapse
Affiliation(s)
- Ziyi Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jiaxue Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bin Yin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yadi Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bing Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
20
|
Pouvreau B, Fenske R, Ivanova A, Murcha MW, Mylne JS. An interstitial peptide is readily processed from within seed proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:175-183. [PMID: 31203882 DOI: 10.1016/j.plantsci.2019.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
The importance of de novo protein evolution is apparent, but most examples are de novo coding transcripts evolving from silent or non-coding DNA. The peptide macrocycle SunFlower Trypsin Inhibitor 1 (SFTI-1) evolved over 45 million years from genetic expansion within the N-terminal 'discarded' region of an ancestral seed albumin precursor. SFTI-1 and its adjacent albumin are both processed into separate, mature forms by asparaginyl endopeptidase (AEP). Here to determine whether the evolution of SFTI-1 in a latent region of its precursor was critical, we used a transgene approach in A. thaliana analysed by peptide mass spectrometry and RT-qPCR. SFTI could emerge from alternative locations within preproalbumin as well as emerge with precision from unrelated seed proteins via AEP-processing. SFTI production was possible with the adjacent albumin, but peptide levels dropped greatly without the albumin. The ability for SFTI to be processed from multiple sequence contexts and different proteins suggests that to make peptide, it was not crucial for the genetic expansion that gave rise to SFTI and its family to be within a latent protein region. Interstitial peptides, evolving like SFTI within existing proteins, might be more widespread and as a mechanism, SFTI exemplifies a stable, new, functional peptide that did not need a new gene to evolve de novo.
Collapse
Affiliation(s)
- Benjamin Pouvreau
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Ricarda Fenske
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Aneta Ivanova
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia.
| |
Collapse
|
21
|
James AM, Haywood J, Leroux J, Ignasiak K, Elliott AG, Schmidberger JW, Fisher MF, Nonis SG, Fenske R, Bond CS, Mylne JS. The macrocyclizing protease butelase 1 remains autocatalytic and reveals the structural basis for ligase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:988-999. [PMID: 30790358 DOI: 10.1111/tpj.14293] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/03/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Plant asparaginyl endopeptidases (AEPs) are expressed as inactive zymogens that perform maturation of seed storage protein upon cleavage-dependent autoactivation in the low-pH environment of storage vacuoles. The AEPs have attracted attention for their macrocyclization reactions, and have been classified as cleavage or ligation specialists. However, we have recently shown that the ability of AEPs to produce either cyclic or acyclic products can be altered by mutations to the active site region, and that several AEPs are capable of macrocyclization given favorable pH conditions. One AEP extracted from Clitoria ternatea seeds (butelase 1) is classified as a ligase rather than a protease, presenting an opportunity to test for loss of cleavage activity. Here, making recombinant butelase 1 and rescuing an Arabidopsis thaliana mutant lacking AEP, we show that butelase 1 retains cleavage functions in vitro and in vivo. The in vivo rescue was incomplete, consistent with some trade-off for butelase 1 specialization toward macrocyclization. Its crystal structure showed an active site with only subtle differences from cleaving AEPs, suggesting the many differences in its peptide-binding region are the source of its efficient macrocyclization. All considered, it seems that either butelase 1 has not fully specialized or a requirement for autocatalytic cleavage is an evolutionary constraint upon macrocyclizing AEPs.
Collapse
Affiliation(s)
- Amy M James
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joel Haywood
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Julie Leroux
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Katarzyna Ignasiak
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Alysha G Elliott
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - Jason W Schmidberger
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Mark F Fisher
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Samuel G Nonis
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Ricarda Fenske
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| |
Collapse
|
22
|
Zhang J, Payne CD, Pouvreau B, Schaefer H, Fisher MF, Taylor NL, Berkowitz O, Whelan J, Rosengren KJ, Mylne JS. An Ancient Peptide Family Buried within Vicilin Precursors. ACS Chem Biol 2019; 14:979-993. [PMID: 30973714 DOI: 10.1021/acschembio.9b00167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
New proteins can evolve by duplication and divergence or de novo, from previously noncoding DNA. A recently observed mechanism is for peptides to evolve within a "host" protein and emerge by proteolytic processing. The first examples of such interstitial peptides were ones hosted by precursors for seed storage albumin. Interstitial peptides have also been observed in precursors for seed vicilins, but current evidence for vicilin-buried peptides (VBPs) is limited to seeds of the broadleaf plants pumpkin and macadamia. Here, an extensive sequence analysis of vicilin precursors suggested that peptides buried within the N-terminal region of preprovicilins are widespread and truly ancient. Gene sequences indicative of interstitial peptides were found in species from Amborellales to eudicots and include important grass and legume crop species. We show the first protein evidence for a monocot VBP in date palm seeds as well as protein evidence from other crops including the common tomato, sesame and pumpkin relatives, cucumber, and the sponge loofah ( Luffa aegyptiaca). Their excision was consistent with asparaginyl endopeptidase-mediated maturation, and sequences were confirmed by tandem mass spectrometry. Our findings suggest that the family is large and ancient and that based on the NMR solution structures for loofah Luffin P1 and tomato VBP-8, VBPs adopt a helical hairpin fold stapled by two internal disulfide bonds. The first VBPs characterized were a protease inhibitor, antimicrobials, and a ribosome inactivator. The age and evolutionary retention of this peptide family suggest its members play important roles in plant biology.
Collapse
Affiliation(s)
| | - Colton D. Payne
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Hanno Schaefer
- Department of Ecology and Ecosystem Management, Plant Biodiversity Research, Technical University of Munich, 85354, Freising, Germany
| | | | | | - Oliver Berkowitz
- Department of Animal, Plant, and Soil Sciences, School of Life Sciences and ARC Centre of Excellence in Plant Energy Biology, AgriBio, The Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086 Australia
| | - James Whelan
- Department of Animal, Plant, and Soil Sciences, School of Life Sciences and ARC Centre of Excellence in Plant Energy Biology, AgriBio, The Centre for AgriBioscience, La Trobe University, Bundoora, Victoria 3086 Australia
| | - K. Johan Rosengren
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
23
|
Vorster BJ, Cullis CA, Kunert KJ. Plant Vacuolar Processing Enzymes. FRONTIERS IN PLANT SCIENCE 2019; 10:479. [PMID: 31031794 PMCID: PMC6473326 DOI: 10.3389/fpls.2019.00479] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 05/29/2023]
Abstract
Plant proteomes contain hundreds of proteases divided into different families based on evolutionary and functional relationship. In particular, plant cysteine proteases of the C1 (papain-like) and C13 (legumain-like) families play key roles in many physiological processes. The legumain-like proteases, also called vacuolar processing enzymes (VPEs), perform a multifunctional role in different plant organs and during different stages of plant development and death. VPEs are similar to animal caspases, and although caspase activity was identified in plants almost 40 years ago, there still remains much research to be done to gain a complete understanding of their various roles and functions in plants. Here we not only summarize the current existing knowledge of plant VPEs, including recent developments in the field, but also highlight the future prospective areas to be investigated to obtain a more detailed understanding of the role of VPEs in plants.
Collapse
Affiliation(s)
- Barend Juan Vorster
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Christopher A. Cullis
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Karl J. Kunert
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
24
|
Dynamic hydrolase labelling as a marker for seed quality in Arabidopsis seeds. Biochem J 2019; 476:843-857. [PMID: 30782971 DOI: 10.1042/bcj20180911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022]
Abstract
Seed quality is affected by different constituents of the seed. In general, seed lots are considered to be of high quality when they exhibit fast and homogeneous germination. When seeds are stored, they undergo different degrees of damage that have detrimental effects on their quality. Therefore, accurate prediction of the seed quality and viability levels of a seed lot is of high importance in the seed-producing industry. Here, we describe the use of activity-based protein profiling of proteases to evaluate the quality of artificially and naturally aged seeds of Arabidopsis thaliana Using this approach, we have identified two protease activities with opposite behaviours in aged seeds of Arabidopsis that correlate with the quality status of the seeds. We show that vacuolar processing enzymes (VPEs) become more active during the ageing process, in both artificial and natural ageing treatments. Secondly, we demonstrate that serine hydrolases are active at the beginning of our artificial ageing treatment, but their labelling decreases along with seed viability. We present a list of candidate hydrolases active during seed germination and propose that these protease activities can be used in combination with VPEs to develop novel markers of seed quality.
Collapse
|
25
|
Han J, Li H, Yin B, Zhang Y, Liu Y, Cheng Z, Liu D, Lu H. The papain-like cysteine protease CEP1 is involved in programmed cell death and secondary wall thickening during xylem development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:205-215. [PMID: 30376110 PMCID: PMC6305193 DOI: 10.1093/jxb/ery356] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/23/2018] [Indexed: 05/24/2023]
Abstract
Both tracheary elements and fiber cells undergo programmed cell death (PCD) during xylem development. In this study we investigated the role of papain-like cysteine protease CEP1 in PCD in the xylem of Arabidopsis. CEP1 was located in the cell wall of xylem cells, and CEP1 expression levels in inflorescence stems increased during stem maturation. cep1 mutant plants exhibited delayed stem growth and reduced xylem cell number compared to wild-type plants. Transmission electron microscopy demonstrated that organelle degradation was delayed during PCD, and thicker secondary walls were present in fiber cells and tracheary elements of the cep1 mutant. Transcriptional analyses of the maturation stage of the inflorescence stem revealed that genes involved in the biosynthesis of secondary wall components, including cellulose, hemicellulose, and lignin, as well as wood-associated transcriptional factors, were up-regulated in the cep1 mutant. These results suggest that CEP1 is directly involved in the clearing of cellular content during PCD and regulates secondary wall thickening during xylem development.
Collapse
Affiliation(s)
- Jingyi Han
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hui Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Bin Yin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yongzhuo Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yadi Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ziyi Cheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Di Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hai Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
26
|
Gong P, Li Y, Tang Y, Wei R, Huijun Z, Wang Y, Zhang C. Vacuolar processing enzyme (VvβVPE) from Vitis vinifera, processes seed proteins during ovule development, and accelerates seed germination in VvβVPE heterologously over-expressed Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:420-431. [PMID: 30080630 DOI: 10.1016/j.plantsci.2018.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 05/09/2023]
Abstract
Vacuolar processing enzymes (VPEs), belonging to cysteine protease, are responsible for processing seed protein during maturation. Stenospermocarpic grapes occur self-abortion in fertilized embryos during the ovule development, which affects the formation of matured seed proteins. However, little is known about VPE functions in ovule self-defeating. Here, we investigated the role of one seed-type VPE gene, VvβVPE. Sequence analysis showed that all ORFs (Open reading frames) of VvβVPE from 19 seed/seedless genotypes are highly conserved. At the transcriptional level, VvβVPE was specifically expressed during ovule development, with distinct expression patterns: it increased gradually in seeded grapes; while weakly expressed in seedless grapes. Whereas, at the translational level, 3 forms of VvβVPE were expressed during ovule development in seeded grape: precursor βVPE (pβVPE), intermediate βVPE (iβVPE) and finally, active mature βVPE (mβVPE). By contrast, in seedless grape, VvβVPE only exists as pβVPE at whole developmental stage of ovule. for confirming these expression patterns, 12 seeded/seedless genotypes were sampled and analyzed. Furthermore, VPE enzyme activity was increased in Arabidopsis overexpressing VvβVPE, leading to faster germination. Our study indicated that VvβVPE is essential for grapevine ovule maturation through various forms and is involved in seed germination.
Collapse
Affiliation(s)
- Peijie Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100, Shaanxi, China
| | - Yan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100, Shaanxi, China
| | - Rong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100, Shaanxi, China
| | - Zhu Huijun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100, Shaanxi, China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
27
|
Ashnest JR, Gendall AR. Trafficking to the seed protein storage vacuole. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:895-910. [PMID: 32291054 DOI: 10.1071/fp17318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/17/2018] [Indexed: 06/11/2023]
Abstract
The processing and subcellular trafficking of seed storage proteins is a critical area of physiological, agricultural and biotechnological research. Trafficking to the lytic vacuole has been extensively discussed in recent years, without substantial distinction from trafficking to the protein storage vacuole (PSV). However, despite some overlap between these pathways, there are several examples of unique processing and machinery in the PSV pathway. Moreover, substantial new data has recently come to light regarding the important players in this pathway, in particular, the intracellular NHX proteins and their role in regulating lumenal pH. In some cases, these new data are limited to genetic evidence, with little mechanistic understanding. As such, the implications of these data in the current paradigm of PSV trafficking is perhaps yet unclear. Although it has generally been assumed that the major classes of storage proteins are trafficked via the same pathway, there is mounting evidence that the 12S globulins and 2S albumins may be trafficked independently. Advances in identification of vacuolar targeting signals, as well as an improved mechanistic understanding of various vacuolar sorting receptors, may reveal the differences in these trafficking pathways.
Collapse
Affiliation(s)
- Joanne R Ashnest
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, Vic. 3086, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, Vic. 3086, Australia
| |
Collapse
|
28
|
James AM, Haywood J, Mylne JS. Macrocyclization by asparaginyl endopeptidases. THE NEW PHYTOLOGIST 2018; 218:923-928. [PMID: 28322452 DOI: 10.1111/nph.14511] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/24/2017] [Indexed: 05/18/2023]
Abstract
Contents Summary 923 I. Introduction 923 II. Plant AEPs with macrocyclizing ability 924 III. Mechanism of macrocyclization by AEPs 925 IV. Conclusions 927 Acknowledgements 927 References 927 SUMMARY: Plant asparaginyl endopeptidases (AEPs) are important for the post-translational processing of seed storage proteins via cleavage of precursor proteins. Some AEPs also function as peptide bond-makers during the biosynthesis of several unrelated classes of cyclic peptides, namely the kalata-type cyclic peptides, PawS-Derived Peptides and cyclic knottins. These three families of gene-encoded peptides have different evolutionary origins, but all have recruited AEPs for their maturation. In the last few years, the field has advanced rapidly, with the biochemical characterization of three plant AEPs capable of peptide macrocyclization, and insights have been gained from the first AEP crystal structures, albeit mammalian ones. Although the biochemical studies have improved our understanding of the mechanism of action, the focus now is to understand what changes in AEP sequence and structure enable some plant AEPs to perform macrocyclization reactions.
Collapse
Affiliation(s)
- Amy M James
- School of Molecular Sciences & The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joel Haywood
- School of Molecular Sciences & The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences & The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| |
Collapse
|
29
|
Housset JM, Nadeau S, Isabel N, Depardieu C, Duchesne I, Lenz P, Girardin MP. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. THE NEW PHYTOLOGIST 2018; 218:630-645. [PMID: 29314017 PMCID: PMC6079641 DOI: 10.1111/nph.14968] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/21/2017] [Indexed: 05/20/2023]
Abstract
Local adaptation in tree species has been documented through a long history of common garden experiments where functional traits (height, bud phenology) are used as proxies for fitness. However, the ability to identify genes or genomic regions related to adaptation to climate requires the evaluation of traits that precisely reflect how and when climate exerts selective constraints. We combine dendroecology with association genetics to establish a link between genotypes, phenotypes and interannual climatic fluctuations. We illustrate this approach by examining individual tree responses embedded in the annual rings of 233 Pinus strobus trees growing in a common garden experiment representing 38 populations from the majority of its range. We found that interannual variability in growth was affected by low temperatures during spring and autumn, and by summer heat and drought. Among-population variation in climatic sensitivity was significantly correlated with the mean annual temperature of the provenance, suggesting local adaptation. Genotype-phenotype associations using these new tree-ring phenotypes validated nine candidate genes identified in a previous genetic-environment association study. Combining dendroecology with association genetics allowed us to assess tree vulnerability to past climate at fine temporal scales and provides avenues for future genomic studies on functional adaptation in forest trees.
Collapse
Affiliation(s)
- Johann M. Housset
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Natural Resources CanadaCanadian Wood Fibre Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Centre d’étude de la forêtUniversité du Québec à MontréalC.P. 8888, succ. Centre‐villeMontréalQCH3C 3P8Canada
| | - Simon Nadeau
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Natural Resources CanadaCanadian Wood Fibre Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
| | - Nathalie Isabel
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Chaire de Recherche du Canada en Génomique ForestièreFaculté de Foresteriede Géographie et de GéomatiqueUniversité LavalQuébecQCG1V 0A6Canada
| | - Claire Depardieu
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Chaire de Recherche du Canada en Génomique ForestièreFaculté de Foresteriede Géographie et de GéomatiqueUniversité LavalQuébecQCG1V 0A6Canada
| | - Isabelle Duchesne
- Natural Resources CanadaCanadian Wood Fibre Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
| | - Patrick Lenz
- Natural Resources CanadaCanadian Wood Fibre Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Chaire de Recherche du Canada en Génomique ForestièreFaculté de Foresteriede Géographie et de GéomatiqueUniversité LavalQuébecQCG1V 0A6Canada
| | - Martin P. Girardin
- Natural Resources CanadaCanadian Forest ServiceLaurentian Forestry Centre1055 du P.E.P.S, PO Box 10380, Stn. Sainte‐FoyQuébecQCG1V 4C7Canada
- Centre d’étude de la forêtUniversité du Québec à MontréalC.P. 8888, succ. Centre‐villeMontréalQCH3C 3P8Canada
| |
Collapse
|
30
|
Gacek K, Bartkowiak-Broda I, Batley J. Genetic and Molecular Regulation of Seed Storage Proteins (SSPs) to Improve Protein Nutritional Value of Oilseed Rape ( Brassica napus L.) Seeds. FRONTIERS IN PLANT SCIENCE 2018; 9:890. [PMID: 30013586 PMCID: PMC6036235 DOI: 10.3389/fpls.2018.00890] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/07/2018] [Indexed: 05/20/2023]
Abstract
The world-wide demand for additional protein sources for human nutrition and animal feed keeps rising due to rapidly growing world population. Oilseed rape is a second important oil producing crop and the by-product of the oil production is a protein rich meal. The protein in rapeseed meal finds its application in animal feed and various industrial purposes, but its improvement is of great interest, especially for non-ruminants and poultry feed. To be able to manipulate the quality and quantity of seed protein in oilseed rape, understanding genetic architecture of seed storage protein (SSPs) synthesis and accumulation in this crop species is of great interest. For this, application of modern molecular breeding tools such as whole genome sequencing, genotyping, association mapping, and genome editing methods implemented in oilseed rape seed protein improvement would be of great interest. This review examines current knowledge and opportunities to manipulate of SSPs in oilseed rape to improve its quality, quantity and digestibility.
Collapse
Affiliation(s)
- Katarzyna Gacek
- Oilseed Crops Research Centre, Plant Breeding and Acclimatization Institute-National Research Institute, Poznań, Poland
| | - Iwona Bartkowiak-Broda
- Oilseed Crops Research Centre, Plant Breeding and Acclimatization Institute-National Research Institute, Poznań, Poland
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- *Correspondence: Jacqueline Batley,
| |
Collapse
|
31
|
Franke B, James AM, Mobli M, Colgrave ML, Mylne JS, Rosengren KJ. Two proteins for the price of one: Structural studies of the dual-destiny protein preproalbumin with sunflower trypsin inhibitor-1. J Biol Chem 2017; 292:12398-12411. [PMID: 28536266 PMCID: PMC5535016 DOI: 10.1074/jbc.m117.776955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/22/2017] [Indexed: 11/06/2022] Open
Abstract
Seed storage proteins are both an important source of nutrition for humans and essential for seedling establishment. Interestingly, unusual napin-type 2S seed storage albumin precursors in sunflowers contain a sequence that is released as a macrocyclic peptide during post-translational processing. The mechanism by which such peptides emerge from linear precursor proteins has received increased attention; however, the structural characterization of intact precursor proteins has been limited. Here, we report the 3D NMR structure of the Helianthus annuus PawS1 (preproalbumin with sunflower trypsin inhibitor-1) and provide new insights into the processing of this remarkable dual-destiny protein. In seeds, PawS1 is matured by asparaginyl endopeptidases (AEPs) into the cyclic peptide SFTI-1 (sunflower trypsin inhibitor-1) and a heterodimeric 2S albumin. The structure of PawS1 revealed that SFTI-1 and the albumin are independently folded into well-defined domains separated by a flexible linker. PawS1 was cleaved in vitro with recombinant sunflower HaAEP1 and in situ using a sunflower seed extract in a way that resembled the expected in vivo cleavages. Recombinant HaAEP1 cleaved PawS1 at multiple positions, and in situ, its flexible linker was removed, yielding fully mature heterodimeric albumin. Liberation and cyclization of SFTI-1, however, was inefficient, suggesting that specific seed conditions or components may be required for in vivo biosynthesis of SFTI-1. In summary, this study has revealed the 3D structure of a macrocyclic precursor protein and provided important mechanistic insights into the maturation of sunflower proalbumins into an albumin and a macrocyclic peptide.
Collapse
Affiliation(s)
- Bastian Franke
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Amy M James
- School of Molecular Sciences and ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Perth, Western Australia 6009, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | | | - Joshua S Mylne
- School of Molecular Sciences and ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Perth, Western Australia 6009, Australia
| | - K Johan Rosengren
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
32
|
Kumar P, Kesari P, Dhindwal S, Choudhary AK, Katiki M, Neetu, Verma A, Ambatipudi K, Tomar S, Sharma AK, Mishra G, Kumar P. A novel function for globulin in sequestering plant hormone: Crystal structure of Wrightia tinctoria 11S globulin in complex with auxin. Sci Rep 2017; 7:4705. [PMID: 28680092 PMCID: PMC5498579 DOI: 10.1038/s41598-017-04518-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/17/2017] [Indexed: 11/20/2022] Open
Abstract
Auxin levels are tightly regulated within the plant cell, and its storage in the isolated cavity of proteins is a measure adopted by cells to maintain the availability of auxin. We report the first crystal structure of Wrightia tinctoria 11S globulin (WTG) in complex with Indole-3-acetic acid (IAA), an auxin, at 1.7 Å resolution. WTG hexamers assemble as a result of the stacking interaction between the hydrophobic surfaces of two trimers, leaving space for the binding of charged ligands. The bound auxin is stabilized by non-covalent interactions, contributed by four chains in each cavity. The presence of bound ligand was confirmed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and high-resolution mass spectrometry (HRMS). Here, we hypothesize that the cleavage of globulins by endopeptidases leads to the movement of the hydrophilic loop region from the surface to the periphery, leaving space for the binding of auxin, and promotes hexamer formation. As the process of germination proceeds, there is a change in the pH, which induces the dissociation of the hexamer and the release of auxin. The compact hexameric assembly ensures the long-term, stable storage of the hormone. This suggests a role for globulin as a novel player in auxin homeostasis.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pooja Kesari
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sonali Dhindwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | | | - Madhusudhanarao Katiki
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Neetu
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Aparna Verma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shailly Tomar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Girish Mishra
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
33
|
Le Signor C, Aimé D, Bordat A, Belghazi M, Labas V, Gouzy J, Young ND, Prosperi JM, Leprince O, Thompson RD, Buitink J, Burstin J, Gallardo K. Genome-wide association studies with proteomics data reveal genes important for synthesis, transport and packaging of globulins in legume seeds. THE NEW PHYTOLOGIST 2017; 214:1597-1613. [PMID: 28322451 DOI: 10.1111/nph.14500] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/27/2017] [Indexed: 05/25/2023]
Abstract
Improving nutritional seed quality is an important challenge in grain legume breeding. However, the genes controlling the differential accumulation of globulins, which are major contributors to seed nutritional value in legumes, remain largely unknown. We combined a search for protein quantity loci with genome-wide association studies on the abundance of 7S and 11S globulins in seeds of the model legume species Medicago truncatula. Identified genomic regions and genes carrying polymorphisms linked to globulin variations were then cross-compared with pea (Pisum sativum), leading to the identification of candidate genes for the regulation of globulin abundance in this crop. Key candidates identified include genes involved in transcription, chromatin remodeling, post-translational modifications, transport and targeting of proteins to storage vacuoles. Inference of a gene coexpression network of 12 candidate transcription factors and globulin genes revealed the transcription factor ABA-insensitive 5 (ABI5) as a highly connected hub. Characterization of loss-of-function abi5 mutants in pea uncovered a role for ABI5 in controlling the relative abundance of vicilin, a sulfur-poor 7S globulin, in pea seeds. This demonstrates the feasibility of using genome-wide association studies in M. truncatula to reveal genes that can be modulated to improve seed nutritional value.
Collapse
Affiliation(s)
- Christine Le Signor
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Delphine Aimé
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Amandine Bordat
- Unité Mixte de Recherche (UMR) 1332 Biologie du Fruit et Pathologie, INRA, 33882, Villenave d'Ornon, France
| | - Maya Belghazi
- UMR 7286 - CRN2M, Centre d'Analyses Protéomiques de Marseille, CNRS, Aix-Marseille Université, Marseille, France
| | - Valérie Labas
- INRA, UMR85 Physiologie de la Reproduction et des Comportements-Centre National de la Recherche Scientifique (CNRS) UMR 7247-Université François Rabelais-Institut Français du Cheval et de l'Equitation, Laboratoire de Spectrométrie de Masse, Plate-forme d'Analyse Intégrative des Biomolécules, 37380, Nouzilly, France
| | - Jérôme Gouzy
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), CNRS, INRA, Université de Toulouse, Castanet-Tolosan, France
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, St Paul, MN, 55108, USA
| | - Jean-Marie Prosperi
- Genetic Improvement and Adaptation of Mediterranean and Tropical Plants (AGAP), INRA, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Montpellier Supagro, 34060, Montpellier, France
| | - Olivier Leprince
- Institut de recherche en horticulture et semences (IRHS), INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Richard D Thompson
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Julia Buitink
- Institut de recherche en horticulture et semences (IRHS), INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Judith Burstin
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, 21000, Dijon, France
| |
Collapse
|
34
|
Guénin S, Hardouin J, Paynel F, Müller K, Mongelard G, Driouich A, Lerouge P, Kermode AR, Lehner A, Mollet JC, Pelloux J, Gutierrez L, Mareck A. AtPME3, a ubiquitous cell wall pectin methylesterase of Arabidopsis thaliana, alters the metabolism of cruciferin seed storage proteins during post-germinative growth of seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1083-1095. [PMID: 28375469 DOI: 10.1093/jxb/erx023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
AtPME3 (At3g14310) is a ubiquitous cell wall pectin methylesterase. Atpme3-1 loss-of-function mutants exhibited distinct phenotypes from the wild type (WT), and were characterized by earlier germination and reduction of root hair production. These phenotypical traits were correlated with the accumulation of a 21.5-kDa protein in the different organs of 4-day-old Atpme3-1 seedlings grown in the dark, as well as in 6-week-old mutant plants. Microarray analysis showed significant down-regulation of the genes encoding several pectin-degrading enzymes and enzymes involved in lipid and protein metabolism in the hypocotyl of 4-day-old dark grown mutant seedlings. Accordingly, there was a decrease in proteolytic activity of the mutant as compared with the WT. Among the genes specifying seed storage proteins, two encoding CRUCIFERINS were up-regulated. Additional analysis by RT-qPCR showed an overexpression of four CRUCIFERIN genes in the mutant Atpme3-1, in which precursors of the α- and β-subunits of CRUCIFERIN accumulated. Together, these results provide evidence for a link between AtPME3, present in the cell wall, and CRUCIFERIN metabolism that occurs in vacuoles.
Collapse
Affiliation(s)
- Stéphanie Guénin
- BIOPI Biologie des Plantes et Innovation EA3900, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens Cedex, France
- CRRBM, Bâtiment Serres Transfert, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens Cedex, France
| | - Julie Hardouin
- Université de Rouen Normandie, CNRS, Laboratoire PBS, 76000 Rouen, France
| | - Florence Paynel
- Université de Rouen Normandie, Laboratoire Glyco-MEV, 76000 Rouen, France
| | - Kerstin Müller
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V6A 1S6, Canada
| | - Gaëlle Mongelard
- CRRBM, Bâtiment Serres Transfert, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens Cedex, France
| | - Azeddine Driouich
- Université de Rouen Normandie, Laboratoire Glyco-MEV, 76000 Rouen, France
| | - Patrice Lerouge
- Université de Rouen Normandie, Laboratoire Glyco-MEV, 76000 Rouen, France
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V6A 1S6, Canada
| | - Arnaud Lehner
- Université de Rouen Normandie, Laboratoire Glyco-MEV, 76000 Rouen, France
| | - Jean-Claude Mollet
- Université de Rouen Normandie, Laboratoire Glyco-MEV, 76000 Rouen, France
| | - Jérôme Pelloux
- BIOPI Biologie des Plantes et Innovation EA3900, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens Cedex, France
| | - Laurent Gutierrez
- CRRBM, Bâtiment Serres Transfert, Université de Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens Cedex, France
| | - Alain Mareck
- Université de Rouen Normandie, Laboratoire Glyco-MEV, 76000 Rouen, France
| |
Collapse
|
35
|
The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells. Sci Rep 2017; 7:41245. [PMID: 28117452 PMCID: PMC5259747 DOI: 10.1038/srep41245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 12/19/2016] [Indexed: 02/05/2023] Open
Abstract
Vacuole fusion is a necessary process for the establishment of a large central vacuole, which is the central location of various hydrolytic enzymes and other factors involved in death at the beginning of plant programmed cell death (PCD). In our report, the fusion of vacuoles has been presented in two ways: i) small vacuoles coalesce to form larger vacuoles through membrane fusion, and ii) larger vacuoles combine with small vacuoles when small vacuoles embed into larger vacuoles. Regardless of how fusion occurs, a large central vacuole is formed in rice (Oryza sativa) aleurone cells. Along with the development of vacuolation, the rupture of the large central vacuole leads to the loss of the intact plasma membrane and the degradation of the nucleus, resulting in cell death. Stabilizing or disrupting the structure of actin filaments (AFs) inhibits or promotes the fusion of vacuoles, which delays or induces PCD. In addition, the inhibitors of the vacuolar processing enzyme (VPE) and cathepsin B (CathB) block the occurrence of the large central vacuole and delay the progression of PCD in rice aleurone layers. Overall, our findings provide further evidence for the rupture of the large central vacuole triggering the PCD in aleruone layers.
Collapse
|
36
|
Pružinská A, Shindo T, Niessen S, Kaschani F, Tóth R, Millar AH, van der Hoorn RAL. Major Cys protease activities are not essential for senescence in individually darkened Arabidopsis leaves. BMC PLANT BIOLOGY 2017; 17:4. [PMID: 28061816 PMCID: PMC5217659 DOI: 10.1186/s12870-016-0955-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/19/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND Papain-like Cys Proteases (PLCPs) and Vacuolar Processing Enzymes (VPEs) are amongst the most highly expressed proteases during leaf senescence in Arabidopsis. Using activity-based protein profiling (ABPP), a method that enables detection of active enzymes within a complex sample using chemical probes, the activities of PLCPs and VPEs were investigated in individually darkened leaves of Arabidopsis, and their role in senescence was tested in null mutants. RESULTS ABPP and mass spectrometry revealed an increased activity of several PLCPs, particularly RD21A and AALP. By contrast, despite increased VPE transcript levels, active VPE decreased in individually darkened leaves. Eight protease knock-out lines and two protease over expressing lines were subjected to senescence phenotype analysis to determine the importance of individual protease activities to senescence. Unexpectedly, despite the absence of dominating PLCP activities in these plants, the rubisco and chlorophyll decline in individually darkened leaves and the onset of whole plant senescence were unaltered. However, a significant delay in progression of whole plant senescence was observed in aalp-1 and rd21A-1/aalp-1 mutants, visible in the reduced number of senescent leaves. CONCLUSIONS Major Cys protease activities are not essential for dark-induced and developmental senescence and only a knock out line lacking AALP shows a slight but significant delay in plant senescence.
Collapse
Affiliation(s)
- Adriana Pružinská
- The Plant Chemetics laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA Australia
| | - Takayuki Shindo
- The Plant Chemetics laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Sherry Niessen
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Center for Physiological Proteomics, The Scripps Research Institute, La Jolla, 92037 California USA
| | - Farnusch Kaschani
- The Plant Chemetics laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Réka Tóth
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - A. Harvey Millar
- The Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA Australia
| | - Renier A. L. van der Hoorn
- The Plant Chemetics laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| |
Collapse
|
37
|
Szewińska J, Simińska J, Bielawski W. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds. JOURNAL OF PLANT PHYSIOLOGY 2016; 207:10-21. [PMID: 27771502 DOI: 10.1016/j.jplph.2016.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteolysis is an important process for development and germination of cereal seeds. Among the many types of proteases identified in plants are the cysteine proteases (CPs) of the papain and legumain families, which play a crucial role in hydrolysing storage proteins during seed germination as well as in processing the precursors of these proteins and the inactive forms of other proteases. Moreover, all of the tissues of cereal seeds undergo progressive degradation via programed cell death, which is integral to their growth. In view of the important roles played by proteases, their uncontrolled activity could be harmful to the development of seeds and young seedlings. Thus, the activities of these enzymes are regulated by intracellular inhibitors called phytocystatins (PhyCys). The phytocystatins inhibit the activity of proteases of the papain family, and the presence of an additional motif in their C-termini allows them to also regulate the activity of members of the legumain family. A balance between the levels of cysteine proteases and phytocystatins is necessary for proper cereal seed development, and this is maintained through the antagonistic activities of gibberellins (GAs) and abscisic acid (ABA), which regulate the expression of the corresponding genes. Transcriptional regulation of cysteine proteases and phytocystatins is determined by cis-acting elements located in the promoters of these genes and by the expression of their corresponding transcription factors (TFs) and the interactions between different TFs.
Collapse
Affiliation(s)
- Joanna Szewińska
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland.
| | - Joanna Simińska
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland
| | - Wiesław Bielawski
- Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, Department of Biochemistry, Nowoursynowska 159 street, Warsaw 02-776, Poland
| |
Collapse
|
38
|
Gao C, Qi S, Liu K, Li D, Jin C, Li Z, Huang G, Hai J, Zhang M, Chen M. MYC2, MYC3, and MYC4 function redundantly in seed storage protein accumulation in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:63-70. [PMID: 27415132 DOI: 10.1016/j.plaphy.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 07/02/2016] [Accepted: 07/05/2016] [Indexed: 05/02/2023]
Abstract
Basic helix-loop-helix transcription factors (TFs), namely MYC2, MYC3, and MYC4, interact with Jasmonate Zim-domain proteins and are their direct targets. These TFs have been shown to function synergistically to control Arabidopsis growth and development. Our results showed similar MYC2, MYC3, and MYC4 expression patterns during Arabidopsis seed development, which remained relatively high during seed mid-maturation. MYC2, MYC3, and MYC4 acted redundantly in seed size, weight control, and in regulating seed storage protein accumulation. Triple mutants produced the largest seeds and single and double mutants' seeds were much larger than those of wild type. The weight of triple mutants' seeds was significantly higher than that of wild-type seeds, which was accompanied by an increase in seed storage protein contents. Triple mutants' seeds presented a marked decrease in 2S amounts relative to those in wild-type seeds. Liquid chromatography tandem mass spectra sequencing results indicated that both the relative abundance and the peptide number of CRA1 and CRU3 were greatly increased in triple mutants compared to wild type. The expression of 2S1-2S5 decreased and that of CRA1 and CRU3 increased in triple mutants relative to those in wild types during seed development, which might have contributed to the low 2S and high 12S contents in triple mutants. Our results contribute to understanding the function of MYC2, MYC3, and MYC4 on seed development, and provide promising targets for genetic manipulations of protein-producing crops to improve the quantity and quality of seed storage proteins.
Collapse
Affiliation(s)
- Chenhao Gao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuanghui Qi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaige Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Changyu Jin
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuowei Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gengqing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jiangbo Hai
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxun Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
39
|
Tang Y, Wang R, Gong P, Li S, Wang Y, Zhang C. Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs). PLoS One 2016; 11:e0160945. [PMID: 27551866 PMCID: PMC4994961 DOI: 10.1371/journal.pone.0160945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 07/27/2016] [Indexed: 11/24/2022] Open
Abstract
Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the ‘Vitis vinifera cv. Pinot Noir’ and ‘Vitis vinifera cv. Thompson Seedless’ varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs.
Collapse
Affiliation(s)
- Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100, Shaanxi, China
| | - Ruipu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100, Shaanxi, China
| | - Peijie Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100, Shaanxi, China
| | - Shuxiu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100, Shaanxi, China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, 712100, Shaanxi, China
- * E-mail:
| |
Collapse
|
40
|
Simińska J, Orzechowski S, Bielawski W. Analysis of expression and inhibitory activity of a TrcC-6 phytocystatin present in developing and germinating seeds of triticale (×Triticosecale Wittm.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:209-216. [PMID: 26298807 DOI: 10.1016/j.plaphy.2015.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
Storage proteins of cereal seeds are processed during accumulation and degraded during germination primarily by cysteine proteinases. One of the mechanisms controlling the activity of these enzymes is the synthesis of specific inhibitors named phytocystatins. Here we present the complete gene sequence of a triticale ( × Triticosecale Wittm.) phytocystatin, TrcC-6, which encodes a 152-amino acid protein with a putative 25-amino acid signal peptide. This protein has a calculated molecular mass of 16.2 kDa, and was assigned to phylogenetic group B of phytocystatins. Because TrcC-6 transcripts are present in triticale seeds, we hypothesized that this phytocystatin regulates storage protein accumulation and degradation. Therefore, changes in gene expression during the entire period of seed development and germination were examined. TrcC-6 transcripts and TrcC-6 protein levels increased during the maturation of seeds and remained high during the first hours of germination. This enabled us to conclude that TrcC-6 likely regulates seed germination by the regulation of storage protein hydrolysis. For the analysis of TrcC-6 inhibitory activity, recombinant protein was expressed in Escherichia coli BL21 (DE3) and purified. Recombinant TrcC-6 proved to be a potent inhibitor of cysteine proteinases. It inhibited the in vitro activity of papain (EC 3.4.22.2) and ficin (EC 3.4.22.3). Furthermore, native PAGE analysis revealed that recombinant TrcC-6 inhibits the activity of endogenous cysteine proteinases present in germinating seeds of triticale. Based on these results, TrcC-6 is likely one of the important factors that regulate cysteine proteinase activity during the accumulation and mobilization of storage proteins.
Collapse
Affiliation(s)
- Joanna Simińska
- Department of Biochemistry, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Sławomir Orzechowski
- Department of Biochemistry, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Wiesław Bielawski
- Department of Biochemistry, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
41
|
Ashnest JR, Huynh DL, Dragwidge JM, Ford BA, Gendall AR. Arabidopsis Intracellular NHX-Type Sodium-Proton Antiporters are Required for Seed Storage Protein Processing. PLANT & CELL PHYSIOLOGY 2015; 56:2220-33. [PMID: 26416852 DOI: 10.1093/pcp/pcv138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/18/2015] [Indexed: 05/26/2023]
Abstract
The Arabidopsis intracellular sodium-proton exchanger (NHX) proteins AtNHX5 and AtNHX6 have a well-documented role in plant development, and have been used to improve salt tolerance in a variety of species. Despite evidence that intracellular NHX proteins are important in vacuolar trafficking, the mechanism of this role is poorly understood. Here we show that NHX5 and NHX6 are necessary for processing of the predominant seed storage proteins, and also influence the processing and activity of a vacuolar processing enzyme. Furthermore, we show by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) technology that the C-terminal tail of NHX6 interacts with a component of Retromer, another component of the cell sorting machinery, and that this tail is critical for NHX6 activity. These findings demonstrate that NHX5 and NHX6 are important in processing and activity of vacuolar cargo, and suggest a mechanism by which NHX intracellular (IC)-II antiporters may be involved in subcellular trafficking.
Collapse
Affiliation(s)
- Joanne R Ashnest
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia
| | - Dung L Huynh
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jonathan M Dragwidge
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia
| | - Brett A Ford
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia Present address: Commonwealth Scientific and Industrial Research Organization Agriculture Flagship, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, 5 Ring Road, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
42
|
Crystal structure of mature 2S albumin from Moringa oleifera seeds. Biochem Biophys Res Commun 2015; 468:365-71. [PMID: 26505799 DOI: 10.1016/j.bbrc.2015.10.087] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/17/2015] [Indexed: 11/21/2022]
Abstract
2S albumins, the seed storage proteins, are the primary sources of carbon and nitrogen and are involved in plant defense. The mature form of Moringa oleifera (M. oleifera), a chitin binding protein isoform 3-1 (mMo-CBP3-1) a thermostable antifungal, antibacterial, flocculating 2S albumin is widely used for the treatment of water and is potentially interesting for the development of both antifungal drugs and transgenic crops. The crystal structure of mMo-CBP3-1 determined at 1.7 Å resolution demonstrated that it is comprised of two proteolytically processed α-helical chains, stabilized by four disulfide bridges that is stable, resistant to pH changes and has a melting temperature (TM) of approximately 98 °C. The surface arginines and the polyglutamine motif are the key structural factors for the observed flocculating, antibacterial and antifungal activities. This represents the first crystal structure of a 2S albumin and the model of the pro-protein indicates the structural changes that occur upon formation of mMo-CBP3-1 and determines the structural motif and charge distribution patterns for the diverse observed activities.
Collapse
|
43
|
Structure and function of legumain in health and disease. Biochimie 2015; 122:126-50. [PMID: 26403494 DOI: 10.1016/j.biochi.2015.09.022] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022]
Abstract
The last years have seen a steady increase in our understanding of legumain biology that is driven from two largely uncoupled research arenas, the mammalian and the plant legumain field. Research on legumain, which is also referred to as asparaginyl endopeptidase (AEP) or vacuolar processing enzyme (VPE), is slivered, however. Here we summarise recent important findings and put them into a common perspective. Legumain is usually associated with its cysteine endopeptidase activity in lysosomes where it contributes to antigen processing for class II MHC presentation. However, newly recognized functions disperse previously assumed boundaries with respect to their cellular compartmentalisation and enzymatic activities. Legumain is also found extracellularly and even translocates to the cytosol and the nucleus, with seemingly incompatible pH and redox potential. These different milieus translate into changes of legumain's molecular properties, including its (auto-)activation, conformational stability and enzymatic functions. Contrasting its endopeptidase activity, legumain can develop a carboxypeptidase activity which remains stable at neutral pH. Moreover, legumain features a peptide ligase activity, with intriguing mechanistic peculiarities in plant and human isoforms. In pathological settings, such as cancer or Alzheimer's disease, the proper association of legumain activities with the corresponding cellular compartments is breached. Legumain's increasingly recognized physiological and pathological roles also indicate future research opportunities in this vibrant field.
Collapse
|
44
|
Lu H, Chandrasekar B, Oeljeklaus J, Misas-Villamil JC, Wang Z, Shindo T, Bogyo M, Kaiser M, van der Hoorn RAL. Subfamily-Specific Fluorescent Probes for Cysteine Proteases Display Dynamic Protease Activities during Seed Germination. PLANT PHYSIOLOGY 2015; 168:1462-75. [PMID: 26048883 PMCID: PMC4528725 DOI: 10.1104/pp.114.254466] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
Cysteine proteases are an important class of enzymes implicated in both developmental and defense-related programmed cell death and other biological processes in plants. Because there are dozens of cysteine proteases that are posttranslationally regulated by processing, environmental conditions, and inhibitors, new methodologies are required to study these pivotal enzymes individually. Here, we introduce fluorescence activity-based probes that specifically target three distinct cysteine protease subfamilies: aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes. We applied protease activity profiling with these new probes on Arabidopsis (Arabidopsis thaliana) protease knockout lines and agroinfiltrated leaves to identify the probe targets and on other plant species to demonstrate their broad applicability. These probes revealed that most commercially available protease inhibitors target unexpected proteases in plants. When applied on germinating seeds, these probes reveal dynamic activities of aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes, coinciding with the remobilization of seed storage proteins.
Collapse
Affiliation(s)
- Haibin Lu
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Balakumaran Chandrasekar
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Julian Oeljeklaus
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Johana C Misas-Villamil
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Zheming Wang
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Takayuki Shindo
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Matthew Bogyo
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Markus Kaiser
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| |
Collapse
|
45
|
Bernath-Levin K, Nelson C, Elliott AG, Jayasena AS, Millar AH, Craik DJ, Mylne JS. Peptide macrocyclization by a bifunctional endoprotease. ACTA ACUST UNITED AC 2015; 22:571-82. [PMID: 25960260 DOI: 10.1016/j.chembiol.2015.04.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/16/2015] [Accepted: 04/03/2015] [Indexed: 11/16/2022]
Abstract
Proteases usually cleave peptides, but under some conditions, they can ligate them. Seeds of the common sunflower contain the 14-residue, backbone-macrocyclic peptide sunflower trypsin inhibitor 1 (SFTI-1) whose maturation from its precursor has a genetic requirement for asparaginyl endopeptidase (AEP). To provide more direct evidence, we developed an in situ assay and used (18)O-water to demonstrate that SFTI-1 is excised and simultaneously macrocyclized from its linear precursor. The reaction is inefficient in situ, but a newfound breakdown pathway can mask this inefficiency by reducing the internal disulfide bridge of any acyclic-SFTI to thiols before degrading it. To confirm AEP can directly perform the excision/ligation, we produced several recombinant plant AEPs in E. coli, and one from jack bean could catalyze both a typical cleavage reaction and cleavage-dependent, intramolecular transpeptidation to create SFTI-1. We propose that the evolution of ligating endoproteases enables plants like sunflower and jack bean to stabilize bioactive peptides.
Collapse
Affiliation(s)
- Kalia Bernath-Levin
- The University of Western Australia, School of Chemistry and Biochemistry, 35 Stirling Highway, Crawley, Perth 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Clark Nelson
- ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Alysha G Elliott
- The University of Queensland, Institute for Molecular Bioscience, Brisbane 4072, Australia
| | - Achala S Jayasena
- The University of Western Australia, School of Chemistry and Biochemistry, 35 Stirling Highway, Crawley, Perth 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - David J Craik
- The University of Queensland, Institute for Molecular Bioscience, Brisbane 4072, Australia
| | - Joshua S Mylne
- The University of Western Australia, School of Chemistry and Biochemistry, 35 Stirling Highway, Crawley, Perth 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia.
| |
Collapse
|
46
|
Abstract
The labdane-related diterpenoid, momilactone B has potent growth inhibitory activity and was demonstrated to play a particularly critical role in the allelopathy of rice ( Oryza sativa L.). However, there is limited information available about the mode of action of momilactone B on the growth inhibition. The present research describes the effects of momilactone B on protein expression in the early development of Arabidopsis thaliana seedling, which was determined by two-dimensional electrophoresis and MALDI-TOFMS. Momilactone B inhibited the accumulation of subtilisin-like serine protease, amyrin synthase LUP2, β-glucosidase and malate synthase at 1 h after the momilactone application. Those proteins are involved in the metabolic turnover and the production of intermediates needed for cell structures resulting in plant growth and development. Momilactone B also inhibited the breakdown of cruciferin 2, which is essential for seed germination and seedling growth to construct cell structures. Momilactone B induced the accumulation of translationally controlled tumor protein, glutathione S-transferase and 1-cysteine peroxiredoxin 1. These proteins are involved in stress responses and increased stress tolerance. In addition, glutathione S-transferase has the activity of herbicide detoxification and 1-cysteine peroxiredoxin 1 has inhibitory activity for seed germination under unfavorable conditions. The present research suggests that momilactone B may inhibit the seedling growth by the inhibition of the metabolic turnover and the production of intermediates for cell structures. In addition, momilactone induced proteins associated with plant defense responses.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Shinya Kitajima
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| |
Collapse
|
47
|
Reguera M, Bassil E, Tajima H, Wimmer M, Chanoca A, Otegui MS, Paris N, Blumwald E. pH Regulation by NHX-Type Antiporters Is Required for Receptor-Mediated Protein Trafficking to the Vacuole in Arabidopsis. THE PLANT CELL 2015; 27:1200-17. [PMID: 25829439 PMCID: PMC4558692 DOI: 10.1105/tpc.114.135699] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/26/2015] [Accepted: 03/12/2015] [Indexed: 05/18/2023]
Abstract
Protein trafficking requires proper ion and pH homeostasis of the endomembrane system. The NHX-type Na(+)/H(+) antiporters NHX5 and NHX6 localize to the Golgi, trans-Golgi network, and prevacuolar compartments and are required for growth and trafficking to the vacuole. In the nhx5 nhx6 T-DNA insertional knockouts, the precursors of the 2S albumin and 12S globulin storage proteins accumulated and were missorted to the apoplast. Immunoelectron microscopy revealed the presence of vesicle clusters containing storage protein precursors and vacuolar sorting receptors (VSRs). Isolation and identification of complexes of VSRs with unprocessed 12S globulin by 2D blue-native PAGE/SDS-PAGE indicated that the nhx5 nhx6 knockouts showed compromised receptor-cargo association. In vivo interaction studies using bimolecular fluorescence complementation between VSR2;1, aleurain, and 12S globulin suggested that nhx5 nhx6 knockouts showed a significant reduction of VSR binding to both cargoes. In vivo pH measurements indicated that the lumens of VSR compartments containing aleurain, as well as the trans-Golgi network and prevacuolar compartments, were significantly more acidic in nhx5 nhx6 knockouts. This work demonstrates the importance of NHX5 and NHX6 in maintaining endomembrane luminal pH and supports the notion that proper vacuolar trafficking and proteolytic processing of storage proteins require endomembrane pH homeostasis.
Collapse
Affiliation(s)
- Maria Reguera
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Elias Bassil
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Monika Wimmer
- Institute of Crop Science and Resource Conservation, Division of Plant Nutrition, University of Bonn, D-53115 Bonn, Germany
| | - Alexandra Chanoca
- Departments of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Marisa S Otegui
- Departments of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Nadine Paris
- Biochemistry and Plant Molecular Biology Laboratory, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
48
|
Shimada T, Koumoto Y, Hara-Nishimura I. Evaluation of defective endosomal trafficking to the vacuole by monitoring seed storage proteins in Arabidopsis thaliana. Methods Mol Biol 2015; 1209:131-42. [PMID: 25117280 DOI: 10.1007/978-1-4939-1420-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Vacuolar proteins are synthesized as precursor forms in the endoplasmic reticulum and are sorted to the vacuole. In this chapter, we introduce two easy methods for the evaluation of vacuolar protein transport using Arabidopsis seeds. These methods are adequate to detect defects in vacuolar transport mediated by endosomes and other trafficking pathways as well. They include an immunoblot assay that monitors the abnormal accumulation of storage protein precursors, and an immunogold labeling assay that monitors the abnormal secretion of storage proteins. Each method facilitates the rapid identification of defects in the transport of endogenous vacuolar proteins in Arabidopsis mutants.
Collapse
Affiliation(s)
- Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan,
| | | | | |
Collapse
|
49
|
Mylne JS, Hara-Nishimura I, Rosengren KJ. Seed storage albumins: biosynthesis, trafficking and structures. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:671-677. [PMID: 32481022 DOI: 10.1071/fp14035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/24/2014] [Indexed: 06/11/2023]
Abstract
Seed storage albumins are water-soluble and highly abundant proteins that are broken-down during seed germination to provide nitrogen and sulfur for the developing seedling. During seed maturation these proteins are subject to post-translational modifications and trafficking before they are deposited in great quantity and with great stability in dedicated vacuoles. This review will cover the subcellular movement, biochemical processing and mature structures of seed storage napins.
Collapse
Affiliation(s)
- Joshua S Mylne
- The University of Western Australia, School of Chemistry and Biochemistry and ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake cho Sakyo-ku, Kyoto, 606-8502, Japan
| | - K Johan Rosengren
- The University of Queensland, School of Biomedical Sciences, Brisbane, Qld 4072, Australia
| |
Collapse
|
50
|
A systematic proteomic analysis of NaCl-stressed germinating maize seeds. Mol Biol Rep 2014; 41:3431-43. [PMID: 24700167 DOI: 10.1007/s11033-014-3205-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
Abstract
Salt (NaCl) is a common physiological stressor of plants. To better understand how germinating seeds respond to salt stress, we examined the changes that occurred in the proteome of maize seeds during NaCl-treated germination. Phenotypically, salt concentrations less than 0.2 M appear to delay germination, while higher concentrations disrupt development completely, leading to seed death. The identities of 96 proteins with expression levels altered by NaCl-incubation were established using 2-DE-MALDI-TOF-MS and 2-DE-MALDI-TOF-MS/MS. Of these 96 proteins, 79 were altered greater than twofold when incubated with a 0.2 M salt solution, while 51 were altered when incubated with a 0.1 M salt solution. According to their functional annotations in the Swiss-Prot protein-sequence databases, these proteins are mainly involved in seed storage, energy metabolism, stress response, and protein metabolism. Notably, the expression of proteins that respond to abscisic acid signals increased in response to salt stress. The results of this study provide important clues as to how NaCl stresses the physiology of germinating maize seeds.
Collapse
|