1
|
Schaeper JJ, Kampshoff CA, Wolf BJ, Roos L, Michanski S, Ruhwedel T, Eckermann M, Meyer A, Jeschke M, Wichmann C, Moser T, Salditt T. 3D virtual histology of rodent and primate cochleae with multi-scale phase-contrast X-ray tomography. Sci Rep 2025; 15:7933. [PMID: 40050327 PMCID: PMC11885485 DOI: 10.1038/s41598-025-89431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Multi-scale X-ray phase contrast tomography (XPCT) enables three-dimensional (3D), non-destructive imaging of intact small animal cochlea and apical cochlear turns. Here we report on post-mortem imaging of excised non-human primate and rodent cochleae at different [Formula: see text]-CT and nano-CT synchrotron instruments. We explore different sample embeddings, stainings and imaging regimes. Under optimized conditions of sample preparation, instrumentation, imaging protocol, and phase retrieval, high image quality and detail level can be achieved in 3D reconstructions. The showcased instrumentation and imaging protocols along with the reconstucted volumes can serve as benchmarks and reference for multi-scale microanatomy and 3D histology. The provided benchmarks and imaging protocols of this work cover a wide range of scales and are intended as augmented imaging tools for auditory research.
Collapse
Affiliation(s)
- Jannis J Schaeper
- Institute for X-Ray Physics, University of Göttingen, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, 37075, Göttingen, Germany
| | - Christoph A Kampshoff
- Department of Otolaryngology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Bettina J Wolf
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Else-Kröner-Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, 37075, Göttingen, Germany
| | - Lennart Roos
- Department of Otolaryngology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Else-Kröner-Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, 37075, Göttingen, Germany
| | - Susann Michanski
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Torben Ruhwedel
- Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany
| | - Marina Eckermann
- Beamline ID16A, European Synchrotron Radiation Facility, 38000, Grenoble, France
| | - Alexander Meyer
- Department of Otolaryngology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Marcus Jeschke
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Cognitive Hearing in Primates Group, German Primate Center, 37077, Göttingen, Germany
- Else-Kröner-Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- University Medical Center Göttingen, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, 37075, Göttingen, Germany
| | - Tobias Moser
- Department of Otolaryngology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Else-Kröner-Fresenius Center for Optogenetic Therapies, University Medical Center Göttingen, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, 37075, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, 37077, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
2
|
Kjer HM, Andersson M, He Y, Pacureanu A, Daducci A, Pizzolato M, Salditt T, Robisch AL, Eckermann M, Töpperwien M, Bjorholm Dahl A, Elkjær ML, Illes Z, Ptito M, Andersen Dahl V, Dyrby TB. Bridging the 3D geometrical organisation of white matter pathways across anatomical length scales and species. eLife 2025; 13:RP94917. [PMID: 40019134 PMCID: PMC11870653 DOI: 10.7554/elife.94917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
We used diffusion MRI and x-ray synchrotron imaging on monkey and mice brains to examine the organisation of fibre pathways in white matter across anatomical scales. We compared the structure in the corpus callosum and crossing fibre regions and investigated the differences in cuprizone-induced demyelination in mouse brains versus healthy controls. Our findings revealed common principles of fibre organisation that apply despite the varying patterns observed across species; small axonal fasciculi and major bundles formed laminar structures with varying angles, according to the characteristics of major pathways. Fasciculi exhibited non-straight paths around obstacles like blood vessels, comparable across the samples of varying fibre complexity and demyelination. Quantifications of fibre orientation distributions were consistent across anatomical length scales and modalities, whereas tissue anisotropy had a more complex relationship, both dependent on the field-of-view. Our study emphasises the need to balance field-of-view and voxel size when characterising white matter features across length scales.
Collapse
Affiliation(s)
- Hans Martin Kjer
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreHvidovreDenmark
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreHvidovreDenmark
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Yi He
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreHvidovreDenmark
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhaiChina
| | | | | | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Tim Salditt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-PlatzGöttingenGermany
| | - Anna-Lena Robisch
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-PlatzGöttingenGermany
| | - Marina Eckermann
- ESRF - The European SynchrotronGrenobleFrance
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-PlatzGöttingenGermany
| | - Mareike Töpperwien
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-PlatzGöttingenGermany
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Maria Louise Elkjær
- Department of Neurology, Odense University HospitalOdenseDenmark
- Institute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Zsolt Illes
- Department of Neurology, Odense University HospitalOdenseDenmark
- Institute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
- BRIDGE—Brain Research—Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern DenmarkOdenseDenmark
- Rheumatology Research Unit, Odense University HospitalOdenseDenmark
| | - Maurice Ptito
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
- School of Optometry, University of MontrealMontrealCanada
| | - Vedrana Andersen Dahl
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and HvidovreHvidovreDenmark
- Department of Applied Mathematics and Computer Science, Technical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
3
|
Albers J, Svetlove A, Duke E. Synchrotron X-ray imaging of soft biological tissues - principles, applications and future prospects. J Cell Sci 2024; 137:jcs261953. [PMID: 39440473 PMCID: PMC11529875 DOI: 10.1242/jcs.261953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Synchrotron-based tomographic phase-contrast X-ray imaging (SRµCT or SRnCT) is a versatile isotropic three-dimensional imaging technique that can be used to study biological samples spanning from single cells to human-sized specimens. SRµCT and SRnCT take advantage of the highly brilliant and coherent X-rays produced by a synchrotron light source. This enables fast data acquisition and enhanced image contrast for soft biological samples owing to the exploitation of phase contrast. In this Review, we provide an overview of the basics behind the technique, discuss its applications for biologists and provide an outlook on the future of this emerging technique for biology. We introduce the latest advances in the field, such as whole human organs imaged with micron resolution, using X-rays as a tool for virtual histology and resolving neuronal connections in the brain.
Collapse
Affiliation(s)
- Jonas Albers
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Angelika Svetlove
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Elizabeth Duke
- European Molecular Biology Laboratory, Hamburg Unit c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
4
|
Burchert JP, Frohn J, Rölleke U, Bruns H, Yu B, Gleber SC, Stange R, Busse M, Osterhoff M, Salditt T, Köster S. X-ray phase-contrast tomography of cells manipulated with an optical stretcher. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:923-935. [PMID: 38861370 PMCID: PMC11226146 DOI: 10.1107/s1600577524003618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/21/2024] [Indexed: 06/13/2024]
Abstract
X-rays can penetrate deeply into biological cells and thus allow for examination of their internal structures with high spatial resolution. In this study, X-ray phase-contrast imaging and tomography is combined with an X-ray-compatible optical stretcher and microfluidic sample delivery. Using this setup, individual cells can be kept in suspension while they are examined with the X-ray beam at a synchrotron. From the recorded holograms, 2D phase shift images that are proportional to the projected local electron density of the investigated cell can be calculated. From the tomographic reconstruction of multiple such projections the 3D electron density can be obtained. The cells can thus be studied in a hydrated or even living state, thus avoiding artifacts from freezing, drying or embedding, and can in principle also be subjected to different sample environments or mechanical strains. This combination of techniques is applied to living as well as fixed and stained NIH3T3 mouse fibroblasts and the effect of the beam energy on the phase shifts is investigated. Furthermore, a 3D algebraic reconstruction scheme and a dedicated mathematical description is used to follow the motion of the trapped cells in the optical stretcher for multiple rotations.
Collapse
Affiliation(s)
- Jan-Philipp Burchert
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)University of GöttingenGermany
| | - Jasper Frohn
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
| | - Ulrike Rölleke
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
| | - Hendrik Bruns
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
| | - Boram Yu
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
| | - Sophie-Charlotte Gleber
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
| | | | - Madleen Busse
- Biomedical Physics, School of ScienceTechnical University MunichBoltzmannstraße 1185748GarchingGermany
- Munich Institute of Biomedical EngineeringTechnical University MunichBoltzmannstraße 1185748GarchingGermany
| | - Markus Osterhoff
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
| | - Tim Salditt
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)University of GöttingenGermany
| | - Sarah Köster
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)University of GöttingenGermany
| |
Collapse
|
5
|
Schaeper JJ, Liberman MC, Salditt T. Imaging of excised cochleae by micro-CT: staining, liquid embedding, and image modalities. J Med Imaging (Bellingham) 2023; 10:053501. [PMID: 37753271 PMCID: PMC10519431 DOI: 10.1117/1.jmi.10.5.053501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Purpose Assessing the complex three-dimensional (3D) structure of the cochlea is crucial to understanding the fundamental aspects of signal transduction in the inner ear and is a prerequisite for the development of novel cochlear implants. X-ray phase-contrast computed tomography offers destruction-free 3D imaging with little sample preparation, thus preserving the delicate structure of the cochlea. The use of heavy metal stains enables higher contrast and resolution and facilitates segmentation of the cochlea. Approach For μ-CT of small animal and human cochlea, we explore the heavy metal osmium tetroxide (OTO) as a radiocontrast agent and delineate laboratory μ - CT from synchrotron CT. We investigate how phase retrieval can be used to improve the image quality of the reconstructions, both for stained and unstained specimens. Results Image contrast for soft tissue in an aqueous solution is insufficient under the in-house conditions, whereas the OTO stain increases contrast for lipid-rich tissue components, such as the myelin sheaths in nervous tissue, enabling contrast-based rendering of the different components of the auditory nervous system. The overall morphology of the cochlea with the three scalae and membranes is very well represented. Further, the image quality of the reconstructions improves significantly when a phase retrieval scheme is used, which is also suitable for non-ideal laboratory μ - CT settings. With highly brilliant synchrotron radiation (SR), we achieve high contrast for unstained whole cochleae at the cellular level. Conclusions The OTO stain is suitable for 3D imaging of small animal and human cochlea with laboratory μ - CT , and relevant pathologies, such as a loss of sensory cells and neurons, can be visualized. With SR and optimized phase retrieval, the cellular level can be reached even for unstained samples in aqueous solution, as demonstrated by the high visibility of single hair cells and spiral ganglion neurons.
Collapse
Affiliation(s)
- Jannis Justus Schaeper
- University of Göttingen, Institute for X-ray Physics, Göttingen, Germany
- University of Göttingen, Cluster of Excellence “Multiscale Bioimaging: Molecular Machines to Networks of Excitable Cells,” Göttingen, Germany
| | - Michael Charles Liberman
- Massachusetts Eye and Ear Infirmary, Eaton-Peabody Laboratories, Boston, Massachusetts, United States
- Harvard Medical School, Department of Otolaryngology, Head and Neck Surgery, Boston, Massachusetts, United States
| | - Tim Salditt
- University of Göttingen, Institute for X-ray Physics, Göttingen, Germany
- University of Göttingen, Cluster of Excellence “Multiscale Bioimaging: Molecular Machines to Networks of Excitable Cells,” Göttingen, Germany
| |
Collapse
|
6
|
Frost J, Schmitzer B, Töpperwien M, Eckermann M, Franz J, Stadelmann C, Salditt T. 3d virtual histology reveals pathological alterations of cerebellar granule cells in multiple sclerosis. Neuroscience 2023; 520:18-38. [PMID: 37061161 DOI: 10.1016/j.neuroscience.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
We investigate structural properties of neurons in the granular layer of human cerebellum with respect to their involvement in multiple sclerosis (MS). To this end we analyze data recorded by X-ray phase contrast tomography from tissue samples collected post mortem from a MS and a healthy control group. Using automated segmentation and histogram analysis based on optimal transport theory (OT) we find that the distributions representing nuclear structure in the granular layer move to a more compact nuclear state, i.e. smaller, denser and more heterogeneous nuclei in MS. We have previously made a similar observation for neurons of the dentate gyrus in Alzheimer's disease, suggesting that more compact structure of neuronal nuclei which we attributed to increased levels of heterochromatin, may possibly represent a more general phenomenon of cellular senescence associated with neurodegeneration.
Collapse
Affiliation(s)
- Jakob Frost
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany
| | - Bernhard Schmitzer
- Institute of Computer Science, Georg-August Universität Göttingen, Germany
| | - Mareike Töpperwien
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany; Present address: ESRF, Grenoble, France; Present adress: YXLON GmbH, Hamburg, Germany
| | - Marina Eckermann
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany; Present address: ESRF, Grenoble, France
| | - Jonas Franz
- Institute of Neuropathology, Universical Medical Center Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, Universical Medical Center Göttingen, Germany; Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg-August Universität Göttingen, Germany
| | - Tim Salditt
- Institute of X-ray Physics, Georg-August Universität Göttingen, Germany; Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg-August Universität Göttingen, Germany
| |
Collapse
|
7
|
Wittmeier A, Bernhardt M, Robisch AL, Cassini C, Osterhoff M, Salditt T, Köster S. Combined optical fluorescence microscopy and X-ray tomography reveals substructures in cell nuclei in 3D. BIOMEDICAL OPTICS EXPRESS 2022; 13:4954-4969. [PMID: 36187264 PMCID: PMC9484410 DOI: 10.1364/boe.462493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
The function of a biological cell is fundamentally defined by the structural architecture of packaged DNA in the nucleus. Elucidating information about the packaged DNA is facilitated by high-resolution imaging. Here, we combine and correlate hard X-ray propagation-based phase contrast tomography and visible light confocal microscopy in three dimensions to probe DNA in whole cell nuclei of NIH-3T3 fibroblasts. In this way, unlabeled and fluorescently labeled substructures within the cell are visualized in a complementary manner. Our approach enables the quantification of the electron density, volume and optical fluorescence intensity of nuclear material. By joining all of this information, we are able to spatially localize and physically characterize both active and inactive heterochromatin, euchromatin, pericentric heterochromatin foci and nucleoli.
Collapse
Affiliation(s)
- Andrew Wittmeier
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Marten Bernhardt
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Anna-Lena Robisch
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Chiara Cassini
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Germany
| | - Markus Osterhoff
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Germany
| |
Collapse
|
8
|
Huhn S, Lohse LM, Lucht J, Salditt T. Fast algorithms for nonlinear and constrained phase retrieval in near-field X-ray holography based on Tikhonov regularization. OPTICS EXPRESS 2022; 30:32871-32886. [PMID: 36242340 DOI: 10.1364/oe.462368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Based on phase retrieval, lensless coherent imaging and in particular holography offers quantitative phase and amplitude images. This is of particular importance for spectral ranges where suitable lenses are challenging, such as for hard x-rays. Here, we propose a phase retrieval approach for inline x-ray holography based on Tikhonov regularization applied to the full nonlinear forward model of image formation. The approach can be seen as a nonlinear generalization of the well-established contrast transfer function (CTF) reconstruction method. While similar methods have been proposed before, the current work achieves nonlinear, constrained phase retrieval at competitive computation times. We thus enable high-throughput imaging of optically strong objects beyond the scope of CTF. Using different examples of inline holograms obtained from illumination by a x-ray waveguide-source, we demonstrate superior image quality even for samples which do not obey the assumption of a weakly varying phase. Since the presented approach does not rely on linearization, we expect it to be well suited also for other probes such as visible light or electrons, which often exhibit strong phase interaction.
Collapse
|
9
|
Veress B, Peruzzi N, Eckermann M, Frohn J, Salditt T, Bech M, Ohlsson B. Structure of the myenteric plexus in normal and diseased human ileum analyzed by X-ray virtual histology slices. World J Gastroenterol 2022; 28:3994-4006. [PMID: 36157532 PMCID: PMC9367237 DOI: 10.3748/wjg.v28.i29.3994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The enteric nervous system (ENS) is situated along the entire gastrointestinal tract and is divided into myenteric and submucosal plexuses in the small and large intestines. The ENS consists of neurons, glial cells, and nerves assembled into ganglia, surrounded by telocytes, interstitial cells of Cajal, and connective tissue. Owing to the complex spatial organization of several interconnections with nerve fascicles, the ENS is difficult to examine in conventional histological sections of 3-5 μm.
AIM To examine human ileum full-thickness biopsies using X-ray phase-contrast nanotomography without prior staining to visualize the ENS.
METHODS Six patients were diagnosed with gastrointestinal dysmotility and neuropathy based on routine clinical and histopathological examinations. As controls, full-thickness biopsies were collected from healthy resection ileal regions after hemicolectomy for right colon malignancy. From the paraffin blocks, 4-µm thick sections were prepared and stained with hematoxylin and eosin for localization of the myenteric ganglia under a light microscope. A 1-mm punch biopsy (up to 1 cm in length) centered on the myenteric plexus was taken and placed into a Kapton® tube for mounting in the subsequent investigation. X-ray phase-contrast tomography was performed using two custom-designed laboratory setups with micrometer resolution for overview scanning. Subsequently, selected regions of interest were scanned at a synchrotron-based end-station, and high-resolution slices were reported. In total, more than 6000 virtual slices were analyzed from nine samples.
RESULTS In the overview scans, the general architecture and quality of the samples were studied, and the myenteric plexus was localized. High-resolution scans revealed details, including the ganglia, interganglional nerve fascicles, and surrounding tissue. The ganglia were irregular in shape and contained neurons and glial cells. Spindle-shaped cells with very thin cellular projections could be observed on the surface of the ganglia, which appeared to build a network. In the patients, there were no alterations in the general architecture of the myenteric ganglia. Nevertheless, several pathological changes were observed, including vacuolar degeneration, autophagic activity, the appearance of sequestosomes, chromatolysis, and apoptosis. Furthermore, possible expulsion of pyknotic neurons and defects in the covering cellular network could be observed in serial slices. These changes partly corresponded to previous light microscopy findings.
CONCLUSION The analysis of serial virtual slices could provide new information that cannot be obtained by classical light microscopy. The advantages, disadvantages, and future possibilities of this method are also discussed.
Collapse
Affiliation(s)
- Bela Veress
- Department of Pathology, Skåne Universiity Hospital, Malmö 205 02, Sweden
| | - Niccolò Peruzzi
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund 221 00, Sweden
| | - Marina Eckermann
- Institute for X-Ray Physics, University of Göttingen, Göttingen 37077, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen 37077, Germany
- ESRF, The European Synchrotron, Grenoble 38043, France
| | - Jasper Frohn
- Institute for X-Ray Physics, University of Göttingen, Göttingen 37077, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, Göttingen 37077, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen 37077, Germany
| | - Martin Bech
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund 221 00, Sweden
| | - Bodil Ohlsson
- Department of Internal Medicine, Skåne University Hospital, Lund University, Malmö S-205 02, Sweden
| |
Collapse
|
10
|
Soltau J, Osterhoff M, Salditt T. Coherent Diffractive Imaging with Diffractive Optics. PHYSICAL REVIEW LETTERS 2022; 128:223901. [PMID: 35714250 DOI: 10.1103/physrevlett.128.223901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
We present a novel approach to x-ray microscopy based on a multilayer zone plate which is positioned behind a sample similar to an objective lens. However, unlike transmission x-ray microscopy, we do not content ourselves with a sharp intensity image; instead, we incorporate the multilayer zone plate transfer function directly in an iterative phase retrieval scheme to exploit the large diffraction angles of the small layers. The presence of multiple diffraction orders, which is conventionally a nuisance, now comes as an advantage for the reconstruction and photon efficiency. In a first experiment, we achieve sub-10-nm resolution and a quantitative phase contrast.
Collapse
Affiliation(s)
- Jakob Soltau
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Markus Osterhoff
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen 37077, Germany
- Campus-Institut Data Science, Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen 37077, Germany
- Campus-Institut Data Science, Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| |
Collapse
|
11
|
Eckermann M, van der Meer F, Cloetens P, Ruhwedel T, Möbius W, Stadelmann C, Salditt T. Three-dimensional virtual histology of the cerebral cortex based on phase-contrast X-ray tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:7582-7598. [PMID: 35003854 PMCID: PMC8713656 DOI: 10.1364/boe.434885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 05/09/2023]
Abstract
In this work, we optimize the setups and experimental parameters of X-ray phase-contrast computed-tomography for the three-dimensional imaging of the cyto- and myeloarchitecture of cerebral cortex, including both human and murine tissue. We present examples for different optical configurations using state-of-the art synchrotron instruments for holographic tomography, as well as compact laboratory setups for phase-contrast tomography in the direct contrast (edge-enhancement) regime. Apart from unstained and paraffin-embedded tissue, we tested hydrated tissue, as well as heavy metal stained and resin-embedded tissue using two different protocols. Further, we show that the image quality achieved allows to assess the neuropathology of multiple sclerosis in a biopsy sample collected during surgery.
Collapse
Affiliation(s)
- Marina Eckermann
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | | | - Peter Cloetens
- ESRF, the European Synchrotron, 71, avenue des Martyrs, 38043 Grenoble Cedex 9, France
| | - Torben Ruhwedel
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Wiebke Möbius
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Christine Stadelmann
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Institut für Neuropathologie, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| |
Collapse
|
12
|
Three-dimensional virtual histology of the human hippocampus based on phase-contrast computed tomography. Proc Natl Acad Sci U S A 2021; 118:2113835118. [PMID: 34819378 PMCID: PMC8640721 DOI: 10.1073/pnas.2113835118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
We demonstrate multiscale phase-contrast X-ray computed tomography (CT) of postmortem human brain tissue. Large tissue volumes can be covered by parallel-beam CT and combined with subcellular detail for selected regions scanned at high magnification. This has been repeated identically for a larger number of individuals, including both Alzheimer’s-diseased patients and a control group. Optimized phase retrieval, followed by automated segmentation based on machine learning, as well as feature identification and classification based on optimal transport theory, indicates a pathway from healthy to pathological structure without prior hypothesis. This study provides a blueprint for studying the cytoarchitecture of the human brain and its alterations associated with neurodegenerative diseases. We have studied the three-dimensional (3D) cytoarchitecture of the human hippocampus in neuropathologically healthy and Alzheimer’s disease (AD) individuals, based on phase-contrast X-ray computed tomography of postmortem human tissue punch biopsies. In view of recent findings suggesting a nuclear origin of AD, we target in particular the nuclear structure of the dentate gyrus (DG) granule cells. Tissue samples of 20 individuals were scanned and evaluated using a highly automated approach of measurement and analysis, combining multiscale recordings, optimized phase retrieval, segmentation by machine learning, representation of structural properties in a feature space, and classification based on the theory of optimal transport. Accordingly, we find that the prototypical transformation between a structure representing healthy granule cells and the pathological state involves a decrease in the volume of granule cell nuclei, as well as an increase in the electron density and its spatial heterogeneity. The latter can be explained by a higher ratio of heterochromatin to euchromatin. Similarly, many other structural properties can be derived from the data, reflecting both the natural polydispersity of the hippocampal cytoarchitecture between different individuals in the physiological context and the structural effects associated with AD pathology.
Collapse
|
13
|
Soltau J, Chayanun L, Lyubomirskiy M, Wallentin J, Osterhoff M. Off-axis multilayer zone plate with 16 nm × 28 nm focus for high-resolution X-ray beam induced current imaging. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1573-1582. [PMID: 34475304 PMCID: PMC8415331 DOI: 10.1107/s1600577521006159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Using multilayer zone plates (MZPs) as two-dimensional optics, focal spot sizes of less than 10 nm can be achieved, as we show here with a focus of 8.4 nm × 9.6 nm, but the need for order-sorting apertures prohibits practical working distances. To overcome this issue, here an off-axis illumination of a circular MZP is introduced to trade off between working distance and focal spot size. By this, the working distance between order-sorting aperture and sample can be more than doubled. Exploiting a 2D focus of 16 nm × 28 nm, real-space 2D mapping of local electric fields and charge carrier recombination using X-ray beam induced current in a single InP nanowire is demonstrated. Simulations show that a dedicated off-axis MZP can reach sub-10 nm focusing combined with reasonable working distances and low background, which could be used for in operando imaging of composition, carrier collection and strain in nanostructured devices.
Collapse
Affiliation(s)
- Jakob Soltau
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Lert Chayanun
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | | | - Jesper Wallentin
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Markus Osterhoff
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
14
|
Rumancev C, Vöpel T, Stuhr S, Gundlach AR, Senkbeil T, Osterhoff M, Sprung M, Garamus VM, Ebbinghaus S, Rosenhahn A. In Cellulo Analysis of Huntingtin Inclusion Bodies by Cryogenic Nanoprobe SAXS. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christoph Rumancev
- Analytical Chemistry – Biointerfaces Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Tobias Vöpel
- Department of Physical Chemistry II Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Susan Stuhr
- Analytical Chemistry – Biointerfaces Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Andreas R. Gundlach
- Analytical Chemistry – Biointerfaces Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Tobias Senkbeil
- Analytical Chemistry – Biointerfaces Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Markus Osterhoff
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY Notkestr. 85 22607 Hamburg Germany
| | - Vasil M. Garamus
- Helmholtz-Zentrum Geesthacht: Centre for Materials and Coast Research Institute of Materials Research Max-Planck-Str. 1 21502 Geesthacht Germany
| | - Simon Ebbinghaus
- Department of Physical Chemistry II Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
- Institute of Physical and Theoretical Chemistry TU Braunschweig Rebenring 56 38106 Braunschweig Germany
| | - Axel Rosenhahn
- Analytical Chemistry – Biointerfaces Ruhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| |
Collapse
|
15
|
Veselý M, Valadian R, Lohse LM, Toepperwien M, Spiers K, Garrevoet J, Vogt ETC, Salditt T, Weckhuysen BM, Meirer F. 3‐D X‐ray Nanotomography Reveals Different Carbon Deposition Mechanisms in a Single Catalyst Particle. ChemCatChem 2021. [DOI: 10.1002/cctc.202100276] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Martin Veselý
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Roozbeh Valadian
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Leon Merten Lohse
- Institute for X-ray Physics University of Göttingen Friedrich-Hund-Platz 1 37077 Göttingen Germany
| | - Mareike Toepperwien
- Institute for X-ray Physics University of Göttingen Friedrich-Hund-Platz 1 37077 Göttingen Germany
| | - Kathryn Spiers
- Deutsches Elektronen-Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY Notkestrasse 85 22607 Hamburg Germany
| | - Eelco T. C. Vogt
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Albemarle Catalysts Company BV Research Center Amsterdam PO box 37650 1030 BE Amsterdam The Netherlands
| | - Tim Salditt
- Institute for X-ray Physics University of Göttingen Friedrich-Hund-Platz 1 37077 Göttingen Germany
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
16
|
Wittmeier A, Cassini C, Töpperwien M, Denz M, Hagemann J, Osterhoff M, Salditt T, Köster S. Combined scanning small-angle X-ray scattering and holography probes multiple length scales in cell nuclei. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:518-529. [PMID: 33650565 PMCID: PMC7941289 DOI: 10.1107/s1600577520016276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
X-rays are emerging as a complementary probe to visible-light photons and electrons for imaging biological cells. By exploiting their small wavelength and high penetration depth, it is possible to image whole, intact cells and resolve subcellular structures at nanometer resolution. A variety of X-ray methods for cell imaging have been devised for probing different properties of biological matter, opening up various opportunities for fully exploiting different views of the same sample. Here, a combined approach is employed to study cell nuclei of NIH-3T3 fibroblasts. Scanning small-angle X-ray scattering is combined with X-ray holography to quantify length scales, aggregation state, and projected electron and mass densities of the nuclear material. Only by joining all this information is it possible to spatially localize nucleoli, heterochromatin and euchromatin, and physically characterize them. It is thus shown that for complex biological systems, like the cell nucleus, combined imaging approaches are highly valuable.
Collapse
Affiliation(s)
- Andrew Wittmeier
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Chiara Cassini
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)’, University of Göttingen, Göttingen, Germany
| | - Mareike Töpperwien
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Manuela Denz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Johannes Hagemann
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Markus Osterhoff
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)’, University of Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)’, University of Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Hagemann J, Vassholz M, Hoeppe H, Osterhoff M, Rosselló JM, Mettin R, Seiboth F, Schropp A, Möller J, Hallmann J, Kim C, Scholz M, Boesenberg U, Schaffer R, Zozulya A, Lu W, Shayduk R, Madsen A, Schroer CG, Salditt T. Single-pulse phase-contrast imaging at free-electron lasers in the hard X-ray regime. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:52-63. [PMID: 33399552 PMCID: PMC7842230 DOI: 10.1107/s160057752001557x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/24/2020] [Indexed: 05/31/2023]
Abstract
X-ray free-electron lasers (XFELs) have opened up unprecedented opportunities for time-resolved nano-scale imaging with X-rays. Near-field propagation-based imaging, and in particular near-field holography (NFH) in its high-resolution implementation in cone-beam geometry, can offer full-field views of a specimen's dynamics captured by single XFEL pulses. To exploit this capability, for example in optical-pump/X-ray-probe imaging schemes, the stochastic nature of the self-amplified spontaneous emission pulses, i.e. the dynamics of the beam itself, presents a major challenge. In this work, a concept is presented to address the fluctuating illumination wavefronts by sampling the configuration space of SASE pulses before an actual recording, followed by a principal component analysis. This scheme is implemented at the MID (Materials Imaging and Dynamics) instrument of the European XFEL and time-resolved NFH is performed using aberration-corrected nano-focusing compound refractive lenses. Specifically, the dynamics of a micro-fluidic water-jet, which is commonly used as sample delivery system at XFELs, is imaged. The jet exhibits rich dynamics of droplet formation in the break-up regime. Moreover, pump-probe imaging is demonstrated using an infrared pulsed laser to induce cavitation and explosion of the jet.
Collapse
Affiliation(s)
- Johannes Hagemann
- Deutsches Elektronen Synchrotron – DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Malte Vassholz
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Hannes Hoeppe
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Markus Osterhoff
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Juan M. Rosselló
- Third Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Robert Mettin
- Third Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Frank Seiboth
- Deutsches Elektronen Synchrotron – DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Andreas Schropp
- Deutsches Elektronen Synchrotron – DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Johannes Möller
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jörg Hallmann
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Chan Kim
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Markus Scholz
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Ulrike Boesenberg
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Robert Schaffer
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Alexey Zozulya
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Wei Lu
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Roman Shayduk
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Anders Madsen
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Christian G. Schroer
- Deutsches Elektronen Synchrotron – DESY, Notkestraße 85, 22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Tim Salditt
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
18
|
Vassholz M, Salditt T. Observation of electron-induced characteristic x-ray and bremsstrahlung radiation from a waveguide cavity. SCIENCE ADVANCES 2021; 7:eabd5677. [PMID: 33523944 PMCID: PMC10671168 DOI: 10.1126/sciadv.abd5677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
We demonstrate x-ray generation based on direct emission of spontaneous x-rays into waveguide modes. Photons are generated by electron impact onto a structured anode target, which is formed as an x-ray waveguide or waveguide array. Both emission of characteristic radiation and bremsstrahlung are affected by the changes in mode density induced by the waveguide structure. We investigate how the excited modal pattern depends on the positions of the metal atoms and the distance of the focused electron beam with respect to the waveguide exit side. We compare the results to synchrotron-excited fluorescence. We then discuss how x-ray generation in waveguides can be used to increase the brilliance and directional emission of tabletop x-ray sources, with a corresponding increase in the spatial coherence. On the basis of the Purcell effect, we lastly show that the gain of emission into waveguide modes is governed by the quality factor of the waveguide.
Collapse
Affiliation(s)
- Malte Vassholz
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen, Germany.
| |
Collapse
|
19
|
Flenner S, Kubec A, David C, Storm M, Schaber CF, Vollrath F, Müller M, Greving I, Hagemann J. Hard X-ray nano-holotomography with a Fresnel zone plate. OPTICS EXPRESS 2020; 28:37514-37525. [PMID: 33379584 DOI: 10.1364/oe.406074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
X-ray phase contrast nanotomography enables imaging of a wide range of samples with high spatial resolution in 3D. Near-field holography, as one of the major phase contrast techniques, is often implemented using X-ray optics such as Kirkpatrick-Baez mirrors, waveguides and compound refractive lenses. However, these optics are often tailor-made for a specific beamline and challenging to implement and align. Here, we present a near-field holography setup based on Fresnel zone plates which is fast and easy to align and provides a smooth illumination and flat field. The imaging quality of different types of Fresnel zone plates is compared in terms of the flat-field quality, the achievable resolution and exposure efficiency i.e. the photons arriving at the detector. Overall, this setup is capable of imaging different types of samples at high spatial resolution of below 100 nm in 3D with access to the quantitative phase information.
Collapse
|
20
|
Metrology of a Focusing Capillary Using Optical Ptychography. SENSORS 2020; 20:s20226462. [PMID: 33198200 PMCID: PMC7697805 DOI: 10.3390/s20226462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022]
Abstract
The focusing property of an ellipsoidal monocapillary has been characterized using the ptychography method with a 405 nm laser beam. The recovered wavefront gives a 12.5×10.4μm2 focus. The reconstructed phase profile of the focused beam can be used to estimate the height error of the capillary surface. The obtained height error shows a Gaussian distribution with a standard deviation of 1.3 μm. This approach can be used as a quantitative tool for evaluating the inner functional surfaces of reflective optics, complementary to conventional metrology methods.
Collapse
|
21
|
Frohn J, Pinkert-Leetsch D, Missbach-Güntner J, Reichardt M, Osterhoff M, Alves F, Salditt T. 3D virtual histology of human pancreatic tissue by multiscale phase-contrast X-ray tomography. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1707-1719. [PMID: 33147198 PMCID: PMC7642968 DOI: 10.1107/s1600577520011327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/18/2020] [Indexed: 05/05/2023]
Abstract
A multiscale three-dimensional (3D) virtual histology approach is presented, based on two configurations of propagation phase-contrast X-ray tomography, which have been implemented in close proximity at the GINIX endstation at the beamline P10/PETRA III (DESY, Hamburg, Germany). This enables the 3D reconstruction of characteristic morphological features of human pancreatic normal and tumor tissue, as obtained from cancer surgery, first in the form of a large-scale overview by parallel-beam illumination, followed by a zoom into a region-of-interest based on zoom tomography using a Kirkpatrick-Baez mirror with additional waveguide optics. To this end 1 mm punch biopsies of the tissue were taken. In the parallel tomography, a volumetric throughput on the order of 0.01 mm3 s-1 was achieved, while maintaining the ability to segment isolated cells. With a continuous rotation during the scan, a total acquisition time of less than 2 min was required for a full tomographic scan. Using the combination of both setups, islets of Langerhans, a three-dimensional cluster of cells in the endocrine part of the pancreas, could be located. Cells in such an islet were segmented and visualized in 3D. Further, morphological alterations of tumorous tissue of the pancreas were characterized. To this end, the anisotropy parameter Ω, based on intensity gradients, was used in order to quantify the presence of collagen fibers within the entire biopsy specimen. This proof-of-concept experiment of the multiscale approach on human pancreatic tissue paves the way for future 3D virtual pathology.
Collapse
Affiliation(s)
- Jasper Frohn
- Institute for X-ray Physics, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Diana Pinkert-Leetsch
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Group of Translational Molecular Imaging, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Jeannine Missbach-Güntner
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany
| | - Marius Reichardt
- Institute for X-ray Physics, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Markus Osterhoff
- Institute for X-ray Physics, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Frauke Alves
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert Koch Strasse 40, 37075 Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Group of Translational Molecular Imaging, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
- Clinic of Hematology and Medical Oncology, University Medical Center Göttingen, Robert Koch Strase 40, 37075 Göttingen, Germany
| | - Tim Salditt
- Institute for X-ray Physics, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells (MBExC), University Medical Center Göttingen, Robert Koch Strase 40, 37075 Göttingen, Germany
| |
Collapse
|
22
|
X-Ray Structural Analysis of Single Adult Cardiomyocytes: Tomographic Imaging and Microdiffraction. Biophys J 2020; 119:1309-1323. [PMID: 32937109 PMCID: PMC7567981 DOI: 10.1016/j.bpj.2020.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023] Open
Abstract
We present a multiscale imaging approach to characterize the structure of isolated adult murine cardiomyocytes based on a combination of full-field three-dimensional coherent x-ray imaging and scanning x-ray diffraction. Using these modalities, we probe the structure from the molecular to the cellular scale. Holographic projection images on freeze-dried cells have been recorded using highly coherent and divergent x-ray waveguide radiation. Phase retrieval and tomographic reconstruction then yield the three-dimensional electron density distribution with a voxel size below 50 nm. In the reconstruction volume, myofibrils, sarcomeric organization, and mitochondria can be visualized and quantified within a single cell without sectioning. Next, we use microfocusing optics by compound refractive lenses to probe the diffraction signal of the actomyosin lattice. Comparison between recordings of chemically fixed and untreated, living cells indicate that the characteristic lattice distances shrink by ∼10% upon fixation.
Collapse
|
23
|
Eckermann M, Peruzzi N, Frohn J, Bech M, Englund E, Veress B, Salditt T, Dahlin LB, Ohlsson B. 3d phase-contrast nanotomography of unstained human skin biopsies may identify morphological differences in the dermis and epidermis between subjects. Skin Res Technol 2020; 27:316-323. [PMID: 33022848 PMCID: PMC8246570 DOI: 10.1111/srt.12974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Enteric neuropathy is described in most patients with gastrointestinal dysmotility and may be found together with reduced intraepidermal nerve fiber density (IENFD). The aim of this pilot study was to assess whether three-dimensional (3d) imaging of skin biopsies could be used to examine various tissue components in patients with gastrointestinal dysmotility. MATERIAL AND METHODS Four dysmotility patients of different etiology and two healthy volunteers were included. From each subject, two 3-mm punch skin biopsies were stained with antibodies against protein gene product 9.5 or evaluated as a whole with two X-ray phase-contrast computed tomography (CT) setups, a laboratory µCT setup and a dedicated synchrotron radiation nanoCT end-station. RESULTS Two patients had reduced IENFD, and two normal IENFD, compared with controls. µCT and X-ray phase-contrast holographic nanotomography scanned whole tissue specimens, with optional high-resolution scans revealing delicate structures, without differentiation of various fibers and cells. Irregular architecture of dermal fibers was observed in the patient with Ehlers-Danlos syndrome and the patient with idiopathic dysmotility showed an abundance of mesenchymal ground substance. CONCLUSIONS 3d phase-contrast tomographic imaging may be useful to illustrate traits of connective tissue dysfunction in various organs and to demonstrate whether disorganized dermal fibers could explain organ dysfunction.
Collapse
Affiliation(s)
- Marina Eckermann
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Niccolò Peruzzi
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jasper Frohn
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Martin Bech
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Elisabet Englund
- Division of Oncology and Pathology, Skane University Hospital, Lund University, Lund, Sweden
| | - Béla Veress
- Department of Pathology, Skåne University Hospital, Malmö, Sweden
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Lars B Dahlin
- Department of Translational Medicine - Hand Surgery, Lund University, Malmö, Sweden.,Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Bodil Ohlsson
- Department of Internal Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
24
|
Peruzzi N, Veress B, Dahlin LB, Salditt T, Andersson M, Eckermann M, Frohn J, Robisch AL, Bech M, Ohlsson B. 3D analysis of the myenteric plexus of the human bowel by X-ray phase-contrast tomography - a future method? Scand J Gastroenterol 2020; 55:1261-1267. [PMID: 32907418 DOI: 10.1080/00365521.2020.1815079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Light microscopical analysis in two dimensions, combined with immunohistochemistry, is presently the gold standard to describe the enteric nervous system (ENS). Our aim was to assess the usefulness of three-dimensional (3D) imaging by X-ray phase-contrast tomography in evaluating the ENS of the human bowel. MATERIAL AND METHODS Myenteric ganglia were identified in full-thickness biopsies of the ileum and colon by hematoxylin & eosin staining. A1-mm biopsy punch was taken from the paraffin blocks and placed into a Kapton® tube for subsequent tomographic investigation. The samples were scanned, without further preparation, using phase-contrast tomography at two different scales: overview scans (performed with laboratory setups), which allowed localization of the nervous tissue (∼1µm effective voxel size); and high-resolution scans (performed with a synchrotron endstation), which imaged localized regions of 320x320x320 µm3 (176 nm effective voxel size). RESULTS The contrast allowed us to follow the shape and the size changes of the ganglia, as well as to study their cellular components together with the cells and cellular projections of the periganglional space. Furthermore, it was possible to show the 3D network of the myenteric plexus and to quantify its volume within the samples. CONCLUSIONS Phase-contrast X-ray tomography can be applied for volume analyses of the human ENS and to study tissue components in unstained paraffin-embedded tissue biopsies. This technique could potentially be used to study disease mechanisms, and to compare healthy and diseased tissues in clinical research.
Collapse
Affiliation(s)
- Niccolò Peruzzi
- Division of Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Béla Veress
- Department of Pathology, Skåne University Hospital, Malmö, Sweden
| | - Lars B Dahlin
- Department of Translational Medicine - Hand Surgery, Lund University, Malmö, Sweden.,Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Mariam Andersson
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance (DRCMR), Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Marina Eckermann
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Jasper Frohn
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Anna-Lena Robisch
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Martin Bech
- Division of Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Bodil Ohlsson
- Lund University, Skåne University Hospital, Department of Internal Medicine, Malmö, Sweden
| |
Collapse
|
25
|
Zeller-Plumhoff B, Robisch AL, Pelliccia D, Longo E, Slominska H, Hermann A, Krenkel M, Storm M, Estrin Y, Willumeit-Römer R, Salditt T, Orlov D. Nanotomographic evaluation of precipitate structure evolution in a Mg-Zn-Zr alloy during plastic deformation. Sci Rep 2020; 10:16101. [PMID: 32999352 PMCID: PMC7527343 DOI: 10.1038/s41598-020-72964-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022] Open
Abstract
Magnesium and its alloys attract increasingly wide attention in various fields, ranging from transport to medical solutions, due to their outstanding structural and degradation properties. These properties can be tailored through alloying and thermo-mechanical processing, which is often complex and multi-step, thus requiring in-depth analysis. In this work, we demonstrate the capability of synchrotron-based nanotomographic X-ray imaging methods, namely holotomography and transmission X-ray microscopy, for the quantitative 3D analysis of the evolution of intermetallic precipitate (particle) morphology and distribution in magnesium alloy Mg–5.78Zn–0.44Zr subjected to a complex multi-step processing. A rich history of variation of the intermetallic particle structure in the processed alloy provided a testbed for challenging the analytical capabilities of the imaging modalities studied. The main features of the evolving precipitate structure revealed earlier by traditional light and electron microscopy methods were confirmed by the 3D techniques of synchrotron-based X-ray imaging. We further demonstrated that synchrotron-based X-ray imaging enabled uncovering finer details of the variation of particle morphology and number density at various stages of processing—above and beyond the information provided by visible light and electron microscopy.
Collapse
Affiliation(s)
- Berit Zeller-Plumhoff
- Institute for Materials Research, Division of Metallic Biomaterials, Helmholtz Zentrum Geesthacht, Max-Planck-Straße 1, 21502, Geesthacht, Germany.
| | - Anna-Lena Robisch
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Daniele Pelliccia
- Instruments & Data Tools Pty Ltd, PO Box 2114, Rowville, VIC, 3178, Australia
| | - Elena Longo
- Institute for Materials Research, Division of Materials Physics, Helmholtz Zentrum Geesthacht, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Hanna Slominska
- Institute for Materials Research, Division of Metallic Biomaterials, Helmholtz Zentrum Geesthacht, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Alexander Hermann
- Institute for Materials Research, Division of Materials Mechanics, Helmholtz Zentrum Geesthacht, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Martin Krenkel
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Malte Storm
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Yuri Estrin
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia.,Department of Mechanical Engineering, The University of Western Australia, Crawley, 6009, Australia
| | - Regine Willumeit-Römer
- Institute for Materials Research, Division of Metallic Biomaterials, Helmholtz Zentrum Geesthacht, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Dmytro Orlov
- Division of Materials Engineering, Department of Mechanical Engineering, LTH, Lund University, P.O. Box 118, 22100, Lund, Sweden.
| |
Collapse
|
26
|
Eckermann M, Frohn J, Reichardt M, Osterhoff M, Sprung M, Westermeier F, Tzankov A, Werlein C, Kühnel M, Jonigk D, Salditt T. 3D virtual pathohistology of lung tissue from Covid-19 patients based on phase contrast X-ray tomography. eLife 2020; 9:e60408. [PMID: 32815517 PMCID: PMC7473770 DOI: 10.7554/elife.60408] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/17/2020] [Indexed: 01/25/2023] Open
Abstract
We present a three-dimensional (3D) approach for virtual histology and histopathology based on multi-scale phase contrast x-ray tomography, and use this to investigate the parenchymal architecture of unstained lung tissue from patients who succumbed to Covid-19. Based on this first proof-of-concept study, we propose multi-scale phase contrast x-ray tomography as a tool to unravel the pathophysiology of Covid-19, extending conventional histology by a third dimension and allowing for full quantification of tissue remodeling. By combining parallel and cone beam geometry, autopsy samples with a maximum cross section of 8 mm are scanned and reconstructed at a resolution and image quality, which allows for the segmentation of individual cells. Using the zoom capability of the cone beam geometry, regions-of-interest are reconstructed with a minimum voxel size of 167 nm. We exemplify the capability of this approach by 3D visualization of diffuse alveolar damage (DAD) with its prominent hyaline membrane formation, by mapping the 3D distribution and density of lymphocytes infiltrating the tissue, and by providing histograms of characteristic distances from tissue interior to the closest air compartment.
Collapse
Affiliation(s)
- Marina Eckermann
- Institut für Röntgenphysik, Georg-August-UniversitätGöttingenGermany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of GöttingenGöttingenGermany
| | - Jasper Frohn
- Institut für Röntgenphysik, Georg-August-UniversitätGöttingenGermany
| | - Marius Reichardt
- Institut für Röntgenphysik, Georg-August-UniversitätGöttingenGermany
| | - Markus Osterhoff
- Institut für Röntgenphysik, Georg-August-UniversitätGöttingenGermany
| | | | | | - Alexandar Tzankov
- Institut für Medizinische Genetik und Pathologie, Universitätsspital BaselBaselSwitzerland
| | - Christopher Werlein
- Medizinische Hochschule Hannover (MHH)HannoverGermany
- Deutsches Zentrum für Lungenforschung (DZL)Hannover (BREATH)Germany
| | - Mark Kühnel
- Medizinische Hochschule Hannover (MHH)HannoverGermany
- Deutsches Zentrum für Lungenforschung (DZL)Hannover (BREATH)Germany
| | - Danny Jonigk
- Medizinische Hochschule Hannover (MHH)HannoverGermany
- Deutsches Zentrum für Lungenforschung (DZL)Hannover (BREATH)Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-UniversitätGöttingenGermany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of GöttingenGöttingenGermany
| |
Collapse
|
27
|
Komorowski K, Schaeper J, Sztucki M, Sharpnack L, Brehm G, Köster S, Salditt T. Vesicle adhesion in the electrostatic strong-coupling regime studied by time-resolved small-angle X-ray scattering. SOFT MATTER 2020; 16:4142-4154. [PMID: 32319505 DOI: 10.1039/d0sm00259c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We have used time-resolved small-angle X-ray scattering (SAXS) to study the adhesion of lipid vesicles in the electrostatic strong-coupling regime induced by divalent ions. The bilayer structure and the interbilayer distance dw between adhered vesicles was studied for different DOPC:DOPS mixtures varying the surface charge density of the membrane, as well as for different divalent ions, such as Ca2+, Sr2+, and Zn2+. The results are in good agreement with the strong coupling theory predicting the adhesion state and the corresponding like-charge attraction based on ion-correlations. Using SAXS combined with the stopped-flow rapid mixing technique, we find that in highly charged bilayers the adhesion state is only of transient nature, and that the adhering vesicles subsequently transform to a phase of multilamellar vesicles, again with an inter-bilayer distance according to the theory of strong binding. Aside from the stopped-flow SAXS instrumentations used primarily for these results, we also evaluate microfluidic sample environments for vesicle SAXS in view of future extension of this work.
Collapse
Affiliation(s)
- Karlo Komorowski
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Jannis Schaeper
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Michael Sztucki
- European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9, France
| | - Lewis Sharpnack
- European Synchrotron Radiation Facility, CS 40220, 38043 Grenoble Cedex 9, France
| | - Gerrit Brehm
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
28
|
Reichardt M, Frohn J, Khan A, Alves F, Salditt T. Multi-scale X-ray phase-contrast tomography of murine heart tissue. BIOMEDICAL OPTICS EXPRESS 2020; 11:2633-2651. [PMID: 32499949 PMCID: PMC7249829 DOI: 10.1364/boe.386576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 05/07/2023]
Abstract
The spatial organization of cardiac muscle tissue exhibits a complex structure on multiple length scales, from the sarcomeric unit to the whole organ. Here we demonstrate a multi-scale three-dimensional imaging (3d) approach with three levels of magnification, based on synchrotron X-ray phase contrast tomography. Whole mouse hearts are scanned in an undulator beam, which is first focused and then broadened by divergence. Regions-of-interest of the hearts are scanned in parallel beam as well as a biopsy by magnified cone beam geometry using a X-ray waveguide optic. Data is analyzed in terms of orientation, anisotropy and the sarcomeric periodicity via a local Fourier transformation.
Collapse
Affiliation(s)
- Marius Reichardt
- Gerorg-August-University, Institute for x-ray Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Jasper Frohn
- Gerorg-August-University, Institute for x-ray Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Amara Khan
- Max Planck Institute for Experimental Medicine, Group of Translational Molecular Imaging, German Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Frauke Alves
- Max Planck Institute for Experimental Medicine, Group of Translational Molecular Imaging, German Hermann-Rein-Straße 3, 37075 Göttingen, Germany
- University Medical Center Göttingen, Clinic of Hematology and Medical Oncology, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Tim Salditt
- Gerorg-August-University, Institute for x-ray Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
29
|
Lohse LM, Robisch AL, Töpperwien M, Maretzke S, Krenkel M, Hagemann J, Salditt T. A phase-retrieval toolbox for X-ray holography and tomography. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:852-859. [PMID: 32381790 PMCID: PMC7206550 DOI: 10.1107/s1600577520002398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/19/2020] [Indexed: 05/10/2023]
Abstract
Propagation-based phase-contrast X-ray imaging is by now a well established imaging technique, which - as a full-field technique - is particularly useful for tomography applications. Since it can be implemented with synchrotron radiation and at laboratory micro-focus sources, it covers a wide range of applications. A limiting factor in its development has been the phase-retrieval step, which was often performed using methods with a limited regime of applicability, typically based on linearization. In this work, a much larger set of algorithms, which covers a wide range of cases (experimental parameters, objects and constraints), is compiled into a single toolbox - the HoloTomoToolbox - which is made publicly available. Importantly, the unified structure of the implemented phase-retrieval functions facilitates their use and performance test on different experimental data.
Collapse
Affiliation(s)
- Leon M. Lohse
- Institut für Röntgenphysik, Universität Göttingen, Germany
| | | | | | - Simon Maretzke
- Institut für Röntgenphysik, Universität Göttingen, Germany
| | - Martin Krenkel
- Institut für Röntgenphysik, Universität Göttingen, Germany
| | - Johannes Hagemann
- Institut für Röntgenphysik, Universität Göttingen, Germany
- Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Universität Göttingen, Germany
| |
Collapse
|
30
|
Correlative x-ray phase-contrast tomography and histology of human brain tissue affected by Alzheimer’s disease. Neuroimage 2020; 210:116523. [DOI: 10.1016/j.neuroimage.2020.116523] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/01/2019] [Accepted: 01/05/2020] [Indexed: 12/19/2022] Open
|
31
|
Robisch AL, Eckermann M, Töpperwien M, van der Meer F, Stadelmann C, Salditt T. Nanoscale x-ray holotomography of human brain tissue with phase retrieval based on multienergy recordings. J Med Imaging (Bellingham) 2020; 7:013501. [PMID: 32016134 PMCID: PMC6975131 DOI: 10.1117/1.jmi.7.1.013501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/24/2019] [Indexed: 11/14/2022] Open
Abstract
X-ray cone-beam holotomography of unstained tissue from the human central nervous system reveals details down to subcellular length scales. This visualization of variations in the electron density of the sample is based on phase-contrast techniques using intensities formed by self-interference of the beam between object and detector. Phase retrieval inverts diffraction and overcomes the phase problem by constraints such as several measurements at different Fresnel numbers for a single projection. Therefore, the object-to-detector distance (defocus) can be varied. However, for cone-beam geometry, changing defocus changes magnification, which can be problematic in view of image processing and resolution. Alternatively, the photon energy can be altered (multi-E). Far from absorption edges, multi-E data yield the wavelength-independent electron density. We present the multi-E holotomography at the Göttingen Instrument for Nano-Imaging with X-Rays (GINIX) setup of the P10 beamline at Deutsches Elektronen-Synchrotron. The instrument is based on a combined optics of elliptical mirrors and an x-ray waveguide positioned in the focal plane for further coherence, spatial filtering, and high numerical aperture. Previous results showed the suitability of this instrument for nanoscale tomography of unstained brain tissue. We demonstrate that upon energy variation, the focal spot is stable enough for imaging. To this end, a double-crystal monochromator and automated alignment routines are required. Three tomograms of human brain tissue were recorded and jointly analyzed using phase retrieval based on the contrast transfer function formalism generalized to multiple photon energies. Variations of the electron density of the sample are successfully reconstructed.
Collapse
Affiliation(s)
- Anna-Lena Robisch
- Georg-August-Universität Göttingen, Institut für Röntgenphysik, Göttingen, Germany
| | - Marina Eckermann
- Georg-August-Universität Göttingen, Institut für Röntgenphysik, Göttingen, Germany.,University of Göttingen, Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," Göttingen, Germany
| | - Mareike Töpperwien
- Georg-August-Universität Göttingen, Institut für Röntgenphysik, Göttingen, Germany
| | - Franziska van der Meer
- Universitätsmedizin Göttingen, Institut für Neuropathologie, Klinik für Neurologie, Göttingen, Germany
| | - Christine Stadelmann
- Universitätsmedizin Göttingen, Institut für Neuropathologie, Klinik für Neurologie, Göttingen, Germany
| | - Tim Salditt
- Georg-August-Universität Göttingen, Institut für Röntgenphysik, Göttingen, Germany.,University of Göttingen, Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," Göttingen, Germany
| |
Collapse
|
32
|
Osterhoff M, Robisch AL, Soltau J, Eckermann M, Kalbfleisch S, Carbone D, Johansson U, Salditt T. Focus characterization of the NanoMAX Kirkpatrick-Baez mirror system. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1173-1180. [PMID: 31274441 PMCID: PMC6613126 DOI: 10.1107/s1600577519003886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 03/21/2019] [Indexed: 05/14/2023]
Abstract
The focusing and coherence properties of the NanoMAX Kirkpatrick-Baez mirror system at the fourth-generation MAX IV synchrotron in Lund have been characterized. The direct measurement of nano-focused X-ray beams is possible by scanning of an X-ray waveguide, serving basically as an ultra-thin slit. In quasi-coherent operation, beam sizes of down to 56 nm (FWHM, horizontal direction) can be achieved. Comparing measured Airy-like fringe patterns with simulations, the degree of coherence |μ| has been quantified as a function of the secondary source aperture (SSA); the coherence is larger than 50% for SSA sizes below 11 µm at hard X-ray energies of 14 keV. For an SSA size of 5 µm, the degree of coherence has been determined to be 87%.
Collapse
Affiliation(s)
- Markus Osterhoff
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Correspondence e-mail:
| | - Anna-Lena Robisch
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Jakob Soltau
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Marina Eckermann
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | | | - Dina Carbone
- MAX IV Laboratory, Lund University, Fotongatan 2, 22484 Lund, Sweden
| | - Ulf Johansson
- MAX IV Laboratory, Lund University, Fotongatan 2, 22484 Lund, Sweden
| | - Tim Salditt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
33
|
Töpperwien M, Markus A, Alves F, Salditt T. Contrast enhancement for visualizing neuronal cytoarchitecture by propagation-based x-ray phase-contrast tomography. Neuroimage 2019; 199:70-80. [PMID: 31129306 DOI: 10.1016/j.neuroimage.2019.05.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Knowledge of the three-dimensional (3d) neuronal cytoarchitecture is an important factor in order to understand the connection between tissue structure and function or to visualize pathological changes in neurodegenerative diseases or tumor development. The gold standard in neuropathology is histology, a technique which provides insights into the cellular organization based on sectioning of the sample. Conventional histology, however, misses the complete 3d information as only individual two-dimensional slices through the object are available. In this work, we use propagation-based phase-contrast x-ray tomography to perform 3d virtual histology on cerebellar tissue from mice. This technique enables us to non-invasively visualize the entire 3d density distribution of the examined samples at isotropic (sub-)cellular resolution. One central challenge, however, of the technique is the fact that contrast for important structural features can be easily lost due to small electron density differences, notably between the cells and surrounding tissue. Here, we evaluate the influence of different embedding media, which are intermediate steps in sample preparation for classical histology, on contrast formation and examine the applicability of the different sample preparations both at a synchrotron-based holotomography setup as well as a laboratory source.
Collapse
Affiliation(s)
- Mareike Töpperwien
- Institute for X-Ray Physics, University of Göttingen, Germany; Center for Nanoscopy and Molecular Physiology of the Brain (CNMPB), Germany.
| | - Andrea Markus
- Department of Haematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Frauke Alves
- Department of Haematology and Medical Oncology, University Medical Center Göttingen, Germany; Department of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Germany; Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute of Experimental Medicine, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, Germany; Center for Nanoscopy and Molecular Physiology of the Brain (CNMPB), Germany.
| |
Collapse
|
34
|
Ichii Y, Okada H, Nakamori H, Ueda A, Yamaguchi H, Matsuyama S, Yamauchi K. Development of a glue-free bimorph mirror for use in vacuum chambers. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:021702. [PMID: 30831767 DOI: 10.1063/1.5066105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
PZT (lead zirconate titanate)-glued bimorph deformable mirrors are widely used in hard X-ray regimes; however, they have not yet been used in soft X-ray regimes because they are less compatible for usage under high vacuum. In this study, we developed a glue-free bimorph deformable mirror, in which silver nano-particles were employed to bond PZT actuators to mirror substrates. Under an appropriate bonding condition, the bonding layer was confirmed to be uniform and the mirror's bending characteristics were demonstrated to be sufficiently stable; its gas emission rate was also shown to be acceptable. Piezo responses before and after additional heating at 200 °C showed the thermal stability of its bonding and bending properties.
Collapse
Affiliation(s)
- Yoshio Ichii
- JTEC Corporation, 2-4-35 Saito-Yamabuki, Ibaraki, Osaka 567-0086, Japan
| | - Hiromi Okada
- JTEC Corporation, 2-4-35 Saito-Yamabuki, Ibaraki, Osaka 567-0086, Japan
| | - Hiroki Nakamori
- JTEC Corporation, 2-4-35 Saito-Yamabuki, Ibaraki, Osaka 567-0086, Japan
| | - Akihiko Ueda
- JTEC Corporation, 2-4-35 Saito-Yamabuki, Ibaraki, Osaka 567-0086, Japan
| | - Hiroyuki Yamaguchi
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Matsuyama
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuto Yamauchi
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
35
|
Bernhardt M, Nicolas JD, Osterhoff M, Mittelstädt H, Reuss M, Harke B, Wittmeier A, Sprung M, Köster S, Salditt T. Correlative microscopy approach for biology using X-ray holography, X-ray scanning diffraction and STED microscopy. Nat Commun 2018; 9:3641. [PMID: 30194418 PMCID: PMC6128893 DOI: 10.1038/s41467-018-05885-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
We present a correlative microscopy approach for biology based on holographic X-ray imaging, X-ray scanning diffraction, and stimulated emission depletion (STED) microscopy. All modalities are combined into the same synchrotron endstation. In this way, labeled and unlabeled structures in cells are visualized in a complementary manner. We map out the fluorescently labeled actin cytoskeleton in heart tissue cells and superimpose the data with phase maps from X-ray holography. Furthermore, an array of local far-field diffraction patterns is recorded in the regime of small-angle X-ray scattering (scanning SAXS), which can be interpreted in terms of biomolecular shape and spatial correlations of all contributing scattering constituents. We find that principal directions of anisotropic diffraction patterns coincide to a certain degree with the actin fiber directions and that actin stands out in the phase maps from holographic recordings. In situ STED recordings are proposed to formulate models for diffraction data based on co-localization constraints.
Collapse
Affiliation(s)
- M Bernhardt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - J-D Nicolas
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - M Osterhoff
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - H Mittelstädt
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, D-37077, Göttingen, Germany
| | - M Reuss
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, D-37077, Göttingen, Germany
| | - B Harke
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, D-37077, Göttingen, Germany
| | - A Wittmeier
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - M Sprung
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 47c, D-22607, Hamburg, Germany
| | - S Köster
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - T Salditt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany.
| |
Collapse
|
36
|
Nicolas JD, Hagemann J, Sprung M, Salditt T. The optical stretcher as a tool for single-particle X-ray imaging and diffraction. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1196-1205. [PMID: 29979182 DOI: 10.1107/s1600577518006574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
For almost half a century, optical tweezers have successfully been used to micromanipulate micrometre and sub-micrometre-sized particles. However, in recent years it has been shown experimentally that, compared with single-beam traps, the use of two opposing and divergent laser beams can be more suitable in studying the elastic properties of biological cells and vesicles. Such a configuration is termed an optical stretcher due to its capability of applying high deforming forces on biological objects such as cells. In this article the experimental capabilities of an optical stretcher as a potential sample delivery system for X-ray diffraction and imaging studies at synchrotrons and X-ray free-electron laser (FEL) facilites are demonstrated. To highlight the potential of the optical stretcher its micromanipulation capabilities have been used to image polymer beads and label biological cells. Even in a non-optimized configuration based on a commercially available optical stretcher system, X-ray holograms could be recorded from different views on a biological cell and the three-dimensional phase of the cell could be reconstructed. The capability of the setup to deform cells at higher laser intensities in combination with, for example, X-ray diffraction studies could furthermore lead to interesting studies that couple structural parameters to elastic properties. By means of high-throughput screening, the optical stretcher could become a useful tool in X-ray studies employing synchrotron radiation, and, at a later stage, femtosecond X-ray pulses delivered by X-ray free-electron lasers.
Collapse
Affiliation(s)
- Jan David Nicolas
- Georg-August-Universität Göttingen, Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Johannes Hagemann
- Deutsches Elektronen-Synchrotron, Notkestraße. 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron, Notkestraße. 85, 22607 Hamburg, Germany
| | - Tim Salditt
- Georg-August-Universität Göttingen, Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
37
|
Axonal Ensheathment in the Nervous System of Lamprey: Implications for the Evolution of Myelinating Glia. J Neurosci 2018; 38:6586-6596. [PMID: 29941446 DOI: 10.1523/jneurosci.1034-18.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 06/06/2018] [Indexed: 11/21/2022] Open
Abstract
In the nervous system, myelination of axons enables rapid impulse conduction and is a specialized function of glial cells. Myelinating glia are the last cell type to emerge in the evolution of vertebrate nervous systems, presumably in ancient jawed vertebrates (gnathostomata) because jawless vertebrates (agnathans) lack myelin. We have hypothesized that, in these unmyelinated species, evolutionary progenitors of myelinating cells must have existed that should still be present in contemporary agnathan species. Here, we used advanced electron microscopic techniques to reveal axon-glia interactions in the sea lamprey Petromyzon marinus By quantitative assessment of the spinal cord and the peripheral lateral line nerve, we observed a marked maturation-dependent growth of axonal calibers. In peripheral nerves, all axons are ensheathed by glial cells either in bundles or, when larger than the threshold caliber of 3 μm, individually. The ensheathing glia are covered by a basal lamina and express SoxE-transcription factors, features of mammalian Remak-type Schwann cells. In larval lamprey, the ensheathment of peripheral axons leaves gaps that are closed in adults. CNS axons are also covered to a considerable extent by glial processes, which contain a high density of intermediate filaments, glycogen particles, large lipid droplets, and desmosomes, similar to mammalian astrocytes. Indeed, by in situ hybridization, these glial cells express the astrocyte marker Aldh1l1 Specimens were of unknown sex. Our observations imply that radial sorting, ensheathment, and presumably also metabolic support of axons are ancient functions of glial cells that predate the evolutionary emergence of myelin in jawed vertebrates.SIGNIFICANCE STATEMENT We used current electron microscopy techniques to examine axon-glia units in a nonmyelinated vertebrate species, the sea lamprey. In the PNS, lamprey axons are fully ensheathed either individually or in bundles by cells ortholog to Schwann cells. In the CNS, axons associate with astrocyte orthologs, which contain glycogen and lipid droplets. We suggest that ensheathment, radial sorting, and metabolic support of axons by glial cells predate the evolutionary emergence of myelin in ancient jawed vertebrates.
Collapse
|
38
|
Three-dimensional virtual histology of human cerebellum by X-ray phase-contrast tomography. Proc Natl Acad Sci U S A 2018; 115:6940-6945. [PMID: 29915047 PMCID: PMC6142271 DOI: 10.1073/pnas.1801678115] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The complex cytoarchitecture of human brain tissue is traditionally studied by histology, providing structural information in 2D planes. This can be partly extended to 3D by inspecting many parallel slices, however, at nonisotropic resolution. This work shows that propagation-based X-ray phase-contrast tomography, both at the synchrotron and even at a compact laboratory source, can be used to perform noninvasive 3D virtual histology on unstained paraffin-embedded human cerebellum at isotropic subcellular resolution. The resulting data quality is high enough to visualize and automatically locate ∼106 neurons within the different layers of the cerebellum, providing unprecedented data on its 3D cytoarchitecture and spatial organization. To quantitatively evaluate brain tissue and its corresponding function, knowledge of the 3D cellular distribution is essential. The gold standard to obtain this information is histology, a destructive and labor-intensive technique where the specimen is sliced and examined under a light microscope, providing 3D information at nonisotropic resolution. To overcome the limitations of conventional histology, we use phase-contrast X-ray tomography with optimized optics, reconstruction, and image analysis, both at a dedicated synchrotron radiation endstation, which we have equipped with X-ray waveguide optics for coherence and wavefront filtering, and at a compact laboratory source. As a proof-of-concept demonstration we probe the 3D cytoarchitecture in millimeter-sized punches of unstained human cerebellum embedded in paraffin and show that isotropic subcellular resolution can be reached at both setups throughout the specimen. To enable a quantitative analysis of the reconstructed data, we demonstrate automatic cell segmentation and localization of over 1 million neurons within the cerebellar cortex. This allows for the analysis of the spatial organization and correlation of cells in all dimensions by borrowing concepts from condensed-matter physics, indicating a strong short-range order and local clustering of the cells in the granular layer. By quantification of 3D neuronal “packing,” we can hence shed light on how the human cerebellum accommodates 80% of the total neurons in the brain in only 10% of its volume. In addition, we show that the distribution of neighboring neurons in the granular layer is anisotropic with respect to the Purkinje cell dendrites.
Collapse
|
39
|
Wallander H, Wallentin J. Simulated sample heating from a nanofocused X-ray beam. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:925-933. [PMID: 28862614 PMCID: PMC5580787 DOI: 10.1107/s1600577517008712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/12/2017] [Indexed: 05/25/2023]
Abstract
Recent developments in synchrotron brilliance and X-ray optics are pushing the flux density in nanofocusing experiments to unprecedented levels, which increases the risk of different types of radiation damage. The effect of X-ray induced sample heating has been investigated using time-resolved and steady-state three-dimensional finite-element modelling of representative nanostructures. Simulations of a semiconductor nanowire indicate that the heat generated by X-ray absorption is efficiently transported within the nanowire, and that the temperature becomes homogeneous after about 5 ns. The most important channel for heat loss is conduction to the substrate, where the heat transfer coefficient and the interfacial area are limiting the heat transport. While convective heat transfer to air is significant, the thermal radiation is negligible. The steady-state average temperature in the nanowire is 8 K above room temperature at the reference parameters. In the absence of heat transfer to the substrate, the temperature increase at the same flux reaches 55 K in air and far beyond the melting temperature in vacuum. Reducing the size of the X-ray focus at constant flux only increases the maximum temperature marginally. These results suggest that the key strategy for reducing the X-ray induced heating is to improve the heat transfer to the surrounding.
Collapse
Affiliation(s)
- Harald Wallander
- Synchrotron Radiation Research, Lund University, Box 118, Lund 22100, Sweden
| | - Jesper Wallentin
- Synchrotron Radiation Research, Lund University, Box 118, Lund 22100, Sweden
| |
Collapse
|
40
|
Zhong Q, Melchior L, Peng J, Huang Q, Wang Z, Salditt T. Goos-Hänchen effect observed for focused x-ray beams under resonant mode excitation. OPTICS EXPRESS 2017; 25:17431-17445. [PMID: 28789235 DOI: 10.1364/oe.25.017431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
We have coupled a nano-focused synchrotron beam into a planar x-ray waveguide structure through a thinned cladding, using the resonant beam coupling (RBC) geometry, which is well established for coupling of macroscopic x-ray beams into x-ray waveguides. By reducing the beam size and using specially designed waveguide structures with multiple guiding layers, we can observe two reflected beams of similar amplitudes upon resonant mode excitation. At the same time, the second reflected beam is shifted along the surface by several millimeters, constituting a exceptionally large Goos-Hänchen effect. We evidence this effect based on its characteristic far-field patterns resulting from interference of the multiple reflected beams. The experimental results are in perfect agreement with finite-difference simulations.
Collapse
|
41
|
Krenkel M, Toepperwien M, Alves F, Salditt T. Three-dimensional single-cell imaging with X-ray waveguides in the holographic regime. Acta Crystallogr A Found Adv 2017; 73:282-292. [PMID: 28660861 PMCID: PMC5571746 DOI: 10.1107/s2053273317007902] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/27/2017] [Indexed: 05/08/2023] Open
Abstract
X-ray tomography at the level of single biological cells is possible in a low-dose regime, based on full-field holographic recordings, with phase contrast originating from free-space wave propagation. Building upon recent progress in cellular imaging based on the illumination by quasi-point sources provided by X-ray waveguides, here this approach is extended in several ways. First, the phase-retrieval algorithms are extended by an optimized deterministic inversion, based on a multi-distance recording. Second, different advanced forms of iterative phase retrieval are used, operational for single-distance and multi-distance recordings. Results are compared for several different preparations of macrophage cells, for different staining and labelling. As a result, it is shown that phase retrieval is no longer a bottleneck for holographic imaging of cells, and how advanced schemes can be implemented to cope also with high noise and inconsistencies in the data.
Collapse
Affiliation(s)
- Martin Krenkel
- Institut für Röntgenphysik, Georg-August-University Göttingen, Germany
| | | | - Frauke Alves
- Max-Planck-Institute for Experimental Medicine and University Medical Center Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-University Göttingen, Germany
| |
Collapse
|
42
|
Hagemann J, Salditt T. Reconstructing mode mixtures in the optical near-field. OPTICS EXPRESS 2017; 25:13973-13989. [PMID: 28788984 DOI: 10.1364/oe.25.013973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
We propose a reconstruction scheme for hard x-ray inline holography, a variant of propagation imaging, which is compatible with imaging conditions of partial (spatial) coherence. This is a relevant extension of current full-field phase contrast imaging, which requires full coherence. By the ability to reconstruct the coherent modes of the illumination (probe), as demonstrated here, the requirements of coherence filtering could be relaxed in many experimentally relevant settings. The proposed scheme is built on the mixed-state approach introduced in [Nature494, 68 (2013)], combined with multi-plane detection of extended wavefields [Opt. Commun.199, 65 (2001), Opt. Express22, 16571 (2014)]. Notably, the diversity necessary for the reconstruction is generated by acquiring measurements at different defocus positions of the detector. We show that we can recover the coherent mode structure and occupancy numbers of the partial coherent probe. Practically relevant quantities as the transversal coherence length can be computed from the reconstruction in a straightforward way.
Collapse
|
43
|
Zhong Q, Melchior L, Peng J, Huang Q, Wang Z, Salditt T. Reconstruction of the near-field distribution in an X-ray waveguide array. J Appl Crystallogr 2017; 50:701-711. [PMID: 28656035 PMCID: PMC5458589 DOI: 10.1107/s1600576717004630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/23/2017] [Indexed: 11/10/2022] Open
Abstract
Iterative phase retrieval has been used to reconstruct the near-field distribution behind tailored X-ray waveguide arrays, by inversion of the measured far-field pattern recorded under fully coherent conditions. It is thereby shown that multi-waveguide interference can be exploited to control the near-field distribution behind the waveguide exit. This can, for example, serve to create a secondary quasi-focal spot outside the waveguide structure. For this proof of concept, an array of seven planar Ni/C waveguides are used, with precisely varied guiding layer thickness and cladding layer thickness, as fabricated by high-precision magnetron sputtering systems. The controlled thickness variations in the range of 0.2 nm results in a desired phase shift of the different waveguide beams. Two kinds of samples, a one-dimensional waveguide array and periodic waveguide multilayers, were fabricated, each consisting of seven C layers as guiding layers and eight Ni layers as cladding layers. These are shown to yield distinctly different near-field patterns.
Collapse
Affiliation(s)
- Qi Zhong
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Lars Melchior
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Jichang Peng
- MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering, Department of Physics, Tongji University, Shanghai 200092, People’s Republic of China
| | - Qiushi Huang
- MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering, Department of Physics, Tongji University, Shanghai 200092, People’s Republic of China
| | - Zhanshan Wang
- MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering, Department of Physics, Tongji University, Shanghai 200092, People’s Republic of China
| | - Tim Salditt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
44
|
Nicolas JD, Bernhardt M, Krenkel M, Richter C, Luther S, Salditt T. Combined scanning X-ray diffraction and holographic imaging of cardiomyocytes. J Appl Crystallogr 2017. [DOI: 10.1107/s1600576717003351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This article presents scanning small-angle X-ray scattering (SAXS) experiments on the actomyosin assemblies in freeze-dried neo-natal rat cardiac muscle cells. By scanning the cells through a sub-micrometre focused beam, the local structure and filament orientation can be probed and quantified. To this end, SAXS data were recorded and analyzed directly in reciprocal space to generate maps of different structural parameters (scanning SAXS). The scanning SAXS experiments were complemented by full-field holographic imaging of the projected electron density, following a slight rearrangement of the instrumental setup. It is shown that X-ray holography is ideally suited to complete missing scattering data at low momentum transfer in the structure factor, extending the covered range of spatial frequencies by two orders of magnitude. Regions of interest for scanning can be easily selected on the basis of the electron density maps. Finally, the combination of scanning SAXS and holography allows for a direct verification of possible radiation-induced structural changes in the cell.
Collapse
|
45
|
Hagemann J, Salditt T. The fluence-resolution relationship in holographic and coherent diffractive imaging. J Appl Crystallogr 2017; 50:531-538. [PMID: 28381977 PMCID: PMC5377347 DOI: 10.1107/s1600576717003065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/23/2017] [Indexed: 11/14/2022] Open
Abstract
In this work the fluence efficiency of two coherent X-ray imaging techniques is studied by numerical experiments. The techniques surveyed are near-field holography and far-field diffraction imaging. This work presents a numerical study of the fluence–resolution behaviour for two coherent lensless X-ray imaging techniques. To this end the fluence–resolution relationship of inline near-field holography and far-field coherent diffractive imaging are compared in numerical experiments. To achieve this, the phase reconstruction is carried out using iterative phase-retrieval algorithms on simulated noisy data. Using the incident photon fluence on the specimen as the control parameter, the achievable resolution for two example phantoms (cell and bitmap) is studied. The results indicate the superior performance of holography compared with coherent diffractive imaging, for the same fluence and phase-reconstruction procedure.
Collapse
Affiliation(s)
- Johannes Hagemann
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
46
|
Hagemann J, Robisch AL, Osterhoff M, Salditt T. Probe reconstruction for holographic X-ray imaging. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:498-505. [PMID: 28244446 PMCID: PMC5330293 DOI: 10.1107/s160057751700128x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
In X-ray holographic near-field imaging the resolution and image quality depend sensitively on the beam. Artifacts are often encountered due to the strong focusing required to reach high resolution. Here, two schemes for reconstructing the complex-valued and extended wavefront of X-ray nano-probes, primarily in the planes relevant for imaging (i.e. focus, sample and detection plane), are presented and compared. Firstly, near-field ptychography is used, based on scanning a test pattern laterally as well as longitudinally along the optical axis. Secondly, any test pattern is dispensed of and the wavefront reconstructed only from data recorded for different longitudinal translations of the detector. For this purpose, an optimized multi-plane projection algorithm is presented, which can cope with the numerically very challenging setting of a divergent wavefront emanating from a hard X-ray nanoprobe. The results of both schemes are in very good agreement. The probe retrieval can be used as a tool for optics alignment, in particular at X-ray nanoprobe beamlines. Combining probe retrieval and object reconstruction is also shown to improve the image quality of holographic near-field imaging.
Collapse
Affiliation(s)
- Johannes Hagemann
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Anna-Lena Robisch
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Markus Osterhoff
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
47
|
Hémonnot CYJ, Ranke C, Saldanha O, Graceffa R, Hagemann J, Köster S. Following DNA Compaction During the Cell Cycle by X-ray Nanodiffraction. ACS NANO 2016; 10:10661-10670. [PMID: 28024349 DOI: 10.1021/acsnano.6b05034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
X-ray imaging of intact biological cells is emerging as a complementary method to visible light or electron microscopy. Owing to the high penetration depth and small wavelength of X-rays, it is possible to resolve subcellular structures at a resolution of a few nanometers. Here, we apply scanning X-ray nanodiffraction in combination with time-lapse bright-field microscopy to nuclei of 3T3 fibroblasts and thus relate the observed structures to specific phases in the cell division cycle. We scan the sample at a step size of 250 nm and analyze the individual diffraction patterns according to a generalized Porod's law. Thus, we obtain information on the aggregation state of the nuclear DNA at a real space resolution on the order of the step size and in parallel structural information on the order of few nanometers. We are able to distinguish nucleoli, heterochromatin, and euchromatin in the nuclei and follow the compaction and decompaction during the cell division cycle.
Collapse
Affiliation(s)
- Clément Y J Hémonnot
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Christiane Ranke
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Oliva Saldanha
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Rita Graceffa
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Johannes Hagemann
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Sarah Köster
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| |
Collapse
|
48
|
Giewekemeyer K, Hackenberg C, Aquila A, Wilke RN, Groves MR, Jordanova R, Lamzin VS, Borchers G, Saksl K, Zozulya AV, Sprung M, Mancuso AP. Tomography of a Cryo-immobilized Yeast Cell Using Ptychographic Coherent X-Ray Diffractive Imaging. Biophys J 2016; 109:1986-95. [PMID: 26536275 PMCID: PMC4643197 DOI: 10.1016/j.bpj.2015.08.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/14/2015] [Accepted: 08/27/2015] [Indexed: 12/02/2022] Open
Abstract
The structural investigation of noncrystalline, soft biological matter using x-rays is of rapidly increasing interest. Large-scale x-ray sources, such as synchrotrons and x-ray free electron lasers, are becoming ever brighter and make the study of such weakly scattering materials more feasible. Variants of coherent diffractive imaging (CDI) are particularly attractive, as the absence of an objective lens between sample and detector ensures that no x-ray photons scattered by a sample are lost in a limited-efficiency imaging system. Furthermore, the reconstructed complex image contains quantitative density information, most directly accessible through its phase, which is proportional to the projected electron density of the sample. If applied in three dimensions, CDI can thus recover the sample's electron density distribution. As the extension to three dimensions is accompanied by a considerable dose applied to the sample, cryogenic cooling is necessary to optimize the structural preservation of a unique sample in the beam. This, however, imposes considerable technical challenges on the experimental realization. Here, we show a route toward the solution of these challenges using ptychographic CDI (PCDI), a scanning variant of coherent imaging. We present an experimental demonstration of the combination of three-dimensional structure determination through PCDI with a cryogenically cooled biological sample—a budding yeast cell (Saccharomyces cerevisiae)—using hard (7.9 keV) synchrotron x-rays. This proof-of-principle demonstration in particular illustrates the potential of PCDI for highly sensitive, quantitative three-dimensional density determination of cryogenically cooled, hydrated, and unstained biological matter and paves the way to future studies of unique, nonreproducible biological cells at higher resolution.
Collapse
Affiliation(s)
| | - C Hackenberg
- European Molecular Biology Laboratory Hamburg c/o Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - A Aquila
- European XFEL GmbH, Hamburg, Germany
| | - R N Wilke
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - M R Groves
- European Molecular Biology Laboratory Hamburg c/o Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - R Jordanova
- European Molecular Biology Laboratory Hamburg c/o Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - V S Lamzin
- European Molecular Biology Laboratory Hamburg c/o Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | | | - K Saksl
- Institute of Materials Research, Slovak Academy of Sciences, Kosice, Slovak Republic
| | | | - M Sprung
- DESY Photon Science, Hamburg, Germany
| | | |
Collapse
|
49
|
Pein A, Loock S, Plonka G, Salditt T. Using sparsity information for iterative phase retrieval in x-ray propagation imaging. OPTICS EXPRESS 2016; 24:8332-8343. [PMID: 27137271 DOI: 10.1364/oe.24.008332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
For iterative phase retrieval algorithms in near field x-ray propagation imaging experiments with a single distance measurement, it is indispensable to have a strong constraint based on a priori information about the specimen; for example, information about the specimen's support. Recently, Loock and Plonka proposed to use the a priori information that the exit wave is sparsely represented in a certain directional representation system, a so-called shearlet system. In this work, we extend this approach to complex-valued signals by applying the new shearlet constraint to amplitude and phase separately. Further, we demonstrate its applicability to experimental data.
Collapse
|
50
|
Maretzke S, Bartels M, Krenkel M, Salditt T, Hohage T. Regularized Newton methods for x-ray phase contrast and general imaging problems. OPTICS EXPRESS 2016; 24:6490-506. [PMID: 27136840 DOI: 10.1364/oe.24.006490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Like many other advanced imaging methods, x-ray phase contrast imaging and tomography require mathematical inversion of the observed data to obtain real-space information. While an accurate forward model describing the generally nonlinear image formation from a given object to the observations is often available, explicit inversion formulas are typically not known. Moreover, the measured data might be insufficient for stable image reconstruction, in which case it has to be complemented by suitable a priori information. In this work, regularized Newton methods are presented as a general framework for the solution of such ill-posed nonlinear imaging problems. For a proof of principle, the approach is applied to x-ray phase contrast imaging in the near-field propagation regime. Simultaneous recovery of the phase- and amplitude from a single near-field diffraction pattern without homogeneity constraints is demonstrated for the first time. The presented methods further permit all-at-once phase contrast tomography, i.e. simultaneous phase retrieval and tomographic inversion. We demonstrate the potential of this approach by three-dimensional imaging of a colloidal crystal at 95nm isotropic resolution.
Collapse
|