1
|
Filieri S, Miciaccia M, Armenise D, Baldelli OM, Liturri A, Ferorelli S, Sardanelli AM, Perrone MG, Scilimati A. Can Focused Ultrasound Overcome the Failure of Chemotherapy in Treating Pediatric Diffuse Intrinsic Pontine Glioma Due to a Blood-Brain Barrier Obstacle? Pharmaceuticals (Basel) 2025; 18:525. [PMID: 40283959 PMCID: PMC12030708 DOI: 10.3390/ph18040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Background: The blood-brain barrier (BBB) plays an important role in regulating homeostasis of the central nervous system (CNS), and it is an obstacle for molecules with a molecular weight higher than 500 Da seeking to reach it, making many drugs ineffective simply because they cannot be delivered to where they are needed. As a result, crossing the BBB remains the rate-limiting factor in brain drug delivery during the treatment of brain diseases, specifically tumors such as diffuse intrinsic pontine glioma (DIPG), a highly aggressive pediatric tumor with onset in the pons Varolii, the middle portion of the three contiguous parts of the brainstem, located above the medulla and below the midbrain. Methods: Currently, radiotherapy (RT) relieves DIPG symptoms but chemotherapy drugs do not lead to significant results as they do not easily cross the BBB. Focused ultrasound (FUS) and microbubbles (MBs) can temporarily open the BBB, facilitating radiotherapy and the entry of drugs into the CNS. A patient-derived xenograft DIPG model exposed to high-intensity focalized ultrasound (HIFU) or low-intensity focalized ultrasound (LIFU) combined with MBs was treated with doxorubicin, panobinostat, olaparib, ONC201 (Dordaviprone®) and anti-PD1. Panobinostat has also been used in children with diffuse midline glioma, a broad class of brain tumors to which DIPG belongs. Results: Preliminary studies were performed using FUS to temporarily open the BBB and allow a milder use of radiotherapy and facilitate the passage of drugs through the BBB. The data collected show that after opening the BBB with FUS and MBs, drug delivery to the CNS significantly improved. Conclusions: FUS associated with MBs appears safe and feasible and represents a new strategy to increase the uptake of drugs in the CNS and therefore enhance their effectiveness. This review reports pre-clinical and clinical studies performed to demonstrate the usefulness of FUS in patients with DIPG treated with some chemotherapy. The papers reviewed were published in PubMed until the end of 2024 and were found using a combination of the following keywords: diffuse intrinsic pontine glioma (DIPG), DIPG H3K27-altered, blood-brain barrier and BBB, focused ultrasound (FUS) and radiotherapy (RT).
Collapse
Affiliation(s)
- Silvana Filieri
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy; (S.F.); (A.M.S.)
| | - Morena Miciaccia
- Research Laboratory for the Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Domenico Armenise
- Research Laboratory for the Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Olga Maria Baldelli
- Research Laboratory for the Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Anselma Liturri
- Research Laboratory for the Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Savina Ferorelli
- Research Laboratory for the Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Anna Maria Sardanelli
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy; (S.F.); (A.M.S.)
| | - Maria Grazia Perrone
- Research Laboratory for the Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Antonio Scilimati
- Research Laboratory for the Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| |
Collapse
|
2
|
Song H, Chen R, Ren L, Sun J, Tong S. State-dependent neurovascular modulation induced by transcranial ultrasound stimulation. Med Biol Eng Comput 2025:10.1007/s11517-025-03290-5. [PMID: 39870987 DOI: 10.1007/s11517-025-03290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Previous studies reported baseline state-dependent effects on neural and hemodynamic responses to transcranial ultrasound stimulation. However, due to neurovascular coupling, neither neural nor hemodynamic baseline alone can fully explain the ultrasound-induced responses. In this study, using a general linear model, we aimed to investigate the roles of both neural and hemodynamic baseline status as well as their interactions in ultrasound-induced responses. Thirty Sprague-Dawley rats were randomly assigned to Hypoxia, Hyperoxia, and Normoxia groups. The baseline states were altered by changing the oxygen concentrations. Micro-electrode and laser speckle contrast imaging were used to record local field potentials and cerebral blood flow during resting, before, and after ultrasound stimulation, respectively. We found that baseline neural activity played a positive role in neural response (Coefficient = 0.634, t = 1.748, p = 0.096,η p 2 = 0.133), but a negative role in hemodynamic response (Coefficient = - 0.060, t = - 1.996, p = 0.060,η p 2 = 0.166). Baseline hemodynamic activity also had a significantly negative correlation with the hemodynamic response (Coefficient = - 0.760, t = - 3.947, p < 0.001,η p 2 = 0.438). This study enriched our understanding of state-dependent effects underlying the neurovascular activation by ultrasound stimulation.
Collapse
Affiliation(s)
- Hang Song
- School of Biomedical Engineering, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai, 200030, Shanghai, China
| | - Ruoyu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai, 200030, Shanghai, China
| | - Liyuan Ren
- School of Biomedical Engineering, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai, 200030, Shanghai, China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai, 200030, Shanghai, China.
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai, 200030, Shanghai, China.
| |
Collapse
|
3
|
Tan G, Chen H, Leuthardt EC. Ultrasound Applications in the Treatment of Major Depressive Disorder (MDD): A Systematic Review of Techniques and Efficacy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.23.25320960. [PMID: 39974033 PMCID: PMC11838982 DOI: 10.1101/2025.01.23.25320960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Objective Major depressive disorder (MDD) is a debilitating mental health condition characterized by persistent feelings of sadness, loss of interest, and impaired daily functioning. It affects approximately 8% of the U.S. population, posing a significant personal and economic burden. Around 30% of patients with MDD do not respond to conventional antidepressant and psychotherapeutic treatments. Current treatment options for refractory MDD include transcranial magnetic stimulation (TMS) and invasive surgical procedures such as surgical ablation, vagus nerve stimulation, and deep brain stimulation. TMS has modest efficacy, and surgical procedures are associated with surgical risk and low patient acceptance. With the unique advantage of combining non-invasiveness with selective targeting, therapeutic ultrasound emerges as a promising alternative for treating refractory MDD. Over the past 10 years, there has been a growth in focused ultrasound research, leading to an exponential increase in academic and public interest in the technology. To support the continued development of ultrasound for treating MDD, we conducted a systematic review following Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Methods We included peer-reviewed prospective cohort studies, case-control studies, and randomized control trials that evaluate the efficacy of ultrasonic treatment for depression (PROSPERO registration number: CRD42024626093). We summarized ultrasonic techniques for treating depression and their efficacy. Furthermore, we identified key challenges and future directions for applying ultrasound in treating MDD. Results We identified 67 potentially relevant articles, of which 18 studies met all inclusion criteria. The techniques of applying ultrasound to treat depression include magnetic resonance-guided focused ultrasound (MRgFUS) for capsulotomy and low-intensity focused ultrasound (LIFUS) neuromodulation. In human trials, the response rate (⩾50% improvement from baseline on depression score) is 53.85% for MRgFUS and 80.49% for LIFUS neuromodulation. In all preclinical studies using rodent models (8 studies), LIFUS neuromodulation had a medium to large effect (|Cohen's d| > 0.6) on resolving depressive-like behavior in rodents without causing adverse effects such as tissue damage. MRgFUS faces inconsistent lesioning success and a limited response rate, while LIFUS neuromodulation lacks systematic exploration of parameter space and a clear understanding of its mechanistic effects. Future work should refine patient selection for MRgFUS and focus on individualized functional targeting. Conclusion LIFUS neuromodulation showed a medium to large effect in reducing depressive behaviors in both rodent models and human trials, representing a promising, noninvasive option for treating refractory MDD.
Collapse
Affiliation(s)
- Gansheng Tan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eric C. Leuthardt
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Chen H, Miao Y, Duan H, Yi S, Lin Z, Guo Y, Zou J, Niu L. The effect of combined ultrasound stimulation and gastrodin on seizures in mice. Front Neurosci 2024; 18:1499078. [PMID: 39649662 PMCID: PMC11621076 DOI: 10.3389/fnins.2024.1499078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
Both physiotherapy and medicine play essential roles in the treatment of epilepsy. The purpose of this research was to evaluate the efficacy of the combined therapy with focus ultrasound stimulation (FUS) and gastrodin (GTD) on seizures in a mouse model. Kainic acid-induced seizure mice were divided into five groups randomly: sham, FUS, saline + sham, GTD + sham and GTD + FUS. The results showed that combined therapy with ultrasound stimulation and gastrodin can significantly reduce the number and duration of seizures in GTD + FUS group. 9.4T magnetic resonance imaging and histologic staining results revealed the underlying mechanism of the combined therapy may be that ultrasound stimulation increases cell membrane permeability to increase GTD concentration in brain. In addition, we verified the safety of FUS combined with GTD therapy. This research provides a new strategy for neurological disorders combining treatment of physical neuromodulation and medicine.
Collapse
Affiliation(s)
- Houminji Chen
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuqing Miao
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haowen Duan
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shasha Yi
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhengrong Lin
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanwu Guo
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Zou
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
5
|
Song H, Chen R, Ren L, Zeng Y, Sun J, Tong S. Low intensity transcranial ultrasound stimulation induces hemodynamic responses through neurovascular coupling. iScience 2024; 27:110269. [PMID: 39055926 PMCID: PMC11269307 DOI: 10.1016/j.isci.2024.110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/20/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
Collective studies have demonstrated that transcranial ultrasound stimulation (TUS) can elicit activation in hemodynamics, implying its potential in treating cerebral or peripheral vessel-related malfunction. The theory for hemodynamic response to TUS is neurovascular coupling (NVC) following the ultrasound-induced cellular (de)polarization. However, it was not conclusive due to the co-existence of the pathway of direct ultrasound-vessel interactions. This study thus aims to investigate and provide direct evidence for NVC pathway in a rodent model of TUS by inhibiting neural activity with sodium valproate (VPA), a GABAergic agent. Twenty Sprague-Dawley rats were randomly assigned to VPA and Saline groups. Microelectrode and optical imaging were utilized to record local field potential and relative cerebral blood flow (rCBF) during baseline, before, and after TUS periods. We found the attenuated neural activity was associated with reduced rCBF responses. These results provided direct evidence for the presence of NVC pathway in hemodynamic modulation by TUS.
Collapse
Affiliation(s)
- Hang Song
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ruoyu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liyuan Ren
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yinuo Zeng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
6
|
Pellow C, Pichardo S, Pike GB. A systematic review of preclinical and clinical transcranial ultrasound neuromodulation and opportunities for functional connectomics. Brain Stimul 2024; 17:734-751. [PMID: 38880207 DOI: 10.1016/j.brs.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Low-intensity transcranial ultrasound has surged forward as a non-invasive and disruptive tool for neuromodulation with applications in basic neuroscience research and the treatment of neurological and psychiatric conditions. OBJECTIVE To provide a comprehensive overview and update of preclinical and clinical transcranial low intensity ultrasound for neuromodulation and emphasize the emerging role of functional brain mapping to guide, better understand, and predict responses. METHODS A systematic review was conducted by searching the Web of Science and Scopus databases for studies on transcranial ultrasound neuromodulation, both in humans and animals. RESULTS 187 relevant studies were identified and reviewed, including 116 preclinical and 71 clinical reports with subjects belonging to diverse cohorts. Milestones of ultrasound neuromodulation are described within an overview of the broader landscape. General neural readouts and outcome measures are discussed, potential confounds are noted, and the emerging use of functional magnetic resonance imaging is highlighted. CONCLUSION Ultrasound neuromodulation has emerged as a powerful tool to study and treat a range of conditions and its combination with various neural readouts has significantly advanced this platform. In particular, the use of functional magnetic resonance imaging has yielded exciting inferences into ultrasound neuromodulation and has the potential to advance our understanding of brain function, neuromodulatory mechanisms, and ultimately clinical outcomes. It is anticipated that these preclinical and clinical trials are the first of many; that transcranial low intensity focused ultrasound, particularly in combination with functional magnetic resonance imaging, has the potential to enhance treatment for a spectrum of neurological conditions.
Collapse
Affiliation(s)
- Carly Pellow
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada.
| | - Samuel Pichardo
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - G Bruce Pike
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
7
|
Feng R, Sheng H, Lian Y. Advances in using ultrasound to regulate the nervous system. Neurol Sci 2024; 45:2997-3006. [PMID: 38436788 DOI: 10.1007/s10072-024-07426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Ultrasound is a mechanical vibration with a frequency greater than 20 kHz. Due to its high spatial resolution, good directionality, and convenient operation in neural regulation, it has recently received increasing attention from scientists. However, the mechanism by which ultrasound regulates the nervous system is still unclear. This article mainly explores the possible mechanisms of ultrasound's mechanical effects, cavitation effects, thermal effects, and the rise of sonogenetics. In addition, the essence of action potential and its relationship with ultrasound were also discussed. Traditional theory treats nerve impulses as pure electrical signals, similar to cable theory. However, this theory cannot explain the phenomenon of inductance and cell membrane bulging out during the propagation of action potential. Therefore, the flexoelectric effect of cell membrane and soliton model reveal that action potential may also be a mechanical wave. Finally, we also elaborated the therapeutic effect of ultrasound on nervous system disease such as epilepsy, Parkinson's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Rui Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanqing Sheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Kong D, Liu G, Cheng B, Qi X, Zhu J, He Q, Xing H, Gong Q. A novel transcranial MR Guided focused ultrasound method based on the ultrashort echo time skull acoustic model and phase retrieval techniques. Sci Rep 2024; 14:11876. [PMID: 38789537 PMCID: PMC11636931 DOI: 10.1038/s41598-024-62500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Transcranial ultrasound stimulation (TUS) has been clinically applied as a neuromodulation tool. Particularly, the phase array ultrasound can be applied in TUS to non-invasively focus on the cortex or deep brain. However, the vital phase distortion of the ultrasound induced by the skull limits its clinical application. In the current study, we aimed to develop a hybrid method that combines the ultrashort echo time (UTE) magnetic resonance imaging (MRI) sequences with the prDeep technique to achieve focusing ventral intermediate thalamic nucleus (VIM). The time-reversal (TR) approach of the UTE numerical acoustic model of the skull combined with the prDeep algorithm was used to reduce the number of iterations. The skull acoustic model simulation therapy process was establish to valid this method's prediction and focus performance, and the classical TR method were considered as the gold standard (GS). Our approach could restore 75% of the GS intensity in 25 iteration steps, with a superior the noise immunity. Our findings demonstrate that the phase aberration caused by the skull can be estimated using phase retrieval techniques to achieve a fast and accurate transcranial focus. The method has excellent adaptability and anti-noise capacity for satisfying complex and changeable scenarios.
Collapse
Affiliation(s)
- Dechen Kong
- College Of Physics, Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Gaojie Liu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bochao Cheng
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
| | - Xu Qi
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jiayu Zhu
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Qiang He
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Haoyang Xing
- College Of Physics, Sichuan University, Chengdu, China.
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Xiamen West China Hospital, Sichuan University, Xiamen, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Xiamen West China Hospital, Sichuan University, Xiamen, China
| |
Collapse
|
9
|
Yang H, Yan J, Ji H, Wang M, Wang T, Yi H, Liu L, Li X, Yuan Y. Modulatory Effect of Low-Intensity Transcranial Ultrasound Stimulation on Behaviour and Neural Oscillation in Mouse Models of Alzheimer's Disease. IEEE Trans Neural Syst Rehabil Eng 2024; 32:770-780. [PMID: 38329869 DOI: 10.1109/tnsre.2024.3363912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Transcranial ultrasound stimulation (TUS) is a noninvasive brain neuromodulation technique. The application of TUS for Alzheimer's disease (AD) therapy has not been widely studied. In this study, a long-term course (28 days) of TUS was used to stimulate the hippocampus of APP/PS1 mice. We examined the modulatory effect of TUS on behavior and neural oscillation in AD mice. We found that TUS can 1) improve the learning and memory abilities of AD mice; 2) reduce the phase-amplitude coupling of delta-epsilon, delta-gamma and theta-gamma frequency bands of local field potential, and increase the relative power of epsilon frequency bands in AD mice; 3) reduce the spike firing rate of interneurons and inhibit the phase-locked angle deflection between the theta frequency bands and the spikes of the two types of neurons that develops with the progression of the disease in AD mice. In summary, we demonstrate that TUS could effectively improve cognitive behavior and modulate neural oscillation with AD.
Collapse
|
10
|
Herlihy RA, Alicandri F, Berger H, Rehman H, Kao Y, Akhtar K, Dybas E, Mahoney-Rafferty E, Von Stein K, Kirby R, Tawfik A, Skumurski R, Feustel PJ, Molho ES, Shin DS. Investigation of non-invasive focused ultrasound efficacy on depressive-like behavior in hemiparkinsonian rats. Exp Brain Res 2024; 242:321-336. [PMID: 38059986 DOI: 10.1007/s00221-023-06750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
Depression is a common non-motor symptom in Parkinson's disease (PD) that includes anhedonia and impacts quality of life but is not effectively treated with conventional antidepressants clinically. Vagus nerve stimulation improves treatment-resistant depression in the general population, but research about its antidepressant efficacy in PD is limited. Here, we administered peripheral non-invasive focused ultrasound to hemiparkinsonian ('PD') and non-parkinsonian (sham) rats to mimic vagus nerve stimulation and assessed its antidepressant-like efficacy. Following 6-hydroxydopamine (6-OHDA) lesion, akinesia-like immobility was assessed in the limb-use asymmetry test, and despair- and anhedonic-like behaviors were evaluated in the forced swim test and sucrose preference test, respectively. After, tyrosine hydroxylase immuno-staining was employed to visualize and quantify dopaminergic degeneration in the substantia nigra pars compacta, ventral tegmental area, and striatum. We found that PD rats exhibited akinesia-like immobility and > 90% reduction in tyrosine hydroxylase immuno-staining ipsilateral to the lesioned side. PD rats also demonstrated anhedonic-like behavior in the sucrose preference test compared to sham rats. No 6-OHDA lesion effect on immobility in the forced swim test limited conclusions about the efficacy of ultrasound on despair-like behavior. However, ultrasound improved anhedonic-like behavior in PD rats and this efficacy was sustained through the end of the 1-week recovery period. The greatest number of animals demonstrating increased sucrose preference was in the PD group receiving ultrasound. Our findings here are the first to posit that peripheral non-invasive focused ultrasound to the celiac plexus may improve anhedonia in PD with further investigation needed to reveal its potential for clinical applicability.
Collapse
Affiliation(s)
- Rachael A Herlihy
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Francisco Alicandri
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Hudy Berger
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Huda Rehman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Yifan Kao
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Kainat Akhtar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Elizabeth Dybas
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Emily Mahoney-Rafferty
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Kassie Von Stein
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Raven Kirby
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Angela Tawfik
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Rachel Skumurski
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Eric S Molho
- Department of Neurology, Albany Medical Center, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
- Department of Neurology, Albany Medical Center, 47 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
11
|
Qin PP, Jin M, Xia AW, Li AS, Lin TT, Liu Y, Kan RL, Zhang BB, Kranz GS. The effectiveness and safety of low-intensity transcranial ultrasound stimulation: A systematic review of human and animal studies. Neurosci Biobehav Rev 2024; 156:105501. [PMID: 38061596 DOI: 10.1016/j.neubiorev.2023.105501] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 12/02/2023] [Indexed: 12/26/2023]
Abstract
Low-intensity transcranial ultrasound stimulation (LITUS) is a novel non-invasive neuromodulation technique. We conducted a systematic review to evaluate current evidence on the efficacy and safety of LITUS neuromodulation. Five databases were searched from inception to May 31, 2023. Randomized controlled human trials and controlled animal studies were included. The neuromodulation effects of LITUS on clinical or pre-clinical, neurophysiological, neuroimaging, histological and biochemical outcomes, and adverse events were summarized. In total, 11 human studies and 44 animal studies were identified. LITUS demonstrated therapeutic efficacy in neurological disorders, psychiatric disorders, pain, sleep disorders and hypertension. LITUS-related changes in neuronal structure and cortical activity were found. From histological and biochemical perspectives, prominent findings included suppressing the inflammatory response and facilitating neurogenesis. No adverse effects were reported in controlled animal studies included in our review, while reversible headache, nausea, and vomiting were reported in a few human subjects. Overall, LITUS alleviates various symptoms and modulates associated brain circuits without major side effects. Future research needs to establish a solid therapeutic framework for LITUS.
Collapse
Affiliation(s)
- Penny Ping Qin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Minxia Jin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Adam Weili Xia
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Ami Sinman Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Tim Tianze Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Yuchen Liu
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rebecca Laidi Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Bella Bingbing Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Fan B, Goodman W, Cho RY, Sheth SA, Bouchard RR, Aazhang B. Computational modeling and minimization of unintended neuronal excitation in a LIFU stimulation. Sci Rep 2023; 13:13403. [PMID: 37591991 PMCID: PMC10435497 DOI: 10.1038/s41598-023-40522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023] Open
Abstract
The neuromodulation effect of low-intensity focused ultrasound (LIFU) is highly target-specific. Unintended off-target neuronal excitation can be elicited when the beam focusing accuracy and resolution are limited, whereas the resulted side effect has not been evaluated quantitatively. There is also a lack of methods addressing the minimization of such side effects. Therefore, this work introduces a computational model of unintended neuronal excitation during LIFU neuromodulation, which evaluates the off-target activation area (OTAA) by integrating an ultrasound field model with the neuronal spiking model. In addition, a phased array beam focusing scheme called constrained optimal resolution beamforming (CORB) is proposed to minimize the off-target neuronal excitation area while ensuring effective stimulation in the target brain region. A lower bound of the OTAA is analytically approximated in a simplified homogeneous medium, which could guide the selection of transducer parameters such as aperture size and operating frequency. Simulations in a human head model using three transducer setups show that CORB markedly reduces the OTAA compared with two benchmark beam focusing methods. The high neuromodulation resolution demonstrates the capability of LIFU to effectively limit the side effects during neuromodulation, allowing future clinical applications such as treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Boqiang Fan
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA.
| | - Wayne Goodman
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Raymond Y Cho
- Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sameer A Sheth
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard R Bouchard
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Behnaam Aazhang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
13
|
Zheng H, Niu L, Qiu W, Liang D, Long X, Li G, Liu Z, Meng L. The Emergence of Functional Ultrasound for Noninvasive Brain-Computer Interface. RESEARCH (WASHINGTON, D.C.) 2023; 6:0200. [PMID: 37588619 PMCID: PMC10427153 DOI: 10.34133/research.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023]
Abstract
A noninvasive brain-computer interface is a central task in the comprehensive analysis and understanding of the brain and is an important challenge in international brain-science research. Current implanted brain-computer interfaces are cranial and invasive, which considerably limits their applications. The development of new noninvasive reading and writing technologies will advance substantial innovations and breakthroughs in the field of brain-computer interfaces. Here, we review the theory and development of the ultrasound brain functional imaging and its applications. Furthermore, we introduce latest advancements in ultrasound brain modulation and its applications in rodents, primates, and human; its mechanism and closed-loop ultrasound neuromodulation based on electroencephalograph are also presented. Finally, high-frequency acoustic noninvasive brain-computer interface is prospected based on ultrasound super-resolution imaging and acoustic tweezers.
Collapse
Affiliation(s)
- Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weibao Qiu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaojing Long
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guanglin Li
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
14
|
Pérez-Benítez JA, Martínez-Ortiz P, Aguila-Muñoz J. A Review of Formulations, Boundary Value Problems and Solutions for Numerical Computation of Transcranial Magnetic Stimulation Fields. Brain Sci 2023; 13:1142. [PMID: 37626498 PMCID: PMC10452852 DOI: 10.3390/brainsci13081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Since the inception of the transcranial magnetic stimulation (TMS) technique, it has become imperative to numerically compute the distribution of the electric field induced in the brain. Various models of the coil-brain system have been proposed for this purpose. These models yield a set of formulations and boundary conditions that can be employed to calculate the induced electric field. However, the literature on TMS simulation presents several of these formulations, leading to potential confusion regarding the interpretation and contribution of each source of electric field. The present study undertakes an extensive compilation of widely utilized formulations, boundary value problems and numerical solutions employed in TMS fields simulations, analyzing the advantages and disadvantages associated with each used formulation and numerical method. Additionally, it explores the implementation strategies employed for their numerical computation. Furthermore, this work provides numerical expressions that can be utilized for the numerical computation of TMS fields using the finite difference and finite element methods. Notably, some of these expressions are deduced within the present study. Finally, an overview of some of the most significant results obtained from numerical computation of TMS fields is presented. The aim of this work is to serve as a guide for future research endeavors concerning the numerical simulation of TMS.
Collapse
Affiliation(s)
- J. A. Pérez-Benítez
- Laboratorio de Bio-Electromagnetismo, ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Mexico City 07738, CDMX, Mexico;
| | - P. Martínez-Ortiz
- Laboratorio de Bio-Electromagnetismo, ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Mexico City 07738, CDMX, Mexico;
| | - J. Aguila-Muñoz
- CONAHCYT—Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, km 107 Carretera Tijuana-Ensenada, Apartado Postal 14, Ensenada 22800, BC, Mexico
| |
Collapse
|
15
|
Li D, Cao F, Han J, Wang M, Lai C, Zhang J, Xu T, Bouakaz A, Wan M, Ren P, Zhang S. The sustainable antihypertensive and target organ damage protective effect of transcranial focused ultrasound stimulation in spontaneously hypertensive rats. J Hypertens 2023; 41:852-866. [PMID: 36883470 DOI: 10.1097/hjh.0000000000003407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVE In this study, we aimed to investigate the sustainable antihypertensive effects and protection against target organ damage caused by low-intensity focused ultrasound (LIFU) stimulation and the underlying mechanism in spontaneously hypertensive rats (SHRs) model. METHODS AND RESULTS SHRs were treated with ultrasound stimulation of the ventrolateral periaqueductal gray (VlPAG) for 20 min every day for 2 months. Systolic blood pressure (SBP) was compared among normotensive Wistar-Kyoto rats, SHR control group, SHR Sham group, and SHR LIFU stimulation group. Cardiac ultrasound imaging and hematoxylin-eosin and Masson staining of the heart and kidney were performed to assess target organ damage. The c-fos immunofluorescence analysis and plasma levels of angiotensin II, aldosterone, hydrocortisone, and endothelin-1 were measured to investigate the neurohumoral and organ systems involved. We found that SBP was reduced from 172 ± 4.2 mmHg to 141 ± 2.1 mmHg after 1 month of LIFU stimulation, P < 0.01. The next month of treatment can maintain the rat's blood pressure at 146 ± 4.2 mmHg at the end of the experiment. LIFU stimulation reverses left ventricular hypertrophy and improves heart and kidney function. Furthermore, LIFU stimulation enhanced the neural activity from the VLPAG to the caudal ventrolateral medulla and reduced the plasma levels of ANGII and Aldo. CONCLUSION We concluded that LIFU stimulation has a sustainable antihypertensive effect and protects against target organ damage by activating antihypertensive neural pathways from VLPAG to the caudal ventrolateral medulla and further inhibiting the renin-angiotensin system (RAS) activity, thereby supporting a novel and noninvasive alternative therapy to treat hypertension.
Collapse
Affiliation(s)
- Dapeng Li
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University
| | - Fangyuan Cao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University
| | - Jie Han
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Mengke Wang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University
| | - Chunhao Lai
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University
| | - Jingjing Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University
| | - Tianqi Xu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University
| | | | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University
| | - Pengyu Ren
- Institute of Medical Artificial Intelligence
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Siyuan Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University
- Sichuan Digital Economy Industry Development Research Institute, China
| |
Collapse
|
16
|
Ren L, Zhai Z, Xiang Q, Zhuo K, Zhang S, Zhang Y, Jiao X, Tong S, Liu D, Sun J. Transcranial ultrasound stimulation modulates the interhemispheric balance of excitability in human motor cortex. J Neural Eng 2023; 20. [PMID: 36669203 DOI: 10.1088/1741-2552/acb50d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Background. Low-intensity transcranial ultrasound stimulation (TUS) could induce both immediate and long-lasting neuromodulatory effects in human brains. Interhemispheric imbalance at prefrontal or motor cortices generally associates with various cognitive decline in aging and mental disorders. However, whether TUS could modulate the interhemispheric balance of excitability in human brain remains unknown.Objective. This study aims to explore whether repetitive TUS (rTUS) intervention can modulate the interhemispheric balance of excitability between bilateral motor cortex (M1) in healthy subjects.Approach. Motor evoked potentials (MEPs) at bilateral M1 were measured at 15 min and 0 min before a 15 min active or sham rTUS intervention on left M1 and at 0 min, 15 min and 30 min after the intervention, and the Chinese version of brief neurocognitive test battery (C-BCT) was conducted before and after the intervention respectively. Cortical excitability was quantified by MEPs, and the long-lasting changes of MEP amplitude was used as an index of plasticity.Results. In the active rTUS group (n= 20), the ipsilateral MEP amplitude increased significantly compared with baselines and lasted for up to 30 min after intervention, while the contralateral MEP amplitude decreased lasting for 15 min, yielding increased laterality between bilateral MEPs. Furthermore, rTUS intervention induced changes in some C-BCT scores, and the changes of scores correlated with the changes of MEP amplitudes induced by rTUS intervention. The sham rTUS group (n= 20) showed no significant changes in MEPs and C-BCT scores. In addition, no participants reported any adverse effects during and after the rTUS intervention, and no obvious temperature increase appeared in skull or brain tissues in simulation.Significance. rTUS intervention modulated the plasticity of ipsilateral M1 and the interhemispheric balance of M1 excitability in human brain, and improved cognitive performance, suggesting a considerable potential of rTUS in clinical interventions.
Collapse
Affiliation(s)
- Liyuan Ren
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Zhaolin Zhai
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Qiong Xiang
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Kaiming Zhuo
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Suzhen Zhang
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | - Yi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Xiong Jiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China.,Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| | - Dengtang Liu
- First-episode Schizophrenia and Early Psychosis Program, Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China.,Institute of Mental Health, Fudan University, Shanghai 200030, People's Republic of China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200230, People's Republic of China
| |
Collapse
|
17
|
He J, Zhu Y, Wu C, Wu J, Chen Y, Yuan M, Cheng Z, Zeng L, Ji X. Simultaneous multi-target ultrasound neuromodulation in freely-moving mice based on a single-element ultrasound transducer. J Neural Eng 2023; 20. [PMID: 36608340 DOI: 10.1088/1741-2552/acb104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
Objective.Ultrasound neuromodulation has become an emerging method for the therapy of neurodegenerative and psychiatric diseases. The phased array ultrasonic transducer enables multi-target ultrasound neuromodulation in small animals, but the relatively large size and mass and the thick cables of the array limit the free movement of small animals. Furthermore, spatial interference may occur during multi-target ultrasound brain stimulation with multiple micro transducers.Approach.In this study, we developed a miniature power ultrasound transducer and used the virtual source time inversion method and 3D printing technology to design, optimize, and manufacture the acoustic holographic lens to construct a multi-target ultrasound neuromodulation system for free-moving mice. The feasibility of the system was verified byin vitrotranscranial ultrasound field measurements,in vivodual-target blood-brain barrier (BBB) opening experiments, andin vivodual-target ultrasound neuromodulation experiments.Main results.The developed miniature transducer had a diameter of 4.0 mm, a center frequency of 1.1 MHz, and a weight of 1.25 g. The developed miniature acoustic holographic lens had a weight of 0.019 g to generate dual-focus transcranial ultrasound. The ultrasonic field measurements' results showed that the bifocal's horizontal distance was 3.0 mm, the -6 dB focal spot width in thex-direction was 2.5 and 2.25 mm, and 2.12 and 2.24 mm in they-direction. Finally, thein vivoexperimental results showed that the system could achieve dual-target BBB opening and ultrasound neuromodulation in freely-moving mice.Significance.The ultrasonic neuromodulation system based on a miniature single-element transducer and the miniature acoustic holographic lens could achieve dual-target neuromodulation in awake small animals, which is expected to be applied to the research of non-invasive dual-target ultrasonic treatment of brain diseases in awake small animals.
Collapse
Affiliation(s)
- Jiaru He
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yiyue Zhu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Canwen Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Junwei Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Maodan Yuan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhongwen Cheng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Lvming Zeng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xuanrong Ji
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
18
|
Wang M, Wang T, Ji H, Yan J, Wang X, Zhang X, Li X, Yuan Y. Modulation effect of non-invasive transcranial ultrasound stimulation in an ADHD rat model. J Neural Eng 2023; 20. [PMID: 36599159 DOI: 10.1088/1741-2552/acb014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Objective.Previous studies have demonstrated that transcranial ultrasound stimulation (TUS) with noninvasive high penetration and high spatial resolution has an effective neuromodulatory effect on neurological diseases. Attention deficit hyperactivity disorder (ADHD) is a persistent neurodevelopmental disorder that severely affects child health. However, the neuromodulatory effects of TUS on ADHD have not been reported to date. This study aimed to investigate the neuromodulatory effects of TUS on ADHD.Approach.TUS was performed in ADHD model rats for two consecutive weeks, and the behavioral improvement of ADHD, neural activity of ADHD from neurons and neural oscillation levels, and the plasma membrane dopamine transporter and brain-derived neurotrophic factor (BDNF) in the brains of ADHD rats were evaluated.Main results.TUS can improve cognitive behavior in ADHD rats, and TUS altered neuronal firing patterns and modulated the relative power and sample entropy of local field potentials in the ADHD rats. In addition, TUS can also enhance BDNF expression in the brain tissues.Significance. TUS has an effective neuromodulatory effect on ADHD and thus has the potential to clinically improve cognitive dysfunction in ADHD.
Collapse
Affiliation(s)
- Mengran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Teng Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Hui Ji
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing 100041, People's Republic of China
| | - Xingran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
19
|
Guo B, Zhang M, Hao W, Wang Y, Zhang T, Liu C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl Psychiatry 2023; 13:5. [PMID: 36624089 PMCID: PMC9829236 DOI: 10.1038/s41398-022-02297-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Mood disorders are associated with elevated inflammation, and the reduction of symptoms after multiple treatments is often accompanied by pro-inflammation restoration. A variety of neuromodulation techniques that regulate regional brain activities have been used to treat refractory mood disorders. However, their efficacy varies from person to person and lack reliable indicator. This review summarizes clinical and animal studies on inflammation in neural circuits related to anxiety and depression and the evidence that neuromodulation therapies regulate neuroinflammation in the treatment of neurological diseases. Neuromodulation therapies, including transcranial magnetic stimulation (TMS), transcranial electrical stimulation (TES), electroconvulsive therapy (ECT), photobiomodulation (PBM), transcranial ultrasound stimulation (TUS), deep brain stimulation (DBS), and vagus nerve stimulation (VNS), all have been reported to attenuate neuroinflammation and reduce the release of pro-inflammatory factors, which may be one of the reasons for mood improvement. This review provides a better understanding of the effective mechanism of neuromodulation therapies and indicates that inflammatory biomarkers may serve as a reference for the assessment of pathological conditions and treatment options in anxiety and depression.
Collapse
Affiliation(s)
- Bingqi Guo
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Mengyao Zhang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Wensi Hao
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Yuping Wang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XInstitute of sleep and consciousness disorders, Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069 China
| | - Tingting Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. .,Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China.
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. .,Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China.
| |
Collapse
|
20
|
Zhong YX, Liao JC, Liu X, Tian H, Deng LR, Long L. Low intensity focused ultrasound: a new prospect for the treatment of Parkinson's disease. Ann Med 2023; 55:2251145. [PMID: 37634059 PMCID: PMC10461511 DOI: 10.1080/07853890.2023.2251145] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
Background: As a chronic and progressive neurodegenerative disease, Parkinson's disease (PD) still lacks effective and safe targeted drug therapy. Low-intensity focused ultrasound (LIFU), a new method to stimulate the brain and open the blood-brain barrier (BBB), has been widely concerned by PD researchers due to its non-invasive characteristics.Methods: PubMed was searched for the past 10 years using the terms 'focused ultrasound', 'transcranial ultrasound', 'pulse ultrasound', and 'Parkinson's disease'. Relevant citations were selected from the authors' references. After excluding articles describing high-intensity focused ultrasound or non-Parkinson's disease applications, we found more than 100 full-text analyses for pooled analysis.Results: Current preclinical studies have shown that LIFU could improve PD motor symptoms by regulating microglia activation, increasing neurotrophic factors, reducing oxidative stress, and promoting nerve repair and regeneration, while LIFU combined with microbubbles (MBs) can promote drugs to cross the BBB, which may become a new direction of PD treatment. Therefore, finding an efficient drug carrier system is the top priority of applying LIFU with MBs to deliver drugs.Conclusions: This article aims to review neuro-modulatory effect of LIFU and the possible biophysical mechanism in the treatment of PD, summarize the latest progress in delivering vehicles with MBs, and discuss its advantages and limitations.
Collapse
Affiliation(s)
- Yun-Xiao Zhong
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin-Chi Liao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xv Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Tian
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li-Ren Deng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ling Long
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Escrichs A, Sanz Perl Y, Martínez-Molina N, Biarnes C, Garre-Olmo J, Fernández-Real JM, Ramos R, Martí R, Pamplona R, Brugada R, Serena J, Ramió-Torrentà L, Coll-De-Tuero G, Gallart L, Barretina J, Vilanova JC, Mayneris-Perxachs J, Saba L, Pedraza S, Kringelbach ML, Puig J, Deco G. The effect of external stimulation on functional networks in the aging healthy human brain. Cereb Cortex 2022; 33:235-245. [PMID: 35311898 DOI: 10.1093/cercor/bhac064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the brain changes occurring during aging can provide new insights for developing treatments that alleviate or reverse cognitive decline. Neurostimulation techniques have emerged as potential treatments for brain disorders and to improve cognitive functions. Nevertheless, given the ethical restrictions of neurostimulation approaches, in silico perturbation protocols based on causal whole-brain models are fundamental to gaining a mechanistic understanding of brain dynamics. Furthermore, this strategy could serve to identify neurophysiological biomarkers differentiating between age groups through an exhaustive exploration of the global effect of all possible local perturbations. Here, we used a resting-state fMRI dataset divided into middle-aged (N =310, <65 years) and older adults (N =310, $\geq $65) to characterize brain states in each group as a probabilistic metastable substate (PMS) space. We showed that the older group exhibited a reduced capability to access a metastable substate that overlaps with the rich club. Then, we fitted the PMS to a whole-brain model and applied in silico stimulations in each node to force transitions from the brain states of the older- to the middle-aged group. We found that the precuneus was the best stimulation target. Overall, these findings could have important implications for designing neurostimulation interventions for reversing the effects of aging on whole-brain dynamics.
Collapse
Affiliation(s)
- Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Noelia Martínez-Molina
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Carles Biarnes
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Josep Garre-Olmo
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Institut d'Assistència Sanitària, Salt, Girona, Spain
| | - José Manuel Fernández-Real
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Department of Diabetes, Endocrinology and Nutrition, IDIBGI, Hospital Universitari de Girona Dr Josep Trueta, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Girona, Spain
| | - Rafel Ramos
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Vascular Health Research Group of Girona (ISV-Girona), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Spain.,Primary Care Services, Catalan Institute of Health (ICS), Girona, Spain
| | - Ruth Martí
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Vascular Health Research Group of Girona (ISV-Girona), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Spain.,Primary Care Services, Catalan Institute of Health (ICS), Girona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida-IRBLleida, Lleida, Spain
| | - Ramon Brugada
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Cardiovascular Genetics Center, IDIBGI, CIBER-CV, Girona, Spain
| | - Joaquin Serena
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Department of Neurology, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Lluís Ramió-Torrentà
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Department of Neurology, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Gabriel Coll-De-Tuero
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Vascular Health Research Group of Girona (ISV-Girona), Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), Girona, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Luís Gallart
- Biobanc, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jordi Barretina
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Joan C Vilanova
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Jordi Mayneris-Perxachs
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Diabetes, Endocrinology and Nutrition, IDIBGI, Hospital Universitari de Girona Dr Josep Trueta, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Girona, Spain
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Italy
| | - Salvador Pedraza
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.,Department of Psychiatry, University of Oxford, Oxford, UK.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Josep Puig
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain.,Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.,Institut d'Assistència Sanitària, Salt, Girona, Spain
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Catalonia, Spain.,Department of Neuropsychology, Max Planck Institute for human Cognitive and Brain Sciences, Leipzig, Germany.,Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Wang T, Wang X, Tian Y, Gang W, Li X, Yan J, Yuan Y. Modulation effect of low-intensity transcranial ultrasound stimulation on REM and NREM sleep. Cereb Cortex 2022; 33:5238-5250. [PMID: 36376911 DOI: 10.1093/cercor/bhac413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Previous studies have shown that modulating neural activity can affect rapid eye movement (REM) and non-rapid eye movement (NREM) sleep. Low-intensity transcranial ultrasound stimulation (TUS) can effectively modulate neural activity. However, the modulation effect of TUS on REM and NREM sleep is still unclear. In this study, we used ultrasound to stimulate motor cortex and hippocampus, respectively, and found the following: (i) In healthy mice, TUS increased the NREM sleep ratio and decreased the REM sleep ratio, and altered the relative power and sample entropy of the delta band and spindle in NREM sleep and that of the theta and gamma bands in REM sleep. (ii) In sleep-deprived mice, TUS decreased the ratio of REM sleep or the relative power of the theta band during REM sleep. (iii) In sleep-disordered Alzheimer’s disease (AD) mice, TUS increased the total sleep time and the ratio of NREM sleep and modulated the relative power and the sample entropy of the delta and spindle bands during NREM and that of the theta band during REM sleep. These results demonstrated that TUS can effectively modulate REM and NREM sleep and that modulation effect depends on the sleep state of the samples, and can improve sleep in sleep-disordered AD mice.
Collapse
Affiliation(s)
- Teng Wang
- Yanshan University School of Electrical Engineering, , Qinhuangdao 066004 , China
- Yanshan University Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, , Qinhuangdao 066004 , China
| | - Xingran Wang
- Yanshan University School of Electrical Engineering, , Qinhuangdao 066004 , China
- Yanshan University Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, , Qinhuangdao 066004 , China
| | - Yanfei Tian
- Hebei Medical University Department of Pharmacology, , Shijiazhuang, Hebei 050017 , China
| | - Wei Gang
- Hebei Medical University Department of Pharmacology, , Shijiazhuang, Hebei 050017 , China
| | - Xiaoli Li
- Beijing Normal University State Key Laboratory of Cognitive Neuroscience and Learning, , Beijing 100875 , China
| | - Jiaqing Yan
- North China University of Technology College of Electrical and Control Engineering, , Beijing 100041 , China
| | - Yi Yuan
- Yanshan University School of Electrical Engineering, , Qinhuangdao 066004 , China
- Yanshan University Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, , Qinhuangdao 066004 , China
| |
Collapse
|
23
|
Du M, Li Y, Zhang Q, Zhang J, Ouyang S, Chen Z. The impact of low intensity ultrasound on cells: Underlying mechanisms and current status. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:41-49. [PMID: 35764177 DOI: 10.1016/j.pbiomolbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation effects. The mechanism of impact and cellular responses of LIUS in cellular regulations have been revealed, which helps to understand the role of LIUS in tumor treatment, stem cell therapy, and nervous system regulation. The review summarizes the bioeffects of LIUS at the cellular level and its related mechanisms, detailing the corresponding theoretical basis and latest research in the study of LIUS in the regulation of cells. In the future, the design of specific LIUS-mediated treatment strategies may benefit from promising investigations which is hoped to provide encouraging therapeutic data.
Collapse
Affiliation(s)
- Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Yue Li
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Zhang
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Jiaming Zhang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuming Ouyang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| |
Collapse
|
24
|
Pérez-Neri I, González-Aguilar A, Sandoval H, Pineda C, Ríos C. Potential Goals, Challenges, and Safety of Focused Ultrasound Application for Central Nervous System Disorders. Curr Neuropharmacol 2022; 20:1807-1810. [PMID: 35105289 PMCID: PMC9886811 DOI: 10.2174/1570159x20666220201092908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/02/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | - Camilo Ríos
- Address correspondence to this author at the Department of Neurochemistry of the National Institute of Neurology and Neurosurgery. Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269. Mexico; E-mail:
| |
Collapse
|
25
|
Yuan Y, Long A, Wu Y, Li X. Closed-loop transcranial ultrasound stimulation with a fuzzy controller for modulation of motor response and neural activity of mice. J Neural Eng 2022; 19. [PMID: 35700694 DOI: 10.1088/1741-2552/ac7893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/14/2022] [Indexed: 11/12/2022]
Abstract
Objective. We propose a closed-loop transcranial ultrasound stimulation (TUS) with a fuzzy controller to realize real-time and precise control of the motor response and neural activity of mice.Approach. The mean absolute value (MAV) of the electromyogram (EMG) and peak value (PV) of the local field potential (LFP) were measured under different ultrasound intensities. A model comprising the characteristics of the MAV of the EMG, PV of the LFP, and ultrasound intensity was built using a neural network, and a fuzzy controller, proportional-integral-derivative (PID) controller, and immune feedback controller were proposed to adjust the ultrasound intensity using the feedback of the EMG MAV and the LFP PV.Main results. In simulation, the quantitative calculation indicated that the maximum relative errors between the simulated EMG MAV and the expected values were 17% (fuzzy controller), 110% (PID control), 66% (immune feedback control); furthermore, the corresponding values of the LFP PV were 12% (fuzzy controller), 53% (PID control), 55% (immune feedback control). The average relative errors of fuzzy controller, PID control, immune feedback control were 4.97%, 13.15%, 11.52%, in the EMG closed-loop experiment and 7.76%, 11.84%, 13.56%, in the LFP closed-loop experiment.Significance. The simulation and experimental results demonstrate that the closed-loop TUS with a fuzzy controller can realize the tracking control of the motor response and neural activity of mice.
Collapse
Affiliation(s)
- Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Ai Long
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yongkang Wu
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
26
|
Zhao S, Liu D, Liu M, Luo X, Yuan Y. Theoretical analysis of effects of transcranial magneto-acoustical stimulation on neuronal spike-frequency adaptation. BMC Neurosci 2022; 23:26. [PMID: 35501687 PMCID: PMC9063290 DOI: 10.1186/s12868-022-00709-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transcranial magneto-acoustical stimulation (TMAS) is a noninvasive technique that has advantages in spatial resolution and penetration depth. It changes the firing properties of neurons through the current generated by focused ultrasound and a static magnetic field. Spike-frequency adaptation is an important dynamic characteristic of neural information processing. METHODS To address the effects of TMAS on neural spike-frequency adaptation, this study employs some ultrasound and magnetic field parameters, such as magnetic flux density, ultrasonic intensity, fundamental ultrasonic frequency, modulation frequency, and duty cycle. Using these different ultrasound and magnetic field parameters, membrane potential curves, spike-frequency curves, and adapted onset spike-frequency curves are exhibited and analyzed. RESULTS The results show that spike-frequency adaptation is strongly dependent on ultrasonic intensity and magnetic flux density and is rarely affected by other parameters. However, modulation frequency and duty cycle influence membrane potentials and spike frequencies to some degree. CONCLUSIONS This study reveals the mechanism of the effects of TMAS on neural spike-frequency adaptation and serves as theoretical guidance for TMAS experiments.
Collapse
Affiliation(s)
- Song Zhao
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan Liu
- Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Minzhuang Liu
- Institute of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoyuan Luo
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Yi Yuan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| |
Collapse
|
27
|
Dell'Italia J, Sanguinetti JL, Monti MM, Bystritsky A, Reggente N. Current State of Potential Mechanisms Supporting Low Intensity Focused Ultrasound for Neuromodulation. Front Hum Neurosci 2022; 16:872639. [PMID: 35547195 PMCID: PMC9081930 DOI: 10.3389/fnhum.2022.872639] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023] Open
Abstract
Low intensity focused ultrasound (LIFU) has been gaining traction as a non-invasive neuromodulation technology due to its superior spatial specificity relative to transcranial electrical/magnetic stimulation. Despite a growing literature of LIFU-induced behavioral modifications, the mechanisms of action supporting LIFU's parameter-dependent excitatory and suppressive effects are not fully understood. This review provides a comprehensive introduction to the underlying mechanics of both acoustic energy and neuronal membranes, defining the primary variables for a subsequent review of the field's proposed mechanisms supporting LIFU's neuromodulatory effects. An exhaustive review of the empirical literature was also conducted and studies were grouped based on the sonication parameters used and behavioral effects observed, with the goal of linking empirical findings to the proposed theoretical mechanisms and evaluating which model best fits the existing data. A neuronal intramembrane cavitation excitation model, which accounts for differential effects as a function of cell-type, emerged as a possible explanation for the range of excitatory effects found in the literature. The suppressive and other findings need additional theoretical mechanisms and these theoretical mechanisms need to have established relationships to sonication parameters.
Collapse
Affiliation(s)
- John Dell'Italia
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- *Correspondence: John Dell'Italia
| | - Joseph L. Sanguinetti
- Department of Psychology, University of Arizona, Tuscon, AZ, United States
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Martin M. Monti
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander Bystritsky
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- Tiny Blue Dot Foundation, Santa Monica, CA, United States
| | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- Tiny Blue Dot Foundation, Santa Monica, CA, United States
| |
Collapse
|
28
|
Kunugi H, Tikhonova M. Recent advances in understanding depressive disorder: Possible relevance to brain stimulation therapies. PROGRESS IN BRAIN RESEARCH 2022; 270:123-147. [PMID: 35396024 DOI: 10.1016/bs.pbr.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent research has provided novel insights into the major depressive disorder (MDD) and identified certain biomarkers of this disease. There are four main mechanisms playing a key role in the related pathophysiology, namely (1) monoamine systems dysfunction, (2) stress response, (3) neuroinflammation, and (4) neurotrophic factors alteration. Robust evidence on the decreased homovanillic acid in the cerebrospinal fluid (CSF) of patients with MDD supports a rationale for therapeutic stimulation of the medial forebrain bundle activating the dopamine reward system. Both activation and suppression of the hypothalamic-pituitary-adrenal (HPA) axis in MDD and related conditions indicate usefulness of its evaluation for the disease subtyping. Elevated proinflammatory cytokines (specifically, interleukin-6) in CSF imply the role of neuroinflammation resulting in activation of the tryptophan-kynurenine pathway. Finally, neuroplasticity and trophic effects of the brain-derived neurotrophic factor (BDNF) may be related to both structural abnormalities of the brain in MDD and the underlying mechanisms of various therapies. In addition, the gut-brain interaction is pivotal, since lack of beneficial microbes confer the risk of MDD through negative effects on the dopamine system, HPA axis, and vagal nerve. All these factors may be highly relevant to treatment of MDD with contemporary brain stimulation therapies.
Collapse
Affiliation(s)
- Hiroshi Kunugi
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Maria Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russian Federation
| |
Collapse
|
29
|
Zhang T, Wang Z, Liang H, Wu Z, Li J, Ou-Yang J, Yang X, Peng YB, Zhu B. Transcranial Focused Ultrasound Stimulation of Periaqueductal Gray for Analgesia. IEEE Trans Biomed Eng 2022; 69:3155-3162. [PMID: 35324431 DOI: 10.1109/tbme.2022.3162073] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) is regarded as a promising non-invasive stimulation tool for modulating brain circuits. The aim of this study is to explore the feasibility of tFUS stimulation for analgesia application. METHODS 50 l of 3% formalin solution was injected into the rats left hindpaw to build a pain model, and then the local field potential (LFP) activities of the dorsal horn were tracked after a recording electrode was placed in the spinal cord. Rats were randomly divided into two groups: control group and tFUS group. At the 30th minute after formalin injection, tFUS (US-650 kHz, PD = 1 ms, PRF = 100 Hz, 691 mW/cm2) was conducted to stimulate the periaqueductal gray (PAG) for 5 minutes (on 5 s and off 5 s) in tFUS group, but there was no treatment in control group. In addition, the analgesia mechanism (LFP recording from the PAG) and safety assessment (histology analysis) were carried out. RESULTS The tFUS stimulation of the PAG can suppress effectively the nociceptive activity generated by formalin. The findings of the underlying mechanism exploration indicated that the tFUS stimulation was able to activate the PAG directly without causing significant temperature change and tissue injury. CONCLUSION The results illustrated that the tFUS stimulation of the PAG can achieve the effect of analgesia. SIGNIFICANCE This work provides new insights for the development of non-invasive analgesic technology in the future.
Collapse
|
30
|
Zhu S, Meng B, Jiang J, Wang X, Luo N, Liu N, Shen H, Wang L, Li Q. The Updated Role of Transcranial Ultrasound Neuromodulation in Ischemic Stroke: From Clinical and Basic Research. Front Cell Neurosci 2022; 16:839023. [PMID: 35221926 PMCID: PMC8873076 DOI: 10.3389/fncel.2022.839023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
Ischemic stroke is a common cause of death and disability worldwide, which leads to serious neurological and physical dysfunction and results in heavy economic and social burdens. For now, timely and effective dissolution of thrombus, and ultimately improvement in the recovery of neurological functions, is the treatment strategy focus. Recently, many studies have reported that transcranial ultrasound stimulation (TUS), as a non-invasive method, can dissolve thrombus, improve cerebral blood circulation, and exert a neuroprotective effect post-stroke. TUS can promote functional recovery and improve rehabilitation efficacy among patients with ischemic stroke. This mini-review summarizes the potential mechanism and limitation of TUS in stroke aims to provide a new strategy for the future treatment of patients with ischemic stroke.
Collapse
Affiliation(s)
- Shuiping Zhu
- Department of Geriatric Medicine, Rongjun Hospital, Jiaxing, China
| | - Bin Meng
- Department of Ultrasound, Rongjun Hospital, Jiaxing, China
| | - Jianping Jiang
- Department of Geriatric Medicine, Rongjun Hospital, Jiaxing, China
| | - Xiaotao Wang
- Department of Ultrasound, Rongjun Hospital, Jiaxing, China
| | - Na Luo
- Department of Ultrasound, Rongjun Hospital, Jiaxing, China
| | - Ning Liu
- Department of Ultrasound, Rongjun Hospital, Jiaxing, China
| | - Huaping Shen
- Department of Ultrasound, Rongjun Hospital, Jiaxing, China
| | - Lu Wang
- Starbody Plastic Surgery Clinic, Hangzhou, China
| | - Qian Li
- Department of Ultrasound, Rongjun Hospital, Jiaxing, China
| |
Collapse
|
31
|
Wang F, Wang Q, Wang L, Ren J, Song X, Tian Y, Zheng C, Yang J, Ming D. Low-Intensity Focused Ultrasound Stimulation Ameliorates Working Memory Dysfunctions in Vascular Dementia Rats via Improving Neuronal Environment. Front Aging Neurosci 2022; 14:814560. [PMID: 35264943 PMCID: PMC8899543 DOI: 10.3389/fnagi.2022.814560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Working memory impairment is one of the remarkable cognitive dysfunctions induced by vascular dementia (VD), and it is necessary to explore an effective treatment. Recently, low-intensity focused ultrasound stimulation (LIFUS) has been found notable neuroprotective effects on some neurological diseases, including VD. However, whether it could ameliorate VD-induced working memory impairment was still not been clarified. The purpose of this study was to address this issue and the underlying mechanism. We established VD rat model using the bilateral common carotid artery occlusion (BCCAO) and applied the LIFUS (center frequency = 0.5 MHz; Ispta = 500 mW/cm2, 10 mins/day) to bilateral medial prefrontal cortex (mPFC) for 2 weeks since 2 weeks after the surgery. The main results showed that the LIFUS could significantly improve the performance of VD rats in the specific working memory tasks (delayed nonmatch-to-sample task and step-down task), which might be associated with the improved synaptic function. We also found the improvement in the cerebral blood flow (CBF) and reduced neuroinflammation in mPFC after LIFUS treatment indicated by the inhibition of Toll-like receptor (TLR4)/nuclear factor kappa B (NF-κB) pathway and the decrease of proinflammatory cytokines. The amelioration of CBF and neuroinflammation may promote the living environment of the neurons in VD which then contribute to the survival of neurons and the improvement in synaptic function. Taken together, our findings indicate that LIFUS targeted mPFC can effectively ameliorate reward-based spatial working memory and fear working memory dysfunctions induced by VD via restoring the living environment, survivability, and synaptic functions of the neurons in mPFC of VD rats. This study adds to the evidence that LIFUS could become a promising and non-invasive treatment strategy for the clinical treatment of central nervous system diseases related to cognitive impairments in the future.
Collapse
Affiliation(s)
- Faqi Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qian Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ling Wang
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Jing Ren
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Yutao Tian
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Chenguang Zheng
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
| | - Jiajia Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- *Correspondence: Jiajia Yang,
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin, China
- Dong Ming,
| |
Collapse
|
32
|
Transcranial Ultrasound Stimulation of the Anterior Cingulate Cortex Reduces Neuropathic Pain in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:6510383. [PMID: 35003307 PMCID: PMC8741380 DOI: 10.1155/2021/6510383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/22/2021] [Indexed: 01/04/2023]
Abstract
Focused ultrasound (FUS) is a potential tool for treating chronic pain by modulating the central nervous system. Herein, we aimed to determine whether transcranial FUS stimulation of the anterior cingulate cortex (ACC) effectively improved chronic pain in the chronic compress injury mice model at different stages of neuropathic pain. The mechanical threshold of pain was recorded in the nociceptive tests. We found FUS stimulation elevated the mechanical threshold of pain in both short-term (p < 0.01) and long-term (p < 0.05) experiments. Furthermore, we determined protein expression differences in ACC between the control group, the intervention group, and the Sham group to analyze the underlying mechanism of FUS stimulation in improving neuropathic pain. Additionally, the results showed FUS stimulation led to alterations in differential proteins in long-term experiments, including cellular processes, cellular signaling, and information storage and processing. Our findings indicate FUS may effectively alleviate mechanical neuropathic pain via the ACC's stimulation, especially in the chronic state.
Collapse
|
33
|
Yi SS, Zou JJ, Meng L, Chen HM, Hong ZQ, Liu XF, Farooq U, Chen MX, Lin ZR, Zhou W, Ao LJ, Hu XQ, Niu LL. Ultrasound Stimulation of Prefrontal Cortex Improves Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice. Front Psychiatry 2022; 13:864481. [PMID: 35573384 PMCID: PMC9099414 DOI: 10.3389/fpsyt.2022.864481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/05/2022] [Indexed: 11/15/2022] Open
Abstract
Increasing evidence indicates that inflammatory responses may influence brain neurochemical pathways, inducing depressive-like behaviors. Ultrasound stimulation (US) is a promising non-invasive treatment for neuropsychiatric diseases. We investigated whether US can suppress inflammation and improve depressive-like behaviors. Mice were intraperitoneally injected with lipopolysaccharide to induce depressive-like behaviors. Ultrasound wave was delivered into the prefrontal cortex (PFC) for 30 min. Depressive- and anxiety-like behaviors were evaluated through the forced swimming test (FST), tail suspension test (TST), and elevated plus maze (EPM). Biochemical analyses were performed to assess the expression of inflammatory cytokines in the PFC and serum. The results indicated that US of the PFC significantly improved depressive-like behaviors in the TST (p < 0.05) and FST (p < 0.05). Anxiety-like behaviors also improved in the EPM (p < 0.05). Furthermore, the lipopolysaccharide-mediated upregulation of IL-6, IL-1β, and TNF-α in the PFC was significantly reduced (p < 0.05) by US. In addition, no tissue damage was observed. Overall, US of PFC can effectively improve lipopolysaccharide-induced depressive-like behaviors, possibly through the downregulation of inflammatory cytokines in the PFC. US may be a safe and promising tool for improvement of depression.
Collapse
Affiliation(s)
- Sha-Sha Yi
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Jun-Jie Zou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hou-Minji Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhong-Qiu Hong
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiu-Fang Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Umar Farooq
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mo-Xian Chen
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Zheng-Rong Lin
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Li-Juan Ao
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Xi-Quan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Li Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
34
|
Transcranial ultrasound stimulation of the human motor cortex. iScience 2021; 24:103429. [PMID: 34901788 PMCID: PMC8637484 DOI: 10.1016/j.isci.2021.103429] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022] Open
Abstract
It has been 40 years since the report of long-term synaptic plasticity on the rodent brain. Transcranial ultrasound stimulation (TUS) shows advantages in spatial resolution and penetration depth when compared with electrical or magnetic stimulation. The repetitive TUS (rTUS) can induce cortical excitability alteration on animals, and persistent aftereffects were observed. However, the effects of rTUS on synaptic plasticity in humans remain unelucidated. In the current study, we applied a 15-min rTUS protocol to stimulate left primary motor cortex (l-M1) in 24 male healthy participants. The single-pulsed transcranial magnetic stimulation-evoked motor evoked potential and Stop-signal task was applied to measure the rTUS aftereffects. Here, we report that conditioning the human motor cortex using rTUS may produce long-lasting and statistically significant effects on motor cortex excitability as well as motor behavior, without harmful side effects observed. These findings suggest a considerable potential of rTUS in cortical plasticity modulation and clinical intervention for impulsivity-related disorders.
Collapse
|
35
|
Chen Y, Li Y, Du M, Yu J, Gao F, Yuan Z, Chen Z. Ultrasound Neuromodulation: Integrating Medicine and Engineering for Neurological Disease Treatment. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract Neurological diseases associated with dysfunctions of neural circuits, including Alzheimer’s disease (AD), depression and epilepsy, have been increasingly prevalent. To tackle these issues, artificial stimulation or regulation of specific neural circuits and
nuclei are employed to alleviate or cure certain neurological diseases. In particular, ultrasound neuromodulation has been an emerging interdisciplinary approach, which integrates medicine and engineering methodologies in the treatment. With the development of medicine and engineering, ultrasound
neuromodulation has gradually been applied in the treatment of central nervous system diseases. In this review, we aimed to summarize the mechanism of ultrasound neuromodulation and the advances of focused ultrasound (FUS) in neuromodulation in recent years, with a special emphasis on its
application in central nervous system disease treatment. FUS showed great feasibility in the treatment of epilepsy, tremor, AD, depression, and brain trauma. We also suggested future directions of ultrasound neuromodulation in clinical settings, with a focus on its fusion with genetic engineering
or nanotechnology.
Collapse
Affiliation(s)
- Yuhao Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Meng Du
- Medical Imaging Centre, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Fei Gao
- Cancer Center, Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China
| | - Zhiyi Chen
- Medical Imaging Centre, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
36
|
Zhang H, Zhang Y, Xu M, Song X, Chen S, Jian X, Ming D. The Effects of the Structural and Acoustic Parameters of the Skull Model on Transcranial Focused Ultrasound. SENSORS 2021; 21:s21175962. [PMID: 34502853 PMCID: PMC8434628 DOI: 10.3390/s21175962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 01/02/2023]
Abstract
Transcranial focused ultrasound (tFUS) has great potential in brain imaging and therapy. However, the structural and acoustic differences of the skull will cause a large number of technical problems in the application of tFUS, such as low focus energy, focal shift, and defocusing. To have a comprehensive understanding of the skull effect on tFUS, this study investigated the effects of the structural parameters (thickness, radius of curvature, and distance from the transducer) and acoustic parameters (density, acoustic speed, and absorption coefficient) of the skull model on tFUS based on acrylic plates and two simulation methods (self-programming and COMSOL). For structural parameters, our research shows that as the three factors increase the unit distance, the attenuation caused from large to small is the thickness (0.357 dB/mm), the distance to transducer (0.048 dB/mm), and the radius of curvature (0.027 dB/mm). For acoustic parameters, the attenuation caused by density (0.024 dB/30 kg/m3) and acoustic speed (0.021 dB/30 m/s) are basically the same. Additionally, as the absorption coefficient increases, the focus acoustic pressure decays exponentially. The thickness of the structural parameters and the absorption coefficient of the acoustic parameters are the most important factors leading to the attenuation of tFUS. The experimental and simulation trends are highly consistent. This work contributes to the comprehensive and quantitative understanding of how the skull influences tFUS, which further enhances the application of tFUS in neuromodulation research and treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China; (H.Z.); (M.X.); (S.C.)
| | - Yanqiu Zhang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China; (Y.Z.); (X.J.)
| | - Minpeng Xu
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China; (H.Z.); (M.X.); (S.C.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
| | - Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
| | - Shanguang Chen
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China; (H.Z.); (M.X.); (S.C.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing 100094, China
| | - Xiqi Jian
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China; (Y.Z.); (X.J.)
| | - Dong Ming
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China; (H.Z.); (M.X.); (S.C.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
- Correspondence:
| |
Collapse
|
37
|
Meng Y, Pople CB, Lea-Banks H, Hynynen K, Lipsman N, Hamani C. Focused ultrasound neuromodulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:221-240. [PMID: 34446247 DOI: 10.1016/bs.irn.2021.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Focused ultrasound (FUS) is an emerging modality for performing incisionless neurosurgical procedures including thermoablation and blood-brain barrier (BBB) modulation. Emerging evidence suggests that low intensity FUS can also be used for neuromodulation with several benefits, including high spatial precision and the possibility of targeting deep brain regions. Here we review the existing data regarding the biological mechanisms of FUS neuromodulation, the characteristics of neuronal activity altered by FUS, emerging indications for FUS neuromodulation, as well as the strengths and limitations of this approach.
Collapse
Affiliation(s)
- Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Christopher B Pople
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Harriet Lea-Banks
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
38
|
Guo H, Baker G, Hartle K, Fujiwara E, Wang J, Zhang Y, Xing J, Lyu H, Li XM, Chen J. Exploratory study on neurochemical effects of low-intensity pulsed ultrasound in brains of mice. Med Biol Eng Comput 2021; 59:1099-1110. [PMID: 33881705 DOI: 10.1007/s11517-021-02351-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/19/2021] [Indexed: 01/25/2023]
Abstract
There is now a relatively large body of evidence suggesting a relationship between dysfunction of myelin and oligodendrocytes and the etiology of several neuropsychiatric disorders, including depression and schizophrenia, and also suggesting that ultrasound methods may alleviate some of the symptoms of depression. We have applied low-intensity pulsed ultrasound (LIPUS) to the brains of mice treated with the demyelinating drug cuprizone, a drug that has been used as the basis for a rodent model relevant to a number of psychiatric and neurologic disorders including depression, schizophrenia, and multiple sclerosis. Prior to conducting the studies in mice, preliminary studies were carried out on the effects of LIPUS in vitro in neuron-like SH-SY5Y cells and primary glial cells. In subsequent studies in mice, female C57BL/6 mice were restrained in plastic tubes for 20 min daily with the ultrasound transducer near the end of the tube directly above the mouse's head. LIPUS was used at an intensity of 25 mW/cm2 once daily for 22 days in control mice and in mice undergoing daily repetitive restraint stress (RRS). Behavioral or neurochemical studies were done on the mice or the brain tissue obtained from them. The studies in vitro indicated that LIPUS stimulation at an intensity of 15 mW/cm2 delivered for 5 min daily for 3 days in an enclosed sterile cell culture plate in an incubator increased the viability of SH-SY5Y and primary glial cells. In the studies in mice, LIPUS elevated levels of doublecortin, a marker for neurogenesis, in the cortex compared to levels in the RRS mice and caused a trend in elevation of brain levels of brain-derived neurotrophic factor in the hippocampus relative to control levels. LIPUS also increased sucrose preference (a measure of the attenuation of anhedonia, a common symptom of several psychiatric disorders) in the RRS model in mice. The ability of LIPUS administered daily to rescue damaged myelin and oligodendrocytes was studied in mice treated chronically with cuprizone for 35 days. LIPUS increased cortex and corpus callosum levels of myelin basic protein, a protein marker for mature oligodendrocytes, and neural/glial antigen 2, a protein marker for oligodendrocyte precursor cells, relative to levels in the cuprizone + sham animals. These results of this exploratory study suggest that future comprehensive time-related studies with LIPUS on brain chemistry and behavior related to neuropsychiatric disorders are warranted. Exploratory Study on Neurochemical Effects of Low Intensity Pulsed Ultrasound in Brains of Mice. Upper part of figure: LIPUS device and in-vitro cell experimental set-up. The center image is the LIPUS generating box; the image in the upper left shows the cell experiment set-up; the image in the upper right shows a zoomed-in sketch for the cell experiment; the image in the lower left shows the set-up of repetitive restraint stress (RRS) with a mouse; the image in the lower middle shows the set-up of LIPUS treatment of a mouse; the image in the lower right shows a zoomed-in sketch for the LIPUS treatment of a mouse.
Collapse
Affiliation(s)
- Huining Guo
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada
| | - Glen Baker
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Kelly Hartle
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Esther Fujiwara
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Junhui Wang
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada.,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Jida Xing
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Haiyan Lyu
- Department of Pharmacy, Xianyue Hospital, Xiamen, China
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, TGG 2B7, Canada. .,Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| | - Jie Chen
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada. .,Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
39
|
Yuan Y, Zhang K, Zhang Y, Yan J, Wang Z, Wang X, Liu M, Li X. The Effect of Low-Intensity Transcranial Ultrasound Stimulation on Neural Oscillation and Hemodynamics in the Mouse Visual Cortex Depends on Anesthesia Level and Ultrasound Intensity. IEEE Trans Biomed Eng 2021; 68:1619-1626. [PMID: 33434119 DOI: 10.1109/tbme.2021.3050797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Low-intensity transcranial ultrasound stimulation (TUS) can induce motor responses, neural oscillation and hemodynamic responses. Early studies demonstrated that the motor responses evoked by TUS critically depend on anesthesia levels and ultrasound intensity. However, the neural mechanism of how anesthesia levels and ultrasound intensity influence on brain responses during TUS has never been explored yet. To investigate this question, we applied different anesthesia levels and ultrasound intensities on the visual cortex of mouse and observed neural oscillation change and hemodynamic responses during TUS. METHODS low-intensity ultrasound was delivered to mouse visual cortex under different anesthesia levels, and simultaneous recordings for local field potentials (LFPs) and hemodynamic responses were carried out to measure and analyze the changes quantitatively. RESULTS (i) The change of mean amplitude and mean relative power of sharp wave-ripple (SPW-R) in LFPs induced by TUS decreased as the anesthesia level increased (from awake to 1.5% isoflurane). (ii) The hemodynamic response level induced by TUS decreased as the anesthesia level increased (from awake to1.5% isoflurane). (iii) The coupling strength between neural activities and hemodynamic responses was dependent on anesthesia level. (iv) The neural activities and hemodynamic responses increase as a function of ultrasound intensity. CONCLUSION These results support that the neural activities and hemodynamic response of the mouse visual cortex induced by TUS are related to the anesthesia level and ultrasound intensity. SIGNIFICANCE This finding suggests that careful maintenance of anesthesia level and ultrasound intensity is required to acquire accurate LFP and hemodynamic data from samples with TUS.
Collapse
|
40
|
Liu Y, Wang G, Cao C, Zhang G, Tanzi EB, Zhang Y, Zhou W, Li Y. Neuromodulation Effect of Very Low Intensity Transcranial Ultrasound Stimulation on Multiple Nuclei in Rat Brain. Front Aging Neurosci 2021; 13:656430. [PMID: 33935688 PMCID: PMC8081960 DOI: 10.3389/fnagi.2021.656430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Low-intensity transcranial ultrasound stimulation (TUS) is a non-invasive neuromodulation technique with high spatial resolution and feasible penetration depth. To date, the mechanisms of TUS modulated neural oscillations are not fully understood. This study designed a very low acoustic intensity (AI) TUS system that produces considerably reduced AI Ultrasound pulses (ISPTA < 0.5 W/cm2) when compared to previous methods used to measure regional neural oscillation patterns under different TUS parameters. Methods We recorded the local field potential (LFP) of five brain nuclei under TUS with three groups of simulating parameters. Spectrum estimation, time-frequency analysis (TFA), and relative power analysis methods have been applied to investigate neural oscillation patterns under different stimulation parameters. Results Under PRF, 500 Hz and 1 kHz TUS, high-amplitude LFP activity with the auto-rhythmic pattern appeared in selected nuclei when ISPTA exceeded 12 mW/cm2. With TFA, high-frequency energy (slow gamma and high gamma) was significantly increased during the auto-rhythmic patterns. We observed an initial plateau in nuclei response when ISPTA reached 16.4 mW/cm2 for RPF 500 Hz and 20.8 mW/cm2 for RPF 1 kHz. The number of responding nuclei started decreasing while ISPTA continued increasing. Under 1.5 kHz TUS, no auto-rhythmic patterns have been observed, but slow frequency power was increased during TUS. TUS inhibited most of the frequency band and generated obvious slow waves (theta and delta band) when stimulated at RPF = 1.5 kHz, ISPTA = 8.8 mW/cm2. Conclusion These results demonstrate that very low intensity Transcranial Ultrasound Stimulation (VLTUS) exerts significant neuromodulator effects under specific parameters in rat models and may be a valid tool to study neuronal physiology.
Collapse
Affiliation(s)
- Yingjian Liu
- School of Microelectronics, Shandong University, Jinan, China
| | - Gang Wang
- School of Microelectronics, Shandong University, Jinan, China
| | - Chao Cao
- School of Microelectronics, Shandong University, Jinan, China
| | - Gaorui Zhang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China.,School of Medical Imaging, Weifang Medical University, Weifang, China
| | | | - Yang Zhang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Weidong Zhou
- School of Microelectronics, Shandong University, Jinan, China
| | - Yi Li
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
41
|
Liao YH, Wang B, Chen MX, Liu Y, Ao LJ. LIFU Alleviates Neuropathic Pain by Improving the KCC 2 Expression and Inhibiting the CaMKIV-KCC 2 Pathway in the L4-L5 Section of the Spinal Cord. Neural Plast 2021; 2021:6659668. [PMID: 33953740 PMCID: PMC8057881 DOI: 10.1155/2021/6659668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/13/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
Effective treatment remains lacking for neuropathic pain (NP), a type of intractable pain. Low-intensity focused ultrasound (LIFU), a noninvasive, cutting-edge neuromodulation technique, can effectively enhance inhibition of the central nervous system (CNS) and reduce neuronal excitability. We investigated the effect of LIFU on NP and on the expression of potassium chloride cotransporter 2 (KCC2) in the spinal cords of rats with peripheral nerve injury (PNI) in the lumbar 4-lumbar 5 (L4-L5) section. In this study, rats received PNI surgery on their right lower legs followed by LIFU stimulation of the L4-L5 section of the spinal cord for 4 weeks, starting 3 days after surgery. We used the 50% paw withdraw threshold (PWT50) to evaluate mechanical allodynia. Western blotting (WB) and immunofluorescence (IF) were used to calculate the expression of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), calcium/calmodulin-dependent protein kinase type IV (CaMKIV), phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB), and KCC2 in the L4-L5 portion of the spinal cord after the last behavioral tests. We found that PWT50 decreased (P < 0.05) 3 days post-PNI surgery in the LIFU- and LIFU+ groups and increased (P < 0.05) after 4 weeks of LIFU stimulation. The expression of p-CREB and CaMKIV decreased (P < 0.05) and that of KCC2 increased (P < 0.05) after 4 weeks of LIFU stimulation, but that of p-ERK1/2 (P > 0.05) was unaffected. Our study showed that LIFU could effectively alleviate NP behavior in rats with PNI by increasing the expression of KCC2 on spinal dorsal corner neurons. A possible explanation is that LIFU could inhibit the activation of the CaMKIV-KCC2 pathway.
Collapse
Affiliation(s)
- Ye-Hui Liao
- School of Rehabilitation, Kunming Medical University, Kunming, 650500 Yunnan Province, China
| | - Bin Wang
- School of Rehabilitation, Kunming Medical University, Kunming, 650500 Yunnan Province, China
| | - Mo-Xian Chen
- School of Rehabilitation, Kunming Medical University, Kunming, 650500 Yunnan Province, China
| | - Yao Liu
- School of Rehabilitation, Kunming Medical University, Kunming, 650500 Yunnan Province, China
| | - Li-Juan Ao
- School of Rehabilitation, Kunming Medical University, Kunming, 650500 Yunnan Province, China
| |
Collapse
|
42
|
Zhou H, Meng L, Xia X, Lin Z, Zhou W, Pang N, Bian T, Yuan T, Niu L, Zheng H. Transcranial Ultrasound Stimulation Suppresses Neuroinflammation in a Chronic Mouse Model of Parkinson's Disease. IEEE Trans Biomed Eng 2021; 68:3375-3387. [PMID: 33830916 DOI: 10.1109/tbme.2021.3071807] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Neuroinflammation contributes to the development and progression of Parkinson's disease (PD). The aim of this study was to examine whether ultrasound (US) stimulation of the subthalamic nucleus (STN) could suppress the neuroinflammation in a chronic PD mouse model induced by 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). METHODS A chronic PD mouse model was built by injections of 20mg/kg MPTP and 250 mg/kg probenecid at 3.5-day intervals for 5 weeks. Mice were randomized into control+sham, MPTP+sham and MPTP+STN+US group. For MPTP+STN+US group, ultrasound wave (3.8 MHz, 50% duty cycle, 1 kHz pulse repetition frequency, 30 min/day) was delivered to the STN the day after MPTP and probenecid injection (the early stage of PD progression). The rotarod test and pole test were performed to evaluate the behavioral changes after ultrasound treatment. Then, the activity of microglia and astrocyte were measured to evaluate the inflammation level in the brain. RESULTS Ultrasound stimulation improved the latency to falls in the rotarod test (p = 0.033) and decreased the climbing time in the pole test (p = 0.016) compared with MPTP+sham group. Moreover, ultrasound stimulation reduced the chronic inflammation response as shown in microglia (p = 0.007) and astrocyte (p = 0.032) activation. In addition, HE, Nissl and Tunel staining showed that no brain tissue injury was induced by US. CONCLUSION These findings demonstrated that ultrasound stimulation could suppress neuroinflammation in PD mice. SIGNIFICANCE Transcranial ultrasound neuromodulation offers a novel approach for Parkinson's disease intervention, potentially through its anti-neuroinflammation functions.
Collapse
|
43
|
Bian T, Meng W, Qiu M, Zhong Z, Lin Z, Zou J, Wang Y, Huang X, Xu L, Yuan T, Huang Z, Niu L, Meng L, Zheng H. Noninvasive Ultrasound Stimulation of Ventral Tegmental Area Induces Reanimation from General Anaesthesia in Mice. RESEARCH (WASHINGTON, D.C.) 2021; 2021:2674692. [PMID: 33954291 PMCID: PMC8059556 DOI: 10.34133/2021/2674692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 05/02/2023]
Abstract
Evidence in animals suggests that deep brain stimulation or optogenetics can be used for recovery from disorders of consciousness (DOC). However, these treatments require invasive procedures. This report presents a noninvasive strategy to stimulate central nervous system neurons selectively for recovery from DOC in mice. Through the delivery of ultrasound energy to the ventral tegmental area, mice were aroused from an unconscious, anaesthetized state in this study, and this process was controlled by adjusting the ultrasound parameters. The mice in the sham group under isoflurane-induced, continuous, steady-state general anaesthesia did not regain their righting reflex. On insonation, the emergence time from inhaled isoflurane anaesthesia decreased (sham: 13.63 ± 0.53 min, ultrasound: 1.5 ± 0.19 min, p < 0.001). Further, the induction time (sham: 12.0 ± 0.6 min, ultrasound: 17.88 ± 0.64 min, p < 0.001) and the concentration for 50% of the maximal effect (EC50) of isoflurane (sham: 0.6%, ultrasound: 0.7%) increased. In addition, ultrasound stimulation reduced the recovery time in mice with traumatic brain injury (sham: 30.38 ± 1.9 min, ultrasound: 7.38 ± 1.02 min, p < 0.01). This noninvasive strategy could be used on demand to promote emergence from DOC and may be a potential treatment for such disorders.
Collapse
Affiliation(s)
- Tianyuan Bian
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Wen Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Meihong Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China 200032
| | - Zhigang Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China 200032
| | - Zhengrong Lin
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Junjie Zou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Yibo Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Xiaowei Huang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Lisheng Xu
- College of Medicine and Biological Information Engineering, Northeastern University, 195 Innovation Road, Shenyang 110016, China
| | - Tifei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China 200030
| | - Zhili Huang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China 200032
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China 518055
| |
Collapse
|
44
|
Qiu W, Bouakaz A, Konofagou EE, Zheng H. Ultrasound for the Brain: A Review of Physical and Engineering Principles, and Clinical Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:6-20. [PMID: 32866096 DOI: 10.1109/tuffc.2020.3019932] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The emergence of new ultrasound technologies has improved our understanding of the brain functions and offered new opportunities for the treatment of brain diseases. Ultrasound has become a valuable tool in preclinical animal and clinical studies as it not only provides information about the structure and function of brain tissues but can also be used as a therapy alternative for brain diseases. High-resolution cerebral flow images with high sensitivity can be acquired using novel functional ultrasound and super-resolution ultrasound imaging techniques. The noninvasive treatment of essential tremors has been clinically approved and it has been demonstrated that the ultrasound technology can revolutionize the currently existing treatment methods. Microbubble-mediated ultrasound can remotely open the blood-brain barrier enabling targeted drug delivery in the brain. More recently, ultrasound neuromodulation received a great amount of attention due to its noninvasive and deep penetration features and potential therapeutic benefits. This review provides a thorough introduction to the current state-of-the-art research on brain ultrasound and also introduces basic knowledge of brain ultrasound including the acoustic properties of the brain/skull and engineering techniques for ultrasound. Ultrasound is expected to play an increasingly important role in the diagnosis and therapy of brain diseases.
Collapse
|
45
|
Huang X, Niu L, Meng L, Lin Z, Zhou W, Liu X, Huang J, Abbott D, Zheng H. Transcranial Low-Intensity Pulsed Ultrasound Stimulation Induces Neuronal Autophagy. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:46-53. [PMID: 33017285 DOI: 10.1109/tuffc.2020.3028619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Autophagy, or cellular self-digestion, is an essential process for eliminating abnormal protein in mammalian cells. Accumulating evidence indicates that increased neuronal autophagy has a protective effect on neurodegenerative disorders. It has been reported that low-intensity pulsed ultrasound (LIPUS) can noninvasively modulate neural activity in the brain. Yet, the effect of LIPUS on neuronal autophagy is still unclear. The objective of this study was to examine whether LIPUS stimulation could induce neuronal autophagy. Primary neurons were treated by LIPUS with a frequency of 0.68 MHz, a pulse repetition frequency (PRF) of 500 Hz, a spatial peak temporal-average intensities ( [Formula: see text]) of 70 and 165 mW/cm2. Then, the immunofluorescent analysis of LC3B was carried out for evaluating neuronal autophagy. Furthermore, 0.5-MHz LIPUS was noninvasively delivered to the cortex and hippocampus of adult mice ( n = 16 ) with PRF of 500 Hz and [Formula: see text] of 235 mW/cm2. The LC3BII/LC3BI ratio and p62 (autophagic markers) were measured by western blot analysis. In the in vitro study, the expression of LC3B in primary neurons was statistically improved after LIPUS stimulation was implemented for 4 h ( ). With the increase in the irradiation duration or acoustic intensity of LIPUS stimulation, the expression of LC3B in primary neurons was increased. Furthermore, transcranial LIPUS stimulation increased the LC3BII/LC3BI ratio ( ) and decreased the expression of p62 ( ) in the cortex and hippocampus. We concluded that LIPUS provides a safe and capable tool for activating neuronal autophagy in vitro and in vivo.
Collapse
|
46
|
Wang Y, Niu L, Meng W, Lin Z, Zou J, Bian T, Huang X, Zhou H, Meng L, Xie P, Zheng H. Ultrasound Stimulation of Periaqueductal Gray Induces Defensive Behaviors. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:38-45. [PMID: 32086205 DOI: 10.1109/tuffc.2020.2975001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Low-intensity focused ultrasound stimulation (LIFUS) has the potential to noninvasively penetrate the intact skull and to modulate neural activity in the cortex and deep brain nuclei. The midbrain periaqueductal gray (PAG) is associated with the generation of defensive behaviors. The aim of this study was to examine whether LIFUS of the PAG induced defensive behaviors in mice. A 3.8-MHz head-mounted ultrasound transducer with a small focus size (0.5 mm × 0.5 mm) was fabricated in house to precisely stimulate the free-moving mice. The corresponding behaviors were recorded in real time. Avoidance, flight, and freezing were used to assess ultrasound-induced defensive responses. The safety of LIFUS was examined via hematoxylin and eosin (H&E) staining and Nissl staining. Ultrasound stimulation of the PAG induced multiple defensive behaviors, including location-specific passive avoidance behavior, flight, and freezing. In addition, H&E and Nissl staining verified that LIFUS did not cause any injury to the brain tissue. These findings demonstrate that LIFUS may have neuromodulatory effects on the innate defensive behaviors in mice. LIFUS may be used as a novel neuromodulatory tool for the treatment of psychological diseases associated with defensive behaviors.
Collapse
|
47
|
Zhang J, Zhou H, Yang J, Jia J, Niu L, Sun Z, Shi D, Meng L, Qiu W, Wang X, Zheng H, Wang G. Low-intensity pulsed ultrasound ameliorates depression-like behaviors in a rat model of chronic unpredictable stress. CNS Neurosci Ther 2020; 27:233-243. [PMID: 33112507 PMCID: PMC7816209 DOI: 10.1111/cns.13463] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/05/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction There is an unmet need for better nonpharmaceutical treatments for depression. Low‐intensity pulsed ultrasound (LIPUS) is a novel type of neuromodulation that could be helpful for depressed patients. Objective The goal of this study was to investigate the feasibility and potential mechanisms of LIPUS in the treatment of depression. Methods Chronic unpredictable stress (CUS) was used to generate rats with depression‐like features that were treated with four weeks of LIPUS stimulation of the ventromedial prefrontal cortex. Depression‐like behaviors were assessed with the sucrose preference, forced swim, and open field tests. BDNF/mTORC1 signaling was examined by Western blot to investigate this potential molecular mechanism. The safety of LIPUS was evaluated using hematoxylin‐eosin and Nissl staining. Results Four weeks of LIPUS stimulation significantly increased sucrose preference and reduced forced swim immobility time in CUS rats. LIPUS also partially reversed the molecular effects of CUS that included decreased levels of BDNF, phosphorylated tyrosine receptor kinase B (TrkB), extracellular signal‐regulated kinase (ERK), mammalian target of rapamycin complex 1 (mTORC1), and S6 kinase (S6K). Moreover, histological staining revealed no gross tissue damage. Conclusions Chronic LIPUS stimulation can effectively and safely improve depression‐like behaviors in CUS rats. The underlying mechanisms may be related to enhancement of BDNF/ERK/mTORC1 signaling pathways in the prefrontal cortex (PFC). LIPUS is a promising noninvasive neuromodulation tool that merits further study as a potential treatment for depression.
Collapse
Affiliation(s)
- Jinniu Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Hui Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Department of Physiology, Capital Medical University, Beijing, China
| | - Jun Jia
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Dandan Shi
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaomin Wang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Key Laboratory for the Neurodegenerative Disorders of the Chinese Ministry of Education, Department of Physiology, Capital Medical University, Beijing, China
| |
Collapse
|
48
|
Wang S, Meng W, Ren Z, Li B, Zhu T, Chen H, Wang Z, He B, Zhao D, Jiang H. Ultrasonic Neuromodulation and Sonogenetics: A New Era for Neural Modulation. Front Physiol 2020; 11:787. [PMID: 32765294 PMCID: PMC7378787 DOI: 10.3389/fphys.2020.00787] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Non-invasive ultrasonic neural modulation (UNM), a non-invasive technique with enhanced spatial focus compared to conventional electrical neural modulation, has attracted much attention in recent decades and might become the mainstream regimen for neurological disorders. However, as ultrasonic bioeffects and its adjustments are still unclear, it remains difficult to be extensively applied for therapeutic purpose, much less in the setting of human skull. Hence to comprehensively understand the way ultrasound exerts bioeffects, we explored UNM from a basic perspective by illustrating the parameter settings and the underlying mechanisms. In addition, although the spatial resolution and precision of UNM are considerable, UNM is relatively non-specific to tissue or cell type and shows very low specificity at the molecular level. Surprisingly, Ibsen et al. (2015) first proposed the concept of sonogenetics, which combined UNM and mechanosensitive (MS) channel protein. This emerging approach is a valuable improvement, as it may markedly increase the precision and spatial resolution of UNM. It seemed to be an inspiring tool with high accuracy and specificity, however, little information about sonogenetics is currently available. Thus, in order to provide an overview of sonogenetics and prompt the researches on UNM, we summarized the potential mechanisms from a molecular level.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weilun Meng
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Medical Department, Nanjing Medical University, Nanjing, China
| | - Zhongyuan Ren
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Medical Department, Soochow University Medical College, Suzhou, China
| | - Binxun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tongjian Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hui Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Yang H, Yuan Y, Wang X, Li X. Closed-Loop Transcranial Ultrasound Stimulation for Real-Time Non-invasive Neuromodulation in vivo. Front Neurosci 2020; 14:445. [PMID: 32477055 PMCID: PMC7235408 DOI: 10.3389/fnins.2020.00445] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
The closed-loop brain stimulation technique plays a key role in neural network information processing and therapies of neurological diseases. Transcranial ultrasound stimulation (TUS) is an established neuromodulation method for the neural oscillation in animals or human. All available TUS systems provide brain stimulation in an open-loop pattern. In this study, we developed a closed-loop transcranial ultrasound stimulation (CLTUS) system for real-time non-invasive neuromodulation in vivo. We used the CLTUS system to modulate the neural activities of the hippocampus of a wild-type mouse based on the phase of the theta rhythm recorded at the ultrasound-targeted location. In addition, we modulated the hippocampus of a temporal lobe epilepsy (TLE) mouse. The ultrasound stimulation increased the absolute power and reduced the relative power of the theta rhythm, which were independent of the specific phase of the theta rhythm. Compared with those of a sham stimulation, the latency of epileptic seizures was significantly increased, while the epileptic seizure duration was significantly decreased under the CLTUS. The above results indicate that the CLTUS can be used to not only modulate the neural oscillation through the theta-phase-specific manipulation of the hippocampus but also effectively inhibit the seizure of a TLE mouse in time. CLTUS has large application potentials for the understanding of the causal relationship of neural circuits as well as for timely, effective, and non-invasive therapies of neurological diseases such as epilepsy and Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Xin Li
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| |
Collapse
|
50
|
Lin Z, Meng L, Zou J, Zhou W, Huang X, Xue S, Bian T, Yuan T, Niu L, Guo Y, Zheng H. Non-invasive ultrasonic neuromodulation of neuronal excitability for treatment of epilepsy. Theranostics 2020; 10:5514-5526. [PMID: 32373225 PMCID: PMC7196311 DOI: 10.7150/thno.40520] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
Non-invasive low-intensity pulsed ultrasound has been employed for direct neuro-modulation. However, its range and effectiveness for different neurological disorders have not been fully elucidated. Methods: We used multiple approaches of electrophysiology, immunohistochemistry, and behavioral tests as potential epilepsy treatments in non-human primate model of epilepsy and human epileptic tissues. Low-intensity pulsed ultrasound with a frequency of 750 kHz and acoustic pressure of 0.35 MPa (the spatial peak pulse average intensity, ISPPA = 2.02 W/cm2) were delivered to the epileptogenic foci in five penicillin-induced epileptic monkey models. An ultrasound neuro-modulation system with a frequency of 28 MHz and acoustic pressure of 0.13 MPa (ISPPA = 465 mW/cm2) compatible with patch-clamp systems was used to stimulate the brain slices prepared from fifteen patients with epilepsy. Results: After 30 min of low-intensity pulsed ultrasound treatment, total seizure count for 16 hours (sham group: 107.7 ± 1.2, ultrasound group: 66.0 ± 7.9, P < 0.01) and seizure frequency per hour (sham group: 15.6 ± 1.2, ultrasound group: 9.6 ± 1.5, P < 0.05) were significantly reduced. The therapeutic efficacy and underlying potential mechanism of low-intensity pulsed ultrasound treatment were studied in biopsy specimens from epileptic patients in vitro. Ultrasound stimulation could inhibit epileptiform activities with an efficiency exceeding 65%, potentially due to adjusting the balance of excitatory-inhibitory (E/I) synaptic inputs by the increased activity of local inhibitory neurons. Conclusion: Herein, we demonstrated for the first time that low-intensity pulsed ultrasound improves electrophysiological activities and behavioral outcomes in a non-human primate model of epilepsy and suppresses epileptiform activities of neurons from human epileptic slices. The study provides evidence for the potential clinical use of non-invasive low-intensity pulsed ultrasound stimulation for epilepsy treatment.
Collapse
|