1
|
Lai Y, Wang J, Xie N, Liu G, Lacap-Bugler DC. Identification of a novel forkhead transcription factor MtFKH1 for cellulase and xylanase gene expression in Myceliophthora thermophila (ATCC 42464). Microbiol Res 2025; 294:128097. [PMID: 39970722 DOI: 10.1016/j.micres.2025.128097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Myceliophthora thermophila is a thermophilic fungus, known to produce industrially important enzymes in biorefineries. The mechanism underlying cellulase and xylanase expression in filamentous fungi is a complex regulatory network controlled by numerous transcription factors (TFs). These TFs in M. thermophila remain unclear. Here, we identified and characterised a novel cellulase and xylanase regulator MtFKH1 in M. thermophila through comparative transcriptomic and genetic analyses. Five of the eight potential TFs, which showed differential expression levels when grown on Avicel and glucose, were successfully deleted using the newly designed CRISPR/Cas9 system. This system identified the forkhead TF MtFKH1. The disruption of Mtfkh1 elevated the cellulolytic and xylanolytic enzyme activities, whereas the overexpression of Mtfkh1 led to considerable decrease in cellulase and xylanase production in M. thermophila cultivated on Avicel. The loss of Mtfkh1 also exhibited an impairment in sporulation in M. thermophila. Real-time quantitative reverse transcription PCR (RT-qPCR) and the electrophoretic mobility shift assays (EMSAs) demonstrated that MtFKH1 regulates the gene expression and specifically bind to the promoter regions of genes encoding β-glucosidase (bgl1/MYCTH_66804), cellobiohydrolase (cbh1/MYCTH_109566), and xylanase (xyn1/MYCTH_112050), respectively. Furthermore, DNase I footprinting analysis identified binding motif of MtFKH1 in the upstream region of Mtbgl1, with strongest binding affinity. Finally, transcriptomic profiling and Gene Ontology (GO) enrichment analyses of Mtfkh1 deletion mutant revealed that the regulon of MtFKH1 were significantly prevalent in hydrolase activity (acting on glycosyl bonds), polysaccharide binding, and carbohydrate metabolic process functional categories. These findings expand our knowledge on how forkhead transcription factor regulates lignocellulose degradation and provide a novel target for engineering of fungal cell factories with the hyperproduction of cellulase and xylanase.
Collapse
Affiliation(s)
- Yapeng Lai
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; School of Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Juan Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | | |
Collapse
|
2
|
Bing RG, Sulis DB, Carey MJ, Manesh MJH, Ford KC, Straub CT, Laemthong T, Alexander BH, Willard DJ, Jiang X, Yang C, Wang JP, Adams MWW, Kelly RM. Beyond low lignin: Identifying the primary barrier to plant biomass conversion by fermentative bacteria. SCIENCE ADVANCES 2024; 10:eadq4941. [PMID: 39423261 PMCID: PMC11488576 DOI: 10.1126/sciadv.adq4941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Renewable alternatives for nonelectrifiable fossil-derived chemicals are needed and plant matter, the most abundant biomass on Earth, provide an ideal feedstock. However, the heterogeneous polymeric composition of lignocellulose makes conversion difficult. Lignin presents a formidable barrier to fermentation of nonpretreated biomass. Extensive chemical and enzymatic treatments can liberate fermentable carbohydrates from plant biomass, but microbial routes offer many advantages, including concomitant conversion to industrial chemicals. Here, testing of lignin content of nonpretreated biomass using the cellulolytic thermophilic bacterium, Anaerocellum bescii, revealed that the primary microbial degradation barrier relates to methoxy substitutions in lignin. This contrasts with optimal lignin composition for chemical pretreatment that favors high S/G ratio and low H lignin. Genetically modified poplar trees with diverse lignin compositions confirm these findings. In addition, poplar trees with low methoxy content achieve industrially relevant levels of microbial solubilization without any pretreatments and with no impact on tree fitness in greenhouse.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniel B. Sulis
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Morgan J. Carey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mohamad J. H. Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Kathryne C. Ford
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Christopher T. Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Benjamin H. Alexander
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiao Jiang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Chenmin Yang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
3
|
Carbonaro M, Aulitto M, Mazurkewich S, Fraia AD, Contursi P, Limauro D, Larsbrink J, Fiorentino G. Genomic mining of Geobacillus stearothermophilus GF16 for xylose production from hemicellulose-rich biomasses using secreted enzymes. N Biotechnol 2024; 82:14-24. [PMID: 38688408 DOI: 10.1016/j.nbt.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The valorization of lignocellulosic biomass, derived from various bio-waste materials, has received considerable attention as a sustainable approach to improve production chains while reducing environmental impact. Microbial enzymes have emerged as key players in the degradation of polysaccharides, offering versatile applications in biotechnology and industry. Among these enzymes, glycoside hydrolases (GHs) play a central role. Xylanases, in particular, are used in a wide range of applications and are essential for the production of xylose, which can be fermented into bioethanol or find use in many other industries. Currently, fungal secretomes dominate as the main reservoir of lignocellulolytic enzymes, but thermophilic microorganisms offer notable advantages in terms of enzyme stability and production efficiency. Here we present the genomic characterization of Geobacillus stearothermophilus GF16 to identify genes encoding putative enzymes involved in lignocellulose degradation. Thermostable GHs secreted by G. stearothermophilus GF16 were investigated and found to be active on different natural polysaccharides and synthetic substrates, revealing an array of inducible GH activities. In particular, the concentrated secretome possesses significant thermostable xylanase and β-xylosidase activities (5 ×103 U/L and 1.7 ×105 U/L, respectively), highlighting its potential for application in biomass valorization. We assessed the hemicellulose hydrolysis capabilities of various agri-food wastes using the concentrated secretome of the strain cultivated on xylan. An impressive 300-fold increase in xylose release compared to a commercially available cocktail was obtained with the secretome, underscoring the remarkable efficacy of this approach.
Collapse
Affiliation(s)
- Miriam Carbonaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Martina Aulitto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Scott Mazurkewich
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Alessia Di Fraia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Danila Limauro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | | |
Collapse
|
4
|
Bing RG, Ford KC, Willard DJ, Manesh MJH, Straub CT, Laemthong T, Alexander BH, Tanwee T, O'Quinn HC, Poole FL, Vailionis J, Zhang Y, Rodionov D, Adams MWW, Kelly RM. Engineering ethanologenicity into the extremely thermophilic bacterium Anaerocellum (f. Caldicellulosiriuptor) bescii. Metab Eng 2024; 86:99-114. [PMID: 39305946 DOI: 10.1016/j.ymben.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/19/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
The anaerobic bacterium Anaerocellum (f. Caldicellulosiruptor) bescii natively ferments the carbohydrate content of plant biomass (including microcrystalline cellulose) into predominantly acetate, H2, and CO2, and smaller amounts of lactate, alanine and valine. While this extreme thermophile (growth Topt 78 °C) is not natively ethanologenic, it has been previously metabolically engineered with this property, albeit initially yielding low solvent titers (∼15 mM). Herein we report significant progress on improving ethanologenicity in A. bescii, such that titers above 130 mM have now been achieved, while concomitantly improving selectivity by minimizing acetate formation. Metabolic engineering progress has benefited from improved molecular genetic tools and better understanding of A. bescii growth physiology. Heterologous expression of a mutated thermophilic alcohol dehydrogenase (AdhE) modified for co-factor requirement, coupled with bioreactor operation strategies related to pH control, have been key to enhanced ethanol generation and fermentation product specificity. Insights gained from metabolic modeling of A. bescii set the stage for its further improvement as a metabolic engineering platform.
Collapse
Affiliation(s)
- Ryan G Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Kathryne C Ford
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Mohamad J H Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Christopher T Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Benjamin H Alexander
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Tania Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Hailey C O'Quinn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Jason Vailionis
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Dmitry Rodionov
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
5
|
Yu H, Luo X. ThermoFinder: A sequence-based thermophilic proteins prediction framework. Int J Biol Macromol 2024; 270:132469. [PMID: 38761901 DOI: 10.1016/j.ijbiomac.2024.132469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Thermophilic proteins are important for academic research and industrial processes, and various computational methods have been developed to identify and screen them. However, their performance has been limited due to the lack of high-quality labeled data and efficient models for representing protein. Here, we proposed a novel sequence-based thermophilic proteins prediction framework, called ThermoFinder. The results demonstrated that ThermoFinder outperforms previous state-of-the-art tools on two benchmark datasets, and feature ablation experiments confirmed the effectiveness of our approach. Additionally, ThermoFinder exhibited exceptional performance and consistency across two newly constructed datasets, one of these was specifically constructed for the regression-based prediction of temperature optimum values directly derived from protein sequences. The feature importance analysis, using shapley additive explanations, further validated the advantages of ThermoFinder. We believe that ThermoFinder will be a valuable and comprehensive framework for predicting thermophilic proteins, and we have made our model open source and available on Github at https://github.com/Luo-SynBioLab/ThermoFinder.
Collapse
Affiliation(s)
- Han Yu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaozhou Luo
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
6
|
Jensen RO, Schulz F, Roux S, Klingeman DM, Mitchell WP, Udwary D, Moraïs S, Reynoso V, Winkler J, Nagaraju S, De Tissera S, Shapiro N, Ivanova N, Reddy TBK, Mizrahi I, Utturkar SM, Bayer EA, Woyke T, Mouncey NJ, Jewett MC, Simpson SD, Köpke M, Jones DT, Brown SD. Phylogenomics and genetic analysis of solvent-producing Clostridium species. Sci Data 2024; 11:432. [PMID: 38693191 PMCID: PMC11063209 DOI: 10.1038/s41597-024-03210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
The genus Clostridium is a large and diverse group within the Bacillota (formerly Firmicutes), whose members can encode useful complex traits such as solvent production, gas-fermentation, and lignocellulose breakdown. We describe 270 genome sequences of solventogenic clostridia from a comprehensive industrial strain collection assembled by Professor David Jones that includes 194 C. beijerinckii, 57 C. saccharobutylicum, 4 C. saccharoperbutylacetonicum, 5 C. butyricum, 7 C. acetobutylicum, and 3 C. tetanomorphum genomes. We report methods, analyses and characterization for phylogeny, key attributes, core biosynthetic genes, secondary metabolites, plasmids, prophage/CRISPR diversity, cellulosomes and quorum sensing for the 6 species. The expanded genomic data described here will facilitate engineering of solvent-producing clostridia as well as non-model microorganisms with innately desirable traits. Sequences could be applied in conventional platform biocatalysts such as yeast or Escherichia coli for enhanced chemical production. Recently, gene sequences from this collection were used to engineer Clostridium autoethanogenum, a gas-fermenting autotrophic acetogen, for continuous acetone or isopropanol production, as well as butanol, butanoic acid, hexanol and hexanoic acid production.
Collapse
Affiliation(s)
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | - Daniel Udwary
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sarah Moraïs
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | | | | | | | | | - Nicole Shapiro
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia Ivanova
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - T B K Reddy
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Sagar M Utturkar
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Edward A Bayer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA
| | - Nigel J Mouncey
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | | | - David T Jones
- Department of Microbiology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
7
|
Cowan DA, Albers SV, Antranikian G, Atomi H, Averhoff B, Basen M, Driessen AJM, Jebbar M, Kelman Z, Kerou M, Littlechild J, Müller V, Schönheit P, Siebers B, Vorgias K. Extremophiles in a changing world. Extremophiles 2024; 28:26. [PMID: 38683238 PMCID: PMC11058618 DOI: 10.1007/s00792-024-01341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Extremophiles and their products have been a major focus of research interest for over 40 years. Through this period, studies of these organisms have contributed hugely to many aspects of the fundamental and applied sciences, and to wider and more philosophical issues such as the origins of life and astrobiology. Our understanding of the cellular adaptations to extreme conditions (such as acid, temperature, pressure and more), of the mechanisms underpinning the stability of macromolecules, and of the subtleties, complexities and limits of fundamental biochemical processes has been informed by research on extremophiles. Extremophiles have also contributed numerous products and processes to the many fields of biotechnology, from diagnostics to bioremediation. Yet, after 40 years of dedicated research, there remains much to be discovered in this field. Fortunately, extremophiles remain an active and vibrant area of research. In the third decade of the twenty-first century, with decreasing global resources and a steadily increasing human population, the world's attention has turned with increasing urgency to issues of sustainability. These global concerns were encapsulated and formalized by the United Nations with the adoption of the 2030 Agenda for Sustainable Development and the presentation of the seventeen Sustainable Development Goals (SDGs) in 2015. In the run-up to 2030, we consider the contributions that extremophiles have made, and will in the future make, to the SDGs.
Collapse
Affiliation(s)
- D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.
| | - S V Albers
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - G Antranikian
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073, Hamburg, Germany
| | - H Atomi
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - B Averhoff
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - M Basen
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - A J M Driessen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - M Jebbar
- Univ. Brest, CNRS, Ifremer, Laboratoire de Biologie Et d'Écologie Des Écosystèmes Marins Profonds (BEEP), IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Z Kelman
- Institute for Bioscience and Biotechnology Research and the National Institute of Standards and Technology, Rockville, MD, USA
| | - M Kerou
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - J Littlechild
- Henry Wellcome Building for Biocatalysis, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - V Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - P Schönheit
- Institute of General Microbiology, Christian Albrechts University, Kiel, Germany
| | - B Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, 45117, Essen, Germany
| | - K Vorgias
- Biology Department and RI-Bio3, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Castañeda-Barreto A, Olivera-Gonzales P, Tamariz-Angeles C. A natural consortium of thermophilic bacteria from Huancarhuaz hot spring (Ancash-Peru) for promising lignocellulose bioconversion. Heliyon 2024; 10:e27272. [PMID: 38486736 PMCID: PMC10937689 DOI: 10.1016/j.heliyon.2024.e27272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
The lignocellulose bioconversion process is an eco-friendly and green-economy alternative technology that allows the reduction of pollution and global warming, so it is necessary for thermophilic and thermostable hydrolytic enzymes from natural sources. This research aimed to isolate cellulolytic and xylanolytic microbial consortia from Huancarhuaz hot spring (Peru) from sludge or in situ baiting cultured with or without sugarcane bagasse. According to the hydrolytic activities consortium T4 from in situ baiting was selected. It was cultivated in submerged fermentation at 65 °C, pH 6.5 for eight days using LB supplemented with sugar cane bagasse (SCB), pine wood sawdust (PWS), CMC, xylan of birchwood, or micro granular cellulose. Crude extract of culture supplemented with SCB (T4B) showed better endoglucanase and xylanase activities with higher activities at 75 °C and pH 6. In these conditions, cellulase activity was kept up to 57% after 1 h of incubation, while xylanase activity was up to 63% after 72 h. Furthermore, this crude extract released reduced sugars from pretreated SCB and PWS. According to metagenomic analysis of 16S rDNA, Geobacillus was the predominant genus. It was found thermostable genes: a type of endoglucanase (GH5), an endo-xylanase (GH10), and alkali xylanase (GH10) previously reported in Geobacillus sp. strains. Finally, Huancarhuaz hot spring harbors a genetic microbial diversity for lignocellulosic waste bioconversion in high temperatures, and the T4B consortium will be a promising source of novel extreme condition stable enzymes for the saccharification process.
Collapse
Affiliation(s)
- Alberto Castañeda-Barreto
- Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| | - Percy Olivera-Gonzales
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| | - Carmen Tamariz-Angeles
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru
| |
Collapse
|
9
|
Tjo H, Conway JM. Sugar transport in thermophiles: Bridging lignocellulose deconstruction and bioconversion. J Ind Microbiol Biotechnol 2024; 51:kuae020. [PMID: 38866721 PMCID: PMC11212667 DOI: 10.1093/jimb/kuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Biomass degrading thermophiles play an indispensable role in building lignocellulose-based supply chains. They operate at high temperatures to improve process efficiencies and minimize mesophilic contamination, can overcome lignocellulose recalcitrance through their native carbohydrate-active enzyme (CAZyme) inventory, and can utilize a wide range of sugar substrates. However, sugar transport in thermophiles is poorly understood and investigated, as compared to enzymatic lignocellulose deconstruction and metabolic conversion of sugars to value-added chemicals. Here, we review the general modes of sugar transport in thermophilic bacteria and archaea, covering the structural, molecular, and biophysical basis of their high-affinity sugar uptake. We also discuss recent genetic studies on sugar transporter function. With this understanding of sugar transport, we discuss strategies for how sugar transport can be engineered in thermophiles, with the potential to enhance the conversion of lignocellulosic biomass into renewable products. ONE-SENTENCE SUMMARY Sugar transport is the understudied link between extracellular biomass deconstruction and intracellular sugar metabolism in thermophilic lignocellulose bioprocessing.
Collapse
Affiliation(s)
- Hansen Tjo
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jonathan M Conway
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
- High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Wu X, Zhao S, Tian Z, Han C, Jiang X, Wang L. Dynamics of loops surrounding the active site architecture in GH5_2 subfamily TfCel5A for cellulose degradation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:154. [PMID: 37853500 PMCID: PMC10583438 DOI: 10.1186/s13068-023-02411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Lignocellulose is the most abundant natural biomass resource for the production of biofuels and other chemicals. The efficient degradation of cellulose by cellulases is a critical step for the lignocellulose bioconversion. Understanding the structure-catalysis relationship is vital for rational design of more stable and highly active enzymes. Glycoside hydrolase (GH) family 5 is the largest and most functionally diverse group of cellulases, with a conserved TIM barrel structure. The important roles of the various loop regions of GH5 enzymes in catalysis, however, remain poorly understood. RESULTS In the present study, we investigated the relationship between the loops surrounding active site architecture and its catalytic efficiency, taking TfCel5A, an enzyme from GH5_2 subfamily of Thermobifida fusca, as an example. Large-scale computational simulations and site-directed mutagenesis experiments revealed that three loops (loop 8, 3, and 7) around active cleft played diverse roles in substrate binding, intermediate formation, and product release, respectively. The highly flexible and charged residue triad of loop 8 was responsible for capturing the ligand into the active cleft. Severe fluctuation of loop 3 led to the distortion of sugar conformation at the - 1 subsite. The wobble of loop 7 might facilitate product release, and the enzyme activity of the mutant Y361W in loop 7 was increased by approximately 40%. CONCLUSION This study unraveled the vital roles of loops in active site architecture and provided new insights into the catalytic mechanism of the GH5_2 cellulases.
Collapse
Affiliation(s)
- Xiuyun Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Sha Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhennan Tian
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Chao Han
- Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao, 266237, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
11
|
Siebecker B, Schütze T, Spohner S, Haefner S, Meyer V. Transcriptomic insights into the roles of the transcription factors Clr1, Clr2 and Clr4 in lignocellulose degradation of the thermophilic fungal platform Thermothelomyces thermophilus. Front Bioeng Biotechnol 2023; 11:1279146. [PMID: 37869709 PMCID: PMC10588483 DOI: 10.3389/fbioe.2023.1279146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: Thermothelomyces thermophilus, formerly known as Myceliophthora thermophila, is used in industry to produce lignocellulolytic enzymes and heterologous proteins. However, the transcriptional network driving the expression of these proteins remains elusive. As a first step to systematically uncover this network, we investigated growth, protein secretion, and transcriptomic fingerprints of strains deficient in the cellulolytic transcriptional regulators Clr1, Clr2, and Clr4, respectively. Methods: The genes encoding Clr1, Clr2, and Clr4 were individually deleted using split marker or the CRISPR/Cas12a technology and the resulting strains as well as the parental strain were cultivated in bioreactors under chemostat conditions using glucose as the carbon source. During steady state conditions, cellulose was added instead of glucose to study the genetic and cellular responses in all four strains to the shift in carbon source availability. Results: Notably, the clr1 and clr2 deletion strains were unable to continue to grow on cellulose, demonstrating a key role of both regulators in cellulose catabolism. Their transcriptomic fingerprints uncovered not only a lack of cellulase gene expression but also reduced expression of genes predicted to encode hemicellulases, pectinases, and esterases. In contrast, the growth of the clr4 deletion strain was very similar compared to the parental strain. However, a much stronger expression of cellulases, hemicellulases, pectinases, and esterases was observed. Discussion: The data gained in this study suggest that both transcriptional regulators Clr1 and Clr2 activate the expression of genes predicted to encode cellulases as well as hemicellulases, pectinases, and esterases. They further suggest that Clr1 controls the basal expression of cellulases and initiates the main lignocellulolytic response to cellulose via induction of clr2 expression. In contrast, Clr4 seems to act as a repressor of the lignocellulolytic response presumably via controlling clr2 expression. Comparative transcriptomics in all four strains revealed potentially new regulators in carbohydrate catabolism and lignocellulolytic enzyme expression that define a candidate gene list for future analyses.
Collapse
Affiliation(s)
- Benedikt Siebecker
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Tabea Schütze
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | | | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
Doss RK, Palmer M, Mead DA, Hedlund BP. Functional biology and biotechnology of thermophilic viruses. Essays Biochem 2023; 67:671-684. [PMID: 37222046 PMCID: PMC10423840 DOI: 10.1042/ebc20220209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Viruses have developed sophisticated biochemical and genetic mechanisms to manipulate and exploit their hosts. Enzymes derived from viruses have been essential research tools since the first days of molecular biology. However, most viral enzymes that have been commercialized are derived from a small number of cultivated viruses, which is remarkable considering the extraordinary diversity and abundance of viruses revealed by metagenomic analysis. Given the explosion of new enzymatic reagents derived from thermophilic prokaryotes over the past 40 years, those obtained from thermophilic viruses should be equally potent tools. This review discusses the still-limited state of the art regarding the functional biology and biotechnology of thermophilic viruses with a focus on DNA polymerases, ligases, endolysins, and coat proteins. Functional analysis of DNA polymerases and primase-polymerases from phages infecting Thermus, Aquificaceae, and Nitratiruptor has revealed new clades of enzymes with strong proofreading and reverse transcriptase capabilities. Thermophilic RNA ligase 1 homologs have been characterized from Rhodothermus and Thermus phages, with both commercialized for circularization of single-stranded templates. Endolysins from phages infecting Thermus, Meiothermus, and Geobacillus have shown high stability and unusually broad lytic activity against Gram-negative and Gram-positive bacteria, making them targets for commercialization as antimicrobials. Coat proteins from thermophilic viruses infecting Sulfolobales and Thermus strains have been characterized, with diverse potential applications as molecular shuttles. To gauge the scale of untapped resources for these proteins, we also document over 20,000 genes encoded by uncultivated viral genomes from high-temperature environments that encode DNA polymerase, ligase, endolysin, or coat protein domains.
Collapse
Affiliation(s)
- Ryan K Doss
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, U.S.A
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, U.S.A
| | | | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, U.S.A
- Nevada Institute of Personalized Medicine, Las Vegas, Nevada, U.S.A
| |
Collapse
|
13
|
Bing RG, Willard DJ, Crosby JR, Adams MWW, Kelly RM. Whither the genus Caldicellulosiruptor and the order Thermoanaerobacterales: phylogeny, taxonomy, ecology, and phenotype. Front Microbiol 2023; 14:1212538. [PMID: 37601363 PMCID: PMC10434631 DOI: 10.3389/fmicb.2023.1212538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
The order Thermoanaerobacterales currently consists of fermentative anaerobic bacteria, including the genus Caldicellulosiruptor. Caldicellulosiruptor are represented by thirteen species; all, but one, have closed genome sequences. Interest in these extreme thermophiles has been motivated not only by their high optimal growth temperatures (≥70°C), but also by their ability to hydrolyze polysaccharides including, for some species, both xylan and microcrystalline cellulose. Caldicellulosiruptor species have been isolated from geographically diverse thermal terrestrial environments located in New Zealand, China, Russia, Iceland and North America. Evidence of their presence in other terrestrial locations is apparent from metagenomic signatures, including volcanic ash in permafrost. Here, phylogeny and taxonomy of the genus Caldicellulosiruptor was re-examined in light of new genome sequences. Based on genome analysis of 15 strains, a new order, Caldicellulosiruptorales, is proposed containing the family Caldicellulosiruptoraceae, consisting of two genera, Caldicellulosiruptor and Anaerocellum. Furthermore, the order Thermoanaerobacterales also was re-assessed, using 91 genome-sequenced strains, and should now include the family Thermoanaerobacteraceae containing the genera Thermoanaerobacter, Thermoanaerobacterium, Caldanaerobacter, the family Caldanaerobiaceae containing the genus Caldanaerobius, and the family Calorimonaceae containing the genus Calorimonas. A main outcome of ANI/AAI analysis indicates the need to reclassify several previously designated species in the Thermoanaerobacterales and Caldicellulosiruptorales by condensing them into strains of single species. Comparative genomics of carbohydrate-active enzyme inventories suggested differentiating phenotypic features, even among strains of the same species, reflecting available nutrients and ecological roles in their native biotopes.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
14
|
Rehman F, Sajjad M, Akhtar MW. Orientation of Cel5A and Xyn10B in a fusion construct is important in facilitating synergistic degradation of plant biomass polysaccharides. J Biosci Bioeng 2023; 135:274-281. [PMID: 36828688 DOI: 10.1016/j.jbiosc.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 02/25/2023]
Abstract
One approach to achieve efficient and economical saccharification of plant biomass would be using thermostable and multifunctional enzymes from hyperthermophiles such as Thermotoga maritima. Thus, the bifunctional constructs, Cel5A-Xyn10B and Xyn10B-Cel5A, were produced by fusing cellulase Cel5A at the N- and C-terminals of xylanase Xyn10B, respectively. The Cel5A-Xyn10B fusion construct showed cellulase activity of 1483 U μmol-1 against carboxymethyl cellulose, which was nearly the same as that of Cel5A in the free form. However, xylanase activity of this construct increased by 2-fold against beechwood xylan as compared to that of Xyn10B in free form. The synergistic effect between Cel5A and Xyn10B in the form of Cel5A-Xyn10B fusion resulted an overall increase in the release of reducing sugars. However, Xyn10B-Cel5A showed about 60% decrease in activities of both the component enzymes as compared to their activities in the free form. Both the fusion constructs were active in a wide range of pH from 4.0 to 9.0 and temperatures from 50 to 90 °C. Nearly 80% of cellulase and xylanase activities were retained in Cel5A-Xyn10B fusion after incubation at 60 °C for 1 h. Secondary structures of the component enzymes were retained in the Cel5A-Xyn10B fusion as observed by circular dichroism spectroscopy. Docking and simulation studies suggested that the enhanced xylanase activity in Cel5A-Xyn10B was due to the high binding energy, favorable orientation of the active sites, as well as relative positioning of the active site residues of Cel5A and Xyn10B in closer vicinity, which facilitated the substrate channeling.
Collapse
Affiliation(s)
- Fatima Rehman
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan
| | - Muhammad Waheed Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan.
| |
Collapse
|
15
|
Bing RG, Carey MJ, Laemthong T, Willard DJ, Crosby JR, Sulis DB, Wang JP, Adams MWW, Kelly RM. Fermentative conversion of unpretreated plant biomass: A thermophilic threshold for indigenous microbial growth. BIORESOURCE TECHNOLOGY 2023; 367:128275. [PMID: 36347479 PMCID: PMC10561188 DOI: 10.1016/j.biortech.2022.128275] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Naturally occurring, microbial contaminants were found in plant biomasses from common bioenergy crops and agricultural wastes. Unexpectedly, indigenous thermophilic microbes were abundant, raising the question of whether they impact thermophilic consolidated bioprocessing fermentations that convert biomass directly into useful bioproducts. Candidate microbial platforms for biomass conversion, Acetivibrio thermocellus (basionym Clostridium thermocellum; Topt 60 °C) and Caldicellulosiruptor bescii (Topt 78 °C), each degraded a wide variety of plant biomasses, but only A. thermocellus was significantly affected by the presence of indigenous microbial populations harbored by the biomass. Indigenous microbial growth was eliminated at ≥75 °C, conditions where C. bescii thrives, but where A. thermocellus cannot survive. Therefore, 75 °C is the thermophilic threshold to avoid sterilizing pre-treatments on the biomass that prevents native microbes from competing with engineered microbes and forming undesirable by-products. Thermophiles that naturally grow at and above 75 °C offer specific advantages as platform microorganisms for biomass conversion into fuels and chemicals.
Collapse
Affiliation(s)
- Ryan G Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Morgan J Carey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Daniel B Sulis
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, United States
| | - Jack P Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
16
|
Laemthong T, Bing RG, Crosby JR, Adams MWW, Kelly RM. Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization. Appl Environ Microbiol 2022; 88:e0127422. [PMID: 36169328 PMCID: PMC9599439 DOI: 10.1128/aem.01274-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Extremely thermophilic Caldicellulosiruptor species solubilize carbohydrates from lignocellulose through glycoside hydrolases (GHs) that can be extracellular, intracellular, or cell surface layer (S-layer) associated. Caldicellulosiruptor genomes sequenced so far encode at least one surface layer homology domain glycoside hydrolase (SLH-GH), representing six different classes of these enzymes; these can have multiple binding and catalytic domains. Biochemical characterization of a representative from each class was done to determine their biocatalytic features: four SLH-GHs from Caldicellulosiruptor kronotskyensis (Calkro_0111, Calkro_0402, Calkro_0072, and Calkro_2036) and two from Caldicellulosiruptor hydrothermalis (Calhy_1629 and Calhy_2383). Calkro_0111, Calkro_0072, and Calhy_2383 exhibited β-1,3-glucanase activity, Calkro_0402 was active on both β-1,3/1,4-glucan and β-1,4-xylan, Calkro_2036 exhibited activity on both β-1,3/1,4-glucan and β-1,4-glucan, and Calhy_1629 was active only on arabinan. Caldicellulosiruptor bescii, the only species with molecular genetic tools as well as already a strong cellulose degrader, contains only one SLH-GH, Athe_0594, a glucanase that is a homolog of Calkro_2036; the other 5 classes of SLH-GHs are absent in C. bescii. The C. bescii secretome, supplemented with individual enzymes or cocktails of SLH-GHs, increased in vitro sugar release from sugar cane bagasse and poplar. Expression of non-native SLH-GHs in vivo, either associated with the S-layer or as freely secreted enzymes, improved total carbohydrate solubilization of sugar cane bagasse and poplar by up to 45% and 23%, respectively. Most notably, expression of Calkro_0402, a xylanase/glucanase, improved xylose solubilization from poplar and bagasse by over 70% by C. bescii. While Caldicellulosiruptor species are already prolific lignocellulose degraders, they can be further improved by the strategy described here. IMPORTANCE Caldicellulosiruptor species hold promise as microorganisms that can solubilize the carbohydrate portion of lignocellulose and subsequently convert fermentable sugars into bio-based chemicals and fuels. Members of the genus have surface layer (S-layer) homology domain-associated glycoside hydrolases (SLH-GHs) that mediate attachment to biomass as well as hydrolysis of carbohydrates. Caldicellulosiruptor bescii, the most studied member of the genus, has only one SLH-GH. Expression of SLH-GHs from other Caldicellulosiruptor species in C. bescii significantly improved degradation of sugar cane bagasse and poplar. This suggests that this extremely thermophilic bacterium can be engineered to further improve its ability to degrade specific plant biomasses by inserting genes encoding SLH-GHs recruited from other Caldicellulosiruptor species.
Collapse
Affiliation(s)
- Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
17
|
Metaproteomics reveals enzymatic strategies deployed by anaerobic microbiomes to maintain lignocellulose deconstruction at high solids. Nat Commun 2022; 13:3870. [PMID: 35790765 PMCID: PMC9256739 DOI: 10.1038/s41467-022-31433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractEconomically viable production of cellulosic biofuels requires operation at high solids loadings—on the order of 15 wt%. To this end we characterize Nature’s ability to deconstruct and utilize mid-season switchgrass at increasing solid loadings using an anaerobic methanogenic microbiome. This community exhibits undiminished fractional carbohydrate solubilization at loadings ranging from 30 g/L to 150 g/L. Metaproteomic interrogation reveals marked increases in the abundance of specific carbohydrate-active enzyme classes. Significant enrichment of auxiliary activity family 6 enzymes at higher solids suggests a role for Fenton chemistry. Stress-response proteins accompanying these reactions are similarly upregulated at higher solids, as are β-glucosidases, xylosidases, carbohydrate-debranching, and pectin-acting enzymes—all of which indicate that removal of deconstruction inhibitors is important for observed undiminished solubilization. Our work provides insights into the mechanisms by which natural microbiomes effectively deconstruct and utilize lignocellulose at high solids loadings, informing the future development of defined cultures for efficient bioconversion.
Collapse
|
18
|
Rammala B, Zhou N. Looking into the world's largest elephant population in search of ligninolytic microorganisms for biorefineries: a mini-review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:64. [PMID: 35689287 PMCID: PMC9188235 DOI: 10.1186/s13068-022-02159-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Abstract
Gastrointestinal tracts (GIT) of herbivores are lignin-rich environments with the potential to find ligninolytic microorganisms. The occurrence of the microorganisms in herbivore GIT is a well-documented mutualistic relationship where the former benefits from the provision of nutrients and the latter benefits from the microorganism-assisted digestion of their recalcitrant lignin diets. Elephants are one of the largest herbivores that rely on the microbial anaerobic fermentation of their bulky recalcitrant low-quality forage lignocellulosic diet given their inability to break down major components of plant cells. Tapping the potential of these mutualistic associations in the biggest population of elephants in the whole world found in Botswana is attractive in the valorisation of the bulky recalcitrant lignin waste stream generated from the pulp and paper, biofuel, and agro-industries. Despite the massive potential as a feedstock for industrial fermentations, few microorganisms have been commercialised. This review focuses on the potential of microbiota from the gastrointestinal tract and excreta of the worlds' largest population of elephants of Botswana as a potential source of extremophilic ligninolytic microorganisms. The review further discusses the recalcitrance of lignin, achievements, limitations, and challenges with its biological depolymerisation. Methods of isolation of microorganisms from elephant dung and their improvement as industrial strains are further highlighted.
Collapse
Affiliation(s)
- Bame Rammala
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| |
Collapse
|
19
|
Mustafa M, Ali L, Islam W, Noman A, Zhou C, Shen L, Zhu T, Can L, Nasif O, Gasparovic K, latif F, Gao J. Heterologous expression and characterization of glycoside hydrolase with its potential applications in hyperthermic environment. Saudi J Biol Sci 2022; 29:751-757. [PMID: 35197741 PMCID: PMC8847942 DOI: 10.1016/j.sjbs.2021.09.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 01/25/2023] Open
Abstract
With the progressive focus on renewable energy via biofuels production from lignocellulosic biomass, cellulases are the key enzymes that play a fundamental role in this regard. This study aims to unravel the characteristics of Thermotoga maritima MSB8 (Tma) (a hyperthermophile from hot springs) thermostable glycoside hydrolase enzyme. Here, a glycoside hydrolase gene of Thermotoga maritima (Tma) was heterologously expressed and characterized. The gene was placed in the pQE-30 expression vector under the T5 promotor, and the construct pQE-30-Gh was then successfully integrated into Escherichia coli BL21 (DH5α) genome by transformation. Sequence of the glycoside hydrolase contained an open reading frame of 2.124 kbp, encoded a polypeptide of 721 amino acid residues. The molecular weight of the recombinant protein estimated was 79 kDa. The glycoside hydrolase was purified by Ni+2-NTA affinity chromatography and its enzymatic activity was investigated. The recombinant enzyme is highly stable within an extreme pH range (2.0–7.0) and highly thermostable at 80 °C for 72 h indicating its viability in hyperthermic environment and acidic nature. Moreover, the Ca2+ and Mn2+ introduction stimulated the residual activity of recombinant enzyme. Conclusively, the thermostable glycoside hydrolase possesses potential to be exploited for industrial applications at hyperthermic environment.
Collapse
Affiliation(s)
- Muhammad Mustafa
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Liaqat Ali
- Kansas State University, Manhattan, KS 66506, United States
| | - Waqar Islam
- College of Geography, Fujian Normal University, Fuzhou 350007, China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan
| | - Chengzeng Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linsong Shen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taoting Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liu Can
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Kristina Gasparovic
- Department of Plant Physiology, Slovak University of Agriculture, A.Hlinku 2, 94976, Slovakia
| | - Farooq latif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Jiangtao Gao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Corresponding author at: Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
20
|
Hu ZY, Wang S, Geng ZQ, Dai K, Ji WX, Tian YC, Li WT, Zeng RJ, Zhang F. Controlling volatile fatty acids production from waste activated sludge by an alginate-degrading consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150730. [PMID: 34606857 DOI: 10.1016/j.scitotenv.2021.150730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
It is desirable to control volatile fatty acids (VFAs) recovery from waste activated sludge (WAS) while avoiding the release of N and P. Structural extracellular polymeric substances (St-EPS), with typical components of alginate and polygalacturonic acid, resist the biodegradation of extracellular polymeric substances (EPS) in WAS. Previously, we purposely enriched an alginate-degrading consortium (ADC), but, both controlling VFAs production and cell integrity after dosing with ADC were not investigated. In this work, ADC with a high percentage of the genus Bacteroides (~67%) was further enriched with alginate utilization above 95%. The St-EPS content in WAS was 109.7 ± 3.3 mg/g-VSS, accounting for 31% of EPS. After dosing ADC in the WAS, the main metabolites were acetate (1.6 g/L) and propionate (0.7 g/L), the hydrolysis efficiency was increased to 38%, and the acidification efficiency was increased to 72%. Cell integrity was maintained during WAS fermentation by dosing with ADC according to no P release and unchanged lactate dehydrogenase activity. VFA production was mainly from the EPS, and protein degradation in EPS resulted in low N release (e.g., 212 mg/L from casein and no P release). Consequently, ADC doing offers the advantages of controlling VFAs production from EPS while maintaining cell integrity.
Collapse
Affiliation(s)
- Zhi-Yi Hu
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuai Wang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zi-Qian Geng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wen-Xiang Ji
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ye-Chao Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
21
|
Li J, Chen C, Liu YJ, Cui Q, Bayer EA, Feng Y. NMR chemical shift assignments of a module of unknown function in the cellulosomal secondary scaffoldin ScaF from Clostridium thermocellum. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:329-334. [PMID: 33876380 DOI: 10.1007/s12104-021-10025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
The cellulosome is a highly efficient cellulolytic complex containing cellulolytic enzymes and non-catalytic subunits, i.e. scaffoldins, which are assembled by the interactions between the dockerin modules of the enzymes and the cohesin modules of the primary scaffoldins. The cellulosome attaches to the cell surface via the S-layer homology (SLH) modules of the anchoring scaffoldins. Clostridium thermocellum DSM1313 is a thermophilic cellulosome-producing bacterium with great potential in lignocellulose bioconversion and biofuel production. The bacterium contains four anchoring scaffoldins ScaB, ScaC, ScaD and ScaF, among which ScaF is the only one that contains an additional module of unknown function (ScaF-X) between the cohesin and SLH modules. The gene of ScaF is located outside the scaffoldin gene cluster of scaA, scaB, scaC and scaD. Previous studies showed unique regulation properties and function of ScaF compared to other anchoring scaffoldins, which might be related to the additional ScaF-X module. Here we report the NMR chemical shift assignments of ScaF-X from C. thermocellum DSM1313. The well-dispersed NMR spectrum and the secondary structure prediction based on the chemical shifts of ScaF-X indicated that ScaF-X is a well-folded protein module. The chemical shift assignments provide the basis for future studies on the structure of this module and its function in cellulosomes.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Chen
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.
- Shandong Energy Institute, Qingdao, 266101, Shandong, China.
- New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Biorefinery Gets Hot: Thermophilic Enzymes and Microorganisms for Second-Generation Bioethanol Production. Processes (Basel) 2021. [DOI: 10.3390/pr9091583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To mitigate the current global energy and the environmental crisis, biofuels such as bioethanol have progressively gained attention from both scientific and industrial perspectives. However, at present, commercialized bioethanol is mainly derived from edible crops, thus raising serious concerns given its competition with feed production. For this reason, lignocellulosic biomasses (LCBs) have been recognized as important alternatives for bioethanol production. Because LCBs supply is sustainable, abundant, widespread, and cheap, LCBs-derived bioethanol currently represents one of the most viable solutions to meet the global demand for liquid fuel. However, the cost-effective conversion of LCBs into ethanol remains a challenge and its implementation has been hampered by several bottlenecks that must still be tackled. Among other factors related to the challenging and variable nature of LCBs, we highlight: (i) energy-demanding pretreatments, (ii) expensive hydrolytic enzyme blends, and (iii) the need for microorganisms that can ferment mixed sugars. In this regard, thermophiles represent valuable tools to overcome some of these limitations. Thus, the aim of this review is to provide an overview of the state-of-the-art technologies involved, such as the use of thermophilic enzymes and microorganisms in industrial-relevant conditions, and to propose possible means to implement thermophiles into second-generation ethanol biorefineries that are already in operation.
Collapse
|
23
|
Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Turning Inside Out: Filamentous Fungal Secretion and Its Applications in Biotechnology, Agriculture, and the Clinic. J Fungi (Basel) 2021; 7:535. [PMID: 34356914 PMCID: PMC8307877 DOI: 10.3390/jof7070535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Filamentous fungi are found in virtually every marine and terrestrial habitat. Vital to this success is their ability to secrete a diverse range of molecules, including hydrolytic enzymes, organic acids, and small molecular weight natural products. Industrial biotechnologists have successfully harnessed and re-engineered the secretory capacity of dozens of filamentous fungal species to make a diverse portfolio of useful molecules. The study of fungal secretion outside fermenters, e.g., during host infection or in mixed microbial communities, has also led to the development of novel and emerging technological breakthroughs, ranging from ultra-sensitive biosensors of fungal disease to the efficient bioremediation of polluted environments. In this review, we consider filamentous fungal secretion across multiple disciplinary boundaries (e.g., white, green, and red biotechnology) and product classes (protein, organic acid, and secondary metabolite). We summarize the mechanistic understanding for how various molecules are secreted and present numerous applications for extracellular products. Additionally, we discuss how the control of secretory pathways and the polar growth of filamentous hyphae can be utilized in diverse settings, including industrial biotechnology, agriculture, and the clinic.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (X.Z.); (P.Z.); (J.S.)
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
24
|
|
25
|
Bing RG, Sulis DB, Wang JP, Adams MW, Kelly RM. Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:272-293. [PMID: 33684253 PMCID: PMC10519370 DOI: 10.1111/1758-2229.12943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The potential to convert renewable plant biomasses into fuels and chemicals by microbial processes presents an attractive, less environmentally intense alternative to conventional routes based on fossil fuels. This would best be done with microbes that natively deconstruct lignocellulose and concomitantly form industrially relevant products, but these two physiological and metabolic features are rarely and simultaneously observed in nature. Genetic modification of both plant feedstocks and microbes can be used to increase lignocellulose deconstruction capability and generate industrially relevant products. Separate efforts on plants and microbes are ongoing, but these studies lack a focus on optimal, complementary combinations of these disparate biological systems to obtain a convergent technology. Improving genetic tools for plants have given rise to the generation of low-lignin lines that are more readily solubilized by microorganisms. Most focus on the microbiological front has involved thermophilic bacteria from the genera Caldicellulosiruptor and Clostridium, given their capacity to degrade lignocellulose and to form bio-products through metabolic engineering strategies enabled by ever-improving molecular genetics tools. Bioengineering plant properties to better fit the deconstruction capabilities of candidate consolidated bioprocessing microorganisms has potential to achieve the efficient lignocellulose deconstruction needed for industrial relevance.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Daniel B. Sulis
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695
| | - Michael W.W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
26
|
Zou G, Bao D, Wang Y, Zhou S, Xiao M, Yang Z, Wang Y, Zhou Z. Alleviating product inhibition of Trichoderma reesei cellulase complex with a product-activated mushroom endoglucanase. BIORESOURCE TECHNOLOGY 2021; 319:124119. [PMID: 32957048 DOI: 10.1016/j.biortech.2020.124119] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Product inhibition of cellulase is a challenging issue in industrial processes. Here, we introduced a product-activated mushroom cellulase, PaCel3A from Polyporus arcularius, into Trichoderma reesei. The filter paper activity, carboxymethyl cellulase activity, and saccharification efficiency (substrate: pretreated rice straw, PRS) of transformants increased significantly with this enzyme (by 18.4-26.8%, 13.8-22.8%, and 17.0%, respectively). A mutant of PaCel3A, PaCel3AM, obtained based on B-factor analysis, saturated mutagenesis, and residual activity assay, showed improved thermostability. The PRS saccharification efficiency using the cellulase complex from T. reesei transformants overexpressing pacel3am increased by 56.4%-63.0%. In addition, the T. reesei cellulase complex obtained by adding the purified recombinant PaCel3AM from T. reesei (rCel3aM-tr) to hydrolyze PRS resulted in increased reducing sugar yields at all sampling points, outperforming the cellulase complexes without rCel3aM-tr. These results suggest that introducing product-activated cellulase genes is a simple and feasible method to alleviate the product inhibition of cellulase.
Collapse
Affiliation(s)
- Gen Zou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China; CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Science, Fenglin Rd 300, Shanghai 200032, China.
| | - Dapeng Bao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China.
| | - Ying Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Sichi Zhou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Meili Xiao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Science, Fenglin Rd 300, Shanghai 200032, China.
| | - Zhanshan Yang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding; Institute of Edible Fungi, Shanghai Academy of Agriculture Science, 1000 Jinqi Rd, Fengxian 201403, Shanghai, China
| | - Yinmei Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Science, Fenglin Rd 300, Shanghai 200032, China.
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Science, Fenglin Rd 300, Shanghai 200032, China.
| |
Collapse
|
27
|
Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli DK, Puri M. Enzyme systems of thermophilic anaerobic bacteria for lignocellulosic biomass conversion. Int J Biol Macromol 2020; 168:572-590. [PMID: 33309672 DOI: 10.1016/j.ijbiomac.2020.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022]
Abstract
Economic production of lignocellulose degrading enzymes for biofuel industries is of considerable interest to the biotechnology community. While these enzymes are widely distributed in fungi, their industrial production from other sources, particularly by thermophilic anaerobic bacteria (growth Topt ≥ 60 °C), is an emerging field. Thermophilic anaerobic bacteria produce a large number of lignocellulolytic enzymes having unique structural features and employ different schemes for biomass degradation, which can be classified into four systems namely; 'free enzyme system', 'cell anchored enzymes', 'complex cellulosome system', and 'multifunctional multimodular enzyme system'. Such enzymes exhibit high specific activity and have a natural ability to withstand harsh bioprocessing conditions. However, achieving a higher production of these thermostable enzymes at current bioprocessing targets is challenging. In this review, the research opportunities for these distinct enzyme systems in the biofuel industry and the associated technological challenges are discussed. The current status of research findings is highlighted along with a detailed description of the categorization of the different enzyme production schemes. It is anticipated that high temperature-based bioprocessing will become an integral part of sustainable bioenergy production in the near future.
Collapse
Affiliation(s)
- Nisha Singh
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Anshu S Mathur
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Ravi P Gupta
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Deepak K Tuli
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | - Munish Puri
- Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; Medical Biotechnology, Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide 5042, Australia.
| |
Collapse
|
28
|
Chettri D, Verma AK, Verma AK. Innovations in CAZyme gene diversity and its modification for biorefinery applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00525. [PMID: 32963975 PMCID: PMC7490808 DOI: 10.1016/j.btre.2020.e00525] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
For sustainable growth, concept of biorefineries as recourse to the "fossil derived" energy source is important. Here, the Carbohydrate Active enZymes (CAZymes) play decisive role in generation of biofuels and related sugar-based products utilizing lignocellulose as a carbon source. Given their industrial significance, extensive studies on the evolution of CAZymes have been carried out. Various bacterial and fungal organisms have been scrutinized for the development of CAZymes, where advance techniques for strain enhancement such as CRISPR and analysis of specific expression systems have been deployed. Specific Omic-based techniques along with protein engineering have been adopted to unearth novel CAZymes and improve applicability of existing enzymes. In-Silico computational research and functional annotation of new CAZymes to synergy experiments are being carried out to devise cocktails of enzymes for use in biorefineries. Thus, with the establishment of these technologies, increased diversity of CAZymes with broad span of functions and applications is seen.
Collapse
|
29
|
Xing H, Zou G, Liu C, Chai S, Yan X, Li X, Liu R, Yang Y, Zhou Z. Improving the thermostability of a GH11 xylanase by directed evolution and rational design guided by B-factor analysis. Enzyme Microb Technol 2020; 143:109720. [PMID: 33375980 DOI: 10.1016/j.enzmictec.2020.109720] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/20/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023]
Abstract
Operational stability under high temperature is required for enzyme application in industrial processes. Error-prone PCR and B-factor analysis were employed to enhance the thermostability of a xylanase from GH family 11 in this study. Based on the top 10 mutants screened from the random mutation libraries, mutant Xyn371 was derived from the optimal mutant Xyn370 by integrating the beneficial residues identified in the other 9 screened mutants. Subsequently, a best-saturation mutant Xyn372 originated from Xyn371 was selected with a 60-min half-life at 70 °C (0.5-min half-life for the wild-type enzyme). According to the site-saturated mutagenesis of 10 residues with higher B-factors in Xyn372, mutants Xyn375 and Xyn376 were screened; their half-lives at 70 °C were 410 and 360 min, respectively. The substituted residues located in the "palm" region of the N-terminus and the newly generated hydrogen bonds in the mutants might contribute to improved thermostability. The significantly improved thermostability of mutants will pave the way for applications in different industrial areas.
Collapse
Affiliation(s)
- Hongguan Xing
- CAS-key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Rd 300, Shanghai, 200032, China; Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Rd 130, Shanghai, 200237, China
| | - Gen Zou
- CAS-key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Rd 300, Shanghai, 200032, China
| | - Chunyan Liu
- CAS-key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Rd 300, Shanghai, 200032, China
| | - Shunxing Chai
- CAS-key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Rd 300, Shanghai, 200032, China
| | - Xing Yan
- CAS-key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Rd 300, Shanghai, 200032, China
| | - Xinliang Li
- CJ, Youtell (Shanghai) Biotech Co., Ltd, Ste 302, Bldg 7, 526 Ruiqing Rd, Shanghai 201201, China
| | - Rui Liu
- CJ, Youtell (Shanghai) Biotech Co., Ltd, Ste 302, Bldg 7, 526 Ruiqing Rd, Shanghai 201201, China
| | - Yi Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Rd 130, Shanghai, 200237, China
| | - Zhihua Zhou
- CAS-key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Fenglin Rd 300, Shanghai, 200032, China.
| |
Collapse
|
30
|
Zhang X, Bian F, Zhong Z, Gai X, Yang C. Deciphering the rhizosphere microbiome of a bamboo plant in response to different chromium contamination levels. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123107. [PMID: 32937721 DOI: 10.1016/j.jhazmat.2020.123107] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Bamboo has been considered a potential plant species for phytoremediation due to its high biomass and heavy metal (HM) resistance. However, little is known about the interactions between bamboo and soil microbial activities in HM-contaminated soils. Here, we investigated the characteristics of microbial communities in the rhizosphere soil of Lei bamboo (Phyllostachys praecox) along a chromium (Cr) gradient. We found that the soil Cr content was positively correlated with the total organic carbon (TOC) and HCl-extractable Cr but negatively correlated with the pH and bacterial and fungal Shannon indices. Proteobacteria and Ascomycota predominated in the bamboo rhizosphere under Cr pollution. A co-occurrence network showed that two of the most Cr-sensitive bacterial genera and keystone taxa were from the Acidobacteria, indicating that this phylum can be as an indicator for the studied Cr-polluted soils. Redundancy analysis revealed that both the soil bacterial and fungal community compositions were significantly correlated (p < 0.05) with Cr, pH, TOC, alkali-hydrolysable N (AN), and available phosphorus (AP). The increase in TOC as the Cr content increased can be ascribed to an adverse Cr effect on the soil microflora, probably because the microbial biomass was less effective in mineralizing soil C under Cr-polluted conditions.
Collapse
Affiliation(s)
- Xiaoping Zhang
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China
| | - Fangyuan Bian
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China
| | - Zheke Zhong
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China.
| | - Xu Gai
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China
| | - Chuanbao Yang
- China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou, Zhejiang 310012, PR China
| |
Collapse
|
31
|
Shrestha N, Tripathi AK, Govil T, Sani RK, Urgun-Demirtas M, Kasthuri V, Gadhamshetty V. Electricity from lignocellulosic substrates by thermophilic Geobacillus species. Sci Rep 2020; 10:17047. [PMID: 33046790 PMCID: PMC7552438 DOI: 10.1038/s41598-020-72866-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/03/2020] [Indexed: 11/09/2022] Open
Abstract
Given our vast lignocellulosic biomass reserves and the difficulty in bioprocessing them without expensive pretreatment and fuel separation steps, the conversion of lignocellulosic biomass directly into electricity would be beneficial. Here we report the previously unexplored capabilities of thermophilic Geobacillus sp. strain WSUCF1 to generate electricity directly from such complex substrates in microbial fuel cells. This process obviates the need for exogenous enzymes and redox mediator supplements. Cyclic voltammetry and chromatography studies revealed the electrochemical signatures of riboflavin molecules that reflect mediated electron transfer capabilities of strain WSUCF1. Proteomics and genomics analysis corroborated that WSUCF1 biofilms uses type-II NADH dehydrogenase and demethylmenaquinone methyltransferase to transfer the electrons to conducting anode via the redox active pheromone lipoproteins localized at the cell membrane.
Collapse
Affiliation(s)
- Namita Shrestha
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA. .,Department of Civil and Environmental Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN, 47803, USA.
| | - Abhilash Kumar Tripathi
- Department of Biological and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Tanvi Govil
- Department of Biological and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Rajesh Kumar Sani
- Department of Biological and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA. .,BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| | - Meltem Urgun-Demirtas
- Energy Global Security Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Venkateswaran Kasthuri
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA. .,BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| |
Collapse
|
32
|
Genomic and Transcriptome Analyses of a Thermophilic Bacterium Geobacillus stearothermophilus B5 Isolated from Compost Reveal Its Enzymatic Basis for Lignocellulose Degradation. Microorganisms 2020; 8:microorganisms8091357. [PMID: 32899798 PMCID: PMC7564440 DOI: 10.3390/microorganisms8091357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/02/2023] Open
Abstract
A lignocellulose-degrading strain isolated from thermophilic compost was identified as Geobacillus stearothermophilus B5, and found able to secrete considerable amounts of enzymes at optimal temperature (60 °C) and pH (7.5). One circular contig of 3.37 Mbp was assembled from raw data, and 3371 protein-coding genes were predicted. Clusters of orthologous groups (COG) analysis revealed various genes with functions in polymeric substrate degradation, especially for Carbohydrate Active enZymes (CAZymes), such as glycoside hydrolases (GHs) and glycosyl transferases (GTs). Furthermore, the transcriptional responses of B5 at different temperatures—with rice straw provided as the sole carbon source—were analyzed. The results revealed that B5 could resist high temperature by upregulating heat shock proteins (HSPs), enhancing protein synthesis, and decreasing carbon catabolism. Briefly, B5 possesses the ability of lignocellulose degradation, and might be considered a potential inoculant for improving composting efficiency.
Collapse
|
33
|
Efficient System Wide Metabolic Pathway Comparisons in Multiple Microbes Using Genome to KEGG Orthology (G2KO) Pipeline Tool. Interdiscip Sci 2020; 12:311-322. [PMID: 32632821 DOI: 10.1007/s12539-020-00375-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022]
Abstract
Comparison of system-wide metabolic pathways among microbes provides valuable insights of organisms' metabolic capabilities that can further assist in rationally screening organisms in silico for various applications. In this work, we present a much needed, efficient and user-friendly Genome to KEGG Orthology (G2KO) pipeline tool that facilitates efficient comparison of system wide metabolic networks of multiple organisms simultaneously. The optimized strategy primarily involves automatic retrieval of the KEGG Orthology (KO) identifiers of user defined organisms from the KEGG database followed by overlaying and visualization of the metabolic genes using the KEGG Mapper reconstruct pathway tool. We demonstrate the applicability of G2KO via two case studies in which we processed 24,314 genes across 15 organisms, mapped on to 530 reference pathways in KEGG, while focusing on pathways of interest. First, an in-silico designing of synthetic microbial consortia towards bioprocessing of cellulose to valuable products by comparing the cellulose degradation and fermentative pathways of microbes was undertaken. Second, we comprehensively compared the amino acid biosynthetic pathways of multiple microbes and demonstrated the potential of G2KO as an efficient tool for metabolic studies. We envisage the tool will find immensely useful to the metabolic engineers as well as systems biologists. The tool's web-server, along with tutorial is publicly available at https://faculty.iitmandi.ac.in/~shyam/tools/g2ko/g2ko.cgi . Also, standalone tool can be downloaded freely from https://sourceforge.net/projects/g2ko/ , and from the supplementary.
Collapse
|
34
|
Rubinstein GM, Lipscomb GL, Williams-Rhaesa AM, Schut GJ, Kelly RM, Adams MWW. Engineering the cellulolytic extreme thermophile Caldicellulosiruptor bescii to reduce carboxylic acids to alcohols using plant biomass as the energy source. J Ind Microbiol Biotechnol 2020; 47:585-597. [PMID: 32783103 DOI: 10.1007/s10295-020-02299-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/27/2020] [Indexed: 01/13/2023]
Abstract
Caldicellulosiruptor bescii is the most thermophilic cellulolytic organism yet identified (Topt 78 °C). It grows on untreated plant biomass and has an established genetic system thereby making it a promising microbial platform for lignocellulose conversion to bio-products. Here, we investigated the ability of engineered C. bescii to generate alcohols from carboxylic acids. Expression of aldehyde ferredoxin oxidoreductase (aor from Pyrococcus furiosus) and alcohol dehydrogenase (adhA from Thermoanaerobacter sp. X514) enabled C. bescii to generate ethanol from crystalline cellulose and from biomass by reducing the acetate produced by fermentation. Deletion of lactate dehydrogenase in a strain expressing the AOR-Adh pathway increased ethanol production. Engineered strains also converted exogenously supplied organic acids (isobutyrate and n-caproate) to the corresponding alcohol (isobutanol and hexanol) using both crystalline cellulose and switchgrass as sources of reductant for alcohol production. This is the first instance of an acid to alcohol conversion pathway in a cellulolytic microbe.
Collapse
Affiliation(s)
- Gabriel M Rubinstein
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | | | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
35
|
Caldicellulosiruptor bescii Adheres to Polysaccharides via a Type IV Pilin-Dependent Mechanism. Appl Environ Microbiol 2020; 86:AEM.00200-20. [PMID: 32086304 DOI: 10.1128/aem.00200-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Biological hydrolysis of cellulose above 70°C involves microorganisms that secrete free enzymes and deploy separate protein systems to adhere to their substrate. Strongly cellulolytic Caldicellulosiruptor bescii is one such extreme thermophile, which deploys modular, multifunctional carbohydrate-acting enzymes to deconstruct plant biomass. Additionally, C. bescii also encodes noncatalytic carbohydrate binding proteins, which likely evolved as a mechanism to compete against other heterotrophs in carbon-limited biotopes that these bacteria inhabit. Analysis of the Caldicellulosiruptor pangenome identified a type IV pilus (T4P) locus encoded upstream of the tāpirins, that is encoded by all Caldicellulosiruptor species. In this study, we sought to determine if the C. bescii T4P plays a role in attachment to plant polysaccharides. The major C. bescii pilin (CbPilA) was identified by the presence of pilin-like protein domains, paired with transcriptomics and proteomics data. Using immuno-dot blots, we determined that the plant polysaccharide xylan induced production of CbPilA 10- to 14-fold higher than glucomannan or xylose. Furthermore, we are able to demonstrate that recombinant CbPilA directly interacts with xylan and cellulose at elevated temperatures. Localization of CbPilA at the cell surface was confirmed by immunofluorescence microscopy. Lastly, a direct role for CbPilA in cell adhesion was demonstrated using recombinant CbPilA or anti-CbPilA antibodies to reduce C. bescii cell adhesion to xylan and crystalline cellulose up to 4.5- and 2-fold, respectively. Based on these observations, we propose that CbPilA and, by extension, the T4P play a role in Caldicellulosiruptor cell attachment to plant biomass.IMPORTANCE Most microorganisms are capable of attaching to surfaces in order to persist in their environment. Type IV (T4) pili produced by certain mesophilic Firmicutes promote adherence; however, a role for T4 pili encoded by thermophilic members of this phylum has yet to be demonstrated. Prior comparative genomics analyses identified a T4 pilus locus possessed by an extremely thermophilic genus within the Firmicutes Here, we demonstrate that attachment to plant biomass-related carbohydrates by strongly cellulolytic Caldicellulosiruptor bescii is mediated by T4 pilins. Surprisingly, xylan but not cellulose induced expression of the major T4 pilin. Regardless, the C. bescii T4 pilin interacts with both polysaccharides at high temperatures and is located to the cell surface, where it is directly involved in C. bescii attachment. Adherence to polysaccharides is likely key to survival in environments where carbon sources are limiting, allowing C. bescii to compete against other plant-degrading microorganisms.
Collapse
|
36
|
Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, Csukai M, de Vries RP, Endy D, Frisvad JC, Gunde-Cimerman N, Haarmann T, Hadar Y, Hansen K, Johnson RI, Keller NP, Kraševec N, Mortensen UH, Perez R, Ram AFJ, Record E, Ross P, Shapaval V, Steiniger C, van den Brink H, van Munster J, Yarden O, Wösten HAB. Growing a circular economy with fungal biotechnology: a white paper. Fungal Biol Biotechnol 2020; 7:5. [PMID: 32280481 PMCID: PMC7140391 DOI: 10.1186/s40694-020-00095-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Fungi have the ability to transform organic materials into a rich and diverse set of useful products and provide distinct opportunities for tackling the urgent challenges before all humans. Fungal biotechnology can advance the transition from our petroleum-based economy into a bio-based circular economy and has the ability to sustainably produce resilient sources of food, feed, chemicals, fuels, textiles, and materials for construction, automotive and transportation industries, for furniture and beyond. Fungal biotechnology offers solutions for securing, stabilizing and enhancing the food supply for a growing human population, while simultaneously lowering greenhouse gas emissions. Fungal biotechnology has, thus, the potential to make a significant contribution to climate change mitigation and meeting the United Nation’s sustainable development goals through the rational improvement of new and established fungal cell factories. The White Paper presented here is the result of the 2nd Think Tank meeting held by the EUROFUNG consortium in Berlin in October 2019. This paper highlights discussions on current opportunities and research challenges in fungal biotechnology and aims to inform scientists, educators, the general public, industrial stakeholders and policymakers about the current fungal biotech revolution.
Collapse
Affiliation(s)
- Vera Meyer
- 1Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Evelina Y Basenko
- 2Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, UK
| | - J Philipp Benz
- 3TUM School of Life Sciences Weihenstephan, Technical University of Munich, Holzforschung München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Gerhard H Braus
- 4Department of Molecular Microbiology & Genetics, Institute of Microbiology & Genetics, Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Mark X Caddick
- 2Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, UK
| | - Michael Csukai
- 5Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Ronald P de Vries
- 6Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Drew Endy
- 7Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA USA
| | - Jens C Frisvad
- 8Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nina Gunde-Cimerman
- 9Department Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | | | - Yitzhak Hadar
- 11Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Kim Hansen
- 12Biotechnology Research, Production Strain Technology, Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | - Robert I Johnson
- 13Quorn Foods, Station Road, Stokesley, North Yorkshire TS9 7AB UK
| | - Nancy P Keller
- 14Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, 53706 USA
| | - Nada Kraševec
- 15Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Uffe H Mortensen
- 8Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rolando Perez
- 7Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA USA
| | - Arthur F J Ram
- 16Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Eric Record
- 17French National Institute for Agriculture, Food and the Environment, INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, Marseille, France
| | - Phil Ross
- MycoWorks, Inc, 669 Grand View Avenue, San Francisco, USA
| | - Volha Shapaval
- 19Faculty of Science and Technology, Norwegian University of Life Sciences, Droebakveien, 31 1430 Aas, Norway
| | - Charlotte Steiniger
- 1Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | | | - Jolanda van Munster
- 21The University of Manchester, Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, 131 Princess Street, Manchester, M1 7DN UK
| | - Oded Yarden
- 11Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Han A B Wösten
- 22Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
37
|
Blumer-Schuette SE. Insights into Thermophilic Plant Biomass Hydrolysis from Caldicellulosiruptor Systems Biology. Microorganisms 2020; 8:E385. [PMID: 32164310 PMCID: PMC7142884 DOI: 10.3390/microorganisms8030385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 11/16/2022] Open
Abstract
Plant polysaccharides continue to serve as a promising feedstock for bioproduct fermentation. However, the recalcitrant nature of plant biomass requires certain key enzymes, including cellobiohydrolases, for efficient solubilization of polysaccharides. Thermostable carbohydrate-active enzymes are sought for their stability and tolerance to other process parameters. Plant biomass degrading microbes found in biotopes like geothermally heated water sources, compost piles, and thermophilic digesters are a common source of thermostable enzymes. While traditional thermophilic enzyme discovery first focused on microbe isolation followed by functional characterization, metagenomic sequences are negating the initial need for species isolation. Here, we summarize the current state of knowledge about the extremely thermophilic genus Caldicellulosiruptor, including genomic and metagenomic analyses in addition to recent breakthroughs in enzymology and genetic manipulation of the genus. Ten years after completing the first Caldicellulosiruptor genome sequence, the tools required for systems biology of this non-model environmental microorganism are in place.
Collapse
|
38
|
Anandharaj M, Lin YJ, Rani RP, Nadendla EK, Ho MC, Huang CC, Cheng JF, Chang JJ, Li WH. Constructing a yeast to express the largest cellulosome complex on the cell surface. Proc Natl Acad Sci U S A 2020; 117:2385-2394. [PMID: 31953261 PMCID: PMC7007581 DOI: 10.1073/pnas.1916529117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cellulosomes, which are multienzyme complexes from anaerobic bacteria, are considered nature's finest cellulolytic machinery. Thus, constructing a cellulosome in an industrial yeast has long been a goal pursued by scientists. However, it remains highly challenging due to the size and complexity of cellulosomal genes. Here, we overcame the difficulties by synthesizing the Clostridium thermocellum scaffoldin gene (CipA) and the anchoring protein gene (OlpB) using advanced synthetic biology techniques. The engineered Kluyveromyces marxianus, a probiotic yeast, secreted a mixture of dockerin-fused fungal cellulases, including an endoglucanase (TrEgIII), exoglucanase (CBHII), β-glucosidase (NpaBGS), and cellulase boosters (TaLPMO and MtCDH). The confocal microscopy results confirmed the cell-surface display of OlpB-ScGPI and fluorescence-activated cell sorting analysis results revealed that almost 81% of yeast cells displayed OlpB-ScGPI. We have also demonstrated the cellulosome complex formation using purified and crude cellulosomal proteins. Native polyacrylamide gel electrophoresis and mass spectrometric analysis further confirmed the cellulosome complex formation. Our engineered cellulosome can accommodate up to 63 enzymes, whereas the largest engineered cellulosome reported thus far could accommodate only 12 enzymes and was expressed by a plasmid instead of chromosomal integration. Interestingly, CipA 2B9C (with two cellulose binding modules, CBM) released significantly higher quantities of reducing sugars compared with other CipA variants, thus confirming the importance of cohesin numbers and CBM domain on cellulosome complex. The engineered yeast host efficiently degraded cellulosic substrates and released 3.09 g/L and 8.61 g/L of ethanol from avicel and phosphoric acid-swollen cellulose, respectively, which is higher than any previously constructed yeast cellulosome.
Collapse
Affiliation(s)
- Marimuthu Anandharaj
- Biodiversity Research Center, Academia Sinica, 11529 Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, 11529 Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, 40227 Taichung, Taiwan
| | - Yu-Ju Lin
- Biodiversity Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | | | | | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, 40227 Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 40227 Taichung, Taiwan
| | - Jan-Fang Cheng
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA 94598
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, 402 Taichung, Taiwan;
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, 11529 Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, 11529 Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, 40227 Taichung, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
| |
Collapse
|
39
|
Gabriel R, Prinz J, Jecmenica M, Romero-Vazquez C, Chou P, Harth S, Floerl L, Curran L, Oostlander A, Matz L, Fritsche S, Gorman J, Schuerg T, Fleißner A, Singer SW. Development of genetic tools for the thermophilic filamentous fungus Thermoascus aurantiacus. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:167. [PMID: 33062053 PMCID: PMC7547499 DOI: 10.1186/s13068-020-01804-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/20/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Fungal enzymes are vital for industrial biotechnology, including the conversion of plant biomass to biofuels and bio-based chemicals. In recent years, there is increasing interest in using enzymes from thermophilic fungi, which often have higher reaction rates and thermal tolerance compared to currently used fungal enzymes. The thermophilic filamentous fungus Thermoascus aurantiacus produces large amounts of highly thermostable plant cell wall-degrading enzymes. However, no genetic tools have yet been developed for this fungus, which prevents strain engineering efforts. The goal of this study was to develop strain engineering tools such as a transformation system, a CRISPR/Cas9 gene editing system and a sexual crossing protocol to improve the enzyme production. RESULTS Here, we report Agrobacterium tumefaciens-mediated transformation (ATMT) of T. aurantiacus using the hph marker gene, conferring resistance to hygromycin B. The newly developed transformation protocol was optimized and used to integrate an expression cassette of the transcriptional xylanase regulator xlnR, which led to up to 500% increased xylanase activity. Furthermore, a CRISPR/Cas9 gene editing system was established in this fungus, and two different gRNAs were tested to delete the pyrG orthologue with 10% and 35% deletion efficiency, respectively. Lastly, a sexual crossing protocol was established using a hygromycin B- and a 5-fluoroorotic acid-resistant parent strain. Crossing and isolation of progeny on selective media were completed in a week. CONCLUSION The genetic tools developed for T. aurantiacus can now be used individually or in combination to further improve thermostable enzyme production by this fungus.
Collapse
Affiliation(s)
- Raphael Gabriel
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany
| | - Julia Prinz
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Marina Jecmenica
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Carlos Romero-Vazquez
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- College of Natural Sciences, University of Puerto-Rico, Rio Pedras, 17 Ave. Universidad STE 1701, San Juan, 00925 Puerto Rico USA
| | - Pallas Chou
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- American High School, 36300 Fremont Blvd, Fremont, CA 94536 USA
| | - Simon Harth
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Frankfurt Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt Am Main, Germany
| | - Lena Floerl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Laure Curran
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- École Polytechnique Fédérale de Lausanne, Lausanne, Vaud 1015 Switzerland
| | - Anne Oostlander
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany
| | - Linda Matz
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany
| | - Susanne Fritsche
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
- Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jennifer Gorman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
| | - Timo Schuerg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany
| | - Steven W. Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608 United States
| |
Collapse
|
40
|
Ribeiro DO, Viegas A, Pires VMR, Medeiros‐Silva J, Bule P, Chai W, Marcelo F, Fontes CMGA, Cabrita EJ, Palma AS, Carvalho AL. Molecular basis for the preferential recognition of β1,3‐1,4‐glucans by the family 11 carbohydrate‐binding module from
Clostridium thermocellum. FEBS J 2019; 287:2723-2743. [DOI: 10.1111/febs.15162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/09/2019] [Accepted: 11/29/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Diana O. Ribeiro
- UCIBIO Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa Caparica Portugal
| | - Aldino Viegas
- UCIBIO Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa Caparica Portugal
| | - Virgínia M. R. Pires
- CIISA ‐ Faculdade de Medicina Veterinária Universidade de Lisboa Avenida da Universidade Técnica Lisboa Portugal
| | - João Medeiros‐Silva
- UCIBIO Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa Caparica Portugal
| | - Pedro Bule
- CIISA ‐ Faculdade de Medicina Veterinária Universidade de Lisboa Avenida da Universidade Técnica Lisboa Portugal
| | - Wengang Chai
- Glycosciences Laboratory Department of Medicine Imperial College London London UK
| | - Filipa Marcelo
- UCIBIO Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa Caparica Portugal
| | - Carlos M. G. A. Fontes
- CIISA ‐ Faculdade de Medicina Veterinária Universidade de Lisboa Avenida da Universidade Técnica Lisboa Portugal
- NZYTech Genes & Enzymes Campus do Lumiar Estrada do Paço do Lumiar Edifício E Lisboa Portugal
| | - Eurico J. Cabrita
- UCIBIO Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa Caparica Portugal
| | - Angelina S. Palma
- UCIBIO Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa Caparica Portugal
- Glycosciences Laboratory Department of Medicine Imperial College London London UK
| | - Ana Luísa Carvalho
- UCIBIO Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa Caparica Portugal
| |
Collapse
|
41
|
Extreme thermophiles as emerging metabolic engineering platforms. Curr Opin Biotechnol 2019; 59:55-64. [DOI: 10.1016/j.copbio.2019.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
|
42
|
Yoav S, Stern J, Salama-Alber O, Frolow F, Anbar M, Karpol A, Hadar Y, Morag E, Bayer EA. Directed Evolution of Clostridium thermocellum β-Glucosidase A Towards Enhanced Thermostability. Int J Mol Sci 2019; 20:E4701. [PMID: 31547488 PMCID: PMC6801902 DOI: 10.3390/ijms20194701] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022] Open
Abstract
β-Glucosidases are key enzymes in the process of cellulose utilization. It is the last enzyme in the cellulose hydrolysis chain, which converts cellobiose to glucose. Since cellobiose is known to have a feedback inhibitory effect on a variety of cellulases, β-glucosidase can prevent this inhibition by hydrolyzing cellobiose to non-inhibitory glucose. While the optimal temperature of the Clostridium thermocellum cellulosome is 70 °C, C. thermocellum β-glucosidase A is almost inactive at such high temperatures. Thus, in the current study, a random mutagenesis directed evolutionary approach was conducted to produce a thermostable mutant with Kcat and Km, similar to those of the wild-type enzyme. The resultant mutant contained two mutations, A17S and K268N, but only the former was found to affect thermostability, whereby the inflection temperature (Ti) was increased by 6.4 °C. A17 is located near the central cavity of the native enzyme. Interestingly, multiple alignments revealed that position 17 is relatively conserved, whereby alanine is replaced only by serine. Upon the addition of the thermostable mutant to the C. thermocellum secretome for subsequent hydrolysis of microcrystalline cellulose at 70 °C, a higher soluble glucose yield (243%) was obtained compared to the activity of the secretome supplemented with the wild-type enzyme.
Collapse
Affiliation(s)
- Shahar Yoav
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, the Advanced School for Environmental Studies, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Johanna Stern
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Orly Salama-Alber
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Felix Frolow
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Michael Anbar
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Alon Karpol
- CelDezyner, 2 Bergman St, Tamar Science Park, Rehovot 7670504, Israel.
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, the Advanced School for Environmental Studies, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Ely Morag
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
43
|
Straub CT, Khatibi PA, Wang JP, Conway JM, Williams-Rhaesa AM, Peszlen IM, Chiang VL, Adams MWW, Kelly RM. Quantitative fermentation of unpretreated transgenic poplar by Caldicellulosiruptor bescii. Nat Commun 2019; 10:3548. [PMID: 31391460 PMCID: PMC6685990 DOI: 10.1038/s41467-019-11376-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/03/2019] [Indexed: 01/16/2023] Open
Abstract
Microbial fermentation of lignocellulosic biomass to produce industrial chemicals is exacerbated by the recalcitrant network of lignin, cellulose and hemicelluloses comprising the plant secondary cell wall. In this study, we show that transgenic poplar (Populus trichocarpa) lines can be solubilized without any pretreatment by the extreme thermophile Caldicellulosiruptor bescii that has been metabolically engineered to shift its fermentation products away from inhibitory organic acids to ethanol. Carbohydrate solubilization and conversion of unpretreated milled biomass is nearly 90% for two transgenic lines, compared to only 25% for wild-type poplar. Unexpectedly, unpretreated intact poplar stems achieved nearly 70% of the fermentation production observed with milled poplar as the substrate. The nearly quantitative microbial conversion of the carbohydrate content of unpretreated transgenic lignocellulosic biomass bodes well for full utilization of renewable biomass feedstocks. Metabolizing lignocellulosic feedstocks to industrial chemicals by microorganisms requires surmounting the recalcitrance caused by lignin. Here, the authors pair transgenic lignin modified poplar lines with engineered Caldicellusiruptor bescii to achieve biomass solubilization and ethanol conversion without pretreatment.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Piyum A Khatibi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.,Novozymes Biologicals, Inc., Durham, NC, 27709, USA
| | - Jack P Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Ilona M Peszlen
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, 27695, USA
| | - Vincent L Chiang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
44
|
Lee LL, Crosby JR, Rubinstein GM, Laemthong T, Bing RG, Straub CT, Adams MW, Kelly RM. The biology and biotechnology of the genus Caldicellulosiruptor: recent developments in ‘Caldi World’. Extremophiles 2019; 24:1-15. [DOI: 10.1007/s00792-019-01116-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/09/2019] [Indexed: 12/01/2022]
|
45
|
Straub CT, Khatibi PA, Otten JK, Adams MWW, Kelly RM. Lignocellulose solubilization and conversion by extremely thermophilic
Caldicellulosiruptor bescii
improves by maintaining metabolic activity. Biotechnol Bioeng 2019; 116:1901-1908. [DOI: 10.1002/bit.26993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/12/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Christopher T. Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina
| | - Piyum A. Khatibi
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina
| | - Jonathan K. Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology University of Georgia Athens Georgia
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh North Carolina
| |
Collapse
|
46
|
Scott IM, Rubinstein GM, Poole FL, Lipscomb GL, Schut GJ, Williams-Rhaesa AM, Stevenson DM, Amador-Noguez D, Kelly RM, Adams MWW. The thermophilic biomass-degrading bacterium Caldicellulosiruptor bescii utilizes two enzymes to oxidize glyceraldehyde 3-phosphate during glycolysis. J Biol Chem 2019; 294:9995-10005. [PMID: 31097544 DOI: 10.1074/jbc.ra118.007120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/13/2019] [Indexed: 01/22/2023] Open
Abstract
Caldicellulosiruptor bescii is an extremely thermophilic, cellulolytic bacterium with a growth optimum at 78 °C and is the most thermophilic cellulose degrader known. It is an attractive target for biotechnological applications, but metabolic engineering will require an in-depth understanding of its primary pathways. A previous analysis of its genome uncovered evidence that C. bescii may have a completely uncharacterized aspect to its redox metabolism, involving a tungsten-containing oxidoreductase of unknown function. Herein, we purified and characterized this new member of the aldehyde ferredoxin oxidoreductase family of tungstoenzymes. We show that it is a heterodimeric glyceraldehyde-3-phosphate (GAP) ferredoxin oxidoreductase (GOR) present not only in all known Caldicellulosiruptor species, but also in 44 mostly anaerobic bacterial genera. GOR is phylogenetically distinct from the monomeric GAP-oxidizing enzyme found previously in several Archaea. We found that its large subunit (GOR-L) contains a single tungstopterin site and one iron-sulfur [4Fe-4S] cluster, that the small subunit (GOR-S) contains four [4Fe-4S] clusters, and that GOR uses ferredoxin as an electron acceptor. Deletion of either subunit resulted in a distinct growth phenotype on both C5 and C6 sugars, with an increased lag phase, but higher cell densities. Using metabolomics and kinetic analyses, we show that GOR functions in parallel with the conventional GAP dehydrogenase, providing an alternative ferredoxin-dependent glycolytic pathway. These two pathways likely facilitate the recycling of reduced redox carriers (NADH and ferredoxin) in response to environmental H2 concentrations. This metabolic flexibility has important implications for the future engineering of this and related species.
Collapse
Affiliation(s)
- Israel M Scott
- From the Department of Biochemistry and Molecular Biology and
| | | | - Farris L Poole
- From the Department of Biochemistry and Molecular Biology and
| | - Gina L Lipscomb
- From the Department of Biochemistry and Molecular Biology and
| | - Gerrit J Schut
- From the Department of Biochemistry and Molecular Biology and
| | | | - David M Stevenson
- the Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Daniel Amador-Noguez
- the Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Robert M Kelly
- the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695
| | | |
Collapse
|
47
|
Effects of Random Mutagenesis and In Vivo Selection on the Specificity and Stability of a Thermozyme. Catalysts 2019. [DOI: 10.3390/catal9050440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Factors that give enzymes stability, activity, and substrate recognition result from the combination of few weak molecular interactions, which can be difficult to study through rational protein engineering approaches. We used irrational random mutagenesis and in vivo selection to test if a β-glycosidase from the thermoacidophile Saccharolobus solfataricus (Ssβ-gly) could complement an Escherichia coli strain unable to grow on lactose. The triple mutant of Ssβ-gly (S26L, P171L, and A235V) was more active than the wild type at 85 °C, inactivated at this temperature almost 300-fold quicker, and showed a 2-fold higher kcat on galactosides. The three mutations, which were far from the active site, were analyzed to test their effect at the structural level. Improved activity on galactosides was induced by the mutations. The S26L and P171L mutations destabilized the enzyme through the removal of a hydrogen bond and increased flexibility of the peptide backbone, respectively. However, the flexibility added by S26L mutation improved the activity at T > 60 °C. This study shows that random mutagenesis and biological selection allowed the identification of residues that are critical in determining thermal activity, stability, and substrate recognition.
Collapse
|
48
|
Sander K, Yeary M, Mahan K, Whitham J, Giannone RJ, Brown SD, Rodriguez M, Graham DE, Hankoua B. Expression of benzoyl-CoA metabolism genes in the lignocellulolytic host Caldicellulosiruptor bescii. AMB Express 2019; 9:59. [PMID: 31055784 PMCID: PMC6500515 DOI: 10.1186/s13568-019-0783-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/25/2019] [Indexed: 11/18/2022] Open
Abstract
Genes responsible for the anaerobic catabolism of benzoate in the thermophilic archaeon Ferroglobus placidus were expressed in the thermophilic lignocellulose-degrading bacterium Caldicellulosiruptor bescii, as a first step to engineering this bacterium to degrade this lignin metabolite. The benzoyl-CoA ligase gene was expressed individually, and in combination with benzoyl-CoA reductase and a putative benzoate transporter. This effort also assessed heterologous expression from a synthetically designed operon whereby each coding sequence was proceeded by a unique C. bescii ribosome binding site sequence. The F. placidicus benzoyl-CoA ligase gene was expressed in C. bescii to produce a full-length protein with catalytic activity. A synthetic 6-gene operon encoding three enzymes involved in benzoate degradation was also successfully expressed in C. bescii as determined by RNA analysis, though the protein products of only four of the genes were detected. The discord between the mRNA and protein measurements, especially considering the two genes lacking apparent protein abundance, suggests variable effectiveness of the ribosome binding site sequences utilized in this synthetic operon. The engineered strains did not degrade benzoate. Although the heterologously expressed gene encoding benzoyl-CoA ligase yielded a protein that was catalytically active in vitro, expression in C. bescii of six benzoate catabolism-related genes combined in a synthetic operon yielded mixed results. More effective expression and in vivo activity might be brought about by validating and using different ribosome binding sites and different promoters. Expressing additional pathway components may alleviate any pathway inhibition and enhance benzoyl-CoA reductase activity.
Collapse
|
49
|
Chen C, Yang H, Xuan J, Cui Q, Feng Y. Resonance assignments of a cellulosomal double-dockerin from Clostridium thermocellum. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:97-101. [PMID: 30377946 DOI: 10.1007/s12104-018-9859-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
Cellulosomes are highly efficient multienzyme complexes for lignocellulose degradation secreted by some lignocellulolytic bacteria. Cellulosomes are assembled through protein modules named cohesin and dockerin, and multiple cohesin modules in the scaffold protein generally determine the complexity of the cellulosomes. Some cellulosomal proteins contain multiple dockerin modules, which may generate more complex cellulosomal architectures. Genome mining revealed that cellulosomal proteins containing double dockerin modules and a protease module exist in many cellulosome-producing bacteria, and these proteins together with cellulosomal protease inhibitors were proposed to have regulatory roles. However, the structures and functions of these multiple-dockerin proteins in cellulosome have not been reported before. In this paper, we present the NMR chemical shift assignments of the double-dockerin of a cellulosomal protease from Clostridium thermocellum DSM1313. The secondary structures predicted from the chemical shifts agree with the structural arrangement of the tandem dockerin modules. The chemical shift assignments here provide the basis for the structural and functional studies of multiple-dockerin proteins in future.
Collapse
Affiliation(s)
- Chao Chen
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Hongwu Yang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jinsong Xuan
- Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
50
|
Fernández-Bayo JD, Hestmark KV, Claypool JT, Harrold DR, Randall TE, Achmon Y, Stapleton JJ, Simmons CW, VanderGheynst JS. The initial soil microbiota impacts the potential for lignocellulose degradation during soil solarization. J Appl Microbiol 2019; 126:1729-1741. [PMID: 30895681 DOI: 10.1111/jam.14258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 02/02/2023]
Abstract
AIMS Soil biosolarization (SBS) is a pest control technology that includes the incorporation of organic matter into soil prior to solarization. The objective of this study was to measure the impact of the initial soil microbiome on the temporal evolution of genes encoding lignocellulose-degrading enzymes during SBS. METHODS AND RESULTS Soil biosolarization field experiments were completed using green waste (GW) as a soil amendment and in the presence and absence of compost activating inoculum. Samples were collected over time and at two different soil depths for measurement of the microbial community and the predicted lignocellulosic-degrading microbiome. Compost inoculum had a significant positive effect on several predicted genes encoding enzymes involved in cellulose, hemicellulose and lignin degradation. These included beta-glucosidase, endo-1,3(4)-beta-glucanase, alpha-galactosidase and laccase. CONCLUSION Amendment of micro-organisms found in compost to soil prior to SBS enhanced the degradation potential of cellulose, hemicellulose and lignin found in GW. SIGNIFICANCE AND IMPACT OF THE STUDY The type of organic matter amended and its biotransformation by soil micro-organisms impact the efficacy of SBS. The results suggest that co-amending highly recalcitrant biomass with micro-organisms found in compost improves biomass conversion during SBS.
Collapse
Affiliation(s)
- J D Fernández-Bayo
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA.,Department of Food Science and Technology, University of California, Davis, CA, USA
| | - K V Hestmark
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA
| | - J T Claypool
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA.,Department of Food Science and Technology, University of California, Davis, CA, USA
| | - D R Harrold
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA
| | - T E Randall
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA
| | - Y Achmon
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA.,Department of Food Science and Technology, University of California, Davis, CA, USA.,Department of Biotechnology and Food Engineering, Guangdong Technion Israel Institute of Technology, Shantou, China
| | - J J Stapleton
- Statewide Integrated Pest Management Program, University of California, Kearney Agricultural Research and Extension Center, Parlier, CA, USA
| | - C W Simmons
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - J S VanderGheynst
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA.,Department of Bioengineering, University of Massachusetts, Dartmouth, MA, USA
| |
Collapse
|