1
|
Perlin MH, Poulin R, de Bekker C. Invasion of the four kingdoms: the parasite journey across plant and non-plant hosts. Biol Rev Camb Philos Soc 2025; 100:936-968. [PMID: 39616537 DOI: 10.1111/brv.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 03/08/2025]
Abstract
Parasites have a rich and long natural history among biological entities, and it has been suggested that parasites are one of the most significant factors in the evolution of their hosts. However, it has been emphasized less frequently how co-evolution has undoubtedly also shaped the paths of parasites. It may seem safe to assume that specific differences among the array of potential hosts for particular parasites have restricted and diversified their evolutionary pathways and strategies for survival. Nevertheless, if one looks closely enough at host and parasite, one finds commonalities, both in terms of host defences and parasite strategies to out-manoeuvre them. While such analyses have been the source of numerous reviews, they are generally limited to interactions between, at most, one kingdom of parasite with two kingdoms of host (e.g. similarities in animal and plant host responses against fungi). With the aim of extending this view, we herein critically evaluate the similarities and differences across all four eukaryotic host kingdoms (plants, animals, fungi, and protists) and their parasites. In doing so, we show that hosts tend to share common strategies for defence, including both physical and behavioural barriers, and highly evolved immune responses, in particular innate immunity. Parasites have, similarly, evolved convergent strategies to counter these defences, including mechanisms of active penetration, and evading the host's innate and/or adaptive immune responses. Moreover, just as hosts have evolved behaviours to avoid parasites, many parasites have adaptations to manipulate host phenotype, physiologically, reproductively, and in terms of behaviour. Many of these strategies overlap in the host and parasite, even across wide phylogenetic expanses. That said, specific differences in host physiology and immune responses often necessitate different adaptations for parasites exploiting fundamentally different hosts. Taken together, this review facilitates hypothesis-driven investigations of parasite-host interactions that transcend the traditional kingdom-based research fields.
Collapse
Affiliation(s)
- Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, Kentucky, 40208, USA
| | - Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Charissa de Bekker
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584CH, Utrecht, the Netherlands
| |
Collapse
|
2
|
Wang X, Li L, Fan R, Yan Y, Zhou R. Genome‑wide identification of circular RNAs and MAPKs reveals the regulatory networks in response to green peach aphid infestation in peach (Prunus persica). Gene 2025; 933:148994. [PMID: 39395730 DOI: 10.1016/j.gene.2024.148994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The green peach aphid (GPA), Myzus persicae (Sulzer), is a serious agricultural pest with a worldwide distribution and a vector of over 100 plant viruses. Various pathways, such as the mitogen-activated protein kinase (MAPK) cascades, play pivotal roles in signaling plant defense against pest attack, and circular RNAs (circRNAs) regulate the expression of mRNAs in response to pest attack. However, the mechanism underlying peach (Prunus persica) response to GPA attack remains unclear. The present study initially identified and characterized 316 circRNAs and 18 PpMAPKs from healthy and GPA-infested peach leaves by whole-transcriptome sequencing and predicted the differentially expressed circRNAs (DECs) after GPA infestation. PCR and Sanger sequencing confirmed the presence of six DECs in peach samples. Besides, RNA sequencing analysis detected 13 DECs, including 5 upregulated and 8 downregulated ones, in peach in response to the GPA attack. Gene ontology (GO) enrichment analysis indicated that specific DECs play crucial roles in the MAPK signaling pathway, and qRT-PCR revealed that GPA infestation altered the expression patterns of PpMAPKs. Finally, five circRNAs, three microRNA (miRNAs), and two MAPK target genes were identified to interact as a network and perform critical roles in modulating the MAPK pathway in the peach during GPA infestation.
Collapse
Affiliation(s)
- Xianyou Wang
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China.
| | - Li Li
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Rongyao Fan
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Yujun Yan
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Ruijin Zhou
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| |
Collapse
|
3
|
Mukuze C, Msiska UM, Badji A, Obua T, Kweyu SV, Nghituwamhata SN, Rono EC, Maphosa M, Kasule F, Tukamuhabwa P. Genome-wide association mapping of bruchid resistance loci in soybean. PLoS One 2025; 20:e0292481. [PMID: 39792861 PMCID: PMC11723639 DOI: 10.1371/journal.pone.0292481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/22/2024] [Indexed: 01/12/2025] Open
Abstract
Soybean is a globally important industrial, food, and cash crop. Despite its importance in present and future economies, its production is severely hampered by bruchids (Callosobruchus chinensis), a destructive storage insect pest, causing considerable yield losses. Therefore, the identification of genomic regions and candidate genes associated with bruchid resistance in soybean is crucial as it helps breeders to develop new soybean varieties with improved resistance and quality. In this study, 6 multi-locus methods of the mrMLM model for genome-wide association study were used to dissect the genetic architecture of bruchid resistance on 4traits: percentage adult bruchid emergence (PBE), percentage weight loss (PWL), median development period (MDP), and Dobie susceptibility index (DSI) on 100 diverse soybean genotypes, genotyped with 14,469 single-nucleotide polymorphism (SNP) markers. Using the best linear unbiased predictors (BLUPs), 13 quantitative trait nucleotides (QTNs) were identified by the mrMLM model, of which rs16_14976250 was associated with more than 1 bruchid resistance traits. As a result, the identified QTNs linked with resistance traits can be employed in marker-assisted breeding for the accurate and rapid screening of soybean genotypes for resistance to bruchids. Moreover, a gene search on the Phytozome soybean reference genome identified 27 potential candidate genes located within a window of 478.45 kb upstream and downstream of the most reliable QTNs. These candidate genes exhibit molecular and biological functionalities associated with various soybean resistance mechanisms and, therefore, could be incorporated into the farmers' preferred soybean varieties that are susceptible to bruchids.
Collapse
Affiliation(s)
- Clever Mukuze
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
- Department of Crop Science and Post-Harvest Technology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Ulemu M. Msiska
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
- Department of Agri-Sciences, Faculty of Environmental Sciences, Mzuzu University, Luwinga, Malawi
| | - Afang Badji
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Tonny Obua
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Sharon V. Kweyu
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Selma N. Nghituwamhata
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Evalyne C. Rono
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Mcebisi Maphosa
- Department of Crop and Soil Science, Faculty of Agricultural Sciences, Lupane State University, Lupane, Zimbabwe
| | - Faizo Kasule
- National Agricultural Research Organization (NARO), National Semi-Arid Resources Research Institute, Soroti, Uganda
| | - Phinehas Tukamuhabwa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
4
|
Alam A, Abbas S, Waheed N, Abbas A, Weibo Q, Huang J, Khan KA, Ghramh HA, Ali J, Zhao CR. Genetic Warfare: The Plant Genome's Role in Fending Off Insect Invaders. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70021. [PMID: 39726337 DOI: 10.1002/arch.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
The plant defense against insects is multiple layers of interactions. They defend through direct defense and indirect defense. Direct defenses include both physical and chemical barriers that hinder insect growth, development, and reproduction. In contrast, indirect defenses do not affect insects directly but instead suppress them by releasing volatile compounds that attract the natural enemies of herbivores. Insects overcome plant defenses by deactivating biochemical defenses, suppressing defense signaling through effectors, and altering their behavior through chemical regulation. There is always a genetic war between plants and insects. In this genetic war, plant-insect co-evolution act as both weapons and messengers. Because plants always look for new strategies to avoid insects by developing adaptation. There are molecular processes that regulate the interaction between plants and insect. Here, we examine the genes and proteins involved in plant-insect interactions and explore how their discovery has shaped the current model of the plant genome's role. Plants detect damage-associated and herbivore-associated molecular patterns through receptors, which trigger early signaling pathways involving Ca2+, reactive oxygen species, and MAP kinases. The specific defense mechanisms are activated through gene signaling pathways, including phytohormones, secondary metabolites, and transcription factors. Expanding plant genome approaches to unexplored dimensions in fending off insects should be a future priority in order to develop management strategies.
Collapse
Affiliation(s)
- Aleena Alam
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Sohail Abbas
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Noman Waheed
- College of Animal Sciences and Technology, Jilin Agricultural University, Changchun, PR China
| | - Arzlan Abbas
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Qin Weibo
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jingxuan Huang
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Khalid Ali Khan
- Center of Bee Research and its products (CBRP), King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Hamed A Ghramh
- Center of Bee Research and its products (CBRP), King Khalid University, Abha, Saudi Arabia
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Jamin Ali
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Chen Ri Zhao
- Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
5
|
Li TP, Wang CH, Xie JC, Wang MK, Chen J, Zhu YX, Hao DJ, Hong XY. Microbial changes and associated metabolic responses modify host plant adaptation in Stephanitis nashi. INSECT SCIENCE 2024; 31:1789-1809. [PMID: 38369568 DOI: 10.1111/1744-7917.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Symbiotic microorganisms are essential for the physiological processes of herbivorous pests, including the pear lace bug Stephanitis nashi, which is known for causing extensive damage to garden plants and fruit trees due to its exceptional adaptability to diverse host plants. However, the specific functional effects of the microbiome on the adaptation of S. nashi to its host plants remains unclear. Here, we identified significant microbial changes in S. nashi on 2 different host plants, crabapple and cherry blossom, characterized by the differences in fungal diversity as well as bacterial and fungal community structures, with abundant correlations between bacteria or fungi. Consistent with the microbiome changes, S. nashi that fed on cherry blossom demonstrated decreased metabolites and downregulated key metabolic pathways, such as the arginine and mitogen-activated protein kinase signaling pathway, which were crucial for host plant adaptation. Furthermore, correlation analysis unveiled numerous correlations between differential microorganisms and differential metabolites, which were influenced by the interactions between bacteria or fungi. These differential bacteria, fungi, and associated metabolites may modify the key metabolic pathways in S. nashi, aiding its adaptation to different host plants. These results provide valuable insights into the alteration in microbiome and function of S. nashi adapted to different host plants, contributing to a better understanding of pest invasion and dispersal from a microbial perspective.
Collapse
Affiliation(s)
- Tong-Pu Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Chen-Hao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jia-Chu Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Meng-Ke Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yu-Xi Zhu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - De-Jun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Kumaraswamy S, Huang Y. Molecular Interactions Between Plants and Aphids: Recent Advances and Future Perspectives. INSECTS 2024; 15:935. [PMID: 39769537 PMCID: PMC11677212 DOI: 10.3390/insects15120935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Aphids are small, notorious insect pests that negatively impact plant health and agricultural productivity through direct damage, such as sap-sucking, and indirectly as vectors of plant viruses. Plants respond to aphid feeding with a variety of molecular mechanisms to mitigate damage. These responses are diverse and highly dynamic, functioning either independently or in combination. Understanding plant-aphid interactions is crucial for revealing the full range of plant defenses against aphids. When aphids infest, plants detect the damage via specific receptor proteins, initiating a signaling cascade that activates defense mechanisms. These defenses include a complex interaction of phytohormones that trigger defense pathways, secondary metabolites that deter aphid feeding and reproduction, lectins and protease inhibitors that disrupt aphid physiology, and elicitors that activate further defense responses. Meanwhile, aphids counteract plant defenses with salivary effectors and proteins that suppress plant defenses, aiding in their successful colonization. This review offers a detailed overview of the molecular mechanisms involved in plant-aphid interactions, emphasizing both established and emerging plant defense strategies. Its uniqueness lies in synthesizing the recent progress made in plant defense responses to aphids, along with aphids' countermeasures to evade such defenses. By consolidating current knowledge, this review provides key insights for developing sustainable strategies to achieve crop protection and minimize dependence on chemical pesticides.
Collapse
Affiliation(s)
- Sunil Kumaraswamy
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Yinghua Huang
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA;
- Plant Science Research Laboratory, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 1301 N. Western Road, Stillwater, OK 74075, USA
| |
Collapse
|
7
|
Qing D, Chen W, Li J, Lu B, Huang S, Chen L, Zhou W, Pan Y, Huang J, Wu H, Peng Y, Peng D, Chen L, Zhou Y, Dai G, Deng G. TMT-based quantitative proteomics analysis of defense responses induced by the Bph3 gene following brown planthopper infection in rice. BMC PLANT BIOLOGY 2024; 24:1092. [PMID: 39558244 PMCID: PMC11575174 DOI: 10.1186/s12870-024-05799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND The brown planthopper (BPH) is an economically significant pest of rice. Bph3 is a key BPH resistance gene. However, the proteomic response of rice to BPH infestation, both in the presence and absence of Bph3, remains largely unexplored. RESULTS In this study, we employed tandem mass tag labeling in conjunction with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify differentially expressed proteins (DEPs) in rice samples. We detected 265 and 125 DEPs via comparison of samples infected with BPH for 2 and 4 days with untreated samples of the BPH-sensitive line R582. For the Bph3 introgression line R373, we identified 29 and 94 DEPs in the same comparisons. Bioinformatic analysis revealed that Bph3 significantly influences the abundance of proteins associated with metabolic pathways, secondary metabolite biosynthesis, microbial metabolism in diverse environments, and phenylpropanoid biosynthesis. Moreover, Bph3 regulates the activity of proteins involved in the calcium signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and plant hormone signal transduction. CONCLUSIONS Our results indicate that Bph3 enhances the resistance of rice to BPH mainly by inhibiting the down-regulation of proteins associated with metabolic pathways; calcium signaling, the MAPK signaling pathway, and plant hormone signal transduction might also be involved in BPH resistance induced by Bph3.
Collapse
Affiliation(s)
- Dongjin Qing
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Jingcheng Li
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Baiyi Lu
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Suosheng Huang
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Li Chen
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Weiyong Zhou
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Juan Huang
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Hao Wu
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Yujing Peng
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - De Peng
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Lei Chen
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China.
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China.
| | - Guofu Deng
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China.
| |
Collapse
|
8
|
Fan Y, Zhou H, Yan H, Li A, Qiu L, Zhou Z, Deng Y, Chen R, Wu J. Comparative transcriptomic analysis unveils candidate genes associated with sugarcane growth rate. PLANTA 2024; 260:128. [PMID: 39472317 DOI: 10.1007/s00425-024-04555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Sugarcane (Saccharum spp.) growth is regulated by intricate gene networks and hormone secretions, positively correlating with sugarcane yield. There is a rising interest in exploring how the candidate genes found in sugarcane respond to plant growth. In this study, we simulated a typical growth environment to obtain accurate phenotypic data and screened for potential genes associated with plant growth through transcriptomics. Compared to Saccharum GuiTang 42, the other variety Saccharum GuiTang 44 exhibited earlier germination, a higher emergence rate, thicker pseudostems, taller plants, and a more extensive root system. The middle buds formed the greatest number of roots, followed by the lower and upper buds. Indole-3-acetic acid (IAA) and jasmonic acid effectively promoted bud development, while abscisic acid and trans-zeatin exhibited negative correlations with sugarcane bud growth. Transcriptome data from the upper, middle, and lower buds revealed 24,158 differentially expressed genes in all three comparisons, with MAPK signaling emerging as a critical pathway. The photosynthesis-antenna protein pathway is vital for middle and lower bud development during root germination. Lastly, key gene modules related to differences in hormone content between the two varieties were defined through weighted correlation network analysis and identified. The module significantly associated with IAA was enriched in pathways such as Proteasome and Protein processing in the endoplasmic reticulum, and the upregulation of key genes involved in this gene module had a highly significant positive correlation with bud outgrowth combined with IAA secretion. In conclusion, we have elucidated the pathways of hormones during sugarcane growth and the interactions between IAA and critical genes. These in-depth findings may guide modern sugarcane breeding.
Collapse
Affiliation(s)
- Yegeng Fan
- Sugarcane Research Institute, 530007, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute, 530007, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China
| | - Haifeng Yan
- Sugarcane Research Institute, 530007, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China
| | - Aomei Li
- Sugarcane Research Institute, 530007, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China
| | - Lihang Qiu
- Sugarcane Research Institute, 530007, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China
| | - Zhongfeng Zhou
- Sugarcane Research Institute, 530007, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China
| | - Yuchi Deng
- Sugarcane Research Institute, 530007, Nanning, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China
| | - Rongfa Chen
- Sugarcane Research Institute, 530007, Nanning, China.
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China.
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China.
| | - Jianming Wu
- Sugarcane Research Institute, 530007, Nanning, China.
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Guangxi Academy of Agricultural Sciences, 530007, Nanning, China.
- Guangxi Key Laboratory of Guangxi Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, 530007, Nanning, China.
| |
Collapse
|
9
|
Li H, Shen J, Ding Y, Li Y, Du J, Jiang T, Kong X, Han R, Zhang X, Zhao X. Transcriptomic and metabolomic analysis of poplar response to feeding by Hyphantria cunea. BMC PLANT BIOLOGY 2024; 24:920. [PMID: 39354343 PMCID: PMC11446030 DOI: 10.1186/s12870-024-05631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Populus cathayana × canadansis 'Xinlin 1' ('P.'xin lin 1') with the characteristics of rapid growth and high yield, is frequently attacked by herbivorous insects. However, little is known about how it defenses against Hyphantria cunea (H. cunea) at molecular and biochemical levels. Differences in the transcriptome and metabolome were analyzed after 'P. 'xin lin 1' leaves were fed to H. cunea for 0h, 2h, 4h, 8h, 16h and 24h. In the five comparison groups including 2h vs. CK, 4h vs. CK, 8h vs. CK, 16h vs. CK, and 24h vs. CK, a total of 8925 genes and 842 metabolites were differentially expressed. A total of 825 transcription factors (TFs) were identified, which encoded 56 TF families. The results showed that the top four families with the highest number of TFs were AP2/ERF, MYB, C2C2, bHLH. Analyses of leaves which were fed to H. cunea showed that the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were significantly enriched in plant hormone signal transduction pathway, MAPK signaling pathway, flavonoid, flavone and flavonol and anthocyanin biosynthesis pathway. Additionally, there were a number of genes significantly up-regulated in MAPK signaling pathway. Some compounds involved in plant hormone signal transduction and flavonoid/flavone and flavonol/ anthocyanin pathways such as jasmonic acid (JA), jasmonoyl-L-Isoleucine (JA-Ile), kaempferol and cyanidin-3-O-glucoside were induced in infested 'P.'xin lin 1'. This study provides a new understanding for exploring the dynamic response mechanism of poplar to the infestation of H. cunea.
Collapse
Affiliation(s)
- Hanxi Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jiajia Shen
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China
| | - Yutong Ding
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China
| | - Yuxi Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China
| | - Jiayu Du
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China
| | - Xinxin Zhang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China.
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland, Jilin Agriculture University, Changchun, China.
| |
Collapse
|
10
|
Wang H, Xu W, Zhang X, Wang L, Jia S, Zhao S, Li W, Lu R, Ren A, Zhang S. Transcriptomics and metabolomics analyses of Rosa hybrida to identify heat stress response genes and metabolite pathways. BMC PLANT BIOLOGY 2024; 24:874. [PMID: 39304829 DOI: 10.1186/s12870-024-05543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Global warming has greatly increased the impact of high temperatures on crops, resulting in reduced yields and increased mortality. This phenomenon is of significant importance to the rose flower industry because high-temperature stress leads to bud dormancy or even death, reducing ornamental value and incurring economic losses. Understanding the molecular mechanisms underlying the response and resistance of roses to high-temperature stress can serve as an important reference for cultivating high-temperature-stress-resistant roses. RESULTS To evaluate the impact of high temperatures on rose plants, we measured physiological indices in rose leaves following heat stress. Protein and chlorophyll contents were significantly decreased, whereas proline and malondialdehyde (MDA) contents, and peroxidase (POD) activity were increased. Subsequently, transcriptomics and metabolomics analyses identified 4,652 common differentially expressed genes (DEGs) and 57 common differentially abundant metabolites (DAMs) in rose plants from four groups. Enrichment analysis showed that DEGs and DAMs were primarily involved in the mitogen-activated protein kinases (MAPK) signaling pathway, plant hormone signal transduction, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis. The combined analysis of the DEGs and DAMs revealed that flavonoid biosynthesis pathway-related genes, such as chalcone isomerase (CHI), shikimate O-hydroxycinnamoyl transferase (HCT), flavonol synthase (FLS), and bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR), were downregulated after heat stress. Moreover, in the MAPK signaling pathway, the expression of genes related to jasmonic acid exhibited a decrease, but ethylene receptor (ETR/ERS), P-type Cu + transporter (RAN1), ethylene-insensitive protein 2/3 (EIN2), ethylene-responsive transcription factor 1 (ERF1), and basic endochitinase B (ChiB), which are associated with the ethylene pathway, were mostly upregulated. Furthermore, heterologous overexpression of the heat stress-responsive gene RcHSP70 increased resistance to heat stress in Arabidopsis thaliana. CONCLUSION The results of this study indicated that the flavonoid biosynthesis pathway, MAPK signaling pathway, and plant hormones may be involved in high-temperature resistance in roses. Constitutive expression of RcHSP70 may contribute to increasing high-temperature tolerance. This study provides new insights into the genes and metabolites induced in roses in response to high temperature, and the results provide a reference for analyzing the molecular mechanisms underlying resistance to heat stress in roses.
Collapse
Affiliation(s)
- Hua Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Wanting Xu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaojuan Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lian Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Suqi Jia
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shuwei Zhao
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Wan Li
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Rongqianyi Lu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Aihua Ren
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, 150069, China
| | - Shuiming Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
He T, Chen L, Wu Y, Wang J, Wu Q, Sun J, Ding C, Zhou T, Chen L, Jin A, Li Y, Zhu Q. Combined Metabolome and Transcriptome Analyses of Maize Leaves Reveal Global Effect of Biochar on Mechanisms Involved in Anti-Herbivory to Spodoptera frugiperda. Metabolites 2024; 14:498. [PMID: 39330505 PMCID: PMC11433984 DOI: 10.3390/metabo14090498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Fall armyworm (FAW, Spodoptera frugiperda) has now spread to more than 26 Chinese provinces. The government is working with farmers and researchers to find ways to prevent and control this pest. The use of biochar is one of the economic and environmentally friendly strategies to increase plant growth and improve pest resistance. We tested four v/v combinations of bamboo charcoal with coconut bran [BC1 (10:1), BC2(30:1), BC3(50:1)] against a control (CK) in maize. We found that plant height, stem thickness, fresh weight and chlorophyll content were significantly higher in BC2, in addition to the lowest FAW survival %. We then compared the metabolome and transcriptome profiles of BC2 and CK maize plants under FAW herbivory. Our results show that the levels of flavonoids, amino acids and derivatives, nucleotides and derivatives and most phenolic acids decreased, while terpenoids, organic acids, lipids and defense-related hormones increased in BC-grown maize leaves. Transcriptome sequencing revealed consistent expression profiles of genes enriched in these pathways. We also observed the increased expression of genes related to abscisic acid, jasmonic acid, auxin and MAPK signaling. Based on these observations, we discussed the possible pathways involved in maize against FAW herbivory. We conclude that bamboo charcoal induces anti-herbivory responses in maize leaves.
Collapse
Affiliation(s)
- Tianjun He
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Lin Chen
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Yingjun Wu
- Ecological Forestry Development Center of Suichang County, Lishui 323300, China;
| | - Jinchao Wang
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| | - Quancong Wu
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Jiahao Sun
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Chaohong Ding
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Tianxing Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Limin Chen
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Aiwu Jin
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| | - Yang Li
- Soil Fertilizer and Plant Protection Station of Lishui City, Lishui 323000, China
| | - Qianggen Zhu
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| |
Collapse
|
12
|
Liu H, Li X, He F, Li M, Zi Y, Long R, Zhao G, Zhu L, Hong L, Wang S, Kang J, Yang Q, Chen L. Genome-wide identification and analysis of abiotic stress responsiveness of the mitogen-activated protein kinase gene family in Medicago sativa L. BMC PLANT BIOLOGY 2024; 24:800. [PMID: 39179986 PMCID: PMC11344418 DOI: 10.1186/s12870-024-05524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND The mitogen-activated protein kinase (MAPK) cascade is crucial cell signal transduction mechanism that plays an important role in plant growth and development, metabolism, and stress responses. The MAPK cascade includes three protein kinases, MAPK, MAPKK, and MAPKKK. The three protein kinases mediate signaling to downstream response molecules by sequential phosphorylation. The MAPK gene family has been identified and analyzed in many plants, however it has not been investigated in alfalfa. RESULTS In this study, Medicago sativa MAPK genes (referred to as MsMAPKs) were identified in the tetraploid alfalfa genome. Eighty MsMAPKs were divided into four groups, with eight in group A, 21 in group B, 21 in group C and 30 in group D. Analysis of the basic structures of the MsMAPKs revealed presence of a conserved TXY motif. Groups A, B and C contained a TEY motif, while group D contained a TDY motif. RNA-seq analysis revealed tissue-specificity of two MsMAPKs and tissue-wide expression of 35 MsMAPKs. Further analysis identified MsMAPK members responsive to drought, salt, and cold stress conditions. Two MsMAPKs (MsMAPK70 and MsMAPK75) responds to salt and cold stresses; two MsMAPKs (MsMAPK60 and MsMAPK73) responds to cold and drought stresses; four MsMAPKs (MsMAPK1, MsMAPK33, MsMAPK64 and MsMAPK71) responds to salt and drought stresses; and two MsMAPKs (MsMAPK5 and MsMAPK7) responded to all three stresses. CONCLUSION This study comprehensively identified and analysed the alfalfa MAPK gene family. Candidate genes related to abiotic stresses were screened by analysing the RNA-seq data. The results provide key information for further analysis of alfalfa MAPK gene functions and improvement of stress tolerance.
Collapse
Affiliation(s)
- Hao Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xianyang Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fei He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingna Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunfei Zi
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos, 017000, China
| | - Ruicai Long
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guoqing Zhao
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos, 017000, China
| | - Lihua Zhu
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos, 017000, China
| | - Ling Hong
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos, 017000, China
| | - Shiqing Wang
- Institute of Forage Crop Science, Ordos Academy of Agricultural and Animal Husbandry Sciences, Ordos, 017000, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lin Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
13
|
Dixon CW, Gschwend AR. Trichomes and unique gene expression confer insect herbivory resistance in Vitis labrusca grapevines. BMC PLANT BIOLOGY 2024; 24:609. [PMID: 38926877 PMCID: PMC11209964 DOI: 10.1186/s12870-024-05260-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Grapevine (Vitis) is one of the world's most valuable fruit crops, but insect herbivory can decrease yields. Understanding insect herbivory resistance is critical to mitigating these losses. Vitis labrusca, a wild North American grapevine species, has been leveraged in breeding programs to generate hybrid grapevines with enhanced abiotic and biotic stress resistance, rendering it a valuable genetic resource for sustainable viticulture. This study assessed the resistance of V. labrusca acc. 'GREM4' and Vitis vinifera cv. 'PN40024' grapevines to Popillia japonica (Japanese beetle) herbivory and identified morphological and genetic adaptations underlying this putative resistance. RESULTS 'GREM4' displayed greater resistance to beetle herbivory compared to 'PN40024' in both choice and no-choice herbivory assays spanning periods of 30 min to 19 h. 'GREM4' had significantly higher average leaf trichome densities than 'PN40024' and beetles preferred to feed on the side of leaves with fewer trichomes. When leaves from each species that specifically did not differ in trichome densities were fed on by beetles, significantly less leaf area was damaged in 'GREM4' (3.29mm2) compared to 'PN40024' (9.80mm2), suggesting additional factors beyond trichomes contributed to insect herbivory resistance in 'GREM4'. Comparative transcriptomic analyses revealed 'GREM4' exhibited greater constitutive (0 h) expression of defense response and secondary metabolite biosynthesis genes compared to 'PN40024', indicative of heightened constitutive defenses. Upon herbivory, 'GREM4' displayed a greater number of differentially expressed genes (690) compared to 'PN40024' (502), suggesting a broader response. Genes up-regulated in 'GREM4' were enriched in terpene biosynthesis, flavonoid biosynthesis, phytohormone signaling, and disease defense-related functions, likely contributing to heighted insect herbivory defense, while genes differentially expressed in 'PN40024' under herbivory were enriched in xyloglucan, cell wall formation, and calcium ion binding. The majority of genes implicated in insect herbivory defense were orthologs with specific expression patterns in 'GREM4' and 'PN40024', but some paralogous and genome-specific genes also likely contributed to conferring resistance. CONCLUSIONS Our findings suggest that 'GREM4' insect herbivory resistance was attributed to a combination of factors, including trichomes and unique constitutive and inducible expression of genes implicated in terpene, flavonoid, and phenylpropanoid biosynthesis, as well as pathogen defense.
Collapse
Affiliation(s)
- Cullen W Dixon
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Andrea R Gschwend
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
14
|
Shrestha K, Huang J, Yan L, Doust AN, Huang Y. Integrated transcriptomic and pathway analyses of sorghum plants revealed the molecular mechanisms of host defense against aphids. FRONTIERS IN PLANT SCIENCE 2024; 15:1324085. [PMID: 38903420 PMCID: PMC11187118 DOI: 10.3389/fpls.2024.1324085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/03/2024] [Indexed: 06/22/2024]
Abstract
Sugarcane aphid has emerged as a major pest of sorghum recently, and a few sorghum accessions were identified for resistance to this aphid so far. However, the molecular and genetic mechanisms underlying this resistance are still unclear. To understand these mechanisms, transcriptomics was conducted in resistant Tx2783 and susceptible BTx623 sorghum genotypes infested with sugarcane aphids. A principal component analysis revealed differences in the transcriptomic profiles of the two genotypes. The pathway analysis of the differentially expressed genes (DEGs) indicated the upregulation of a set of genes related to signal perception (nucleotide-binding, leucine-rich repeat proteins), signal transduction [mitogen-activated protein kinases signaling, salicylic acid (SA), and jasmonic acid (JA)], and plant defense (transcription factors, flavonoids, and terpenoids). The upregulation of the selected DEGs was verified by real-time quantitative PCR data analysis, performed on the resistant and susceptible genotypes. A phytohormone bioassay experiment showed a decrease in aphid population, plant mortality, and damage in the susceptible genotype when treated with JA and SA. Together, the results indicate that the set of genes, pathways, and defense compounds is involved in host plant resistance to aphids. These findings shed light on the specific role of each DEG, thus advancing our understanding of the genetic and molecular mechanisms of host plant resistance to aphids.
Collapse
Affiliation(s)
- Kumar Shrestha
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| | - Jian Huang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Andrew N. Doust
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| | - Yinghua Huang
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
- Plant Science Research Laboratory, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Stillwater, OK, United States
| |
Collapse
|
15
|
Pastierovič F, Mogilicherla K, Hradecký J, Kalyniukova A, Dvořák O, Roy A, Tomášková I. Genome-Wide Transcriptomic and Metabolomic Analyses Unveiling the Defence Mechanisms of Populus tremula against Sucking and Chewing Insect Herbivores. Int J Mol Sci 2024; 25:6124. [PMID: 38892311 PMCID: PMC11172939 DOI: 10.3390/ijms25116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Plants and insects coevolved as an evolutionarily successful and enduring association. The molecular arms race led to evolutionary novelties regarding unique mechanisms of defence and detoxification in plants and insects. While insects adopt mechanisms to conquer host defence, trees develop well-orchestrated and species-specific defence strategies against insect herbivory. However, current knowledge on the molecular underpinnings of fine-tuned tree defence responses against different herbivore insects is still restricted. In the current study, using a multi-omics approach, we unveiled the defence response of Populus tremula against aphids (Chaitophorus populialbae) and spongy moths (Lymantria dispar) herbivory. Comparative differential gene expression (DGE) analyses revealed that around 272 and 1203 transcripts were differentially regulated in P. tremula after moth and aphid herbivory compared to uninfested controls. Interestingly, 5716 transcripts were differentially regulated in P. tremula between aphids and moth infestation. Further investigation showed that defence-related stress hormones and their lipid precursors, transcription factors, and signalling molecules were over-expressed, whereas the growth-related counterparts were suppressed in P. tremula after aphid and moth herbivory. Metabolomics analysis documented that around 37% of all significantly abundant metabolites were associated with biochemical pathways related to tree growth and defence. However, the metabolic profiles of aphid and moth-fed trees were quite distinct, indicating species-specific response optimization. After identifying the suitable reference genes in P. tremula, the omics data were further validated using RT-qPCR. Nevertheless, our findings documented species-specific fine-tuning of the defence response of P. tremula, showing conservation on resource allocation for defence overgrowth under aphid and moth herbivory. Such findings can be exploited to enhance our current understanding of molecular orchestration of tree responses against herbivory and aid in developing insect pest resistance P. tremula varieties.
Collapse
Affiliation(s)
- Filip Pastierovič
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ 165 00 Praha, Suchdol, Czech Republic; (F.P.); (K.M.); (J.H.); (A.K.); (O.D.); (A.R.)
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ 165 00 Praha, Suchdol, Czech Republic; (F.P.); (K.M.); (J.H.); (A.K.); (O.D.); (A.R.)
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad 500030, Telangana, India
| | - Jaromír Hradecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ 165 00 Praha, Suchdol, Czech Republic; (F.P.); (K.M.); (J.H.); (A.K.); (O.D.); (A.R.)
| | - Alina Kalyniukova
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ 165 00 Praha, Suchdol, Czech Republic; (F.P.); (K.M.); (J.H.); (A.K.); (O.D.); (A.R.)
| | - Ondřej Dvořák
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ 165 00 Praha, Suchdol, Czech Republic; (F.P.); (K.M.); (J.H.); (A.K.); (O.D.); (A.R.)
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ 165 00 Praha, Suchdol, Czech Republic; (F.P.); (K.M.); (J.H.); (A.K.); (O.D.); (A.R.)
| | - Ivana Tomášková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ 165 00 Praha, Suchdol, Czech Republic; (F.P.); (K.M.); (J.H.); (A.K.); (O.D.); (A.R.)
| |
Collapse
|
16
|
Farooq S, Lone ML, Ul Haq A, Parveen S, Altaf F, Tahir I. Signalling cascades choreographing petal cell death: implications for postharvest quality. PLANT MOLECULAR BIOLOGY 2024; 114:63. [PMID: 38805152 DOI: 10.1007/s11103-024-01449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
Senescence is a multifaceted and dynamic developmental phase pivotal in the plant's lifecycle, exerting significant influence and involving intricate regulatory mechanisms marked by a variety of structural, biochemical and molecular alterations. Biochemical changes, including reactive oxygen species (ROS) generation, membrane deterioration, nucleic acid degradation and protein degradation, characterize flower senescence. The progression of senescence entails a meticulously orchestrated network of interconnected molecular mechanisms and signalling pathways, ensuring its synchronized and efficient execution. Within flowering plants, petal senescence emerges as a crucial aspect significantly impacting flower longevity and postharvest quality, emphasizing the pressing necessity of unravelling the underlying signalling cascades orchestrating this process. Understanding the complex signalling pathways regulating petal senescence holds paramount importance, not only shedding light on the broader phenomenon of plant senescence but also paving the way for the development of targeted strategies to enhance the postharvest longevity of cut flowers. Various signalling pathways participate in petal senescence, encompassing hormone signalling, calcium signalling, protein kinase signalling and ROS signalling. Among these, the ethylene signalling pathway is extensively studied, and the manipulation of genes associated with ethylene biosynthesis or signal transduction has demonstrated the potential to enhance flower longevity. A thorough understanding of these complex pathways is critical for effectively delaying flower senescence, thereby enhancing postharvest quality and ornamental value. Therefore, this review adopts a viewpoint that combines fundamental research into the molecular intricacies of senescence with a practical orientation towards developing strategies for improving the postharvest quality of cut flowers. The innovation of this review is to shed light on the pivotal signalling cascades underpinning flower senescence and offer insights into potential approaches for modulating these pathways to postpone petal senescence in ornamental plants.
Collapse
Affiliation(s)
- Sumira Farooq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Mohammad Lateef Lone
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Aehsan Ul Haq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Shazia Parveen
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Foziya Altaf
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Inayatullah Tahir
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
17
|
Wang F, Liang S, Wang G, Wang Q, Xu Z, Li B, Fu C, Fan Y, Hu T, Alariqi M, Hussain A, Cao J, Li J, Zhang X, Jin S. Comprehensive analysis of MAPK gene family in upland cotton (Gossypium hirsutum) and functional characterization of GhMPK31 in regulating defense response to insect infestation. PLANT CELL REPORTS 2024; 43:102. [PMID: 38499710 PMCID: PMC10948490 DOI: 10.1007/s00299-024-03167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024]
Abstract
KEY MESSAGE The transcriptomic, phenotypic and metabolomic analysis of transgenic plants overexpressing GhMPK31 in upland cotton revealed the regulation of H2O2 burst and the synthesis of defensive metabolites by GhMPK31. Mitogen-activated protein kinases (MAPKs) are a crucial class of protein kinases, which play an essential role in various biological processes in plants. Upland cotton (G. hirsutum) is the most widely cultivated cotton species with high economic value. To gain a better understanding of the role of the MAPK gene family, we conducted a comprehensive analysis of the MAPK gene family in cotton. In this study, a total of 55 GhMPK genes were identified from the whole genome of G. hirsutum. Through an investigation of the expression patterns under diverse stress conditions, we discovered that the majority of GhMPK family members demonstrated robust responses to abiotic stress, pathogen stress and pest stress. Furthermore, the overexpression of GhMPK31 in cotton leaves led to a hypersensitive response (HR)-like cell death phenotype and impaired the defense capability of cotton against herbivorous insects. Transcriptome and metabolomics data analysis showed that overexpression of GhMPK31 enhanced the expression of H2O2-related genes and reduced the accumulation of defensive related metabolites. The direct evidence of GhMPK31 interacting with GhRBOHB (H2O2-generating protein) were found by Y2H, BiFC, and LCI. Therefore, we propose that the increase of H2O2 content caused by overexpression of GhMPK31 resulted in HR-like cell death in cotton leaves while reducing the accumulation of defensive metabolites, ultimately leading to a decrease in the defense ability of cotton against herbivorous insects. This study provides valuable insights into the function of MAPK genes in plant resistance to herbivorous insects.
Collapse
Affiliation(s)
- Fuqiu Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sijia Liang
- Academy of Industry Innovation and Development, Huanghuai University, Zhumadian, 463000, Henan, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyang Fu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yibo Fan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianyu Hu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muna Alariqi
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Amjad Hussain
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinglin Cao
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, Hubei, People's Republic of China.
| | - Jian Li
- The Southern Xinjiang Research Institute of Shihezi University, TuMu ShuKe, Xinjiang, 843900, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
18
|
Truong TTT, Chiu CC, Su PY, Chen JY, Nguyen TP, Ohme-Takagi M, Lee RH, Cheng WH, Huang HJ. Signaling pathways involved in microbial indoor air pollutant 3-methyl-1-butanol in the induction of stomatal closure in Arabidopsis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7556-7568. [PMID: 38165546 DOI: 10.1007/s11356-023-31641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/17/2023] [Indexed: 01/04/2024]
Abstract
Indoor air pollution is a global problem and one of the main stress factors that has negative effects on plant and human health. 3-methyl-1-butanol (3MB), an indoor air pollutant, is a microbial volatile organic compound (mVOC) commonly found in damp indoor dwellings. In this study, we reported that 1 mg/L of 3MB can elicit a significant reduction in the stomatal aperture ratio in Arabidopsis and tobacco. Our results also showed that 3MB enhances the reactive oxygen species (ROS) production in guard cells of wild-type Arabidopsis after 24 h exposure. Further investigation of 24 h 3MB fumigation of rbohD, the1-1, mkk1, mkk3, and nced3 mutants revealed that ROS production, cell wall integrity, MAPK kinases cascade, and phytohormone abscisic acid are all involved in the process of 3MB-induced stomatal. Our findings proposed a mechanism by which 3MB regulates stomatal closure in Arabidopsis. Understanding the mechanisms by which microbial indoor air pollutant induces stomatal closure is critical for modulating the intake of harmful gases from indoor environments into leaves. Investigations into how stomata respond to the indoor mVOC 3MB will shed light on the plant's "self-defense" system responding to indoor air pollution.
Collapse
Affiliation(s)
- Tu-Trinh Thi Truong
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
- Faculty of Technology, The University of Danang-Campus in Kontum, No. 704 Phan Dinh Phung, Kontum, Vietnam
| | - Chi-Chou Chiu
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Pei-Yu Su
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Jing-Yu Chen
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Tri-Phuong Nguyen
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Masaru Ohme-Takagi
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Ruey-Hua Lee
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, Taiwan
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan.
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan.
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan.
| |
Collapse
|
19
|
Wang X, Xiang Y, Sun M, Xiong Y, Li C, Zhang T, Ma W, Wang Y, Liu X. Transcriptomic and metabolomic analyses reveals keys genes and metabolic pathways in tea (Camellia sinensis) against six-spotted spider mite (Eotetranychus Sexmaculatus). BMC PLANT BIOLOGY 2023; 23:638. [PMID: 38072959 PMCID: PMC10712147 DOI: 10.1186/s12870-023-04651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Six-spotted spider mite (Eotetranychus sexmaculatus) is one of the most damaging pests of tea (Camellia sinensis). E. sexmaculatus causes great economic loss and affects tea quality adversely. In response to pests, such as spider mites, tea plants have evolved resistance mechanisms, such as expression of defense-related genes and defense-related metabolites. RESULTS To evaluate the biochemical and molecular mechanisms of resistance in C. sinensis against spider mites, "Tianfu-5" (resistant to E. sexmaculatus) and "Fuding Dabai" (susceptible to E. sexmaculatus) were inoculated with spider mites. Transcriptomics and metabolomics based on RNA-Seq and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) technology were used to analyze changes in gene expression and metabolite content, respectively. RNA-Seq data analysis revealed that 246 to 3,986 differentially expressed genes (DEGs) were identified in multiple compared groups, and these DEGs were significantly enriched in various pathways, such as phenylpropanoid and flavonoid biosynthesis, plant-pathogen interactions, MAPK signaling, and plant hormone signaling. Additionally, the metabolome data detected 2,220 metabolites, with 194 to 260 differentially abundant metabolites (DAMs) identified in multiple compared groups, including phenylalanine, lignin, salicylic acid, and jasmonic acid. The combined analysis of RNA-Seq and metabolomic data indicated that phenylpropanoid and flavonoid biosynthesis, MAPK signaling, and Ca2+-mediated PR-1 signaling pathways may contribute to spider mite resistance. CONCLUSIONS Our findings provide insights for identifying insect-induced genes and metabolites and form a basis for studies on mechanisms of host defense against spider mites in C. sinensis. The candidate genes and metabolites identified will be a valuable resource for tea breeding in response to biotic stress.
Collapse
Affiliation(s)
- Xiaoping Wang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.
| | - Yunjia Xiang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Minshan Sun
- Henan Assist Research Biotechnology Co., Ltd, Zhengzhou, China
| | - Yuanyuan Xiong
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chunhua Li
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ting Zhang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Weiwei Ma
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yun Wang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiao Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
20
|
Shi S, Wang H, Zha W, Wu Y, Liu K, Xu D, He G, Zhou L, You A. Recent Advances in the Genetic and Biochemical Mechanisms of Rice Resistance to Brown Planthoppers ( Nilaparvata lugens Stål). Int J Mol Sci 2023; 24:16959. [PMID: 38069282 PMCID: PMC10707318 DOI: 10.3390/ijms242316959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is the staple food of more than half of Earth's population. Brown planthopper (Nilaparvata lugens Stål, BPH) is a host-specific pest of rice responsible for inducing major losses in rice production. Utilizing host resistance to control N. lugens is considered to be the most cost-effective method. Therefore, the exploration of resistance genes and resistance mechanisms has become the focus of breeders' attention. During the long-term co-evolution process, rice has evolved multiple mechanisms to defend against BPH infection, and BPHs have evolved various mechanisms to overcome the defenses of rice plants. More than 49 BPH-resistance genes/QTLs have been reported to date, and the responses of rice to BPH feeding activity involve various processes, including MAPK activation, plant hormone production, Ca2+ flux, etc. Several secretory proteins of BPHs have been identified and are involved in activating or suppressing a series of defense responses in rice. Here, we review some recent advances in our understanding of rice-BPH interactions. We also discuss research progress in controlling methods of brown planthoppers, including cultural management, trap cropping, and biological control. These studies contribute to the establishment of green integrated management systems for brown planthoppers.
Collapse
Affiliation(s)
- Shaojie Shi
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Huiying Wang
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Wenjun Zha
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Yan Wu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Kai Liu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Deze Xu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Zhou
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Aiqing You
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
21
|
Yajnik KN, Gupta SRR, Taneja M, Singh IK, Singh A. Deciphering mitogen activated protein kinase pathway activated during insect attack in Nicotiana attenuata. J Biomol Struct Dyn 2023; 42:11586-11602. [PMID: 37811559 DOI: 10.1080/07391102.2023.2263795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
Plant yields are compromised due to abiotic and biotic stresses. A crucial biotic stress instigated by insect attack, is a major concern that limits crop production. To overcome the deleterious effect of herbivory, pesticides are used but long-term usage of pesticides can be harmful to the environment and human health. Understanding the plants' inherent defense mechanism by interpreting the interaction pattern of defense-related proteins and signalling components and manipulating them to strengthen defense status, is one of the alternative approaches of green biotechnology. During insect attack, host plants initiate innumerable signalling pathways to activate defense response; Mitogen Activated Protein Kinase (MAPK) Pathway is a crucial component of signalling pathway that regulate the expression of downstream defense-related genes. MAPK pathway has three components: MAPKKK, MAPKK and MAPK. Earlier studies have shown participation of SIPK and WIPK (MAPKs) as well as MEK2 (MAPKK) during insect infestation and its association with plant defense. However, information on the third component and elucidation of the complete MAPK pathway are still elusive. Therefore, this study aims to identify the unknown component and decipher MAPK pathway in Nicotiana attenuata involved in plant defense against herbivory by identifying herbivory-inducible MAPKKKs and and their interaction with known partners of the MAPK pathway by docking and MD simulation. The possible pathway was predicted to be MAPKKK Na12134/Na04522-MEK2-SIPK/WIPK. Further, validation of the above interaction by in vitro and in vivo methods is highly recommended.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kalpesh Nath Yajnik
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
| | - Shradheya R R Gupta
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Mansi Taneja
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India
| |
Collapse
|
22
|
Xiang X, Liu S, Li H, Danso Ofori A, Yi X, Zheng A. Defense Strategies of Rice in Response to the Attack of the Herbivorous Insect, Chilo suppressalis. Int J Mol Sci 2023; 24:14361. [PMID: 37762665 PMCID: PMC10531896 DOI: 10.3390/ijms241814361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Chilo suppressalis is a notorious pest that attacks rice, feeding throughout the entire growth period of rice and posing a serious threat to rice production worldwide. Due to the boring behavior and overlapping generations of C. suppressalis, the pest is difficult to control. Moreover, no rice variety with high resistance to the striped stem borer (SSB) has been found in the available rice germplasm, which also poses a challenge to controlling the SSB. At present, chemical control is widely used in agricultural production to manage the problem, but its effect is limited and it also pollutes the environment. Therefore, developing genetic resistance is the only way to avoid the use of chemical insecticides. This article primarily focuses on the research status of the induced defense of rice against the SSB from the perspective of immunity, in which plant hormones (such as jasmonic acid and ethylene) and mitogen-activated protein kinases (MAPKs) play an important role in the immune response of rice to the SSB. The article also reviews progress in using transgenic technology to study the relationship between rice and the SSB as well as exploring the resistance genes. Lastly, the article discusses prospects for future research on rice's resistance to the SSB.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (X.X.); (S.L.); (H.L.); (A.D.O.); (X.Y.)
| |
Collapse
|
23
|
Zhu C, Yi X, Yang M, Liu Y, Yao Y, Zi S, Chen B, Xiao G. Comparative Transcriptome Analysis of Defense Response of Potato to Phthorimaea operculella Infestation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3092. [PMID: 37687339 PMCID: PMC10490199 DOI: 10.3390/plants12173092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The potato tuber moth (PTM), Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), is one of the most destructive pests of potato crops worldwide. Although it has been reported how potatoes integrate the early responses to various PTM herbivory stimuli by accumulatively adding the components, the broad-scale defense signaling network of potato to single stimuli at multiple time points are unclear. Therefore, we compared three potato transcriptional profiles of undamaged plants, mechanically damaged plants and PTM-feeding plants at 3 h, 48 h, and 96 h, and further analyzed the gene expression patterns of a multitude of insect resistance-related signaling pathways, including phytohormones, reactive oxygen species, secondary metabolites, transcription factors, MAPK cascades, plant-pathogen interactions, protease inhibitors, chitinase, and lectins, etc. in the potato under mechanical damage and PTM infestation. Our results suggested that the potato transcriptome showed significant responses to mechanical damage and potato tuber moth infestation, respectively. The potato transcriptome responses modulated over time and were higher at 96 than at 48 h, so transcriptional changes in later stages of PTM infestation may underlie the potato recovery response. Although the transcriptional profiles of mechanically damaged and PTM-infested plants overlap extensively in multiple signaling pathways, some genes are uniquely induced or repressed. True herbivore feeding induced more and stronger gene expression compared to mechanical damage. In addition, we identified 2976, 1499, and 117 genes that only appeared in M-vs-P comparison groups by comparing the transcriptomes of PTM-damaged and mechanically damaged potatoes at 3 h, 48 h, and 96 h, respectively, and these genes deserve further study in the future. This transcriptomic dataset further enhances the understanding of the interactions between potato and potato tuber moth, enriches the molecular resources in this research area and paves the way for breeding insect-resistant potatoes.
Collapse
Affiliation(s)
- Chunyue Zhu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Xiaocui Yi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Miao Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Yiyi Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Yao Yao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Shengjiang Zi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Bin Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Guanli Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| |
Collapse
|
24
|
Yang X, Yan Z, Li X, Li Y, Li K. Chemical cues in the interaction of herbivory-prey induce consumer-specific morphological and chemical defenses in Phaeocystis globosa. HARMFUL ALGAE 2023; 126:102450. [PMID: 37290885 DOI: 10.1016/j.hal.2023.102450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023]
Abstract
Bloom-forming algae Phaeocystis globosa is one of the most successful blooming algae in the oceans due to its capacity to sense grazer-associated chemical cues and respond adaptively to these grazer-specific cues with opposing shifts in phenotype. P. globosa produces toxic and deterrent compounds as chemical defenses. However, the origin of the signals and underlying mechanisms that triggered the morphological and chemical defenses remain enigmatic. Rotifer was chosen to establish an herbivore-phytoplankton interaction with P. globosa. The influences of rotifer kairomone and conspecific-grazed cue on morphological and chemical defenses in P. globosa were investigated. As a result, rotifer kairomones elicited morphological defenses and broad-spectrum chemical defenses, whereas algae-grazed cues elicited morphological defenses and consumer-specific chemical defenses. According to multi-omics findings, the difference in hemolytic toxicity caused by different stimuli may be related to the upregulation of lipid metabolism pathways and increased lipid metabolite content, while the inhibition of colonial formation and development of P. globosa may be caused by the downscaled production and secretion of glycosaminoglycans. The study demonstrated that zooplankton consumption cues were recognized by intraspecific prey and elicited consumer-specific chemical defenses, highlighting the chemical ecology of herbivore-phytoplankton interactions in the marine ecosystem.
Collapse
Affiliation(s)
- Xiao Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Ocean, Yantai University, Yantai 266071, China
| | - Xiaodong Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
25
|
Zha W, Li C, Wu Y, Chen J, Li S, Sun M, Wu B, Shi S, Liu K, Xu H, Li P, Liu K, Yang G, Chen Z, Xu D, Zhou L, You A. Single-Cell RNA sequencing of leaf sheath cells reveals the mechanism of rice resistance to brown planthopper ( Nilaparvata lugens). FRONTIERS IN PLANT SCIENCE 2023; 14:1200014. [PMID: 37404541 PMCID: PMC10316026 DOI: 10.3389/fpls.2023.1200014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 07/06/2023]
Abstract
The brown planthopper (BPH) (Nilaparvata lugens) sucks rice sap causing leaves to turn yellow and wither, often leading to reduced or zero yields. Rice co-evolved to resist damage by BPH. However, the molecular mechanisms, including the cells and tissues, involved in the resistance are still rarely reported. Single-cell sequencing technology allows us to analyze different cell types involved in BPH resistance. Here, using single-cell sequencing technology, we compared the response offered by the leaf sheaths of the susceptible (TN1) and resistant (YHY15) rice varieties to BPH (48 hours after infestation). We found that the 14,699 and 16,237 cells (identified via transcriptomics) in TN1 and YHY15 could be annotated using cell-specific marker genes into nine cell-type clusters. The two rice varieties showed significant differences in cell types (such as mestome sheath cells, guard cells, mesophyll cells, xylem cells, bulliform cells, and phloem cells) in the rice resistance mechanism to BPH. Further analysis revealed that although mesophyll, xylem, and phloem cells are involved in the BPH resistance response, the molecular mechanism used by each cell type is different. Mesophyll cell may regulate the expression of genes related to vanillin, capsaicin, and ROS production, phloem cell may regulate the cell wall extension related genes, and xylem cell may be involved in BPH resistance response by controlling the expression of chitin and pectin related genes. Thus, rice resistance to BPH is a complicated process involving multiple insect resistance factors. The results presented here will significantly promote the investigation of the molecular mechanisms underlying the resistance of rice to insects and accelerate the breeding of insect-resistant rice varieties.
Collapse
Affiliation(s)
- Wenjun Zha
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Changyan Li
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yan Wu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Junxiao Chen
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Sanhe Li
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Minshan Sun
- Henan Assist Research Biotechnology Co., Ltd., Zhengzhou, China
| | - Bian Wu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kai Liu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huashan Xu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Peide Li
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kai Liu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guocai Yang
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhijun Chen
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Deze Xu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Lei Zhou
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Aiqing You
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
26
|
Luo M, Li B, Jander G, Zhou S. Non-volatile metabolites mediate plant interactions with insect herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1164-1177. [PMID: 36891808 DOI: 10.1111/tpj.16180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Non-volatile metabolites constitute the bulk of plant biomass. From the perspective of plant-insect interactions, these structurally diverse compounds include nutritious core metabolites and defensive specialized metabolites. In this review, we synthesize the current literature on multiple scales of plant-insect interactions mediated by non-volatile metabolites. At the molecular level, functional genetics studies have revealed a large collection of receptors targeting plant non-volatile metabolites in model insect species and agricultural pests. By contrast, examples of plant receptors of insect-derived molecules remain sparse. For insect herbivores, plant non-volatile metabolites function beyond the dichotomy of core metabolites, classed as nutrients, and specialized metabolites, classed as defensive compounds. Insect feeding tends to elicit evolutionarily conserved changes in plant specialized metabolism, whereas its effect on plant core metabolism varies widely based the interacting species. Finally, several recent studies have demonstrated that non-volatile metabolites can mediate tripartite communication on the community scale, facilitated by physical connections established through direct root-to-root communication, parasitic plants, arbuscular mycorrhizae and the rhizosphere microbiome. Recent advances in both plant and insect molecular biology will facilitate further research on the role of non-volatile metabolites in mediating plant-insect interactions.
Collapse
Affiliation(s)
- Mei Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bin Li
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Entomology, China Agricultural University, Beijing, 100091, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
27
|
Huerta AI, Sancho-Andrés G, Montesinos JC, Silva-Navas J, Bassard S, Pau-Roblot C, Kesten C, Schlechter R, Dora S, Ayupov T, Pelloux J, Santiago J, Sánchez-Rodríguez C. The WAK-like protein RFO1 acts as a sensor of the pectin methylation status in Arabidopsis cell walls to modulate root growth and defense. MOLECULAR PLANT 2023; 16:865-881. [PMID: 37002606 PMCID: PMC10168605 DOI: 10.1016/j.molp.2023.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 05/04/2023]
Abstract
Most organisms adjust their development according to the environmental conditions. For the majority, this implies the sensing of alterations to cell walls caused by different cues. Despite the relevance of this process, few molecular players involved in cell wall sensing are known and characterized. Here, we show that the wall-associated kinase-like protein RESISTANCE TO FUSARIUM OXYSPORUM 1 (RFO1) is required for plant growth and early defense against Fusarium oxysporum and functions by sensing changes in the pectin methylation levels in the cell wall. The RFO1 dwell time at the plasma membrane is affected by the pectin methylation status at the cell wall, regulating MITOGEN-ACTIVATED PROTEIN KINASE and gene expression. We show that the extracellular domain of RFO1 binds de-methylated pectin in vitro, whose distribution in the cell wall is altered during F. oxysporum infection. Further analyses also indicate that RFO1 is required for the BR-dependent plant growth alteration in response to inhibition of pectin de-methyl-esterase activity at the cell wall. Collectively, our work demonstrates that RFO1 is a sensor of the pectin methylation status that plays a unique dual role in plant growth and defense against vascular pathogens.
Collapse
Affiliation(s)
- Apolonio I Huerta
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | | | | | - Javier Silva-Navas
- University of Lausanne, Department of Plant Molecular Biology, Lausanne, Switzerland
| | - Solène Bassard
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Christopher Kesten
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Rudolf Schlechter
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Susanne Dora
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Temurkhan Ayupov
- ETH Zurich, Institute of Molecular Plant Biology (D-BIOL), Zurich, Switzerland
| | - Jérôme Pelloux
- UMRT INRAE 1158 BioEcoAgro - BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Julia Santiago
- University of Lausanne, Department of Plant Molecular Biology, Lausanne, Switzerland
| | | |
Collapse
|
28
|
Chen L, Song H, Xin J, Dong G, Xu F, Su Y, Yang M, Sun H. Comprehensive genome-wide identification and functional characterization of MAPK cascade gene families in Nelumbo. Int J Biol Macromol 2023; 233:123543. [PMID: 36740124 DOI: 10.1016/j.ijbiomac.2023.123543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/25/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascade signaling pathway plays pivotal roles in various plant biological processes. However, systematic study of MAPK cascade gene families is yet to be conducted in lotus. Herein, 198 putative MAPK genes, including 152 MAP3Ks, 15 MKKs, and 31 MPKs genes were identified in Nelumbo. Segmental duplication was identified as the predominant factor driving MAPK cascade gene family expansion in lotus. MAPK cascade genes in N. nucifera and N. lutea shared high degree of sequence homologies, with 84, 9, and 19 homologous MAP3K, MKK, and MPK gene pairs being detected between the two species, respectively, with most genes predominantly undergoing purifying selection. Gene expression profiling indicated that NnMAPK cascade genes were extensively involved in plant development and submergence stress response. Co-expression analysis revealed potential interaction between transcription factors (TFs) and NnMAPK cascade genes in various biological processes. NnMKK showed predicted interactions with multiple NnMAP3K or NnMPK proteins, which suggested that functional diversity of MAPK cascade genes could be as a result of their complex protein interaction mechanisms. This first systematic analysis of MAPK cascade families in lotus provides deeper insights into their evolutionary dynamics and functional properties, which potentially could be crucial for lotus genetic improvement.
Collapse
Affiliation(s)
- Lin Chen
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Heyun Song
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Xin
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Fei Xu
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Yanyan Su
- Amway (China) Botanical R&D Centre, Wuxi, China
| | - Mei Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China.
| | - Heng Sun
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China.
| |
Collapse
|
29
|
Liu L, Yan W, Liu B. Transcriptome sequencing of Cocos nucifera leaves in response to Rhynchophorus ferrugineus infestation. Front Genet 2023; 14:1115392. [PMID: 36824438 PMCID: PMC9942928 DOI: 10.3389/fgene.2023.1115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Red palm weevil (RPW, Rhynchophorus ferrugineus) is an invasive pest of palms. In China, coconut (Cocos nucifera) production is being significantly affected by the RPW attack. To develop a long-term RPW control strategy, host-plant resistance is the most sustainable option. In this regard, the availability of transcriptome sequencing data from RPW-infected coconut plants can be highly useful. Therefore, the present study assessed coconut leaf physiological responses and transcriptional changes after different days of RPW attack i.e., 5, 10, 15, 20, and 25 days after infestation (DAI). A comparison of physiological data indicated that populations with the higher number of RPW insects i.e., population C (15 males +21 females) and D (20 males +28 females) triggered higher antioxidant enzyme activities. We used this data to study the transcriptomic responses on 5 and 20 DAI. Of the 38,432 detected transcripts, 3,984, 1,981, 3,925, and 2,257 were differentially expressed in CK (control/no RPW)_vs._C (5 DAI), CK_vs._D (5 DAI), CK_vs._C (20 DAI), and CK_vs._D (20 DAI), respectively. These transcripts were enriched in plant-pathogen interaction, phenylpropanoid/flavonoid biosynthesis, amino sugar and nucleotide sugar metabolism, plant hormone signal transduction, mitogen-activated protein kinase, and reactive oxygen scavenging pathway. We discuss these results and present several candidate genes to be manipulated for developing a sustainable strategy to control RPW attack regarding host-plant resistance. Furthermore, these findings provide a basis for developing effective early and late RPW attack detection strategies.
Collapse
Affiliation(s)
- Li Liu
- *Correspondence: Li Liu, ; Wei Yan,
| | - Wei Yan
- *Correspondence: Li Liu, ; Wei Yan,
| | - Bo Liu
- Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|
30
|
Niu XJ, Wang LJ, Meng H, Wang HF, Xu BH, Wang C. Role of c-Jun NH 2 -terminal kinase-mediated mitogen-activated protein kinase pathway in response to pesticides in Apis cerana cerana. INSECT SCIENCE 2023; 30:47-64. [PMID: 35548935 DOI: 10.1111/1744-7917.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade pathway plays an important role in regulating stress responses. The function of the c-Jun NH2 -terminal kinase (JNK), a component of the MAPK cascade pathway, in Apis cerana cerana (Acc) remains unclear. Here, JNK was isolated and identified from Acc. Bioinformatics analyses revealed there is a typical serine/threonine protein kinase catalytic domain in the AccJNK protein. An expression profile analysis showed that AccJNK was significantly induced by pesticide treatments. To further explore the functional mechanisms of AccJNK, a yeast 2-hybrid screen was performed, activator protein-1 (AP-1) was screened as the interaction partner of AccJNK, and the interaction relationship was further verified by pull-down assay. Quantitative real-time polymerase chain reaction showed the expression pattern of AccAP-1 was similar to that of AccJNK. After a knockdown of AccJNK or AccAP-1 by RNA interference, the survival rate of Acc after pesticide treatments increased. Additionally, the expression levels of antioxidant-related genes and the activities of antioxidant enzymes increased, suggesting that the knockdown of AccJNK or AccAP-1 increased the antioxidant capacity of bees. Our study revealed that the JNK-mediated MAPK pathway responds to pesticide stress by altering the antioxidant capacity of Acc.
Collapse
Affiliation(s)
- Xiao-Jing Niu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| | - Li-Jun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hui Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hong-Fang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong Province, China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| |
Collapse
|
31
|
Integration of Electrical Signals and Phytohormones in the Control of Systemic Response. Int J Mol Sci 2023; 24:ijms24010847. [PMID: 36614284 PMCID: PMC9821543 DOI: 10.3390/ijms24010847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Plants are constantly exposed to environmental stresses. Local stimuli sensed by one part of a plant are translated into long-distance signals that can influence the activities in distant tissues. Changes in levels of phytohormones in distant parts of the plant occur in response to various local stimuli. The regulation of hormone levels can be mediated by long-distance electrical signals, which are also induced by local stimulation. We consider the crosstalk between electrical signals and phytohormones and identify interaction points, as well as provide insights into the integration nodes that involve changes in pH, Ca2+ and ROS levels. This review also provides an overview of our current knowledge of how electrical signals and hormones work together to induce a systemic response.
Collapse
|
32
|
Romero-Hernandez G, Martinez M. Opposite roles of MAPKKK17 and MAPKKK21 against Tetranychus urticae in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1038866. [PMID: 36570948 PMCID: PMC9768502 DOI: 10.3389/fpls.2022.1038866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
After recognizing a biotic stress, plants activate signalling pathways to fight against the attack. Typically, these signalling pathways involve the activation of phosphorylation cascades mediated by Mitogen-Activated Protein Kinases (MAPKs). In the Arabidopsis thaliana-Tetranychus urticae plant-herbivore model, several Arabidopsis MAP kinases are induced by the mite attack. In this study, we demonstrate the participation of the MEKK-like kinases MAPKKK17 and MAPKKK21. Leaf damage caused by the mite was assessed using T-DNA insertion lines. Differential levels of damage were found when the expression of MAPKKK17 was increased or reduced. In contrast, reduced expression of MAPKKK21 resulted in less damage caused by the mite. Whereas the expression of several genes associated with hormonal responses did not suffer significant variations in the T-DNA insertion lines, the expression of one of these kinases depends on the expression of the other one. In addition, MAPKKK17 and MAPKKK21 are coexpressed with different sets of genes and encode proteins with low similarity in the C-terminal region. Overall, our results demonstrate that MAPKKK17 and MAPKKK21 have opposite roles. MAPKKK17 and MAPKKK21 act as positive and negative regulators, respectively, on the plant response. The induction of MAPKKK17 and MAPKKK21 after mite infestation would be integrated into the bulk of signalling pathways activated to balance the response of the plant to a biotic stress.
Collapse
Affiliation(s)
- Gara Romero-Hernandez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| |
Collapse
|
33
|
Peng P, Li R, Chen ZH, Wang Y. Stomata at the crossroad of molecular interaction between biotic and abiotic stress responses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1031891. [PMID: 36311113 PMCID: PMC9614343 DOI: 10.3389/fpls.2022.1031891] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Increasing global food production is threatened by harsh environmental conditions along with biotic stresses, requiring massive new research into integrated stress resistance in plants. Stomata play a pivotal role in response to many biotic and abiotic stresses, but their orchestrated interactions at the molecular, physiological, and biochemical levels were less investigated. Here, we reviewed the influence of drought, pathogen, and insect herbivory on stomata to provide a comprehensive overview in the context of stomatal regulation. We also summarized the molecular mechanisms of stomatal response triggered by these stresses. To further investigate the effect of stomata-herbivore interaction at a transcriptional level, integrated transcriptome studies from different plant species attacked by different pests revealed evidence of the crosstalk between abiotic and biotic stress. Comprehensive understanding of the involvement of stomata in some plant-herbivore interactions may be an essential step towards herbivores' manipulation of plants, which provides insights for the development of integrated pest management strategies. Moreover, we proposed that stomata can function as important modulators of plant response to stress combination, representing an exciting frontier of plant science with a broad and precise view of plant biotic interactions.
Collapse
Affiliation(s)
- Pengshuai Peng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rui Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Wang S, Wang S, Li M, Su Y, Sun Z, Ma H. Combined transcriptome and metabolome analysis of Nerium indicum L. elaborates the key pathways that are activated in response to witches' broom disease. BMC PLANT BIOLOGY 2022; 22:291. [PMID: 35701735 PMCID: PMC9199210 DOI: 10.1186/s12870-022-03672-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/27/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Nerium indicum Mill. is an ornamental plant that is found in parks, riversides, lakesides, and scenic areas in China and other parts of the world. Our recent survey indicated the prevalence of witches' broom disease (WBD) in Guangdong, China. To find out the possible defense strategies against WBD, we performed a MiSeq based ITS sequencing to identify the possible casual organism, then did a de novo transcriptome sequencing and metabolome profiling in the phloem and stem tip of N. indicum plants suffering from WBD compared to healthy ones. RESULTS The survey showed that Wengyuen county and Zengcheng district had the highest disease incidence rates. The most prevalent microbial species in the diseased tissues was Cophinforma mamane. The transcriptome sequencing resulted in the identification of 191,224 unigenes of which 142,396 could be annotated. There were 19,031 and 13,284 differentially expressed genes (DEGs) between diseased phloem (NOWP) and healthy phloem (NOHP), and diseased stem (NOWS) and healthy stem (NOHS), respectively. The DEGs were enriched in MAPK-signaling (plant), plant-pathogen interaction, plant-hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, linoleic acid and α-linoleic acid metabolism pathways. Particularly, we found that N. indicum plants activated the phytohormone signaling, MAPK-signaling cascade, defense related proteins, and the biosynthesis of phenylpropanoids and flavonoids as defense responses to the pathogenic infection. The metabolome profiling identified 586 metabolites of which 386 and 324 metabolites were differentially accumulated in NOHP vs NOWP and NOHS and NOWS, respectively. The differential accumulation of metabolites related to phytohormone signaling, linoleic acid metabolism, phenylpropanoid and flavonoid biosynthesis, nicotinate and nicotinamide metabolism, and citrate cycle was observed, indicating the role of these pathways in defense responses against the pathogenic infection. CONCLUSION Our results showed that Guangdong province has a high incidence of WBD in most of the surveyed areas. C. mamane is suspected to be the causing pathogen of WBD in N. indicum. N. indicum initiated the MAPK-signaling cascade and phytohormone signaling, leading to the activation of pathogen-associated molecular patterns and hypersensitive response. Furthermore, N. indicum accumulated high concentrations of phenolic acids, coumarins and lignans, and flavonoids under WBD. These results provide scientific tools for the formulation of control strategies of WBD in N. indicum.
Collapse
Affiliation(s)
- Shengjie Wang
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Shengkun Wang
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Ming Li
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Yuhang Su
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Zhan Sun
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Haibin Ma
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| |
Collapse
|
35
|
Romero-Hernandez G, Martinez M. Plant Kinases in the Perception and Signaling Networks Associated With Arthropod Herbivory. FRONTIERS IN PLANT SCIENCE 2022; 13:824422. [PMID: 35599859 PMCID: PMC9116192 DOI: 10.3389/fpls.2022.824422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The success in the response of plants to environmental stressors depends on the regulatory networks that connect plant perception and plant response. In these networks, phosphorylation is a key mechanism to activate or deactivate the proteins involved. Protein kinases are responsible for phosphorylations and play a very relevant role in transmitting the signals. Here, we review the present knowledge on the contribution of protein kinases to herbivore-triggered responses in plants, with a focus on the information related to the regulated kinases accompanying herbivory in Arabidopsis. A meta-analysis of transcriptomic responses revealed the importance of several kinase groups directly involved in the perception of the attacker or typically associated with the transmission of stress-related signals. To highlight the importance of these protein kinase families in the response to arthropod herbivores, a compilation of previous knowledge on their members is offered. When available, this information is compared with previous findings on their role against pathogens. Besides, knowledge of their homologous counterparts in other plant-herbivore interactions is provided. Altogether, these observations resemble the complexity of the kinase-related mechanisms involved in the plant response. Understanding how kinase-based pathways coordinate in response to a specific threat remains a major challenge for future research.
Collapse
Affiliation(s)
- Gara Romero-Hernandez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
36
|
Yu H, Yi L, Lu Z. Silencing of Chitin-Binding Protein with PYPV-Rich Domain Impairs Cuticle and Wing Development in the Asian Citrus Psyllid, Diaphorina citri. INSECTS 2022; 13:insects13040353. [PMID: 35447795 PMCID: PMC9027310 DOI: 10.3390/insects13040353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/25/2022]
Abstract
Simple Summary Molting is extremely important for insect growth and development, which is accompanied the degradation of old cuticle and synthesis of new cuticle. Chitin and proteins, as major components of insect cuticle, maintain the rigidity of the exoskeleton. The functions of chitin-binding proteins have not, to date, been characterized in Diaphorina citri. In the current study, we identified a cuticle protein (DcCP64) according to chitin column purification and LC-MS/MS analysis. Silencing of DcCP64 induced an abnormal phenotype and increased the permeability of the abdomen and wings. Additionally, the mortality and malformation rate significantly increased, and the molting rate decreased after inhibition of DcCP64. Transcriptome sequencing analysis revealed that up-regulated DEGs were mainly related to oxidative phosphorylation, whereas down-regulated DEGs were mainly involved in MAPK and FoxO signaling pathways. Our results provide a basis for further functional research on DcCP64 in D. citri. Abstract Chitin is a major component of the arthropod exoskeleton, always working together with chitin-binding proteins to maintain the functions of extracellular structures. In the present study, we identified a cuticle protein 64 from Diaphorina citri using a chitin-binding assay. Bioinformatics analysis revealed that DcCP64 contained eight conserved PYPV motifs but lacked a Rebers–Riddiford (R–R) consensus and other chitin-binding domains. RT-qPCR analysis suggested that DcCP64 had the highest expression level in the wing and fifth-instar nymph stage. Knockdown of DcCP64 by RNA interference (RNAi) resulted in a malformed-wing phenotype, higher mortality and decreased molting rate. Furthermore, transcriptomics analysis revealed that 1244 differentially expressed genes (DEGs) were up-regulated and 580 DEGs were down-regulated, compared with dsDcCP64 groups and dsGFP groups. KEGG enrichment analysis revealed that up-regulated DEGs were mainly related to oxidative phosphorylation, whereas down-regulated DEGs were mainly involved in the MAPK and FoxO signaling pathways. Moreover, inhibition of DcCP64 significantly affected the cuticle surface, and increased the permeability of the abdomen and wings. Further chitin- and cellulose-binding assay confirmed the chitin-binding properties of recombinant DcCP64 in vitro. These results indicate that DcCP64 might play an important role in the cuticle and wing development of D. citri.
Collapse
Affiliation(s)
- Haizhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Nanling Insect Biology, Gannan Normal University, Ganzhou 341000, China
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Correspondence: (L.Y.); (Z.L.); Tel.: +86-0797-8397738 (L.Y. & Z.L.)
| | - Zhanjun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Nanling Insect Biology, Gannan Normal University, Ganzhou 341000, China
- Correspondence: (L.Y.); (Z.L.); Tel.: +86-0797-8397738 (L.Y. & Z.L.)
| |
Collapse
|
37
|
Exploring the Effect of Methyl Jasmonate on the Expression of microRNAs Involved in Biosynthesis of Active Compounds of Rosemary Cell Suspension Cultures through RNA-Sequencing. Int J Mol Sci 2022; 23:ijms23073704. [PMID: 35409063 PMCID: PMC8998883 DOI: 10.3390/ijms23073704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Our aim in the experiment was to study the effects of methyl jasmonates (MeJA) on the active compounds of rosemary suspension cells, the metabolites' change of contents under different concentrations of MeJA, including 0 (CK), 10 (M10), 50 (M50) and 100 μM MeJA (M100). The results demonstrated that MeJA treatments promoted the accumulation of rosmarinic acid (RA), carnosic acid (CA), flavonoids, jasmonate (JA), gibberellin (GA), and auxin (IAA); but reduced the accumulations of abscisic acid (ABA), salicylic acid (SA), and aspartate (Asp). In addition, 50 and 100 μM MeJA promoted the accumulation of alanine (Ala) and glutamate (Glu), and 50 μM MeJA promoted the accumulation of linoleic acid and alpha-linolenic acid in rosemary suspension cells. Comparative RNA-sequencing analysis of different concentrations of MeJA showed that a total of 30, 61, and 39 miRNAs were differentially expressed in the comparisons of CKvsM10, CKvsM50, CKvsM100, respectively. The analysis of the target genes of the differentially expressed miRNAs showed that plant hormone signal transduction, linoleic acid, and alpha-linolenic acid metabolism-related genes were significantly enriched. In addition, we found that miR160a-5p target ARF, miR171d_1 and miR171f_3 target DELLA, miR171b-3p target ETR, and miR156a target BRI1, which played a key role in rosemary suspension cells under MeJA treatments. qRT-PCR of 12 differentially expressed miRNAs and their target genes showed a high correlation between the RNA-seq and the qRT-PCR result. Amplification culture of rosemary suspension cells in a 5 L stirred bioreactor showed that cell biomass accumulation in the bioreactor was less than that in the shake flask under the same conditions, and the whole cultivation period was extended to 14 d. Taken together, MeJA promoted the synthesis of the active compounds in rosemary suspension cells in a wide concentration range via concentration-dependent differential expression patterns. This study provided an overall view of the miRNAs responding to MeJA in rosemary.
Collapse
|
38
|
Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection. Int J Mol Sci 2022; 23:ijms23052690. [PMID: 35269836 PMCID: PMC8910576 DOI: 10.3390/ijms23052690] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Plants have evolved several adaptive strategies through physiological changes in response to herbivore attacks. Plant secondary metabolites (PSMs) are synthesized to provide defensive functions and regulate defense signaling pathways to safeguard plants against herbivores. Herbivore injury initiates complex reactions which ultimately lead to synthesis and accumulation of PSMs. The biosynthesis of these metabolites is regulated by the interplay of signaling molecules comprising phytohormones. Plant volatile metabolites are released upon herbivore attack and are capable of directly inducing or priming hormonal defense signaling pathways. Secondary metabolites enable plants to quickly detect herbivore attacks and respond in a timely way in a rapidly changing scenario of pest and environment. Several studies have suggested that the potential for adaptation and/or resistance by insect herbivores to secondary metabolites is limited. These metabolites cause direct toxicity to insect pests, stimulate antixenosis mechanisms in plants to insect herbivores, and, by recruiting herbivore natural enemies, indirectly protect the plants. Herbivores adapt to secondary metabolites by the up/down regulation of sensory genes, and sequestration or detoxification of toxic metabolites. PSMs modulate multi-trophic interactions involving host plants, herbivores, natural enemies and pollinators. Although the role of secondary metabolites in plant-pollinator interplay has been little explored, several reports suggest that both plants and pollinators are mutually benefited. Molecular insights into the regulatory proteins and genes involved in the biosynthesis of secondary metabolites will pave the way for the metabolic engineering of biosynthetic pathway intermediates for improving plant tolerance to herbivores. This review throws light on the role of PSMs in modulating multi-trophic interactions, contributing to the knowledge of plant-herbivore interactions to enable their management in an eco-friendly and sustainable manner.
Collapse
|
39
|
Divekar PA, Narayana S, Divekar BA, Kumar R, Gadratagi BG, Ray A, Singh AK, Rani V, Singh V, Singh AK, Kumar A, Singh RP, Meena RS, Behera TK. Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection. Int J Mol Sci 2022; 23:ijms23052690. [PMID: 35269836 DOI: 10.3390/ijms23052690/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 05/21/2023] Open
Abstract
Plants have evolved several adaptive strategies through physiological changes in response to herbivore attacks. Plant secondary metabolites (PSMs) are synthesized to provide defensive functions and regulate defense signaling pathways to safeguard plants against herbivores. Herbivore injury initiates complex reactions which ultimately lead to synthesis and accumulation of PSMs. The biosynthesis of these metabolites is regulated by the interplay of signaling molecules comprising phytohormones. Plant volatile metabolites are released upon herbivore attack and are capable of directly inducing or priming hormonal defense signaling pathways. Secondary metabolites enable plants to quickly detect herbivore attacks and respond in a timely way in a rapidly changing scenario of pest and environment. Several studies have suggested that the potential for adaptation and/or resistance by insect herbivores to secondary metabolites is limited. These metabolites cause direct toxicity to insect pests, stimulate antixenosis mechanisms in plants to insect herbivores, and, by recruiting herbivore natural enemies, indirectly protect the plants. Herbivores adapt to secondary metabolites by the up/down regulation of sensory genes, and sequestration or detoxification of toxic metabolites. PSMs modulate multi-trophic interactions involving host plants, herbivores, natural enemies and pollinators. Although the role of secondary metabolites in plant-pollinator interplay has been little explored, several reports suggest that both plants and pollinators are mutually benefited. Molecular insights into the regulatory proteins and genes involved in the biosynthesis of secondary metabolites will pave the way for the metabolic engineering of biosynthetic pathway intermediates for improving plant tolerance to herbivores. This review throws light on the role of PSMs in modulating multi-trophic interactions, contributing to the knowledge of plant-herbivore interactions to enable their management in an eco-friendly and sustainable manner.
Collapse
Affiliation(s)
- Pratap Adinath Divekar
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Srinivasa Narayana
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221305, India
| | | | - Rajeev Kumar
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Basana Gowda Gadratagi
- Indian Council of Agricultural Research-National Rice Research Institute, Cuttack 753006, India
| | - Aishwarya Ray
- Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, India
| | - Achuit Kumar Singh
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Vijaya Rani
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Vikas Singh
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Regional Research Station, Sargatia, Kushinagar 274406, India
| | - Akhilesh Kumar Singh
- College of Horticulture, Banda University of Agriculture and Technology, Banda 210001, India
| | - Amit Kumar
- Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Sheopur 476339, India
| | - Rudra Pratap Singh
- Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, Krishi Vigyan Kendra, Kotwa, Azamgarh 276207, India
| | - Radhe Shyam Meena
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221305, India
| | - Tusar Kanti Behera
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| |
Collapse
|
40
|
Zhang Y, Guo W, Chen L, Shen X, Yang H, Fang Y, Ouyang W, Mai S, Chen H, Chen S, Hao Q, Yuan S, Zhang C, Huang Y, Shan Z, Yang Z, Qiu D, Zhou X, Cao D, Li X, Jiao Y. CRISPR/Cas9-Mediated Targeted Mutagenesis of GmUGT Enhanced Soybean Resistance Against Leaf-Chewing Insects Through Flavonoids Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:802716. [PMID: 35273623 PMCID: PMC8902248 DOI: 10.3389/fpls.2022.802716] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/07/2022] [Indexed: 05/03/2023]
Abstract
Leaf-chewing insects are important pests that cause yield loss and reduce seed quality in soybeans (Glycine max). Breeding soybean varieties that are resistant to leaf-chewing insects can minimize the need for insecticide use and reduce yield loss. The marker gene for QTL-M, Glyma.07g110300 (LOC100775351) that encodes a UDP-glycosyltransferase (UGT) is the major determinant of resistance against leaf-chewing insects in soybean; it exhibits a loss of function in insect-resistant soybean germplasms. In this study, Agrobacterium-mediated transformation introduced the CRISPR/Cas9 expression vector into the soybean cultivar Tianlong No. 1 to generate Glyma.07g110300-gene mutants. We obtained two novel types of mutations, a 33-bp deletion and a single-bp insertion in the GmUGT coding region, which resulted in an enhanced resistance to Helicoverpa armigera and Spodoptera litura. Additionally, overexpressing GmUGT produced soybean varieties that were more sensitive to H. armigera and S. litura. Both mutant and overexpressing lines exhibited no obvious phenotypic changes. The difference in metabolites and gene expression suggested that GmUGT is involved in imparting resistance to leaf-chewing insects by altering the flavonoid content and expression patterns of genes related to flavonoid biosynthesis and defense. Furthermore, ectopic expression of the GmUGT gene in the ugt72b1 mutant of Arabidopsis substantially rescued the phenotype of H. armigera resistance in the atugt72b1 mutant. Our study presents a strategy for increasing resistance against leaf-chewing insects in soybean through CRISPR/Cas9-mediated targeted mutagenesis of the UGT genes.
Collapse
Affiliation(s)
- Yongxing Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinjie Shen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yisheng Fang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wenqi Ouyang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Sihua Mai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qingnan Hao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dezhen Qiu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongqing Jiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
41
|
The Protein Phosphatase GhAP2C1 Interacts Together with GhMPK4 to Synergistically Regulate the Immune Response to Fusarium oxysporum in Cotton. Int J Mol Sci 2022; 23:ijms23042014. [PMID: 35216128 PMCID: PMC8876771 DOI: 10.3390/ijms23042014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
The plant mitogen-activated protein kinase (MAPK) cascade plays an important role in mediating responses to biotic and abiotic stresses and is the main pathway through which extracellular stimuli are transduced intracellularly as signals. Our previous research showed that the GhMKK6-GhMPK4 cascade signaling pathway plays an important role in cotton immunity. To further analyze the role and regulatory mechanism of the GhMKK6-GhMPK4 cascade signaling pathway in cotton resistance to Fusarium wilt, we functionally analyzed GhMPK4. Our results show that silencing GhMPK4 reduces cotton tolerance to Fusarium wilt and reduces the expression of several resistance genes. Further experiments revealed that GhMPK4 is similar to GhMKK6, both of whose overexpression cause unfavorable cotton immune response characteristics. By using a yeast two-hybrid screening library and performing a bioinformatics analysis, we screened and identified a negative regulator of the MAPK kinase-protein phosphatase AP2C1. Through the functional analysis of AP2C1, it was found that, after being silenced, GhAP2C1 increased resistance to Fusarium wilt, but GhAP2C1 overexpression caused sensitivity to Fusarium wilt. These findings show that GhAP2C1 interacts together with GhMPK4 to regulate the immune response of cotton to Fusarium oxysporum, which provides important data for functionally analyzing and studying the feedback regulatory mechanism of the MAPK cascade and helps to clarify the regulatory mechanism through which the MAPK cascade acts in response to pathogens.
Collapse
|
42
|
Xiong E, Cao D, Qu C, Zhao P, Wu Z, Yin D, Zhao Q, Gong F. Multilocation proteins in organelle communication: Based on protein-protein interactions. PLANT DIRECT 2022; 6:e386. [PMID: 35229068 PMCID: PMC8861329 DOI: 10.1002/pld3.386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/17/2021] [Accepted: 01/18/2022] [Indexed: 05/25/2023]
Abstract
Protein-protein interaction (PPI) plays a crucial role in most biological processes, including signal transduction and cell apoptosis. Importantly, the knowledge of PPIs can be useful for identification of multimeric protein complexes and elucidation of uncharacterized protein functions. Arabidopsis thaliana, the best-characterized dicotyledonous plant, the steadily increasing amount of information on the levels of its proteome and signaling pathways is progressively enabling more researchers to construct models for cellular processes for the plant, which in turn encourages more experimental data to be generated. In this study, we performed an overview analysis of the 10 major organelles and their associated proteins of the dicotyledonous model plant Arabidopsis thaliana via PPI network, and found that PPI may play an important role in organelle communication. Further, multilocation proteins, especially phosphorylation-related multilocation proteins, can function as a "needle and thread" via PPIs and play an important role in organelle communication. Similar results were obtained in a monocotyledonous model crop, rice. Furthermore, we provide a research strategy for multilocation proteins by LOPIT technique, proteomics, and bioinformatics analysis and also describe their potential role in the field of plant science. The results provide a new view that the phosphorylation-related multilocation proteins play an important role in organelle communication and provide new insight into PPIs and novel directions for proteomic research. The research of phosphorylation-related multilocation proteins may promote the development of organelle communication and provide an important theoretical basis for plant responses to external stress.
Collapse
Affiliation(s)
- Erhui Xiong
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Di Cao
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Chengxin Qu
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Pengfei Zhao
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhaokun Wu
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Dongmei Yin
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Quanzhi Zhao
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Fangping Gong
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
43
|
Macias-Benitez S, Navarro-Torre S, Caballero P, Martín L, Revilla E, Castaño A, Parrado J. Biostimulant Capacity of an Enzymatic Extract From Rice Bran Against Ozone-Induced Damage in Capsicum annum. FRONTIERS IN PLANT SCIENCE 2021; 12:749422. [PMID: 34868133 PMCID: PMC8641545 DOI: 10.3389/fpls.2021.749422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Ozone is a destructive pollutant, damaging crops, and decreasing crop yield. Therefore, there is great interest in finding strategies to alleviate ozone-induced crop losses. In plants, ozone enters leaves through the stomata and is immediately degraded into reactive oxygen species (ROS), producing ROS stress in plants. ROS stress can be controlled by ROS-scavenging systems that include enzymatic or non-enzymatic mechanisms. Our research group has developed a product from rice bran, a by-product of rice milling which has bioactive molecules that act as an antioxidant compound. This product is a water-soluble rice bran enzymatic extract (RBEE) which preserves all the properties and improves the solubility of proteins and the antioxidant components of rice bran. In previous works, the beneficial properties of RBEE have been demonstrated in animals. However, to date, RBEE has not been used as a protective agent against oxidative damage in agricultural fields. The main goal of this study was to investigate the ability of RBEE to be used as a biostimulant by preventing oxidative damage in plants, after ozone exposure. To perform this investigation, pepper plants (Capsicum annuum) exposed to ozone were treated with RBEE. RBEE protected the ozone-induced damage, as revealed by net photosynthetic rate and the content of photosynthetic pigments. RBEE also decreased the induction of antioxidant enzyme activities in leaves (catalase, superoxide dismutase, and ascorbate peroxidase) due to ozone exposure. ROS generation is a common consequence of diverse cellular traumas that also activate the mitogen-activated protein kinase (MAPK) cascade. Thus, it is known that the ozone damages are triggered by the MAPK cascade. To examine the involvement of the MAPK cascade in the ozone damage CaMPK6-1, CaMPK6-2, and CaMKK5 genes were analyzed by qRT-PCR. The results showed the involvement of the MAPK pathway in both, not only in ozone damage but especially in its protection by RBEE. Taken together, these results support that RBEE protects plants against ozone exposure and its use as a new biostimulant could be proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan Parrado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
44
|
Kong F, Dong D, Li N, Sun B, Sun M. Characterization of PyMAPK2, a D group mitogen-activated protein kinase gene from Pyropia yezoensis responding to various abiotic stress. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Nokihara K, Okada Y, Ohata S, Monden Y. Transcriptome Analysis Reveals Key Genes Involved in Weevil Resistance in the Hexaploid Sweetpotato. PLANTS 2021; 10:plants10081535. [PMID: 34451581 PMCID: PMC8398197 DOI: 10.3390/plants10081535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Because weevils are the most damaging pests of sweetpotato, the development of cultivars resistant to weevil species is considered the most important aspect in sweetpotato breeding. However, the genes and the underlying molecular mechanisms related to weevil resistance are yet to be elucidated. In this study, we performed an RNA sequencing-based transcriptome analysis using the resistant Kyushu No. 166 (K166) and susceptible Tamayutaka cultivars. The weevil resistance test showed a significant difference between the two cultivars at 30 days after the inoculation, specifically in the weevil growth stage and the suppressed weevil pupation that was only observed in K166. Differential expression and gene ontology analyses revealed that the genes upregulated after inoculation in K166 were related to phosphorylation, metabolic, and cellular processes. Because the weevil resistance was considered to be related to the suppression of larval pupation, we investigated the juvenile hormone (JH)-related genes involved in the inhibition of insect metamorphosis. We found that the expression of some terpenoid-related genes, which are classified as plant-derived JHs, was significantly increased in K166. This is the first study involving a comprehensive gene expression analysis that provides new insights about the genes and mechanisms associated with weevil resistance in sweetpotato.
Collapse
Affiliation(s)
- Kanoko Nokihara
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Okayama 700-8530, Japan; (K.N.); (S.O.)
| | - Yoshihiro Okada
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Itoman, Okinawa 901-0336, Japan;
| | - Shinichiro Ohata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Okayama 700-8530, Japan; (K.N.); (S.O.)
| | - Yuki Monden
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Okayama 700-8530, Japan; (K.N.); (S.O.)
- Correspondence:
| |
Collapse
|
46
|
Serba DD, Meng X, Schnable J, Bashir E, Michaud JP, Vara Prasad PV, Perumal R. Comparative Transcriptome Analysis Reveals Genetic Mechanisms of Sugarcane Aphid Resistance in Grain Sorghum. Int J Mol Sci 2021; 22:ijms22137129. [PMID: 34281180 PMCID: PMC8268927 DOI: 10.3390/ijms22137129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) (SCA), has become a major pest of grain sorghum since its appearance in the USA. Several grain sorghum parental lines are moderately resistant to the SCA. However, the molecular and genetic mechanisms underlying this resistance are poorly understood, which has constrained breeding for improved resistance. RNA-Seq was used to conduct transcriptomics analysis on a moderately resistant genotype (TAM428) and a susceptible genotype (Tx2737) to elucidate the molecular mechanisms underlying resistance. Differential expression analysis revealed differences in transcriptomic profile between the two genotypes at multiple time points after infestation by SCA. Six gene clusters had differential expression during SCA infestation. Gene ontology enrichment and cluster analysis of genes differentially expressed after SCA infestation revealed consistent upregulation of genes controlling protein and lipid binding, cellular catabolic processes, transcription initiation, and autophagy in the resistant genotype. Genes regulating responses to external stimuli and stress, cell communication, and transferase activities, were all upregulated in later stages of infestation. On the other hand, expression of genes controlling cell cycle and nuclear division were reduced after SCA infestation in the resistant genotype. These results indicate that different classes of genes, including stress response genes and transcription factors, are responsible for countering the physiological effects of SCA infestation in resistant sorghum plants.
Collapse
Affiliation(s)
- Desalegn D. Serba
- United States Department of Agriculture—Agricultural Research Service, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA;
| | - Xiaoxi Meng
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA; (X.M.); (J.S.)
| | - James Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA; (X.M.); (J.S.)
| | - Elfadil Bashir
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (E.B.); (P.V.V.P.)
| | - J. P. Michaud
- Department of Entomology, Kansas State University, Hays, KS 67601, USA;
- Agricultural Research Center, Hays, KS 67601, USA
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (E.B.); (P.V.V.P.)
| | - Ramasamy Perumal
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA; (E.B.); (P.V.V.P.)
- Agricultural Research Center, Hays, KS 67601, USA
- Correspondence:
| |
Collapse
|
47
|
Chen LM, Li XW, He TJ, Li PJ, Liu Y, Zhou SX, Wu QC, Chen TT, Lu YB, Hou YM. Comparative biochemical and transcriptome analyses in tomato and eggplant reveal their differential responses to Tuta absoluta infestation. Genomics 2021; 113:2108-2121. [PMID: 33964421 DOI: 10.1016/j.ygeno.2021.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 01/22/2023]
Abstract
Tomato is more prone to Tuta absoluta invasion and damages as compared to other host plants but the mechanism behind this preference has not been elucidated. Here, two contrasting host preference plants, tomato and eggplant, were used to investigate biochemical and transcriptomic modifications induced by T. absoluta infestation. Biochemical analysis at 0-72 h post T. absoluta infestation revealed significantly reduced concentrations of amino acid, fructose, sucrose, jasmonic acid, salicylic acid, and total phenols in tomato compared to eggplant, mainly at 48 h post T. absoluta infestation. Transcriptome analysis showed higher transcript changes in infested eggplant than tomato. Signaling genes had significant contributions to mediate plant immunity against T. absoluta, specifically genes associated with salicylic acid in eggplant. Genes from PR1b1, NPR1, NPR3, MAPKs, and ANP1 families play important roles to mitigate T. absoluta infestation. Our results will facilitate the development of control strategies against T. absoluta for sustainable tomato production.
Collapse
Affiliation(s)
- Li-Min Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China; Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui, Zhejiang 323000, China
| | - Xiao-Wei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tian-Jun He
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui, Zhejiang 323000, China
| | - Peng-Ju Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yuan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shu-Xing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Quan-Cong Wu
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui, Zhejiang 323000, China
| | - Ting-Ting Chen
- College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Yao-Bin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Biopesticide and Chemical Biology, Ministry of Education & Fujian Province Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
48
|
Noman A, Aqeel M, Islam W, Khalid N, Akhtar N, Qasim M, Yasin G, Hashem M, Alamri S, Al-Zoubi OM, Jalees MM, Al-Sadi A. Insects-plants-pathogens: Toxicity, dependence and defense dynamics. Toxicon 2021; 197:87-98. [PMID: 33848517 DOI: 10.1016/j.toxicon.2021.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
In a natural ecosystem, the pathogen-plant-insect relationship has diverse implications for each other. The pathogens as well as insect-pests consume plant tissues as their feed that mostly results in damage. In turn, plant species have evolved specialized defense system to not only protect themselves but reduce the damage also. Such tripartite interactions involve toxicity, metabolic modulations, resistance etc. among all participants of interaction. These attributes result in selection pressure among participants. Coevolution of such traits reveals need to focus and unravel multiple hidden aspects of insect-plant-pathogen interactions. The definite modulations during plant responses to biotic stress and the operating defense network against herbivores are vital to research areas. Different types of plant pathogens and herbivores are tackled with various changes in plants, e.g. changes in genes expression, glucosinolate metabolism detoxification, signal transduction, cell wall modifications, Ca2+dependent signaling. It is essential to clarify which chemical in plants can work as a defense signal or weapon in plant-pathogen-herbivore interactions. In spite of increased knowledge regarding signal transduction pathways regulating growth-defense balance, much more is needed to unveil the coordination of growth rate with metabolic modulations in bi-trophic interactions. Here, we addressed plant-pathogen-insect interaction for toxicity as well as dependnce along with plant defense dynamics against pathogens and insects with broad range effects at the physio-biochemical and molecular level. We have reviewed interfaces in plant-pathogen-insect research to show pulsating regulation of plant immunity for attuning survival and ecological equilibrium. An improved understanding of the systematic foundation of growth-defense stability has vital repercussions for enhancing crop yield, including insights into uncoupling of host-parasite tradeoffs for ecological and environmental sustainability.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University, Faisalabad, 38040, Pakistan.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| | - Waqar Islam
- College of Geography, Fujian Normal University, Fuzhou, PR China
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Noreen Akhtar
- Department of Botany, Government College for Women University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Institute of Insect Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Ghulam Yasin
- Institute of Pure and Applied Biology, Bahau Din Zakria University Multan Pakistan, Pakistan
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Saad Alamri
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia
| | | | - Muhammad Moazam Jalees
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences. Bahawalpur, Pakistan
| | - Abdullah Al-Sadi
- College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat. Sultanate of Oman, Oman
| |
Collapse
|
49
|
Zhang C, Li J, Li S, Ma C, Liu H, Wang L, Qi J, Wu J. ZmMPK6 and ethylene signalling negatively regulate the accumulation of anti-insect metabolites DIMBOA and DIMBOA-Glc in maize inbred line A188. THE NEW PHYTOLOGIST 2021; 229:2273-2287. [PMID: 32996127 DOI: 10.1111/nph.16974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and DIMBOA-glucoside (DIMBOA-Glc) are anti-insect benzoxazinoids in maize, yet very little information is known about how they are regulated. Reverse genetics, kinase activity analysis, phytohormone and DIMBOA/DIMBOA-Glc quantification, bioassays and transcriptome analysis were employed to study the function of ZmMPK6, a mitogen-activated protein kinase, in maize response to herbivory. ZmMPK6 was rapidly activated by wounding and simulated herbivory. Silencing ZmMPK6 in maize A188 compromised simulated herbivory-induced ethylene levels but not those of jasmonic acid or salicylic acid, and the ZmMPK6-silenced plants exhibited elevated DIMBOA/DIMBOA-Glc and insect resistance. An ethylene complementation experiment revealed that ZmMPK6 repressed the accumulation of DIMBOA/DIMBOA-Glc in an ethylene-dependent manner. Transcriptome analysis revealed that ZmMPK6 might meditate the transcription of BX1 by controlling a MYB transcription factor that is likely to be located in the ethylene signalling pathway and, furthermore, ZmMPK6 and ethylene signalling also specifically and commonly regulate the transcription of other benzoxazinoid biosynthetic genes. We also show that different maize lines have very different responses to simulated herbivory in terms of ZmMPK6 activation, ethylene emission and benzoxazinoid levels. These results uncover that ZmMPK6 and ethylene pathway are novel repressors of DIMBOA/DIMBOA-Glc and provide new insight into the regulatory mechanisms underlying these two pathways.
Collapse
Affiliation(s)
- Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Sen Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
50
|
Jaiswal SK, Mohammed M, Ibny FYI, Dakora FD. Rhizobia as a Source of Plant Growth-Promoting Molecules: Potential Applications and Possible Operational Mechanisms. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.619676] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The symbiotic interaction between rhizobia and legumes that leads to nodule formation is a complex chemical conversation involving plant release of nod-gene inducing signal molecules and bacterial secretion of lipo-chito-oligossacharide nodulation factors. During this process, the rhizobia and their legume hosts can synthesize and release various phytohormones, such as IAA, lumichrome, riboflavin, lipo-chito-oligossacharide Nod factors, rhizobitoxine, gibberellins, jasmonates, brassinosteroids, ethylene, cytokinins and the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase that can directly or indirectly stimulate plant growth. Whereas these attributes may promote plant adaptation to various edapho-climatic stresses including the limitations in nutrient elements required for plant growth promotion, tapping their full potential requires understanding of the mechanisms involved in their action. In this regard, several N2-fixing rhizobia have been cited for plant growth promotion by solubilizing soil-bound P in the rhizosphere via the synthesis of gluconic acid under the control of pyrroloquinoline quinone (PQQ) genes, just as others are known for the synthesis and release of siderophores for enhanced Fe nutrition in plants, the chelation of heavy metals in the reclamation of contaminated soils, and as biocontrol agents against diseases. Some of these metabolites can enhance plant growth via the suppression of the deleterious effects of other antagonistic molecules, as exemplified by the reduction in the deleterious effect of ethylene by ACC deaminase synthesized by rhizobia. Although symbiotic rhizobia are capable of triggering biological outcomes with direct and indirect effects on plant mineral nutrition, insect pest and disease resistance, a greater understanding of the mechanisms involved remains a challenge in tapping the maximum benefits of the molecules involved. Rather than the effects of individual rhizobial or plant metabolites however, a deeper understanding of their synergistic interactions may be useful in alleviating the effects of multiple plant stress factors for increased growth and productivity.
Collapse
|