1
|
Guo Q, Qian H, Qian S. Climate space, traits, and the spread of nonnative plants in North America. PLANT DIVERSITY 2025; 47:255-263. [PMID: 40182479 PMCID: PMC11962997 DOI: 10.1016/j.pld.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 04/05/2025]
Abstract
The future distribution of invading species depends on the climate space available and certain life history traits that facilitate invasion. Here, to predict the spread potential of plant species introduced in North America north of Mexico (NAM), we compiled distribution and life history data (i.e., seed size, life form, and photosynthetic pathways) for 3021 exotic plant species introduced to NAM. We comparatively examined the species' range size and climate space in both native and exotic regions and the role of key life history traits. We found that large climate space for most exotic plants is still available in NAM. The range sizes in global exotic regions could better predict the current range sizes in NAM than those in global native regions or global native plus exotic regions. C3 species had larger ranges on average than C4 and CAM plants, and herbaceous species consistently showed stronger relationships in range size between native and exotic regions than woody species, as was the case within the C3 species group. Seed size was negatively related to range size both in native regions and in NAM. However, seed size surprisingly showed a positive correlation with global exotic range size and no correlation with the current actual global (native plus exotic) range size. Our findings underline the importance of species' native distribution and life history traits in predicting the spread of exotic species. Future studies should continue to identify potential climate space and use underappreciated species traits to better predict species invasions under changing climate.
Collapse
Affiliation(s)
- Qinfeng Guo
- USDA FS – Southern Research Station, 3041 E. Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Hong Qian
- Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA
| | - Shenhua Qian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
2
|
Dyderski MK, Paź-Dyderska S, Jagodziński AM, Puchałka R. Shifts in native tree species distributions in Europe under climate change. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123504. [PMID: 39637503 DOI: 10.1016/j.jenvman.2024.123504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Key European tree species are expected to contract their ranges under changing climate, thus there is a need to assess range shifts for other native tree species that could fill their forest niche. Recent studies have focused on economically important species, revealing a wide range of shifts in their distribution worldwide and highlighting several pathways for potential future changes. We aimed to quantify changes in projected ranges and threat levels by the years 2041-60 and 2061-80, for 20 European temperate forest tree species under four climate change scenarios. We compared ten standard stock tree species with ten alternative stock species, that are less frequent and less preferred by managers. We combined distribution data from several sources for each tree species and developed species distribution models using MaxEnt and seven bioclimatic variables. We applied these models to projections of future climate from four global circulation models, under four Shared Socioeconomic Pathways and for near and middle terms: 2041-60 and 2061-80. We also assessed the relationships between predicted range contraction and their functional traits. Analysis of MaxEnt models divided the studied tree species into three groups: non-threatened (Sorbus torminalis, Ulmus minor, Tilia platyphyllos, Acer pseudoplatanus, Prunus avium, and Carpinus betulus), partially threatened (U. laevis, Betula pendula, Quercus robur, Q. petraea, A. platanoides, Fagus sylvatica, Fraxinus excelsior, T. cordata, Alnus glutinosa, and U. glabra), and the most threatened (Abies alba, Larix decidua, Picea abies, and Pinus sylvestris). For the last group, almost half of the range contraction will occur earlier (2041-2060) compared to our previous predictions (2061-2080). The proportion of range contraction decreased with increasing specific leaf area, leaf area, leaf nitrogen content, seed mass, and specific stem density while it increased with increasing height. Our study provides novel predictions of shifts in climatic optima under the most recent climate change scenarios, which would be useful for evidence-based conservation and management of European forests. The near-term predicted threats to the main standard stock tree species call for intensified preparation for incoming changes. We recommend splitting the silvicultural risks over a wider range of tree species, also including alternative stock species.
Collapse
Affiliation(s)
- Marcin K Dyderski
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland.
| | | | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland; Poznań University of Life Sciences, Faculty of Forestry and Wood Technology, Department of Game Management and Forest Protection, Poznań, Poland
| | - Radosław Puchałka
- Department of Ecology and Biogeography, Nicolaus Copernicus University in Toruń, Poland; Centre for Climate Change Research, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
3
|
Abe H, Ueno S, Matsuo A, Hirota SK, Miura H, Su M, Shen Y, Tsumura Y, Suyama Y, Wang Z. Evolutionary Histories of Camellia japonica and Camellia rusticana. Ecol Evol 2024; 14:e70721. [PMID: 39720636 PMCID: PMC11667151 DOI: 10.1002/ece3.70721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
The genus Camellia is widely distributed, primarily in East Asia. Camellia japonica is located at the northern limit of this genus distribution, and understanding changes in its distribution is crucial for understanding the evolution of plants in this region, as well as their relationship with geological history and climate change. Moreover, the classification of sect. Camellia in Japan has not been clarified. Therefore, this study aims to understand the evolutionary history of the Japanese sect. Camellia. The genetic population structure was analysed using SNP data and MIG-seq. The relationship between the Japanese sect. Camellia, including the related species in China, was further inferred from the phylogeny generated by RA x ML, SplitsTree and PCA. Population genetic structure was inferred using a Bayesian clustering method (ADMIXTURE). We subsequently employed approximate Bayesian computation, which was further supported by the coalescent simulations (DIYABC, fastsimcoal and Bayesian Skyline Plots) to explore the changes in population, determining which events appropriately explain the phylogeographical signature. Ecological niche modelling was combined with genetic analyses to compare current and past distributions. The analyses consistently showed that C. japonica and C. rusticana are distinct, having diverged from each other during the Middle to Late Miocene period. Furthermore, C. japonica differentiated into four major populations (North, South, Ryukyu-Taiwan and Continent). The Japanese sect. Camellia underwent speciation during archipelago formation, reflecting its ancient evolutionary history compared with other native Japanese plants. C. rusticana did not diverge from C. japonica in snow-rich environments during the Quaternary period. Our results suggest that both species have been independent since ancient times and that ancestral populations of C. japonica have persisted in northern regions. Furthermore, the C. japonica population on the continent is hypothesised to have experienced a reverse-colonisation event from southern Japan during the late Pleistocene glaciation.
Collapse
Affiliation(s)
- Harue Abe
- Center for Sustainable Agriculture and Forestry, Faculty of AgricultureNiigata UniversitySadoNiigataJapan
| | - Saneyoshi Ueno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research InstituteForest Research and Management OrganizationTsukubaIbarakiJapan
| | - Ayumi Matsuo
- Field Science Center, Graduate School of Agricultural ScienceTohoku UniversityOsakiMiyagiJapan
| | - Shun K. Hirota
- Botanical GardensOsaka Metropolitan UniversityKatano CityOsakaJapan
| | - Hiroki Miura
- Aomori Prefectural Asamushi AquariumAomoriAomoriJapan
| | - Mong‐Huai Su
- Department of Forestry and Nature ConservationChinese Culture UniversityTaipeiTaiwan
| | - Yun‐Guang Shen
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| | - Yoshihiko Tsumura
- Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Yoshihisa Suyama
- Graduate School of Agricultural ScienceTohoku UniversityOsakiMiyagiJapan
| | - Zhong‐Lang Wang
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
4
|
Lundgren EJ, Wallach AD, Svenning J, Schlaepfer MA, Andersson ALA, Ramp D. Preventing extinction in an age of species migration and planetary change. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14270. [PMID: 38628146 PMCID: PMC11589049 DOI: 10.1111/cobi.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 11/27/2024]
Abstract
International and national conservation policies almost exclusively focus on conserving species in their historic native ranges, thus excluding species that have been introduced by people and some of those that have extended their ranges on their own accord. Given that many of such migrants are threatened in their native ranges, conservation goals that explicitly exclude these populations may overlook opportunities to prevent extinctions and respond dynamically to rapidly changing environmental and climatic conditions. Focusing on terrestrial mammals, we quantified the number of threatened mammals that have established new populations through assisted migration (i.e., introduction). We devised 4 alternative scenarios for the inclusion of assisted-migrant populations in mainstream conservation policy with the aim of preventing global species extinctions. We then used spatial prioritization algorithms to simulate how these scenarios could change global spatial conservation priorities. We found that 22% (70 species out of 265) of all identified assisted-migrant mammals were threatened in their native ranges, mirroring the 25% of all mammals that are threatened. Reassessing global threat statuses by combining native and migrant ranges reduced the threat status of 23 species (∼33% of threatened assisted migrants). Thus, including migrant populations in threat assessments provides a more accurate assessment of actual global extinction risk among species. Spatial prioritization simulations showed that reimagining the role of assisted-migrant populations in preventing species extinction could increase the importance of overlooked landscapes, particularly in central Australia, Europe, and the southwestern United States. Our results indicated that these various and nonexhaustive ways to consider assisted-migrant populations, with due consideration of potential conservation conflicts with resident taxa, may provide unprecedented opportunities to prevent species extinctions.
Collapse
Affiliation(s)
- Erick J. Lundgren
- School of Biology and Environmental Science, Faculty of ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityAarhusDenmark
- Section for Ecoinformatics and Biodiversity, Department of BiologyAarhus UniversityAarhusDenmark
| | - Arian D. Wallach
- School of Biology and Environmental Science, Faculty of ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Jens‐Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of BiologyAarhus UniversityAarhusDenmark
- Section for Ecoinformatics and Biodiversity, Department of BiologyAarhus UniversityAarhusDenmark
| | | | | | - Daniel Ramp
- Centre for Compassionate Conservation, TD SchoolUniversity of Technology SydneyUltimoNew South WalesAustralia
| |
Collapse
|
5
|
Leiberich M, Hooijberg E, van Heerden B, Meyer L. A Portable Fluid Administration System for Prolonged Intravenous Fluid Administration in Subadult and Adult White Rhinoceroses (Ceratotherium simum). Zoo Biol 2024; 43:595-600. [PMID: 39229935 PMCID: PMC11624622 DOI: 10.1002/zoo.21860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/18/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
While translocations of white rhinoceroses have become an important conservation tool, dehydration during long-distance transports has been identified as a welfare concern. Intravenous (iv) fluid administration might therefore be useful to mitigate dehydration; however, special requirements need to be met to make iv fluid administration suitable for large, wild rhinoceroses during transport. Requirements include a portable and robust system that is capable of delivering high flow rates, is easy to set up, and remains patent and operating for long periods of time while allowing the animals to freely stand or lay down in the transport crates. Due to the lack of suitable fluid administration systems, we developed a custom-made system consisting of 8 L drip bags, a three-part, 4.4-m-long, large bore and partially coiled administration set, and a robust, battery-operated infusion pump, which allowed us to successfully administer iv fluids at a maintenance rate of 1-2 mL/kg/h to eight rhinoceroses for 24 h during a mock transport. While iv fluid administration in transported rhinoceroses is time intensive and the large amount of drip bags required during lengthy transports might pose a limitation, the developed system may be useful for the long-distance transport of small groups of rhinoceroses. Furthermore, this system would be of value for injured or sick rhinoceroses, which require parenteral fluid therapy when commercially available infusion pumps cannot provide the large fluid volumes needed.
Collapse
Affiliation(s)
- Marion Leiberich
- Center for Veterinary Wildlife Research, Faculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
- Department of Paraclinical Sciences, Faculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
| | - Emma Hooijberg
- Center for Veterinary Wildlife Research, Faculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
- Department of Companion Animal Clinical StudiesFaculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
| | | | - Leith Meyer
- Center for Veterinary Wildlife Research, Faculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
- Department of Paraclinical Sciences, Faculty of Veterinary ScienceUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
6
|
Feng J, Dan X, Cui Y, Gong Y, Peng M, Sang Y, Ingvarsson PK, Wang J. Integrating evolutionary genomics of forest trees to inform future tree breeding amid rapid climate change. PLANT COMMUNICATIONS 2024; 5:101044. [PMID: 39095989 PMCID: PMC11573912 DOI: 10.1016/j.xplc.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Global climate change is leading to rapid and drastic shifts in environmental conditions, posing threats to biodiversity and nearly all life forms worldwide. Forest trees serve as foundational components of terrestrial ecosystems and play a crucial and leading role in combating and mitigating the adverse effects of extreme climate events, despite their own vulnerability to these threats. Therefore, understanding and monitoring how natural forests respond to rapid climate change is a key priority for biodiversity conservation. Recent progress in evolutionary genomics, driven primarily by cutting-edge multi-omics technologies, offers powerful new tools to address several key issues. These include precise delineation of species and evolutionary units, inference of past evolutionary histories and demographic fluctuations, identification of environmentally adaptive variants, and measurement of genetic load levels. As the urgency to deal with more extreme environmental stresses grows, understanding the genomics of evolutionary history, local adaptation, future responses to climate change, and conservation and restoration of natural forest trees will be critical for research at the nexus of global change, population genomics, and conservation biology. In this review, we explore the application of evolutionary genomics to assess the effects of global climate change using multi-omics approaches and discuss the outlook for breeding of climate-adapted trees.
Collapse
Affiliation(s)
- Jiajun Feng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuming Dan
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yangkai Cui
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Gong
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Minyue Peng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yupeng Sang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pär K Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Cross RL, Eckert CG. Is adaptation associated with long-term persistence beyond a geographic range limit? Evolution 2024; 78:1527-1538. [PMID: 38869498 DOI: 10.1093/evolut/qpae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/04/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Adaptation to new habitats might facilitate species' range shifts in response to climate change. In 2005, we transplanted experimental populations of coastal dune plant Camissoniopsis cheiranthifolia into 4 sites within and 1 site beyond its poleward range limit. Beyond-range transplants had high fitness but often delayed reproduction. To test for adaptation associated with experimental range expansion, we transplanted descendants from beyond- and within-range populations after 10 generations in situ into 2 sites within the range, 1 at the range edge, and 2 sites beyond the range. We expected to detect adaptation to beyond-range conditions due to substantial genetic variation within experimental populations and environmental variation among sites. However, individuals from beyond-range experimental populations were not fitter than those from within the range when planted at either beyond-range site, indicating no adaptation to the beyond-range site or beyond-range environments in general. Beyond-range descendants also did not suffer lower fitness within the range. Although reproduction was again delayed beyond the range, late reproduction was not favored more strongly beyond than within the range, and beyond-range descendants did not delay reproduction more than within-range descendants. Persistence in beyond-range environments may not require adaptation, which could allow a rapid response to climate change.
Collapse
Affiliation(s)
- Regan L Cross
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
8
|
Franklin PA, Bašić T, Davison PI, Dunkley K, Ellis J, Gangal M, González-Ferreras AM, Gutmann Roberts C, Hunt G, Joyce D, Klöcker CA, Mawer R, Rittweg T, Stoilova V, Gutowsky LFG. Aquatic connectivity: challenges and solutions in a changing climate. JOURNAL OF FISH BIOLOGY 2024; 105:392-411. [PMID: 38584261 DOI: 10.1111/jfb.15727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
The challenge of managing aquatic connectivity in a changing climate is exacerbated in the presence of additional anthropogenic stressors, social factors, and economic drivers. Here we discuss these issues in the context of structural and functional connectivity for aquatic biodiversity, specifically fish, in both the freshwater and marine realms. We posit that adaptive management strategies that consider shifting baselines and the socio-ecological implications of climate change will be required to achieve management objectives. The role of renewable energy expansion, particularly hydropower, is critically examined for its impact on connectivity. We advocate for strategic spatial planning that incorporates nature-positive solutions, ensuring climate mitigation efforts are harmonized with biodiversity conservation. We underscore the urgency of integrating robust scientific modelling with stakeholder values to define clear, adaptive management objectives. Finally, we call for innovative monitoring and predictive decision-making tools to navigate the uncertainties inherent in a changing climate, with the goal of ensuring the resilience and sustainability of aquatic ecosystems.
Collapse
Affiliation(s)
- Paul A Franklin
- National Institute of Water & Atmospheric Research, Hamilton, New Zealand
| | - Tea Bašić
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK
| | - Phil I Davison
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK
| | - Katie Dunkley
- Christ's College, University of Cambridge, Cambridge, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Jonathan Ellis
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Mayuresh Gangal
- Manipal Academy of Higher Education, Manipal, India
- Nature Conservation Foundation, Mysore, India
| | - Alexia M González-Ferreras
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria. C/Isabel Torres 15, Santander, Spain
- School of Life Sciences, University of Essex, Colchester, UK
| | | | - Georgina Hunt
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Domino Joyce
- Biological Sciences, School of Natural Sciences, University of Hull, Hull, UK
| | - C Antonia Klöcker
- Institute of Marine Research, Tromsø, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Rachel Mawer
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Timo Rittweg
- Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin, Berlin, Germany
- Division of Integrative Fisheries Management, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden, Berlin, Germany
| | - Velizara Stoilova
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, Sweden
| | | |
Collapse
|
9
|
Lamka GF, Willoughby JR. Habitat remediation followed by managed connectivity reduces unwanted changes in evolutionary trajectory of high extirpation risk populations. PLoS One 2024; 19:e0304276. [PMID: 38814889 PMCID: PMC11139274 DOI: 10.1371/journal.pone.0304276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
As we continue to convert green spaces into roadways and buildings, connectivity between populations and biodiversity will continue to decline. In threatened and endangered species, this trend is particularly concerning because the cessation of immigration can cause increased inbreeding and loss of genetic diversity, leading to lower adaptability and higher extirpation probabilities in these populations. Unfortunately, monitoring changes in genetic diversity from management actions such as assisted migration and predicting the extent of introduced genetic variation that is needed to prevent extirpation is difficult and costly in situ. Therefore, we designed an agent-based model to link population-wide genetic variability and the influx of unique alleles via immigration to population stability and extirpation outcomes. These models showed that management of connectivity can be critical in restoring at-risk populations and reducing the effects of inbreeding depression. However, the rescued populations were more similar to the migrant source population (average FST range 0.05-0.10) compared to the historical recipient population (average FST range 0.23-0.37). This means that these management actions not only recovered the populations from the effects of inbreeding depression, but they did so in a way that changed the evolutionary trajectory that was predicted and expected for these populations prior to the population crash. This change was most extreme in populations with the smallest population sizes, which are representative of critically endangered species that could reasonably be considered candidates for restored connectivity or translocation strategies. Understanding how these at-risk populations change in response to varying management interventions has broad implications for the long-term adaptability of these populations and can improve future efforts for protecting locally adapted allele complexes when connectivity is restored.
Collapse
Affiliation(s)
- Gina F. Lamka
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Janna R. Willoughby
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
10
|
Allen BJ, Hill DJ, Burke AM, Clark M, Marchant R, Stringer LC, Williams DR, Lyon C. Projected future climatic forcing on the global distribution of vegetation types. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230011. [PMID: 38583474 PMCID: PMC10999268 DOI: 10.1098/rstb.2023.0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Most emissions scenarios suggest temperature and precipitation regimes will change dramatically across the globe over the next 500 years. These changes will have large impacts on the biosphere, with species forced to migrate to follow their preferred environmental conditions, therefore moving and fragmenting ecosystems. However, most projections of the impacts of climate change only reach 2100, limiting our understanding of the temporal scope of climate impacts, and potentially impeding suitable adaptive action. To address this data gap, we model future climate change every 20 years from 2000 to 2500 CE, under different CO2 emissions scenarios, using a general circulation model. We then apply a biome model to these modelled climate futures, to investigate shifts in climatic forcing on vegetation worldwide, the feasibility of the migration required to enact these modelled vegetation changes, and potential overlap with human land use based on modern-day anthromes. Under a business-as-usual scenario, up to 40% of terrestrial area is expected to be suited to a different biome by 2500. Cold-adapted biomes, particularly boreal forest and dry tundra, are predicted to experience the greatest losses of suitable area. Without mitigation, these changes could have severe consequences both for global biodiversity and the provision of ecosystem services. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.
Collapse
Affiliation(s)
- Bethany J. Allen
- Department of Biosystems Science and Engineering, ETH Zurich, Basel 4056, Switzerland
- Computational Evolution Group, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Daniel J. Hill
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Ariane M. Burke
- Département d'Anthropologie, Université de Montréal, Montréal, Quebec, H3C 3J7, Canada
| | - Michael Clark
- Smith School of Enterprise and the Environment, University of Oxford, Oxford, OX1 3QY, UK
- Oxford Martin School, University of Oxford, Oxford, OX1 3BD, UK
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Robert Marchant
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Lindsay C. Stringer
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, YO10 5DD, UK
- York Environmental Sustainability Institute, University of York, York, YO10 5DD, UK
| | - David R. Williams
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Christopher Lyon
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, YO10 5DD, UK
| |
Collapse
|
11
|
Li KJ, Liu XF, Yang L, Shen SK. Alpine Rhododendron population contractions lead to spatial distribution mismatch with their pollinators under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171832. [PMID: 38521263 DOI: 10.1016/j.scitotenv.2024.171832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
The effect of global climate change on plant-pollinator interaction is not limited to changes in phenology and richness within communities but also includes the spatial mismatch caused by the inconsistency of geographical distribution changes. Subsequently, the pollinator interaction network may be remodeled or even disrupted. In this study, we simulated the suitable habitat niche of 15 Rhododendron species and their eight pollinator species as well as their overlapping versus geographical mismatch under the current and three future climate change scenarios in 2090s, using MaxEnt. Results showed that the suitable habitat of all Rhododendron species would decrease in 2090s. In particular, 10, 8, and 13 Rhododendron-pollinator assemblages would have a reduced spatial match region under the climate change scenarios, mainly due to the contraction of the suitable habitat of Rhododendron species. The results provide novel insights into the response of plant-pollinator interactions to global warming, useful to prioritize conservation actions of alpine plant ecosystems.
Collapse
Affiliation(s)
- Kun-Ji Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Xiao-Fei Liu
- Institute of international river and eco-security Yunnan University, Kunming 650504, Yunnan, China
| | - Liu Yang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Shi-Kang Shen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| |
Collapse
|
12
|
Backus GA, Clements CF, Baskett ML. Restoring spatiotemporal variability to enhance the capacity for dispersal-limited species to track climate change. Ecology 2024; 105:e4257. [PMID: 38426609 DOI: 10.1002/ecy.4257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 03/02/2024]
Abstract
Climate refugia are areas where species can persist through climate change with little to no movement. Among the factors associated with climate refugia are high spatial heterogeneity, such that there is only a short distance between current and future optimal climates, as well as biotic or abiotic environmental factors that buffer against variability in time. However, these types of climate refugia may be declining due to anthropogenic homogenization of environments and degradation of environmental buffers. To quantify the potential for restoration of refugia-like environmental conditions to increase population persistence under climate change, we simulated a population's capacity to track their temperature over space and time given different levels of spatial and temporal variability in temperature. To determine how species traits affected the efficacy of restoring heterogeneity, we explored an array of values for species' dispersal ability, thermal tolerance, and fecundity. We found that species were more likely to persist in environments with higher spatial heterogeneity and lower environmental stochasticity. When simulating a management action that increased the spatial heterogeneity of a previously homogenized environment, species were more likely to persist through climate change, and population sizes were generally higher, but there was little effect with mild temperature change. The benefits of heterogeneity restoration were greatest for species with limited dispersal ability. In contrast, species with longer dispersal but lower fecundity were more likely to benefit from a reduction in environmental stochasticity than an increase in spatial heterogeneity. Our results suggest that restoring environments to refugia-like conditions could promote species' persistence under the influence of climate change in addition to conservation strategies such as assisted migration, corridors, and increased protection.
Collapse
Affiliation(s)
- Gregory A Backus
- Environmental Science and Policy, University of California, Davis, Davis, California, USA
| | | | - Marissa L Baskett
- Environmental Science and Policy, University of California, Davis, Davis, California, USA
| |
Collapse
|
13
|
Duan X, Gu H, Lam SS, Sonne C, Lu W, Li H, Chen X, Peng W. Recent progress on phytoremediation of urban air pollution. CHEMOSPHERE 2024; 349:140821. [PMID: 38042424 DOI: 10.1016/j.chemosphere.2023.140821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The rapid growth of population and economy has led to an increase in urban air pollutants, greenhouse gases, energy shortages, environmental degradation, and species extinction, all of which affect ecosystems, biodiversity, and human health. Atmospheric pollution sources are divided into direct and indirect pollutants. Through analysis of the sources of pollutants, the self-functioning of different plants can be utilized to purify the air quality more effectively. Here, we explore the absorption of greenhouse gases and particulate matter in cities as well as the reduction of urban temperatures by plants based on international scientific literature on plant air pollution mitigation, according to the adsorption, dust retention, and transpiration functions of plants. At the same time, it can also reduce the occurrence of extreme weather. It is necessary to select suitable tree species for planting according to different plant functions and environmental needs. In the context of tight urban land use, the combination of vertical greening and urban architecture, through the rational use of plants, has comprehensively addressed urban air pollution. In the future, in urban construction, attention should be paid to the use of heavy plants and the protection and development of green spaces. Our review provides necessary references for future urban planning and research.
Collapse
Affiliation(s)
- Xiaoyi Duan
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, DK-4000, Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India.
| | - Wenjie Lu
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangmeng Chen
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, Forestry College, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
14
|
Fischman RL, Ruhl JB, Forester BR, Lama TM, Kardos M, Rojas GA, Robinson NA, Shirey PD, Lamberti GA, Ando AW, Palumbi S, Wara M, Schwartz MW, Williamson MA, Berger-Wolf T, Beery S, Rolnick D, Kitzes J, Thau D, Tuia D, Rubenstein D, Hickman CR, Thorstenson J, Kaebnick GE, Collins JP, Jayaram A, Deleuil T, Zhao Y. A landmark environmental law looks ahead. Science 2023; 382:1348-1355. [PMID: 38127744 DOI: 10.1126/science.adn3245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In late December 1973, the United States enacted what some would come to call "the pitbull of environmental laws." In the 50 years since, the formidable regulatory teeth of the Endangered Species Act (ESA) have been credited with considerable successes, obliging agencies to draw upon the best available science to protect species and habitats. Yet human pressures continue to push the planet toward extinctions on a massive scale. With that prospect looming, and with scientific understanding ever changing, Science invited experts to discuss how the ESA has evolved and what its future might hold. -Brad Wible.
Collapse
Affiliation(s)
| | - J B Ruhl
- Vanderbilt University Law School, Nashville, TN, USA
| | | | - Tanya M Lama
- Department of Biological Sciences, Smith College, Northampton, MA, USA
| | - Marty Kardos
- Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, WA, USA
| | - Grethel Aguilar Rojas
- Director General, International Union for the Conservation of Nature (IUCN), Gland, Switzerland
| | - Nicholas A Robinson
- Executive Governor, International Council of Environmental Law (ICEL), New York, NY, USA
| | - Patrick D Shirey
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gary A Lamberti
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Amy W Ando
- Department of Agricultural, Environmental, and Development Economics, The Ohio State University, Columbus, OH, USA
| | - Stephen Palumbi
- Department of Oceans and Department of Biology, Stanford University, Stanford, CA, USA
| | - Michael Wara
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Mark W Schwartz
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | | | - Tanya Berger-Wolf
- Departments of Computer Science and Engineering, Electrical and Computer Engineering, and Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Wild Me, Portland, OR, USA
| | - Sara Beery
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Rolnick
- School of Computer Science, McGill University, Montreal, QC, Canada
- Mila-Quebec AI Institute, Montreal, QC, Canada
| | - Justin Kitzes
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Thau
- World Wildlife Fund, San Francisco, CA, USA
| | - Devis Tuia
- School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Daniel Rubenstein
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Caleb R Hickman
- Office of Fisheries & Wildlife Management, Eastern Band of Cherokee Indians, Cherokee, NC, USA
| | | | | | - James P Collins
- School for the Future of Innovation in Society, Arizona State University, Tempe, AZ, USA
| | | | | | - Ying Zhao
- CITES Secretariat, Geneva, Switzerland
| |
Collapse
|
15
|
Harris GM, Sesnie SE, Stewart DR. Climate change and ecosystem shifts in the southwestern United States. Sci Rep 2023; 13:19964. [PMID: 37968297 PMCID: PMC10651835 DOI: 10.1038/s41598-023-46371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
Climate change shifts ecosystems, altering their compositions and instigating transitions, making climate change the predominant driver of ecosystem instability. Land management agencies experience these climatic effects on ecosystems they administer yet lack applied information to inform mitigation. We address this gap, explaining ecosystem shifts by building relationships between the historical locations of 22 ecosystems (c. 2000) and abiotic data (1970-2000; bioclimate, terrain) within the southwestern United States using 'ensemble' machine learning models. These relationships identify the conditions required for establishing and maintaining southwestern ecosystems (i.e., ecosystem suitability). We projected these historical relationships to mid (2041-2060) and end-of-century (2081-2100) periods using CMIP6 generation BCC-CSM2-MR and GFDL-ESM4 climate models with SSP3-7.0 and SSP5-8.5 emission scenarios. This procedure reveals how ecosystems shift, as suitability typically increases in area (~ 50% (~ 40% SD)), elevation (12-15%) and northing (4-6%) by mid-century. We illustrate where and when ecosystems shift, by mapping suitability predictions temporally and within 52,565 properties (e.g., Federal, State, Tribal). All properties had ≥ 50% changes in suitability for ≥ 1 ecosystem within them, irrespective of size (≥ 16.7 km2). We integrated 9 climate models to quantify predictive uncertainty and exemplify its relevance. Agencies must manage ecosystem shifts transcending jurisdictions. Effective mitigation requires collective action heretofore rarely instituted. Our procedure supplies the climatic context to inform their decisions.
Collapse
Affiliation(s)
- Grant M Harris
- United States Fish and Wildlife Service, Albuquerque, NM, USA.
| | - Steven E Sesnie
- United States Fish and Wildlife Service, Albuquerque, NM, USA
| | - David R Stewart
- United States Fish and Wildlife Service, Albuquerque, NM, USA
| |
Collapse
|
16
|
Donnelly S, Akin‐Fajiye M, Fraser LH. Plant provenance can influence the impacts of temperature and moisture on intraspecific competition in Pseudoroegneria spicata. Ecol Evol 2023; 13:e10603. [PMID: 37886429 PMCID: PMC10598250 DOI: 10.1002/ece3.10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 10/28/2023] Open
Abstract
Warming and changing precipitation can alter the performance of native grasses that are essential to grassland ecosystems. Native grasses may respond to changing climate by phenotypic plasticity or lose their current ranges. Establishing plant species from southern, warmer provenances may reduce the likelihood of biodiversity loss and improve restoration success in cool, northern locations that are undergoing warming. We conducted competition trials for Pseudoroegneria spicata (bluebunch wheatgrass), a native grass commonly found in western North American grasslands, to understand the impact of temperature and moisture on plant-plant interactions. We obtained seeds from three locations along a latitudinal gradient in North America, two in British Columbia (BC), Canada, and one in California, USA. We compared the effects of warming, changing water inputs, and competitor provenance on pairwise competitive interactions among Pseudoroegneria spicata plants grown from seeds obtained from the three locations. We quantified interactions using the relative interaction intensity, which has values from -1 (complete competition) to +1 (complete facilitation). Target plants from northern British Columbia, the location with the coldest summer temperature, were generally more competitively suppressed when competing with plants from California, which had the warmest summer temperature and lowest summer precipitation. Competitive suppression of target plants from northern British Columbia and southern British Columbia was more intense when competitor provenance was more geographically distant from target plant provenance. Finally, plants from northern British Columbia and southern British Columbia were more suppressed at higher temperatures, indicating some local adaptation, while plants from California were not affected by competitors, temperature, or water input. Plants grown from seeds obtained from warm and dry locations appear to be more tolerant to competition at higher temperatures, compared to plants from cooler regions. Native plant diversity and restoration success in grasslands subjected to climate change may be preserved or improved by assisted migration of seeds from warm to cooler but warming locations.
Collapse
Affiliation(s)
- Sabina Donnelly
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBritish ColumbiaCanada
| | - Morodoluwa Akin‐Fajiye
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBritish ColumbiaCanada
| | - Lauchlan H. Fraser
- Department of Natural Resource SciencesThompson Rivers UniversityKamloopsBritish ColumbiaCanada
| |
Collapse
|
17
|
Parks SA, Holsinger LM, Abatzoglou JT, Littlefield CE, Zeller KA. Protected areas not likely to serve as steppingstones for species undergoing climate-induced range shifts. GLOBAL CHANGE BIOLOGY 2023; 29:2681-2696. [PMID: 36880282 DOI: 10.1111/gcb.16629] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 05/31/2023]
Abstract
Species across the planet are shifting their ranges to track suitable climate conditions in response to climate change. Given that protected areas have higher quality habitat and often harbor higher levels of biodiversity compared to unprotected lands, it is often assumed that protected areas can serve as steppingstones for species undergoing climate-induced range shifts. However, there are several factors that may impede successful range shifts among protected areas, including the distance that must be traveled, unfavorable human land uses and climate conditions along potential movement routes, and lack of analogous climates. Through a species-agnostic lens, we evaluate these factors across the global terrestrial protected area network as measures of climate connectivity, which is defined as the ability of a landscape to facilitate or impede climate-induced movement. We found that over half of protected land area and two-thirds of the number of protected units across the globe are at risk of climate connectivity failure, casting doubt on whether many species can successfully undergo climate-induced range shifts among protected areas. Consequently, protected areas are unlikely to serve as steppingstones for a large number of species under a warming climate. As species disappear from protected areas without commensurate immigration of species suited to the emerging climate (due to climate connectivity failure), many protected areas may be left with a depauperate suite of species under climate change. Our findings are highly relevant given recent pledges to conserve 30% of the planet by 2030 (30 × 30), underscore the need for innovative land management strategies that allow for species range shifts, and suggest that assisted colonization may be necessary to promote species that are adapted to the emerging climate.
Collapse
Affiliation(s)
- Sean A Parks
- Aldo Leopold Wilderness Research Institute, Rocky Mountain Research Station, US Forest Service, Missoula, Montana, USA
| | - Lisa M Holsinger
- Aldo Leopold Wilderness Research Institute, Rocky Mountain Research Station, US Forest Service, Missoula, Montana, USA
| | - John T Abatzoglou
- Management of Complex Systems, University of California Merced, Merced, California, USA
| | | | - Katherine A Zeller
- Aldo Leopold Wilderness Research Institute, Rocky Mountain Research Station, US Forest Service, Missoula, Montana, USA
| |
Collapse
|
18
|
Alagador D. Effective conservation planning of Iberian amphibians based on a regionalization of climate-driven range shifts. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14026. [PMID: 36317717 DOI: 10.1111/cobi.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Amphibians are severely affected by climate change, particularly in regions where droughts prevail and water availability is scarce. The extirpation of amphibians triggers cascading effects that disrupt the trophic structure of food webs and ecosystems. Dedicated assessments of the spatial adaptive potential of amphibian species under climate change are, therefore, essential to provide guidelines for their effective conservation. I used predictions about the location of suitable climates for 27 amphibian species in the Iberian Peninsula from a baseline period to 2080 to typify shifting species' ranges. The time at which these range types are expected to be functionally important for the adaptation of a species was used to identify full or partial refugia; areas most likely to be the home of populations moving into new climatically suitable grounds; areas most likely to receive populations after climate adaptive dispersal; and climatically unsuitable areas near suitable areas. I implemented an area prioritization protocol for each species to obtain a cohesive set of areas that would provide maximum adaptability and where management interventions should be prioritized. A connectivity assessment pinpointed where facilitative strategies would be most effective. Each of the 27 species had distinct spatial requirements but, common to all species, a bottleneck effect was predicted by 2050 because source areas for subsequent dispersal were small in extent. Three species emerged as difficult to maintain up to 2080. The Iberian northwest was predicted to capture adaptive range for most species. My study offers analytical guidelines for managers and decision makers to undertake systematic assessments on where and when to intervene to maximize the persistence of amphibian species and the functionality of the ecosystems that depend on them.
Collapse
Affiliation(s)
- Diogo Alagador
- The Biodiversity Chair, Institute for Advanced Studies and Research, Universidade de Évora, Évora, Portugal
- MED - Mediterranean Institute for Agriculture, Environment and Development, CHANGE - Global Change and Sustainability Institute, Universidade de Évora, Évora, Portugal
| |
Collapse
|
19
|
Torres E, García-Fernández A, Iñigo D, Lara-Romero C, Morente-López J, Prieto-Benítez S, Rubio Teso ML, Iriondo JM. Facilitated Adaptation as A Conservation Tool in the Present Climate Change Context: A Methodological Guide. PLANTS (BASEL, SWITZERLAND) 2023; 12:1258. [PMID: 36986946 PMCID: PMC10053585 DOI: 10.3390/plants12061258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Climate change poses a novel threat to biodiversity that urgently requires the development of adequate conservation strategies. Living organisms respond to environmental change by migrating to locations where their ecological niche is preserved or by adapting to the new environment. While the first response has been used to develop, discuss and implement the strategy of assisted migration, facilitated adaptation is only beginning to be considered as a potential approach. Here, we present a review of the conceptual framework for facilitated adaptation, integrating advances and methodologies from different disciplines. Briefly, facilitated adaptation involves a population reinforcement that introduces beneficial alleles to enable the evolutionary adaptation of a focal population to pressing environmental conditions. To this purpose, we propose two methodological approaches. The first one (called pre-existing adaptation approach) is based on using pre-adapted genotypes existing in the focal population, in other populations, or even in closely related species. The second approach (called de novo adaptation approach) aims to generate new pre-adapted genotypes from the diversity present in the species through artificial selection. For each approach, we present a stage-by-stage procedure, with some techniques that can be used for its implementation. The associated risks and difficulties of each approach are also discussed.
Collapse
Affiliation(s)
- Elena Torres
- Departamento de Biotecnología-Biología Vegetal, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Alfredo García-Fernández
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Diana Iñigo
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Carlos Lara-Romero
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - Javier Morente-López
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
- Grupo de Investigación de Ecología y Evolución en Islas, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 Tenerife, Spain
| | - Samuel Prieto-Benítez
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
- Ecotoxicology of Air Pollution, Environmental Department, CIEMAT, 28040 Madrid, Spain
| | - María Luisa Rubio Teso
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| | - José M. Iriondo
- Grupo de Ecología Evolutiva (ECOEVO), Área de Biodiversidad y Conservación, Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, 28933 Móstoles, Spain
| |
Collapse
|
20
|
McNichol BH, Russo SE. Plant Species' Capacity for Range Shifts at the Habitat and Geographic Scales: A Trade-Off-Based Framework. PLANTS (BASEL, SWITZERLAND) 2023; 12:1248. [PMID: 36986935 PMCID: PMC10056461 DOI: 10.3390/plants12061248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Climate change is causing rapid shifts in the abiotic and biotic environmental conditions experienced by plant populations, but we lack generalizable frameworks for predicting the consequences for species. These changes may cause individuals to become poorly matched to their environments, potentially inducing shifts in the distributions of populations and altering species' habitat and geographic ranges. We present a trade-off-based framework for understanding and predicting whether plant species may undergo range shifts, based on ecological strategies defined by functional trait variation. We define a species' capacity for undergoing range shifts as the product of its colonization ability and the ability to express a phenotype well-suited to the environment across life stages (phenotype-environment matching), which are both strongly influenced by a species' ecological strategy and unavoidable trade-offs in function. While numerous strategies may be successful in an environment, severe phenotype-environment mismatches result in habitat filtering: propagules reach a site but cannot establish there. Operating within individuals and populations, these processes will affect species' habitat ranges at small scales, and aggregated across populations, will determine whether species track climatic changes and undergo geographic range shifts. This trade-off-based framework can provide a conceptual basis for species distribution models that are generalizable across plant species, aiding in the prediction of shifts in plant species' ranges in response to climate change.
Collapse
Affiliation(s)
- Bailey H. McNichol
- School of Biological Sciences, University of Nebraska–Lincoln, 1101 T Street, 402 Manter Hall, Lincoln, NE 68588-0118, USA;
| | - Sabrina E. Russo
- School of Biological Sciences, University of Nebraska–Lincoln, 1101 T Street, 402 Manter Hall, Lincoln, NE 68588-0118, USA;
- Center for Plant Science Innovation, University of Nebraska–Lincoln, 1901 Vine Street, N300 Beadle Center, Lincoln, NE 68588-0118, USA
| |
Collapse
|
21
|
Chung MY, Merilä J, Li J, Mao K, López-Pujol J, Tsumura Y, Chung MG. Neutral and adaptive genetic diversity in plants: An overview. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1116814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Genetic diversity is a prerequisite for evolutionary change in all kinds of organisms. It is generally acknowledged that populations lacking genetic variation are unable to evolve in response to new environmental conditions (e.g., climate change) and thus may face an increased risk of extinction. Although the importance of incorporating genetic diversity into the design of conservation measures is now well understood, less attention has been paid to the distinction between neutral (NGV) and adaptive (AGV) genetic variation. In this review, we first focus on the utility of NGV by examining the ways to quantify it, reviewing applications of NGV to infer ecological and evolutionary processes, and by exploring its utility in designing conservation measures for plant populations and species. Against this background, we then summarize the ways to identify and estimate AGV and discuss its potential use in plant conservation. After comparing NGV and AGV and considering their pros and cons in a conservation context, we conclude that there is an urgent need for a better understanding of AGV and its role in climate change adaptation. To date, however, there are only a few AGV studies on non-model plant species aimed at deciphering the genetic and genomic basis of complex trait variation. Therefore, conservation researchers and practitioners should keep utilizing NGV to develop relevant strategies for rare and endangered plant species until more estimates of AGV are available.
Collapse
|
22
|
The impact of climate change on the future distribution of priority crop wild relatives in Indonesia and implications for conservation planning. J Nat Conserv 2023. [DOI: 10.1016/j.jnc.2023.126368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
23
|
Thomas FM, Schunck L, Zisakos A. Legacy Effects in Buds and Leaves of European Beech Saplings ( Fagus sylvatica) after Severe Drought. PLANTS (BASEL, SWITZERLAND) 2023; 12:568. [PMID: 36771652 PMCID: PMC9920899 DOI: 10.3390/plants12030568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Against the background of climate change, we studied the effects of a severe summer drought on buds of European beech (Fagus sylvatica L.) saplings and on leaves formed during the subsequent spring in trees attributed to different drought-damage classes. For the first time, we combined assessments of the vitality (assessed through histochemical staining), mass and stable carbon isotope ratios (δ13C) of buds from drought-stressed woody plants with morphological and physiological variables of leaves that have emerged from the same plants and crown parts. The number, individual mass and vitality of the buds decreased and δ13C increased with increasing drought-induced damage. Bud mass, vitality and δ13C were significantly intercorrelated. The δ13C of the buds was imprinted on the leaves formed in the subsequent spring, but individual leaf mass, leaf size and specific leaf area were not significantly different among damage classes. Vitality and δ13C of the buds are suitable indicators of the extent of preceding drought impact. Bud vitality may be used as a simple means of screening saplings for the flushing capability in the subsequent spring. European beech saplings are susceptible, but-due to interindividual differences-are resilient, to a certain extent, to a singular severe drought stress.
Collapse
|
24
|
Alía R, Notivol E, Climent J, Pérez F, Barba D, Majada J, García del Barrio JM. Local seed sourcing for sustainable forestry. PLoS One 2022; 17:e0278866. [PMID: 36516142 PMCID: PMC9750025 DOI: 10.1371/journal.pone.0278866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022] Open
Abstract
Seed sourcing strategies are the basis for identifying genetic material meeting the requirements of future climatic conditions and social demands. Specifically, local seed sourcing has been extensively promoted, based on the expected adaptation of the populations to local conditions, but there are some limitations for the application. We analyzed Strict-sense local and Wide-sense local (based on climatic similarity) seed sourcing strategies. We determined species and genetic pools based on these strategies for 40 species and deployment zones in Spain. We also obtained the total number of seed sources and stands for these species in the EU countries. We analyzed the richness of the pools, the relationship with variables related to the use of the species in afforestation, and the availability of seed production areas approved for the production of reproductive material destined to be marketed. This study confirms the existence of extensive species and genetic local pools. Also, that the importance of these pools differs for different species, limitations being derived from the use of forest reproductive material and the existence of approved basic materials. Strategies derived from local seed sourcing approaches are the basis for the use of forest reproductive material because a large number of the species in the area considered in the study are under regulation. However, despite the extensive work done to approve basic materials, limitations based on the availability of seed production areas to provide local material for sustainable forestry are found in those species. Considering a Wide-sense local seed sourcing strategy we provide alternative pools in order to meet social demands under the actual regulations on marketing of reproductive materials.
Collapse
Affiliation(s)
- Ricardo Alía
- Department of Ecology and Forest Genetics, Institute of Forest Sciences, INIA-CSIC, Madrid, Spain
- * E-mail:
| | - Eduardo Notivol
- Department of Environment, Agricultural and Forest Systems, CITA, Zaragoza, Spain
| | - José Climent
- Department of Ecology and Forest Genetics, Institute of Forest Sciences, INIA-CSIC, Madrid, Spain
| | - Felipe Pérez
- Directorate General of Biodiversity, Forest and Desertification, MITECO, Madrid, Spain
| | - Diana Barba
- Department of Ecology and Forest Genetics, Institute of Forest Sciences, INIA-CSIC, Madrid, Spain
| | | | | |
Collapse
|
25
|
Rauschendorfer J, Rooney R, Külheim C. Strategies to mitigate shifts in red oak (Quercus sect. Lobatae) distribution under a changing climate. TREE PHYSIOLOGY 2022; 42:2383-2400. [PMID: 35867476 DOI: 10.1093/treephys/tpac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Red oaks (Quercus sect. Lobatae) are a taxonomic group of hardwood trees, which occur in swamp forests, subtropical chaparral and savannahs from Columbia to Canada. They cover a wide range of ecological niches, and many species are thought to be able to cope with current trends in climate change. Genus Quercus encompasses ca. 500 species, of which ca. 80 make up sect. Lobatae. Species diversity is greatest within the southeastern USA and within the northern and eastern regions of Mexico. This review discusses the weak reproductive barriers between species of red oaks and the effects this has on speciation and niche range. Distribution and diversity have been shaped by drought adaptations common to the species of sect. Lobatae, which enable them to fill various xeric niches across the continent. Drought adaptive traits of this taxonomic group include deciduousness, deep tap roots, ring-porous xylem, regenerative stump sprouting, greater leaf thickness and smaller stomata. The complex interplay between these anatomical and morphological traits has given red oaks features of drought tolerance and avoidance. Here, we discuss physiological and genetic components of these adaptations to address how many species of sect. Lobatae reside within xeric sites and/or sustain normal metabolic function during drought. Although extensive drought adaptation appears to give sect. Lobatae a resilience to climate change, aging tree stands, oak life history traits and the current genetic structures place many red oak species at risk. Furthermore, oak decline, a complex interaction between abiotic and biotic agents, has severe effects on red oaks and is likely to accelerate species decline and fragmentation. We suggest that assisted migration can be used to avoid species fragmentation and increase climate change resilience of sect. Lobatae.
Collapse
Affiliation(s)
- James Rauschendorfer
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Rebecca Rooney
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Carsten Külheim
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
26
|
Johnson CA, Drever CR, Kirby P, Neave E, Martin AE. Protecting boreal caribou habitat can help conserve biodiversity and safeguard large quantities of soil carbon in Canada. Sci Rep 2022; 12:17067. [PMID: 36224283 PMCID: PMC9556649 DOI: 10.1038/s41598-022-21476-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 09/27/2022] [Indexed: 12/30/2022] Open
Abstract
Boreal caribou require large areas of undisturbed habitat for persistence. They are listed as threatened with the risk of extinction in Canada because of landscape changes induced by human activities and resource extraction. Here we ask: Can the protection of habitat for boreal caribou help Canada meet its commitments under the United Nations Convention on Biological Diversity and United Nations Framework Convention on Climate Change? We identified hotspots of high conservation value within the distribution of boreal caribou based on: (1) three measures of biodiversity for at risk species (species richness, unique species and taxonomic diversity); (2) climate refugia or areas forecasted to remain unchanged under climate change; and, (3) areas of high soil carbon that could add to Canada's greenhouse gas emissions if released into the atmosphere. We evaluated the overlap among hotspot types and how well hotspots were represented in Canada's protected and conserved areas network. While hotspots are widely distributed across the boreal caribou distribution, with nearly 80% of the area falling within at least one hotspot type, only 3% of the distribution overlaps three or more hotspots. Moreover, the protected and conserved areas network only captures about 10% of all hotspots within the boreal caribou distribution. While the protected and conserved areas network adequately represents hotspots with high numbers of at risk species, areas occupied by unique species, as well as the full spectrum of areas occupied by different taxa, are underrepresented. Climate refugia and soil carbon hotspots also occur at lower percentages than expected. These findings illustrate the potential co-benefits of habitat protection for caribou to biodiversity and ecosystem services and suggest caribou may be a good proxy for future protected areas planning and for developing effective conservation strategies in regional assessments.
Collapse
Affiliation(s)
- Cheryl A. Johnson
- grid.34428.390000 0004 1936 893XEnvironment and Climate Change Canada, Science and Technology, National Wildlife Research Centre, Ottawa, ON K1A 0H3 Canada ,grid.86715.3d0000 0000 9064 6198Department of Applied Geomatics, University of Sherbrooke, Sherbrooke, QC J1K 2R1 Canada
| | | | - Patrick Kirby
- grid.34428.390000 0004 1936 893XEnvironment and Climate Change Canada, Science and Technology, National Wildlife Research Centre, Ottawa, ON K1A 0H3 Canada
| | - Erin Neave
- grid.34428.390000 0004 1936 893XEnvironment and Climate Change Canada, Science and Technology, National Wildlife Research Centre, Ottawa, ON K1A 0H3 Canada
| | - Amanda E. Martin
- grid.34428.390000 0004 1936 893XEnvironment and Climate Change Canada, Science and Technology, National Wildlife Research Centre, Ottawa, ON K1A 0H3 Canada ,grid.34428.390000 0004 1936 893XDepartment of Biology, Carleton University, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
27
|
Palik BJ, Clark PW, D'Amato AW, Swanston C, Nagel L. Operationalizing forest‐assisted migration in the context of climate change adaptation: Examples from the eastern
USA. Ecosphere 2022. [DOI: 10.1002/ecs2.4260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Brian J. Palik
- USDA Forest Service Northern Research Station Grand Rapids Minnesota USA
| | - Peter W. Clark
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA
| | - Anthony W. D'Amato
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA
| | - Chris Swanston
- USDA Forest Service Northern Research Station Houghton Michigan USA
| | - Linda Nagel
- College of Natural Resources Utah State University Logan Utah USA
| |
Collapse
|
28
|
Backus GA, Huang Y, Baskett ML. Comparing management strategies for conserving communities of climate-threatened species with a stochastic metacommunity model. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210380. [PMID: 35757886 PMCID: PMC9237742 DOI: 10.1098/rstb.2021.0380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many species are shifting their ranges to keep pace with climate change, but habitat fragmentation and limited dispersal could impede these range shifts. In the case of climate-vulnerable foundation species such as tropical reef corals and temperate forest trees, such limitations might put entire communities at risk of extinction. Restoring connectivity through corridors, stepping-stones or enhanced quality of existing patches could prevent the extinction of several species, but dispersal-limited species might not benefit if other species block their dispersal. Alternatively, managers might relocate vulnerable species between habitats through assisted migration, but this is generally a species-by-species approach. To evaluate the relative efficacy of these strategies, we simulated the climate-tracking of species in randomized competitive metacommunities with alternative management interventions. We found that corridors and assisted migration were the most effective strategies at reducing extinction. Assisted migration was especially effective at reducing the extinction likelihood for short-dispersing species, but it often required moving several species repeatedly. Assisted migration was more effective at reducing extinction in environments with higher stochasticity, and corridors were more effective at reducing extinction in environments with lower stochasticity. We discuss the application of these approaches to an array of systems ranging from tropical corals to temperate forests. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.
Collapse
Affiliation(s)
- Gregory A Backus
- Environmental Science and Policy, University of California, Davis, CA, USA
| | - Yansong Huang
- Spanish Institute of Oceanography, Oceanographic Center of the Balearic Islands, Palma de Mallorca, Illes Balears, Spain
| | - Marissa L Baskett
- Environmental Science and Policy, University of California, Davis, CA, USA
| |
Collapse
|
29
|
Schwörer C, Leunda M, Alvarez N, Gugerli F, Sperisen C. The untapped potential of macrofossils in ancient plant DNA research. THE NEW PHYTOLOGIST 2022; 235:391-401. [PMID: 35306671 PMCID: PMC9322452 DOI: 10.1111/nph.18108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/07/2022] [Indexed: 05/26/2023]
Abstract
The rapid development of ancient DNA analysis in the last decades has induced a paradigm shift in ecology and evolution. Driven by a combination of breakthroughs in DNA isolation techniques, high-throughput sequencing, and bioinformatics, ancient genome-scale data for a rapidly growing variety of taxa are now available, allowing researchers to directly observe demographic and evolutionary processes over time. However, the vast majority of paleogenomic studies still focus on human or animal remains. In this article, we make the case for a vast untapped resource of ancient plant material that is ideally suited for paleogenomic analyses: plant remains, such as needles, leaves, wood, seeds, or fruits, that are deposited in natural archives, such as lake sediments, permafrost, or even ice caves. Such plant remains are commonly found in large numbers and in stratigraphic sequence through time and have so far been used primarily to reconstruct past local species presences and abundances. However, they are also unique repositories of genetic information with the potential to revolutionize the fields of ecology and evolution by directly studying microevolutionary processes over time. Here, we give an overview of the current state-of-the-art, address important challenges, and highlight new research avenues to inspire future research.
Collapse
Affiliation(s)
- Christoph Schwörer
- Institute of Plant Sciences & Oeschger Centre for Climate Change ResearchUniversity of Bern3013BernSwitzerland
| | - Maria Leunda
- Institute of Plant Sciences & Oeschger Centre for Climate Change ResearchUniversity of Bern3013BernSwitzerland
- WSL Swiss Federal Research Institute8903BirmensdorfSwitzerland
| | - Nadir Alvarez
- Natural History Museum of Geneva1208GenevaSwitzerland
- Department of Genetics and EvolutionUniversity of Geneva1205GenevaSwitzerland
| | - Felix Gugerli
- WSL Swiss Federal Research Institute8903BirmensdorfSwitzerland
| | | |
Collapse
|
30
|
Li H, Tang Y, Liang KY, Zang Y, Osman EEA, Jin ZX, Li J, Xiong J, Li J, Hu JF. Phytochemical and biological studies on rare and endangered plants endemic to China. Part XXII. Structurally diverse diterpenoids from the leaves and twigs of the endangered conifer Torreya jackii and their bioactivities. PHYTOCHEMISTRY 2022; 198:113161. [PMID: 35283166 DOI: 10.1016/j.phytochem.2022.113161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
A phytochemical investigation on the MeOH extract of the leaves and twigs of the endangered conifer Torreya jackii Chun led to the isolation and characterization of 21 structurally diverse diterpenoids. Among them, six are previously undescribed, including four abietane-type (torreyins A-D, resp.) and two labdane-type diterpenoids (torreyins E and F). Their structures and absolute configurations were determined by a combination of spectroscopic methods, calculated/experimental electronic circular dichroism (ECD) data, and single-crystal X-ray diffraction analyses. In particular, torreyins A-C are rare 11,12-seco-abietane type diterpenoids possessing a dilactone moiety, and their biosynthetic pathway starting from a co-occurring abietane derivative (i.e., cyrtophyllone B) was briefly proposed. Among the isolates, 7-oxo-dehydroabietic acid and 15-methoxy-7,13-abietadien-18-oic acid showed considerable inhibitory effects against acetyl-coenzyme A carboxylase 1 (ACC1) and protein tyrosine phosphatase 1 B (PTP1B), with IC50 values of 3.1 and 6.8 μM, respectively.
Collapse
Affiliation(s)
- Hao Li
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Zhejiang, 318000, PR China; School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Yu Tang
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Kai-Yuan Liang
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Zhejiang, 318000, PR China; School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Ezzat E A Osman
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China; Department of Biochemistry, Molecular Biology and Medicinal Chemistry, Theodor Bilharz Research Institute, P. O. Box 30 Imbaba, Giza, 12411, Egypt
| | - Ze-Xin Jin
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Zhejiang, 318000, PR China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203, PR China
| | - Juan Xiong
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| | - Junmin Li
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Zhejiang, 318000, PR China.
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Zhejiang, 318000, PR China; School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| |
Collapse
|
31
|
Lavrik M. Current Conservation Regimes and the Road to Laws on Assisted Migration. ENVIRONMENTAL MANAGEMENT 2022; 69:1186-1201. [PMID: 35353228 DOI: 10.1007/s00267-022-01629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The negative impact of climate change on biodiversity will continue to escalate rapidly. While some species will naturally migrate to more suitable areas or adapt to the new climatic environmental conditions in different fashions, for others doing so may prove to be problematic or impossible. Against this backdrop, scientists and environmentalists have proposed implementing plans for Assisted Migration (AM)-meaning the translocation of plants and animals to areas outside their natural habitats to conserve their species under the new emerging climatic conditions. This article seeks to identify legal approaches towards AM considering not only possible benefits from using this tool but also a necessity to minimize related risks. With regard to its stated purpose, this article also compares legal and policy documents relevant to AM issues from the United States, Australia, and the European Union. In conclusion, we have found, and this article shows, that while existing legal and policy documents leave room for manoeuvreing in regard to climate-related translocations and even sometimes explicitly mention AM as a possible tool for conservation, there exists a need for the further development of concrete legal mechanisms and their balancing with the predominant ideas and goals brought about by the necessity to protect native biota.
Collapse
Affiliation(s)
- Maksim Lavrik
- School of Law, Research Institute of Environmental Law, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
32
|
Antoninka A, Chuckran PF, Mau RL, Slate ML, Mishler BD, Oliver MJ, Coe KK, Stark LR, Fisher KM, Bowker MA. Responses of Biocrust and Associated Soil Bacteria to Novel Climates Are Not Tightly Coupled. Front Microbiol 2022; 13:821860. [PMID: 35572693 PMCID: PMC9096946 DOI: 10.3389/fmicb.2022.821860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Climate change is expanding drylands even as land use practices degrade them. Representing ∼40% of Earth’s terrestrial surface, drylands rely on biological soil crusts (biocrusts) for key ecosystem functions including soil stability, biogeochemical cycling, and water capture. Understanding how biocrusts adapt to climate change is critical to understanding how dryland ecosystems will function with altered climate. We investigated the sensitivity of biocrusts to experimentally imposed novel climates to track changes in productivity and stability under both warming and cooling scenarios. We established three common gardens along an elevational-climate gradient on the Colorado Plateau. Mature biocrusts were collected from each site and reciprocally transplanted intact. Over 20 months we monitored visible species composition and cover, chlorophyll a, and the composition of soil bacterial communities using high throughput sequencing. We hypothesized that biocrusts replanted at their home site would show local preference, and biocrusts transplanted to novel environments would maintain higher cover and stability at elevations higher than their origin, compared to at elevations lower than their origin. We expected responses of the visible biocrust cover and soil bacterial components of the biocrust community to be coupled, with later successional taxa showing higher sensitivity to novel environments. Only high elevation sourced biocrusts maintained higher biocrust cover and community stability at their site of origin. Biocrusts from all sources had higher cover and stability in the high elevation garden. Later successional taxa decreased cover in low elevation gardens, suggesting successional reversal with warming. Visible community composition was influenced by both source and transplant environment. In contrast, soil bacterial community composition was not influenced by transplant environments but retained fidelity to the source. Thus, responses of the visible and soil bacterial components of the biocrust community were not coupled. Synthesis: Our results suggest biocrust communities are sensitive to climate change, and loss of species and function can be expected, while associated soil bacteria may be buffered against rapid change.
Collapse
Affiliation(s)
- Anita Antoninka
- School of Forestry, Northern Arizona University, Flagstaff, AZ, United States
| | - Peter F Chuckran
- Department of Biological Sciences, Center for Ecosystem Science and Society (ECOSS), Northern Arizona University, Flagstaff, AZ, United States
| | - Rebecca L Mau
- Department of Biological Sciences, Center for Ecosystem Science and Society (ECOSS), Northern Arizona University, Flagstaff, AZ, United States
| | - Mandy L Slate
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Brent D Mishler
- Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| | - Melvin J Oliver
- Interdisciplinary Plant Group, Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Kirsten K Coe
- Department of Biology, Middlebury College, Middlebury, VT, United States
| | - Llo R Stark
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Kirsten M Fisher
- Department of Biological Sciences, California State University, Los Angeles, CA, United States
| | - Matthew A Bowker
- School of Forestry, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
33
|
The Conservation and Restoration of Riparian Forests along Caribbean Riverbanks Using Legume Trees. SUSTAINABILITY 2022. [DOI: 10.3390/su14073709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the actual context of global change and biodiversity depletion, soil bioengineering represents an important tool for riparian ecosystem restoration and species conservation. Various techniques have already been implemented, but their adaptation still must be carried out in Caribbean Islands biodiversity hotspots, where suitable species remains unknown. Nitrogen-fixing legumes are particularly relevant for ecological restoration and the diversity of native Caribbean legume trees is promising in the search for suitable species for soil bioengineering. We hypothesized that Caribbean legume tree species present a growth performance and set of biotechnical traits compatible with their use in soil bioengineering. We selected five native legume trees, adapted to riparian environments, in different ecosystems (swamp forest, evergreen seasonal forest, rainforest) based on their ecology, resistance to disturbance and seed production characteristics. We measured root traits relevant for soil bioengineering on nursery grown 3-month-old seedlings. Despite their differences in sensitivity to herbivory and in growth strategies, the selected species have a high potential for use in soil bioengineering, with high seed production, high germination rates—from 88 to 100%—, and 100% survival rates, and are therefore compatible with large scale plant material production. We provided practical guidance tools for their integration into soil bioengineering techniques.
Collapse
|
34
|
Liu Y. Conservation prioritization based on past cascading climatic effects on genetic diversity and population size dynamics: Insights from a temperate tree species. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences University of British Columbia Vancouver British Columbia Canada
- Department of Archaeology University of Cambridge Cambridge UK
| |
Collapse
|
35
|
Pearson DE, Clark TJ, Hahn PG. Evaluating unintended consequences of intentional species introductions and eradications for improved conservation management. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13734. [PMID: 33734489 PMCID: PMC9291768 DOI: 10.1111/cobi.13734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 05/19/2023]
Abstract
Increasingly intensive strategies to maintain biodiversity and ecosystem function are being deployed in response to global anthropogenic threats, including intentionally introducing and eradicating species via assisted migration, rewilding, biological control, invasive species eradications, and gene drives. These actions are highly contentious because of their potential for unintended consequences. We conducted a global literature review of these conservation actions to quantify how often unintended outcomes occur and to elucidate their underlying causes. To evaluate conservation outcomes, we developed a community assessment framework for systematically mapping the range of possible interaction types for 111 case studies. Applying this tool, we quantified the number of interaction types considered in each study and documented the nature and strength of intended and unintended outcomes. Intended outcomes were reported in 51% of cases, a combination of intended outcomes and unintended outcomes in 26%, and strictly unintended outcomes in 10%. Hence, unintended outcomes were reported in 36% of all cases evaluated. In evaluating overall conservations outcomes (weighing intended vs. unintended effects), some unintended effects were fairly innocuous relative to the conservation objective, whereas others resulted in serious unintended consequences in recipient communities. Studies that assessed a greater number of community interactions with the target species reported unintended outcomes more often, suggesting that unintended consequences may be underreported due to insufficient vetting. Most reported unintended outcomes arose from direct effects (68%) or simple density-mediated or indirect effects (25%) linked to the target species. Only a few documented cases arose from more complex interaction pathways (7%). Therefore, most unintended outcomes involved simple interactions that could be predicted and mitigated through more formal vetting. Our community assessment framework provides a tool for screening future conservation actions by mapping the recipient community interaction web to identify and mitigate unintended outcomes from intentional species introductions and eradications for conservation.
Collapse
Affiliation(s)
- Dean E. Pearson
- Rocky Mountain Research StationU.S. Department of Agriculture Forest ServiceMissoulaMontanaUSA
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Tyler J. Clark
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and ConservationUniversity of MontanaMissoulaMontanaUSA
| | - Philip G. Hahn
- Department of Entomology and NematologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
36
|
Naranjo AA, Melton AE, Soltis DE, Soltis PS. Endemism, projected climate change, and identifying species of critical concern in the Scrub Mint clade (Lamiaceae). CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Andre A. Naranjo
- Florida Museum of Natural History University of Florida Gainesville Florida USA
| | | | - Douglas E. Soltis
- Florida Museum of Natural History University of Florida Gainesville Florida USA
- Department of Biology University of Florida Gainesville Florida USA
- Genetics Institute University of Florida Gainesville Florida USA
- Biodiversity Institute University of Florida Gainesville Florida USA
| | - Pamela S. Soltis
- Florida Museum of Natural History University of Florida Gainesville Florida USA
- Genetics Institute University of Florida Gainesville Florida USA
- Biodiversity Institute University of Florida Gainesville Florida USA
| |
Collapse
|
37
|
Mueller TL, Karlsen-Ayala E, Moeller DA, Bellemare J. Of mutualism and migration: will interactions with novel ericoid mycorrhizal communities help or hinder northward Rhododendron range shifts? Oecologia 2022; 198:839-852. [PMID: 34974625 PMCID: PMC9056439 DOI: 10.1007/s00442-021-05081-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
Rapid climate change imperils many small-ranged endemic species as the climate envelopes of their native ranges shift poleward. In addition to abiotic changes, biotic interactions are expected to play a critical role in plant species' responses. Below-ground interactions are of particular interest given increasing evidence of microbial effects on plant performance and the prevalence of mycorrhizal mutualisms. We used greenhouse mesocosm experiments to investigate how natural northward migration/assisted colonization of Rhododendron catawbiense, a small-ranged endemic eastern U.S. shrub, might be influenced by novel below-ground biotic interactions from soils north of its native range, particularly with ericoid mycorrhizal fungi (ERM). We compared germination, leaf size, survival, and ERM colonization rates of endemic R. catawbiense and widespread R. maximum when sown on different soil inoculum treatments: a sterilized control; a non-ERM biotic control; ERM communities from northern R. maximum populations; and ERM communities collected from the native range of R. catawbiense. Germination rates for both species when inoculated with congeners' novel soils were significantly higher than when inoculated with conspecific soils, or non-mycorrhizal controls. Mortality rates were unaffected by treatment, suggesting that the unexpected reciprocal effect of each species' increased establishment in association with heterospecific ERM could have lasting demographic effects. Our results suggest that seedling establishment of R. catawbiense in northern regions outside its native range could be facilitated by the presence of extant congeners like R. maximum and their associated soil microbiota. These findings have direct relevance to the potential for successful poleward migration or future assisted colonization efforts.
Collapse
Affiliation(s)
- Taryn L Mueller
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA. .,Department of Biological Sciences, Smith College, 44 College Lane, Northampton, MA, 01063, USA.
| | - Elena Karlsen-Ayala
- Department of Plant Pathology, University of Florida, 2550 Hull Road, Gainesville, FL, 32611, USA.,Department of Biological Sciences, Smith College, 44 College Lane, Northampton, MA, 01063, USA
| | - David A Moeller
- Department of Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Jesse Bellemare
- Department of Biological Sciences, Smith College, 44 College Lane, Northampton, MA, 01063, USA
| |
Collapse
|
38
|
Chen Z, Grossfurthner L, Loxterman JL, Masingale J, Richardson BA, Seaborn T, Smith B, Waits LP, Narum SR. Applying genomics in assisted migration under climate change: Framework, empirical applications, and case studies. Evol Appl 2022; 15:3-21. [PMID: 35126645 PMCID: PMC8792483 DOI: 10.1111/eva.13335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/01/2022] Open
Abstract
The rate of global climate change is projected to outpace the ability of many natural populations and species to adapt. Assisted migration (AM), which is defined as the managed movement of climate-adapted individuals within or outside the species ranges, is a conservation option to improve species' adaptive capacity and facilitate persistence. Although conservation biologists have long been using genetic tools to increase or maintain diversity of natural populations, genomic techniques could add extra benefit in AM that include selectively neutral and adaptive regions of the genome. In this review, we first propose a framework along with detailed procedures to aid collaboration among scientists, agencies, and local and regional managers during the decision-making process of genomics-guided AM. We then summarize the genomic approaches for applying AM, followed by a literature search of existing incorporation of genomics in AM across taxa. Our literature search initially identified 729 publications, but after filtering returned only 50 empirical studies that were either directly applied or considered genomics in AM related to climate change across taxa of plants, terrestrial animals, and aquatic animals; 42 studies were in plants. This demonstrated limited application of genomic methods in AM in organisms other than plants, so we provide further case studies as two examples to demonstrate the negative impact of climate change on non-model species and how genomics could be applied in AM. With the rapidly developing sequencing technology and accumulating genomic data, we expect to see more successful applications of genomics in AM, and more broadly, in the conservation of biodiversity.
Collapse
Affiliation(s)
- Zhongqi Chen
- Aquaculture Research InstituteUniversity of IdahoHagermanIdahoUSA
| | - Lukas Grossfurthner
- Bioinformatics and Computational Biology Graduate ProgramUniversity of IdahoHagermanIdahoUSA
| | - Janet L. Loxterman
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | | | | | - Travis Seaborn
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Brandy Smith
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | - Lisette P. Waits
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| |
Collapse
|
39
|
Kracke I, Essl F, Zulka KP, Schindler S. Risks and opportunities of assisted colonization: the perspectives of experts. NATURE CONSERVATION 2021. [DOI: 10.3897/natureconservation.45.72554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Owing to climate change and other anthropogenic environmental changes, the suitability of locations is changing for many biota that consequently have to adapt in situ or to move to other areas. To mitigate the effects of such pressures, assisted colonization is a conservation tool developed to reduce extinction risks by intentionally moving and releasing an organism outside its native range, and thus, to facilitate tracking changing environmental conditions. This conservation tool has been proposed for threatened animals or plants that presumably cannot adapt in situ or follow environmental changes by dispersal or migration. However, there have been contentious debates about the shortcomings and risks of implementing assisted colonization. For this reason, we evaluated the specific opinions of global experts for assisted colonization on potential risks and opportunities that this approach offers. For this purpose, we used an online survey targeted at authors of scientific publications on assisted colonization. The majority (82%) of the 48 respondents were in favor of applying assisted colonization for species that are at risk of global extinction due to anthropogenic environmental change. Most respondents agreed that assisted colonization should be considered only when other conservation tools are not available and that certain preconditions must be met. Some of these were already highlighted in the IUCN guidelines for assisted colonization and include a completed risk assessment, clearly defined management plans and secured political as well as financial support. The advocacy of assisted colonization in response to anthropogenic global environmental changes was only weakly dependent on the geographic origin of the experts and their working background. Regarding possible risks, most of the respondents were concerned about consequences like failure of the long-term establishment of the translocated species and the transmission of diseases and invasiveness potentially endangering native biota. To keep these risks as low as possible most of the experts agreed that a target area must have a reasonable carrying capacity to sustain a minimum viable population and that adaptive management should be implemented. Careful evaluation of assisted colonization projects is required to generate further evidence that needs to be considered for further developing conservation tools for the Anthropocene.
Collapse
|
40
|
Harrison PA. Climate change and the suitability of local and non‐local species for ecosystem restoration. ECOLOGICAL MANAGEMENT & RESTORATION 2021. [DOI: 10.1111/emr.12520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Erlandson SK, Bellemare J, Moeller DA. Limited Range-Filling Among Endemic Forest Herbs of Eastern North America and Its Implications for Conservation With Climate Change. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.751728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Biodiversity hotspots host a high diversity of narrowly distributed endemic species, which are increasingly threatened by climate change. In eastern North America, the highest concentration of plant diversity and endemism occurs in the Southern Appalachian Mountains (SAM). It has been hypothesized that this region served as a refugium during Pleistocene glacial cycles and that postglacial migration northward was dispersal limited. We tested this hypothesis using species distribution models for eight forest herb species. We also quantified the extent to which the geography of suitable habitat shifted away from the current range with climate change. We developed species distribution models for four forest herb species endemic to the SAM and four that co-occur in the same SAM habitats but have broader ranges. For widespread species, we built models using (1) all occurrences and (2) only those that overlap the SAM hotspot in order to evaluate the extent of Hutchinsonian shortfalls and the potential for models to predict suitable habitat beyond the SAM. We evaluated the extent to which predicted climatically suitable areas are projected to shift away from their current ranges under future climate change. We detected unoccupied but suitable habitat in regions up to 1,100 km north of the endemic species’ ranges. Endemic ranges are disjunct from suitable northern areas due to a ∼100–150 km gap of unsuitable habitat. Under future climate change, models predicted severe reductions in suitable habitat within current endemic ranges. For non-endemic species, we found similar overall patterns and gap of unsuitability in the same geographic location. Our results suggest a history of dispersal limitation following the last glacial maximum along with an environmental barrier to northward migration. Conservation of endemic species would likely require intervention and assisted migration to suitable habitat in northern New England and Canada.
Collapse
|
42
|
Backus GA, Baskett ML. Identifying robust strategies for assisted migration in a competitive stochastic metacommunity. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1809-1820. [PMID: 33769601 PMCID: PMC9290962 DOI: 10.1111/cobi.13736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/08/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Assisted migration (AM) is the translocation of species beyond their historical range to locations that are expected to be more suitable under future climate change. However, a relocated population may fail to establish in its donor community if there is high uncertainty in decision-making, climate, and interactions with the recipient ecological community. To quantify the benefit to persistence and risk of establishment failure of AM under different management scenarios (e.g., choosing target species, proportion of population to relocate, and optimal location to relocate), we built a stochastic metacommunity model to simulate several species reproducing, dispersing, and competing on a temperature gradient as temperature increases over time. Without AM, the species were vulnerable to climate change when they had low population sizes, short dispersal, and strong poleward competition. When relocating species that exemplified these traits, AM increased the long-term persistence of the species most when relocating a fraction of the donor population, even if the remaining population was very small or rapidly declining. This suggests that leaving behind a fraction of the population could be a robust approach, allowing managers to repeat AM in case they move the species to the wrong place and at the wrong time, especially when it is difficult to identify a species' optimal climate. We found that AM most benefitted species with low dispersal ability and least benefited species with narrow thermal tolerances, for which AM increased extinction risk on average. Although relocation did not affect the persistence of nontarget species in our simple competitive model, researchers will need to consider a more complete set of community interactions to comprehensively understand invasion potential.
Collapse
Affiliation(s)
- Gregory A. Backus
- Department of Environmental Science and PolicyUniversity of California, DavisDavisCaliforniaUSA
| | - Marissa L. Baskett
- Department of Environmental Science and PolicyUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
43
|
García-Girón J, Heino J, Iversen LL, Helm A, Alahuhta J. Rarity in freshwater vascular plants across Europe and North America: Patterns, mechanisms and future scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147491. [PMID: 33965814 DOI: 10.1016/j.scitotenv.2021.147491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Patterns of species rarity have long fascinated ecologists, yet most of what we know about the natural world stems from studies of common species. A large proportion of freshwater plant species has small range sizes and are therefore considered rare. However, little is known about the mechanisms and geographical distribution of rarity in the aquatic realm and to what extent diversity of rare species in freshwater plants follows their terrestrial counterparts. Here, we present the first in-depth analysis of geographical patterns, potential deterministic ecogeographical factors and projected scenarios of freshwater vascular plant rarity using 50 × 50 km grid cells across Europe (41°N-71°N) and North America (25°N-78°N). Our results suggest that diversity of rare species shows different patterns in relation to latitude on the two continents, and that hotspots of rarity concentrate in a relatively small proportion of the European and North American land surface, especially in mountainous as well as in climatically rare and stable areas. Interestingly, we found no differences among alternative rarity definitions and measures when delineating areas with notably high diversity of rare species. Our findings also indicate that few variables, namely a combination of current climate, Late Quaternary climate-change velocity and human footprint, are able to accurately predict the location of continental centers of rare species diversity. However, these relationships are not geographically homogeneous, and the underlying factors likely act synergistically. Perhaps more importantly, we provide empirical evidence that current centers of rare species diversity are characterized by higher anthropogenic impacts and might shrink disproportionately within this century as the climate changes. Our reported distributional patterns of species rarity align with the known trends in species richness of other freshwater organisms and may help conservation planners make informed decisions mitigating the effects of climate change and other anthropogenic impacts on biodiversity.
Collapse
Affiliation(s)
- Jorge García-Girón
- Ecology Unit, University of León, Campus de Vegazana S/N, 24071 León, Spain; Finnish Environment Institute, Freshwater Centre, P.O. Box 413, FI-90014 Oulu, Finland.
| | - Jani Heino
- Finnish Environment Institute, Freshwater Centre, P.O. Box 413, FI-90014 Oulu, Finland.
| | - Lars Lønsmann Iversen
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, Bld. 3, DK-2100 Copenhagen, Denmark
| | - Aveliina Helm
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia.
| | - Janne Alahuhta
- Geography Research Unit, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland.
| |
Collapse
|
44
|
Rivera SN, Fortini LB, Plentovich S, Price MR. Perceived Barriers to the Use of Assisted Colonization for Climate Sensitive Species in the Hawaiian Islands. ENVIRONMENTAL MANAGEMENT 2021; 68:329-339. [PMID: 34160659 PMCID: PMC8384802 DOI: 10.1007/s00267-021-01491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
Conservation actions to safeguard climate change vulnerable species may not be utilized due to a variety of perceived barriers. Assisted colonization, the intentional movement and release of an organism outside its historical range, is one tool available for species predicted to lose habitat under future climate change scenarios, particularly for single island or single mountain range endemic species. Despite the existence of policies that allow for this action, to date, assisted colonization has rarely been utilized for species of conservation concern in the Hawaiian Islands. Given the potential for climate driven biodiversity loss, the Hawaiian Islands are a prime location for the consideration of adaptation strategies. We used first-person interviews with conservation decision makers, managers, and scientists who work with endangered species in the Hawaiian Islands to identify perceived barriers to the use of assisted colonization. We found that assisted colonization was often not considered or utilized due to a lack of expertize with translocations; ecological risk and uncertainty, economic constraints, concerns regarding policies and permitting, concerns with public perception, and institutional resistance. Therefore, conservation planners may benefit from decision tools that integrate risk and uncertainty into decision models, and compare potential outcomes among conservation actions under consideration, including assisted colonization. Within a decision framework that addresses concerns, all conservation actions for climate sensitive species, including assisted colonization, may be considered in a timely manner.
Collapse
Affiliation(s)
- Shannon N Rivera
- University of Hawai'i at Mānoa, 1910 East-West Road, Honolulu, HI, 96822, USA.
| | - Lucas Berio Fortini
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, 1845 Wasp Blvd, Bldg 176, Honolulu, HI, 96818, USA
| | - Sheldon Plentovich
- U. S. Fish and Wildlife Service, Pacific Islands Coastal Program, 300 Ala Moana Blvd, Rm 3-122, Honolulu, HI, 96850, USA
| | - Melissa R Price
- University of Hawai'i at Mānoa, 1910 East-West Road, Honolulu, HI, 96822, USA
| |
Collapse
|
45
|
Factors affecting success of conservation translocations of terrestrial vertebrates: A global systematic review. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Croy JR, Pratt JD, Sheng D, Mooney KA. Climatic displacement exacerbates the negative impact of drought on plant performance and associated arthropod abundance. Ecology 2021; 102:e03462. [PMID: 34236699 DOI: 10.1002/ecy.3462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/27/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
Climate change is acting on species and modifying communities and ecosystems through changes not only with respect to mean abiotic conditions, but also through increases in the frequency and severity of extreme events. Changes in mean aridity associated with climate change can generate ecotype by environment mismatch (i.e., climatic displacement). At the same time, variability around these shifting means is predicted to increase, resulting in more extreme droughts. We characterized the effects of two axes of climate change, climatic displacement and drought, on the shrub Artemisia californica and its arthropods. We established common gardens of plants sourced along an aridity gradient (3.5-fold variation in mean annual precipitation) in an arid region of the species distribution, thus generating a gradient of climatic displacement (sustained increase in aridity) as predicted with climate change. We surveyed plants and arthropods over eight years where precipitation varied sixfold, including both extreme drought and relatively mesic conditions. These two axes of climate change interacted to influence plant performance, such that climatically displaced populations grew slowly regardless of drought and suffered substantial mortality during drought years. Conversely, local populations grew quickly, increased growth during wet years, and had low mortality regardless of drought. Effects on plant annual arthropod yield were negative and additive, with drought effects exceeding that of climatic displacement by 24%. However, for plant lifetime arthropod yield, incorporating effects on both plant growth and survival, climatic displacement exacerbated the negative effects of drought. Collectively these results demonstrate how climatic displacement (through increasing aridity stress) strengthens the negative effects of drought on plants and, indirectly, on arthropods, suggesting the possibility of climate-mediated trophic collapse.
Collapse
Affiliation(s)
- Jordan R Croy
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, 92697, USA
| | - Jessica D Pratt
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, 92697, USA
| | - Daniel Sheng
- Forestry Division of the County of Los Angeles Fire Department, Los Angeles, California, 91773, USA
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, 92697, USA
| |
Collapse
|
47
|
Ferrarini A, Bai Y, Dai J, Alatalo JM. A new method for broad-scale modeling and projection of plant assemblages under climatic, biotic, and environmental cofiltering. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 36. [PMID: 34129706 DOI: 10.1111/cobi.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
There is increasing interest in broad-scale analysis, modeling, and prediction of the distribution and composition of plant species assemblages under climatic, environmental, and biotic filtering, particularly for conservation purposes. We devised a method (broad-scale analysis & modeling of plant assemblages under climatic-biotic-environmental co-filtering, BAM-PACC) for reliably predicting the impact of climate change on arbitrarily large assemblages of plant communities, while also considering competing biotic and abiotic factors. When applied to a large set of plant communities in the Swiss Alps, BAM-PACC explained presences/absences of 175 plant species in 608 plots with >87% cross-validated accuracy, predicted decreases in α, β, and γ diversity by 2040 under both moderate and extreme climate scenarios, and identified plant species likely to be favored/disfavored by climate change. BAM-PACC also revealed the importance of topography and soil in determining the distribution of plant species and their response to climate change, and showed the overriding importance of temperature extremes rather than averages. BAM-PACC was able to address a number of challenging research problems, such as scaling to large numbers of species, exploiting species relationships, dealing with species rarity, and overwhelming proportion of absences in the presence/absence matrix. By handling hundreds/thousands of plants and plots simultaneously over large areas, BAM-PACC can help broad-scale conservation of plant species under climate change, as it allows species that require urgent conservation planning and policies (assisted migration, seed conservation, ex-situ conservation) to be detected and prioritized. BAM-PACC can also increase the practicality of assisted colonization of plant species, by helping to prevent ill-advised introduction of plant species with limited future survival probability in a certain area. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Yang Bai
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Junhu Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, P.O. Box 2713, Qatar
| |
Collapse
|
48
|
Climate Analogues for Temperate European Forests to Raise Silvicultural Evidence Using Twin Regions. SUSTAINABILITY 2021. [DOI: 10.3390/su13126522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Climate analogues provide forestry practice with empirical evidence of how forests are managed in “twin” regions, i.e., regions where the current climate is comparable to the expected future climate at a site of interest. As the twin regions and their silvicultural evidence change with each climate scenario and model, we focus our investigation on how the uncertainty in future climate affects tree species prevalence. We calculate the future climate from 2000 to 2100 for three ensemble variants of the mild (representative concentration pathway (RCP) 4.5) and hard (RCP 8.5) climate scenarios. We determine climatic distances between the future climate of our site of interest ‘Roth’ and the current climate in Europe, generating maps with twin regions from 2000 to 2100. From forest inventories in these twin regions we trace how the prevalence of 23 major tree species changes. We realize that it is not the ‘how’ but the ‘how fast’ species’ prevalence changes that differs between the scenario variants. We use this finding to develop a categorization of species groups that integrates the uncertainty in future climate. Twin regions provide further information on silvicultural practices, pest management, product chains etc.
Collapse
|
49
|
Dillon KG, Conway CJ. Habitat heterogeneity, temperature, and primary productivity drive elevational gradients in avian species diversity. Ecol Evol 2021; 11:5985-5997. [PMID: 34141197 PMCID: PMC8207161 DOI: 10.1002/ece3.7341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 11/05/2022] Open
Abstract
AIM Anticipating and mitigating the impacts of climate change on species diversity in montane ecosystems requires a mechanistic understanding of drivers of current patterns of diversity. We documented the shape of elevational gradients in avian species richness in North America and tested a suite of a priori predictions for each of five mechanistic hypotheses to explain those patterns. LOCATION United States. METHODS We used predicted occupancy maps generated from species distribution models for each of 646 breeding birds to document elevational patterns in avian species richness across the six largest U.S. mountain ranges. We used spatially explicit biotic and abiotic data to test five mechanistic hypotheses proposed to explain geographic variation in species richness. RESULTS Elevational gradients in avian species richness followed a consistent pattern of low elevation plateau-mid-elevation peak (as per McCain, 2009). We found support for three of the five hypotheses to explain the underlying cause of this pattern: the habitat heterogeneity, temperature, and primary productivity hypotheses. MAIN CONCLUSIONS Species richness typically decreases with elevation, but the primary cause and precise shape of the relationship remain topics of debate. We used a novel approach to study the richness-elevation relationship and our results are unique in that they show a consistent relationship between species richness and elevation among 6 mountain ranges, and universal support for three hypotheses proposed to explain the underlying cause of the observed relationship. Taken together, these results suggest that elevational variation in food availability may be the ecological process that best explains elevational gradients in avian species richness in North America. Although much attention has focused on the role of abiotic factors, particularly temperature, in limiting species' ranges, our results offer compelling evidence that other processes also influence (and may better explain) elevational gradients in species richness.
Collapse
Affiliation(s)
- Kristen G. Dillon
- Idaho Cooperative Fish and Wildlife Research UnitDepartment of Fish and Wildlife Sciences, University of IdahoMoscowIDUSA
- Present address:
U.S. Bureau of ReclamationDenverCOUSA
| | - Courtney J. Conway
- U. S. Geological SurveyIdaho Cooperative Fish and Wildlife Research UnitDepartment of Fish and Wildlife Sciences, University of IdahoMoscowIDUSA
| |
Collapse
|
50
|
Butt N, Chauvenet ALM, Adams VM, Beger M, Gallagher RV, Shanahan DF, Ward M, Watson JEM, Possingham HP. Importance of species translocations under rapid climate change. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:775-783. [PMID: 33047846 DOI: 10.1111/cobi.13643] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Species that cannot adapt or keep pace with a changing climate are likely to need human intervention to shift to more suitable climates. While hundreds of articles mention using translocation as a climate-change adaptation tool, in practice, assisted migration as a conservation action remains rare, especially for animals. This is likely due to concern over introducing species to places where they may become invasive. However, there are other barriers to consider, such as time-frame mismatch, sociopolitical, knowledge and uncertainty barriers to conservationists adopting assisted migration as a go-to strategy. We recommend the following to advance assisted migration as a conservation tool: attempt assisted migrations at small scales, translocate species with little invasion risk, adopt robust monitoring protocols that trigger an active response, and promote political and public support.
Collapse
Affiliation(s)
- Nathalie Butt
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Alienor L M Chauvenet
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Gold Coast, Southport, QLD, 4222, Australia
| | - Vanessa M Adams
- School of Technology, Environments & Design, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Maria Beger
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, U.K
| | - Rachael V Gallagher
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Danielle F Shanahan
- Zealandia Ecosanctuary, 53 Waiapu Road, Karori, Wellington, 6012, New Zealand
- Victoria University of Wellington, Kelburn, Wellington, 6012, New Zealand
| | - Michelle Ward
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, QLD, 4072, Australia
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - James E M Watson
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, QLD, 4072, Australia
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Global Conservation Program, Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, New York, U.S.A
| | - Hugh P Possingham
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, St. Lucia, QLD, 4072, Australia
- The Nature Conservancy, South Brisbane, QLD, 4101, Australia
| |
Collapse
|