1
|
Landry A, Rouleau I, Desrochers V, Colucci E, Gravel V, Nguyen DK, Boucher O. Novel analogous tasks to assess material-specific memory impairments associated with temporal lobe epilepsy. Epilepsy Behav 2025; 166:110366. [PMID: 40088859 DOI: 10.1016/j.yebeh.2025.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Episodic memory tasks employing verbal material are generally sensitive to material-specific memory impairments in individuals with left mesial temporal lobe epilepsy (LTLE), whereas visuospatial memory tasks are less consistently failed by individuals with right mesial temporal lobe epilepsy (RTLE). A limitation of these tasks is the possibility for the examinee to use verbalization strategies when tested with visuospatial stimuli, and visualization strategies with verbal material. In this study, we aimed to develop two new analogous computerized recognition tasks to identify material-specific memory impairments, adapted from those previously developed in our lab: one using verbal material (i.e., pseudowords), and the other visuospatial material (i.e., pictures depicting similar landscapes of mountains, trees, and lakes). Each task consists of a 3-trial learning phase and delayed recognition trials after 30 min. and two weeks. After having established normative data for adults (N = 124), we assessed the ability of each task to detect material-specific memory impairments in patients who have had surgery for LTLE (n = 16) or RTLE (n = 12). Both tasks have good psychometric properties. The RTLE group showed significantly poorer performance on the visuospatial than on the verbal memory test on all trials. The LTLE group showed significantly poorer performance on the verbal than on the visuospatial memory test on delayed (30-min. and 2-week) recognition trials. Memory profile on delayed recognition trials was concordant with the lateralization of epilepsy surgery in 87.5% of LTLE and in 83.3% of the RTLE group. This study provides preliminary clinical validation for our novel tasks to detect material-specific memory impairments in individuals with temporal lobe epilepsy.
Collapse
Affiliation(s)
- Amélie Landry
- Département de psychologie, Université du Québec à Montréal (UQAM), Montréal, Canada; Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Isabelle Rouleau
- Département de psychologie, Université du Québec à Montréal (UQAM), Montréal, Canada; Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | | | - Emma Colucci
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada; Département de psychologie, Université de Montréal, Montréal, Canada
| | - Victoria Gravel
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Dang Khoa Nguyen
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Olivier Boucher
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada; Département de psychologie, Université de Montréal, Montréal, Canada; Service de psychologie, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Canada.
| |
Collapse
|
2
|
McCrea M, Reddy N, Ghobrial K, Ahearn R, Krafty R, Hitchens TK, Martinez-Gonzalez J, Modo M. Mesoscale connectivity of the human hippocampus and fimbria revealed by ex vivo diffusion MRI. Neuroimage 2025; 310:121125. [PMID: 40101867 PMCID: PMC12038723 DOI: 10.1016/j.neuroimage.2025.121125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
The human hippocampus is essential to cognition and emotional processing. Its function is defined by its connectivity. Although some pathways have been well-established, our knowledge about anterior-posterior connectivity and the distribution of fibers from major fiber bundles remains limited. Mesoscale (250 μm isotropic acquisition, upsampled to 125 μm) resolution MR images of the human temporal lobe afforded a detailed visualization of fiber tracts, including those that related anterior-posterior substructures defined as subregions (head, body, tail) and subfields (cornu ammonis 1-3, dentate gyrus) of the hippocampus. Fifty pathways were dissected between the head and body, highlighting an intricate mesh of connectivity between these two subregions. Along the body subregion, 12 lamellae were identified based on morphology and the presence of interlamellar fibers that appear to connect neighboring lamellae at the edge of the external limb of the granule cell layer (GCL). Translamellar fibers (i.e. longitudinal fibers crossing more than 2 lamellae) were also evident at the edge of the internal limb of the GCL. The dentate gyrus of the body was the main site of connectivity with the fimbria. Unique pathways were dissected within the fimbria that connected the body of the hippocampus with the amygdala and the temporal pole. A topographical segregation within the fimbria was determined by fibers' hippocampal origin, illustrating the importance of mapping the spatial distribution of fibers. Elucidating the detailed structural connectivity of the hippocampus is crucial to develop better diagnostic markers of neurological and psychiatric conditions, as well as to devise novel surgical interventions.
Collapse
Affiliation(s)
- Madeline McCrea
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Navya Reddy
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Kathryn Ghobrial
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Ryan Ahearn
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Ryan Krafty
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - T Kevin Hitchens
- Neurobiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | | | - Michel Modo
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA.
| |
Collapse
|
3
|
Gutierrez-Pineda F, Jaramillo-Canastero MV, Lozano-Garcia L, Alvarez-Restrepo JF, Zapata-Berruecos JF, Jaramillo-Betancur HA. Resective epilepsy surgery in pediatric patients with normal MRI: outcomes, challenges, and cost-effectiveness in low-resource settings. Childs Nerv Syst 2025; 41:152. [PMID: 40186785 DOI: 10.1007/s00381-025-06814-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Pediatric patients with drug-resistant epilepsy and normal preoperative MRIs present significant challenges in surgical planning. Advanced diagnostic techniques, including PET, SPECT, and intraoperative ECOG, are used to localize seizure foci, but their high cost and limited availability pose challenges, especially in low-resource settings. This study aims to evaluate the outcomes of resective epilepsy surgery in these cases and assess the role of advanced imaging in a middle-income country. METHODS This retrospective cohort study included 12 pediatric patients (mean age 10.21 years) with normal preoperative 3 T MRI who underwent resective epilepsy surgery or functional hemispherectomy between 2007 and 2021 at two centers in Medellín, Colombia. Demographic, clinical, and surgical data were collected, including the use of advanced imaging techniques (PET, SPECT) and intraoperative ECOG. Seizure outcomes were assessed using the Engel Epilepsy Surgery Outcome Scale. RESULTS Of the 12 patients, 10 underwent extratemporal resections, and 2 underwent temporal lobe surgery. Seven patients had advanced imaging, and 5 were evaluated with intraoperative ECOG. At 2-year follow-up, 83.3% of patients who underwent resective surgery achieved favorable outcomes (Engel Classes I and II). Temporal lobe resections had a higher rate of seizure freedom (50%) compared to extratemporal resections (30%), although the difference was not statistically significant (p = 0.47). Reoperations due to seizure recurrence were required in 30% of extratemporal resections (p = 0.02). Complications were minimal, with three superficial wound infections. Histopathology revealed cortical dysplasia in 33.3% of cases. CONCLUSION Epilepsy surgery in pediatric patients with normal MRIs can yield favorable outcomes, especially with temporal lobe resections. Advanced imaging improves localization but remains costly, highlighting the need for cost-effective surgical strategies in resource-limited settings.
Collapse
Affiliation(s)
- Felipe Gutierrez-Pineda
- Department of Neurosurgery, School of Medicine, University of Antioquia, Medellin, Colombia.
- Department of Neurosurgery, Colombian Neurological Institute, Medellin, Colombia.
| | | | - Lucas Lozano-Garcia
- Department of Neurology and Epilepsy, Colombian Neurological Institute, Medellin, Colombia
| | | | | | - Héctor Alfredo Jaramillo-Betancur
- Department of Neurosurgery, Colombian Neurological Institute, Medellin, Colombia
- Department of Neurology and Epilepsy, Colombian Neurological Institute, Medellin, Colombia
| |
Collapse
|
4
|
Guo K, Hu J, Cui B, Wang Z, Hou Y, Yang H, Lu J. Simultaneous 18F-FDG PET/MRI predicting favourable surgical outcome in refractory epilepsy patients. Neuroradiology 2025; 67:89-97. [PMID: 39172166 DOI: 10.1007/s00234-024-03446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES To evaluate the (1) successful surgery proportion in patients with clear structural lesions on MRI and single abnormality on 18F-fluorodeoxyglucose positron emission tomography/Magnetic resonance imaging (18F-FDG PET/MRI); (2) predictive value of 18F-FDG PET/MRI for postsurgical outcome in refractory epilepsy patients. METHODS A retrospective study was conducted on 123 patients diagnosed with refractory epilepsy who underwent presurgical evaluation involving 18F-FDG PET/MRI and were followed for one-year post-surgery. Two neuroradiologists interpreted the PET/MRI images using visual analysis and an asymmetry index based on the standard uptake value. The Engel classification was used to assess surgical outcomes one-year post-surgery. Prognostic factors predicting post-surgical seizure outcomes were explored using univariate and binary logistic regression. RESULTS Definitely single lesion abnormality was observed in 35.0% (43/123) of the patients on the MRI portion of PET/MRI. The proportion increased to 74.0% (91/123) when 18 F-FDG PET portion was added. About 75% (69/91) of patients displaying a clear-cut lesion on 18 F-FDG PET/MRI were classified as Engel Class I one-year post-surgery. The proportion of Engel Class I patients was not significantly different when comparing MRI-single lesion patients with MRI-negative, PET-single lesion patients one year after surgery (81.4% vs. 70.0%, P = 0.24). Binary logistic regression analysis revealed that the detection of a clear single lesion on 18 F-FDG PET/MRI was a strong positive predictor of a favorable surgical outcome (OR 3.518, 95% CI 1.363-9.077, p = 0.009). CONCLUSION Single lesion detected on 18 F-FDG PET/MRI is useful to predict good surgical outcome for refractory epilepsy patients; Those patients should be considered as candidates for surgery.
Collapse
Affiliation(s)
- Kun Guo
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Hu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenming Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaqin Hou
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongwei Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
| |
Collapse
|
5
|
Zhang B, Wang X, Wang J, Wang M, Guan Y, Liu Z, Zhang Y, Zhao M, Ding H, Xu K, Deng J, Li T, Luan G, Zhou J. The Effect of Stereoelectroencephalography on the Long-Term Outcomes of Different Side Anterior Temporal Lobectomy: A Single-Center Retrospective Study. World Neurosurg 2024:S1878-8750(24)01593-6. [PMID: 39278540 DOI: 10.1016/j.wneu.2024.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
PURPOSE Anterior temporal lobectomy (ATL) is the most common surgical treatment for temporal lobe epilepsy (TLE), and Stereoelectroencephalography (SEEG) plays a critical role in precisely localizing the epileptogenic zone (EZ). This study aimed to explore the effect of SEEG on the long-term outcomes of different side ATL. METHODS From March 2012 to February 2020, a retrospective analysis was conducted on 231 TLE patients who underwent standard ATL surgery. According to the surgical sides and the utilization of SEEG during preoperative evaluation, the patients were categorized into 4 groups, with a follow-up period exceeding 2 years. RESULTS Among the 231 TLE patients, the probability of being seizure-free 2 years after the surgery was 80.52%, which decreased to 65.65% after 5 years. There was no significant difference in outcomes between SEEG and non-SEEG patients. For overall and non-SEEG patients, there was no significant difference in short-term outcomes between different surgical sides. However, the long-term outcomes of right ATL patients were significantly better than left. Interestingly, for patients who underwent SEEG, there was no significant difference in both short-term and long-term outcomes between different surgical sides. CONCLUSIONS Some TLE patients encounter challenges in localizing the EZ through noninvasive evaluation, necessitating the use of SEEG for precise localization. Furthermore, their seizure outcomes after surgery can be the same with the patients who have a clear EZ in noninvasive evaluation. And SEEG patients can achieve a more stable long-term prognosis than non-SEEG patients.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiongfei Wang
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Mengyang Wang
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yuguang Guan
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zhao Liu
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yao Zhang
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Meng Zhao
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Haoran Ding
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ke Xu
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jiahui Deng
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing, China; Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jian Zhou
- Department of Neurosurgery, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Schwaderlapp N, Paschen E, LeVan P, von Elverfeldt D, Haas CA. Probing hippocampal stimulation in experimental temporal lobe epilepsy with functional MRI. FRONTIERS IN NEUROIMAGING 2024; 3:1423770. [PMID: 39205946 PMCID: PMC11349577 DOI: 10.3389/fnimg.2024.1423770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Electrical neurostimulation is currently used to manage epilepsy, but the most effective approach for minimizing seizure occurrence is uncertain. While functional MRI (fMRI) can reveal which brain areas are affected by stimulation, simultaneous deep brain stimulation (DBS)-fMRI examinations in patients are rare and the possibility to investigate multiple stimulation protocols is limited. In this study, we utilized the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy (mTLE) to systematically examine the brain-wide responses to electrical stimulation using fMRI. We compared fMRI responses of saline-injected controls and epileptic mice during stimulation in the septal hippocampus (HC) at 10 Hz and demonstrated the effects of different stimulation amplitudes (80-230 μA) and frequencies (1-100 Hz) in epileptic mice. Motivated by recent studies exploring 1 Hz stimulation to prevent epileptic seizures, we furthermore investigated the effect of prolonged 1 Hz stimulation with fMRI. Compared to sham controls, epileptic mice showed less propagation to the contralateral HC, but significantly stronger responses in the ipsilateral HC and a wider spread to the entorhinal cortex and septal region. Varying the stimulation amplitude had little effect on the resulting activation patterns, whereas the stimulation frequency represented the key parameter and determined whether the induced activation remained local or spread from the hippocampal formation into cortical areas. Prolonged stimulation of epileptic mice at 1 Hz caused a slight reduction in local excitability. In this way, our study contributes to a better understanding of these stimulation paradigms.
Collapse
Affiliation(s)
- Niels Schwaderlapp
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Enya Paschen
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Pierre LeVan
- Department of Radiology and Paediatrics, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Carola A. Haas
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg im Breisgau, Germany
- Experimental Epilepsy Research, Department of Neurosurgery, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
7
|
Bustros S, Kaur M, Ritchey E, Szaflarski JP, McGwin GJ, Riley KO, Bentley JN, Memon AA, Jaisani Z. Non-lesional epilepsy does not necessarily convey poor outcomes after invasive monitoring followed by resection or thermal ablation. Neurol Res 2024; 46:653-661. [PMID: 38602305 DOI: 10.1080/01616412.2024.2340879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE We aimed to compare outcomes including seizure-free status at the last follow-up in adult patients with medically refractory focal epilepsy identified as lesional vs. non-lesional based on their magnetic resonance imaging (MRI) findings who underwent invasive evaluation followed by subsequent resection or thermal ablation (LiTT). METHODS We identified 88 adult patients who underwent intracranial monitoring between 2014 and 2021. Of those, 40 received resection or LiTT, and they were dichotomized based on MRI findings, as lesional (N = 28) and non-lesional (N = 12). Patient demographics, seizure characteristics, non-invasive interventions, intracranial monitoring, and surgical variables were compared between the groups. Postsurgical seizure outcome at the last follow-up was rated according to the Engel classification, and postoperative seizure freedom was determined by Kaplan-Meyer survival analysis. Statistical analyses employed Fisher's exact test to compare categorical variables, while a t-test was used for continuous variables. RESULTS There were no differences in baseline characteristics between groups except for more often noted PET abnormality in the lesional group (p = 0.0003). 64% of the lesional group and 57% of the non-lesional group received surgical resection or LiTT (p = 0.78). At the last follow-up, 78.5% of the patients with lesional MRI findings achieved Engel I outcomes compared to 66.7% of non-lesional patients (p = 0.45). Kaplan-Meier curves did not show a significant difference in seizure-free duration between both groups after surgical intervention (p = 0.49). SIGNIFICANCE In our sample, the absence of lesion on brain MRI was not associated with worse seizure outcomes in adult patients who underwent invasive intracranial monitoring followed by resection or thermal ablation.
Collapse
Affiliation(s)
- Stephanie Bustros
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Manmeet Kaur
- Division of Neurocritical Care, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Elizabeth Ritchey
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Jerzy P Szaflarski
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Division of Neurocritical Care, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Gerald Jr McGwin
- Department of Epidemiology, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristen O Riley
- Department of Neurosurgery, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - J Nicole Bentley
- Department of Neurosurgery, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Adeel A Memon
- Department of Neurology, West Virginia University, Morgantown, WV, USA
| | - Zeenat Jaisani
- Division of Epilepsy, Department of Neurology, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
8
|
Patel M, Mittal AK, Joshi V, Agrawal M, Babu Varthya S, Saini L, Saravanan A, Anil A, Rajial T, Panda S, Bhaskar S, Tiwari S, Singh K. Evaluation of Utility of Invasive Electroencephalography for Definitive Surgery in Patients with Drug-Resistant Epilepsy: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 187:172-183.e2. [PMID: 38649027 DOI: 10.1016/j.wneu.2024.04.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
When noninvasive tests are unable to define the epileptogenic zone in patients, intracranial electroencephalography (iEEG) is a method of localizing the epileptogenic zone. Compared with noninvasive evaluations, it offers more precise information about patterns of epileptiform activity, which results in useful diagnostic information that supports surgical decision-making. The primary aim of the present study was to assess the utility of iEEG for definitive surgery for patients with drug-resistant epilepsy. Online databases such as PubMed, Medline, Embase, Scopus, Cochrane Library, Web of Science, and IEEE Xplore were searched for MeSH terms and free-text keywords. The ROBINS I (risk of bias in non-randomized studies - of interventions) critical appraisal tool was used for quality assessment. The prevalence from different studies was pooled together using the inverse variance heterogeneity method. Egger's regression analysis and funnel plot were used to evaluate publication bias. The systematic review included 18 studies, and the meta-analysis included 10 studies to estimate the prevalence of seizure freedom (Engel class I) in patients undergoing surgery after iEEG. A total of 526 patients were included in the meta-analysis. The follow-up period ranged from 1 to 10 years. The overall pooled estimate of the prevalence of seizure freedom (Engel class I) for patients undergoing surgery after iEEG was 53% (95% confidence interval, 44%-62%). The results additionally demonstrated that 12 studies had a moderate risk of bias and 6 had a low risk. Future studies are crucial to enhance our understanding of iEEG to guide patient choices and unravel their implications.
Collapse
Affiliation(s)
- Mamta Patel
- Department of Paediatrics, All India Institute of Medical Sciences, Jodhpur, India
| | - Amit K Mittal
- Department of Paediatrics, All India Institute of Medical Sciences, Jodhpur, India
| | - Vibha Joshi
- Department of CMFM, All India Institute of Medical Sciences, Jodhpur, India
| | - Mohit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Shoban Babu Varthya
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Lokesh Saini
- Department of Paediatrics, All India Institute of Medical Sciences, Jodhpur, India
| | - Aswini Saravanan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Abhishek Anil
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Tanuja Rajial
- Department of Paediatrics, All India Institute of Medical Sciences, Jodhpur, India
| | - Samhita Panda
- Department of Neurology, All India Institute of Medical Sciences, Jodhpur, India
| | | | - Sarbesh Tiwari
- Department of Diagnostic and Interventional Radiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Kuldeep Singh
- Department of Paediatrics, All India Institute of Medical Sciences, Jodhpur, India.
| |
Collapse
|
9
|
Pillai R, Chheda A, Agrawal S, Ravat S, Sankhe S, Muzumdar D. Skull-base temporal encephalocele: Hidden cause of temporal lobe epilepsy. J Postgrad Med 2024; 70:97-100. [PMID: 37555423 PMCID: PMC11160986 DOI: 10.4103/jpgm.jpgm_354_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 08/10/2023] Open
Abstract
ABSTRACT In the present study patients with previously diagnosed MRI-negative temporal lobe epilepsy (TLE) on long-term video electroencephalography (VEEG) monitoring were re-evaluated with high resolution 3T MRI brain to look out for a skull base temporal lobe encephalocoele (TE). A total of 234 VEEGs were analyzed. TLE had been diagnosed in 104 patients based on semiology, ictal, interictal EEG data, and brain positron emission tomography (PET) studies. Of these, 99 patients had temporal lobe abnormality (78 had mesial temporal sclerosis, 8 had tumor, 3 had focal cortical dysplasia, and 10 had mixed pathology). Out of the five 1.5T MRI-negative TLE patients, two patients were diagnosed with TE on subsequent 3T MRI brain scans and one patient underwent electrocorticography-guided tailored resection for complete removal of epileptogenic tissue; with Engels class I seizure freedom at one year follow-up. We propose that TE should be carefully searched for, as a cause of refractory TLE, using high-resolution MRI sequences.
Collapse
Affiliation(s)
- R Pillai
- Department of Neurology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - A Chheda
- Department of Neurology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - S Agrawal
- Department of Neurology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - S Ravat
- Department of Neurology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - S Sankhe
- Department of Radiology, Seth GS Medical College and KEM Hospital, Mumbai, India
| | - D Muzumdar
- Department of Neurosurgery, Seth GS Medical College and KEM Hospital, Mumbai, India
| |
Collapse
|
10
|
Winslow NK, Olson EA, Bach SE, Maldonado AL. Neuropathologic changes associated with stereoelectroencephalography depth electrode placement. J Neurosurg Sci 2023; 67:631-637. [PMID: 35380201 DOI: 10.23736/s0390-5616.22.05616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study was to detail the neuropathologic changes resulting from the surgical placement of stereoelectroencephalography (SEEG) leads in an initial small group of epilepsy cases and to raise awareness of this iatrogenic pathology, especially to those medical providers who specialize in the care of epilepsy patients. METHODS Five consecutive patients who underwent epilepsy resection surgery following SEEG monitoring at OSF Saint Francis Medical Center were included in our report. Resection specimens were examined grossly and entirely submitted for microscopic evaluation by a neuropathologist. Seizure-related pathologies, as well as histologic changes related to SEEG electrode placement, were documented. RESULTS The patient cohort included two females and three males, with an age range of 9 to 47 years. Neuropathologic examination revealed one or more seizure-related pathologies in each patient's resection specimen. In addition, all brain resection specimens showed multiple microinfarcts, which appeared to correlate with the placement and size of SEEG electrodes. Patchy leptomeningeal chronic inflammation was also seen in most cases. CONCLUSIONS SEEG electrode placement is an effective procedure for determining epileptogenic regions and guiding subsequent resection surgeries in medically refractory epilepsy. Multiple microinfarcts and chronic inflammation are commonly seen in brain resection specimens following SEEG electrode insertion, but studies detailing these iatrogenic histopathologic changes are lacking. The clinical significance and long-term implications of multiple small foci of electrode-induced injury that remain in the patient's brain after resection of the epileptogenic focus are unknown and may provide a welcome area for future study.
Collapse
Affiliation(s)
- Nolan K Winslow
- Department of Neurosurgery, OSF Saint Francis Medical Center, Peoria, IL, USA -
| | - Elsa A Olson
- College of Medicine, University of Illinois, Peoria, IL, USA
| | - Sarah E Bach
- Department of Pathology, OSF Saint Francis Medical Center, Peoria, IL, USA
| | - Andres L Maldonado
- Department of Neurosurgery, OSF Saint Francis Medical Center, Peoria, IL, USA
| |
Collapse
|
11
|
Xu Y, Chen Y, Liu H, Zhang H, Yin Z, Liu D, Zhu G, Diao Y, Wu D, Xie H, Hu W, Zhang X, Shao X, Zhang K, Zhang J, Yang A. The clinical application of neuro-robot in the resection of epileptic foci: a novel method assisting epilepsy surgery. J Robot Surg 2023; 17:2259-2269. [PMID: 37308790 DOI: 10.1007/s11701-023-01615-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023]
Abstract
During surgery for foci-related epilepsy, neurosurgeons face significant difficulties in identifying and resecting MRI-negative or deep-seated epileptic foci. Here, we present a neuro-robotic navigation system that is specifically designed for resection of MRI negative epileptic foci. We recruited 52 epileptic patients, and randomly assigned them to treatment group with either neuro-robotic navigation or conventional neuronavigation system. For each patient, in the neuro-robotic navigation group, we integrated multimodality imaging including MRI and PET-CT into the robotic workstation and marked the boundary of foci from the fused image. During surgery, this boundary was delineated by the robotic laser device with high accuracy, guiding resection for the surgeon. For deeply seated foci, we exploited the neuro-robotic navigation system to localize the deepest point with biopsy needle insertion and methylene dye application to locate the boundary of the foci. Our results show that, compared with the conventional neuronavigation, the neuro-robotic navigation system performs equally well in MRI positive epilepsy patients (ENGEL I ratio: 71.4% vs 100%, p = 0.255) systems and show better performance in patients with MRI-negative focal cortical dysplasia (ENGEL I ratio: 88.2% vs 50%, p = 0.0439). At present, there are no documented neurosurgery robots with similar function and application in the field of epilepsy. Our research highlights the added value of using neuro-robotic navigation systems in resection surgery for epilepsy, particularly in cases that involve MRI-negative or deep-seated epileptic foci.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yingchuan Chen
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Huanguang Liu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hua Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Zixiao Yin
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Defeng Liu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Guanyu Zhu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yu Diao
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Delong Wu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hutao Xie
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Wenhan Hu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xin Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Kai Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
| | - Anchao Yang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
12
|
Li H, Zhang M, Lin Z, Deng Z, Cao C, Zhan S, Liu W, Sun B. Utility of hybrid PET/MRI in stereoelectroencephalography guided radiofrequency thermocoagulation in MRI negative epilepsy patients. Front Neurosci 2023; 17:1163946. [PMID: 37378015 PMCID: PMC10291085 DOI: 10.3389/fnins.2023.1163946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) is a novel advanced non-invasive presurgical examination tool for patients with drug-resistant epilepsy (DRE). This study aims to evaluate the utility of PET/MRI in patients with DRE who undergo stereoelectroencephalography-guided radiofrequency thermocoagulation (SEEG-guided RFTC). Methods This retrospective study included 27 patients with DRE who underwent hybrid PET/MRI and SEEG-guided RFTC. Surgery outcome was assessed using a modified Engel classification, 2 years after RFTC. Potential areas of the seizure onset zone (SOZ) were identified on PET/MRI and confirmed by SEEG. Results Fifteen patients (55%) became seizure-free after SEEG-guided RFTC. Engel class II, III, and IV were achieved in six, two, and four patients, respectively at the 2 years follow-up. MRI was negative in 23 patients and structural abnormalities were found in four patients. Hybrid PET/MRI contributed to the identification of new structural or metabolic lesions in 22 patients. Concordant results between PET/MRI and SEEG were found in 19 patients in the identification of SOZ. Among the patients with multifocal onset, seizure-free status was achieved in 50% (6/12). Conclusion SEEG-guided RFTC is an effective and safe treatment for drug-resistant epilepsy. Hybrid PET/MRI serves as a useful tool for detecting the potential SOZs in MRI-negative patients and guide the implantation of SEEG electrodes. Patients with multifocal epilepsy may also benefit from this palliative treatment.
Collapse
Affiliation(s)
- Hongyang Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyu Lin
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdao Deng
- Research Group of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Chunyan Cao
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikun Zhan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Fearns N, Birk D, Bartkiewicz J, Rémi J, Noachtar S, Vollmar C. Quantitative analysis of the morphometric analysis program MAP in patients with truly MRI-negative focal epilepsy. Epilepsy Res 2023; 192:107133. [PMID: 37001290 DOI: 10.1016/j.eplepsyres.2023.107133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE In the presurgical evaluation of epilepsy, identifying the epileptogenic zone is challenging if magnetic resonance imaging (MRI) is negative. Several studies have shown the benefit of using a morphometric analysis program (MAP) on T1-weighted MRI scans to detect subtle lesions. MAP can guide a focused re-evaluation of MRI to ultimately identify structural lesions that were previously overlooked. Data on patients where this additional review after MAP analysis did not reveal any lesions is limited. Here we evaluate the diagnostic yield of MAP in a large group of truly MRI-negative patients. METHODS We identified 68 patients with MRI-negative focal epilepsy and clear localization of the epileptogenic zone by intracranial EEG or postoperative seizure freedom. High resolution 3D T1 data of patients and 73 healthy controls were acquired on a 3 T scanner. Morphometric analysis was performed with MAP software, creating five z-score maps, reflecting different structural properties of the brain and a patient's deviation from the control population, and a neural network-based focal cortical dysplasia probability map. Ten brain regions were specified to quantify whether MAP findings were located in the correct region. Receiver operating characteristic (ROC) analyses were performed to identify the optimal thresholds for each map. RESULTS MAP-guided visual re-evaluation of the original MRI revealed overlooked lesions in three patients. The remaining 65 truly MRI-negative patients were included in the statistical analysis. At the optimal thresholds, maximum sensitivity was 84 %, with 35 % specificity. Balanced accuracy (arithmetic mean of sensitivity and specificity) of the respective maps ranged from 51 % to 60 %, creating three to six times more false positive than true positive findings. CONCLUSION This study confirms that MAP is useful in detecting previously overlooked subtle structural lesions. However, in truly MRI-negative patients, the additional diagnostic yield is very limited.
Collapse
|
14
|
Gunnarsdottir KM, Li A, Smith RJ, Kang JY, Korzeniewska A, Crone NE, Rouse AG, Cheng JJ, Kinsman MJ, Landazuri P, Uysal U, Ulloa CM, Cameron N, Cajigas I, Jagid J, Kanner A, Elarjani T, Bicchi MM, Inati S, Zaghloul KA, Boerwinkle VL, Wyckoff S, Barot N, Gonzalez-Martinez J, Sarma SV. Source-sink connectivity: a novel interictal EEG marker for seizure localization. Brain 2022; 145:3901-3915. [PMID: 36412516 PMCID: PMC10200292 DOI: 10.1093/brain/awac300] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 07/26/2023] Open
Abstract
Over 15 million epilepsy patients worldwide have drug-resistant epilepsy. Successful surgery is a standard of care treatment but can only be achieved through complete resection or disconnection of the epileptogenic zone, the brain region(s) where seizures originate. Surgical success rates vary between 20% and 80%, because no clinically validated biological markers of the epileptogenic zone exist. Localizing the epileptogenic zone is a costly and time-consuming process, which often requires days to weeks of intracranial EEG (iEEG) monitoring. Clinicians visually inspect iEEG data to identify abnormal activity on individual channels occurring immediately before seizures or spikes that occur interictally (i.e. between seizures). In the end, the clinical standard mainly relies on a small proportion of the iEEG data captured to assist in epileptogenic zone localization (minutes of seizure data versus days of recordings), missing opportunities to leverage these largely ignored interictal data to better diagnose and treat patients. IEEG offers a unique opportunity to observe epileptic cortical network dynamics but waiting for seizures increases patient risks associated with invasive monitoring. In this study, we aimed to leverage interictal iEEG data by developing a new network-based interictal iEEG marker of the epileptogenic zone. We hypothesized that when a patient is not clinically seizing, it is because the epileptogenic zone is inhibited by other regions. We developed an algorithm that identifies two groups of nodes from the interictal iEEG network: those that are continuously inhibiting a set of neighbouring nodes ('sources') and the inhibited nodes themselves ('sinks'). Specifically, patient-specific dynamical network models were estimated from minutes of iEEG and their connectivity properties revealed top sources and sinks in the network, with each node being quantified by source-sink metrics. We validated the algorithm in a retrospective analysis of 65 patients. The source-sink metrics identified epileptogenic regions with 73% accuracy and clinicians agreed with the algorithm in 93% of seizure-free patients. The algorithm was further validated by using the metrics of the annotated epileptogenic zone to predict surgical outcomes. The source-sink metrics predicted outcomes with an accuracy of 79% compared to an accuracy of 43% for clinicians' predictions (surgical success rate of this dataset). In failed outcomes, we identified brain regions with high metrics that were untreated. When compared with high frequency oscillations, the most commonly proposed interictal iEEG feature for epileptogenic zone localization, source-sink metrics outperformed in predictive power (by a factor of 1.2), suggesting they may be an interictal iEEG fingerprint of the epileptogenic zone.
Collapse
Affiliation(s)
| | - Adam Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rachel J Smith
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joon-Yi Kang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Adam G Rouse
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jennifer J Cheng
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael J Kinsman
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Patrick Landazuri
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Utku Uysal
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Carol M Ulloa
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nathaniel Cameron
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Iahn Cajigas
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jonathan Jagid
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andres Kanner
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Turki Elarjani
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Manuel Melo Bicchi
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sara Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Varina L Boerwinkle
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Sarah Wyckoff
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Niravkumar Barot
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
15
|
Morsi A, Sharma A, Golubovsky J, Bulacio J, McGovern R, Jehi L, Bingaman W. Does Stereoelectroencephalography Add Value in Patients with Lesional Epilepsy? World Neurosurg 2022; 167:e196-e203. [PMID: 35940500 DOI: 10.1016/j.wneu.2022.07.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Stereoelectroencephalography (SEEG) has gained popularity as an invasive monitoring modality for epileptogenic zone (EZ) localization. The need and indications for SEEG in patients with evident brain lesions or associated abnormalities on imaging is debated. We report our experience with SEEG as a presurgical evaluation tool for patients with lesional epilepsy. METHODS A retrospective cohort study was performed of 131 patients with lesional or magnetic resonance imaging abnormality-associated medically refractory focal epilepsy who underwent resections from 2010 to 2017. Seventy-one patients had SEEG followed by resection, and 60 had no invasive recordings. Volumetric analysis of resection cavities from 3T magnetic resonance imaging was performed. RESULTS Mean lesion and resection volumes for SEEG and non-SEEG were 16.2 (standard deviation [SD] = 29) versus 23.7 cm3 (SD = 38.4) and 28.1 (SD = 23.2) versus 43.6 cm3 (SD = 43.5), respectively (P = 0.009). Comparing patients with seizure recurrence and patients who remained seizure free, significantly associated variables with seizure recurrence included mean number of failed antiseizure medications (6.86 [SD = 0.32] vs. 5.75 [SD = 0.32]; P = 0.01) and in SEEG patients the mean number of electrodes implanted (8.1 [SD = 0.8] vs. 5.0 [SD = 0.8]; P = 0.005). After multivariate analysis, only failed numbers of medication remained significantly associated with seizure recurrence. CONCLUSIONS Seizure outcomes did not correlate with final resection volume after SEEG evaluation. SEEG evaluation presurgically can be used to maintain the efficacy of resection and decrease the volume and subsequent risk of extensive tissue removal. We believe that this technology allows resective surgery to proceed in a subpopulation of patients with lesional epilepsy who may otherwise not have been considered surgical candidates.
Collapse
Affiliation(s)
- Amr Morsi
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Akshay Sharma
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA.
| | - Joshua Golubovsky
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Juan Bulacio
- Department of Neurology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Robert McGovern
- Department of Neurosurgery, University of Minnesota Medical Center, Minneapolis VA Medical Center, Minneapolis, Minnesota, USA
| | - Lara Jehi
- Department of Neurology, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William Bingaman
- Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Abstract
Temporal lobe epilepsy (TLE) is the most common cause of refractory epilepsy amenable for surgical treatment and seizure control. Surgery for TLE is a safe and effective strategy. The seizure-free rate after surgical resection in patients with mesial or neocortical TLE is about 70%. Resective surgery has an advantage over stereotactic radiosurgery in terms of seizure outcomes for mesial TLE patients. Both techniques have similar results for safety, cognitive outcomes, and associated costs. Stereotactic radiosurgery should therefore be seen as an alternative to open surgery for patients with contraindications for or with reluctance to undergo open surgery. Laser interstitial thermal therapy (LITT) has also shown promising results as a curative technique in mesial TLE but needs to be more deeply evaluated. Brain-responsive stimulation represents a palliative treatment option for patients with unilateral or bilateral MTLE who are not candidates for temporal lobectomy or who have failed a prior mesial temporal lobe resection. Overall, despite the expansion of innovative techniques in recent years, resective surgery remains the reference treatment for TLE and should be proposed as the first-line surgical modality. In the future, ultrasound therapies could become a credible therapeutic option for refractory TLE patients.
Collapse
Affiliation(s)
- Bertrand Mathon
- Department of Neurosurgery, La Pitié-Salpêtrière University Hospital, Paris, France; Sorbonne University, Paris, France; Paris Brain Institute, Paris, France
| | - Stéphane Clemenceau
- Department of Neurosurgery, La Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
17
|
Sharifi G, Hallajnejad M, Dastgheib SS, Lotfinia M, Mirghaed OR, Amin AM. Clinical outcome of selective amygdalectomy in a series of patients with resistant temporal lobe epilepsy. Surg Neurol Int 2021; 12:575. [PMID: 34877061 PMCID: PMC8645478 DOI: 10.25259/sni_199_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 10/23/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Selective amygdalohippocampectomy is one of the main approaches for treating medial temporal lobe epilepsy (TLE). We herewith describe seven cases of amygdala lesions treated with selective amygdalectomy with the hippocampus saving procedure. Furthermore, we explain the trans-middle temporal gyrus transventricular approach for selective amygdalectomy. Methods: We studied patients with TLE who underwent selective amygdalectomy with hippocampal saving procedure between March 2012 and July 2018. We preferred the trans-middle temporal gyrus transventricular approach. We adopted pterional craniotomy with extensive exposure of the base and posterior of the temporal lobe. The posterior margin of resection in the intraventricular part of the amygdala was considered the inferior choroidal point. Medially anterior part of the uncus was resected until reaching the ambient cistern. We applied the transcortical transventricular approach for selective amygdalectomy in all patients. Results: We present 11 cases having an amygdala lesion in our series, seven of whom underwent selective amygdalectomy with hippocampal sparing. Nine patients had neoplastic lesions, and in two of them, gliosis was evident. Total resection of the lesion was achieved in all cases based on postoperative magnetic resonance imaging. No unusual complication or surgically-related new neurological deficit occurred. Conclusion: We consider the resection of the amygdala until the inferior choroidal point sufficient for the disconnection of its circuits, which results in more effective control of seizures and reduction of surgery time and complications.
Collapse
Affiliation(s)
- Guive Sharifi
- Department of Neurosurgery, Skull Base Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammad Hallajnejad
- Department of Neurosurgery, Skull Base Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Samaneh Sadat Dastgheib
- Department for General Psychology and Cognitive Neuroscience, Friedrich Schiller University of Jena, Jena, Thuringia
| | - Mahmoud Lotfinia
- Department of Neurosurgery, Klinikum Saarbrücken, University of Saarland, Saarbrücken, Saarland, Germany
| | - Omidvar Rezaei Mirghaed
- Department of Neurosurgery, Skull Base Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Arsalan Medical Amin
- Department of Neurosurgery, Skull Base Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
18
|
Swarup O, Waxmann A, Chu J, Vogrin S, Lai A, Laing J, Barker J, Seiderer L, Ignatiadis S, Plummer C, Carne R, Seneviratne U, Cook M, Murphy M, D'Souza W. Long-term mood, quality of life, and seizure freedom in intracranial EEG epilepsy surgery. Epilepsy Behav 2021; 123:108241. [PMID: 34450387 DOI: 10.1016/j.yebeh.2021.108241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To determine the long-term outcomes in patients undergoing intracranial EEG (iEEG) evaluation for epilepsy surgery in terms of seizure freedom, mood, and quality of life at St. Vincent's Hospital, Melbourne. METHODS Patients who underwent iEEG between 1999 and 2016 were identified. Patients were retrospectively assessed between 2014 and 2017 by specialist clinic record review and telephone survey with standardized validated questionnaires for: 1) seizure freedom using the Engel classification; 2) Mood using the Neurological Disorders Depression Inventory for Epilepsy (NDDI-E); 3) Quality-of-life outcomes using the QOLIE-10 questionnaire. Summary statistics and univariate analysis were performed to investigate variables for significance. RESULTS Seventy one patients underwent iEEG surgery: 49 Subdural, 14 Depths, 8 Combination with 62/68 (91.9%) of those still alive, available at last follow-up by telephone survey or medical record review (median of 8.2 years). The estimated epileptogenic zone was 62% temporal and 38% extra-temporal. At last follow-up, 69.4% (43/62) were Engel Class I and 30.6% (19/62) were Engel Class II-IV. Further, a depressive episode (NDDI-E > 15)was observed in 34% (16/47), while a 'better quality of life' (QOLIE-10 score < 25) was noted in 74% (31/42). Quality of life (p < 0.001) but not mood (p = 0.24) was associated with seizure freedom. SIGNIFICANCE Long-term seizure freedom can be observed in patients undergoing complex epilepsy surgery with iEEG evaluation and is associated with good quality of life.
Collapse
Affiliation(s)
- Oshi Swarup
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia; The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia; Department of Medicine, Royal Melbourne Hospital, 300 Grattan Street, Parkville, Melbourne, Victoria 3050, Australia.
| | - Alexandra Waxmann
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia; The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
| | - Jocelyn Chu
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | - Simon Vogrin
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia; The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia; Faculty of Health Arts and Design, Swinburne University of Technology, John St, Hawthorn, Victoria 3122, Australia
| | - Alan Lai
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia; The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
| | - Joshua Laing
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | - James Barker
- The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia; Department of Medicine, Royal Melbourne Hospital, 300 Grattan Street, Parkville, Melbourne, Victoria 3050, Australia
| | - Linda Seiderer
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | - Sophia Ignatiadis
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | - Chris Plummer
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia; The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia; Faculty of Health Arts and Design, Swinburne University of Technology, John St, Hawthorn, Victoria 3122, Australia
| | - Ross Carne
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | - Udaya Seneviratne
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia; The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia; Department of Neurosciences, Monash Medical Centre, 246 Clayton Rd, Clayton, Victoria 3168, Australia
| | - Mark Cook
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia; The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
| | - Michael Murphy
- Department of Surgery, St Vincent's Hospital Melbourne, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | - Wendyl D'Souza
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia; The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
| |
Collapse
|
19
|
The Impact of Right Temporal Lobe Epilepsy On Nonverbal Memory: Meta-regression of Stimulus- and Task-related Moderators. Neuropsychol Rev 2021; 32:537-557. [PMID: 34559363 DOI: 10.1007/s11065-021-09514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 05/24/2021] [Indexed: 11/08/2022]
Abstract
Nonverbal memory tests have great potential value for detecting the impact of lateralized pathology and predicting the risk of memory loss following right temporal lobe resection (TLR) for temporal lobe epilepsy (TLE) patients, but this potential has not been realized. Previous reviews suggest that stimulus type moderates the capacity of nonverbal memory tests to detect right-lateralized pathology (i.e., faces > designs), but the roles of other task-related factors have not been systematically explored. We address these limitations using mixed model meta-regression (k = 158) of right-lateralization effects (right worse than left TLE) testing the moderating effects of: 1) stimulus type (designs, faces, spatial), 2) learning format (single trial, repeated trials), 3) testing delay (immediate or long delay), and 4) testing format (recall, recognition) for three patient scenarios: 1) presurgical, 2) postsurgical, and 3) postsurgical change. Stimulus type significantly moderated the size of the right-lateralization effect (faces > designs) for postsurgical patients, test format moderated the size of the right-lateralization effect for presurgical-postsurgical change (recognition > recall) but learning format and test delay had no right-lateralization effect for either sample. For presurgical patients, none of the task-related factors significantly increased right-lateralization effects. This comprehensive review reveals the value of recognition testing in gauging the risk of nonverbal memory decline.
Collapse
|
20
|
Khoshkhoo S, Lal D, Walsh CA. Application of single cell genomics to focal epilepsies: A call to action. Brain Pathol 2021; 31:e12958. [PMID: 34196990 PMCID: PMC8412079 DOI: 10.1111/bpa.12958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Focal epilepsies are the largest epilepsy subtype and associated with significant morbidity. Somatic variation is a newly recognized genetic mechanism underlying a subset of focal epilepsies, but little is known about the processes through which somatic mosaicism causes seizures, the cell types carrying the pathogenic variants, or their developmental origin. Meanwhile, the inception of single cell biology has completely revolutionized the study of neurological diseases and has the potential to answer some of these key questions. Focusing on single cell genomics, transcriptomics, and epigenomics in focal epilepsy research, circumvents the averaging artifact associated with studying bulk brain tissue and offers the kind of granularity that is needed for investigating the consequences of somatic mosaicism. Here we have provided a brief overview of some of the most developed single cell techniques and the major considerations around applying them to focal epilepsy research.
Collapse
Affiliation(s)
- Sattar Khoshkhoo
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dennis Lal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Cologne Center for Genomics, University of Cologne, Cologne, Germany.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Li Y, Zhu H, Chen Q, Yang L, Bao X, Chen F, Ma H, Xu H, Luo L, Zhang R. Evaluation of Brain Network Properties in Patients with MRI-Negative Temporal Lobe Epilepsy: An MEG Study. Brain Topogr 2021; 34:618-631. [PMID: 34173926 DOI: 10.1007/s10548-021-00856-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/13/2021] [Indexed: 11/25/2022]
Abstract
Abnormal functional brain networks of temporal lobe epilepsy (TLE) patients with structural abnormalities may partially reflect structural lesions rather than either TLE per se or functional compensatory processes. In this study, we sought to investigate the brain-network properties of intractable TLE patients apart from the effects of structural abnormalities. The brain network properties of 20 left and 23 right MRI-negative TLE patients and 22 healthy controls were evaluated using magnetoencephalographic recordings in six main frequency bands. A slowing of oscillatory brain activity was observed for the left or right TLE group vs. healthy controls. The TLE groups presented significantly increased functional connectivity in the delta, theta, lower alpha and beta bands, and significantly greater values in the normalized clustering coefficient and path length, and significantly smaller values in the weighted small-world measure in the theta band when compared to healthy controls. Alterations in global and regional band powers can be attributed to spectral slowing in TLE patients. The brain networks of TLE patients displayed abnormally high synchronization in multi-frequency bands and shifted toward a more regular architecture with worse network efficiency in the theta band. Without the contamination of structural lesions, these significant findings can be helpful for better understanding of the pathophysiological mechanism of TLE. The theta band can be considered as a preferred frequency band for investigating the brain-network dysfunction of MRI-negative intractable TLE patients.
Collapse
Affiliation(s)
- Yuejun Li
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Magnetoencephalography, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Haitao Zhu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Qiqi Chen
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Magnetoencephalography, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lu Yang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xincai Bao
- Library of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Fangqing Chen
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Haiyan Ma
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Honghao Xu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lei Luo
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Rui Zhang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
22
|
Mo J, Zhao B, Adler S, Zhang J, Shao X, Ma Y, Sang L, Hu W, Zhang C, Wang Y, Wang X, Liu C, Zhang K. Quantitative assessment of structural and functional changes in temporal lobe epilepsy with hippocampal sclerosis. Quant Imaging Med Surg 2021; 11:1782-1795. [PMID: 33936964 DOI: 10.21037/qims-20-624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Magnetic resonance imaging (MRI) changes in hippocampal sclerosis (HS) could be subtle in a significant proportion of mesial temporal lobe epilepsy (mTLE) patients. In this study, we aimed to document the structural and functional changes in the hippocampus and amygdala seen in HS patients. Methods Quantitative features of the hippocampus and amygdala were extracted from structural MRI data in 66 mTLE patients and 28 controls. Structural covariance analysis was undertaken using volumetric data from the amygdala and hippocampus. Functional connectivity (FC) measured using resting intracranial electroencephalography (EEG) was analyzed in 22 HS patients and 16 non-HS disease controls. Results Hippocampal atrophy was present in both MRI-positive and MRI-negative HS groups (Mann-Whitney U: 7.61, P<0.01; Mann-Whitney U: 6.51, P<0.01). Amygdala volumes were decreased in the patient group (Mann-Whitney U: 2.92, P<0.05), especially in MRI-negative HS patients (Mann-Whitney U: 2.75, P<0.05). The structural covariance analysis showed the normalized volumes of the amygdala and hippocampus were tightly coupled in both controls and HS patients (ρSpearman =0.72, P<0.01). FC analysis indicated that HS patients had significantly increased connectivity (Student's t: 2.58, P=0.03) within the hippocampus but decreased connectivity between the hippocampus and amygdala (Student's t: 3.33, P=0.01), particularly for MRI-negative HS patients. Conclusions Quantitative structural changes, including hippocampal atrophy and temporal pole blurring, are present in both MRI-positive and MRI-negative HS patients, suggesting the potential usefulness of incorporating quantitative analyses into clinical practice. HS is characterized by increased intra-hippocampal EEG synchronization and decreased coupling between the hippocampus and amygdala.
Collapse
Affiliation(s)
- Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Sophie Adler
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaoqiu Shao
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanshan Ma
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Lin Sang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chang Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
23
|
Posttraumatic epilepsy may be a state in which underlying epileptogenicity involves focal cortical dysplasia. Epilepsy Behav 2021; 114:107352. [PMID: 32843304 DOI: 10.1016/j.yebeh.2020.107352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The occurrence rate of posttrauma epilepsy ranges widely from 1% to 30%. Little is known about the underlying epileptogenesis of traumatic brain injury (TBI)-related epilepsy (TRE), because no comparison between TRE and TBI without epilepsy has been performed in terms of neuropathology. Therefore, we postulated that different neuropathological factors may be present between TRE and TBI without epilepsy. The purpose of this study was to clarify differences between TRE and TBI without epilepsy. METHODS We studied patients who experienced severe head trauma and underwent brain surgery. The age range of the patients was 9-71 years old. Patients with medically resistant epilepsy were included in the Epilepsy group, and patients without epilepsy were included in the nonepilepsy group. Pathological findings, age, sex, and cause of head trauma were statistically compared between these two groups. RESULTS This study involved 10 patients, nine of whom met the inclusion criteria. Pathological findings for all patients in the Epilepsy group included focal cortical dysplasia (FCD) (p = 0.012). CONCLUSION The difference between TRE and TBI without epilepsy was underlying FCD in patients with TRE.
Collapse
|
24
|
Diagnosis and surgical treatment of non-lesional temporal lobe epilepsy with unilateral amygdala enlargement. Neurol Sci 2020; 42:2353-2361. [DOI: 10.1007/s10072-020-04794-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
|
25
|
Middlebrooks EH, Lin C, Westerhold E, Okromelidze L, Vibhute P, Grewal SS, Gupta V. Improved detection of focal cortical dysplasia using a novel 3D imaging sequence: Edge-Enhancing Gradient Echo (3D-EDGE) MRI. NEUROIMAGE-CLINICAL 2020; 28:102449. [PMID: 33032066 PMCID: PMC7552096 DOI: 10.1016/j.nicl.2020.102449] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
Detection of focal cortical dysplasia remains a substantial challenge in radiology. 3D-EDGE is a novel MR method to directly image abnormalities of gray-white boundary. 3D-EDGE had a significantly higher contrast for FCD than FLAIR and MP2RAGE.
Epilepsy is a common neurological disorder with focal cortical dysplasia (FCD) being one of the most common lesional causes. Detection of FCD by MRI is a major determinant of surgical outcome. Evolution of MRI sequences and hardware has greatly increased the detection rate of FCD, but these gains have largely been related to the more visible Type IIb FCD, with Type I and IIa remaining elusive. While most sequence improvements have relied on increasing contrast between gray and white matter, we propose a novel imaging approach, 3D Edge-Enhancing Gradient Echo (3D-EDGE), to directly image the gray-white boundary. By acquiring images at an inversion time where gray and white matter have equal signal but opposite phases, voxels with a mixture of gray and white matter (e.g., at the gray-white boundary) will have cancellation of longitudinal magnetization producing a thin area of signal void at the normal boundary. By creating greater sensitivity for minor changes in T1 relaxation, microarchitectural abnormalities present in FCD produce greater contrast than on other common MRI sequences. 3D-EDGE had a significantly greater contrast ratio between lesion and white matter for FCD compared to MP2RAGE (98% vs 17%; p = 0.0006) and FLAIR (98% vs 19%; p = 0.0006), which highlights its potential to improve outcomes in epilepsy. We present a discussion of the framework for 3D-EDGE, optimization strategies, and analysis of a series of FCDs to highlight the benefit of 3D-EDGE in FCD detection compared to commonly used sequences in epilepsy.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| | - Chen Lin
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | - Vivek Gupta
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
26
|
Grewal SS, Alvi MA, Perkins WJ, Cascino GD, Britton JW, Burkholder DB, So E, Shin C, Marsh RW, Meyer FB, Worrell GA, Van Gompel JJ. Reassessing the impact of intraoperative electrocorticography on postoperative outcome of patients undergoing standard temporal lobectomy for MRI-negative temporal lobe epilepsy. J Neurosurg 2020; 132:605-614. [PMID: 30797216 DOI: 10.3171/2018.11.jns182124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/02/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Almost 30% of the patients with suspected temporal lobe epilepsy (TLE) have normal results on MRI. Success rates for resection of MRI-negative TLE are less favorable, ranging from 36% to 76%. Herein the authors describe the impact of intraoperative electrocorticography (ECoG) augmented by opioid activation and its effect on postoperative seizure outcome. METHODS Adult and pediatric patients with medically resistant MRI-negative TLE who underwent standardized ECoG at the time of their elective anterior temporal lobectomy (ATL) with amygdalohippocampectomy between 1990 and 2016 were included in this study. Seizure recurrence comprised the primary outcome of interest and was assessed using Kaplan-Meier and multivariable Cox regression analysis plots based on distribution of interictal epileptiform discharges (IEDs) recorded on scalp electroencephalography, baseline and opioid-induced IEDs on ECoG, and extent of resection. RESULTS Of the 1144 ATLs performed at the authors' institution between 1990 and 2016, 127 (11.1%) patients (81 females) with MRI-negative TLE were eligible for this study. Patients with complete resection of tissue generating IED recorded on intraoperative ECoG were less likely to have seizure recurrence compared to those with incomplete resection on univariate analysis (p < 0.05). No difference was found in seizure recurrence between patients with bilateral independent IEDs and unilateral IEDs (p = 0.15), presence or absence of opioid-induced epileptiform activation (p = 0.61), or completeness of resection of tissue with opioid-induced IEDs on intraoperative ECoG (p = 0.41). CONCLUSIONS The authors found that incomplete resection of IED-generating tissue on intraoperative ECoG was associated with an increased chance of seizure recurrence. However, they found that induction of epileptiform activity with intraoperative opioid activation did not provide useful intraoperative data predictive of improving operative results for temporal lobectomy in MRI-negative epilepsy.
Collapse
Affiliation(s)
- Sanjeet S Grewal
- 1Department of Neurologic Surgery, Mayo Clinic, Jacksonville, Florida; and
| | | | | | | | | | | | - Elson So
- 4Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | |
Collapse
|
27
|
Baumgartner C, Koren JP, Britto-Arias M, Zoche L, Pirker S. Presurgical epilepsy evaluation and epilepsy surgery. F1000Res 2019; 8. [PMID: 31700611 PMCID: PMC6820825 DOI: 10.12688/f1000research.17714.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
With a prevalence of 0.8 to 1.2%, epilepsy represents one of the most frequent chronic neurological disorders; 30 to 40% of patients suffer from drug-resistant epilepsy (that is, seizures cannot be controlled adequately with antiepileptic drugs). Epilepsy surgery represents a valuable treatment option for 10 to 50% of these patients. Epilepsy surgery aims to control seizures by resection of the epileptogenic tissue while avoiding neuropsychological and other neurological deficits by sparing essential brain areas. The most common histopathological findings in epilepsy surgery specimens are hippocampal sclerosis in adults and focal cortical dysplasia in children. Whereas presurgical evaluations and surgeries in patients with mesial temporal sclerosis and benign tumors recently decreased in most centers, non-lesional patients, patients requiring intracranial recordings, and neocortical resections increased. Recent developments in neurophysiological techniques (high-density electroencephalography [EEG], magnetoencephalography, electrical and magnetic source imaging, EEG-functional magnetic resonance imaging [EEG-fMRI], and recording of pathological high-frequency oscillations), structural magnetic resonance imaging (MRI) (ultra-high-field imaging at 7 Tesla, novel imaging acquisition protocols, and advanced image analysis [post-processing] techniques), functional imaging (positron emission tomography and single-photon emission computed tomography co-registered to MRI), and fMRI significantly improved non-invasive presurgical evaluation and have opened the option of epilepsy surgery to patients previously not considered surgical candidates. Technical improvements of resective surgery techniques facilitate successful and safe operations in highly delicate brain areas like the perisylvian area in operculoinsular epilepsy. Novel less-invasive surgical techniques include stereotactic radiosurgery, MR-guided laser interstitial thermal therapy, and stereotactic intracerebral EEG-guided radiofrequency thermocoagulation.
Collapse
Affiliation(s)
- Christoph Baumgartner
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria.,Medical Faculty, Sigmund Freud University, Vienna, Austria
| | - Johannes P Koren
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Martha Britto-Arias
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Lea Zoche
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Susanne Pirker
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| |
Collapse
|
28
|
Bermudez CI, Jermakowicz WJ, Kolcun JPG, Sur S, Cajigas I, Millan C, Ribot R, Serrano EA, Velez-Ruiz N, Lowe MR, Tornes L, Palomeque M, Kanner AM, Jagid JR, Rey GJ. Cognitive outcomes following laser interstitial therapy for mesiotemporal epilepsies. Neurol Clin Pract 2019; 10:314-323. [PMID: 32983611 DOI: 10.1212/cpj.0000000000000728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/06/2019] [Indexed: 11/15/2022]
Abstract
Objective To provide a review of cognitive outcomes across a full neuropsychological profile in patients who underwent laser interstitial thermal therapy (LiTT) for mesiotemporal epilepsy (mTLE). Methods We examined cognitive outcomes following LiTT for mTLE by reviewing a consecutive series of 26 patients who underwent dominant or nondominant hemisphere procedures. Each patient's pre- and postsurgical performance was examined for clinically significant change (>1SD improvement or decline on standardized scores), with a neuropsychologic battery that included measures of language, memory, executive functioning, and processing speed. Results Presurgical performance was largely consistent with previous research, where patients suffering from dominant hemisphere epilepsies demonstrated deficits in verbal learning and memory, whereas patients with nondominant hemisphere scored lower on visually mediated tests. Case-by-case review comparing presurgical to postsurgical scores revealed clinically significant improvement in both dominant and nondominant patients in learning and memory and other aspects of cognition such as processing speed and executive functioning. Of the few patients who did experience clinically significant decline following LiTT, a greater proportion had undergone dominant hemisphere procedures. Conclusions Compared with the outcome literature of dominant open anterior temporal lobectomies (ATLs), where postsurgical decline has been documented in up to 40%-60% of cases, our LiTT case series exhibited a much lower incidence of postoperative language or verbal memory decline. Moreover, promising rates of postoperative improvements were also observed across multiple cognitive domains. Future studies exploring cognitive outcomes following LiTT should include comprehensive neuropsychological findings, rather than only select domains, as clinically significant change can occur in areas other than those typically associated with mesiotemporal structures.
Collapse
Affiliation(s)
- Christin I Bermudez
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| | - Walter J Jermakowicz
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| | - John Paul G Kolcun
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| | - Samir Sur
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| | - Iahn Cajigas
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| | - Carlos Millan
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| | - Ramses Ribot
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| | - Enrique A Serrano
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| | - Naymee Velez-Ruiz
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| | - Merredith R Lowe
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| | - Leticia Tornes
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| | - Maru Palomeque
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| | - Andres M Kanner
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| | - Jonathan R Jagid
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| | - Gustavo J Rey
- Division of Neuropsychology (CIB, GJR), Department of Neurology; Epilepsy Division (CIB, CM, RR, EAS, NV-R, MRL, LT, MP, AMK, GJR), Department of Neurology; Neuromuscular Division (CIB), Department of Neurology; and Department of Neurological Surgery (WJJ, JPGK, SS, IC, JRJ), University of Miami, Miller School of Medicine, FL
| |
Collapse
|
29
|
Sheikh S, Thompson N, Bingaman W, Gonzalez‐Martinez J, Najm I, Jehi L. (Re)Defining success in epilepsy surgery: The importance of relative seizure reduction in patient‐reported quality of life. Epilepsia 2019; 60:2078-2085. [DOI: 10.1111/epi.16327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Shehryar Sheikh
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University Cleveland Ohio
| | - Nic Thompson
- Quantitative Health Sciences Cleveland Clinic Cleveland Ohio
| | - William Bingaman
- Neurosurgery Cleveland Clinic Cleveland Ohio
- Epilepsy Center Cleveland Clinic Cleveland Ohio
| | | | - Imad Najm
- Epilepsy Center Cleveland Clinic Cleveland Ohio
| | - Lara Jehi
- Epilepsy Center Cleveland Clinic Cleveland Ohio
| |
Collapse
|
30
|
Joldes G, Bourantas G, Zwick B, Chowdhury H, Wittek A, Agrawal S, Mountris K, Hyde D, Warfield SK, Miller K. Suite of meshless algorithms for accurate computation of soft tissue deformation for surgical simulation. Med Image Anal 2019; 56:152-171. [PMID: 31229760 DOI: 10.1016/j.media.2019.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
The ability to predict patient-specific soft tissue deformations is key for computer-integrated surgery systems and the core enabling technology for a new era of personalized medicine. Element-Free Galerkin (EFG) methods are better suited for solving soft tissue deformation problems than the finite element method (FEM) due to their capability of handling large deformation while also eliminating the necessity of creating a complex predefined mesh. Nevertheless, meshless methods based on EFG formulation, exhibit three major limitations: (i) meshless shape functions using higher order basis cannot always be computed for arbitrarily distributed nodes (irregular node placement is crucial for facilitating automated discretization of complex geometries); (ii) imposition of the Essential Boundary Conditions (EBC) is not straightforward; and, (iii) numerical (Gauss) integration in space is not exact as meshless shape functions are not polynomial. This paper presents a suite of Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithms incorporating a Modified Moving Least Squares (MMLS) method for interpolating scattered data both for visualization and for numerical computations of soft tissue deformation, a novel way of imposing EBC for explicit time integration, and an adaptive numerical integration procedure within the Meshless Total Lagrangian Explicit Dynamics algorithm. The appropriateness and effectiveness of the proposed methods is demonstrated using comparisons with the established non-linear procedures from commercial finite element software ABAQUS and experiments with very large deformations. To demonstrate the translational benefits of MTLED we also present a realistic brain-shift computation.
Collapse
Affiliation(s)
- Grand Joldes
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Crawley-Perth, Western Australia 6009, Australia
| | - George Bourantas
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Crawley-Perth, Western Australia 6009, Australia
| | - Benjamin Zwick
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Crawley-Perth, Western Australia 6009, Australia
| | - Habib Chowdhury
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Crawley-Perth, Western Australia 6009, Australia
| | - Adam Wittek
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Crawley-Perth, Western Australia 6009, Australia
| | - Sudip Agrawal
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Crawley-Perth, Western Australia 6009, Australia
| | - Konstantinos Mountris
- Aragón Institute for Engineering Research, University of Zaragoza, IIS Aragón, Spain
| | - Damon Hyde
- Computational Radiology Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, US
| | - Simon K Warfield
- Computational Radiology Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, US
| | - Karol Miller
- Intelligent Systems for Medicine Laboratory, The University of Western Australia, Crawley-Perth, Western Australia 6009, Australia; Institute of Mechanics and Advanced Materials, Cardiff School of Engineering, Cardiff University, Wales, UK.
| |
Collapse
|
31
|
Magnetic Resonance–Guided Laser Interstitial Thermal Therapy Versus Stereotactic Radiosurgery for Medically Intractable Temporal Lobe Epilepsy: A Systematic Review and Meta-Analysis of Seizure Outcomes and Complications. World Neurosurg 2019; 122:e32-e47. [DOI: 10.1016/j.wneu.2018.08.227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022]
|
32
|
Outcome after individualized stereoelectroencephalography (sEEG) implantation and navigated resection in patients with lesional and non-lesional focal epilepsy. J Neurol 2019; 266:910-920. [PMID: 30701313 DOI: 10.1007/s00415-019-09213-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Refined localization of the epileptogenic zone (EZ) in patients with pharmacoresistant focal epilepsy proceeding to resective surgery might improve postoperative outcome. We here report seizure outcome after stereo EEG (sEEG) evaluation with individually planned stereotactically implanted depth electrodes and subsequent tailored resection. METHODS A cohort of consecutive patients with pharmacoresistant focal epilepsy, evaluated with a non-invasive evaluation protocol and invasive monitoring with personalized, stereotactically implanted depth electrodes for sEEG was analyzed. Co-registration of post-implantation CT scan to presurgical MRI data was used for 3D reconstructions of the patients' brain surface and mapping of neurophysiology data. Individual multimodal 3D maps of the EZ were used to guide subsequent tailored resections. The outcome was rated according to the Engel classification. RESULTS Out of 914 patients who underwent non-invasive presurgical evaluation, 85 underwent sEEG, and 70 were included in the outcome analysis. Median follow-up was 31.5 months. Seizure-free outcome (Engel class I A-C, ILAE class 1-2) was achieved in 83% of the study cohort. Patients exhibiting lesional and non-lesional (n = 42, 86% vs. n = 28, 79%), temporal and extratemporal (n = 45, 80% vs. n = 25, 84%), and right- and left-hemispheric epilepsy (n = 44, 82% vs. n = 26, 85%) did similarly well. This remains also true for those with an EZ adjacent to or distant from eloquent cortex (n = 21, 86% vs. n = 49, 82%). Surgical outcome was independent of resected tissue volume. CONCLUSION Favourable post-surgical outcome can be achieved in patients with resistant focal epilepsy, using individualized sEEG evaluation and tailored navigated resection, even in patients with non-lesional or extratemporal focal epilepsy.
Collapse
|
33
|
Verger A, Lagarde S, Maillard L, Bartolomei F, Guedj E. Brain molecular imaging in pharmacoresistant focal epilepsy: Current practice and perspectives. Rev Neurol (Paris) 2018; 174:16-27. [DOI: 10.1016/j.neurol.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
|
34
|
Kogias E, Klingler JH, Urbach H, Scheiwe C, Schmeiser B, Doostkam S, Zentner J, Altenmüller DM. 3 Tesla MRI-negative focal epilepsies: Presurgical evaluation, postoperative outcome and predictive factors. Clin Neurol Neurosurg 2017; 163:116-120. [PMID: 29101859 DOI: 10.1016/j.clineuro.2017.10.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate presurgical diagnostic modalities, clinical and seizure outcome as well as predictive factors after resective epilepsy surgery in 3 Tesla MRI-negative focal epilepsies. PATIENTS AND METHODS This retrospective study comprises 26 patients (11 males/15 females, mean age 34±12years, range 13-50 years) with 3 Tesla MRI-negative focal epilepsies who underwent resective epilepsy surgery. Non-invasive and invasive presurgical diagnostic modalities, type and localization of resection, clinical and epileptological outcome with a minimum follow-up of 1year (range 1-11 years, mean 2.5±2.3years) after surgery as well as outcome predictors were evaluated. RESULTS All patients underwent invasive video-EEG monitoring after implantation of intracerebral depth and/or subdural electrodes. Ten patients received temporal and 16 extratemporal or multilobar (n=4) resections. There was no perioperative death or permanent morbidity. Overall, 12 of 26 patients (46%) were completely seizure-free (Engel IA) and 65% had a favorable outcome (Engel I-II). In particular, seizure-free ratio was 40% in the temporal and 50% in the extratemporal group. In the temporal group, long duration of epilepsy correlated with poor seizure outcome, whereas congruent unilateral FDG-PET hypometabolism correlated with a favorable outcome. CONCLUSIONS In almost two thirds of temporal and extratemporal epilepsies defined as "non-lesional" by 3 Tesla MRI criteria, a favorable postoperative seizure outcome (Engel I-II) can be achieved with accurate multimodal presurgical evaluation including intracranial EEG recordings. In the temporal group, most favorable results were obtained when FDG-PET displayed congruent unilateral hypometabolism.
Collapse
Affiliation(s)
- Evangelos Kogias
- Department of Neurosurgery, Medical Center-University of Freiburg, Germany.
| | - Jan-Helge Klingler
- Department of Neurosurgery, Medical Center-University of Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center-University of Freiburg, Germany
| | - Christian Scheiwe
- Department of Neurosurgery, Medical Center-University of Freiburg, Germany
| | - Barbara Schmeiser
- Department of Neurosurgery, Medical Center-University of Freiburg, Germany
| | - Soroush Doostkam
- Institute of Neuropathology, Medical Center-University of Freiburg, Germany
| | - Josef Zentner
- Department of Neurosurgery, Medical Center-University of Freiburg, Germany
| | | |
Collapse
|
35
|
Martin P, Winston GP, Bartlett P, de Tisi J, Duncan JS, Focke NK. Voxel-based magnetic resonance image postprocessing in epilepsy. Epilepsia 2017; 58:1653-1664. [PMID: 28745400 PMCID: PMC5601223 DOI: 10.1111/epi.13851] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
Objective Although the general utility of voxel‐based processing of structural magnetic resonance imaging (MRI) data for detecting occult lesions in focal epilepsy is established, many differences exist among studies, and it is unclear which processing method is preferable. The aim of this study was to compare the ability of commonly used methods to detect epileptogenic lesions in magnetic resonance MRI‐positive and MRI‐negative patients, and to estimate their diagnostic yield. Methods We identified 144 presurgical focal epilepsy patients, 15 of whom had a histopathologically proven and MRI‐visible focal cortical dysplasia; 129 patients were MRI negative with a clinical hypothesis of seizure origin, 27 of whom had resections. We applied four types of voxel‐based morphometry (VBM), three based on T1 images (gray matter volume, gray matter concentration, junction map [JM]) and one based on normalized fluid‐attenuated inversion recovery (nFSI). Specificity was derived from analysis of 50 healthy controls. Results The four maps had different sensitivity and specificity profiles. All maps showed detection rates for focal cortical dysplasia patients (MRI positive and negative) of >30% at a strict threshold of p < 0.05 (family‐wise error) and >60% with a liberal threshold of p < 0.0001 (uncorrected), except for gray matter volume (14% and 27% detection rate). All maps except nFSI showed poor specificity, with high rates of false‐positive findings in controls. In the MRI‐negative patients, absolute detection rates were lower. A concordant nFSI finding had a significant positive odds ratio of 7.33 for a favorable postsurgical outcome in the MRI‐negative group. Spatial colocalization of JM and nFSI was rare, yet showed good specificity throughout the thresholds. Significance All VBM variants had specific diagnostic properties that need to be considered for an adequate interpretation of the results. Overall, structural postprocessing can be a useful tool in presurgical diagnostics, but the low specificity of some maps has to be taken into consideration.
Collapse
Affiliation(s)
- Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Epilepsy Society MRI Unit, Chalfont St, Peter, United Kingdom
| | - Philippa Bartlett
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Epilepsy Society MRI Unit, Chalfont St, Peter, United Kingdom
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Epilepsy Society MRI Unit, Chalfont St, Peter, United Kingdom
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Epilepsy Society MRI Unit, Chalfont St, Peter, United Kingdom
| | - Niels K Focke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Clinical Neurophysiology, University Clinic, Göttingen, Germany
| |
Collapse
|
36
|
Isler C, Ozkara C, Kucukyuruk B, Delil S, Oz B, Comunoglu N, Kizilkilic O, Kayhan A, Deniz K, Akkol S, Tanriverdi T, Uzan M. Seizure Outcome of Patients with Magnetic Resonance Imaging-Negative Epilepsies: Still An Ongoing Debate. World Neurosurg 2017; 106:638-644. [PMID: 28735141 DOI: 10.1016/j.wneu.2017.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Surgical results regarding MRI-negative epilepsy were presented and related clinical and histopathological parameters were discussed. METHODS Thirty-six MRI-negative epilepsy patients were retrospectively analyzed. Histopathological specimens were re-reviewed by 2 blind neuropathologists and re-classified based on the current classifications. RESULTS The mean age at surgery and seizure onset was 24.5 years and 9.3 years, respectively. Eight patients were younger than 18 years. Mean duration of seizures was 15.3 years. All but 2 underwent invasive monitorization. Eighteen patients had hypometabolism on FDG-PET with temporal lobe involvement in majority (66.7%). Hypometabolism was found in all patients with hippocampal sclerosis (HS), which was present in 50% and 66.7% of focal cortical dysplasia (FCD) type I and II patients, respectively. The frontal lobe resection was the most frequent type of operation followed by resections in temporal, parietal and occipital lobes. In 7 patients, multilobar resection was performed. Histopathological diagnosis was FCD type I, II, III, HS, and gliosis in 14, 12, 2, 3 and 2 patients, respectively. The mean follow-up was 5.8 years. Seventeen patients were seizure free and favorable outcome (Engel's I and II) was found in 69.7%. FCD type I tend to have more favorable seizure outcome. Duration of epilepsy and hypometabolism on FDG-PET was significantly related to outcome, whereas involved lobe was not. CONCLUSIONS Our results suggest it is worth pursuing resective surgery in adults as well as in children with drug-resistant epilepsy with normal MRI.
Collapse
Affiliation(s)
- Cihan Isler
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Cigdem Ozkara
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Baris Kucukyuruk
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sakir Delil
- Department of Neurology, Bati Bahat Hospital, Istanbul, Turkey
| | - Buge Oz
- Department of Pathology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nil Comunoglu
- Department of Pathology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Osman Kizilkilic
- Department of Radiology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ahmet Kayhan
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Kaancan Deniz
- Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Serdar Akkol
- Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Taner Tanriverdi
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Uzan
- Department of Neurosurgery, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
37
|
Ivanovic J, Larsson PG, Østby Y, Hald J, Krossnes BK, Fjeld JG, Pripp AH, Alfstad KÅ, Egge A, Stanisic M. Seizure outcomes of temporal lobe epilepsy surgery in patients with normal MRI and without specific histopathology. Acta Neurochir (Wien) 2017; 159:757-766. [PMID: 28281007 PMCID: PMC5385196 DOI: 10.1007/s00701-017-3127-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/16/2017] [Indexed: 12/02/2022]
Abstract
BACKGROUND Seizure outcome following surgery in pharmacoresistant temporal lobe epilepsy patients with normal magnetic resonance imaging and normal or non-specific histopathology is not sufficiently presented in the literature. METHODS In a retrospective design, we reviewed data of 263 patients who had undergone temporal lobe epilepsy surgery and identified 26 (9.9%) who met the inclusion criteria. Seizure outcomes were determined at 2-year follow-up. Potential predictors of Engel class I (satisfactory outcome) were identified by logistic regression analyses. RESULTS Engel class I outcome was achieved in 61.5% of patients, 50% being completely seizure free (Engel class IA outcome). The strongest predictors of satisfactory outcome were typical ictal seizure semiology (p = 0.048) and localised ictal discharges on scalp EEG (p = 0.036). CONCLUSION Surgery might be an effective treatment choice for the majority of these patients, although outcomes are less favourable than in patients with magnetic resonance imaging-defined lesional temporal lobe epilepsy. Typical ictal seizure semiology and localised ictal discharges on scalp EEG were predictors of Engel class I outcome.
Collapse
Affiliation(s)
- Jugoslav Ivanovic
- Department of Neurosurgery, Oslo University Hospital, Sognsvannsveien 20, N-0027, Oslo, Norway.
| | - Pål G Larsson
- Clinical Neurophysiologic Laboratory, Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Ylva Østby
- Department of Clinical Psychology and Neuropsychology, National Centre for Epilepsy, Oslo University Hospital, Oslo, Norway
| | - John Hald
- Department of Radiology, Oslo University Hospital, Oslo, Norway
| | - Bård K Krossnes
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Jan G Fjeld
- Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | - Are H Pripp
- Oslo Centre for Biostatistics and Epidemiology, Research Support Service, Oslo University Hospital, Oslo, Norway
| | - Kristin Å Alfstad
- Department of Adult Epilepsy, National Centre for Epilepsy, Oslo University Hospital, Oslo, Norway
| | - Arild Egge
- Department of Neurosurgery, Oslo University Hospital, Sognsvannsveien 20, N-0027, Oslo, Norway
| | - Milo Stanisic
- Department of Neurosurgery, Oslo University Hospital, Sognsvannsveien 20, N-0027, Oslo, Norway
| |
Collapse
|
38
|
Tract-specific atrophy in focal epilepsy: Disease, genetics, or seizures? Ann Neurol 2017; 81:240-250. [DOI: 10.1002/ana.24848] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/29/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
|
39
|
Outcome of temporal lobe epilepsy surgery evaluated with bitemporal intracranial electrode recordings. Epilepsy Res 2016; 127:324-330. [DOI: 10.1016/j.eplepsyres.2016.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 08/02/2016] [Accepted: 08/10/2016] [Indexed: 11/23/2022]
|
40
|
Doležalová I, Brázdil M, Chrastina J, Hemza J, Hermanová M, Janoušová E, Pažourková M, Kuba R. Differences between mesial and neocortical magnetic-resonance-imaging-negative temporal lobe epilepsy. Epilepsy Behav 2016; 61:21-26. [PMID: 27263079 DOI: 10.1016/j.yebeh.2016.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The aim of this study was to assess clinical and electrophysiological differences within a group of patients with magnetic-resonance-imaging-negative temporal lobe epilepsy (MRI-negative TLE) according to seizure onset zone (SOZ) localization in invasive EEG (IEEG). METHODS According to SOZ localization in IEEG, 20 patients with MRI-negative TLE were divided into either having mesial SOZ-mesial MRI-negative TLE or neocortical SOZ-neocortical MRI-negative TLE. We evaluated for differences between these groups in demographic data, localization of interictal epileptiform discharges (IEDs), and the ictal onset pattern in semiinvasive EEG and in ictal semiology. RESULTS Thirteen of the 20 patients (65%) had mesial MRI-negative TLE and 7 of the 20 patients (35%) had neocortical MRI-negative TLE. The differences between mesial MRI-negative TLE and neocortical MRI-negative TLE were identified in the distribution of IEDs and in the ictal onset pattern in semiinvasive EEG. The patients with neocortical MRI-negative TLE tended to have more IEDs localized outside the anterotemporal region (p=0.031) and more seizures without clear lateralization of ictal activity (p=0.044). No other differences regarding demographic data, seizure semiology, surgical outcome, or histopathological findings were found. CONCLUSIONS According to the localization of the SOZ, MRI-negative TLE had two subgroups: mesial MRI-negative TLE and neocortical MRI-negative TLE. The groups could be partially distinguished by an analysis of their noninvasive data (distribution of IEDs and lateralization of ictal activity). This differentiation might have an impact on the surgical approach.
Collapse
Affiliation(s)
- Irena Doležalová
- Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Milan Brázdil
- Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jan Chrastina
- Brno Epilepsy Center, Department of Neurosurgery, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Hemza
- Brno Epilepsy Center, Department of Neurosurgery, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Markéta Hermanová
- First Department of Pathological Anatomy, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eva Janoušová
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marta Pažourková
- Department of Radiology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Robert Kuba
- Brno Epilepsy Center, First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| |
Collapse
|
41
|
Koubeissi MZ, Kahriman E, Fastenau P, Bailey C, Syed T, Amina S, Miller J, Munyon C, Tanner A, Karanec K, Tuxhorn I, Lüders H. Multiple hippocampal transections for intractable hippocampal epilepsy: Seizure outcome. Epilepsy Behav 2016; 58:86-90. [PMID: 27064827 DOI: 10.1016/j.yebeh.2016.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/29/2016] [Accepted: 03/04/2016] [Indexed: 01/19/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the seizure outcomes after transverse multiple hippocampal transections (MHTs) in 13 patients with intractable TLE. METHODS Thirteen patients with normal memory scores, including 8 with nonlesional hippocampi on MRI, had temporal lobe epilepsy (TLE) necessitating depth electrode implantation. After confirming hippocampal seizure onset, they underwent MHT. Intraoperative monitoring was done with 5-6 hippocampal electrodes spaced at approximately 1-cm intervals and spike counting for 5-8min before each cut. The number of transections ranged between 4 and 7. Neuropsychological assessment was completed preoperatively and postoperatively for all patients and will be reported separately. RESULTS Duration of epilepsy ranged between 5 and 55years. There were no complications. Intraoperatively, MHT resulted in marked spike reduction (p=0.003, paired t-test). Ten patients (77%) are seizure-free (average follow-up was 33months, range 20-65months) without medication changes. One of the 3 patients with persistent seizures had an MRI revealing incomplete transections, another had an additional neocortical seizure focus (as suggested by pure aphasic seizures), and the third had only 2 seizures in 4years, one of which occurred during antiseizure medication withdrawal. Verbal and visual memory outcomes will be reported separately. Right and left hippocampal volumes were not different preoperatively (n=12, p=0.64, Wilcoxon signed-rank test), but the transected hippocampal volume decreased postoperatively (p=0.0173). CONCLUSIONS Multiple hippocampal transections provide an effective intervention and a safe alternative to temporal lobectomy in patients with hippocampal epilepsy.
Collapse
Affiliation(s)
| | - Emine Kahriman
- University Hospitals Case Medical Center, Cleveland, OH, United States
| | - Philip Fastenau
- University Hospitals Case Medical Center, Cleveland, OH, United States
| | | | - Tanvir Syed
- University Hospitals Case Medical Center, Cleveland, OH, United States
| | - Shahram Amina
- University Hospitals Case Medical Center, Cleveland, OH, United States
| | - Jonathan Miller
- University Hospitals Case Medical Center, Cleveland, OH, United States
| | - Charles Munyon
- University Hospitals Case Medical Center, Cleveland, OH, United States
| | | | | | - Ingrid Tuxhorn
- University Hospitals Case Medical Center, Cleveland, OH, United States
| | - Hans Lüders
- University Hospitals Case Medical Center, Cleveland, OH, United States
| |
Collapse
|
42
|
Wang X, Zhang C, Wang Y, Hu W, Shao X, Zhang JG, Zhang K. Prognostic factors for seizure outcome in patients with MRI-negative temporal lobe epilepsy: A meta-analysis and systematic review. Seizure 2016; 38:54-62. [PMID: 27182689 DOI: 10.1016/j.seizure.2016.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To perform a systematic review and meta-analysis to identify predictors of postoperative seizure freedom in patients with magnetic resonance imaging (MRI)-negative temporal lobe epilepsy. METHOD Publications were screened from electronic databases (MEDLINE, EMBASE), epilepsy archives, and bibliographies of relevant articles that were written in English. We recorded all possible risk factors that might predict seizure outcome after surgery. We calculated odds ratio (OR) with corresponding 95% confidence intervals (95% CI) of predictors for postoperative seizure freedom. Heterogeneity was assessed with I(2). All meta-analyses were performed using Review Manager. RESULTS Epilepsy duration (OR=2.57, 95% CI=1.21-5.47, p<0.05, I(2)=1%) and ictal or interictal electroencephalographic anomalies precisely localized in the ipsilateral temporal lobe (OR=3.89, 95% CI=1.66-9.08, p<0.01, I(2)=0 and OR=3.38, 95% CI=1.57-7.25, p<0.05, I(2)=0, respectively) were significantly associated with a higher rate of seizure freedom after surgery. However, the positron emission tomography (PET) results were not predictive of postoperative seizure freedom (OR=2.11, 95% CI=0.95-4.65, p=0.06, I(2)=0). No significant difference in seizure freedom was observed between the positive and negative pathology groups (OR=1.36, 95% CI=0.70-2.63, p=0.36, I(2)=0). CONCLUSIONS A shorter epilepsy duration and scalp electroencephalogram (EEG) signals localized precisely in the temporal lobe predicted a better seizure outcome in patients with MRI-negative temporal lobe epilepsy.
Collapse
Affiliation(s)
- Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Tiantan xili 6, Dongcheng, Beijing 100050, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Tiantan xili 6, Dongcheng, Beijing 100050, China
| | - Yao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Tiantan xili 6, Dongcheng, Beijing 100050, China
| | - Wenhan Hu
- Beijing Neurosurgical Institute, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Tiantan xili 6, Dongcheng, Beijing 100050, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Tiantan xili 6, Dongcheng, Beijing 100050, China
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Tiantan xili 6, Dongcheng, Beijing 100050, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Tiantan xili 6, Dongcheng, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Tiantan xili 6, Dongcheng, Beijing 100050, China.
| |
Collapse
|
43
|
|
44
|
De Ciantis A, Barba C, Tassi L, Cosottini M, Tosetti M, Costagli M, Bramerio M, Bartolini E, Biagi L, Cossu M, Pelliccia V, Symms MR, Guerrini R. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia 2016; 57:445-54. [PMID: 26778405 DOI: 10.1111/epi.13313] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI. METHODS We conducted an observational clinical imaging study on 21 patients (17 adults and 4 children) with intractable focal epilepsy, exhibiting clinical and electroencephalographic features consistent with a single seizure-onset zone (SOZ) and unrevealing conventional MRI. Patients were enrolled at two tertiary epilepsy surgery centers and imaged at 7T, including whole brain (three-dimensional [3D] T1 -weighted [T1W] fast-spoiled gradient echo (FSPGR), 3D susceptibility-weighted angiography [SWAN], 3D fluid-attenuated inversion recovery [FLAIR]) and targeted imaging (2D T2*-weighted dual-echo gradient-recalled echo [GRE] and 2D gray-white matter tissue border enhancement [TBE] fast spin echo inversion recovery [FSE-IR]). MRI studies at 1.5 or 3T deemed unrevealing at the referral center were reviewed by three experts in epilepsy imaging. Reviewers were provided information regarding the suspected localization of the SOZ. The same team subsequently reviewed 7T images. Agreement in imaging interpretation was reached through consensus-based discussions based on visual identification of structural abnormalities and their likely correlation with clinical and electrographic data. RESULTS 7T MRI revealed structural lesions in 6 (29%) of 21 patients. The diagnostic gain in detection was obtained using GRE and FLAIR images. Four of the six patients with abnormal 7T underwent epilepsy surgery. Histopathology revealed focal cortical dysplasia (FCD) in all. In the remaining 15 patients (71%), 7T MRI remained unrevealing; 4 of the patients underwent epilepsy surgery and histopathologic evaluation revealed gliosis. SIGNIFICANCE 7T MRI improves detection of epileptogenic FCD that is not visible at conventional field strengths. A dedicated protocol including whole brain FLAIR and GRE images at 7T targeted at the suspected SOZ increases the diagnostic yield.
Collapse
Affiliation(s)
- Alessio De Ciantis
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Carmen Barba
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Laura Tassi
- "C. Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Mirco Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IMAGO7 Foundation, Pisa, Italy
| | - Michela Tosetti
- IRCCS Stella Maris Foundation, Pisa, Italy.,IMAGO7 Foundation, Pisa, Italy
| | - Mauro Costagli
- IRCCS Stella Maris Foundation, Pisa, Italy.,IMAGO7 Foundation, Pisa, Italy
| | | | - Emanuele Bartolini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Laura Biagi
- IRCCS Stella Maris Foundation, Pisa, Italy.,IMAGO7 Foundation, Pisa, Italy
| | - Massimo Cossu
- "C. Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | | | - Mark R Symms
- General Electric MR Scientist, Imago7, Pisa, Italy
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
45
|
Feng R, Hu J, Pan L, Wu J, Lang L, Jiang S, Gu X, Guo J, Zhou L. Application of 256-channel dense array electroencephalographic source imaging in presurgical workup of temporal lobe epilepsy. Clin Neurophysiol 2016; 127:108-116. [DOI: 10.1016/j.clinph.2015.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/26/2015] [Accepted: 03/13/2015] [Indexed: 11/27/2022]
|
46
|
Suresh S, Sweet J, Fastenau PS, Lüders H, Landazuri P, Miller J. Temporal lobe epilepsy in patients with nonlesional MRI and normal memory: an SEEG study. J Neurosurg 2015. [DOI: 10.3171/2015.1.jns141811] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECT
Temporal lobe epilepsy (TLE) in the absence of MRI abnormalities and memory deficits is often presumed to have an extramesial or even extratemporal source. In this paper the authors report the results of a comprehensive stereoelectroencephalography (SEEG) analysis in patients with TLE with normal MRI images and memory scores.
METHODS
Eighteen patients with medically refractory epilepsy who also had unremarkable MR images and normal verbal and visual memory scores on neuropsychological testing were included in the study. All patients had seizure semiology and video electroencephalography (EEG) findings suggestive of TLE. A standardized SEEG investigation was performed for each patient with electrodes implanted into the mesial and lateral temporal lobe, temporal tip, posterior temporal neocortex, orbitomesiobasal frontal lobe, posterior cingulate gyrus, and insula. This information was used to plan subsequent surgical management.
RESULTS
Interictal SEEG abnormalities were observed in the mesial temporal structures in 17 patients (94%) and in the temporal tip in 6 (33%). Seizure onset was exclusively from mesial structures in 13 (72%), exclusively from lateral temporal cortex and/or temporal tip structures in 2 (11%), and independently from mesial and neocortical foci in 3 (17%). No seizure activity was observed arising from any extratemporal location. All patients underwent surgical intervention targeting the temporal lobe and tailored to the SEEG findings, and all experienced significant improvement in seizure frequency with a postoperative follow-up observation period of at least 1 year.
CONCLUSIONS
This study demonstrates 3 important findings: 1) normal memory does not preclude mesial temporal seizure onset; 2) onset of seizures exclusively from mesial temporal structures without early neocortical involvement is common, even in the absence of memory deficits; and 3) extratemporal seizure onset is rare when video EEG and semiology are consistent with focal TLE.
Collapse
|
47
|
Does F-18 FDG-PET substantially alter the surgical decision-making in drug-resistant partial epilepsy? Epilepsy Behav 2015; 51:133-9. [PMID: 26276413 DOI: 10.1016/j.yebeh.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 11/23/2022]
Abstract
OBJECTIVE There is a dearth of information on the critical utility of positron emission tomography (PET) in choosing candidates for epilepsy surgery especially in resource-poor countries where it is not freely available. This study aimed to critically analyze the utility of FDG-PET in the presurgical evaluation and surgical selection of patients with DRE based on the results obtained through its use in our comprehensive epilepsy program. METHODS From 2008 to 2012, 117 patients with drug-resistant epilepsy underwent F-18 fluoro-deoxy-glucose (FDG) PET in our center. We utilized their data to audit the utility of PET in choosing/deferring patients for surgery. RESULTS Of the 117 patients (age: 5-42years) who underwent F-18 FDG-PET, 64 had normal MRI, and 53 had lesions. Electroclinical data favored temporal ictal onset in 48 (41%), extratemporal in 60 (51.3%), and uncertain lobar localization in 9 (7.7%). The topography of PET hypometabolism was localizing in 53 (45.3%), lateralizing in 12 (10.3%), and 52 (44.4%) had either normal or discordant results. In the nonlesional group, focal hypometabolism was concordant to the area of ictal onset in 27 (41.5%) versus 38 (58.5%) in the lesional group (p=0.002). Greater concordance was noted in temporal lobe epilepsy (TLE) (78.0%) as compared to extratemporal epilepsy (ETPE) (28.6%) (p<0.001). Positron emission tomography was more concordant in patients with mesial temporal sclerosis than in those with other lesions (82.8% versus 50%) (p=0.033). Positron emission tomography helped in surgical decision-making in 68.8% of TLE and 23.3% of ETPE cases. Overall, 37 patients (31.6%) were directly selected for resective surgery based on PET results. CONCLUSIONS Positron emission tomography, when utilized judiciously, remained an ancillary tool in the surgical selection of one-third of patients with drug-resistant partial epilepsy, although its utility as an independent tool is not very promising.
Collapse
|
48
|
Saavalainen T, Jutila L, Mervaala E, Kälviäinen R, Vanninen R, Immonen A. Temporal anteroinferior encephalocele. Neurology 2015; 85:1467-74. [DOI: 10.1212/wnl.0000000000002062] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/12/2015] [Indexed: 11/15/2022] Open
|
49
|
Stylianou P, Hoffmann C, Blat I, Harnof S. Neuroimaging for patient selection for medial temporal lobe epilepsy surgery: Part 1 Structural neuroimaging. J Clin Neurosci 2015; 23:14-22. [PMID: 26362835 DOI: 10.1016/j.jocn.2015.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/27/2015] [Accepted: 04/05/2015] [Indexed: 11/19/2022]
Abstract
The objective of part one of this review is to present the structural neuroimaging techniques that are currently used to evaluate patients with temporal lobe epilepsy (TLE), and to discuss their potential to define patient eligibility for medial temporal lobe surgery. A PubMed query, using Medline and Embase, and subsequent review, was performed for all English language studies published after 1990, reporting neuroimaging methods for the evaluation of patients with TLE. The extracted data included demographic variables, population and study design, imaging methods, gold standard methods, imaging findings, surgical outcomes and conclusions. Overall, 56 papers were reviewed, including a total of 1517 patients. This review highlights the following structural neuroimaging techniques: MRI, diffusion-weighted imaging, tractography, electroencephalography and magnetoencephalography. The developments in neuroimaging during the last decades have led to remarkable improvements in surgical precision, postsurgical outcome, prognosis, and the rate of seizure control in patients with TLE. The use of multiple imaging methods provides improved outcomes, and further improvements will be possible with future studies of larger patient cohorts.
Collapse
Affiliation(s)
- Petros Stylianou
- Department of Neurosurgery, The Chaim Sheba Medical Center, Nissim Aloni 16, Tel Aviv-Yafo 62919, Israel.
| | - Chen Hoffmann
- Department of Radiology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Ilan Blat
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Sagi Harnof
- Department of Neurosurgery, The Chaim Sheba Medical Center, Nissim Aloni 16, Tel Aviv-Yafo 62919, Israel
| |
Collapse
|
50
|
Minami N, Morino M, Uda T, Komori T, Nakata Y, Arai N, Kohmura E, Nakano I. Surgery for amygdala enlargement with mesial temporal lobe epilepsy: pathological findings and seizure outcome. J Neurol Neurosurg Psychiatry 2015; 86:887-94. [PMID: 25224675 DOI: 10.1136/jnnp-2014-308383] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/02/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Amygdala enlargement (AE) has been suggested to be a subtype of mesial temporal lobe epilepsy (MTLE). However, most reports related to AE have referred to imaging studies, and there have been few reports regarding surgical and pathological findings. The present study was performed to clarify the surgical outcomes and pathology of AE. METHODS Eighty patients with drug-resistant MTLE were treated surgically at the Tokyo Metropolitan Neurological Hospital between April 2010 and July 2013. Of these patients, 11 were diagnosed as AE based on presurgical MRI. Nine patients with AE underwent selective amygdalohippocampectomy, while the remaining two patients underwent selective amygdalotomy with hippocampal transection. Intraoperative EEG was routinely performed. The histopathology of the resected amygdala tissue was evaluated and compared with the amygdala tissue of patients with hippocampal sclerosis. RESULTS Pathological findings indicated that 10 of 11 specimens had closely clustering hypertrophic neurons with vacuolisation of the background matrix. Slight gliosis was seen in nine specimens, while the remaining two showed no gliotic changes. Intraoperative EEG showed abnormal sharp waves that seemed to originate not from the amygdala but from the hippocampus in all cases. Ten patients became seizure-free during the postoperative follow-up period. CONCLUSIONS Histopathologically, clustering hypertrophic neurons and vacuolation with slight gliosis or without gliosis were considered to be pathological characteristics of AE. Amygdalohippocampectomy or hippocampal transection with amygdalotomy is effective for seizure control in patients with AE.
Collapse
Affiliation(s)
- Noriaki Minami
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan Department of Neurosurgery, Kobe University School of Medicine, Kobe, Hyogo, Japan
| | - Michiharu Morino
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Takehiro Uda
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Nobutaka Arai
- Brain Pathology Research Center, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Eiji Kohmura
- Department of Neurosurgery, Kobe University School of Medicine, Kobe, Hyogo, Japan
| | - Imaharu Nakano
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|