1
|
Ávila EP, de Oliveira LA, Neto BAD, de Almeida MV, Pliego JR. Flavanone-enabled CuAAC Reaction: Noninnocent Reagents Driving a Mononuclear Mechanism Over the Dinuclear Paradigm. Chemistry 2025; 31:e202500121. [PMID: 39960264 DOI: 10.1002/chem.202500121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
In this work, we report the use of the CuAAC (copper-catalyzed azide-alkyne cycloaddition) reaction to obtain different triazole derivatives bridged to the naringenin skeleton, leading to the combination of a triazole pharmacophoric group with a bioactive flavanone. The generation of Cu(I) active species was done using CuSO4 salts and sodium ascorbate, resulting in moderate to high yields when the DMSO-water binary system was used as solvents. Mechanistic studies were done using density functional theory calculations and high-resolution mass spectrometry (HRMS). We investigated the reduction process of Cu(II) to Cu(I), and the role of mononuclear and dinuclear copper species in the catalysis of the cycloaddition reaction. Our combined theoretical and experimental results indicate that the mechanism involving a single copper species is taking place, with the cycloaddition step being the rate-determining step. The calculations indicate that the mechanism involving two copper species has the deprotonation of the coordinated terminal alkyne as the rate-determining step.
Collapse
Affiliation(s)
- Eloah P Ávila
- Universidade Federal de Juiz de Fora, Departamento de Química, Campus Universitário, Martelos, Juiz de Fora, MG, 36036-330, Brazil
- Universidade Federal de São João del-Rei, São João del-Rei, MG, 36301-160, Brazil
| | - Larissa A de Oliveira
- Universidade Federal de Juiz de Fora, Departamento de Química, Campus Universitário, Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, 70910-900, DF, Brazil
| | - Mauro V de Almeida
- Universidade Federal de Juiz de Fora, Departamento de Química, Campus Universitário, Martelos, Juiz de Fora, MG, 36036-330, Brazil
| | - Josefredo R Pliego
- Universidade Federal de São João del-Rei, São João del-Rei, MG, 36301-160, Brazil
| |
Collapse
|
2
|
Pérez-Riera AR, Barbosa-Barros R, da Silva Rocha M, Paixão-Almeida A, Daminello-Raimundo R, de Abreu LC, Yanowitz F, Baranchuk A, Nikus K. Congenital short QT syndrome: A review focused on electrocardiographic features. J Electrocardiol 2024; 85:87-94. [PMID: 38714466 DOI: 10.1016/j.jelectrocard.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/09/2024]
Abstract
Congenital short QT syndrome is a very low prevalence inherited primary arrhythmia syndrome first reported in 2000 by Gussak et al., who described two families with a short QT interval, syncope, and sudden cardiac death. In 2004, Ramon Brugada et al. identified the first genetic type of this entity. To date, a total of nine genotypes have been described. The diagnosis is easy from the electrocardiogram (ECG), not only due to the short QT duration, but also based on other aspects covered in this review. During 24-h Holter monitoring, paroxysmal atrial fibrillation spontaneously converting to sinus rhythm may be found. Even though the T wave may appear symmetric on the ECG, the T loop of the vectorcardiogram confirms that the T wave is constantly asymmetric due to the presence of dashes closer to each other in the efferent branch. In this review, we also describe the minus-plus T wave sign that we have described in a previously published article. In addition to congenital causes, we briefly highlight the existence of numerous acquired causes of short QT interval.
Collapse
Affiliation(s)
- Andrés Ricardo Pérez-Riera
- Universidade Nove de Julho (UNINOVE), Mauá, SP, Brazil; Faculdade de Medicina FMABC, Santo André, SP, Brazil; Hospital do Coração (HCor), São Paulo, SP, Brazil.
| | | | | | | | | | - Luiz Carlos de Abreu
- Faculdade de Medicina FMABC, Santo André, SP, Brazil; Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Frank Yanowitz
- Intermountain Medical Center, Intermountain Heart Institute, Department of Internal Medicine, The University of Utah, Salt Lake City, UT, USA
| | | | - Kjell Nikus
- Faculty of Medicine and Life Sciences, Tampere University, and Heart Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
3
|
Cheng G, Zhao P, Su H, Wahab A, Gao Z, Gou J, Yu B. Furan Dearomatization: A Route to Diverse Fluoroalkyl/Aryl Triazoles. J Org Chem 2024; 89:4349-4365. [PMID: 38497642 DOI: 10.1021/acs.joc.3c02402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The 5-fluoroalkyl-1,2,3-triazoles, serving as a pivotal element in medicinal chemistry, hold substantial research significance. In this work, we developed a furan dearomatization reaction for the synthesis of various 5-fluoroalkyl-1,2,3-triazoles, which contains -CF3, -CF2H, -CF2CF3, -CF2CF2CF3, -CF2CO2Et, and -C6F5. This methodology relies on the intermolecular [3 + 2] cycloaddition/furan ring-opening triggered by α-fluoroalkyl furfuryl cation with azides to stereoselectively synthesize a series of (E)-fluoroalkyl enone triazoles. The reaction proceeds without metal participation, exhibits excellent substrate tolerance, and has excellent synthetic utility.
Collapse
Affiliation(s)
- Guanghai Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Penggang Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Hang Su
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Abdul Wahab
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Gou
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an 710062, China
| | - Binxun Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, China
| |
Collapse
|
4
|
Chen Y, Li W, Lu C, Gao X, Song H, Zhang Y, Zhao S, Cai G, Guo Q, Zhou D, Chen Y. Efficacy, tolerability and safety of add-on third-generation antiseizure medications in treating focal seizures worldwide: a network meta-analysis of randomised, placebo-controlled trials. EClinicalMedicine 2024; 70:102513. [PMID: 38449838 PMCID: PMC10915785 DOI: 10.1016/j.eclinm.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Background Adjunctive newer antiseizure medications (ASMs) are being used in patients with treatment-resistant focal-onset seizures (FOS). An updated network meta-analysis (NMA) was necessary to compile evidence in this critical area. Methods We systematically searched PubMed, Embase, Cochrane Library, Web of Science, and Scopus from their inception until 17 January 2024, evaluating the efficacy, tolerability, and safety of rufinamide (RUF), brivaracetam (BRV), cenobamate (CNB), eslicarbazepine (ESL), lacosamide (LCM), retigabine (RTG), and perampanel (PER) as adjunctive treatments for FOS. Efficacy outcomes included seizure response and seizure freedom. Tolerability was assessed by discontinuation due to adverse events (AEs). Safety outcomes were evaluated based on the number of patients experiencing at least one AE and serious adverse events (SAEs). This review is registered with PROSPERO (CRD42023485130). Findings A total of 29 studies involving 11,750 participants were included. For seizure response, all ASMs were significantly superior to placebo, with RTG ranking highest, followed by CNB. Considering dosage, CNB 400 mg/d was top-ranked, followed by RTG 1200 mg/d. For seizure freedom, BRV was highest-ranked, followed by CNB, with BRV 100 mg/d leading, followed by CNB 400 mg/d. Regarding tolerability, LCM 600 mg/d had the lowest ranking, followed by CNB 400 mg/d. For the safety outcome of AEs, ESL 1200 mg/d was ranked lowest, followed by CNB 400 mg/d. Regarding SAEs, LCM 400 mg/d was ranked lowest, followed by RTG 1200 mg/d. Interpretation ASMs at different dosages have varying efficacy and tolerability profiles. We have provided hierarchical rankings of ASMs for efficacy and safety outcomes. Our findings offer the most comprehensive evidence available to inform patients, families, physicians, guideline developers, and policymakers about the choice of ASMs in patients with treatment-resistant FOS. Funding None.
Collapse
Affiliation(s)
- Yankun Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Wenze Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chenfei Lu
- Department of Respiratory, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| | - Xinxia Gao
- Department of Medical Records, Heze Municipal Hospital, Heze, 274000, China
| | - Huizhen Song
- Department of Neurology, Heze Third People's Hospital, Heze, 274000, China
| | - Yanli Zhang
- Department of Neurology, Shandong Provincial Hospital Heze Branch, Heze, 274000, China
| | - Sihao Zhao
- Department of Neurology, Heze Mudan District People's Hospital, Heze, 274000, China
| | - Gaoang Cai
- Department of Neurology, Juancheng County People's Hospital, Juancheng, 274600, China
| | - Qing Guo
- Department of Neurology, Heze Municipal Hospital Brain Hospital, Heze, 274000, China
| | - Dongdong Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
5
|
Lumley LA, Nguyen DA, de Araujo Furtado M, Niquet J, Linz EO, Schultz CR, Stone MF, Wasterlain CG. Efficacy of Lacosamide and Rufinamide as Adjuncts to Midazolam-Ketamine Treatment Against Cholinergic-Induced Status Epilepticus in Rats. J Pharmacol Exp Ther 2024; 388:347-357. [PMID: 37977809 PMCID: PMC10801783 DOI: 10.1124/jpet.123.001789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Benzodiazepine pharmacoresistance develops when treatment of status epilepticus (SE) is delayed. This response may result from gamma-aminobutyric acid A receptors (GABAAR) internalization that follows prolonged SE; this receptor trafficking results in fewer GABAAR in the synapse to restore inhibition. Increase in synaptic N-methyl-D-aspartate receptors (NMDAR) also occurs in rodent models of SE. Lacosamide, a third-generation antiseizure medication (ASM), acts on the slow inactivation of voltage-gated sodium channels. Another ASM, rufinamide, similarly acts on sodium channels by extending the duration of time spent in the inactivation stage. Combination therapy of the benzodiazepine midazolam, NMDAR antagonist ketamine, and ASMs lacosamide (or rufinamide) was investigated for efficacy against soman (GD)-induced SE and neuropathology. Adult male rats implanted with telemetry transmitters for monitoring electroencephalographic (EEG) activity were exposed to a seizure-inducing dose of GD and treated with an admix of atropine sulfate and HI-6 1 minute later and with midazolam monotherapy or combination therapy 40 minutes after EEG seizure onset. Rats were monitored continuously for seizure activity for two weeks, after which brains were processed for assessment of neurodegeneration, neuronal loss, and neuroinflammatory responses. Simultaneous administration of midazolam, ketamine, and lacosamide (or rufinamide) was more protective against GD-induced SE compared with midazolam monotherapy. In general, lacosamide triple therapy had more positive outcomes on measures of epileptogenesis, EEG power integral, and the number of brain regions protected from neuropathology compared with rats treated with rufinamide triple therapy. Overall, both drugs were well tolerated in these combination models. SIGNIFICANCE STATEMENT: We currently report on improved efficacy of antiseizure medications lacosamide and rufinamide, each administered in combination with ketamine (NMDAR antagonist) and midazolam (benzodiazepine), in combatting soman (GD)-induced seizure, epileptogenesis, and brain pathology over that provided by midazolam monotherapy, or dual therapy of midazolam and lacosamide (or rufinamide) in rats. Administration of lacosamide as adjunct to midazolam and ketamine was particularly effective against GD-induced toxicity. However, protection was incomplete, suggesting the need for further study.
Collapse
Affiliation(s)
- Lucille A Lumley
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Donna A Nguyen
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Marcio de Araujo Furtado
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Jerome Niquet
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Emily O Linz
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Caroline R Schultz
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Michael F Stone
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| | - Claude G Wasterlain
- Neuroscience Department, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland (L.A.L., D.A.N., E.O.L., C.R.S., M.F.S.); BioSEaD, LLC, Rockville, Maryland (M.d.A.F.); and Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, and Epilepsy Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California (J.N., C.G.W.)
| |
Collapse
|
6
|
Lersch R, Jannadi R, Grosse L, Wagner M, Schneider MF, von Stülpnagel C, Heinen F, Potschka H, Borggraefe I. Targeted Molecular Strategies for Genetic Neurodevelopmental Disorders: Emerging Lessons from Dravet Syndrome. Neuroscientist 2023; 29:732-750. [PMID: 35414300 PMCID: PMC10623613 DOI: 10.1177/10738584221088244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dravet syndrome is a severe developmental and epileptic encephalopathy mostly caused by heterozygous mutation of the SCN1A gene encoding the voltage-gated sodium channel α subunit Nav1.1. Multiple seizure types, cognitive deterioration, behavioral disturbances, ataxia, and sudden unexpected death associated with epilepsy are a hallmark of the disease. Recently approved antiseizure medications such as fenfluramine and cannabidiol have been shown to reduce seizure burden. However, patients with Dravet syndrome are still medically refractory in the majority of cases, and there is a high demand for new therapies aiming to improve behavioral and cognitive outcome. Drug-repurposing approaches for SCN1A-related Dravet syndrome are currently under investigation (i.e., lorcaserin, clemizole, and ataluren). New therapeutic concepts also arise from the field of precision medicine by upregulating functional SCN1A or by activating Nav1.1. These include antisense nucleotides directed against the nonproductive transcript of SCN1A with the poison exon 20N and against an inhibitory noncoding antisense RNA of SCN1A. Gene therapy approaches such as adeno-associated virus-based upregulation of SCN1A using a transcriptional activator (ETX101) or CRISPR/dCas technologies show promising results in preclinical studies. Although these new treatment concepts still need further clinical research, they offer great potential for precise and disease modifying treatment of Dravet syndrome.
Collapse
Affiliation(s)
- Robert Lersch
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Rawan Jannadi
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Institute of Human Genetics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Leonie Grosse
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Matias Wagner
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute for Neurogenomics, Helmholtz Centre Munich, German Research Center for Health and Environment (GmbH), Munich, Germany
| | - Marius Frederik Schneider
- Metabolic Biochemistry, Biomedical Center Munich, Medical Faculty, Ludwig Maximilians University, Munich, Germany
- International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | - Celina von Stülpnagel
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Research Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical Private University (PMU), Salzburg, Austria
| | - Florian Heinen
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilians University, Munich, Germany
| | - Ingo Borggraefe
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Comprehensive Epilepsy Center, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
7
|
Elamin M, Lemtiri-Chlieh F, Robinson TM, Levine ES. Dysfunctional sodium channel kinetics as a novel epilepsy mechanism in chromosome 15q11-q13 duplication syndrome. Epilepsia 2023; 64:2515-2527. [PMID: 37329181 PMCID: PMC10529833 DOI: 10.1111/epi.17687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Duplication of the maternal chromosome 15q11.2-q13.1 region causes Dup15q syndrome, a highly penetrant neurodevelopmental disorder characterized by severe autism and refractory seizures. Although UBE3A, the gene encoding the ubiquitin ligase E3A, is thought to be the main driver of disease phenotypes, the cellular and molecular mechanisms that contribute to the development of the syndrome are yet to be determined. We previously established the necessity of UBE3A overexpression for the development of cellular phenotypes in human Dup15q neurons, including increased action potential firing and increased inward current density, which prompted us to further investigate sodium channel kinetics. METHODS We used a Dup15q patient-derived induced pluripotent stem cell line that was CRISPR-edited to remove the supernumerary chromosome and create an isogenic control line. We performed whole cell patch clamp electrophysiology on Dup15q and corrected control neurons at two time points of in vitro development. RESULTS Compared to corrected neurons, Dup15q neurons showed increased sodium current density and a depolarizing shift in steady-state inactivation. Moreover, onset of slow inactivation was delayed, and a faster recovery from both fast and slow inactivation processes was observed in Dup15q neurons. A fraction of sodium current in Dup15q neurons (~15%) appeared to be resistant to slow inactivation. Not unexpectedly, a higher fraction of persistent sodium current was also observed in Dup15q neurons. These phenotypes were modulated by the anticonvulsant drug rufinamide. SIGNIFICANCE Sodium channels play a crucial role in the generation of action potentials, and sodium channelopathies have been uncovered in multiple forms of epilepsy. For the first time, our work identifies in Dup15q neurons dysfunctional inactivation kinetics, which have been previously linked to multiple forms of epilepsy. Our work can also guide therapeutic approaches to epileptic seizures in Dup15q patients and emphasize the role of drugs that modulate inactivation kinetics, such as rufinamide.
Collapse
Affiliation(s)
- Marwa Elamin
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Fouad Lemtiri-Chlieh
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Tiwanna M Robinson
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Eric S Levine
- Department of Neuroscience, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| |
Collapse
|
8
|
Sills GJ. Pharmacological diversity amongst approved and emerging antiseizure medications for the treatment of developmental and epileptic encephalopathies. Ther Adv Neurol Disord 2023; 16:17562864231191000. [PMID: 37655228 PMCID: PMC10467199 DOI: 10.1177/17562864231191000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are rare neurodevelopmental disorders characterised by early-onset and often intractable seizures and developmental delay/regression, and include Dravet syndrome and Lennox-Gastaut syndrome (LGS). Rufinamide, fenfluramine, stiripentol, cannabidiol and ganaxolone are antiseizure medications (ASMs) with diverse mechanisms of action that have been approved for treating specific DEEs. Rufinamide is thought to suppress neuronal hyperexcitability by preventing the functional recycling of voltage-gated sodium channels from the inactivated to resting state. It is licensed for adjunctive treatment of seizures associated with LGS. Fenfluramine increases extracellular serotonin levels and may reduce seizures via activation of specific serotonin receptors and positive modulation of the sigma-1 receptor. Fenfluramine is licensed for adjunctive treatment of seizures associated with Dravet syndrome and LGS. Stiripentol is a positive allosteric modulator of type-A gamma-aminobutyric acid (GABAA) receptors. As a broad-spectrum inhibitor of cytochrome P450 enzymes, its antiseizure effects may additionally arise through pharmacokinetic interactions with co-administered ASMs. Stiripentol is licensed for treating seizures associated with Dravet syndrome in patients taking clobazam and/or valproate. The mechanism(s) of action of cannabidiol remains largely unclear although multiple targets have been proposed, including transient receptor potential vanilloid 1, G protein-coupled receptor 55 and equilibrative nucleoside transporter 1. Cannabidiol is licensed as adjunctive treatment in conjunction with clobazam for seizures associated with Dravet syndrome and LGS, and as adjunctive treatment of seizures associated with tuberous sclerosis complex. Like stiripentol, ganaxolone is a positive allosteric modulator at GABAA receptors. It has recently been licensed in the USA for the treatment of seizures associated with cyclin-dependent kinase-like 5 deficiency disorder. Greater understanding of the causes of DEEs has driven research into the potential use of other novel and repurposed agents. Putative ASMs currently in clinical development for use in DEEs include soticlestat, carisbamate, verapamil, radiprodil, clemizole and lorcaserin.
Collapse
Affiliation(s)
- Graeme J. Sills
- School of Life Sciences, University of Glasgow, Room 341, Sir James Black Building, Glasgow G12 8QQ, UK
| |
Collapse
|
9
|
Besag FMC, Vasey MJ, Chin RFM. Current and emerging pharmacotherapy for the treatment of Lennox-Gastaut syndrome. Expert Opin Pharmacother 2023; 24:1249-1268. [PMID: 37212330 DOI: 10.1080/14656566.2023.2215924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Lennox-Gastaut syndrome (LGS) is a severe childhood-onset epileptic encephalopathy, characterized by multiple seizure types, generalized slow spike-and-wave complexes in the EEG, and cognitive impairment. Seizures in LGS are typically resistant to treatment with antiseizure medications (ASMs). Tonic/atonic ('drop') seizures are of particular concern, due to their liability to cause physical injury. AREAS COVERED We summarize evidence for current and emerging ASMs for the treatment of seizures in LGS. The review focuses on findings from randomized, double-blind, placebo-controlled trials (RDBCTs). For ASMs for which no double-blind trials were identified, lower quality evidence was considered. Novel pharmacological agents currently undergoing investigation for the treatment of LGS are also briefly discussed. EXPERT OPINION Evidence from RDBCTs supports the use of cannabidiol, clobazam, felbamate, fenfluramine, lamotrigine, rufinamide, and topiramate as adjunct treatments for drop seizures. Percentage decreases in drop seizure frequency ranged from 68.3% with high-dose clobazam to 14.8% with topiramate. Valproate continues to be considered the first-line treatment, despite the absence of RDBCTs specifically in LGS. Most individuals with LGS will require treatment with multiple ASMs. Treatment decisions should be individualized and take into account adverse effects, comorbidities, general quality of life, and drug interactions, as well as individual efficacy.
Collapse
Affiliation(s)
- Frank M C Besag
- East London NHS Foundation Trust, Bedford, UK
- School of Pharmacy, University College London, London, UK
- Department of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Richard F M Chin
- Muir Maxwell Epilepsy Centre, The University of Edinburgh, Edinburgh, UK
- Department of Paediatric Neurosciences, Royal Hospital for Children and Young People, Edinburgh, UK
| |
Collapse
|
10
|
Jeong HJ, Min S, Baek J, Kim J, Chung J, Jeong K. Real-Time Reaction Monitoring of Azide-Alkyne Cycloadditions Using Benchtop NMR-Based Signal Amplification by Reversible Exchange (SABRE). ACS MEASUREMENT SCIENCE AU 2023; 3:134-142. [PMID: 37090259 PMCID: PMC10120034 DOI: 10.1021/acsmeasuresciau.2c00065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 05/03/2023]
Abstract
Rufinamide, possessing a triazole ring, is a new antiepileptic drug (AED) relatively well-absorbed in the lower dose range (10 mg/kg per day) and is currently being used in antiepileptic medications. Triazole derivatives can interact with various enzymes and receptors in biological systems via diverse non-covalent interactions, thus inducing versatile biological effects. Strain-promoted azide-alkyne cycloaddition (SPAAC) is a significant method for obtaining triazoles, even under physiological conditions, in the absence of a copper catalyst. To confirm the progress of chemical reactions under biological conditions, research on reaction monitoring at low concentrations is essential. This promising strategy is gaining acceptance for applications in fields such as drug development and nanoscience. We investigated the optimum Ir catalyst and magnetic field for achieving maximum proton hyperpolarization transfer in triazole derivatives. These reactions were analyzed using signal amplification by reversible exchange (SABRE) to overcome the limitations of low sensitivity in nuclear magnetic resonance spectroscopy, when monitoring copper-free click reactions in real time. Finally, a more versatile copper-catalyzed click reaction was monitored in real time, using a 60 MHz benchtop NMR system, in order to analyze the reaction mechanism.
Collapse
Affiliation(s)
- Hye Jin Jeong
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sein Min
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Juhee Baek
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Jisu Kim
- Department
of Chemistry, Seoul Women’s University, Seoul 01797, South Korea
| | - Jean Chung
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Keunhong Jeong
- Department
of Physics and Chemistry, Korea Military
Academy, Seoul 01805, South Korea
| |
Collapse
|
11
|
Vasilenko DA, Dronov SE, Grishin YK, Averina EB. An Efficient Access to 5‐(1,2,3‐triazol‐1‐yl)isoxazoles – previously unknown structural type of triazole‐isoxazole hybrid molecule. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dmitry A. Vasilenko
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Chemistry Department Leninskie Gory, 1-3 119991 Moscow RUSSIAN FEDERATION
| | - Sevastian E. Dronov
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Chemistry Department Leninskie Gory, 1-3 119991 Moscow RUSSIAN FEDERATION
| | - Yuri K. Grishin
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Chemistry Department Leninskie Gory, 1-3 119991 Moscow RUSSIAN FEDERATION
| | - Elena B. Averina
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Department of Chemistry Leninskie Gory-1-3Not Available 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
12
|
Lin YC, Lai YC, Lin TH, Yang YC, Kuo CC. Selective stabilization of the intermediate inactivated Na+ channel by the new-generation anticonvulsant rufinamide. Biochem Pharmacol 2022; 197:114928. [DOI: 10.1016/j.bcp.2022.114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
|
13
|
Highly Selective Synthesis of 6-Glyoxylamidoquinoline Derivatives via Palladium-Catalyzed Aminocarbonylation. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010004. [PMID: 35011236 PMCID: PMC8746719 DOI: 10.3390/molecules27010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/19/2023]
Abstract
The aminocarbonylation of 6-iodoquinoline has been investigated in the presence of large series of amine nucleophiles, providing an efficient synthetic route for producing various quinoline-6-carboxamide and quinoline-6-glyoxylamide derivatives. It was shown, after detailed optimization study, that the formation of amides and ketoamides is strongly influenced by the reaction conditions. Performing the reactions at 40 bar of carbon monoxide pressure in the presence of Pd(OAc)2/2 PPh3, the corresponding 2-ketocarboxamides were formed as major products (up to 63%). When the monodentate triphenylphosphine was replaced by the bidentate XantPhos, the quinoline-6-carboxamide derivatives were synthesized almost exclusively under atmospheric conditions (up to 98%). The isolation and characterization of the new carbonylated products of various structures were also accomplished. Furthermore, the structure of three new mono- and double-carbonylated compounds were unambiguously established by using a single-crystal XRD study.
Collapse
|
14
|
Pokhodylo N, Manko N, Finiuk N, Klyuchivska O, Matiychuk V, Obushak M, Stoika R. Primary discovery of 1-aryl-5-substituted-1H-1,2,3-triazole-4-carboxamides as promising antimicrobial agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Cunha AC, Ferreira VF, Vaz MGF, Cassaro RAA, Resende JALC, Sacramento CQ, Costa J, Abrantes JL, Souza TML, Jordão AK. Chemistry and anti-herpes simplex virus type 1 evaluation of 4-substituted-1H-1,2,3-triazole-nitroxyl-linked hybrids. Mol Divers 2021; 25:2035-2043. [PMID: 32377993 DOI: 10.1007/s11030-020-10094-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/23/2020] [Indexed: 12/18/2022]
Abstract
HSV disease is distributed worldwide. Anti-herpesvirus drugs are a problem in clinical settings, particularly in immunocompromised individuals undergoing herpes simplex virus type 1 infection. In this work, 4-substituted-1,2,3-1H-1,2,3-triazole linked nitroxyl radical derived from TEMPOL were synthesized, and their ability to inhibit the in vitro replication of HSV-1 was evaluated. The nitroxide derivatives were characterized by infrared spectroscopy and elemental analysis, and three of them had their crystal structures determined by single-crystal X-ray diffraction. Four hybrid molecules showed important anti-HSV-1 activity with IC50 values ranged from 0.80 to 1.32 µM. In particular, one of the nitroxide derivatives was more active than Acyclovir (IC50 = 0.99 µM). All compounds tested were more selective inhibitors than the reference antiviral drug. Among them, two compounds were 4.5 (IC50 0.80 µM; selectivity index CC50/IC50 3886) and 7.7 times (IC50 1.10 µM; selectivity index CC50/IC50 6698) more selective than acyclovir (IC50 0.99 µM; selectivity index CC50/IC50: 869). These nitroxide derivatives may be elected as leading compounds due to their antiherpetic activities and good selectivity.
Collapse
Affiliation(s)
- Anna C Cunha
- Departamento de Química Orgânica, Instituto de Química, Outeiro de São João Batista, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil
| | - Vitor F Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Dr. Mário Vianna 523, Niterói, RJ, 24241-002, Brazil
| | - Maria G F Vaz
- Departamento de Química Inorgânica, Instituto de Química, Outeiro de São João Batista, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil
| | - Rafael A Allão Cassaro
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Jackson A L C Resende
- Laboratório de difração de Raios X, Programa de Pós-Graduação Em Química, Universidade Federal Fluminense, Niterói, RJ, 24020-141, Brazil
- Instituto de Ciências Exatas E da Terra, Universidade Federal do Mato Grosso, Barra do Garças, MT, 78698-000, Brazil
| | - Carolina Q Sacramento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Jéssica Costa
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Juliana L Abrantes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Thiago Moreno L Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- National Institute for Science and Technology On Innovation On Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Alessandro K Jordão
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59012-570, Brazil.
| |
Collapse
|
16
|
Lou S, Cui S. Drug treatment of epilepsy: From serendipitous discovery to evolutionary mechanisms. Curr Med Chem 2021; 29:3366-3391. [PMID: 34514980 DOI: 10.2174/0929867328666210910124727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022]
Abstract
Epilepsy is a chronic brain disorder caused by abnormal firing of neurons. Up to now, using antiepileptic drugs is the main method of epilepsy treatment. The development of antiepileptic drugs lasted for centuries. In general, most agents entering clinical practice act on the balance mechanisms of brain "excitability-inhibition". More specifically, they target voltage-gated ion channels, GABAergic transmission and glutamatergic transmission. In recent years, some novel drugs representing new mechanisms of action have been discovered. Although there are about 30 available drugs in the market, it is still in urgent need of discovering more effective and safer drugs. The development of new antiepileptic drugs is into a new era: from serendipitous discovery to evolutionary mechanism-based design. This article presents an overview of drug treatment of epilepsy, including a series of traditional and novel drugs.
Collapse
Affiliation(s)
- Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou. China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou. China
| |
Collapse
|
17
|
Karaźniewicz-Łada M, Główka AK, Mikulska AA, Główka FK. Pharmacokinetic Drug-Drug Interactions among Antiepileptic Drugs, Including CBD, Drugs Used to Treat COVID-19 and Nutrients. Int J Mol Sci 2021; 22:ijms22179582. [PMID: 34502487 PMCID: PMC8431452 DOI: 10.3390/ijms22179582] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Anti-epileptic drugs (AEDs) are an important group of drugs of several generations, ranging from the oldest phenobarbital (1912) to the most recent cenobamate (2019). Cannabidiol (CBD) is increasingly used to treat epilepsy. The outbreak of the SARS-CoV-2 pandemic in 2019 created new challenges in the effective treatment of epilepsy in COVID-19 patients. The purpose of this review is to present data from the last few years on drug–drug interactions among of AEDs, as well as AEDs with other drugs, nutrients and food. Literature data was collected mainly in PubMed, as well as google base. The most important pharmacokinetic parameters of the chosen 29 AEDs, mechanism of action and clinical application, as well as their biotransformation, are presented. We pay a special attention to the new potential interactions of the applied first-generation AEDs (carbamazepine, oxcarbazepine, phenytoin, phenobarbital and primidone), on decreased concentration of some medications (atazanavir and remdesivir), or their compositions (darunavir/cobicistat and lopinavir/ritonavir) used in the treatment of COVID-19 patients. CBD interactions with AEDs are clearly defined. In addition, nutrients, as well as diet, cause changes in pharmacokinetics of some AEDs. The understanding of the pharmacokinetic interactions of the AEDs seems to be important in effective management of epilepsy.
Collapse
Affiliation(s)
- Marta Karaźniewicz-Łada
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (M.K.-Ł.); (A.A.M.)
| | - Anna K. Główka
- Department of Bromatology, Poznan University of Medical Sciences, 60-354 Poznań, Poland;
| | - Aniceta A. Mikulska
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (M.K.-Ł.); (A.A.M.)
| | - Franciszek K. Główka
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (M.K.-Ł.); (A.A.M.)
- Correspondence: ; Tel.: +48-(0)61-854-64-37
| |
Collapse
|
18
|
Meirinho S, Rodrigues M, Fortuna A, Falcão A, Alves G. Liquid chromatographic methods for determination of the new antiepileptic drugs stiripentol, retigabine, rufinamide and perampanel: A comprehensive and critical review. J Pharm Anal 2021; 11:405-421. [PMID: 34513117 PMCID: PMC8424363 DOI: 10.1016/j.jpha.2020.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023] Open
Abstract
The new antiepileptic drugs perampanel, retigabine, rufinamide and stiripentol have been recently approved for different epilepsy types. Being them an innovation in the antiepileptics armamentarium, a lot of investigations regarding their pharmacological properties are yet to be performed. Besides, considering their broad anticonvulsant activities, an extension of their therapeutic indications may be worthy of investigation, especially regarding other seizure types as well as other central nervous system disorders. Although different liquid chromatographic (LC) methods coupled with ultraviolet, fluorescence, mass or tandem-mass spectrometry detection have already been developed for the determination of perampanel, retigabine, rufinamide and stiripentol, new and more cost-effective methods are yet required. Therefore, this review summarizes the main analytical aspects regarding the liquid chromatographic methods developed for the analysis of perampanel, retigabine (and its main active metabolite), rufinamide and stiripentol in biological samples and pharmaceutical dosage forms. Furthermore, the physicochemical and stability properties of the target compounds will also be addressed. Thus, this review gathers, for the first time, important background information on LC methods that have been developed and applied for the determination of perampanel, retigabine, rufinamide and stiripentol, which should be considered as a starting point if new (bio)analytical techniques are aimed to be implemented for these drugs.
Collapse
Affiliation(s)
- Sara Meirinho
- Faculty of Health Sciences, Health Sciences Research Center, University of Beira Interior (CICS UBI), 6200-506, Covilhã, Portugal
| | - Márcio Rodrigues
- Faculty of Health Sciences, Health Sciences Research Center, University of Beira Interior (CICS UBI), 6200-506, Covilhã, Portugal
- Research Unit for Inland Development, Polytechnic Institute of Guarda (UDI-IPG), 6300-654, Guarda, Portugal
| | - Ana Fortuna
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Amílcar Falcão
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Gilberto Alves
- Faculty of Health Sciences, Health Sciences Research Center, University of Beira Interior (CICS UBI), 6200-506, Covilhã, Portugal
| |
Collapse
|
19
|
Hassib ST, Hashem HMA, Mahrouse MA, Mostafa EA. Development and Bio-Analytical Validation of Chromatographic Determination Method of Rufinamide in Presence of its Metabolite in Human Plasma. J Chromatogr Sci 2021; 59:458-464. [PMID: 33506266 DOI: 10.1093/chromsci/bmaa142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 11/13/2022]
Abstract
Rufinamide (RF), antiepileptic drug, is biotransformed to inactive metabolite. Frequent plasma monitoring is required for dose adjustment. This work is concerned with the development and validation of a sensitive and selective RP-HPLC method for the quantitative determination of RF in spiked human plasma in the presence of its main metabolite. Lacosamide was selected as internal standard. Preparation of plasma samples involved precipitation of plasma proteins using methanol. Isocratic elution mode was applied and the chromatographic separation was performed on Prontosil CN column (5 μm, 250 × 4.6 mm). Good resolution was achieved using acetonitrile: water (10:90, v/v, adjusted with 0.01 N aqueous solution of o-phosphoric acid to pH = 3) as a mobile phase at a flow rate of 1 mL/min, and UV detection was carried out at 210 nm. Linearity was observed over the concentration range of 0.5-50 μg/mL of RF in plasma. Bio-analytical validation of the developed method was carried out in accordance to the European Medicines Agency guidelines. The accuracy ranged from 95.97 to 114.13%, and the coefficient of variation of the assay intra-day and inter-day precision did not exceed 10%. The samples were stable under the employed experimental conditions. In conclusion, the findings of the present study revealed its usefulness for therapeutic drug monitoring, assessment of drug pharmacokinetics and application for bioequivalence study.
Collapse
Affiliation(s)
- Sonia T Hassib
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Hanaa M A Hashem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Marianne A Mahrouse
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Eman A Mostafa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| |
Collapse
|
20
|
Lin YC, Lai YC, Chou P, Hsueh SW, Lin TH, Huang CS, Wang RW, Yang YC, Kuo CC. How Can an Na + Channel Inhibitor Ameliorate Seizures in Lennox-Gastaut Syndrome? Ann Neurol 2021; 89:1099-1113. [PMID: 33745195 DOI: 10.1002/ana.26068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/23/2021] [Accepted: 03/14/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Lennox-Gastaut syndrome (LGS) is an epileptic encephalopathy frequently associated with multiple types of seizures. The classical Na+ channel inhibitors are in general ineffective against the seizures in LGS. Rufinamide is a new Na+ channel inhibitor, but approved for the treatment of LGS. This is not consistent with a choice of antiseizure drugs (ASDs) according to simplistic categorical grouping. METHODS The effect of rufinamide on the Na+ channel, cellular discharges, and seizure behaviors was quantitatively characterized in native neurons and mammalian models of epilepsy, and compared with the other Na+ channel inhibitors. RESULTS With a much faster binding rate to the inactivated Na+ channel than phenytoin, rufinamide is distinctively effective if the seizure discharges chiefly involve short bursts interspersed with hyperpolarized interburst intervals, exemplified by spike and wave discharges (SWDs) on electroencephalograms. Consistently, rufinamide, but not phenytoin, suppresses SWD-associated seizures in pentylenetetrazol or AY-9944 models, which recapitulate the major electrophysiological and behavioral manifestations in typical and atypical absence seizures, including LGS. INTERPRETATION Na+ channel inhibitors shall have sufficiently fast binding to exert an action during the short bursts and then suppress SWDs, in which cases rufinamide is superior. For the epileptiform discharges where the interburst intervals are not so hyperpolarized, phenytoin could be better because of the higher affinity. Na+ channel inhibitors with different binding kinetics and affinity to the inactivated channels may have different antiseizure scope. A rational choice of ASDs according to in-depth molecular pharmacology and the attributes of ictal discharges is advisable. ANN NEUROL 2021;89:1099-1113.
Collapse
Affiliation(s)
- Yun-Chu Lin
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Chen Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ping Chou
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Wei Hsueh
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Tien-Hung Lin
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Syuan Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Ren-Wei Wang
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Dalvi AV, Ravi PR, Uppuluri CT, Mahajan RR, Katke SV, Deshpande VS. Thermosensitive nasal in situ gelling systems of rufinamide formulated using modified tamarind seed xyloglucan for direct nose-to-brain delivery: design, physical characterization, and in vivo evaluation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-020-00505-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Strzelczyk A, Schubert-Bast S. Expanding the Treatment Landscape for Lennox-Gastaut Syndrome: Current and Future Strategies. CNS Drugs 2021; 35:61-83. [PMID: 33479851 PMCID: PMC7873005 DOI: 10.1007/s40263-020-00784-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
Lennox-Gastaut syndrome (LGS), a childhood-onset severe developmental and epileptic encephalopathy (DEE), is an entity that encompasses a heterogenous group of aetiologies, with no single genetic cause. It is characterised by multiple seizure types, an abnormal EEG with generalised slow spike and wave discharges and cognitive impairment, associated with high morbidity and profound effects on the quality of life of patients and their families. Drug-refractory seizures are a hallmark and treatment is further complicated by its multiple morbidities, which evolve over the patient's lifetime. This review provides a comprehensive overview of the current and future options for the treatment of seizures associated with LGS. Six treatments are specifically indicated as adjunct therapies for the treatment of seizures associated with LGS in the US: lamotrigine, clobazam, rufinamide, topiramate, felbamate and most recently cannabidiol. These therapies have demonstrated reductions in drop seizures in 15%-68% of patients across trials, with responder rates (≥ 50% reduction in drop seizures) of 37%-78%. Valproate is still the preferred first-line treatment, generally in combination with lamotrigine or clobazam. Other treatments frequently used off-label include the broad spectrum anti-epileptic drugs (AED) levetiracetam, zonisamide and perampanel, while recent evidence from observational studies has indicated that a newer AED, the levetiracetam analogue brivaracetam, may be effective and well tolerated in LGS patients. Other treatments in clinical development include fenfluramine in late phase III, perampanel, soticlestat-OV953/TAK-953, carisbamate and ganaxolone. Non-pharmacologic interventions include the ketogenic diet, vagus nerve stimulation and surgical interventions; these are also expanding, with the potential for less invasive techniques for corpus callosotomy that have promise for reducing complications. However, despite these advancements, patients continue to experience a significant burden. Because LGS is not a single entity, tailoring of treatment is needed as opposed to a 'one size fits all' approach. Further research is needed into the underlying aetiologies and pathophysiology of LGS, together with advancements in treatments that encompass the spectrum of seizures associated with this complex syndrome.
Collapse
Affiliation(s)
- Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16 (Haus 95), 60528, Frankfurt am Main, Germany.
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16 (Haus 95), 60528, Frankfurt am Main, Germany
- LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
- Department of Neuropediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Abstract
BACKGROUND Epilepsy is a central nervous system disorder (neurological disorder). Epileptic seizures are the result of excessive and abnormal cortical nerve cell electrical activity in the brain. Despite the development of more than 10 new antiepileptic drugs (AEDs) since the early 2000s, approximately a third of people with epilepsy remain resistant to pharmacotherapy, often requiring treatment with a combination of AEDs. In this review, we summarised the current evidence regarding rufinamide, a novel anticonvulsant medication, which, as a triazole derivative, is structurally unrelated to any other currently used anticonvulsant medication when used as an add-on treatment for drug-resistant epilepsy. In January 2009, rufinamide was approved by the US Food and Drug Administration for the treatment of children four years of age and older with Lennox-Gastaut syndrome. It is also approved as an add-on treatment for adults and adolescents with focal seizures. This is an updated version of the original Cochrane Review published in 2018. OBJECTIVES To evaluate the efficacy and tolerability of rufinamide when used as an add-on treatment for people with drug-resistant epilepsy. SEARCH METHODS We imposed no language restrictions. We contacted the manufacturers of rufinamide and authors in the field to identify any relevant unpublished studies. SELECTION CRITERIA Randomised, double-blind, placebo-controlled, add-on trials of rufinamide, recruiting people (of any age or gender) with drug-resistant epilepsy. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials for inclusion and extracted the relevant data. We assessed the following outcomes: 50% or greater reduction in seizure frequency (primary outcome); seizure freedom; treatment withdrawal; and adverse effects (secondary outcomes). Primary analyses were intention-to-treat (ITT) and we presented summary risk ratios (RRs) with 95% confidence intervals (CIs). We evaluated dose response in regression models. We carried out a risk of bias assessment for each included study using the Cochrane 'Risk of bias' tool and assessed the overall certainty of evidence using the GRADE approach. MAIN RESULTS The review included six trials, representing 1759 participants. Four trials (1563 participants) included people with uncontrolled focal seizures. Two trials (196 participants) included individuals with established Lennox-Gastaut syndrome. Overall, the age of adults ranged from 18 to 80 years and the age of children ranged from 4 to 16 years. Baseline phases ranged from 28 to 56 days and double-blind phases from 84 to 96 days. Five of the six included trials described adequate methods of concealment of randomisation, and only three described adequate blinding. All analyses were by ITT. Overall, five studies were at low risk of bias and one had unclear risk of bias due to lack of reported information around study design. All trials were sponsored by the manufacturer of rufinamide and therefore were at high risk of funding bias. The overall RR for 50% or greater reduction in seizure frequency was 1.79 (95% CI 1.44 to 2.22; 6 randomised controlled trials (RCTs), 1759 participants; moderate-certainty evidence), indicating that rufinamide (plus conventional AED) was significantly more effective than placebo (plus conventional AED) in reducing seizure frequency by at least 50% when added to conventionally used AEDs in people with drug-resistant focal epilepsy. Data from only one study (73 participants) reported seizure freedom: RR 1.32 (95% CI 0.36 to 4.86; 1 RCT, 73 participants; moderate-certainty evidence). The overall RR for treatment withdrawal (for any reason and due to AED) was 1.83 (95% CI 1.45 to 2.31; 6 RCTs, 1759 participants; moderate-certainty evidence), showing that rufinamide was significantly more likely to be withdrawn than placebo. Most adverse effects were significantly more likely to occur in the rufinamide-treated group. Adverse events significantly associated with rufinamide were headache, dizziness, somnolence, vomiting, nausea, fatigue, and diplopia. The RRs for these adverse effects were as follows: headache 1.36 (95% Cl 1.08 to 1.69; 3 RCTs, 1228 participants; high-certainty evidence); dizziness 2.52 (95% Cl 1.90 to 3.34; 3 RCTs, 1295 participants; moderate-certainty evidence); somnolence 1.94 (95% Cl 1.44 to 2.61; 6 RCTs, 1759 participants; moderate-certainty evidence); vomiting 2.95 (95% Cl 1.80 to 4.82; 4 RCTs, 777 participants; low-certainty evidence); nausea 1.87 (95% Cl 1.33 to 2.64; 3 RCTs, 1295 participants; moderate-certainty evidence); fatigue 1.46 (95% Cl 1.08 to 1.97; 3 RCTs, 1295 participants; moderate-certainty evidence); and diplopia 4.60 (95% Cl 2.53 to 8.38; 3 RCTs, 1295 participants; low-certainty evidence). There was no important heterogeneity between studies for any outcomes. Overall, we assessed the evidence as moderate to low certainty due to wide CIs and potential risk of bias from some studies contributing to the analysis. AUTHORS' CONCLUSIONS For people with drug-resistant focal epilepsy, rufinamide when used as an add-on treatment was effective in reducing seizure frequency. However, the trials reviewed were of relatively short duration and provided no evidence for long-term use of rufinamide. In the short term, rufinamide as an add-on was associated with several adverse events. This review focused on the use of rufinamide in drug-resistant focal epilepsy, and the results cannot be generalised to add-on treatment for generalised epilepsies. Likewise, no inference can be made about the effects of rufinamide when used as monotherapy.
Collapse
Affiliation(s)
- Mariangela Panebianco
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Hemanshu Prabhakar
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Anthony G Marson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
- Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
24
|
Hassib ST, Hashem HMA, Mahrouse MA, Mostafa EA. Determination of Rufinamide in the Presence of 1-[(2,6-Difluorophenyl)Methyl]-1H-1,2,3-Triazole-4 Carboxylic Acid Using RP-HPLC and Derivative Ratio Methods as Stability Indicating Assays to Be Applied on Dosage Form. J AOAC Int 2020; 103:1215-1222. [DOI: 10.1093/jaoacint/qsaa020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/09/2020] [Accepted: 02/07/2020] [Indexed: 11/13/2022]
Abstract
Abstract
Background
Rufinamide is a triazole derivative that is structurally dissimilar to other marketed antiepileptic drugs, has been assumed a marketing authorization, by the European Union and FDA, for use as a complementary therapy for seizures associated with Lennox-Gastaut syndrome.
Objective
This work is concerned with development of two methods for determination of rufinamide (RUF) in presence of 1-[(2,6-difluorophenyl)methyl]-1H-1,2,3-triazole-4 carboxylic acid as its alkaline degradation product in dosage form.
Methods
The first method was capable of determing RUF in the presence of its alkaline degradation product and in dosage form. Kromasil C8 column and mobile phase consisting of acetonitrile–water (50:50, v/v) were used and UV detection at 210 nm. In the second method, first derivative ratio spectrophotometry, RUF was determined by measuring peak amplitude at 269.5 nm over 5–30 μg/mL.
Results
The linearity range of RUF was 10–90 μg/mL for HPLC method covering its therapeutic range with r2 = 0.9999. Forced degradation under alkaline conditions was carried out, the degradation product was isolated and its structure was confirmed. Both methods were validated in accordance to ICH guidelines. Statistical analysis revealed no significant difference between obtained results and reported ones.
Conclusion
The present study is useful for therapeutic drug monitoring and routine analysis of RUF in quality control laboratories.
Highlights
Kinetics of the alkaline degradation of RUF was studied by following the concentration of the remaining drug until complete degradation was achieved.
Collapse
Affiliation(s)
- Sonia T Hassib
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo 11562, Egypt
| | - Hanaa M A Hashem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo 11562, Egypt
| | - Marianne A Mahrouse
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo 11562, Egypt
| | - Eman A Mostafa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo 11562, Egypt
| |
Collapse
|
25
|
Pokhodylo N, Slyvka Y, Pavlyuk V. Synthesis, crystal structure and Hirshfeld surface analysis of N-(4-chloro-phen-yl)-5-cyclo-propyl-1-(4-meth-oxy-phen-yl)-1 H-1,2,3-triazole-4-carboxamide. Acta Crystallogr E Crystallogr Commun 2020; 76:756-760. [PMID: 32431947 PMCID: PMC7199270 DOI: 10.1107/s2056989020005848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 11/10/2022]
Abstract
The title compound, C19H17ClN4O2, was obtained via a two-step synthesis involving the enol-mediated click Dimroth reaction of 4-azido-anisole with methyl 3-cyclo-propyl-3-oxo-propano-ate leading to the 5-cyclo-propyl-1-(4-meth-oxy-phen-yl)-1H-1,2,3-triazole-4-carb-oxy-lic acid and subsequent acid amidation with 4-chloro-aniline by 1,1'-carbonyl-diimidazole (CDI). It crystallizes in space group P21/n, with one mol-ecule in the asymmetric unit. In the extended structure, two mol-ecules arranged in a near coplanar fashion relative to the triazole ring planes are inter-connected by N-H⋯N and C-H⋯N hydrogen bonds into a homodimer. The formation of dimers is a consequence of the above inter-action and the edge-to-face stacking of aromatic rings, which are turned by 58.0 (3)° relative to each other. The dimers are linked by C-H⋯O inter-actions into ribbons. DFT calculations demonstrate that the frontier mol-ecular orbitals are well separated in energy and the HOMO is largely localized on the 4-chloro-phenyl amide motif while the LUMO is associated with aryl-triazole grouping. A Hirshfeld surface analysis was performed to further analyse the inter-molecular inter-actions.
Collapse
Affiliation(s)
- Nazariy Pokhodylo
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodia Str, 6, 79005 L’viv, Ukraine
| | - Yurii Slyvka
- Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodia Str, 6, 79005 L’viv, Ukraine
| | - Volodymyr Pavlyuk
- Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodia Str, 6, 79005 L’viv, Ukraine
| |
Collapse
|
26
|
Szuroczki P, Molnár L, Dörnyei Á, Kollár L. Facile, High‐Yielding Synthesis of 4‐Functionalised 1,2,3‐Triazoles via Amino‐ and Aryloxycarbonylation. ChemistrySelect 2020. [DOI: 10.1002/slct.201903801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Péter Szuroczki
- Department of Inorganic Chemistry University of Pécs and Szentágothai Research Centre H-7624 Pécs, P.O. Box 266 Hungary
| | - Levente Molnár
- Department of Inorganic Chemistry University of Pécs and Szentágothai Research Centre H-7624 Pécs, P.O. Box 266 Hungary
| | - Ágnes Dörnyei
- Department of Analytical and Environmental Chemistry University of Pécs 7624 Pécs, Ifjúság u. 6. Hungary
| | - László Kollár
- Department of Inorganic Chemistry University of Pécs and Szentágothai Research Centre H-7624 Pécs, P.O. Box 266 Hungary
- D MTA-PTE Research Group for Selective Chemical Syntheses H-7624 Pécs, Ifjúság u. 6. Hungary
| |
Collapse
|
27
|
Brandão P, Pineiro M, Pinho e Melo TMVD. Flow Chemistry: Towards A More Sustainable Heterocyclic Synthesis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901335] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Pedro Brandão
- CQC and Department of Chemistry; University of Coimbra; 3004-535 Coimbra Portugal
- Centro de Química de Évora; Institute for Research and Advanced Studies; University of Évora; 7000 Évora Portugal
| | - Marta Pineiro
- CQC and Department of Chemistry; University of Coimbra; 3004-535 Coimbra Portugal
| | | |
Collapse
|
28
|
Escribà-Gelonch M, de Leon Izeppi GA, Kirschneck D, Hessel V. Multistep Solvent-Free 3 m 2 Footprint Pilot Miniplant for the Synthesis of Annual Half-Ton Rufinamide Precursor. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019; 7:17237-17251. [PMID: 31656707 PMCID: PMC6812013 DOI: 10.1021/acssuschemeng.9b03931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/15/2019] [Indexed: 05/09/2023]
Abstract
The development of a pilot-scale synthesis of the rufinamide precursor in flow chemistry is reported. Complex steps such as Taylor-flow, segmented flow, and high-temperature processing at high pressure (high-p,T) are successfully combined, overcoming the mixing and heat transfer issues of the scale-up. The cascaded multistep process operates essentially solvent-free in just 3 m2 giving a productivity of 47 g/h (>400 kg/year), which increases by a factor of 7 the lab-scale productivity previously reported as a scale-up proof-of-concept. This publication also includes an economic study of the feasible implementation of this technology for a possible manufacturer, as well as an outline on business development strategies of how to implement such a disruptive technology.
Collapse
Affiliation(s)
- Marc Escribà-Gelonch
- Micro
Flow Chemistry and Process Technology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- CNRS, Laboratoire de Génie des Procédés
Catalytiques (UMR 5285), CPE Lyon, 43 Boulevard du 11 Novembre 1918, F-69100 Villeurbanne, France
- Tel.: +33 (0)4 72 43 17
61. E-mail:
| | | | - Dirk Kirschneck
- MicroInnova
Engineering GmbH, Europapark
1, Allerheiligen bei Wildon, 8412 Austria
| | - Volker Hessel
- Micro
Flow Chemistry and Process Technology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- School
of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace Campus, Adelaide, Australia 5005
- Tel. +61 (08) 831 39245.
E-mail: . Website: http://hessel-group.com.au/
| |
Collapse
|
29
|
Mantoani SP, de Andrade P, Chierrito TPC, Figueredo AS, Carvalho I. Potential Triazole-based Molecules for the Treatment of Neglected Diseases. Curr Med Chem 2019; 26:4403-4434. [DOI: 10.2174/0929867324666170727103901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Neglected Diseases (NDs) affect million of people, especially the poorest population
around the world. Several efforts to an effective treatment have proved insufficient
at the moment. In this context, triazole derivatives have shown great relevance in
medicinal chemistry due to a wide range of biological activities. This review aims to describe
some of the most relevant and recent research focused on 1,2,3- and 1,2,4-triazolebased
molecules targeting four expressive NDs: Chagas disease, Malaria, Tuberculosis
and Leishmaniasis.
Collapse
Affiliation(s)
- Susimaire Pedersoli Mantoani
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | - Peterson de Andrade
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | | | - Andreza Silva Figueredo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| |
Collapse
|
30
|
de Albuquerque DY, de Moraes JR, Schwab RS. Palladium-Catalyzed Aminocarbonylation Reaction to Access 1,2,3-Triazole-5-carboxamides Using Dimethyl Carbonate as Sustainable Solvent. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Danilo Yano de Albuquerque
- Departamento de Química; Centre of Excellence for Research in Sustainable Chemistry (CERSusChem); Universidade Federal de São Carlos - UFSCar; Rodovia Washington Luís, Km 235 - SP310 São Carlos São Paulo 13565-905 Brazil
| | - Juliana R. de Moraes
- Departamento de Química; Centre of Excellence for Research in Sustainable Chemistry (CERSusChem); Universidade Federal de São Carlos - UFSCar; Rodovia Washington Luís, Km 235 - SP310 São Carlos São Paulo 13565-905 Brazil
| | - Ricardo S. Schwab
- Departamento de Química; Centre of Excellence for Research in Sustainable Chemistry (CERSusChem); Universidade Federal de São Carlos - UFSCar; Rodovia Washington Luís, Km 235 - SP310 São Carlos São Paulo 13565-905 Brazil
| |
Collapse
|
31
|
Jain A, Piplani P. Exploring the Chemistry and Therapeutic Potential of Triazoles: A Comprehensive Literature Review. Mini Rev Med Chem 2019; 19:1298-1368. [DOI: 10.2174/1389557519666190312162601] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
:
Triazole is a valuable platform in medicinal chemistry, possessing assorted pharmacological
properties, which could play a major role in the common mechanisms associated with various disorders
like cancer, infections, inflammation, convulsions, oxidative stress and neurodegeneration. Structural
modification of this scaffold could be helpful in the generation of new therapeutically useful
agents. Although research endeavors are moving towards the growth of synthetic analogs of triazole,
there is still a lot of scope to achieve drug discovery break-through in this area. Upcoming therapeutic
prospective of this moiety has captured the attention of medicinal chemists to synthesize novel triazole
derivatives. The authors amalgamated the chemistry, synthetic strategies and detailed pharmacological
activities of the triazole nucleus in the present review. Information regarding the marketed triazole derivatives
has also been incorporated. The objective of the review is to provide insights to designing and
synthesizing novel triazole derivatives with advanced and unexplored pharmacological implications.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| | - Poonam Piplani
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| |
Collapse
|
32
|
Meirinho S, Rodrigues M, Fortuna A, Falcão A, Alves G. Novel bioanalytical method for the quantification of rufinamide in mouse plasma and tissues using HPLC-UV: A tool to support pharmacokinetic studies. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:340-348. [DOI: 10.1016/j.jchromb.2019.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/17/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
|
33
|
Abstract
Focal-onset seizures are among the most common forms of seizures in children and adolescents and can be caused by a wide diversity of acquired or genetic etiologies. Despite the increasing array of antiseizure drugs available, treatment of focal-onset seizures in this population remains problematic, with as many as one-third of children having seizures refractory to medications. This review discusses contemporary concepts in focal seizure classification and pathophysiology and describes the antiseizure medications most commonly chosen for this age group. As antiseizure drug efficacy is comparable in children and adults, here we focus on pharmacokinetic aspects, drug-drug interactions, and side effect profiles. Finally, we provide some suggestions for choosing the optimal medication for the appropriate patient.
Collapse
Affiliation(s)
- Clare E Stevens
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins Hospital, The Johns Hopkins University School of Medicine, Rubenstein Bldg 2157, 200N. Wolfe Street, Baltimore, MD, 21287, USA
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins Hospital, The Johns Hopkins University School of Medicine, Rubenstein Bldg 2157, 200N. Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
34
|
Szuroczki P, Sámson J, Kollár L. Synthesis of 5‐Carboxamidotriazoles via Azide‐Alkyne Cycloaddition–Aminocarbonylation Sequence. ChemistrySelect 2019. [DOI: 10.1002/slct.201900848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Péter Szuroczki
- Department of Inorganic ChemistryUniversity of Pécs and Szentágothai Research Centre, H-7624 Pécs P.O. Box 266 Hungary
| | - Judit Sámson
- Department of Inorganic ChemistryUniversity of Pécs and Szentágothai Research Centre, H-7624 Pécs P.O. Box 266 Hungary
| | - László Kollár
- Department of Inorganic ChemistryUniversity of Pécs and Szentágothai Research Centre, H-7624 Pécs P.O. Box 266 Hungary
- D MTA-PTE Research Group for Selective Chemical Syntheses, H-7624 Pécs, Ifjúság u. 6. Hungary
| |
Collapse
|
35
|
Abstract
BACKGROUND Antiepileptic drugs (AEDs) are the mainstay of epilepsy treatment. Since 1989, 18 new AEDs have been licensed for clinical use and there are now 27 licensed AEDs in total for the treatment of patients with epilepsy. Furthermore, several AEDs are also used for the management of other medical conditions, for example, pain and bipolar disorder. This has led to an increasingly widespread application of therapeutic drug monitoring (TDM) of AEDs, making AEDs among the most common medications for which TDM is performed. The aim of this review is to provide an overview of the indications for AED TDM, to provide key information for each individual AED in terms of the drug's prescribing indications, key pharmacokinetic characteristics, associated drug-drug pharmacokinetic interactions, and the value and the intricacies of TDM for each AED. The concept of the reference range is discussed as well as practical issues such as choice of sample types (total versus free concentrations in blood versus saliva) and sample collection and processing. METHODS The present review is based on published articles and searches in PubMed and Google Scholar, last searched in March 2018, in addition to references from relevant articles. RESULTS In total, 171 relevant references were identified and used to prepare this review. CONCLUSIONS TDM provides a pragmatic approach to epilepsy care, in that bespoke dose adjustments are undertaken based on drug concentrations so as to optimize clinical outcome. For the older first-generation AEDs (carbamazepine, ethosuximide, phenobarbital, phenytoin, primidone, and valproic acid), much data have accumulated in this regard. However, this is occurring increasingly for the new AEDs (brivaracetam, eslicarbazepine acetate, felbamate, gabapentin, lacosamide, lamotrigine, levetiracetam, oxcarbazepine, perampanel, piracetam, pregabalin, rufinamide, stiripentol, sulthiame, tiagabine, topiramate, vigabatrin, and zonisamide).
Collapse
|
36
|
Maiti B, M M B, Chanda K. Evaluation of WO2014121383 A1: a process for preparation of rufinamide and intermediates. Expert Opin Ther Pat 2018; 29:7-10. [PMID: 30442041 DOI: 10.1080/13543776.2019.1549230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION There is great potential in the synthetic development of rufinamide to treat childhood-onset epilepsy known as Lennox-Gastaut syndrome (LGS). Areas covered: 1,4-disubstituted triazole ring formed by 1,3-dipolar cycloaddition reaction is an important structural motif widely used to construct diverse chemotypes in chemical, biological, and material fields. 1,2,3-triazole ring containing rufinamide, an antiepileptic drug developed by Novartis, is useful in combination with other antiepileptic medicaments for the treatment of childhood-onset epilepsy known as LGS. There are numerous synthetic methods used to construct the rufinamide through 1,3-dipolar cycloaddition. The application claims processes for the preparation of rufinamide and their intermediates. The synthetic strategy covered for the synthesis of rufinamide using activated acetylenic esters. The activation is done using N-hydroxy succinimide, N-hydroxyphthalimide, 1-hydroxy benzotriazole, and 4-nitro phenol. Expert opinion: The manufacturing route appears to follow the regioselective Cu catalyzed cycloaddtion of 2,6-difluro benzyl azide with or without isolated activated acetylenic esters in three steps that provide a good lead for new synthetic strategy for the rufinamide synthesis.
Collapse
Affiliation(s)
- Barnali Maiti
- a Department of Chemistry , School of Advanced Sciences, Vellore Institute of Technology , Vellore , India
| | - Balamurali M M
- b Department of Chemistry, School of Advanced Sciences , Vellore Institute of Technology , Chennai , India
| | - Kaushik Chanda
- a Department of Chemistry , School of Advanced Sciences, Vellore Institute of Technology , Vellore , India
| |
Collapse
|
37
|
Mironiuk-Puchalska E, Buchowicz W, Grześkowiak P, Wińska P, Wielechowska M, Karatsai O, Rędowicz MJ, Bretner M, Koszytkowska-Stawińska M. Potential bioisosteres of β-uracilalanines derived from 1H-1,2,3-triazole-C-carboxylic acids. Bioorg Chem 2018; 83:500-510. [PMID: 30453142 DOI: 10.1016/j.bioorg.2018.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022]
Abstract
The 1H-1,2,3-triazole-originated derivatives of willardiine were obtained by: (i) construction of the 1H-1,2,3-triazole ring in 1,3-dipolar cycloaddition of the uracil-derived azides and the carboxylate-bearing alkynes or α-acylphosphorus ylide, or (ii) N-alkylation of the uracil derivative with the 1H-1,2,3-triazole-4-carboxylate-derived mesylate. The latter method offered: (i) reproducible results, (ii) a significant reduction of amounts of auxiliary materials, (iii) reduction in wastes and (iv) reduction in a number of manual operations required for obtaining the reaction product. Compound 6a exhibited significant binding affinity to hHS1S2I ligand-binding domain of GluR2 receptor (EC50 = 2.90 µM) and decreased viability of human astrocytoma MOG-G-CCM cells in higher extent than known AMPA antagonist GYKI 52466.
Collapse
Affiliation(s)
- Ewa Mironiuk-Puchalska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Włodzimierz Buchowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Piotr Grześkowiak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Maria Bretner
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | | |
Collapse
|
38
|
Pharmacokinetic Considerations with the Use of Antiepileptic Drugs in Patients with HIV and Organ Transplants. Curr Neurol Neurosci Rep 2018; 18:89. [PMID: 30302572 DOI: 10.1007/s11910-018-0897-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Antiepileptic drugs are frequently administered to patients with HIV infection or in recipients of organ transplants. The potentially serious drug-drug interactions between the "classic" antiepileptic drugs, antiretrovirals, and immunosuppressants have been extensively studied. Evidence-based information on the second and third generation of antiepileptic drugs is almost non-existent. The purpose of this review is to analyze the pharmacokinetic profile of these newer agents to assess their potential for drug interactions with antiretrovirals and immunosuppressants. RECENT FINDINGS As a group, the newer generations of antiepileptic drugs have shown a more favorable drug interaction potential compared to the "classic" ones. A group of moderate enzyme-inducing drugs includes eslicarbazepine acetate, oxcarbazepine, rufinamide, and topiramate. These drugs are not as potent inducers as the "classic" drugs but may potentially decrease the serum concentrations of some antiretrovirals and immunosuppressants. Antiepileptic drugs with no or minimal enzyme-inducing properties include brivaracetam, gabapentin, lacosamide, lamotrigine, levetiracetam, perampanel, pregabalin, and vigabatrin. The newer generations of antiepileptic drugs have expanded the therapeutic options in patients with HIV infection or organ transplants.
Collapse
|
39
|
|
40
|
Abstract
BACKGROUND Epilepsy is a central nervous system disorder (neurological disorder). Epileptic seizures are the result of excessive and abnormal cortical nerve cell electrical activity in the brain. Despite the development of more than 10 new antiepileptic drugs (AEDs) since the early 2000s, approximately a third of people with epilepsy remain resistant to pharmacotherapy, often requiring treatment with a combination of AEDs. In this review, we summarised the current evidence regarding rufinamide, a novel anticonvulsant medication, which, as a triazole derivative, is structurally unrelated to any other currently used anticonvulsant medication, when used as an add-on treatment for refractory epilepsy. In January 2009, rufinamide was approved by the US Food and Drug Administration for treatment of children four years of age and older with Lennox-Gastaut syndrome. It is also approved as an add-on treatment for adults and adolescents with focal seizures. OBJECTIVES To evaluate the efficacy and tolerability of rufinamide when used as an add-on treatment in people with refractory epilepsy. SEARCH METHODS On 2 October 2017, we searched the Cochrane Epilepsy Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL) via the Cochrane Register of Studies Online (CRSO), MEDLINE (Ovid, 1946), ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP). We imposed no language restrictions. We also contacted the manufacturers of rufinamide and authors in the field to identify any relevant unpublished studies. SELECTION CRITERIA Randomised, double-blind, placebo-controlled, add-on trials of rufinamide, recruiting people (of any age or gender) with refractory epilepsy. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials for inclusion and extracted the relevant data. We assessed the following outcomes: 50% or greater reduction in seizure frequency (primary outcomes); seizure freedom; treatment withdrawal; and adverse effects (secondary outcomes). Primary analyses were intention-to-treat (ITT) and we presented summary risk ratios (RR) with 95% confidence intervals (CI). We evaluated dose response in regression models. We carried out a risk of bias assessment for each included study using the Cochrane 'Risk of bias' tool and assessed the overall quality of evidence using the GRADE approach, which we presented in a 'Summary of findings' table. MAIN RESULTS The review included six trials, representing 1759 participants. Four trials (1563 participants) included people with uncontrolled focal seizures. Two trials (196 participants) included established Lennox-Gastaut syndrome. Overall, the age of the adults ranged from 18 to 80 years and the age of the infants ranged from four to 16 years. Baseline phase ranged from 28 to 56 days and double-blind phases from 84 to 96 days. Five of the six included trials described adequate methods of concealment of randomisation and only three described adequate blinding. All analyses were by ITT. Overall, five studies were at low risk of bias, and one had unclear risk of bias due to lack of reported information around study design. All trials were sponsored by the manufacturer of rufinamide, and therefore, were at high risk of funding bias.The overall RR for 50% or greater reduction in seizure frequency was 1.79 (95% CI 1.44 to 2.22; 6 RCTs; moderate-quality evidence) indicating that rufinamide (plus conventional AED) was significantly more effective than placebo (plus conventional AED) in reducing seizure frequency by at least 50%, when added to conventionally used AEDs in people with refractory focal epilepsy. The overall RR for treatment withdrawal (for any reason and due to AED) was 1.83 (95% CI 1.45 to 2.31; 6 RCTs; moderate-quality evidence) showing that rufinamide was significantly more likely to be withdrawn than placebo. In respect of adverse effects, most were significantly more likely to occur in the rufinamide-treated group. The adverse events significantly associated with rufinamide were: headache, dizziness, somnolence, vomiting, nausea, fatigue and diplopia. The RRs of these adverse effects were: headache 1.36 (95% Cl 1.08 to 1.69; 3 RCTs; high-quality evidence); dizziness 2.52 (95% Cl 1.90 to 3.34; 3 RCTs; moderate-quality evidence); somnolence 1.94 (95% Cl 1.44 to 2.61; 6 RCTs; moderate-quality evidence); vomiting 2.95 (95% Cl 1.80 to 4.82; 4 RCTs; low-quality evidence); nausea 1.87 (95% Cl 1.33 to 2.64; 3 RCTs; moderate-quality evidence); fatigue 1.46 (95% Cl 1.08 to 1.97; 3 RCTs; moderate-quality evidence); and diplopia 4.60 (95% Cl 2.53 to 8.38; 3 RCTs; low-quality evidence). There was no important heterogeneity between studies for any of the outcomes. Overall, we assessed the evidence as moderate to low quality, due to potential risk of bias from some studies contributing to the analysis and wide CIs. AUTHORS' CONCLUSIONS In people with drug-resistant focal epilepsy, rufinamide when used as an add-on treatment was effective in reducing seizure frequency. However, the trials reviewed were of relatively short duration and provided no evidence for the long-term use of rufinamide. In the short term, rufinamide as an add-on was associated with several adverse events. This review focused on the use of rufinamide in drug-resistant focal epilepsy and the results cannot be generalised to add-on treatment for generalised epilepsies. Likewise, no inference can be made about the effects of rufinamide when used as monotherapy.
Collapse
Affiliation(s)
- Mariangela Panebianco
- Institute of Translational Medicine, University of LiverpoolDepartment of Molecular and Clinical PharmacologyClinical Sciences Centre for Research and Education, Lower LaneLiverpoolUKL9 7LJ
| | - Hemanshu Prabhakar
- All India Institute of Medical SciencesDepartment of Neuroanaesthesiology and Critical CareAnsari NagarNew DelhiIndia110029
| | - Anthony G Marson
- Institute of Translational Medicine, University of LiverpoolDepartment of Molecular and Clinical PharmacologyClinical Sciences Centre for Research and Education, Lower LaneLiverpoolUKL9 7LJ
| |
Collapse
|
41
|
Padmaja RD, Chanda K. A Short Review on Synthetic Advances toward the Synthesis of Rufinamide, an Antiepileptic Drug. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.7b00373] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- R. D. Padmaja
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore-632014, India
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore-632014, India
| |
Collapse
|
42
|
Stefanović S, Janković SM, Novaković M, Milosavljević M, Folić M. Pharmacodynamics and common drug-drug interactions of the third-generation antiepileptic drugs. Expert Opin Drug Metab Toxicol 2017; 14:153-159. [PMID: 29268032 DOI: 10.1080/17425255.2018.1421172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Anticonvulsants that belong to the third generation are considered as 'newer' antiepileptic drugs, including: eslicarbazepine acetate, lacosamide, perampanel, brivaracetam, rufinamide and stiripentol. Areas covered: This article reviews pharmacodynamics (i.e. mechanisms of action) and clinically relevant drug-drug interactions of the third-generation antiepileptic drugs. Expert opinion: Newer antiepileptic drugs have mechanisms of action which are not shared with the first and the second generation anticonvulsants, like inhibition of neurotransmitters release, blocking receptors for excitatory amino acids and new ways of sodium channel inactivation. New mechanisms of action increase chances of controlling forms of epilepsy resistant to older anticonvulsants. Important advantage of the third-generation anticonvulsants could be their little propensity for interactions with both antiepileptic and other drugs observed until now, making prescribing much easier and safer. However, this may change with new studies specifically designed to discover drug-drug interactions. Although the third-generation antiepileptic drugs enlarged therapeutic palette against epilepsy, 20-30% of patients with epilepsy is still treatment-resistant and need new pharmacological approach. There is great need to explore all molecular targets that may directly or indirectly be involved in generation of seizures, so a number of candidate compounds for even newer anticonvulsants could be generated.
Collapse
Affiliation(s)
- Srđan Stefanović
- a Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Slobodan M Janković
- a Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Milan Novaković
- a Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Marko Milosavljević
- a Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Marko Folić
- a Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| |
Collapse
|
43
|
Motornov VA, Tabolin AA, Novikov RA, Nelyubina YV, Ioffe SL, Smolyar IV, Nenajdenko VG. Synthesis and Regioselective N-2 Functionalization of 4-Fluoro-5-aryl-1,2,3-NH
-triazoles. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701338] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vladimir A. Motornov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prosp. 47 119991 Moscow Russia
- Higher Chemical College; D. I. Mendeleev University of Chemical Technology of Russia; Miusskaya sq. 9 125047 Moscow Russia
| | - Andrey A. Tabolin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prosp. 47 119991 Moscow Russia
| | - Roman A. Novikov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prosp. 47 119991 Moscow Russia
- V. A. Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vavilov str. 32 119991 Moscow Russia
| | - Yulia V. Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov str. 28 119991 Moscow Russia
| | - Sema L. Ioffe
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prosp. 47 119991 Moscow Russia
| | - Ivan V. Smolyar
- Department of Chemistry; M. V. Lomonosov Moscow State University; Leninskie Gory 1 119991 Moscow Russia
| | - Valentine G. Nenajdenko
- Department of Chemistry; M. V. Lomonosov Moscow State University; Leninskie Gory 1 119991 Moscow Russia
| |
Collapse
|
44
|
Abstract
Lennox-Gastaut syndrome (LGS) is a severe form of childhood-onset epilepsy associated with high morbidity and mortality. The peak period for manifestations of Lennox-Gastaut syndrome is between ages 3 and 5 years, a time of critical brain development and corresponding vulnerability to the electroclinical dysfunction arising from Lennox-Gastaut syndrome. Diagnosis is based on a triad of symptoms: multiple seizure types, cognitive impairment, and slow spike-and-wave pattern on electroencephalography. In practice, Lennox-Gastaut syndrome presentation is diverse, and there may be a delay between initial symptoms and emergence of the full triad of clinical features. Additionally, differential diagnosis is complicated by the resemblance of Lennox-Gastaut syndrome to other forms of epilepsy and by the need for varied diagnostic techniques requiring specific clinical skills. Because diagnosis is complex and early intervention may lead to improved outcomes, clinicians should consider treatment when Lennox-Gastaut syndrome symptoms are present, even in the absence of a formal diagnosis.
Collapse
Affiliation(s)
- Trevor Resnick
- 1 Department of Neurology and Comprehensive Epilepsy Program, Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA.,2 Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Raj D Sheth
- 3 Mayo Clinic Florida-Jacksonville, Jacksonville, FL, USA.,4 Nemours Children's Specialty Care-Jacksonville, Jacksonville, FL, USA
| |
Collapse
|
45
|
Cheung KPS, Tsui GC. Copper(I)-Catalyzed Interrupted Click Reaction with TMSCF3: Synthesis of 5-Trifluoromethyl 1,2,3-Triazoles. Org Lett 2017; 19:2881-2884. [DOI: 10.1021/acs.orglett.7b01116] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
46
|
Abstract
The medical management of the epilepsy syndromes of early childhood (eg, infantile spasms, Dravet syndrome, and Lennox-Gastaut syndrome) is challenging; and requires careful evaluation, classification, and treatment. Pharmacologic therapy continues to be the mainstay of management for these children, and as such it is important for the clinician to be familiar with the role of new antiepileptic drugs. This article reports the clinical trial data and personal experience in treating the severe epilepsies of childhood with the recently Food and Drug Administration-approved new antiepileptic drugs (vigabatrin, rufinamide, perampanel, and clobazam) and those in clinical trials (cannabidiol, stiripentol, and fenfluramine). Genetic research has also identified an increasing number of pediatric developmental and seizure disorders that are possibly treatable with targeted drug therapies, focused on correcting underlying neural dysfunction. We highlight recent genetic advances, and how they affect our treatment of some of the genetic epilepsies, and speculate on the use of targeted genetic treatment (precision medicine) in the future.
Collapse
|
47
|
Successful treatment of super-refractory tonic status epilepticus with rufinamide: First clinical report. Seizure 2016; 39:1-4. [PMID: 27161668 DOI: 10.1016/j.seizure.2016.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 11/23/2022] Open
|
48
|
Xu Z, Zhao H, Chen Z. The efficacy and safety of rufinamide in drug-resistant epilepsy: A meta-analysis of double-blind, randomized, placebo controlled trials. Epilepsy Res 2016; 120:104-10. [PMID: 26811934 DOI: 10.1016/j.eplepsyres.2016.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/08/2015] [Accepted: 01/06/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate the clinical efficacy and safety of rufinamide in drug-resistant epilepsy. METHODS We searched PubMed, Web of Science and Clinical trial.org up to August 6, 2015. Study selection, extraction and risk of bias assessment were performed independently by two authors. A random or fixed-effect model was used to derive pooled effects risk ratios (RRs) and 95% confidence intervals (CIs). RESULTS Five randomized controlled trials were included in the final analysis with a total of 1512 patients. Rufinamide increased the 50% (RR 1.852, 95%CI 1.446-2.372, P<0.001) and 75% (RR 8.547, 95%CI 2.534-28.832, P<0.001) responder rates but not the seizure-free rate (RR 1.740, 95%CI 0.511-5.924, P=0.376) compared to placebo. Subgroup analysis demonstrated that the effect of rufinamide may be dose-dependent and related to seizure type. Regarding safety, rufinamide increased the rate of at least one adverse event (RR 1.103, 95%CI 1.047-1.161, P<0.001) and the withdrawal rate due to adverse events (RR 2.341, 95%CI 1.556-3.522, P<0.001), but it did not increase the rate of severe adverse events (RR 1.454, 95%CI 0.945-2.241, P=0.090). Individual adverse events (headache, dizziness, fatigue, somnolence, nausea, diplopia and vomiting) were significantly higher in the rufinamide group. CONCLUSIONS This study confirmed significant effects of rufinamide as adjunctive treatment for drug-resistant seizures, both partial and tonic-atonic. However, rufinamide may induce more tolerable (but not severe) adverse events. Further large clinical trials to investigate the long-term efficacy and safety of rufinamide are warranted.
Collapse
Affiliation(s)
- Zhenghao Xu
- Laboratory of Brain Function and Disease in Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huawei Zhao
- The Affiliated Children's Hospital, College of Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Laboratory of Brain Function and Disease in Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
49
|
Differential effects of sodium channel blockers on in vitro induced epileptiform activities. Arch Pharm Res 2015; 40:112-121. [PMID: 26515967 DOI: 10.1007/s12272-015-0676-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/20/2015] [Indexed: 02/04/2023]
Abstract
Antiepileptic drugs act on voltage gated sodium channels in many different ways: rufinamide is thought to influence the fast inactivation, so its anticonvulsant action could be similar to carbamazepine, whereas lacosamide enhances the slow inactivation; however some antidepressants were also described to act in the same way. Rufinamide, lacosamide, carbamazepine, fluoxetine and imipramine were tested using in vitro models of epileptiform activities. Extracellular local field potentials were recorded using hippocampal slices from immature rats and the pattern of epileptiform activities was analyzed. Seizure-like events (SLE), but not interictal bursts were sensitive to AEDs' action. Rufinamide increased interictal periods by prolonging preictal phase and reducing SLE duration, and was the only tested AED which reduced SLE frequency. Lacosamide's effect resembled that of fluoxetine in the low-Mg2+ model: both drugs reduced markedly the SLE duration, but increased their frequency. Imipramine and fluoxetine irreversibly suppressed SLE in all slices. Some proconvulsive type of action on SLEs such as increasing preictal neuronal activity by rufinamide and increasing SLE frequency by lacosamide, fluoxetine and carbamazepine, were also observed. Newer drugs were more efficient than carbamazepine, and the anticonvulsant action of antidepressants on in vitro epileptiform activities may seem somewhat surprising.
Collapse
|
50
|
Dried blood spots for monitoring and individualization of antiepileptic drug treatment. Eur J Pharm Sci 2015; 75:25-39. [DOI: 10.1016/j.ejps.2015.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/21/2022]
|