1
|
Ju P, Wen S, Wang S, Zhou C, Wang J, Xiao L, Ma F, Wang S. A novel separated OPECT aptasensor based on MOF-derived BiVO 4/Bi 2S 3 type-II heterojunction for rapid detection of bacterial quorum sensing signal molecules. Talanta 2025; 287:127635. [PMID: 39874793 DOI: 10.1016/j.talanta.2025.127635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Quorum sensing signal molecules released by microorganisms serve as critical biomarkers regulating the attachment and aggregation of marine microbes on engineered surfaces. Hence, the development of efficient and convenient methods for detecting quorum sensing signal molecules is crucial for monitoring and controlling the formation and development of marine biofouling. Advanced optoelectronic technologies offer increased opportunities and methods for detecting quorum sensing signal molecules, thereby enhancing the accuracy and efficiency of detection. This study proposes a CAU-17-derived BiVO4/Bi2S3 gated organic photoelectrochemical transistor (OPECT), and applies it to the detection of a typical quorum sensing signal molecule, N-(3-oxodecanoyl)-l-homoserine lactone (3-O-C10-HL). A strategy of signal amplification and separate detection process was employed. Specifically, BiVO4/Bi2S3 type-II heterojunction photoanode was fabricated and successfully utilized for effective gating of the poly (ethylene dioxythiophene): poly (styrene sulfonate) channel. Using the previously screened 3-O-C10-HL adaptor, rapid and sensitive recognition of 3-O-C10-HL was achieved by effectively enhancing the response of the photoanode and regulating the overall performance of the device. The designed device demonstrated excellent specificity and sensitivity with a detection limit of 2.85 pM. This work not only provides an effective OPECT biosensing approach for detecting 3-O-C10-HL, but also reveals the application potential of semiconductor MOFs-derived materials in future optoelectronics.
Collapse
Affiliation(s)
- Peng Ju
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China
| | - Siyu Wen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China
| | - Shiliang Wang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China
| | - Chuan Zhou
- China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd., Guangzhou, 510663, PR China; Guangdong Kenuo Surveying Engineering Co., Ltd., Guangzhou, 510663, PR China.
| | - Jinquan Wang
- Ningbo Hangzhou Bay Bridge Development Co., Ltd, Ningbo, 315327, PR China
| | - Long Xiao
- Ningbo Hangzhou Bay Bridge Development Co., Ltd, Ningbo, 315327, PR China
| | - Fubin Ma
- Key Laboratory of Advanced Marine Materials, CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao, 266071, PR China.
| | - Shuai Wang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China.
| |
Collapse
|
2
|
Liang Z, Deng X, Guo K, Yin X, Zhang C, Yang Y, Xv P, Liu L, Rao Y. Characterization of quorum quenching enzyme AiiA and its potential role in strawberry preservation. Food Res Int 2025; 207:116059. [PMID: 40086970 DOI: 10.1016/j.foodres.2025.116059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/17/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Microbial spoilage in nutrient-rich strawberries has led to significant food waste and economic loss in the food industry. The quorum-quenching enzyme AiiA is believed to disrupt communication between cells by inactivating AHLs-based quorum sensing signals. Chitosan, a biopolymer derived from chitin, is widely used as a coating film to inhibit bacterial growth and prolong food shelf life. The present study aims to investigate the individual and combined effects of AiiA and chitosan on the preservation of strawberries. AiiA was synthesized in vitro and the reaction conditions for the degradation of AHLs signals were optimized at temperatures ranging from 20 to 60 °C and a pH of 8.0. The present study provides evidence that AiiA effectively inhibited the processes of biofilm development, production of exopolysaccharides, and extracellular protease activity in Enterobacter sp. and Pseudomonas aeruginosa (P. aeruginosa). Utilizing the bioprotective characteristics of AiiA, we implemented it in the preservation of strawberries. Our experiments show that AiiA, when used alone, improved the brightness, redness, and hardness of strawberries infected by Enterobacter sp. When combined with chitosan, AiiA had a notably beneficial effect on the sensory quality, color, hardness, and soluble solids content of strawberries that were infected with Enterobacter sp. and P. aeruginosa. Both AiiA alone and AiiA combined with chitosan treatment effectively reduced bacterial and fungal counts in strawberries infected by P. aeruginosa and inhibited bacterial growth in those strawberries infected by Enterobacter sp. Our study provides evidence that AiiA, either alone or in combination with chitosan shows potential application in preserving agricultural products.
Collapse
Affiliation(s)
- Ziwei Liang
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xi Deng
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Kaiyu Guo
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xiaoyu Yin
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Chengyi Zhang
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yao Yang
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Pingkang Xv
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Lei Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China.
| | - Yu Rao
- Food Microbiology Key Laboratory of Sichuan Province, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
3
|
Chen Y, Fan X, Zhu X, Xiao J, Mu Y, Wang W, Wang C, Peng M, Zhou M. Effects of luxS gene on biofilm formation and fermentation property in Lactobacillus plantarum R. Food Res Int 2025; 203:115862. [PMID: 40022384 DOI: 10.1016/j.foodres.2025.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
The biofilm formation of Lactobacilli is regulated by the LuxS/AI-2 quorum sensing (QS) system, but the mechanism of QS regulating the formation of Lactobacilli biofilm is not clear. This study aimed to investigate the mechanism of producing biofilm in L. plantarum R and its effect on the quality of fermented pickles based on LuxS/AI-2 QS system. Compared with L. plantarum R, the AI-2 activity of L. plantarum RΔluxS was significantly reduced, but the biofilm, extracellular protein, and eDNA were significantly increased. Moreover, expression of oppA, livJ, livH and comD genes was up-regulated and luxS, peg.3090 and peg.3093 was down-regulated. Results showed that peg.3093 was most significantly down-regulated in L. plantarum RΔluxS, and extremely significant negatively correlated with biofilm. The biofilm, eDNA, and extracellular protein of L. plantarum RΔpeg.3093 was higher than those of L. plantarum R. Moreover, metabolomics showed that deletion of luxS gene could decrease AI-2 level, promote anthocyanin and flavonol biosynthesis, lead to improving the antioxidant properties and quality of pickles. Thus, luxS gene knockout may increase biofilm by down-regulating the expression of peg.3093 to increase extracellular protein and eDNA. This study provides a theoretical basis for the enhancement of Lactobacillus biofilm and its application.
Collapse
Affiliation(s)
- Yang Chen
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xin Fan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xiaoqing Zhu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Junfeng Xiao
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yang Mu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Wenyue Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chao Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mingye Peng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
4
|
Tan X, Pei J, Zhang D, Cui F, Wang D, Li X, Li J. Prunus persica leaves aqueous extract mediated biosynthesis of Ag nanoparticles and assessment of its anti-quorum sensing potential against Hafnia species. Lett Appl Microbiol 2024; 77:ovae055. [PMID: 38886121 DOI: 10.1093/lambio/ovae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Hafnia sp. was one of the specific spoilage bacteria in aquatic products, and the aim of the study was to investigate the inhibition ability of the silver nanoparticles (AgNPs) biosynthesis by an aqueous extract of Prunus persica leaves toward the spoilage-related virulence factors of Hafnia sp. The synthesized P-AgNPs were spherical, with a mean particle size of 36.3 nm and zeta potential of 21.8 ± 1.33 mV. In addition, the inhibition effects of P-AgNPs on the growth of two Hafnia sp. strains and their quorum sensing regulated virulence factors, such as the formation of biofilm, secretion of N-acetyl-homoserine lactone (AHLs), proteases, and exopolysaccharides, as well as their swarming and swimming motilities were evaluated. P-AgNPs had a minimum inhibitory concentration (MIC) of 64 μg ml-1 against the two Hafnia sp. strains. When the concentration of P-AgNPs was below MIC, it could inhibit the formation of biofilms by Hafnia sp at 8-32 μg ml-1, but it promoted the formation of biofilms by Hafnia sp at 0.5-4 μg ml-1. P-AgNPs exhibited diverse inhibiting effects on AHLs and protease production, swimming, and swarming motilities at various concentrations.
Collapse
Affiliation(s)
- Xiqian Tan
- School of Food Science and Engineering/Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Jianbo Pei
- School of Food Science and Engineering/Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Defu Zhang
- School of Food Science and Engineering/Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Fangchao Cui
- School of Food Science and Engineering/Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Dangfeng Wang
- School of Food Science and Engineering/Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- School of Food Science and Engineering/Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Jianrong Li
- School of Food Science and Engineering/Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| |
Collapse
|
5
|
Issac Abraham SVP, Arumugam VR, Mary NI, Dharmadhas JS, Sundararaj R, Devanesan AA, Rajamanickam R, Veerapandian R, John Bosco JP, Danaraj J. Ocimum sanctum as a Source of Quorum Sensing Inhibitors to Combat Antibiotic Resistance of Human and Aquaculture Pathogens. Life (Basel) 2024; 14:785. [PMID: 39063540 PMCID: PMC11278316 DOI: 10.3390/life14070785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024] Open
Abstract
Biofilms play a decisive role in the infectious process and the development of antibiotic resistance. The establishment of bacterial biofilms is regulated by a signal-mediated cell-cell communication process called "quorum sensing" (QS). The identification of quorum sensing inhibitors (QSI) to mitigate the QS process may facilitate the development of novel treatment strategies for biofilm-based infections. In this study, the traditional medicinal plant Ocimum sanctum was screened for QS inhibitory potential. Sub-MICs of the extract significantly affected the secretion of EPS in Gram-negative human pathogens such as Escherichia coli, Pseudomonas aeruginosa PAO1, Proteus mirabilis, and Serratia marcescens, as well as aquaculture pathogens Vibrio harveyi, V. parahaemolyticus, and V. vulnificus, which render the bacteria more sensitive, leading to a loss of bacterial biomass from the substratum. The observed inhibitory activity of the O. sanctum extract might be attributed to the presence of eugenol, as evidenced through ultraviolet (UV)-visible, gas chromatography-mass spectroscopy (GC-MS), Fourier transformer infrared (FTIR) spectroscopy analyses, and computational studies. Additionally, the QSI potential of eugenol was corroborated through in vitro studies using the marker strain Chromobacterium violaceum.
Collapse
Affiliation(s)
| | - Veera Ravi Arumugam
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India; (V.R.A.); (N.I.M.)
| | - Nancy Immaculate Mary
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India; (V.R.A.); (N.I.M.)
| | - Jeba Sweetly Dharmadhas
- Department of Biochemistry and Biotechnology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India;
| | - Rajamanikandan Sundararaj
- Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India;
| | - Arul Ananth Devanesan
- Department of Biotechnology, The American College, Satellite Campus, Madurai 625 503, Tamil Nadu, India;
| | - Ramachandran Rajamanickam
- Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli 620 005, Tamil Nadu, India;
| | - Raja Veerapandian
- Department of Molecular and Translational Medicine, Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA;
| | - John Paul John Bosco
- Division of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India;
| | - Jeyapragash Danaraj
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India;
| |
Collapse
|
6
|
Wang S, Ju P, Liu W, Chi J, Jiang T, Chi Z, Wang S, Qiu R, Sun C. A novel photoelectrochemical self-screening aptamer biosensor based on CAU-17-derived Bi 2WO 6/Bi 2S 3 for rapid detection of quorum sensing signal molecules. Anal Chim Acta 2024; 1304:342558. [PMID: 38637055 DOI: 10.1016/j.aca.2024.342558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
Quorum sensing signal molecule is an important biomarker released by some microorganisms, which can regulate the adhesion and aggregation of marine microorganisms on the surface of engineering facilities. Thus, it is significant to exploit a convenient method that can effectively monitor the formation and development of marine biofouling. In this work, an advanced photoelectrochemical (PEC) aptamer biosensing platform was established and firstly applied for the rapid and ultrasensitive determination of N-(3-Oxodecanoyl)-l-homoserine lactone (3-O-C10-HL) released from marine fouling microorganism Ponticoccus sp. PD-2. The visible-light-driven Bi2WO6/Bi2S3 heterojunction derived from metal-organic frameworks (MOFs) CAU-17 and self-screened aptamer were employed as the photoactive materials and bioidentification elements, respectively. Appropriate amount of MoS2 quantum dots (QDs) conjugated with single-stranded DNA were introduced by hybridization to enhance the photocurrent response of the PEC biosensor. The self-screening aptamer can specifically recognize 3-O-C10-HL, accompanied by increasing the steric hindrance and forcing MoS2 QDs to leave the electrode surface, resulting in an obvious reduction of photocurrent and achieving a dual-inhibition signal amplification effect. Under the optimized conditions, the photocurrent response of PEC aptasensor was linear with 3-O-C10-HL concentration from 1 nM to 10 μM, and the detection limit was as low as 0.26 nM. The detection strategy also showed a high reproducibility, superior specificity and good stability. This work not only provides a simple, rapid and ultrasensitive PEC aptamer biosensing strategy for monitoring quorum sensing signal molecules in marine biofouling, but also broadens the application of MOFs-based heterojunctions in PEC sensors.
Collapse
Affiliation(s)
- Shiliang Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China; Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China
| | - Weixing Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, PR China
| | - Jingtian Chi
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, No. 238 Songling Road, Qingdao, 266100, PR China
| | - Tiantong Jiang
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, PR China
| | - Shuai Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China.
| | - Ri Qiu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Chengjun Sun
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China.
| |
Collapse
|
7
|
Zhu P, Yang K, Shen J, Lu Z, Lv F, Wang P. Comparative Transcriptome Analysis Revealing the Enhanced Volatiles of Cofermentation of Yeast and Lactic Acid Bacteria on Whole Wheat Steamed Bread Dough. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19129-19141. [PMID: 37867327 DOI: 10.1021/acs.jafc.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
To reveal the underlying mechanism of enhanced volatiles of whole wheat steamed bread, the current study screened Saccharomyces cerevisiae Y5 and Lactiplantibacillus plantarum L7 from sourdough and studied the synergetic effect of cofermentation on the volatiles of steamed bread and fermented dough by comparative transcriptome analysis. Cofermentation significantly improved the types and concentration of volatiles in addition to the improved specific volume and texture. Genes involved in galactose, starch, and glucose metabolism and genes encoding pyruvate oxidase and β-galactosidase were significantly upregulated in S. cerevisiae and L. plantarum, respectively. Expression of the OPT2 encoding oligopeptide transporter in S. cerevisiae was upregulated, which facilitated the transmembrane transport of oligopeptide and amino acid into yeast cells. Genes involved in the synthesis and metabolism of amino acids, lipids, and ester compounds in L. plantarum changed significantly, and gene encoding acetic acid kinase was upregulated. Moreover, the quorum sensing-related genes in S. cerevisiae and L. plantarum were upregulated.
Collapse
Affiliation(s)
- Ping Zhu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Kesheng Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Juan Shen
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Fengxia Lv
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
8
|
Basiri N, Zarei M, Kargar M, Kafilzadeh F. Effect of plasma-activated water on the biofilm-forming ability of Salmonella enterica serovar Enteritidis and expression of the related genes. Int J Food Microbiol 2023; 406:110419. [PMID: 37776833 DOI: 10.1016/j.ijfoodmicro.2023.110419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
In recent years, microbial decontamination with plasma-activated water (PAW) has attracted a lot of research attention in the field of food industry. Despite several studies showing that PAW effectively inactivates planktonic bacteria, few studies have been conducted on biofilms. The present study was, therefore, designed to evaluate the effect of PAW on the biofilm formation characteristics of Salmonella Enteritidis. Comparing the expression patterns of biofilm-related genes in PAW-treated and non-treated planktonic and biofilm cells provided insight into how PAW regulates this process. The results showed that a 30-minute exposure to PAW at room temperature significantly reduced S. enteritidis planktonic cells. This exposure resulted in a decreased expression of the genes involved in the early stages of biofilm formation (csgD, agfA, fimA, lpfE, and rpoS), and an increased expression of the csrA gene in S. enteritidis planktonic cells. These results indicated the inhibitory effect of PAW on the biofilm formation process in S. enteritidis. Results of the initial attachment assay confirmed these findings, where, after 6 h, the number of PAW-treated cells attached to the stainless steel surfaces were significantly lower than non-treated ones. Furthermore, biofilm development assay revealed that the number of PAW-treated biofilm cells were significantly lower than non-treated ones after 24 h incubation at 37 °C. These findings were confirmed by measurements of the major components of biofilm i.e., extracellular DNA (eDNA), protein and carbohydrate. The amount of these components in 24-hour biofilms produced by PAW-treated S. enteritidis cells was significantly lower than that of non-treated cells. PAW's treatment on preformed 24-hour biofilms for 30 min led to a decrease in the expression of genes involved in quorum sensing and cellulose synthesis (csgD, bapA, adrA, luxS and sdiA) and an increase in the expression of the csrA gene. This treatment also reduced the number and metabolic activity of biofilm cells compared to non-treated biofilm cells. In total, the present study demonstrated that PAW has an inhibitory effect on the process of biofilm formation in S. enteritidis and hence, the food industry should pay special attention to PAW as a promising treatment to eliminate bacterial biofilms.
Collapse
Affiliation(s)
- Narjes Basiri
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Kargar
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Farshid Kafilzadeh
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| |
Collapse
|
9
|
Yang S, Bai M, Kwok LY, Zhong Z, Sun Z. The intricate symbiotic relationship between lactic acid bacterial starters in the milk fermentation ecosystem. Crit Rev Food Sci Nutr 2023; 65:728-745. [PMID: 37983125 DOI: 10.1080/10408398.2023.2280706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Fermentation is one of the most effective methods of food preservation. Since ancient times, food has been fermented using lactic acid bacteria (LAB). Fermented milk is a very intricate fermentation ecosystem, and the microbial metabolism of fermented milk largely determines its metabolic properties. The two most frequently used dairy starter strains are Streptococcus thermophilus (S. thermophilus) and Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). To enhance both the culture growth rate and the flavor and quality of the fermented milk, it has long been customary to combine S. thermophilus and L. bulgaricus in milk fermentation due to their mutually beneficial and symbiotic relationship. On the one hand, the symbiotic relationship is reflected by the nutrient co-dependence of the two microbes at the metabolic level. On the other hand, more complex interaction mechanisms, such as quorum sensing between cells, are involved. This review summarizes the application of LAB in fermented dairy products and discusses the symbiotic mechanisms and interactions of milk LAB starter strains from the perspective of nutrient supply and intra- and interspecific quorum sensing. This review provides updated information and knowledge on microbial interactions in a fermented milk ecosystem.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Mei Bai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| |
Collapse
|
10
|
Kim U, Lee SY, Oh SW. A review of mechanism analysis methods in multi-species biofilm of foodborne pathogens. Food Sci Biotechnol 2023; 32:1665-1677. [PMID: 37780597 PMCID: PMC10533759 DOI: 10.1007/s10068-023-01317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are an aggregation of microorganisms that have high resistance to antimicrobial agents. In the food industry, it has been widely studied that foodborne pathogens on both food surfaces and food-contact surfaces can form biofilms thereby threatening the safety of the food. In the natural environment, multi-species biofilms formed by more than two different microorganisms are abundant. In addition, the resistance of multi-species biofilms to antimicrobial agents is higher than that of mono-species biofilms. Therefore, studies to elucidate the mechanisms of multi-species biofilms formed by foodborne pathogens are still required in the food industry. In this review paper, we summarized the novel analytical methods studied to evaluate the mechanisms of multi-species biofilms formed by foodborne pathogens by dividing them into four categories: spatial distribution, bacterial interaction, extracellular polymeric substance production and quorum sensing analytical methods.
Collapse
Affiliation(s)
- Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| | - So-Young Lee
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| |
Collapse
|
11
|
Jha S, Anand S. Development and Control of Biofilms: Novel Strategies Using Natural Antimicrobials. MEMBRANES 2023; 13:579. [PMID: 37367783 DOI: 10.3390/membranes13060579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Separation membranes have a wide application in the food industry, for instance, in the clarification/fractionation of milk, the concentration/separation of selected components, and wastewater treatment. They provide a large area for bacteria to attach and colonize. When a product comes into contact with a membrane, it initiates bacterial attachment/colonization and eventually forms biofilms. Several cleaning and sanitation protocols are currently utilized in the industry; however, the heavy fouling of the membrane over a prolonged duration affects the overall cleaning efficiency. In view of this, alternative approaches are being developed. Therefore, the objective of this review is to describe the novel strategies for controlling membrane biofilms such as enzyme-based cleaner, naturally produced antimicrobials of microbial origin, and preventing biofilm development using quorum interruption. Additionally, it aims to report the constitutive microflora of the membrane and the development of the predominance of resistant strains over prolonged usage. The emergence of predominance could be associated with several factors, of which, the release of antimicrobial peptides by selective strains is a prominent factor. Therefore, naturally produced antimicrobials of microbial origin could thus provide a promising approach to control biofilms. Such an intervention strategy could be implemented by developing a bio-sanitizer exhibiting antimicrobial activity against resistant biofilms.
Collapse
Affiliation(s)
- Sheetal Jha
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Sanjeev Anand
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
12
|
Zarei M, Paknejad M, Eskandari MH. Sublethal chlorine stress promotes the biofilm-forming ability of Salmonella enterica serovars enteritidis and expression of the related genes. Food Microbiol 2023; 112:104232. [PMID: 36906303 DOI: 10.1016/j.fm.2023.104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Chlorine treatment is the most common disinfection method in food-related environments. In addition to being simple and inexpensive, this method is very effective if used properly. However, insufficient chlorine concentrations only cause a sublethal oxidative stress in the bacterial population and may alter the growth behavior of stressed cells. In the present study, the effect of sublethal chlorine stress on the biofilm formation characteristics of Salmonella Enteritidis was evaluated. Our results demonstrated that, sublethal chlorine stress (350 ppm total chlorine) activates the biofilm (csgD, agfA, adrA and bapA) and quorum-sensing (sdiA and luxS) related genes in planktonic cells of S. Enteritidis. The higher expression of these genes illustrated that the chlorine stress induced the initiation of the biofilm formation process in S. Enteritidis. Results of the initial attachment assay confirmed this finding. In addition, the number of chlorine-stressed biofilm cells was significantly higher than non-stressed biofilm cells after 48 h incubation at 37 °C. In S. Enteritidis ATCC 13076 and S. Enteritidis KL19, the number of chlorine-stressed biofilm cells were 6.93 ± 0.48 and 7.49 ± 0.57 log CFU/cm2, while the number of non-stressed biofilm cells were 5.12 ± 0.39 and 5.63 ± 0.51 log CFU/cm2, respectively. These findings were confirmed by measurements of the major components of biofilm, i.e., eDNA, protein and carbohydrate. The amount of these components in 48-h biofilms was higher when the cells were initially subjected to sublethal chlorine stress. However, the up-regulation of the biofilm and quorum sensing genes was not observed in 48-h biofilm cells, indicating that the effect of chlorine stress had vanished in the subsequent generations of Salmonella. In total, these results revealed that sublethal chlorine concentrations can promote the biofilm-forming ability of S Enteritidis.
Collapse
Affiliation(s)
- Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohsen Paknejad
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
13
|
Salman MK, Abuqwider J, Mauriello G. Anti-Quorum Sensing Activity of Probiotics: The Mechanism and Role in Food and Gut Health. Microorganisms 2023; 11:microorganisms11030793. [PMID: 36985366 PMCID: PMC10056907 DOI: 10.3390/microorganisms11030793] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Background: Quorum sensing (QS) is a cell-to-cell communication mechanism that occurs between inter- and intra-bacterial species and is regulated by signaling molecules called autoinducers (AIs). It has been suggested that probiotics can exert a QS inhibitory effect through their metabolites. Purpose: To provide an overview of (1) the anti-QS activity of probiotics and its mechanism against foodborne pathogenic and spoilage bacteria; (2) the potential role of the QS of probiotics in gut health; and (3) the impact of microencapsulation on QS. Results: Lactobacillus species have been extensively studied for their anti-QS activity and have been found to effectively disrupt QS in vitro. However, their effectiveness in a food matrix is yet to be determined as they interfere with the AI receptor or its synthesis. QS plays an important role in both the biofilm formation of probiotics and pathogenic bacteria. Moreover, in vitro and animal studies have shown that QS molecules can modulate cytokine responses and gut dysbiosis and maintain intestinal barrier function. In this scenario, microencapsulation was found to enhance AI activity. However, its impact on the anti-QS activity of probiotics and its underlying mechanism remains unclear. Conclusions: Probiotics are potential candidates to block QS activity in foodborne pathogenic and food spoilage bacteria. Microencapsulation increases QS efficacy. However, more research is still needed for the identification of the QS inhibitory metabolites from probiotics and for the elucidation of the anti-QS mechanism of probiotics (microcapsules and free cells) in food and the human gut.
Collapse
|
14
|
Wang D, Cui F, Xi L, Tan X, Li J, Li T. Preparation of a multifunctional non-stick tamarind polysaccharide-polyvinyl alcohol hydrogel immobilized with a quorum quenching enzyme for maintaining fish freshness. Carbohydr Polym 2023; 302:120382. [PMID: 36604060 DOI: 10.1016/j.carbpol.2022.120382] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Hydrogels have become promising materials for food packaging due to their unique microstructure. However, hydrogel materials suitable for seafood preservation have rarely been reported. In this study, a tamarind polysaccharide-polyvinyl alcohol hydrogel with the ability to maintain seafood freshness was prepared and characterized. The hydrogel possesses quick self-healing, good tissue fitting, and freezing tolerance capability. Moreover, a peeling force of only 0.1 N between the hydrogel and the fillet tissue confirmed the non-stick properties. The FTIR characteristic peak at 1600 cm-1 and 1450 cm-1 proved the ester bond-based chemical cross-linking of the hydrogel. Release profiles at pH 6.0 to 8.0 verified the pH-responsive release of quorum-quenching (QQ) enzymes over 120 h, which enabled the hydrogel to achieve biofilm and protease inhibitory activities. In vivo spoilage tests showed that the shelf life of hydrogel-coated red snapper fillets was extended by >3 days. These results illustrate the potential of the prepared hydrogel as functional packaging for seafood preservation.
Collapse
Affiliation(s)
- Dangfeng Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fangchao Cui
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Liqing Xi
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xiqian Tan
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian, Liaoning 116029, China.
| |
Collapse
|
15
|
Quorum-Sensing Inhibitors from Probiotics as a Strategy to Combat Bacterial Cell-to-Cell Communication Involved in Food Spoilage and Food Safety. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experience-based knowledge has shown that bacteria can communicate with each other through a cell-density-dependent mechanism called quorum sensing (QS). QS controls specific bacterial phenotypes, such as sporulation, virulence and pathogenesis, the production of degrading enzymes, bioluminescence, swarming motility, and biofilm formation. The expression of these phenotypes in food spoiling and pathogenic bacteria, which may occur in food, can have dramatic consequences on food production, the economy, and health. Due to the many reports showing that the use of conventional methods (i.e., antibiotics and sanitizers) to inhibit bacterial growth leads to the emergence of antibiotic resistance, it is necessary to research and exploit new strategies. Several studies have already demonstrated positive results in this direction by inhibiting autoinducers (low-molecular-weight signaling compounds controlling QS) and by other means, leading to QS inhibition via a mechanism called quorum quenching (QQ). Thus far, several QS inhibitors (QSIs) have been isolated from various sources, such as plants, some animals from aqueous ecosystems, fungi, and bacteria. The present study aims to discuss the involvement of QS in food spoilage and to review the potential role of probiotics as QSIs.
Collapse
|
16
|
Sun L, Dong X, Wang Y, Maker G, Agarwal M, Ding Z. Tea-Soybean Intercropping Improves Tea Quality and Nutrition Uptake by Inducing Changes of Rhizosphere Bacterial Communities. Microorganisms 2022; 10:2149. [PMID: 36363740 PMCID: PMC9697773 DOI: 10.3390/microorganisms10112149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/26/2023] Open
Abstract
The positive aspects of the tea plant/legume intercropping system draw attention to the Chinese tea industry for its benefit for soil fertility improvement with low fertilizer input. However, limited information exists as to the roles of intercropped legumes in the rhizosphere microbiome and tea quality. Hereby, soybean was selected as the intercropped plant to investigate its effect on bacterial communities, nutrient competition, tea plant development, and tea quality. Our data showed that intercropped soybean boosted the uptake of nitrogen in tea plants and enhanced the growth of young tea shoots. Nutrient competition for phosphorus and potassium in soil existed between soybeans and tea plants. Moreover, tea/soybean intercropping improved tea quality, manifested by a significantly increased content of non-ester type catechins (C, EGC, EC), total catechins and theanine, and decreased content of ester type catechins (EGCG). Significant differences in rhizobacterial composition were also observed under different systems. At the genus level, the relative abundance of beneficial bacteria, such as Bradyrhizobium, Saccharimonadales and Mycobacterium, was significantly increased with the intercropping system, while the relative abundance of denitrifying bacteria, Pseudogulbenkiania, was markedly decreased. Correlation analysis showed that Pseudogulbenkiania, SBR1031, and Burkholderiaceae clustered together showing a similar correlation with soil physicochemical and tea quality characteristics; however, other differential bacteria showed the opposite pattern. In conclusion, tea/soybean intercropping improves tea quality and nutrition uptake by increasing the relative abundance of beneficial rhizosphere bacteria and decreasing denitrifying bacteria. This study strengthens our understanding of how intercropping system regulate the soil bacterial community to maintain the health of soils in tea plantations and provides the basis for replacing chemical fertilizers and improving the ecosystem in tea plantations.
Collapse
Affiliation(s)
- Litao Sun
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA 6150, Australia
| | - Xue Dong
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
| | - Garth Maker
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA 6150, Australia
| | - Manjree Agarwal
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA 6150, Australia
- Scientific Service Division, Chemcentre, Government of Western Australia, B.No. 500, Corner of Manning Road and Townsing Drive, Bentley, WA 6102, Australia
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA 6150, Australia
| |
Collapse
|
17
|
Woods DF, Kozak IM, O'Gara F. Genome analysis and phenotypic characterization of Halomonas hibernica isolated from a traditional food process with novel quorum quenching and catalase activities. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36099016 DOI: 10.1099/mic.0.001238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditional food processes can utilize bacteria to promote positive organoleptic qualities and increase shelf life. Wiltshire curing has a vital bacterial component that has not been fully investigated from a microbial perspective. During the investigation of a Wiltshire brine, a culturable novel bacterium of the genus Halomonas was identified by 16S rRNA gene (MN822133) sequencing and analysis. The isolate was confirmed as representing a novel species (Halomonas hibernica B1.N12) using a housekeeping (HK) gene phylogenetic tree reconstruction with the selected genes 16S rRNA, 23S rRNA, atpA, gyrB, rpoD and secA. The genome of the new isolate was sequenced and annotated and comparative genome analysis was conducted. Functional analysis revealed that the isolate has a unique phenotypic signature including high salt tolerance, a wide temperature growth range and substrate metabolism. Phenotypic and biochemical profiling demonstrated that H. hibernica B1.N12 possesses strong catalase activity which is an important feature for an industrial food processing bacterium, as it can promote an increased product shelf life and improve organoleptic qualities. Moreover, H. hibernica exhibits biocontrol properties based on its quorum quenching capabilities. Our work on this novel isolate advances knowledge on potential mechanistic interplays operating in complex microbial communities that mediate traditional food processes.
Collapse
Affiliation(s)
- David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Iwona M Kozak
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Liu L, Tao Y, Li Y, Deng X, Liu G, Yao Y, Chen X, Yang S, Tu M, Peng Q, Huang L, Xiang W, Rao Y. Isolation and characterization of bacteria that produce quorum sensing molecules during the fermentation and deterioration of pickles. Int J Food Microbiol 2022; 379:109869. [DOI: 10.1016/j.ijfoodmicro.2022.109869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
|
19
|
Li Q, Li L, Chen Y, Yu C, Azevedo P, Gong J, Yang C. Bacillus licheniformis PF9 improves barrier function and alleviates inflammatory responses against enterotoxigenic Escherichia coli F4 infection in the porcine intestinal epithelial cells. J Anim Sci Biotechnol 2022; 13:86. [PMID: 35799262 PMCID: PMC9264548 DOI: 10.1186/s40104-022-00746-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) F4 commonly colonizes the small intestine and releases enterotoxins that impair the intestinal barrier function and trigger inflammatory responses. Although Bacillus licheniformis (B. licheniformis) has been reported to enhance intestinal health, it remains to be seen whether there is a functional role of B. licheniformis in intestinal inflammatory response in intestinal porcine epithelial cell line (IPEC-J2) when stimulated with ETEC F4. Methods In the present study, the effects of B. licheniformis PF9 on the release of pro-inflammation cytokines, cell integrity and nuclear factor-κB (NF-κB) activation were evaluated in ETEC F4-induced IPEC-J2 cells. Results B. licheniformis PF9 treatment was capable of remarkably attenuating the expression levels of inflammation cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-8, and IL-6 during ETEC F4 infection. Furthermore, the gene expression of Toll-like receptor 4 (TLR4)-mediated upstream related genes of NF-κB signaling pathway has been significantly inhibited. These changes were accompanied by significantly decreased phosphorylation of p65 NF-κB during ETEC F4 infection with B. licheniformis PF9 treatment. The immunofluorescence and western blotting analysis revealed that B. licheniformis PF9 increased the expression levels of zona occludens 1 (ZO-1) and occludin (OCLN) in ETEC F4-infected IPEC-J2 cells. Meanwhile, the B. licheniformis PF9 could alleviate the injury of epithelial barrier function assessed by the trans-epithelial electrical resistance (TEER) and cell permeability assay. Interestingly, B. licheniformis PF9 protect IPEC-J2 cells against ETEC F4 infection by decreasing the gene expressions of virulence-related factors (including luxS, estA, estB, and elt) in ETEC F4. Conclusions Collectively, our results suggest that B. licheniformis PF9 might reduce inflammation-related cytokines through blocking the NF-κB signaling pathways. Besides, B. licheniformis PF9 displayed a significant role in the enhancement of IPEC-J2 cell integrity. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00746-8.
Collapse
Affiliation(s)
- Qiao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Linyan Li
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario, N1G 5C9, Canada.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yanhong Chen
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Changning Yu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Paula Azevedo
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario, N1G 5C9, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| |
Collapse
|
20
|
Current Advances in the Concept of Quorum Sensing-Based Prevention of Spoilage of Fish Products by Pseudomonads. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microbial spoilage of fish is attributed to quorum sensing (QS)-based activities. QS is a communication process between the cells in which microorganisms secrete and sense the specific chemicals (autoinductors, AIs) that regulate proteolysis, lipolysis, and biofilm formation. These activities change the organoleptic characteristics and reduce the safety of the products. Although the microbial community of fish is diverse and may consist of a range of bacterial strains, the deterioration of fish-based products is attributed to the growth and activity of Pseudomonas spp. This work summarizes recent advancements to assess the influence of QS mechanisms on seafood spoilage by Pseudomonas spp. The quorum sensing inhibition (QSI) in the context of fish preservation has also been discussed. Detailed recognition of this phenomenon is crucial in establishing effective strategies to prevent the premature deterioration of fish-based products.
Collapse
|
21
|
Abbamondi GR, Tommonaro G. Research Progress and Hopeful Strategies of Application of Quorum Sensing in Food, Agriculture and Nanomedicine. Microorganisms 2022; 10:1192. [PMID: 35744710 PMCID: PMC9229978 DOI: 10.3390/microorganisms10061192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Quorum sensing (QS) regulates the expression of several genes including motility, biofilm development, virulence expression, population density detection and plasmid conjugation. It is based on "autoinducers", small molecules that microorganisms produce and release in the extracellular milieu. The biochemistry of quorum sensing is widely discussed and numerous papers are available to scientists. The main purpose of this research is to understand how knowledge about this mechanism can be exploited for the benefit of humans and the environment. Here, we report the most promising studies on QS and their resulting applications in different fields of global interest: food, agriculture and nanomedicine.
Collapse
Affiliation(s)
- Gennaro Roberto Abbamondi
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy;
| | | |
Collapse
|
22
|
Devi S, Chhibber S, Harjai K. Optimization of cultural conditions for enhancement of anti-quorum sensing potential in the probiotic strain Lactobacillus rhamnosus GG against Pseudomonas aeruginosa. 3 Biotech 2022; 12:133. [PMID: 35615747 DOI: 10.1007/s13205-022-03187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/26/2022] [Indexed: 11/01/2022] Open
Abstract
Disruption of quorum sensing (QS) system, which is a central regulator for pathogenesis of Pseudomonas aeruginosa, is referring to as quorum quenching (QQ). This study was undertaken to evaluate and enhance the anti-quorum sensing (AQS) potential of probiotic strain Lactobacillus rhamnosus GG. The cell-free supernatant (CFS) of this probiotic strain showed anti-quorum sensing activity against Pseudomonas aeruginosa, which was determined using well-diffusion agar-plate assay. Anti-quorum sensing potential of L. rhamnosus GG was enhanced by optimization of various cultural conditions using classical and statistical optimization approaches. Six variables were optimized using one-variable-at-a-time (OVAT) method. Four significant variables, viz., temperature, pH, incubation time, metal ion, and its concentration, were chosen for further optimization by response surface methodology (RSM) using central composite design (CCD). Analysis of variance (ANOVA) demonstrated that the regression model is highly significant, as indicated by F test with a low probability value (p < 0.0002) and high value of coefficient of determination (0.8738) and also had significant influence on the generation of anti-quorum sensing effector molecules. Maximum production of anti-quorum sensing activity, in terms of zones of inhibition, was achieved under the following optimized conditions such as 37 °C temperature, pH 6.5, incubation time 24 h, and 2.5 mM concentration of zinc sulfate (ZnSO4). The quadratic model predicted 1.3-fold increase anti-quorum sensing activity production over un-optimized cultural conditions. The present research is the first report representing the enhancement of anti-quorum sensing potential of L. rhamnosus GG. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03187-2.
Collapse
|
23
|
Wang D, Cui F, Ren L, Tan X, Lv X, Li Q, Li J, Li T. Complete Genome Analysis Reveals the Quorum Sensing-Related Spoilage Potential of Pseudomonas fluorescens PF08, a Specific Spoilage Organism of Turbot ( Scophthalmus maximus). Front Microbiol 2022; 13:856802. [PMID: 35516425 PMCID: PMC9062736 DOI: 10.3389/fmicb.2022.856802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas fluorescens is a common specific spoilage organism (SSO) of aquatic products. The spoilage ability of SSO can be regulated by the quorum sensing (QS) system. However, the QS system in P. fluorescens and their relationship with the spoilage potential have not been systematically analyzed. In the present study, the complete genome of P. fluorescens PF08 isolated from spoilage turbot was sequenced. The identification of key genes that involved in the QS, enzyme synthesis, sulfur, and amino acid metabolism explained the spoilage potential of P. fluorescens PF08. Results of quantitative real-time PCR revealed the key role of the P. fluorescens PF08 QS system in regulating the transcription of spoilage-related genes and its sensitivity to environmental stress. These findings provide insight into the spoilage features of P. fluorescens PF08 from a genomic perspective. The knowledge may be valuable in the development of new strategies for the targeted inhibition of aquatic product spoilage based on QS interference.
Collapse
Affiliation(s)
- Dangfeng Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Fangchao Cui
- College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Likun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiqian Tan
- College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Xinran Lv
- College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Qiuying Li
- College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Jianrong Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,College of Food Science and Technology, Bohai University, Jinzhou, China.,National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China
| |
Collapse
|
24
|
Leo A, Monteduro AG, Rizzato S, Milone A, Maruccio G. Miniaturized Sensors for Detection of Ethanol in Water Based on Electrical Impedance Spectroscopy and Resonant Perturbation Method—A Comparative Study. SENSORS 2022; 22:s22072742. [PMID: 35408357 PMCID: PMC9003094 DOI: 10.3390/s22072742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/02/2022]
Abstract
The development of highly sensitive, portable and low-cost sensors for the evaluation of ethanol content in liquid is particularly important in several monitoring processes, from the food industry to the pharmaceutical industry. In this respect, we report the optimization of two sensing approaches based on electrical impedance spectroscopy (EIS) and complementary double split ring resonators (CDSRRs) for the detection of ethanol in water. Miniaturized EIS sensors were realized with interdigitated electrodes, and the ethanol sensing was carried out in liquid solutions without any functionalization of the electrodes. Impedance fitting analysis, with an equivalent circuit over a frequency range from 100 Hz to 1 MHz, was performed to estimate the electric parameters, which allowed us to evaluate the amount of ethanol in water solutions. On the other hand, complementary double split ring resonators (CDSRRs) were optimized by adjusting the device geometry to achieve higher quality factors while operating at a low fundamental frequency despite the small size (useful for compact electronic packaging). Both sensors were found to be efficient for the detection of low amounts of ethanol in water, even in the presence of salts. In particular, EIS sensors proved to be effective in performing a broadband evaluation of ethanol concentration and are convenient when low cost is the priority. On the other end, the employment of split ring resonators allowed us to achieve a very low limit of detection of 0.2 v/v%, and provides specific advantages in the case of known environments where they can enable fast real-time single-frequency measurements.
Collapse
|
25
|
Knecht LE, Heinrich N, Born Y, Felder K, Pelludat C, Loessner MJ, Fieseler L. Bacteriophage S6 requires bacterial cellulose for Erwinia amylovora infection. Environ Microbiol 2022; 24:3436-3450. [PMID: 35289468 DOI: 10.1111/1462-2920.15973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/21/2023]
Abstract
Bacteriophages are highly selective in targeting bacteria. This selectivity relies on the specific adsorption of phages to the host cell surface. In this study, a Tn5 transposon mutant library of Erwinia amylovora, the causative agent of fire blight, was screened to identify bacterial receptors required for infection by the podovirus S6. Phage S6 was unable to infect mutants with defects in the bacterial cellulose synthase operon (bcs). The Bcs complex produces and secretes bacterial cellulose, an extracellular polysaccharide associated with bacterial biofilms. Deletion of the bcs operon or associated genes (bcsA, bcsC and bcsZ) verified the crucial role of bacterial cellulose for S6 infection. Application of the cellulose binding dye Congo Red blocked infection by S6. We demonstrate that infective S6 virions degraded cellulose and that Gp95, a phage-encoded cellulase, is involved to catalyse the reaction. In planta S6 did not significantly inhibit fire blight symptom development. Moreover, deletion of bcs genes in E. amylovora did not affect bacterial virulence in blossom infections, indicating that sole application of cellulose targeting phages is less appropriate to biologically control E. amylovora. The interplay between cellulose synthesis, host cell infection and maintenance of the host cell population is discussed.
Collapse
Affiliation(s)
- Leandra E Knecht
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland.,Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Nadine Heinrich
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Yannick Born
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Katja Felder
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Cosima Pelludat
- Agroscope, Plant Pathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Lars Fieseler
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
26
|
Sallam ER, Fetouh HA. Comparative Study for the Production of Sustainable Electricity from Marine Sediment Using Recyclable Low‐Cost Solid Wastes Aluminum Foil and Graphite Anodes. ChemistrySelect 2022. [DOI: 10.1002/slct.202103972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eman R. Sallam
- Marine Chemistry Department National Institute of Oceanography and Fisheries (NIOF) El Anfoushy, P.O. Box 21556 Alexandria 21321 EGYPT
| | - Howida A. Fetouh
- Chemistry Department Faculty of Science Alexandria University 21568 EGYPT
| |
Collapse
|
27
|
Wang D, Chen H, Li J, Li T, Ren L, Liu J, Shen Y. Screening and validation of quorum quenching enzyme PF2571 from Pseudomonas fluorescens strain PF08 to inhibit the spoilage of red sea bream filets. Int J Food Microbiol 2022; 362:109476. [PMID: 34798478 DOI: 10.1016/j.ijfoodmicro.2021.109476] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023]
Abstract
Bacteria are the main cause of spoilage for fish and fishery products. Through the inactivation of the quorum sensing (QS) system, quorum quenching (QQ) enzymes can block the synthesis of bacterial virulence factors and effectively inhibit bacteria-induced food spoilage. This study analyzed the changes of microbiota in red sea bream filets during refrigerated storage. The results showed a decrease in microbial diversity with storage time, with Aeromonas veronii becoming the dominant bacteria on day 4. A novel N-acyl homoserine lactones (AHL) acylase PF2571, from the screened QQ bacterium Pseudomonas fluorescens PF08, was identified and expressed in Escherichia coli to evaluate its QQ efficiency and effects on spoilage potential. Spoilage-related QS factors of A. veronii BY-8, including biofilm formation, motility, and protease, lipase, and alginate production, were inhibited by PF2571. Its inhibitory effect on red sea bream spoilage was demonstrated by the lower freshness indicators for PF2571 treated filets. Our study demonstrates the potential of the QQ enzyme for prolonging the shelf life of fish and fishery products.
Collapse
Affiliation(s)
- Dangfeng Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianrong Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresource Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China
| | - Likun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150076, China
| | - Jingyun Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yue Shen
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| |
Collapse
|
28
|
Dai J, Fang L, Wu Y, Liu B, Cheng X, Yao M, Huang L. Effects of exogenous AHLs on the spoilage characteristics of
Pseudomonas koreensis
PS1. J Food Sci 2022; 87:819-832. [DOI: 10.1111/1750-3841.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Jinyue Dai
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Limin Fang
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Yan Wu
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Baoyu Liu
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Xin Cheng
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Mingyin Yao
- College of Engineering, Jiangxi Agricultural University Jiangxi Key Laboratory of Modern Agricultural Equipment Nanchang China
| | - Lin Huang
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| |
Collapse
|
29
|
Quintieri L, Caputo L, Brasca M, Fanelli F. Recent Advances in the Mechanisms and Regulation of QS in Dairy Spoilage by Pseudomonas spp. Foods 2021; 10:3088. [PMID: 34945641 PMCID: PMC8701193 DOI: 10.3390/foods10123088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Food spoilage is a serious issue dramatically impacting the worldwide need to counteract food insecurity. Despite the very expensive application of low temperatures, the proper conservation of fresh dairy products is continuously threatened at different stages of production and commercialization by psychrotrophic populations mainly belonging to the Pseudomonas genus. These bacteria cause discolouration, loss of structure, and off-flavours, with fatal implications on the quality and shelf-life of products. While the effects of pseudomonad decay have been widely reported, the mechanisms responsible for the activation and regulation of spoilage pathways are still poorly explored. Recently, molecule signals and regulators involved in quorum sensing (QS), such as homoserine lactones, the luxR/luxI system, hdtS, and psoR, have been detected in spoiled products and bacterial spoiler species; this evidence suggests the role of bacterial cross talk in dairy spoilage and paves the way towards the search for novel preservation strategies based on QS inhibition. The aim of this review was to investigate the advancements achieved by the application of omic approaches in deciphering the molecular mechanisms controlled by QS systems in pseudomonads, by focusing on the regulators and metabolic pathways responsible for spoilage of fresh dairy products. In addition, due the ability of pseudomonads to quickly spread in the environment as biofilm communities, which may also include pathogenic and multidrug-resistant (MDR) species, the risk derived from the gaps in clearly defined and regulated sanitization actions is underlined.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council of Italy, 20133 Milan, Italy;
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| |
Collapse
|
30
|
Ruiz CH, Osorio-Llanes E, Trespalacios MH, Mendoza-Torres E, Rosales W, Gómez CMM. Quorum Sensing Regulation as a Target for Antimicrobial Therapy. Mini Rev Med Chem 2021; 22:848-864. [PMID: 34856897 DOI: 10.2174/1389557521666211202115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 05/20/2021] [Accepted: 09/04/2021] [Indexed: 11/22/2022]
Abstract
Some bacterial species use a cell-to-cell communication mechanism called Quorum Sensing (QS). Bacteria release small diffusible molecules, usually termed signals which allow the activation of beneficial phenotypes that guarantee bacterial survival and the expression of a diversity of virulence genes in response to an increase in population density. The study of the molecular mechanisms that relate signal molecules with bacterial pathogenesis is an area of growing interest due to its use as a possible therapeutic alternative through the development of synthetic analogues of autoinducers as a strategy to regulate bacterial communication as well as the study of bacterial resistance phenomena, the study of these relationships is based on the structural diversity of natural or synthetic autoinducers and their ability to inhibit bacterial QS, which can be approached with a molecular perspective from the following topics: i) Molecular signals and their role in QS regulation; ii) Strategies in the modulation of Quorum Sensing; iii) Analysis of Bacterial QS circuit regulation strategies; iv) Structural evolution of natural and synthetic autoinducers as QS regulators. This mini-review allows a molecular view of the QS systems, showing a perspective on the importance of the molecular diversity of autoinducer analogs as a strategy for the design of new antimicrobial agents.
Collapse
Affiliation(s)
- Caterine Henríquez Ruiz
- Grupo de Investigación en Química Orgánica y Biomédica. Faculty of Basic Sciences. Universidad del Atlántico. Barranquilla. Colombia
| | - Estefanie Osorio-Llanes
- Faculty of Exact and Natural sciences. Grupo de Investigación Avanzada en Biomedicina. Universidad Libre. Barranquilla. Colombia
| | - Mayra Hernández Trespalacios
- Grupo de Investigación en Química Orgánica y Biomédica. Faculty of Basic Sciences. Universidad del Atlántico. Barranquilla. Colombia
| | - Evelyn Mendoza-Torres
- Faculty of Health Sciences. Grupo de Investigación Avanzada en Biomedicina-Universidad Libre. Barranquilla. Colombia
| | - Wendy Rosales
- Faculty of Exact and Natural sciences. Grupo de Investigación Avanzada en Biomedicina. Universidad Libre. Barranquilla. Colombia
| | - Carlos Mario Meléndez Gómez
- Grupo de Investigación en Química Orgánica y Biomédica. Faculty of Basic Sciences. Universidad del Atlántico. Barranquilla. Colombia
| |
Collapse
|
31
|
He W, Yang H, Wang X, Li H, Dong Q. Growth of Salmonella Enteritidis in the presence of quorum sensing signaling compounds produced by Pseudomonas aeruginosa. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Quorum sensing (QS) can exist in food-related bacteria and potentially affect bacterial growth through acyl-homoserine lactones (AHLs). To verify the role of QS compounds in the cell-free supernatant, this study examined the effect of supernatant extracted from Pseudomonas aeruginosa culture on the growth kinetics of Salmonella Enteritidis. The results showed that the lag time (λ) of S. Enteritidis was apparently reduced (p < 0.05) under the influence of P. aeruginosa culture supernatant compared with the S. Enteritidis culture supernatant. HPLC-MS/MS test demonstrated that AHLs secreted by P. aeruginosa were mainly C14-HSL with a content of 85.71 μg/mL and a small amount of 3-oxo-C12-HSL. In addition, the commercially synthetic C14-HSL had positive effects on the growth of S. Enteritidis, confirming once again that the growth of S. Enteritidis was affected by AHL metabolized by other bacteria and the complexity of bacterial communication.
Collapse
Affiliation(s)
- Weijia He
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , Shanghai, 516 Jungong Rd. , Shanghai 200093 , P. R. China
| | - Huamei Yang
- Taizhou Center for Disease Control and Prevention , Taizhou , Jiangsu 225300 , P. R. China
| | - Xiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , Shanghai, 516 Jungong Rd. , Shanghai 200093 , P. R. China
| | - Hongmei Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , Shanghai, 516 Jungong Rd. , Shanghai 200093 , P. R. China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , Shanghai, 516 Jungong Rd. , Shanghai 200093 , P. R. China
| |
Collapse
|
32
|
Preparation of pH-sensitive polylactic acid-naringin coaxial electrospun fiber membranes for maintaining and monitoring salmon freshness. Int J Biol Macromol 2021; 188:708-718. [PMID: 34403673 DOI: 10.1016/j.ijbiomac.2021.08.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022]
Abstract
Seafood spoilage can be prevented by inhibiting the quorum sensing (QS) system between bacteria. However, membrane materials combining freshness indicators with QS inhibition features have rarely been reported. Therefore, in this study, pH-sensitive polylactic acid-naringin coaxial electrospun fibers capable of maintaining and monitoring freshness were prepared and investigated. Surface analysis revealed that the fiber membranes exhibited a smooth surface and an average diameter of 243 nm. FTIR spectroscopy analysis revealed characteristic absorption peaks at 3265 and 1124 cm-1, confirming the successful loading of naringin and bromocresol purple. Release behavior analysis verified the uninterrupted release of naringin within 192 h, which enabled the fibers to achieve a protease inhibitory activity rate of 35.94%. Furthermore, the coaxial fibers successfully inhibited the expression of rhlI, rhlR, aprA, and fliA in Pseudomonas fluorescens. The real-world applicability of the coaxial fibers was evaluated by the salmon spoilage assay, where a 4-d extension to the shelf life of the coated fillets was attained. Additionally, the color of the coaxial fibers changed with the deterioration of salmon quality and the ΔE value increased from 4.75 to 26.51. These results verify that the prepared fibers can effectively monitor the freshness of seafood products and improve their storage conditions.
Collapse
|
33
|
Santos CA, Lima EMF, Franco BDGDM, Pinto UM. Exploring Phenolic Compounds as Quorum Sensing Inhibitors in Foodborne Bacteria. Front Microbiol 2021; 12:735931. [PMID: 34594318 PMCID: PMC8477669 DOI: 10.3389/fmicb.2021.735931] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence of multidrug-resistant bacteria stimulates the search for new substitutes to traditional antimicrobial agents, especially molecules with antivirulence properties, such as those that interfere with quorum sensing (QS). This study aimed to evaluate the potential of phenolic compounds for QS inhibition in a QS biosensor strain (Chromobacterium violaceum) and three foodborne bacterial species (Aeromonas hydrophila, Salmonella enterica serovar Montevideo, and Serratia marcescens). Initially, an in silico molecular docking study was performed to select the compounds with the greatest potential for QS inhibition, using structural variants of the CviR QS regulator of C. violaceum as target. Curcumin, capsaicin, resveratrol, gallic acid, and phloridizin presented good affinity to at least four CviR structural variants. These phenolic compounds were tested for antimicrobial activity, inhibition of biofilm formation, and anti-QS activity. The antimicrobial activity when combined with kanamycin was also assessed. Curcumin, capsaicin, and resveratrol inhibited up to 50% of violacein production by C. violaceum. Biofilm formation was inhibited by resveratrol up to 80% in A. hydrophila, by capsaicin and curcumin up to 40% in S. Montevideo and by resveratrol and capsaicin up to 60% in S. marcescens. Curcumin completely inhibited swarming motility in S. marcescens. Additionally, curcumin and resveratrol increased the sensitivity of the tested bacteria to kanamycin. These results indicate that curcumin and resveratrol at concentrations as low as 6μM are potential quorum sensing inhibitors besides having antimicrobial properties at higher concentrations, encouraging applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
| | | | | | - Uelinton Manoel Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Sholpan A, Lamas A, Cepeda A, Franco CM. Salmonella spp. quorum sensing: an overview from environmental persistence to host cell invasion. AIMS Microbiol 2021; 7:238-256. [PMID: 34250377 PMCID: PMC8255907 DOI: 10.3934/microbiol.2021015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Salmonella spp. is one of the main foodborne pathogens around the world. It has a cyclic lifestyle that combines host colonization with survival outside the host, implying that Salmonella has to adapt to different conditions rapidly in order to survive. One of these environments outside the host is the food production chain. In this environment, this foodborne pathogen has to adapt to different stress conditions such as acidic environments, nutrient limitation, desiccation, or biocides. One of the mechanisms used by Salmonella to survive under such conditions is biofilm formation. Quorum sensing plays an important role in the production of biofilms composed of cells from the same microorganism or from different species. It is also important in terms of food spoilage and regulates the pathogenicity and invasiveness of Salmonella by regulating Salmonella pathogenicity islands and flagella. Therefore, in this review, we will discuss the genetic mechanism involved in Salmonella quorum sensing, paying special attention to small RNAs and their post-regulatory activity in quorum sensing. We will further discuss the importance of this cell-to-cell communication mechanism in the persistence and spoilage of Salmonella in the food chain environment and the importance in the communication with microorganisms from different species. Subsequently, we will focus on the role of quorum sensing to regulate the virulence and invasion of host cells by Salmonella and on the interaction between Salmonella and other microbial species. This review offers an overview of the importance of quorum sensing in the Salmonella lifestyle.
Collapse
Affiliation(s)
- Amanova Sholpan
- Almaty Technological University, Almaty, Republic of Kazakhstan
| | | | | | | |
Collapse
|
35
|
Yu T, Ma M, Sun Y, Xu X, Qiu S, Yin J, Chen L. The effect of sublethal concentrations of benzalkonium chloride on the LuxS/AI-2 quorum sensing system, biofilm formation and motility of Escherichia coli. Int J Food Microbiol 2021; 353:109313. [PMID: 34175578 DOI: 10.1016/j.ijfoodmicro.2021.109313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/03/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022]
Abstract
Escherichia coli can survive improper disinfection processes, which is a potential source of contamination of food products. Benzalkonium chloride (BC) is a common disinfectant widely used in food industry. Bacterial quorum sensing (QS) plays a major role in food spoilage, biofilm formation and food-related pathogenesis. Understanding QS can help to control the growth of undesirable food-related bacteria. The LuxS/AI-2 QS system of E. coli has been confirmed to regulate many important phenotypes including biofilm formation and motility. In the current study, we aimed to investigate the effect of sublethal concentrations of BC on the LuxS/AI-2 system of E. coli isolates from retail meat samples, as well as bacterial biofilm formation and motility. Our results showed that sublethal concentrations of BC promoted AI-2 production in four test E. coli isolates. The results from microplate assay and confocal laser scanning microscopy (CLSM) analysis indicated that sublethal concentrations of BC enhanced biofilm formation of E. coli. When treated with sublethal concentrations of BC, exopolysaccharides (EPS) production during biofilm development increased significantly and swimming motility of tested isolates was also promoted. The expression levels of luxS, biofilm-associated genes and flagellar motility genes were increased by BC at sublethal concentrations. Our findings underline the importance of proper use of the disinfectant BC in food processing environments to control food contamination by E. coli.
Collapse
Affiliation(s)
- Tao Yu
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, Henan Province 453000, China; Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Xinxiang, Henan Province 453000, China
| | - Muyuan Ma
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Yaxi Sun
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, Henan Province 453000, China
| | - Xiaobo Xu
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, Henan Province 453000, China
| | - Shuxing Qiu
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, Henan Province 453000, China; Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Xinxiang, Henan Province 453000, China
| | - Junlei Yin
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, Henan Province 453000, China; Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Xinxiang, Henan Province 453000, China
| | - Leishan Chen
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, Henan Province 453000, China.
| |
Collapse
|
36
|
Efficacy of a Next Generation Quaternary Ammonium Chloride Sanitizer on Staphylococcus and Pseudomonas Biofilms and Practical Application in a Food Processing Environment. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Foodborne pathogens are known to adhere strongly to surfaces and can form biofilms in food processing facilities; therefore, their potential to contaminate manufactured foods underscores the importance of sanitation. The objectives of this study were to (1) examine the efficacy of a new-generation sanitizer (Decon7) on Staphylococcus and Pseudomonas biofilms, (2) identify biofilm bacteria from workers’ boots in relation to previous sanitizer chemistry, (3) validate the efficacy of Decon7 on biofilm from workers’ boots from an abattoir/food processing environment, and (4) compare the sensitivity of isolated boot biofilm bacteria to new- and early (Bi-Quat)-generation QAC sanitizers. Decon7 was applied at two concentrations (5%, 10%) and was shown to be effective within 1 min of exposure against enhanced biofilms of Staphylococcus spp. and Pseudomonas spp. in 96-well microplates. Decon7 was also used to treat workers’ boots that had accumulated high levels of biofilm bacteria due to ineffective sanitization. Bacteria isolated before enzyme/sanitizer treatment were identified through 16S rRNA PCR and DNA sequencing. All treatments were carried out in triplicate and analyzed by one-way RM-ANOVA or ANOVA using the Holm–Sidak test for pairwise multiple comparisons to determine significant differences (p < 0.05). The data show a significant difference between Decon7 sanitizer treatment and untreated control groups. There was a ~4–5 log reduction in Staphylococcus spp. and Pseudomonas spp. (microplate assay) within the first 1 min of treatment and also a > 3-log reduction in the bacterial population observed in the biofilms from workers’ boots. The new next-generation QAC sanitizers are more effective than prior QAC sanitizers, and enzyme pre-treatment can facilitate biofilm sanitizer penetration on food contact surfaces. The rotation of sanitizer chemistries may prevent the selective retention of chemistry-tolerant microorganisms in processing facilities.
Collapse
|
37
|
DeFlorio W, Liu S, White AR, Taylor TM, Cisneros-Zevallos L, Min Y, Scholar EMA. Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross-contamination of food contact surfaces by bacteria. Compr Rev Food Sci Food Saf 2021; 20:3093-3134. [PMID: 33949079 DOI: 10.1111/1541-4337.12750] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
Illness as the result of ingesting bacterially contaminated foodstuffs represents a significant annual loss of human quality of life and economic impact globally. Significant research investment has recently been made in developing new materials that can be used to construct food contacting tools and surfaces that might minimize the risk of cross-contamination of bacteria from one food item to another. This is done to mitigate the spread of bacterial contamination and resultant foodborne illness. Internet-based literature search tools such as Web of Science, Google Scholar, and Scopus were utilized to investigate publishing trends within the last 10 years related to the development of antimicrobial and antifouling surfaces with potential use in food processing applications. Technologies investigated were categorized into four major groups: antimicrobial agent-releasing coatings, contact-based antimicrobial coatings, superhydrophobic antifouling coatings, and repulsion-based antifouling coatings. The advantages for each group and technical challenges remaining before wide-scale implementation were compared. A diverse array of emerging antimicrobial and antifouling technologies were identified, designed to suit a wide range of food contact applications. Although each poses distinct and promising advantages, significant further research investment will likely be required to reliably produce effective materials economically and safely enough to equip large-scale operations such as farms, food processing facilities, and kitchens.
Collapse
Affiliation(s)
- William DeFlorio
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Andrew R White
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | | | - Luis Cisneros-Zevallos
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.,Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Ethan M A Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
38
|
Detecting Bacterial Biofilms Using Fluorescence Hyperspectral Imaging and Various Discriminant Analyses. SENSORS 2021; 21:s21062213. [PMID: 33809942 PMCID: PMC8004291 DOI: 10.3390/s21062213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 01/16/2023]
Abstract
Biofilms formed on the surface of agro-food processing facilities can cause food poisoning by providing an environment in which bacteria can be cultured. Therefore, hygiene management through initial detection is important. This study aimed to assess the feasibility of detecting Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium) on the surface of food processing facilities by using fluorescence hyperspectral imaging. E. coli and S. typhimurium were cultured on high-density polyethylene and stainless steel coupons, which are the main materials used in food processing facilities. We obtained fluorescence hyperspectral images for the range of 420–730 nm by emitting UV light from a 365 nm UV light source. The images were used to perform discriminant analyses (linear discriminant analysis, k-nearest neighbor analysis, and partial-least squares discriminant analysis) to identify and classify coupons on which bacteria could be cultured. The discriminant performances of specificity and sensitivity for E. coli (1–4 log CFU·cm−2) and S. typhimurium (1–6 log CFU·cm−2) were over 90% for most machine learning models used, and the highest performances were generally obtained from the k-nearest neighbor (k-NN) model. The application of the learning model to the hyperspectral image confirmed that the biofilm detection was well performed. This result indicates the possibility of rapidly inspecting biofilms using fluorescence hyperspectral images.
Collapse
|
39
|
Yashkin A, Rayo J, Grimm L, Welch M, Meijler MM. Short-chain reactive probes as tools to unravel the Pseudomonas aeruginosa quorum sensing regulon. Chem Sci 2021; 12:4570-4581. [PMID: 34163722 PMCID: PMC8179429 DOI: 10.1039/d0sc04444j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/28/2021] [Indexed: 11/21/2022] Open
Abstract
In recent years, the world has seen a troubling increase in antibiotic resistance among bacterial pathogens. In order to provide alternative strategies to combat bacterial infections, it is crucial deepen our understanding into the mechanisms that pathogens use to thrive in complex environments. Most bacteria use sophisticated chemical communication systems to sense their population density and coordinate gene expression in a collective manner, a process that is termed "quorum sensing" (QS). The human pathogen Pseudomonas aeruginosa uses several small molecules to regulate QS, and one of them is N-butyryl-l-homoserine lactone (C4-HSL). Using an activity-based protein profiling (ABPP) strategy, we designed biomimetic probes with a photoreactive group and a 'click' tag as an analytical handle. Using these probes, we have identified previously uncharacterized proteins that are part of the P. aeruginosa QS network, and we uncovered an additional role for this natural autoinducer in the virulence regulon of P. aeruginosa, through its interaction with PhzB1/2 that results in inhibition of pyocyanin production.
Collapse
Affiliation(s)
- Alex Yashkin
- Dept. of Chemistry, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva 8410501 Israel
| | - Josep Rayo
- Dept. of Chemistry, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva 8410501 Israel
| | - Larson Grimm
- Dept. of Biochemistry, University of Cambridge UK
| | - Martin Welch
- Dept. of Biochemistry, University of Cambridge UK
| | - Michael M Meijler
- Dept. of Chemistry, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Be'er Sheva 8410501 Israel
| |
Collapse
|
40
|
Gui M, Zhang Y, Gao L, Li P. Effect of AHL-lactonase and nisin on microbiological, chemical and sensory quality of vacuum packaged sturgeon storage at 4ºC. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1872621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Meng Gui
- Aquatic Product Processing and Quality Safety Research Department, Beijing Fisheries Research Institute, Beijing, China
| | - Ying Zhang
- Aquatic Product Processing and Quality Safety Research Department, Beijing Fisheries Research Institute, Beijing, China
| | - Liang Gao
- Aquatic Product Processing and Quality Safety Research Department, Beijing Fisheries Research Institute, Beijing, China
| | - Pinglan Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Quorum sensing modulatory and biofilm inhibitory activity of Plectranthus barbatus essential oil: a novel intervention strategy. Arch Microbiol 2021; 203:1767-1778. [PMID: 33474610 DOI: 10.1007/s00203-020-02171-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/07/2020] [Accepted: 12/27/2020] [Indexed: 01/05/2023]
Abstract
The essential oil (EO) from the roots of Plectranthus barbatus Andr. (Syn. Coleus forskohlii Briq.) was evaluated for quorum sensing (QS) inhibitory activity. P. barbatus EO was screened for inhibition of QS regulated violacein production in Chromobacterium violaceum (ATCC 12472) wild-type strain. At inhibitory (6.25% v/v) and sub-inhibitory concentrations (3.125% v/v) of the EO, dose-dependent response in the inhibition of violacein production was observed in C. violaceum. Similarly, sub-MIC (6.25% v/v) of P. barbatus EO disrupted QS regulated biofilm formation by 27.87% and inhibited swarming and twitching motility in Pseudomonas aeruginosa PA01 implying its anti-infective and QS modulatory activity. Fluorescence microscopy studies confirmed the disruption of biofilm formation by EO in P. aeruginosa PAO1. Promising antibacterial activity was recorded at concentrations as low as 3.12% v/v for Listeria monocytogenes (ATCC 13932) and at 6.25% v/v for both Salmonella enterica subsp. enterica serovar Typhimurium (ATCC 25241) and Escherichia coli (ATCC 11775). Furthermore, significant dose-dependent inhibition was observed for biofilm formation and motility in all the tested pathogens in different treated concentrations. GC-MS analysis revealed α-pinene, endo-borneol, bornyl acetate, 1-Hexyl-2-Nitrocyclohexane as the major phytoconstituents. P. barbatus EO or its constituent compounds with QS modulatory, antimicrobial and biofilm inhibitory property could be potential new-age dietary source based intervention and preservation technologies.
Collapse
|
42
|
Zou J, Liu Y, Guo R, Tang Y, Shi Z, Zhang M, Wu W, Chen Y, Hou K. An In Vitro Coumarin-Antibiotic Combination Treatment of Pseudomonas aeruginosa Biofilms. Nat Prod Commun 2021. [DOI: 10.1177/1934578x20987744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The drug resistance of Pseudomonas aeruginosa is a worldwide problem due to its great threat to human health. A crude extract of Angelica dahurica has been proved to have antibacterial properties, which suggested that it may be able to inhibit the biofilm formation of P. aeruginosa; initial exploration had shown that the crude extract could inhibit the growth of P. aeruginosa effectively. After the adaptive dose of coumarin was confirmed to be a potential treatment for the bacteria’s drug resistance, “coumarin-antibiotic combination treatments” (3 coumarins—simple coumarin, imperatorin, and isoimperatorin—combined with 2 antibiotics—ampicillin and ceftazidime) were examined to determine their capability to inhibit P. aeruginosa. The final results showed that (1) coumarin with either ampicillin or ceftazidime significantly inhibited the biofilm formation of P. aeruginosa; (2) coumarin could directly destroy mature biofilms; and (3) the combination treatment can synergistically enhance the inhibition of biofilm formation, which could significantly reduce the usage of antibiotics and bacterial resistance. To sum up, a coumarin-antibiotic combination treatment may be a potential way to inhibit the biofilm growth of P. aeruginosa and provides a reference for antibiotic resistance treatment.
Collapse
Affiliation(s)
- Jinpeng Zou
- Department of Production of Special Utilizated Plant, Agronomy College, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yang Liu
- Department of Production of Special Utilizated Plant, Agronomy College, Sichuan Agricultural University, Chengdu, P. R. China
| | - Ruiwei Guo
- Department of Production of Special Utilizated Plant, Agronomy College, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yu Tang
- Department of Production of Special Utilizated Plant, Agronomy College, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhengrong Shi
- Department of Production of Special Utilizated Plant, Agronomy College, Sichuan Agricultural University, Chengdu, P. R. China
| | - Mengnan Zhang
- Department of Production of Special Utilizated Plant, Agronomy College, Sichuan Agricultural University, Chengdu, P. R. China
| | - Wei Wu
- Department of Production of Special Utilizated Plant, Agronomy College, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yinyin Chen
- Department of Production of Special Utilizated Plant, Agronomy College, Sichuan Agricultural University, Chengdu, P. R. China
| | - Kai Hou
- Department of Production of Special Utilizated Plant, Agronomy College, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
43
|
Rodrigues AC, Almeida FAD, André C, Vanetti MCD, Pinto UM, Hassimotto NMA, Vieira ÉNR, Andrade NJD. Phenolic extract of Eugenia uniflora L. and furanone reduce biofilm formation by Serratia liquefaciens and increase its susceptibility to antimicrobials. BIOFOULING 2020; 36:1031-1048. [PMID: 33187450 DOI: 10.1080/08927014.2020.1844881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/01/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Serratia liquefaciens is a spoilage microorganism of relevance in the dairy industry because it is psychrotrophic, able to form biofilm, and produces thermoresistant proteases and lipases. Phenolic compounds and furanones have been studied as inhibitors of biofilm formation. In this study, the potential of the pulp phenolic extract of Eugenia uniflora L. orange fruits, also called pitanga, and furanone C30 on the inhibition of biofilm formation by S. liquefaciens L53 and the susceptibility to different antimicrobials were evaluated. The pulp phenolic extract of pitanga had a high total phenolic content, being mainly composed of glycosylated quercetins and ellagitannins. Sub-inhibitory concentrations of this extract and furanone reduced biofilm formation by S. liquefaciens on polystyrene and the amount of polysaccharides, proteins and extracellular DNA in the biofilms. These biofilms were also more susceptible to kanamycin. The combinations of furanone with phenolic extract of pitanga or kanamycin showed a synergistic effect with total growth inhibition of S. liquefaciens.
Collapse
Affiliation(s)
| | - Felipe Alves de Almeida
- Department of Nutrition, Universidade Federal de Juiz de Fora, Governador Valadares, MG, Brazil
| | - Cleriane André
- Department of Nutrition, Centro Universitário Salesiano, Vitória, ES, Brazil
| | | | - Uelinton Manoel Pinto
- Food Research Center, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
44
|
dos Santos RM, Diaz PAE, Lobo LLB, Rigobelo EC. Use of Plant Growth-Promoting Rhizobacteria in Maize and Sugarcane: Characteristics and Applications. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00136] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
45
|
Zhu Y, Sang X, Li X, Zhang Y, Hao H, Bi J, Zhang G, Hou H. Effect of quorum sensing and quorum sensing inhibitors on the expression of serine protease gene in Hafnia alvei H4. Appl Microbiol Biotechnol 2020; 104:7457-7465. [PMID: 32676711 DOI: 10.1007/s00253-020-10730-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/31/2020] [Accepted: 06/07/2020] [Indexed: 12/01/2022]
Abstract
The serp gene codes for a protease that is considered to be an important factor associated with quorum sensing (QS)-based food spoilage caused by microorganisms. In this study, we evaluated the effect of temperature (4-37 °C) and QS inhibitors on the production of N-acyl-L-homoserine lactones (AHLs) and relative expression of the luxR/I, as well as serp in Hafnia alvei H4. Production of AHLs and expression of luxR/I were found to reach maximum levels at 10 °C, suggesting that the QS system of H. alvei H4 might have higher activity at low temperatures; similar result was also obtained for serp expression. Mutants of H. alvei H4 deficient in QS were used to identify the regulation of QS on serp expression. Significant reduction (P < 0.05) in serp expression was found in the mutants ∆luxR, ∆luxI, and ∆luxR/I, with ∆luxI and ∆luxR/I showing greater reduction than ∆luxR. Minimum inhibition concentrations (MIC) of Benzyl isothiocyanate and 3-Methylthiopropyl isothiocyanate for H. alvei H4 were determined to be 7.813 and 15.625 mM, respectively. Furthermore, the expression of serp, as well as that of luxR and luxI, was significantly repressed (P < 0.05) by the two QS inhibitors at 1/8 MIC and 1/16 MIC, indicating that these inhibitors might repress serp expression through affecting luxR and luxI expression in H. alvei H4. The findings of this study, therefore, suggested that food spoilage caused by H. alvei could be controlled through the application of QS inhibitors.
Collapse
Affiliation(s)
- Yaolei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China
| | - Xue Sang
- School of Food Science and Technology, Dalian Polytechnic University, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China
| | - Xue Li
- School of Food Science and Technology, Dalian Polytechnic University, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China
| | - Yanan Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China
| | - Hongshun Hao
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China. .,Liaoning Key Lab for Aquatic Processing Quality and Safety, No.1, Qinggongyuan, Ganjingzi District, Dalian, Liaoning, People's Republic of China.
| |
Collapse
|
46
|
Zhang C, Li Y, Meng CX, Yang MJ, Wang YG, Cai ZH, Zuo P, Zhou J. Complete genome sequence of Acinetobacter baumanni J1, a quorum sensing-producing algicidal bacterium, isolated from Eastern Pacific Ocean. Mar Genomics 2020; 52:100719. [DOI: 10.1016/j.margen.2019.100719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 11/15/2022]
|
47
|
|
48
|
Combined effects of Allium sativum and Cuminum cyminum essential oils on planktonic and biofilm forms of Salmonella typhimurium isolates. 3 Biotech 2020; 10:315. [PMID: 32596100 DOI: 10.1007/s13205-020-02286-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
Sa lmonella typhimurium (S. typhimurium) represents an important global public health problem and has the ability to survive under desiccation conditions in foods and food processing facilities for years. The aim of this study was to investigate the effects of Allium sativum (A. sativum) and Cuminum cyminum (C. cyminum) essential oils (EOs) against planktonic growth, biofilm formation and quorum sensing (QS) of S. Typhimurium isolates, the strong biofilm producers. The major components of EOs were determined by gas chromatography-mass spectrometry (GC-MS). Biofilm formation of S. Typhimurium isolates was measured by crystal violet staining. Then, the effects of the EOs on the planktonic cell growth (using determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)), measurement of the synergistic effects of EOs (using checkerboard method), biofilm formation (using microtiter-plate test and scanning electron microscope (SEM)), and expression of QS and cellulose synthesis genes (using quantitative real-time PCR) were assessed. Finally, tetrazolium-based colorimetric (MTT) assay was used to examine EOs cytotoxicity on the Vero cell line. GC-MS analysis showed that terpineol, carene and pinene in C. cyminum EO and sulfur compounds in A. sativum EO were the major components of the plant extract. The Geometric mean of MIC values of the A. sativum and C. cyminum were 0.66 and 2.62 μL mL-1, respectively. The geometric means of the fractional inhibitory concentration index (FICi) for both EOs were calculated as 1.05. The qPCR results showed that MIC/2 concentrations of both EOs significantly down-regulated of QS (sdiA and luxS) and cellulose synthesis (csgD and adrA) genes. Scanning electron microscopy showed the EOs reduced the amount of S. Typhimurium mature biofilm. In general, we showed that C. cyminum and A. sativum EOs can be considered as the potential agents against planktonic and biofilm form of S. Typhimurium without any concern of cytotoxic effect at 4 MIC concentrations on the eukaryotic Vero cells.
Collapse
|
49
|
Kotian A, Aditya V, Jazeela K, Karunasagar I, Karunasagar I, Deekshit VK. Effect of bile on growth and biofilm formation of non-typhoidal salmonella serovars isolated from seafood and poultry. Res Microbiol 2020; 171:165-173. [PMID: 32569709 DOI: 10.1016/j.resmic.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 11/16/2022]
Abstract
Bacterial cells adopt various strategies to adapt themselves in diverse environmental conditions. Salmonella is one such bacteria with diverse mechanisms to survive, replicate and infect in wide host range. This study aims at investigating the biofilm-forming ability of multidrug-resistant and sensitive Salmonella serovars on exposure to bile. Antibiogram of all the isolates was determined by disk diffusion method and their biofilm-forming ability in the presence or absence of bile was assessed by microtiter plate assay. Biofilm results were validated by calcofluor, Congo red plate and test tube method. Few isolates were selected for further study of their expression of biofilm related genes on exposure to bile using real time PCR. Among the 59 isolates of Salmonella isolated from seafood and poultry, 30 isolates were multi-drug resistant (MDR). Under control conditions, 57% (n = 25) of the serovars were able to form biofilm. While, 86% (n = 51) of the serovars produced biofilm in the presence of bile. The relative gene expression study of the selected serovars for 8 different genes showed a striking difference in the expression levels, supporting the hypothesis that the presence of bile triggers biofilm formation in food associated strains of non-typhoidal Salmonella by upregulation of genes involved in biofilm production.
Collapse
Affiliation(s)
- Akshatha Kotian
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Vankadari Aditya
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Kadeeja Jazeela
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Iddya Karunasagar
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Indrani Karunasagar
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| | - Vijaya Kumar Deekshit
- Nitte University Center for Science Education and Research, Division of Infectious Diseases, Nitte (Deemed to Be University), Deralakatte, Mangaluru 575018, Karnataka, India.
| |
Collapse
|
50
|
Food color 'Azorubine' interferes with quorum sensing regulated functions and obliterates biofilm formed by food associated bacteria: An in vitro and in silico approach. Saudi J Biol Sci 2020; 27:1080-1090. [PMID: 32256169 PMCID: PMC7105693 DOI: 10.1016/j.sjbs.2020.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Accepted: 01/06/2020] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing (QS) plays a crucial role in different stages of biofilm development, virulence production, and subsequently to the growth of bacteria in food environments. Biofilm mediated spoilage of food is one of the ongoing challenge faced by the food industry worldwide as it incurs substantial economic losses and leads to various health issues. In the present investigation, we studied the interference of quorum sensing, its regulated virulence functions, and biofilm in food-associated bacteria by colorant azorubine. In vitro bioassays demonstrated significant inhibition of QS and its coordinated virulence functions in Chromobacterium violaceum 12472 (violacein) and Pseudomonas aeruginosa PAO1 (elastase, protease, pyocyanin, and alginate). Further, the decrease in the production EPS (49–63%) and swarming motility (61–83%) of the pathogens was also recorded at sub-MICs. Azorubine demonstrated broad-spectrum biofilm inhibitory potency (50–65%) against Chromobacterium violaceum, Pseudomonas aeruginosa, E. coli O157:H7, Serratia marcescens, and Listeria monocytogenes. ROS generation due to the interaction between bacteria and azorubine could be responsible for the biofilm inhibitory action of the food colorant. Findings of the in vitro studies were well supported by molecular docking and simulation analysis of azorubine and QS virulence proteins. Azorubine showed strong binding to PqsA as compared to other virulent proteins (LasR, Vfr, and QscR). Thus, it is concluded that azorubine is a promising candidate to ensure food safety by curbing the menace of bacterial QS and biofilm-based spoilage of food and reduce economic losses.
Collapse
|