1
|
Zhang C, Bosma TNP, Atashgahi S, Smidt H. Genome-resolved transcriptomics reveals novel PCE-dehalogenating bacteria from Aarhus Bay sediments. mSystems 2025:e0150324. [PMID: 40237482 DOI: 10.1128/msystems.01503-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Organohalide-respiring bacteria (OHRB) are keystone microbes in bioremediation of sites contaminated with organohalides and in natural halogen cycling. Known OHRB belong to distinct genera within the phyla Chloroflexota, Proteobacteria, and Firmicutes, whereas information about novel OHRB mediating natural halogen cycling remains scarce. In this study, we applied a genome-resolved transcriptomic approach to characterize the identity and activity of OHRB from tetrachloroethene respiring cultures previously enriched from sediments of Aarhus Bay. Combining short- and long-read sequencing approaches, we assembled 37 medium-quality bins with over 75% completeness and less than 5% contamination. Sixteen bins harbored RDase genes and were affiliated taxonomically to the class of Bacilli and phyla of Bacteroidota, Synergistota, and Spirochaetota, which have not been reported to catalyze reductive dehalogenation. Among the 16 bins, bin.26, phylogenetically close to the genus Vulcanibacillus (phylum Firmicutes), contained an unprecedented 97 reductive dehalogenase (RDase) genes. Of these, 84 RDase genes of bin.26 were transcribed during tetrachloroethene dechlorination in addition to RDase genes from the members of Synergistales (bin.5 and bin.32) and Bacteroidales (bin.18 and bin.24). Moreover, metatranscriptome analysis suggested that the RDase genes were likely under the regulation of transcriptional regulators not previously associated with organohalide respiration, such as HrcA and SigW, which are known to respond to abiotic environmental stresses, such as temperature changes. Combined application of genomic methods enabled us to pinpoint novel OHRB from pristine environments not previously known to mediate reductive dechlorination and to add to the current knowledge of the diversity, activity, and regulation of RDase genes.IMPORTANCEPristine marine environment is the major reservoir for naturally produced organohalides, in which reductive dehalogenation underneath plays an important role in the overall cycling of these compounds. Here, we obtain some novel OHRB genomes from Aarhus Bay marine sediments, which are phylogenetically distant to the well-documented OHRB and widely distributed across the bacterial phyla, such as Bacteroidota, Synergistota, and Spirochaetota. Furthermore, transcriptional profiles unravel that these RDase genes are induced differently, and their activity is controlled by diverse regulatory systems. Accordingly, elucidating the reductive dehalogenation of pristine marine environments substantially advances our understanding of the diversity, phylogeny, and regulatory variety of dehalogenating bacteria contributing to the global halogen cycle.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Tom N P Bosma
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Shams S, Lima C, Xu Y, Ahmed S, Goodacre R, Muhamadali H. Optical photothermal infrared spectroscopy: A novel solution for rapid identification of antimicrobial resistance at the single-cell level via deuterium isotope labeling. Front Microbiol 2023; 14:1077106. [PMID: 36819022 PMCID: PMC9929359 DOI: 10.3389/fmicb.2023.1077106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
The rise and extensive spread of antimicrobial resistance (AMR) has become a growing concern, and a threat to the environment and human health globally. The majority of current AMR identification methods used in clinical setting are based on traditional microbiology culture-dependent techniques which are time-consuming or expensive to be implemented, thus appropriate antibiotic stewardship is provided retrospectively which means the first line of treatment is to hope that a broad-spectrum antibiotic works. Hence, culture-independent and single-cell technologies are needed to allow for rapid detection and identification of antimicrobial-resistant bacteria and to support a more targeted and effective antibiotic therapy preventing further development and spread of AMR. In this study, for the first time, a non-destructive phenotyping method of optical photothermal infrared (O-PTIR) spectroscopy, coupled with deuterium isotope probing (DIP) and multivariate statistical analysis was employed as a metabolic fingerprinting approach to detect AMR in Uropathogenic Escherichia coli (UPEC) at both single-cell and population levels. Principal component-discriminant function analysis (PC-DFA) of FT-IR and O-PTIR spectral data showed clear clustering patterns as a result of distinctive spectral shifts (C-D signature peaks) originating from deuterium incorporation into bacterial cells, allowing for rapid detection and classification of sensitive and resistant isolates at the single-cell level. Furthermore, the single-frequency images obtained using the C-D signature peak at 2,163 cm-1 clearly displayed the reduced ability of the trimethoprim-sensitive strain for incorporating deuterium when exposed to this antibiotic, compared to the untreated condition. Hence, the results of this study indicated that O-PTIR can be employed as an efficient tool for the rapid detection of AMR at the single-cell level.
Collapse
Affiliation(s)
- Sahand Shams
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Yun Xu
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Shwan Ahmed
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Environment and Quality Control, Kurdistan Institution for Strategic Studies and Scientific Research, Sulaymaniyah, Kurdistan Region, Iraq
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
4
|
Brandau L, Weis S, Weyland M, Berger FK, Schnell S, Schäfer KH, Egert M. RNA-based stable isotope probing provides no indication for rapid α-synuclein assimilation by murine gut bacteria. Access Microbiol 2022; 4:acmi000345. [PMID: 36003361 PMCID: PMC9394525 DOI: 10.1099/acmi.0.000345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/19/2022] [Indexed: 11/23/2022] Open
Abstract
In Parkinson’s disease (PD), α-synuclein is a key protein in the process of neurodegeneration. Besides motor symptoms, most PD patients additionally suffer from gastrointestinal tract (GIT) dysfunctions, even several years before the onset of motor disabilities. Studies have reported a dysbiosis of gut bacteria in PD patients compared to healthy controls and have suggested that the enteric nervous system (ENS) can be involved in the development of the disease. As α-synuclein was found to be secreted by neurons of the ENS, we used RNA-based stable isotope probing (RNA-SIP) to identify gut bacteria that might be able to assimilate this protein. The gut contents of 24 mice were pooled and incubated with isotopically labelled (13C) and unlabelled (12C) α-synuclein. After incubation for 0, 4 and 24 h, RNA was extracted from the incubations and separated by density gradient centrifugation. However, RNA quantification of density-resolved fractions revealed no incorporation of the 13C isotope into the extracted RNA, suggesting that α-synuclein was not assimilated by the murine gut bacteria. Potential reasons and consequences for follow-up-studies are discussed.
Collapse
Affiliation(s)
- Lena Brandau
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Jakob-Kienzle-Straße 17, Villingen-Schwenningen, Germany
| | - Severin Weis
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Jakob-Kienzle-Straße 17, Villingen-Schwenningen, Germany
| | - Maximilian Weyland
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Working Group Enteric Nervous System, Amerikastraße 1, Zweibrücken, Germany
| | - Fabian K. Berger
- German National Reference Centre for Clostridioides (Clostridium) difficile, Homburg/Saar-Münster-Coesfeld, Germany
- Institute for Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße 100, Homburg/Saar, Germany
| | - Sylvia Schnell
- Research Centre for BioSystems, Land Use, and Nutrition (IFZ), Institute of Applied Microbiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Karl-Herbert Schäfer
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, Working Group Enteric Nervous System, Amerikastraße 1, Zweibrücken, Germany
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Jakob-Kienzle-Straße 17, Villingen-Schwenningen, Germany
| |
Collapse
|
5
|
Stable-Isotope-Informed, Genome-Resolved Metagenomics Uncovers Potential Cross-Kingdom Interactions in Rhizosphere Soil. mSphere 2021; 6:e0008521. [PMID: 34468166 PMCID: PMC8550312 DOI: 10.1128/msphere.00085-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The functioning, health, and productivity of soil are intimately tied to a complex network of interactions, particularly in plant root-associated rhizosphere soil. We conducted a stable-isotope-informed, genome-resolved metagenomic study to trace carbon from Avena fatua grown in a 13CO2 atmosphere into soil. We collected paired rhizosphere and nonrhizosphere soil at 6 and 9 weeks of plant growth and extracted DNA that was then separated by density using ultracentrifugation. Thirty-two fractions from each of five samples were grouped by density, sequenced, assembled, and binned to generate 55 unique bacterial genomes that were ≥70% complete. We also identified complete 18S rRNA sequences of several 13C-enriched microeukaryotic bacterivores and fungi. We generated 10 circularized bacteriophage (phage) genomes, some of which were the most labeled entities in the rhizosphere, suggesting that phage may be important agents of turnover of plant-derived C in soil. CRISPR locus targeting connected one of these phage to a Burkholderiales host predicted to be a plant pathogen. Another highly labeled phage is predicted to replicate in a Catenulispora sp., a possible plant growth-promoting bacterium. We searched the genome bins for traits known to be used in interactions involving bacteria, microeukaryotes, and plant roots and found DNA from heavily 13C-labeled bacterial genes thought to be involved in modulating plant signaling hormones, plant pathogenicity, and defense against microeukaryote grazing. Stable-isotope-informed, genome-resolved metagenomics indicated that phage can be important agents of turnover of plant-derived carbon in soil. IMPORTANCE Plants grow in intimate association with soil microbial communities; these microbes can facilitate the availability of essential resources to plants. Thus, plant productivity commonly depends on interactions with rhizosphere bacteria, viruses, and eukaryotes. Our work is significant because we identified the organisms that took up plant-derived organic C in rhizosphere soil and determined that many of the active bacteria are plant pathogens or can impact plant growth via hormone modulation. Further, by showing that bacteriophage accumulate CO2-derived carbon, we demonstrated their vital roles in redistribution of plant-derived C into the soil environment through bacterial cell lysis. The use of stable-isotope probing (SIP) to identify consumption (or lack thereof) of root-derived C by key microbial community members within highly complex microbial communities opens the way for assessing manipulations of bacteria and phage with potentially beneficial and detrimental traits, ultimately providing a path to improved plant health and soil carbon storage.
Collapse
|
6
|
Modulating the Gut Microbiota of Humans by Dietary Intervention with Plant Glycans. Appl Environ Microbiol 2021; 87:AEM.02757-20. [PMID: 33355114 DOI: 10.1128/aem.02757-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human colon contains a community of microbial species, mostly bacteria, which is often referred to as the gut microbiota. The community is considered essential to human well-being by conferring additional energy-harvesting capacity, niche exclusion of pathogens, and molecular signaling activities that are integrated into human physiological processes. Plant polysaccharides (glycans, dietary fiber) are an important source of carbon and energy that supports the maintenance and functioning of the gut microbiota. Therefore, the daily quantity and quality of plant glycans consumed by the human host have the potential to influence health. Members of the gut microbiota differ in ability to utilize different types of plant glycans. Dietary interventions with specific glycans could modulate the microbiota, counteracting ecological perturbations that disrupt the intricate relationships between microbiota and host (dysbiosis). This review considers prospects and research options for modulation of the gut microbiota by the formulation of diets that, when consumed habitually, would correct dysbiosis by building diverse consortia that boost functional resilience. Traditional "prebiotics" favor bifidobacteria and lactobacilli, whereas dietary mixtures of plant glycans that are varied in chemical complexity would promote high-diversity microbiotas. It is concluded that research should aim at improving knowledge of bacterial consortia that, through shared nourishment, degrade and ferment plant glycans. The consortia may vary in composition from person to person, but functional outputs will be consistent in a given context because of metabolic redundancy among bacteria. Thus, the individuality of gut microbiotas could be encompassed, functional resilience encouraged, and correction of dysbiosis achieved.
Collapse
|
7
|
Di Ciaula A, Stella A, Bonfrate L, Wang DQH, Portincasa P. Gut Microbiota between Environment and Genetic Background in Familial Mediterranean Fever (FMF). Genes (Basel) 2020; 11:1041. [PMID: 32899315 PMCID: PMC7563178 DOI: 10.3390/genes11091041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract hosts the natural reservoir of microbiota since birth. The microbiota includes various bacteria that establish a progressively mutual relationship with the host. Of note, the composition of gut microbiota is rather individual-specific and, normally, depends on both the host genotype and environmental factors. The study of the bacterial profile in the gut demonstrates that dominant and minor phyla are present in the gastrointestinal tract with bacterial density gradually increasing in oro-aboral direction. The cross-talk between bacteria and host within the gut strongly contributes to the host metabolism, to structural and protective functions. Dysbiosis can develop following aging, diseases, inflammatory status, and antibiotic therapy. Growing evidences show a possible link between the microbiota and Familial Mediterranean Fever (FMF), through a shift of the relative abundance in microbial species. To which extent such perturbations of the microbiota are relevant in driving the phenotypic manifestations of FMF with respect to genetic background, remains to be further investigated.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| | - Alessandro Stella
- Section of Medical Genetics, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy;
| | - Leonilde Bonfrate
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| | - David Q. H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| |
Collapse
|
8
|
Huang RY, Raymond Herr D, Moochhala S. Manipulation of Alcohol and Short-Chain Fatty Acids in the Metabolome of Commensal and Virulent Klebsiella pneumoniae by Linolenic Acid. Microorganisms 2020; 8:microorganisms8050773. [PMID: 32455676 PMCID: PMC7285277 DOI: 10.3390/microorganisms8050773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Endogenous alcohol produced by the gut microbiome is transported via the bloodstream to the liver for detoxification. Gut dysbiosis can result in chronic excess alcohol production that contributes to the development of hepatic steatosis. The aim of this study was to examine whether linolenic acid can manipulate the production of harmful alcohol and beneficial short-chain fatty acids (SCFAs) in the metabolome of commensal Klebsiella pneumoniae (K. pneumoniae) and the virulent K. pneumoniae K1 serotype. Glucose fermentation by the K. pneumoniae K1 serotype yielded increased production of alcohol and decreased SCFAs (especially acetate and propionate) compared to those of commensal K. pneumoniae. However, the use of linolenic acid instead of glucose significantly reduced alcohol and increased SCFAs in the fermentation media of the K. pneumoniae K1 serotype. The work highlights the value of shaping the microbial metabolome using linolenic acid, which can potentially regulate the gut–liver axis for the prevention and treatment of alcohol-induced liver diseases.
Collapse
Affiliation(s)
- Ryan Yuki Huang
- Canyon Crest Academy, San Diego, CA 92130, USA;
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA
| | - Deron Raymond Herr
- Department of Pharmacology, National University of Singapore, Singapore 117600, Singapore;
| | - Shabbir Moochhala
- Department of Pharmacology, National University of Singapore, Singapore 117600, Singapore;
- Correspondence: ; Tel.: +65-8511-0112
| |
Collapse
|
9
|
Kovatcheva-Datchary P, Shoaie S, Lee S, Wahlström A, Nookaew I, Hallen A, Perkins R, Nielsen J, Bäckhed F. Simplified Intestinal Microbiota to Study Microbe-Diet-Host Interactions in a Mouse Model. Cell Rep 2019; 26:3772-3783.e6. [PMID: 30917328 PMCID: PMC6444000 DOI: 10.1016/j.celrep.2019.02.090] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/22/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota can modulate human metabolism through interactions with macronutrients. However, microbiota-diet-host interactions are difficult to study because bacteria interact in complex food webs in concert with the host, and many of the bacteria are not yet characterized. To reduce the complexity, we colonize mice with a simplified intestinal microbiota (SIM) composed of ten sequenced strains isolated from the human gut with complementing pathways to metabolize dietary fibers. We feed the SIM mice one of three diets (chow [fiber rich], high-fat/high-sucrose, or zero-fat/high-sucrose diets [both low in fiber]) and investigate (1) how dietary fiber, saturated fat, and sucrose affect the abundance and transcriptome of the SIM community, (2) the effect of microbe-diet interactions on circulating metabolites, and (3) how microbiota-diet interactions affect host metabolism. Our SIM model can be used in future studies to help clarify how microbiota-diet interactions contribute to metabolic diseases.
Collapse
Affiliation(s)
- Petia Kovatcheva-Datchary
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, SE1 9RT, UK
| | - Sunjae Lee
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, SE1 9RT, UK
| | - Annika Wahlström
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Intawat Nookaew
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41345, Sweden
| | - Anna Hallen
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Rosie Perkins
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41345, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, 41345, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
10
|
Evert C, Loesekann T, Bhat G, Shajahan A, Sonon R, Azadi P, Hunter RC. Generation of 13C-Labeled MUC5AC Mucin Oligosaccharides for Stable Isotope Probing of Host-Associated Microbial Communities. ACS Infect Dis 2019; 5:385-393. [PMID: 30623643 DOI: 10.1021/acsinfecdis.8b00296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stable isotope probing (SIP) has emerged as a powerful tool to address key questions about microbiota structure and function. To date, diverse isotopically labeled substrates have been used to characterize in situ growth activity of specific bacterial taxa and have revealed the flux of bioavailable substrates through microbial communities associated with health and disease. A major limitation to the growth of the field is the dearth of biologically relevant "heavy" labeled substrates. Mucin glycoproteins, for example, comprise an abundant source of carbon in the gut, oral cavity, respiratory tract, and other mucosal surfaces but are not commercially available. Here, we describe a method to incorporate a 13C-labeled monosaccharide into MUC5AC, a predominant mucin in both gastrointestinal and airway environments. Using the lung adenocarcinoma cell line, Calu-3, polarized cell cultures grown in 13C-labeled d-glucose resulted in liberal mucin production on the apical surface. Mucins were isolated by size-exclusion chromatography, and O-linked glycans were released by β-elimination, permethylated, and analyzed by electrospray ionization tandem mass spectrometry (ESI-MS/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) techniques. We demonstrate a 98.7% incorporation of 13C in the heterogeneous O-linked oligosaccharides that make up >80% of mucin dry weight. These "heavy" labeled glycoproteins represent a valuable tool for probing in vivo activity of host-associated bacterial communities and their interactions with the mucosal barrier. The continued expansion of labeled substrates for use in SIP will eventually allow bacterial taxa that degrade host compounds to be identified, with long-term potential for improved health and disease management.
Collapse
Affiliation(s)
- Clayton Evert
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Tina Loesekann
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Ganapati Bhat
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Roberto Sonon
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Ryan C. Hunter
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
11
|
Weis S, Schnell S, Egert M. RNA-Based Stable Isotope Probing (RNA-SIP) in the Gut Environment. Methods Mol Biol 2019; 2046:221-231. [PMID: 31407308 DOI: 10.1007/978-1-4939-9721-3_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The RNA-SIP technology allows for linking the structure and function of complex microbial communities, that is, the identification of microbial key players involved in distinct degradation and assimilation processes under in situ conditions. Being dependent on RNA, this technique is particularly suited for environments with high numbers of very active, that is, significantly RNA-expressing microorganisms, such as intestinal tract samples. We use RNA-SIP for the identification of bacteria involved in the degradation and assimilation of prebiotic carbohydrates in order to better understand the functionality of these medically and economically important nutrients in human and animal intestinal environments.
Collapse
Affiliation(s)
- Severin Weis
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany.,Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany.
| |
Collapse
|
12
|
Barnett SE, Youngblut ND, Buckley DH. Data Analysis for DNA Stable Isotope Probing Experiments Using Multiple Window High-Resolution SIP. Methods Mol Biol 2019; 2046:109-128. [PMID: 31407300 DOI: 10.1007/978-1-4939-9721-3_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
DNA stable isotope probing (DNA-SIP) allows for the identification of microbes that assimilate isotopically labeled substrates into DNA. Here we describe the analysis of sequencing data using the multiple window high-resolution DNA-SIP method (MW-HR-SIP). MW-HR-SIP has improved accuracy over other methods and is easily implemented on the statistical platform R. We also discuss key experimental parameters to consider when designing DNA-SIP experiments and how these parameters affect accuracy of analysis.
Collapse
Affiliation(s)
- Samuel E Barnett
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Nicholas D Youngblut
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Berry D, Loy A. Stable-Isotope Probing of Human and Animal Microbiome Function. Trends Microbiol 2018; 26:999-1007. [PMID: 30001854 PMCID: PMC6249988 DOI: 10.1016/j.tim.2018.06.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/10/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022]
Abstract
Humans and animals host diverse communities of microorganisms important to their physiology and health. Despite extensive sequencing-based characterization of host-associated microbiomes, there remains a dramatic lack of understanding of microbial functions. Stable-isotope probing (SIP) is a powerful strategy to elucidate the ecophysiology of microorganisms in complex host-associated microbiotas. Here, we suggest that SIP methodologies should be more frequently exploited as part of a holistic functional microbiomics approach. We provide examples of how SIP has been used to study host-associated microbes in vivo and ex vivo. We highlight recent developments in SIP technologies and discuss future directions that will facilitate deeper insights into the function of human and animal microbiomes.
Collapse
Affiliation(s)
- David Berry
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Althanstrasse 14, Vienna, Austria.
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Althanstrasse 14, Vienna, Austria
| |
Collapse
|
14
|
Egert M, Weis S, Schnell S. RNA-based stable isotope probing (RNA-SIP) to unravel intestinal host-microbe interactions. Methods 2018; 149:25-30. [PMID: 29857194 DOI: 10.1016/j.ymeth.2018.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
The RNA-SIP technology, introduced into molecular microbial ecology in 2002, is an elegant technique to link the structure and function of complex microbial communities, i.e. to identify microbial key-players involved in distinct degradation and assimilation processes under in-situ conditions. Due to its dependence of microbial RNA, this technique is particularly suited for environments with high numbers of very active, i.e. significantly RNA-expressing, bacteria. So far, it was mainly used in environmental studies using microbiotas from soil or water habitats. Here we outline and summarize our application of RNA-SIP for the identification of bacteria involved in the degradation and assimilation of prebiotic carbohydrates in intestinal samples of human and animal origin. Following an isotope label from a prebiotic substrate into the RNA of distinct bacterial taxa will help to better understand the functionality of these medically and economically important nutrients in an intestinal environment.
Collapse
Affiliation(s)
- Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany.
| | - Severin Weis
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology and Hygiene Group, Furtwangen University, Villingen-Schwenningen, Germany; Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Germany
| |
Collapse
|
15
|
Pasquereau-Kotula E, Martins M, Aymeric L, Dramsi S. Significance of Streptococcus gallolyticus subsp. gallolyticus Association With Colorectal Cancer. Front Microbiol 2018; 9:614. [PMID: 29666615 PMCID: PMC5891635 DOI: 10.3389/fmicb.2018.00614] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/16/2018] [Indexed: 12/22/2022] Open
Abstract
Streptococcus gallolyticus subsp. gallolyticus Sgg (formerly known as S. bovis type I) is the main causative agent of septicemia and infective endocarditis (IE) in elderly and immunocompromised persons. It belongs to the few opportunistic bacteria, which have been strongly associated to colorectal cancer (CRC). A literature survey covering a period of 40 years (1970–2010) revealed that 65% of patients diagnosed with an invasive Sgg infection had a concomitant colorectal neoplasia. Sgg is associated mainly with early adenomas and may thus constitute an early marker for CRC screening. Sgg has been described as a normal inhabitant of the rumen of herbivores and in the digestive tract of birds. It is more rarely detected in human intestinal tract (2.5–15%). Recent molecular analyses indicate possible zoonotic transmission of Sgg. Thanks to the development of a genetic toolbox and to comparative genomics, a number of factors that are important for Sgg pathogenicity have been identified. This review will highlight the role of Sgg pili in host colonization and how their phase-variable expression contributes to mitigate the host immune responses and finally their use as serological diagnostic tool. We will then present experimental data addressing the core question whether Sgg is a cause or consequence of CRC. We will discuss a few recent studies examining the etiological versus non-etiological participation of Sgg in colorectal cancer with the underlying mechanisms.
Collapse
Affiliation(s)
- Ewa Pasquereau-Kotula
- Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Institut Pasteur, Paris, France
| | - Mariana Martins
- Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Institut Pasteur, Paris, France
| | - Laetitia Aymeric
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
| | - Shaynoor Dramsi
- Unité de Biologie des Bactéries Pathogènes à Gram-Positif, Institut Pasteur, Paris, France
| |
Collapse
|
16
|
Herrmann E, Young W, Reichert-Grimm V, Weis S, Riedel CU, Rosendale D, Stoklosinski H, Hunt M, Egert M. In Vivo Assessment of Resistant Starch Degradation by the Caecal Microbiota of Mice Using RNA-Based Stable Isotope Probing-A Proof-of-Principle Study. Nutrients 2018; 10:nu10020179. [PMID: 29415499 PMCID: PMC5852755 DOI: 10.3390/nu10020179] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/19/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
Resistant starch (RS) is the digestion resistant fraction of complex polysaccharide starch. By reaching the large bowel, RS can function as a prebiotic carbohydrate, i.e., it can shape the structure and activity of bowel bacterial communities towards a profile that confers health benefits. However, knowledge about the fate of RS in complex intestinal communities and the microbial members involved in its degradation is limited. In this study, 16S ribosomal RNA (rRNA)-based stable isotope probing (RNA-SIP) was used to identify mouse bowel bacteria involved in the assimilation of RS or its derivatives directly in their natural gut habitat. Stable-isotope [U13C]-labeled native potato starch was administrated to mice, and caecal contents were collected before 0 h and 2 h and 4 h after administration. 'Heavy', isotope-labeled [13C]RNA species, presumably derived from bacteria that have metabolized the labeled starch, were separated from 'light', unlabeled [12C]RNA species by fractionation of isolated total RNA in isopycnic-density gradients. Inspection of different density gradients showed a continuous increase in 'heavy' 16S rRNA in caecal samples over the course of the experiment. Sequencing analyses of unlabeled and labeled 16S amplicons particularly suggested a group of unclassified Clostridiales, Dorea, and a few other taxa (Bacteroides, Turicibacter) to be most actively involved in starch assimilation in vivo. In addition, metabolic product analyses revealed that the predominant 13C-labeled short chain fatty acid (SCFA) in caecal contents produced from the [U13C] starch was butyrate. For the first time, this study provides insights into the metabolic transformation of RS by intestinal bacterial communities directly within a gut ecosystem, which will finally help to better understand its prebiotic potential and possible applications in human health.
Collapse
Affiliation(s)
- Elena Herrmann
- Institute of Precision Medicine, Faculty of Medical & Life Sciences, Furtwangen University, 78054 Villingen-Schwenningen, Germany; (E.H.); (S.W.)
- Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany; (V.R.-G.); (C.U.R.)
| | - Wayne Young
- AgResearch Limited, Food Nutrition and Health Team, Grasslands Research Centre, Palmerston North 4474, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition, National Science Challenge, University of Auckland, Auckland 1142, New Zealand
| | - Verena Reichert-Grimm
- Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany; (V.R.-G.); (C.U.R.)
| | - Severin Weis
- Institute of Precision Medicine, Faculty of Medical & Life Sciences, Furtwangen University, 78054 Villingen-Schwenningen, Germany; (E.H.); (S.W.)
| | - Christian U. Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany; (V.R.-G.); (C.U.R.)
| | - Douglas Rosendale
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North 4474, New Zealand; (D.R.); (H.S.); (M.H.)
| | - Halina Stoklosinski
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North 4474, New Zealand; (D.R.); (H.S.); (M.H.)
| | - Martin Hunt
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North 4474, New Zealand; (D.R.); (H.S.); (M.H.)
| | - Markus Egert
- Institute of Precision Medicine, Faculty of Medical & Life Sciences, Furtwangen University, 78054 Villingen-Schwenningen, Germany; (E.H.); (S.W.)
- Correspondence: ; Tel.: +49-7720-307-4554
| |
Collapse
|
17
|
Plongbunjong V, Graidist P, Knudsen KEB, Wichienchot S. Isomaltooligosaccharide synthesised from rice starch and its prebiotic propertiesin vitro. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vijitra Plongbunjong
- Interdisciplinary Graduate School of Nutraceutical and Functional Food (IGS-NFF); Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| | - Potchanapond Graidist
- Department of Biomedical Science, Faculty of Medicine; Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| | - Knud Erik Bach Knudsen
- Department of Animal Science, Faculty of Science and Technology; Aarhus University; 8830 Tjele Denmark
| | - Santad Wichienchot
- Interdisciplinary Graduate School of Nutraceutical and Functional Food (IGS-NFF); Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| |
Collapse
|
18
|
Herrmann E, Young W, Rosendale D, Conrad R, Riedel CU, Egert M. Determination of Resistant Starch Assimilating Bacteria in Fecal Samples of Mice by In vitro RNA-Based Stable Isotope Probing. Front Microbiol 2017; 8:1331. [PMID: 28790981 PMCID: PMC5522855 DOI: 10.3389/fmicb.2017.01331] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/30/2017] [Indexed: 01/01/2023] Open
Abstract
The impact of the intestinal microbiota on human health is becoming increasingly appreciated in recent years. In consequence, and fueled by major technological advances, the composition of the intestinal microbiota in health and disease has been intensively studied by high throughput sequencing approaches. Observations linking dysbiosis of the intestinal microbiota with a number of serious medical conditions including chronic inflammatory disorders and allergic diseases suggest that restoration of the composition and activity of the intestinal microbiota may be a treatment option at least for some of these diseases. One possibility to shape the intestinal microbiota is the administration of prebiotic carbohydrates such as resistant starch (RS). In the present study, we aim at establishing RNA-based stable isotope probing (RNA-SIP) to identify bacterial populations that are involved in the assimilation of RS using anaerobic in vitro fermentation of murine fecal material with stable [U13C] isotope-labeled potato starch. Total RNA from these incubations was extracted, processed by gradient ultracentrifugation and fractionated by density. 16S rRNA gene sequences were amplified from reverse transcribed RNA of high and low density fractions suspected to contain labeled and unlabeled RNA, respectively. Phylogenetic analysis of the obtained sequences revealed a distinct subset of the intestinal microbiota involved in starch metabolism. The results suggest Bacteroidetes, in particular genera affiliated with Prevotellaceae, as well as members of the Ruminococcacea family to be primary assimilators of resistant starch due to a significantly higher relative abundance in higher density fractions in RNA samples isolated after 2 h of incubation. Using high performance liquid chromatography coupled to isotope ratio mass spectrometry (HPLC-IRMS) analysis, some stable isotope label was recovered from acetate, propionate and butyrate. Here, we demonstrate the suitability of RNA-SIP to link specific groups of microorganisms with fermentation of a specific substrate. The application of RNA-SIP in future in vivo studies will help to better understand the mechanisms behind functionality of a prebiotic carbohydrate and its impact on an intestinal ecosystem with potential implications for human health.
Collapse
Affiliation(s)
- Elena Herrmann
- Faculty of Medical & Life Sciences, Institute of Precision Medicine, Furtwangen UniversityVillingen-Schwenningen, Germany
| | - Wayne Young
- AgResearch Ltd., Food Nutrition and Health Team, Grasslands Research CentrePalmerston North, New Zealand
| | - Douglas Rosendale
- The New Zealand Institute for Plant & Food Research Ltd.Palmerston North, New Zealand
| | - Ralf Conrad
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of UlmUlm, Germany
| | - Markus Egert
- Faculty of Medical & Life Sciences, Institute of Precision Medicine, Furtwangen UniversityVillingen-Schwenningen, Germany
| |
Collapse
|
19
|
Concurrent Haloalkanoate Degradation and Chlorate Reduction by Pseudomonas chloritidismutans AW-1 T. Appl Environ Microbiol 2017; 83:AEM.00325-17. [PMID: 28411224 DOI: 10.1128/aem.00325-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/09/2017] [Indexed: 11/20/2022] Open
Abstract
Haloalkanoates are environmental pollutants that can be degraded aerobically by microorganisms producing hydrolytic dehalogenases. However, there is a lack of information about the anaerobic degradation of haloalkanoates. Genome analysis of Pseudomonas chloritidismutans AW-1T, a facultative anaerobic chlorate-reducing bacterium, showed the presence of two putative haloacid dehalogenase genes, the l-DEX gene and dehI, encoding an l-2-haloacid dehalogenase (l-DEX) and a halocarboxylic acid dehydrogenase (DehI), respectively. Hence, we studied the concurrent degradation of haloalkanoates and chlorate as a yet-unexplored trait of strain AW-1T The deduced amino acid sequences of l-DEX and DehI revealed 33 to 37% and 26 to 86% identities with biochemically/structurally characterized l-DEX and the d- and dl-2-haloacid dehalogenase enzymes, respectively. Physiological experiments confirmed that strain AW-1T can grow on chloroacetate, bromoacetate, and both l- and d-α-halogenated propionates with chlorate as an electron acceptor. Interestingly, growth and haloalkanoate degradation were generally faster with chlorate as an electron acceptor than with oxygen as an electron acceptor. In line with this, analyses of l-DEX and DehI dehalogenase activities using cell-free extract (CFE) of strain AW-1T grown on dl-2-chloropropionate under chlorate-reducing conditions showed up to 3.5-fold higher dehalogenase activity than the CFE obtained from AW-1T cells grown on dl-2-chloropropionate under aerobic conditions. Reverse transcription-quantitative PCR showed that the l-DEX gene was expressed constitutively independently of the electron donor (haloalkanoates or acetate) or acceptor (chlorate or oxygen), whereas the expression of dehI was induced by haloalkanoates. Concurrent degradation of organic and inorganic halogenated compounds by strain AW-1T represents a unique metabolic capacity in a single bacterium, providing a new piece of the puzzle of the microbial halogen cycle.IMPORTANCE Halogenated organic and inorganic compounds are important environmental pollutants that have carcinogenic and genotoxic effects on both animals and humans. Previous research studied the degradation of organic and inorganic halogenated compounds separately but not concurrently. This study shows concurrent degradation of halogenated alkanoates and chlorate as an electron donor and acceptor, respectively, coupled to growth in a single bacterium, Pseudomonas chloritidismutans AW-1T Hence, besides biogenesis of molecular oxygen from chlorate reduction enabling a distinctive placement of strain AW-1T between aerobic and anaerobic microorganisms, we can now add another unique metabolic potential of this bacterium to the roster. The degradation of different halogenated compounds under anoxic conditions by a single bacterium is also of interest for the natural halogen cycle in different aquatic and terrestrial ecosystems where ample natural production of halogenated compounds has been documented.
Collapse
|
20
|
pH-Mediated Microbial and Metabolic Interactions in Fecal Enrichment Cultures. mSphere 2017; 2:mSphere00047-17. [PMID: 28497116 PMCID: PMC5415631 DOI: 10.1128/msphere.00047-17] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/09/2017] [Indexed: 02/06/2023] Open
Abstract
The human gut is a dynamic environment in which microorganisms consistently interact with the host via their metabolic products. Some of the most important microbial metabolic products are fermentation products such as short-chain fatty acids. Production of these fermentation products and the prevalence of fermenting microbiota depend on pH, alkalinity, and available dietary sugars, but details about their metabolic interactions are unknown. Here, we show that, for in vitro conditions, pH was the strongest driver of microbial community structure and function and microbial and metabolic interactions among pH-sensitive fermentative species. The balance between bicarbonate alkalinity and formation of fatty acids by fermentation determined the pH, which controlled microbial community structure. Our results underscore the influence of pH balance on microbial function in diverse microbial ecosystems such as the human gut. pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or 6.9 and 10 mM glucose, fructose, or cellobiose as the carbon substrate. We analyzed 16S rRNA gene sequences and fermentation products. Microbial diversity was driven by both pH and substrate type. Due to insufficient alkalinity, a drop in pH from 6.0 to ~4.5 clustered pH 6.0 cultures together and distant from pH 6.5 and 6.9 cultures, which experienced only small pH drops. Cellobiose yielded more acidity than alkalinity due to the amount of fermentable carbon, which moved cellobiose pH 6.5 cultures away from other pH 6.5 cultures. The impact of pH on microbial community structure was reflected by fermentative metabolism. Lactate accumulation occurred in pH 6.0 cultures, whereas propionate and acetate accumulations were observed in pH 6.5 and 6.9 cultures and independently from the type of substrate provided. Finally, pH had an impact on the interactions between lactate-producing and -consuming communities. Lactate-producing Streptococcus dominated pH 6.0 cultures, and acetate- and propionate-producing Veillonella, Bacteroides, and Escherichia dominated the cultures started at pH 6.5 and 6.9. Acid inhibition on lactate-consuming species led to lactate accumulation. Our results provide insights into pH-derived changes in fermenting microbiota and metabolisms in the human gut. IMPORTANCE The human gut is a dynamic environment in which microorganisms consistently interact with the host via their metabolic products. Some of the most important microbial metabolic products are fermentation products such as short-chain fatty acids. Production of these fermentation products and the prevalence of fermenting microbiota depend on pH, alkalinity, and available dietary sugars, but details about their metabolic interactions are unknown. Here, we show that, for in vitro conditions, pH was the strongest driver of microbial community structure and function and microbial and metabolic interactions among pH-sensitive fermentative species. The balance between bicarbonate alkalinity and formation of fatty acids by fermentation determined the pH, which controlled microbial community structure. Our results underscore the influence of pH balance on microbial function in diverse microbial ecosystems such as the human gut.
Collapse
|
21
|
RNA-Based Stable Isotope Probing Suggests Allobaculum spp. as Particularly Active Glucose Assimilators in a Complex Murine Microbiota Cultured In Vitro. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1829685. [PMID: 28299315 PMCID: PMC5337319 DOI: 10.1155/2017/1829685] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
RNA-based stable isotope probing (RNA-SIP) and metabolic profiling were used to detect actively glucose-consuming bacteria in a complex microbial community obtained from a murine model system. A faeces-derived microbiota was incubated under anaerobic conditions for 0, 2, and 4 h with 40 mM [U13C]glucose. Isopycnic density gradient ultracentrifugation and fractionation of isolated RNA into labeled and unlabeled fractions followed by 16S rRNA sequencing showed a quick adaptation of the bacterial community in response to the added sugar, which was dominated by unclassified Lachnospiraceae species. Inspection of distinct fractions of isotope-labeled RNA revealed Allobaculum spp. as particularly active glucose utilizers in the system, as the corresponding RNA showed significantly higher proportions among the labeled RNA. With time, the labeled sugar was used by a wider spectrum of faecal bacteria. Metabolic profiling indicated rapid fermentation of [U13C]glucose, with lactate, acetate, and propionate being the principal 13C-labeled fermentation products, and suggested that "cross-feeding" occurred in the system. RNA-SIP combined with metabolic profiling of 13C-labeled products allowed insights into the microbial assimilation of a general model substrate, demonstrating the appropriateness of this technology to study assimilation processes of nutritionally more relevant substrates, for example, prebiotic carbohydrates, in the gut microbiota of mice as a model system.
Collapse
|
22
|
Aguirre M, Venema K. Challenges in simulating the human gut for understanding the role of the microbiota in obesity. Benef Microbes 2016; 8:31-53. [PMID: 27903093 DOI: 10.3920/bm2016.0113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is an elevated incidence of cases of obesity worldwide. Therefore, the development of strategies to tackle this condition is of vital importance. This review focuses on the necessity of optimising in vitro systems to model human colonic fermentation in obese subjects. This may allow to increase the resolution and the physiological relevance of the information obtained from this type of studies when evaluating the potential role that the human gut microbiota plays in obesity. In light of the parameters that are currently used for the in vitro simulation of the human gut (which are mostly based on information derived from healthy subjects) and the possible difference with an obese condition, we propose to revise and improve specific standard operating procedures.
Collapse
Affiliation(s)
- M Aguirre
- 1 Top Institute of Food and Nutrition, P.O. Box 557, 6700 AA Wageningen, the Netherlands.,2 Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.,3 The Netherlands Organization for Applied Scientific Research (TNO), P.O. Box 360, 3700 AJ Zeist, the Netherlands
| | - K Venema
- 1 Top Institute of Food and Nutrition, P.O. Box 557, 6700 AA Wageningen, the Netherlands.,2 Department of Human Biology, Faculty of Health, Medicine and Life Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.,4 Beneficial Microbes Consultancy, Johan Karschstraat 3, 6709 TN Wageningen, the Netherlands
| |
Collapse
|
23
|
Herrmann E, Koch P, Riedel CU, Young W, Egert M. Effect of rotor type on the separation of isotope-labeled and unlabeled Escherichia coli RNA by isopycnic density ultracentrifugation. Can J Microbiol 2016; 63:83-87. [PMID: 27919161 DOI: 10.1139/cjm-2016-0483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Separation of differentially isotope-labeled bacterial RNA by isopycnic density gradient centrifugation is a critical step in RNA-based stable isotope probing analyses, which help to link the structure and function of complex microbial communities. Using isotope-labeled Escherichia coli RNA, we showed that an 8 mL near-vertical rotor performed better than a 2 mL fixed-angle rotor, thereby corroborating current recommendations. Neither increased concentrations of formamide nor urea in the medium improved the separation results using the fixed-angle rotor.
Collapse
Affiliation(s)
- Elena Herrmann
- a Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology & Hygiene Group, Furtwangen University, Campus Villingen-Schwenningen, Germany
| | - Patrick Koch
- a Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology & Hygiene Group, Furtwangen University, Campus Villingen-Schwenningen, Germany
| | - Christian U Riedel
- b Institute of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany
| | - Wayne Young
- c AgResearch Ltd., Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Markus Egert
- a Faculty of Medical and Life Sciences, Institute of Precision Medicine, Microbiology & Hygiene Group, Furtwangen University, Campus Villingen-Schwenningen, Germany
| |
Collapse
|
24
|
Herbst FA, Lünsmann V, Kjeldal H, Jehmlich N, Tholey A, von Bergen M, Nielsen JL, Hettich RL, Seifert J, Nielsen PH. Enhancing metaproteomics--The value of models and defined environmental microbial systems. Proteomics 2016; 16:783-98. [PMID: 26621789 DOI: 10.1002/pmic.201500305] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 12/24/2022]
Abstract
Metaproteomics--the large-scale characterization of the entire protein complement of environmental microbiota at a given point in time--has provided new features to study complex microbial communities in order to unravel these "black boxes." New technical challenges arose that were not an issue for classical proteome analytics before that could be tackled by the application of different model systems. Here, we review different current and future model systems for metaproteome analysis. Following a short introduction to microbial communities and metaproteomics, we introduce model systems for clinical and biotechnological research questions including acid mine drainage, anaerobic digesters, and activated sludge. Model systems are useful to evaluate the challenges encountered within (but not limited to) metaproteomics, including species complexity and coverage, biomass availability, or reliable protein extraction. The implementation of model systems can be considered as a step forward to better understand microbial community responses and ecological functions of single member organisms. In the future, improvements are necessary to fully explore complex environmental systems by metaproteomics.
Collapse
Affiliation(s)
- Florian-Alexander Herbst
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Vanessa Lünsmann
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Henrik Kjeldal
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Nico Jehmlich
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Martin von Bergen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.,Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Lab, Oak Ridge, TN, USA
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Per Halkjaer Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| |
Collapse
|
25
|
Detection of sialic acid-utilising bacteria in a caecal community batch culture using RNA-based stable isotope probing. Nutrients 2015; 7:2109-24. [PMID: 25816158 PMCID: PMC4425134 DOI: 10.3390/nu7042109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/18/2015] [Indexed: 11/17/2022] Open
Abstract
Sialic acids are monosaccharides typically found on cell surfaces and attached to soluble proteins, or as essential components of ganglioside structures that play a critical role in brain development and neural transmission. Human milk also contains sialic acid conjugated to oligosaccharides, glycolipids, and glycoproteins. These nutrients can reach the large bowel where they may be metabolised by the microbiota. However, little is known about the members of the microbiota involved in this function. To identify intestinal bacteria that utilise sialic acid within a complex intestinal community, we cultured the caecal microbiota from piglets in the presence of 13C-labelled sialic acid. Using RNA-based stable isotope probing, we identified bacteria that consumed 13C-sialic acid by fractionating total RNA in isopycnic buoyant density gradients followed by 16S rRNA gene analysis. Addition of sialic acid caused significant microbial community changes. A relative rise in Prevotella and Lactobacillus species was accompanied by a corresponding reduction in the genera Escherichia/Shigella, Ruminococcus and Eubacterium. Inspection of isotopically labelled RNA sequences suggests that the labelled sialic acid was consumed by a wide range of bacteria. However, species affiliated with the genus Prevotella were clearly identified as the most prolific users, as solely their RNA showed significantly higher relative shares among the most labelled RNA species. Given the relevance of sialic acid in nutrition, this study contributes to a better understanding of their microbial transformation in the intestinal tract with potential implications for human health.
Collapse
|
26
|
Ramasamy US, Venema K, Gruppen H, Schols HA. The fate of chicory root pulp polysaccharides during fermentation in the TNO in vitro model of the colon (TIM-2). ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bcdf.2014.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
RNA-stable-isotope probing shows utilization of carbon from inulin by specific bacterial populations in the rat large bowel. Appl Environ Microbiol 2014; 80:2240-7. [PMID: 24487527 DOI: 10.1128/aem.03799-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Knowledge of the trophisms that underpin bowel microbiota composition is required in order to understand its complex phylogeny and function. Stable-isotope ((13)C)-labeled inulin was added to the diet of rats on a single occasion in order to detect utilization of inulin-derived substrates by particular members of the cecal microbiota. Cecal digesta from Fibruline-inulin-fed rats was collected prior to (0 h) and at 6, 12, 18 and 24 h following provision of the [(13)C]inulin diet. RNA was extracted from these cecal specimens and fractionated in isopycnic buoyant density gradients in order to detect (13)C-labeled nucleic acid originating in bacterial cells that had metabolized the labeled dietary constituent. RNA extracted from specimens collected after provision of the labeled diet was more dense than 0-h RNA. Sequencing of 16S rRNA genes amplified from cDNA obtained from these fractions showed that Bacteroides uniformis, Blautia glucerasea, Clostridium indolis, and Bifidobacterium animalis were the main users of the (13)C-labeled substrate. Culture-based studies of strains of these bacterial species enabled trophisms associated with inulin and its hydrolysis products to be identified. B. uniformis utilized Fibruline-inulin for growth, whereas the other species used fructo-oligosaccharide and monosaccharides. Thus, RNA-stable-isotope probing (RNA-SIP) provided new information about the use of carbon from inulin in microbiota metabolism.
Collapse
|
28
|
Bonfrate L, Tack J, Grattagliano I, Cuomo R, Portincasa P. Microbiota in health and irritable bowel syndrome: current knowledge, perspectives and therapeutic options. Scand J Gastroenterol 2013; 48:995-1009. [PMID: 23964766 DOI: 10.3109/00365521.2013.799220] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The gastrointestinal tract is a natural reservoir of microbiota. The gut is germ-free at birth, but rapidly becomes host to various bacteria establishing a progressively mutual relationship. The composition of gut microbiota is individual-specific and depends on the genotype of the host and environmental factors. Novel techniques have been used to characterize gastrointestinal microbiota, including genomic approaches. The bacterial profile shows that dominant and minor phyla are present in the gastrointestinal tract. From the proximal to the distal segments of the gut the bacterial density gradually increases, reaching an estimated 10(11) to 10(12) bacteria per gram of colonic content. Dynamic interactions between gut and microbiota play a physiological role in metabolic, protective and structural functions, while dysbiosis contributes to several diseases. Microbiota appear to play a role in IBS, where qualitative and quantitative changes of bacteriaoccur in IBS subtypes. Initial therapeutic approaches in IBS have focused on microbiota. The relationship between perturbations of the microbiota, mucosal inflammation and IBS remains to be further investigated.
Collapse
Affiliation(s)
- Leonilde Bonfrate
- Department of Biomedical Sciences and Human Oncology DIMO, Clinica Medica A. Murri, University of Bari Medical School, Bari, Italy
| | | | | | | | | |
Collapse
|
29
|
Stecher B, Berry D, Loy A. Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiol Rev 2013; 37:793-829. [PMID: 23662775 DOI: 10.1111/1574-6976.12024] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 12/14/2022] Open
Abstract
The highly diverse intestinal microbiota forms a structured community engaged in constant communication with itself and its host and is characterized by extensive ecological interactions. A key benefit that the microbiota affords its host is its ability to protect against infections in a process termed colonization resistance (CR), which remains insufficiently understood. In this review, we connect basic concepts of CR with new insights from recent years and highlight key technological advances in the field of microbial ecology. We present a selection of statistical and bioinformatics tools used to generate hypotheses about synergistic and antagonistic interactions in microbial ecosystems from metagenomic datasets. We emphasize the importance of experimentally testing these hypotheses and discuss the value of gnotobiotic mouse models for investigating specific aspects related to microbiota-host-pathogen interactions in a well-defined experimental system. We further introduce new developments in the area of single-cell analysis using fluorescence in situ hybridization in combination with metabolic stable isotope labeling technologies for studying the in vivo activities of complex community members. These approaches promise to yield novel insights into the mechanisms of CR and intestinal ecophysiology in general, and give researchers the means to experimentally test hypotheses in vivo at varying levels of biological and ecological complexity.
Collapse
Affiliation(s)
- Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | | | | |
Collapse
|
30
|
Kolmeder CA, de Vos WM. Metaproteomics of our microbiome - developing insight in function and activity in man and model systems. J Proteomics 2013; 97:3-16. [PMID: 23707234 DOI: 10.1016/j.jprot.2013.05.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 12/17/2022]
Abstract
We are all colonized by a large microbiome, a complex set of microbes that have intimate associations with us. Culture-based approaches have provided insights in the complexity of the microbial communities living on surfaces inside and outside the body. However, the application of high-throughput sequencing technologies has identified large numbers of community members at both the phylogenetic and the (meta-)genome level. The latter allowed defining a reference set of several millions of mainly bacterial genes and provided the basis for developing approaches to target the activity and function of the human microbiome with proteomic techniques. Moreover, recent improvements in protein and peptide separation efficiencies and highly accurate mass spectrometers have promoted the field of metaproteomics, the study of the collective proteome of microbial communities. We here review the approaches that have been developed to study the human metaproteomes, focusing on intestinal tract and body fluids. Moreover, we complement these by considering metaproteomic studies in mouse and other model systems offering the option to study single species or simple consortia. Finally, we discuss present and future avenues that may be used to advance the application of metaproteomic approaches to further improve our understanding of the microbes inside and around our body. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Carolin A Kolmeder
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, FIN-00014 Helsinki, Finland.
| | - Willem M de Vos
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, FIN-00014 Helsinki, Finland; Department of Bacteriology and Immunology, University of Helsinki, P.O. Box 21, FIN-00014 Helsinki, Finland; Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
31
|
Maurice CF, Turnbaugh PJ. Quantifying the metabolic activities of human-associated microbial communities across multiple ecological scales. FEMS Microbiol Rev 2013; 37:830-48. [PMID: 23550823 DOI: 10.1111/1574-6976.12022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
Humans are home to complex microbial communities, whose aggregate genomes and their encoded metabolic activities are referred to as the human microbiome. Recently, researchers have begun to appreciate that different human body habitats and the activities of their resident microorganisms can be better understood in ecological terms, as a range of spatial scales encompassing single cells, guilds of microorganisms responsive to a similar substrate, microbial communities, body habitats, and host populations. However, the bulk of the work to date has focused on studies of culturable microorganisms in isolation or on DNA sequencing-based surveys of microbial diversity in small-to-moderate-sized cohorts of individuals. Here, we discuss recent work that highlights the potential for assessing the human microbiome at a range of spatial scales, and for developing novel techniques that bridge multiple levels: for example, through the combination of single-cell methods and metagenomic sequencing. These studies promise to not only provide a much-needed epidemiological and ecological context for mechanistic studies of culturable and genetically tractable microorganisms, but may also lead to the discovery of fundamental rules that govern the assembly and function of host-associated microbial communities.
Collapse
Affiliation(s)
- Corinne F Maurice
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, 02138, USA
| | | |
Collapse
|
32
|
Venema K, van den Abbeele P. Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol 2013; 27:115-26. [PMID: 23768557 DOI: 10.1016/j.bpg.2013.03.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/02/2013] [Accepted: 03/14/2013] [Indexed: 02/08/2023]
Abstract
The human gut contains a diverse microbiota with large potential to influence health. Given the difficulty to access the main sites of the gut, in vitro models have been developed to dynamically monitor microbial processes at the site of metabolic activity. These models range from simple batch fermentations to complex multi-compartmental continuous systems. The latter include different models, focussing on similar but each also on distinct digestive parameters. The most intensively used include the three-stage continuous culture system, SHIME(®), EnteroMix, Lacroix model and TIM-2. Especially after inclusion of surface-attached mucosal microbes (M-SHIME), such models have been shown representative of the in vivo situation in terms of microbial composition and activity. They have even been shown to maintain the interpersonal variation among different human fecal inocula. Novel developments, such as the incorporation of host cells, will further broaden the potential of in vitro models to unravel the importance of gut microbes for human health and disease.
Collapse
Affiliation(s)
- Koen Venema
- TNO, P.O. Box 360, 3700 AJ Zeist, The Netherlands.
| | | |
Collapse
|
33
|
Gong J, Yang C. Advances in the methods for studying gut microbiota and their relevance to the research of dietary fiber functions. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.12.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Michinaka A, Fujii T. Efficient and direct identification of fructose fermenting and non-fermenting bacteria from calf gut microbiota using stable isotope probing and modified T-RFLP. J GEN APPL MICROBIOL 2012; 58:297-307. [PMID: 22990490 DOI: 10.2323/jgam.58.297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of this study was the development of an efficient method to identify the prebiotics-assimilating-bacteria in gut microbiota using DNA-stable isotope probing (DNA-SIP) technology. For efficient probing of microbiota with stable isotopes, a small-scale repeated batch culture using a low-carbon-source-containing medium was developed. Fecal samples from cattle were inoculated and [U-(13)C]-fructose was applied to the culture after 24 h stabilization. Organic acid production, pH value of the period and the total diversity of microorganisms of the culture were successfully maintained during the chasing period. DNA samples were extracted from the culture and were subjected to isopycnic centrifugation and fractionation in order to separate fructose fermenters from non-fermenters. T-RFLP (Terminal Restriction Fragment Length Polymorphism) and the modified T-RFLP of each fraction suggested that Streptococcus bovis was the most dominant fructose fermenter in this culture. In addition, we improved the modified T-RFLP method and successfully identified Lactobacillus vitulinus and Megasphaella eldenii as minor fructose-fermenters and several species of Clostridium cluster IV as non-fermenters. From these results we concluded that the methods shown here provide a means for assessing the importance of individual prebiotics on gut microbiota.
Collapse
Affiliation(s)
- Atsuko Michinaka
- Central Laboratories for Frontier Technology, Kirin Holdings Co., Ltd., Yokohama, Kanagawa 236-0004, Japan
| | | |
Collapse
|
35
|
Haiser HJ, Turnbaugh PJ. Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res 2012; 69:21-31. [PMID: 22902524 DOI: 10.1016/j.phrs.2012.07.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 12/16/2022]
Abstract
The microbes residing in and on the human body influence human physiology in many ways, particularly through their impact on the metabolism of xenobiotic compounds, including therapeutic drugs, antibiotics, and diet-derived bioactive compounds. Despite the importance of these interactions and the many possibilities for intervention, microbial xenobiotic metabolism remains a largely underexplored component of pharmacology. Here, we discuss the emerging evidence for both direct and indirect effects of the human gut microbiota on xenobiotic metabolism, and the initial links that have been made between specific compounds, diverse members of this complex community, and the microbial genes responsible. Furthermore, we highlight the many parallels to the now well-established field of environmental bioremediation, and the vast potential to leverage emerging metagenomic tools to shed new light on these important microbial biotransformations.
Collapse
Affiliation(s)
- Henry J Haiser
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
36
|
Identification of glucose-fermenting bacteria in a full-scale enhanced biological phosphorus removal plant by stable isotope probing. Microbiology (Reading) 2012; 158:1818-1825. [DOI: 10.1099/mic.0.058818-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Boleij A, Dutilh BE, Kortman GAM, Roelofs R, Laarakkers CM, Engelke UF, Tjalsma H. Bacterial responses to a simulated colon tumor microenvironment. Mol Cell Proteomics 2012; 11:851-62. [PMID: 22713208 DOI: 10.1074/mcp.m112.019315] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
One of the few bacteria that have been consistently linked to colorectal cancer (CRC) is the opportunistic pathogen Streptococcus gallolyticus. Infections with this bacterium are generally regarded as an indicator for colonic malignancy, while the carriage rate of this bacterium in the healthy large intestine is relatively low. We speculated that the physiological changes accompanying the development of CRC might favor the colonization of this bacterium. To investigate whether colon tumor cells can support the survival of S. gallolyticus, this bacterium was grown in spent medium of malignant colonocytes to simulate the altered metabolic conditions in the CRC microenvironment. These in vitro simulations indicated that S. gallolyticus had a significant growth advantage in these spent media, which was not observed for other intestinal bacteria. Under these conditions, bacterial responses were profiled by proteome analysis and metabolic shifts were analyzed by (1)H-NMR-spectroscopy. In silico pathway analysis of the differentially expressed proteins and metabolite analysis indicated that this advantage resulted from the increased utilization of glucose, glucose derivates, and alanine. Together, these data suggest that tumor cell metabolites facilitate the survival of S. gallolyticus, favoring its local outgrowth and providing a possible explanation for the specific association of S. gallolyticus with colonic malignancy.
Collapse
Affiliation(s)
- Annemarie Boleij
- Department of Laboratory Medicine/830, Radboud University Medical Centre, 6500 HB Nijmegen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
38
|
FdhTU-modulated formate dehydrogenase expression and electron donor availability enhance recovery of Campylobacter jejuni following host cell infection. J Bacteriol 2012; 194:3803-13. [PMID: 22636777 DOI: 10.1128/jb.06665-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Campylobacter jejuni is a food-borne bacterial pathogen that colonizes the intestinal tract and causes severe gastroenteritis. Interaction with host epithelial cells is thought to enhance severity of disease, and the ability of C. jejuni to modulate its metabolism in different in vivo and environmental niches contributes to its success as a pathogen. A C. jejuni operon comprising two genes that we designated fdhT (CJJ81176_1492) and fdhU (CJJ81176_1493) is conserved in many bacterial species. Deletion of fdhT or fdhU in C. jejuni resulted in apparent defects in adherence and/or invasion of Caco-2 epithelial cells when assessed by CFU enumeration on standard Mueller-Hinton agar. However, fluorescence microscopy indicated that each mutant invaded cells at wild-type levels, instead suggesting roles for FdhTU in either intracellular survival or postinvasion recovery. The loss of fdhU caused reduced mRNA levels of formate dehydrogenase (FDH) genes and a severe defect in FDH activity. Cell infection phenotypes of a mutant deleted for the FdhA subunit of FDH and an ΔfdhU ΔfdhA double mutant were similar to those of a ΔfdhU mutant, which likewise suggested that FdhU and FdhA function in the same pathway. Cell infection assays followed by CFU enumeration on plates supplemented with sodium sulfite abolished the ΔfdhU and ΔfdhA mutant defects and resulted in significantly enhanced recovery of all strains, including wild type, at the invasion and intracellular survival time points. Collectively, our data indicate that FdhTU and FDH are required for optimal recovery following cell infection and suggest that C. jejuni alters its metabolic potential in the intracellular environment.
Collapse
|
39
|
Maathuis AJH, van den Heuvel EG, Schoterman MHC, Venema K. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a (13)C-labeling technique. J Nutr 2012; 142:1205-12. [PMID: 22623395 DOI: 10.3945/jn.111.157420] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Galacto-oligosaccharides (GOS) are considered to be prebiotic, although the contribution of specific members of the microbiota to GOS fermentation and the exact microbial metabolites that are produced upon GOS fermentation are largely unknown. We aimed to determine this using uniformly (13)C-labeled GOS. The normal (control) medium and unlabeled or (13)C-labeled GOS was added to a dynamic, validated, in vitro model of the large-intestine containing an adult-type microbiota. Liquid-chromatography MS was used to measure the incorporation of (13)C label into metabolites. 16S-rRNA stable isotope probing coupled to a phylogenetic micro-array was used to determine label incorporation in microbial biomass. The primary members within the complex microbiota that were directly involved in GOS fermentation were shown to be Bifidobacterium longum, B. bifidum, B. catenulatum, Lactobacillus gasseri, and L. salivarius, in line with the prebiotic effect of GOS, although some other species incorporated (13)C label also. GOS fermentation led to an increase in acetate (+49%) and lactate (+23%) compared with the control. Total organic acid production was 8.50 and 7.52 mmol/g of carbohydrate fed for the GOS and control experiments, respectively. At the same time, the cumulative production of putrefactive metabolites (branched-chain fatty acids and ammonia) was reduced by 55%. Cross-feeding of metabolites from primary GOS fermenters to other members of the microbiota was observed. Our findings support a prebiotic role for GOS and its potential to act as a synbiotic in combination with certain probiotic strains.
Collapse
Affiliation(s)
- Annet J H Maathuis
- TNO Earth, Environmental and Life Sciences, Research Group Pharmacokinetics and Human Studies, Zeist, The Netherlands
| | | | | | | |
Collapse
|
40
|
McLean JS, Fansler SJ, Majors PD, McAteer K, Allen LZ, Shirtliff ME, Lux R, Shi W. Identifying low pH active and lactate-utilizing taxa within oral microbiome communities from healthy children using stable isotope probing techniques. PLoS One 2012; 7:e32219. [PMID: 22403637 PMCID: PMC3293899 DOI: 10.1371/journal.pone.0032219] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/25/2012] [Indexed: 11/19/2022] Open
Abstract
Background Many human microbial infectious diseases including dental caries are polymicrobial in nature. How these complex multi-species communities evolve from a healthy to a diseased state is not well understood. Although many health- or disease-associated oral bacteria have been characterized in vitro, their physiology within the complex oral microbiome is difficult to determine with current approaches. In addition, about half of these species remain uncultivated to date with little known besides their 16S rRNA sequence. Lacking culture-based physiological analyses, the functional roles of uncultivated species will remain enigmatic despite their apparent disease correlation. To start addressing these knowledge gaps, we applied a combination of Magnetic Resonance Spectroscopy (MRS) with RNA and DNA based Stable Isotope Probing (SIP) to oral plaque communities from healthy children for in vitro temporal monitoring of metabolites and identification of metabolically active and inactive bacterial species. Methodology/Principal Findings Supragingival plaque samples from caries-free children incubated with 13C-substrates under imposed healthy (buffered, pH 7) and diseased states (pH 5.5 and pH 4.5) produced lactate as the dominant organic acid from glucose metabolism. Rapid lactate utilization upon glucose depletion was observed under pH 7 conditions. SIP analyses revealed a number of genera containing cultured and uncultivated taxa with metabolic capabilities at pH 5.5. The diversity of active species decreased significantly at pH 4.5 and was dominated by Lactobacillus and Propionibacterium species, both of which have been previously found within carious lesions from children. Conclusions/Significance Our approach allowed for identification of species that metabolize carbohydrates under different pH conditions and supports the importance of Lactobacilli and Propionibacterium in the development of childhood caries. Identification of species within healthy subjects that are active at low pH can lead to a better understanding of oral caries onset and generate appropriate targets for preventative measures in the early stages.
Collapse
Affiliation(s)
- Jeffrey S McLean
- Microbial and Environmental Genomics, The J Craig Venter Institute, San Diego, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Venema K. Intestinal fermentation of lactose and prebiotic lactose derivatives, including human milk oligosaccharides. Int Dairy J 2012. [DOI: 10.1016/j.idairyj.2011.10.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Tabernero M, Venema K, Maathuis AJH, Saura-Calixto FD. Metabolite production during in vitro colonic fermentation of dietary fiber: analysis and comparison of two European diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8968-8975. [PMID: 21761861 DOI: 10.1021/jf201777w] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Metabolite production and antioxidant released during colonic fermentation of naturally occurring dietary fiber (DF) from two European diets (Mediterranean and Scandinavian) were determined. With this aim, DF and associated components were isolated from both whole diets, as well as from cereals and fruits and vegetables comprising the diets. DF was used as substrate for colonic fermentation in a dynamic in vitro model of the colon, samples were collected, and fermentation metabolites were analyzed. Statistical differences between samples were observed in the concentrations of short-chain fatty acids and ammonia and in the ratio acetate/propionate/butyrate. Whole grain cereal DF generated a larger amount of propionate than refined flour cereal DF. Fruit and vegetable DF generated higher amounts of butyrate than cereal DF. Most antioxidant compounds were released from DF during in vitro colonic fermentation. It is concluded that different sources of DF may play a specific role in health maintenance mediated by metabolites produced during colonic fermentation.
Collapse
Affiliation(s)
- Maria Tabernero
- Experimental Surgery Department, Hospital La Paz Health Research Institute, Madrid, Spain.
| | | | | | | |
Collapse
|
43
|
Kovatcheva-Datchary P, Zoetendal EG, Venema K, de Vos WM, Smidt H. Tools for the tract: understanding the functionality of the gastrointestinal tract. Therap Adv Gastroenterol 2011; 2:9-22. [PMID: 21180550 DOI: 10.1177/1756283x09337646] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract comprises a series of complex and dynamic organs ranging from the stomach to the distal colon, which harbor immense microbial assemblages that are known to be vital for human health. Until recently, most of the details concerning our gut microbiota remained obscure. Over the past several years, however, a number of crucial technological and conceptual innovations have been introduced to shed more light on the composition and functionality of human gut microbiota. Recently developed high throughput approaches, including next-generation sequencing technologies and phylogenetic microarrays targeting ribosomal RNA gene sequences, allow for comprehensive analysis of the diversity and dynamics of the gut microbiota composition. Nevertheless, most of the microbes especially in the human large intestine still remain uncultured, and the in situ functions of distinct groups of the gut microbiota are therefore largely unknown, but pivotal to the understanding of their role in human physiology. Apart from functional and metagenomics approaches, stable isotope probing is a promising tool to link the metabolic activity and diversity of microbial communities, including yet uncultured microbes, in a complex environment. Advancements in current stable isotope probing approaches integrated with the application of high-throughput diagnostic microarray-based phylogenetic profiling and metabolic flux analysis should facilitate the understanding of human microbial ecology and will enable the development of innovative strategies to treat or prevent intestinal diseases of as yet unknown etiology.
Collapse
Affiliation(s)
- Petia Kovatcheva-Datchary
- TI Food and Nutrition, Wageningen, The Netherlands; and Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Microarray analysis and barcoded pyrosequencing provide consistent microbial profiles depending on the source of human intestinal samples. Appl Environ Microbiol 2011; 77:2071-80. [PMID: 21257804 DOI: 10.1128/aem.02477-10] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Large-scale and in-depth characterization of the intestinal microbiota necessitates application of high-throughput 16S rRNA gene-based technologies, such as barcoded pyrosequencing and phylogenetic microarray analysis. In this study, the two techniques were compared and contrasted for analysis of the bacterial composition in three fecal and three small intestinal samples from human individuals. As PCR remains a crucial step in sample preparation for both techniques, different forward primers were used for amplification to assess their impact on microbial profiling results. An average of 7,944 pyrosequences, spanning the V1 and V2 region of 16S rRNA genes, was obtained per sample. Although primer choice in barcoded pyrosequencing did not affect species richness and diversity estimates, detection of Actinobacteria strongly depended on the selected primer. Microbial profiles obtained by pyrosequencing and phylogenetic microarray analysis (HITChip) correlated strongly for fecal and ileal lumen samples but were less concordant for ileostomy effluent. Quantitative PCR was employed to investigate the deviations in profiling between pyrosequencing and HITChip analysis. Since cloning and sequencing of random 16S rRNA genes from ileostomy effluent confirmed the presence of novel intestinal phylotypes detected by pyrosequencing, especially those belonging to the Veillonella group, the divergence between pyrosequencing and the HITChip is likely due to the relatively low number of available 16S rRNA gene sequences of small intestinal origin in the DNA databases that were used for HITChip probe design. Overall, this study demonstrated that equivalent biological conclusions are obtained by high-throughput profiling of microbial communities, independent of technology or primer choice.
Collapse
|
45
|
Rajilić-Stojanović M, Maathuis A, Heilig HGHJ, Venema K, de Vos WM, Smidt H. Evaluating the microbial diversity of an in vitro model of the human large intestine by phylogenetic microarray analysis. MICROBIOLOGY-SGM 2010; 156:3270-3281. [PMID: 20847013 DOI: 10.1099/mic.0.042044-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A high-density phylogenetic microarray targeting small subunit rRNA (SSU rRNA) sequences of over 1000 microbial phylotypes of the human gastrointestinal tract, the HITChip, was used to assess the impact of faecal inoculum preparation and operation conditions on an in vitro model of the human large intestine (TIM-2). This revealed that propagation of mixed faecal donations for the production of standardized inocula has only a limited effect on the microbiota composition, with slight changes observed mainly within the Firmicutes. Adversely, significant shifts in several major groups of intestinal microbiota were observed after inoculation of the in vitro model. Hierarchical cluster analysis was able to show that samples taken throughout the inoculum preparation grouped with microbiota profiles observed for faecal samples of healthy adults. In contrast, the TIM-2 microbiota was distinct. While members of the Bacteroidetes and some groups within the Bacilli were increased in TIM-2 microbiota, a strong reduction in the relative abundance of other microbial groups, including Bifidobacterium spp., Streptococcus spp., and Clostridium clusters IV and XIVa, was observed. The changes detected with the HITChip could be confirmed using denaturing gradient gel electrophoresis (DGGE) of SSU rRNA amplicons.
Collapse
Affiliation(s)
| | - Annet Maathuis
- Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, The Netherlands.,TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Hans G H J Heilig
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Koen Venema
- Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, The Netherlands.,TNO Quality of Life, PO Box 360, 3700 AJ Zeist, The Netherlands
| | - Willem M de Vos
- Department of Veterinary Biosciences, PO Box 66, FN-00014, University of Helsinki, Finland.,Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Hauke Smidt
- Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, The Netherlands.,Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
46
|
Robinson CJ, Bohannan BJM, Young VB. From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol Rev 2010; 74:453-76. [PMID: 20805407 PMCID: PMC2937523 DOI: 10.1128/mmbr.00014-10] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the past several years, we have witnessed an increased interest in understanding the structure and function of the indigenous microbiota that inhabits the human body. It is hoped that this will yield novel insight into the role of these complex microbial communities in human health and disease. What is less appreciated is that this recent activity owes a great deal to the pioneering efforts of microbial ecologists who have been studying communities in non-host-associated environments. Interactions between environmental microbiologists and human microbiota researchers have already contributed to advances in our understanding of the human microbiome. We review the work that has led to these recent advances and illustrate some of the possible future directions for continued collaboration between these groups of researchers. We discuss how the application of ecological theory to the human-associated microbiota can lead us past descriptions of community structure and toward an understanding of the functions of the human microbiota. Such an approach may lead to a shift in the prevention and treatment of human diseases that involves conservation or restoration of the normal community structure and function of the host-associated microbiota.
Collapse
Affiliation(s)
- Courtney J. Robinson
- Department of Internal Medicine, Division of Infectious Diseases, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403
| | - Brendan J. M. Bohannan
- Department of Internal Medicine, Division of Infectious Diseases, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403
| | - Vincent B. Young
- Department of Internal Medicine, Division of Infectious Diseases, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW To describe the recent developments and insights gained in the role played by the colonic microbiota in energy and carbohydrate metabolism related to obesity in humans. RECENT FINDINGS Previous findings that the ratio of Firmicutes and Bacteriodetes is important in energy harvesting and obesity have not been confirmed in recent studies. In fact, sometimes, the opposite results were obtained. Nevertheless, it is clear that the microbiota plays a role in energy extraction from nondigested carbohydrates in the form of production of short-chain fatty acids. Also, the microbiota plays a role in host metabolism by influencing and modulating host gene expression in various tissues. SUMMARY Despite numerous recent studies trying to link the composition of the microbiota to obesity, the picture is far from clear, and it remains to be seen whether changes in microbiota composition are the cause or the consequence of obesity. Molecular studies reveal the enzyme machineries used by individual members of the microbiota to break down and ferment polysaccharides. Also, the mechanisms of host-microbe mutualism are becoming unraveled. Using stable-isotope-labeled substrates, the exact microorganisms involved in fermentation of the substrates and the exact metabolites that are produced from the substrate can be deciphered.
Collapse
Affiliation(s)
- Koen Venema
- TNO Quality of Life, Department of Biosciences, Zeist, The Netherlands.
| |
Collapse
|
48
|
de Graaf AA, Maathuis A, de Waard P, Deutz NEP, Dijkema C, de Vos WM, Venema K. Profiling human gut bacterial metabolism and its kinetics using [U-13C]glucose and NMR. NMR IN BIOMEDICINE 2010; 23:2-12. [PMID: 19593762 DOI: 10.1002/nbm.1418] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study introduces a stable-isotope metabolic approach employing [U-(13)C]glucose that, as a novelty, allows selective profiling of the human intestinal microbial metabolic products of carbohydrate food components, as well as the measurement of the kinetics of their formation pathways, in a single experiment. A well-established, validated in vitro model of human intestinal fermentation was inoculated with standardized gastrointestinal microbiota from volunteers. After culture stabilization, [U-(13)C]glucose was added as an isotopically labeled metabolic precursor. System lumen and dialysate samples were taken at regular intervals. Metabolite concentrations and isotopic labeling were determined by NMR, GC, and enzymatic methods. The main microbial metabolites were lactate, acetate, butyrate, formate, ethanol, and glycerol. They together accounted for a (13)C recovery rate as high as 91.2%. Using an NMR chemical shift prediction approach, several minor products that showed (13)C incorporation were identified as organic acids, amino acids, and various alcohols. Using computer modeling of the (12)C contents and (13)C labeling kinetics, the metabolic fluxes in the gut microbial pathways for synthesis of lactate, formate, acetate, and butyrate were determined separately for glucose and unlabeled background substrates. This novel approach enables the study of the modulation of human intestinal function by single nutrients, providing a new rational basis for achieving control of the short-chain fatty acids profile by manipulating substrate and microbiota composition in a purposeful manner.
Collapse
Affiliation(s)
- Albert A de Graaf
- Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Zhou H, Gong J, Brisbin J, Yu H, Sarson A, Si W, Sharif S, Han Y. Transcriptional profiling analysis of host response to Clostridium perfringens infection in broilers. Poult Sci 2009; 88:1023-32. [DOI: 10.3382/ps.2008-00343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Kovatcheva-Datchary P, Egert M, Maathuis A, Rajilić-Stojanović M, de Graaf AA, Smidt H, de Vos WM, Venema K. Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Environ Microbiol 2008; 11:914-26. [PMID: 19128319 DOI: 10.1111/j.1462-2920.2008.01815.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbohydrates, including starches, are an important energy source for humans, and are known for their interactions with the microbiota in the digestive tract. Largely, those interactions are thought to promote human health. Using 16S ribosomal RNA (rRNA)-based stable isotope probing (SIP), we identified starch-fermenting bacteria under human colon-like conditions. To the microbiota of the TIM-2 in vitro model of the human colon 7.4 g l(-1) of [U-(13)C]-starch was added. RNA extracted from lumen samples after 0 (control), 2, 4 and 8 h was subjected to density-gradient ultracentrifugation. Terminal-restriction fragment length polymorphism (T-RFLP) fingerprinting and phylogenetic analyses of the labelled and unlabelled 16S rRNA suggested populations related to Ruminococcus bromii, Prevotella spp. and Eubacterium rectale to be involved in starch metabolism. Additionally, 16S rRNA related to that of Bifidobacterium adolescentis was abundant in all analysed fractions. While this might be due to the enrichment of high-GC RNA in high-density fractions, it could also indicate an active role in starch fermentation. Comparison of the T-RFLP fingerprints of experiments performed with labelled and unlabelled starch revealed Ruminococcus bromii as the primary degrader in starch fermentation in the studied model, as it was found to solely predominate in the labelled fractions. LC-MS analyses of the lumen and dialysate samples showed that, for both experiments, starch fermentation primarily yielded acetate, butyrate and propionate. Integration of molecular and metabolite data suggests metabolic cross-feeding in the system, where populations related to Ruminococcus bromii are the primary starch degrader, while those related to Prevotella spp., Bifidobacterium adolescentis and Eubacterium rectale might be further involved in the trophic chain.
Collapse
|