1
|
Zhang W, Kohn J, Yelick PC. TyroFill-Titanium Implant Constructs for the Coordinated Repair of Rabbit Mandible and Tooth Defects. Bioengineering (Basel) 2023; 10:1277. [PMID: 38002402 PMCID: PMC10668976 DOI: 10.3390/bioengineering10111277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
Currently used methods to repair craniomaxillofacial (CMF) bone and tooth defects require a multi-staged surgical approach for bone repair followed by dental implant placement. Our previously published results demonstrated significant bioengineered bone formation using human dental pulp stem cell (hDPSC)-seeded tyrosine-derived polycarbonate scaffolds (E1001(1K)-bTCP). Here, we improved upon this approach using a modified TyroFill (E1001(1K)/dicalcium phosphate dihydrate (DCPD)) scaffold-supported titanium dental implant model for simultaneous bone-dental implant repair. TyroFill scaffolds containing an embedded titanium implant, with (n = 3 each time point) or without (n = 2 each time point) seeded hDPCs and Human Umbilical Vein Endothelial Cells (HUVECs), were cultured in vitro. Each implant was then implanted into a 10 mm full-thickness critical-sized defect prepared on a rabbit mandibulee. After 1 and 3 months, replicate constructs were harvested and analyzed using Micro-CT histological and IHC analyses. Our results showed significant new bone formation surrounding the titanium implants in cell-seeded TyroFill constructs. This study indicates the potential utility of hDPSC/HUVEC-seeded TyroFill scaffolds for coordinated CMF bone-dental implant repair.
Collapse
Affiliation(s)
- Weibo Zhang
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA
| | - Pamela C. Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| |
Collapse
|
2
|
Ayariga JA, Huang H, Dean D. Decellularized Avian Cartilage, a Promising Alternative for Human Cartilage Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1974. [PMID: 35269204 PMCID: PMC8911734 DOI: 10.3390/ma15051974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023]
Abstract
Articular cartilage defects, and subsequent degeneration, are prevalent and account for the poor quality of life of most elderly persons; they are also one of the main predisposing factors to osteoarthritis. Articular cartilage is an avascular tissue and, thus, has limited capacity for healing and self-repair. Damage to the articular cartilage by trauma or pathological causes is irreversible. Many approaches to repair cartilage have been attempted with some potential; however, there is no consensus on any ideal therapy. Tissue engineering holds promise as an approach to regenerate damaged cartilage. Since cell adhesion is a critical step in tissue engineering, providing a 3D microenvironment that recapitulates the cartilage tissue is vital to inducing cartilage regeneration. Decellularized materials have emerged as promising scaffolds for tissue engineering, since this procedure produces scaffolds from native tissues that possess structural and chemical natures that are mimetic of the extracellular matrix (ECM) of the native tissue. In this work, we present, for the first time, a study of decellularized scaffolds, produced from avian articular cartilage (extracted from Gallus Gallus domesticus), reseeded with human chondrocytes, and we demonstrate for the first time that human chondrocytes survived, proliferated and interacted with the scaffolds. Morphological studies of the decellularized scaffolds revealed an interconnected, porous architecture, ideal for cell growth. Mechanical characterization showed that the decellularized scaffolds registered stiffness comparable to the native cartilage tissues. Cell growth inhibition and immunocytochemical analyses showed that the decellularized scaffolds are suitable for cartilage regeneration.
Collapse
Affiliation(s)
| | | | - Derrick Dean
- The Biomedical Engineering Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, 1627 Hall Street, Montgomery, AL 36104, USA; (J.A.A.); (H.H.)
| |
Collapse
|
3
|
Boffito M, Servello L, Arango-Ospina M, Miglietta S, Tortorici M, Sartori S, Ciardelli G, Boccaccini AR. Custom-Made Poly(urethane) Coatings Improve the Mechanical Properties of Bioactive Glass Scaffolds Designed for Bone Tissue Engineering. Polymers (Basel) 2021; 14:151. [PMID: 35012176 PMCID: PMC8747464 DOI: 10.3390/polym14010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/03/2022] Open
Abstract
The replication method is a widely used technique to produce bioactive glass (BG) scaffolds mimicking trabecular bone. However, these scaffolds usually exhibit poor mechanical reliability and fast degradation, which can be improved by coating them with a polymer. In this work, we proposed the use of custom-made poly(urethane)s (PURs) as coating materials for 45S5 Bioglass®-based scaffolds. In detail, BG scaffolds were dip-coated with two PURs differing in their soft segment (poly(ε-caprolactone) or poly(ε-caprolactone)/poly(ethylene glycol) 70/30 w/w) (PCL-PUR and PCL/PEG-PUR) or PCL (control). PUR-coated scaffolds exhibited biocompatibility, high porosity (ca. 91%), and improved mechanical properties compared to BG scaffolds (2-3 fold higher compressive strength). Interestingly, in the case of PCL-PUR, compressive strength significantly increased by coating BG scaffolds with an amount of polymer approx. 40% lower compared to PCL/PEG-PUR- and PCL-coated scaffolds. On the other hand, PEG presence within PCL/PEG-PUR resulted in a fast decrease in mechanical reliability in an aqueous environment. PURs represent promising coating materials for BG scaffolds, with the additional pros of being ad-hoc customized in their physico-chemical properties. Moreover, PUR-based coatings exhibited high adherence to the BG surface, probably because of the formation of hydrogen bonds between PUR N-H groups and BG surface functionalities, which were not formed when PCL was used.
Collapse
Affiliation(s)
- Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Lucia Servello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| | - Serena Miglietta
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Martina Tortorici
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
- Julius Wolff Institut, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (L.S.); (S.M.); (M.T.); (S.S.); (G.C.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| |
Collapse
|
4
|
Kirankumar S, Gurusamy N, Rajasingh S, Sigamani V, Vasanthan J, Perales SG, Rajasingh J. Modern approaches on stem cells and scaffolding technology for osteogenic differentiation and regeneration. Exp Biol Med (Maywood) 2021; 247:433-445. [PMID: 34648374 DOI: 10.1177/15353702211052927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The process of bone repair has always been a natural mystery. Although bones do repair themselves, supplemental treatment is required for the initiation of the self-regeneration process. Predominantly, surgical procedures are employed for bone regeneration. Recently, cell-based therapy for bone regeneration has proven to be more effective than traditional methods, as it eliminates the immune risk and painful surgeries. In clinical trials, various stem cells, especially mesenchymal stem cells, have shown to be more efficient for the treatment of several bone-related diseases, such as non-union fracture, osteogenesis imperfecta, osteosarcoma, and osteoporosis. Furthermore, the stem cells grown in a suitable three-dimensional scaffold support were found to be more efficient for osteogenesis. It has been shown that the three-dimensional bioscaffolds support and simulate an in vivo environment, which helps in differentiation of stem cells into bone cells. Bone regeneration in patients with bone disorders can be improved through modification of stem cells with several osteogenic factors or using stem cells as carriers for osteogenic factors. In this review, we focused on the various types of stem cells and scaffolds that are being used for bone regeneration. In addition, the molecular mechanisms of various transcription factors, signaling pathways that support bone regeneration and the senescence of the stem cells, which limits bone regeneration, have been discussed.
Collapse
Affiliation(s)
- Shivaani Kirankumar
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Genetic Engineering, 93104SRM Institute of Science and Technology, Chennai 603203, India
| | - Narasimman Gurusamy
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sheeja Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Vinoth Sigamani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jayavardini Vasanthan
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Genetic Engineering, 93104SRM Institute of Science and Technology, Chennai 603203, India
| | - Selene G Perales
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Monaco G, El Haj AJ, Alini M, Stoddart MJ. Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration. J Funct Morphol Kinesiol 2021; 6:E6. [PMID: 33466400 PMCID: PMC7838775 DOI: 10.3390/jfmk6010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Articular cartilage injury and repair is an issue of growing importance. Although common, defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity, which is largely due to its avascular nature. There is a critical need to better study and understand cellular healing mechanisms to achieve more effective therapies for cartilage regeneration. This article aims to describe the key features of cartilage which is being modelled using tissue engineered cartilage constructs and ex vivo systems. These models have been used to investigate chondrogenic differentiation and to study the mechanisms of cartilage integration into the surrounding tissue. The review highlights the key regeneration principles of articular cartilage repair in healthy and diseased joints. Using co-culture models and novel bioreactor designs, the basis of regeneration is aligned with recent efforts for optimal therapeutic interventions.
Collapse
Affiliation(s)
- Graziana Monaco
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| | - Alicia J. El Haj
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
- Healthcare Technology Institute, Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
| | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| |
Collapse
|
6
|
Zhang W, Saxena S, Fakhrzadeh A, Rudolph S, Young S, Kohn J, Yelick PC. Use of Human Dental Pulp and Endothelial Cell Seeded Tyrosine-Derived Polycarbonate Scaffolds for Robust in vivo Alveolar Jaw Bone Regeneration. Front Bioeng Biotechnol 2020; 8:796. [PMID: 32766225 PMCID: PMC7380083 DOI: 10.3389/fbioe.2020.00796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to effectively repair craniomaxillofacial (CMF) bone defects in a fully functional and aesthetically pleasing manner is essential to maintain physical and psychological health. Current challenges for CMF repair therapies include the facts that craniofacial bones exhibit highly distinct properties as compared to axial and appendicular bones, including their unique sizes, shapes and contours, and mechanical properties that enable the ability to support teeth and withstand the strong forces of mastication. The study described here examined the ability for tyrosine-derived polycarbonate, E1001(1K)/β-TCP scaffolds seeded with human dental pulp stem cells (hDPSCs) and human umbilical vein endothelial cells (HUVECs) to repair critical sized alveolar bone defects in an in vivo rabbit mandible defect model. Human dental pulp stem cells are uniquely suited for use in CMF repair in that they are derived from the neural crest, which naturally contributes to CMF development. E1001(1k)/β-TCP scaffolds provide tunable mechanical and biodegradation properties, and are highly porous, consisting of interconnected macro- and micropores, to promote cell infiltration and attachment throughout the construct. Human dental pulp stem cells/HUVECs seeded and acellular E1001(1k)/β-TCP constructs were implanted for one and three months, harvested and analyzed by micro-computed tomography, then demineralized, processed and sectioned for histological and immunohistochemical analyses. Our results showed that hDPSC seeded E1001(1k)/β-TCP constructs to support the formation of osteodentin-like mineralized jawbone tissue closely resembling that of natural rabbit jaw bone. Although unseeded scaffolds supported limited alveolar bone regeneration, more robust and homogeneous bone formation was observed in hDPSC/HUVEC-seeded constructs, suggesting that hDPSCs/HUVECs contributed to enhanced bone formation. Importantly, bioengineered jaw bone recapitulated the characteristic morphology of natural rabbit jaw bone, was highly vascularized, and exhibited active remodeling by the presence of osteoblasts and osteoclasts on newly formed bone surfaces. In conclusion, these results demonstrate, for the first time, that E1001(1K)/ β-TCP scaffolds pre-seeded with human hDPSCs and HUVECs contributed to enhanced bone formation in an in vivo rabbit mandible defect repair model as compared to acellular E1001(1K)/β-TCP constructs. These studies demonstrate the utility of hDPSC/HUVEC-seeded E1001(1K)/β-TCP scaffolds as a potentially superior clinically relevant therapy to repair craniomaxillofacial bone defects.
Collapse
Affiliation(s)
- Weibo Zhang
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Shruti Saxena
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, United States
| | - Amir Fakhrzadeh
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, United States
| | - Sara Rudolph
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, United States
| | - Pamela C. Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
7
|
Juhl O, Zhao N, Merife AB, Cohen D, Friedman M, Zhang Y, Schwartz Z, Wang Y, Donahue H. Aptamer-Functionalized Fibrin Hydrogel Improves Vascular Endothelial Growth Factor Release Kinetics and Enhances Angiogenesis and Osteogenesis in Critically Sized Cranial Defects. ACS Biomater Sci Eng 2019; 5:6152-6160. [PMID: 32190730 PMCID: PMC7079287 DOI: 10.1021/acsbiomaterials.9b01175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An aging population, decreased activity levels and increased combat injuries, have led to an increase in critical sized bone defects. As more defects are treated using allografts, which is the current standard of care, the deficiencies of allografts are becoming more evident. Allografts lack the angiogenic potential to induce sufficient vasculogenesis to counteract the hypoxic environment associated with critical sized bone defects. In this study, aptamer-functionalized fibrin hydrogels (AFH), engineered to release vascular endothelial growth factor (VEGF), were evaluated for their material properties, growth factor release kinetics, and angiogenic and osteogenic potential in vivo. Aptamer functionalization to native fibrin did not result in significant changes in biocompatibility or hydrogel gelation. However, aptamer functionalization of fibrin did improve the release kinetics of VEGF from AFH and, when compared to FH, reduced the diffusivity and extended the release of VEGF several days longer. VEGF released from AFH, in vivo, increased vascularization to a greater degree, relative to VEGF released from FH, in a murine critical-sized cranial defect. Defects treated with AFH loaded with VEGF, relative to nonhydrogel loaded controls, showed a nominal increase in osteogenesis. Together, these data suggest that AFH more efficiently incorporates and retains VEGF in vitro and in vivo, which then enhances angiogenesis and osteogenesis to a greater extent in vivo than FH.
Collapse
Affiliation(s)
- Otto Juhl
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Nan Zhao
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Anna-Blessing Merife
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - David Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Michael Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Yue Zhang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Yong Wang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Henry Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| |
Collapse
|
8
|
Pomini KT, Cestari TM, Santos German ÍJ, de Oliveira Rosso MP, de Oliveira Gonçalves JB, Buchaim DV, Pereira M, Andreo JC, Rosa GM, Della Coletta BB, Cosin Shindo JVT, Buchaim RL. Influence of experimental alcoholism on the repair process of bone defects filled with beta-tricalcium phosphate. Drug Alcohol Depend 2019; 197:315-325. [PMID: 30875652 DOI: 10.1016/j.drugalcdep.2018.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022]
Abstract
This study evaluated the effect of ethanol on the repair in calvaria treated with beta-tricalcium phosphate (β-TCP). Forty rats were distributed into 2 groups: Water group (CG, n = 20) and Alcohol Group (AG, n = 20), which received 25% ethanol ad libitum after an adaptation period of 3 weeks. After 90 days of liquid diet, the rats were submitted to a 5.0 mm bilateral craniotomy in the parietal bones; the left parietal was filled with β-TCP (CG-TCP and AG-TCP) and the contralateral only with blood clot (CG-Clot and AG-Clot). The animals were killed after 10, 20, 40 and 60 days. The groups CG-Clot and AG-Clot showed similar pattern of bone formation with a gradual and significant increase in the amount of bone in CG-Clot (22.17 ± 3.18 and 34.81 ± 5.49) in relation to AG-Clot (9.35 ± 5.98 and 21.65 ± 6.70) in periods of 20-40 days, respectively. However, in the other periods there was no statistically significant difference. Alcohol ingestion had a negative influence on bone formation, even with the use of β-TCP, exhibiting slow resorption and replacement by fibrous tissue, with 16% of bone formation within 60 days in AG-TCP, exhibiting immature bone tissue with predominance of disorganized collagen fibers. Defects in CG-TCP showed bone tissue with predominance of lamellar arrangement filling 39% of the original defect. It can be concluded that chronic ethanol consumption impairs the ability to repair bone defects, even with the use of a β-TCP biomaterial.
Collapse
Affiliation(s)
- Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | - Tânia Mary Cestari
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | | | | | | | - Daniela Vieira Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil; Medical School, University of Marilia (UNIMAR), Marília, Brazil; Medical School, University Center of Adamantina (UNIFAI), Adamantina, Brazil.
| | - Mizael Pereira
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | - Geraldo Marco Rosa
- University of the Sacred Heart (USC), Bauru, Brazil; University of the Ninth of July (UNINOVE), Bauru, Brazil.
| | - Bruna Botteon Della Coletta
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil.
| | | | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil; Medical School, University of Marilia (UNIMAR), Marília, Brazil.
| |
Collapse
|
9
|
Mousaei Ghasroldasht M, Matin MM, Kazemi Mehrjerdi H, Naderi-Meshkin H, Moradi A, Rajabioun M, Alipour F, Ghasemi S, Zare M, Mirahmadi M, Bidkhori HR, Bahrami AR. Application of mesenchymal stem cells to enhance non-union bone fracture healing. J Biomed Mater Res A 2018; 107:301-311. [PMID: 29673055 DOI: 10.1002/jbm.a.36441] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/27/2018] [Accepted: 04/12/2018] [Indexed: 01/07/2023]
Abstract
ECM components include a number of osteoinductive and osteoconductive factors, which are involved in bone fracture healing. In this study, a combination of adipose derived mesenchymal stem cells (Ad-MSCs), cancellous bone graft (CBG), and chitosan hydrogel (CHI) was applied to the non-union bone fracture and healing effects were evaluated for the first time. After creation of animal models with non-union fracture in rats, they were randomly classified into seven groups. Radiography at 0, 2, 4, and 8 weeks after surgery, indicated the positive effects of Ad-MSCs + CBG + CHI and Ad-MSCs + CBG in treatment of bone fractures as early as 2 weeks after the surgery. These data were confirmed with both biomechanical and histological studies. Gene expression analyses of Vegf and Bmp2 showed a positive effect of Ad-MSCs on vascularization and osteogenic differentiation in all groups receiving Ad-MSCs, as shown by real-time PCR. Immunofluorescence analysis and RT-PCR results indicated existence of human Ad-MSCs in the fractured region 8 weeks post-surgery. In conclusion, we suggest that application of Ad-MSCs, CBG, and CHI, could be a suitable combination for osteoinduction and osteoconduction to improve non-union bone fracture healing. Further investigations are required to determine the exact mechanisms involved in this process before moving to clinical studies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 301-311, 2019.
Collapse
Affiliation(s)
- Mohammad Mousaei Ghasroldasht
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Kazemi Mehrjerdi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Ali Moradi
- Department of Orthopedic Surgery, Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Rajabioun
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Faeze Alipour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Samaneh Ghasemi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zare
- Clinical Pathology, Social Security Organization, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Pradeep AR, Patnaik K, Nagpal K, Karvekar S, Guruprasad CN, Kumaraswamy KM. Efficacy of 1% Metformin Gel in Patients With Moderate and Severe Chronic Periodontitis: A Randomized Controlled Clinical Trial. J Periodontol 2017; 88:1023-1029. [PMID: 28731373 DOI: 10.1902/jop.2017.150096] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND The aim of this study is to investigate efficacy of metformin (MF) 1% gel as an adjunct to scaling and root planing (SRP) in the treatment of moderate and severe chronic periodontitis (CP). METHODS Seventy patients were categorized into two treatment groups: 1) SRP plus 1% MF and 2) SRP plus placebo. Clinical parameters were recorded at baseline and 3, 6, and 9 months. They included plaque index (PI), modified sulcus bleeding index (mSBI), probing depth (PD), and clinical attachment level (CAL). Radiologic assessment of intrabony defects (IBDs) and percentage defect depth reduction (DDR%) was done at baseline and 6- and 9-month intervals using computer-aided software. PD, CAL, and DDR% were evaluated in two subgroups in both the placebo and MF group: 1) initial PD of 5 to 7 mm and 2) initial PD of >7 mm. RESULTS Mean PD reduction and mean CAL gain was found to be greater in the MF group than the placebo group at all visits. Clinical parameters (PD, CAL) in both subgroups, with initial PDs of 5 to 7 and >7 mm, showed significant improvement in the 1% MF group compared with the placebo group. A significantly greater mean DDR% was found in the MF group than the placebo group at 6 and 9 months in both subgroups, 5 to 7 and >7 mm of initial PD. CONCLUSION There was a greater decrease in PD and more CAL gain with significant IBD depth reduction at sites treated with SRP plus locally delivered MF in patients with CP in both initial PD = 5 to 7 and >7 mm subgroups compared with placebo.
Collapse
Affiliation(s)
- A R Pradeep
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, Karnataka, India
| | - Kaushik Patnaik
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, Karnataka, India
| | - Kanika Nagpal
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, Karnataka, India
| | - Shruti Karvekar
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, Karnataka, India
| | - C N Guruprasad
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, Karnataka, India
| | - K M Kumaraswamy
- Department of Orthodontics, Government Dental College and Research Institute
| |
Collapse
|
11
|
Pereira RDS, Menezes JD, Bonardi JP, Griza GL, Okamoto R, Hochuli-Vieira E. Histomorphometric and immunohistochemical assessment of RUNX2 and VEGF of Biogran™ and autogenous bone graft in human maxillary sinus bone augmentation: A prospective and randomized study. Clin Implant Dent Relat Res 2017; 19:867-875. [PMID: 28608398 DOI: 10.1111/cid.12507] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Few studies have been conducted to assess new bone formation using Biogran, a bioactive glass, in maxillary sinus bone augmentation through a prospective and randomized evaluation. Moreover, there are no studies that evaluate cellular behavior by immunohistochemical assessment for osteoblastic and vascular activity during bone repair. PURPOSE The aim of this study is to compare new bone formation and cellular behavior with Biogran alone, a 1:1 combination of Biogran and autogenous bone graft, and autogenous bone graft alone in human maxillary sinuses. MATERIALS AND METHODS Ten maxillary sinuses were grafted with Biogran (Group 1), 10 grafted with Biogran added to autogenous bone graft in a 1:1 ratio (Group 2), and 10 grafted with autogenous bone graft alone (Group 3). After 6 months of bone healing, samples were obtained concurrent to the dental implants' placement to be evaluated by histomorphometric and immunohistochemical assessment for RUNX2 and vascular endothelial growth factor (VEGF). RESULTS The amount of new bone formation in Group 1 was 42.0 ± 7.3% in the pristine bone region, 40.7 ± 14.0% in the intermediate region, and 45.6 ± 13.5% in apical region. In Group 2, for pristine bone, intermediate, and apical regions, new bone formation was 36.6 ± 12.9%, 33.2 ± 13.3%, and 45.8 ± 13.9%, respectively. Group 3 showed new bone formation of 37.3 ± 11.6%, 35.3 ± 14.7%, and 39.9 ± 15.8% in pristine bone, intermediate, and apical regions, respectively. The immunolabeling for RUNX2 showed low cellular activity in osteoblasts for all groups, and the VEGF assessment demonstrated moderate cellular activity in Groups 1 and 2; however, Group 3 presented with low activity in the pristine bone region, followed by moderate activity in the intermediate and apical region. CONCLUSION This study demonstrates that Biogran and its combination with autogenous bone graft 1:1 are good bone substitutes due to their similarity to autogenous bone graft.
Collapse
Affiliation(s)
| | - Juliana Dreyer Menezes
- Universidade Estadual Paulista - UNESP, Surgery and Integrated Clinic Department, São Paulo, Brazil
| | - João Paulo Bonardi
- Universidade Estadual Paulista - UNESP, Surgery and Integrated Clinic Department, São Paulo, Brazil
| | - Geraldo Luiz Griza
- Universidade Estadual Paulista - UNESP, Surgery and Integrated Clinic Department, São Paulo, Brazil
| | - Roberta Okamoto
- Universidade Estadual Paulista - UNESP, Surgery and Integrated Clinic Department, São Paulo, Brazil
| | - Eduardo Hochuli-Vieira
- Universidade Estadual Paulista - UNESP, Surgery and Integrated Clinic Department, São Paulo, Brazil
| |
Collapse
|
12
|
Pereira R, Gorla L, Boos F, Okamoto R, Garcia Júnior I, Hochuli-Vieira E. Use of autogenous bone and beta-tricalcium phosphate in maxillary sinus lifting: histomorphometric study and immunohistochemical assessment of RUNX2 and VEGF. Int J Oral Maxillofac Surg 2017; 46:503-510. [DOI: 10.1016/j.ijom.2017.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 10/14/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
13
|
Devi R, Dixit J. Clinical Evaluation of Insulin like Growth Factor-I and Vascular Endothelial Growth Factor with Alloplastic Bone Graft Material in the Management of Human Two Wall Intra-Osseous Defects. J Clin Diagn Res 2016; 10:ZC41-ZC46. [PMID: 27790578 DOI: 10.7860/jcdr/2016/21333.8476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/10/2016] [Indexed: 02/01/2023]
Abstract
INTRODUCTION In recent years, emphasis on the use of growth factors for periodontal healing is gaining great momentum. Several growth factors showed promising results in periodontal regeneration. AIM This study was designed to compare the clinical outcomes of 0.8μg recombinant human Vascular Endothelial Growth Factor (rh-VEGF) and 10μg recombinant human Insulin Like Growth Factor-I (rh-IGF-I) with β-Tricalcium Phosphate (β-TCP) and Polylactide-Polyglycolide Acid (PLGA) membrane in two wall intra-osseous defects. MATERIALS AND METHODS A total of 29 intra-osseous defects in 27 subjects were randomly divided into 3 test and 1 control group. Test group I (n=8) received rh-VEGF+ rh-IGF-I, Test group II (n=7) rh-VEGF, Test group III (n=7) rh-IGF-I and control group (n=7) with no growth factor, β-TCP and PLGA membrane was used in all the groups. Baseline soft tissue parameters including Probing Pocket Depth (PPD), Clinical Attachment Level (CAL), and Gingival Recession (GR) at selected sites were recorded at baseline and at 6 months. Intrasurgically, intra-osseous component was calculated as a) Cemento-Enamel Junction to Bone Crest (CEJ to BC), b) Bone Crest to Base of the Defect (BC to BD) at baseline and at re-entry. The mean changes at baseline and after 6 months within each group were compared using Wilcoxon Signed Rank Test. The mean changes for each parameter between groups were compared using Mann-Whitney U test. RESULTS After 6 months, maximum mean PPD reduction occurred in test group I followed by test group II, III and control group. Similar trend was observed in CAL gain. Non-significant GR was present in test group I and control group whereas in test group II and III GR was absent. The use of rh-VEGF+ rhIGF-I exhibited 95.8% osseous fill as compared to 54.8% in test group II, 52.7% in test group III and 41.1 % in the control group. CONCLUSION Within the limitations of this study, it can be concluded that, rh-IGF-I+rh-VEGF treated sites resulted in greater improvement in PPD reduction, CAL gain as well as in osseous fill after 6 months when compared with rh-VEGF, rh-IGF-I and control sites.
Collapse
Affiliation(s)
- Renu Devi
- Demonstrator, Department of Periodontics and Oral Implantology, Postgraduate Institute of Dental Sciences , Rohtak, Haryana, India
| | - Jaya Dixit
- Professor and Head of Department, Department of Periodontology, Faculty of Dental Sciences, King George's Medical University , Lucknow, Uttar Pradesh, India
| |
Collapse
|
14
|
Balmayor ER. Targeted delivery as key for the success of small osteoinductive molecules. Adv Drug Deliv Rev 2015; 94:13-27. [PMID: 25959428 DOI: 10.1016/j.addr.2015.04.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 02/08/2023]
Abstract
Molecules such as growth factors, peptides and small molecules can guide cellular behavior and are thus important for tissue engineering. They are rapidly emerging as promising compounds for the regeneration of tissues of the musculoskeletal system. Growth factors have disadvantages such as high cost, short half-life, supraphysiological amounts needed, etc. Therefore, small molecules may be an alternative. These molecules have been discovered using high throughput screening. Small osteoinductive molecules exhibit several advantages over growth factors owing to their small sizes, such as high stability and non-immunogenicity. These molecules may stimulate directly signaling pathways that are important for osteogenesis. However, systemic application doesn't induce osteogenesis in most cases. Therefore, local administration is needed. This may be achieved by using a bone graft material providing additional osteoconductive properties. These graft materials can also act by themselves as a delivery matrix for targeted and local delivery. Furthermore, vascularization is necessary in the process of osteogenesis. Many of the small molecules are also capable of promoting vascularization of the tissue to be regenerated. Thus, in this review, special attention is given to molecules that are capable of inducing both angiogenesis and osteogenesis simultaneously. Finally, more recent preclinical and clinical uses in bone regeneration of those molecules are described, highlighting the needs for the clinical translation of these promising compounds.
Collapse
|
15
|
Gardin C, Ricci S, Ferroni L, Guazzo R, Sbricoli L, De Benedictis G, Finotti L, Isola M, Bressan E, Zavan B. Decellularization and Delipidation Protocols of Bovine Bone and Pericardium for Bone Grafting and Guided Bone Regeneration Procedures. PLoS One 2015; 10:e0132344. [PMID: 26191793 PMCID: PMC4507977 DOI: 10.1371/journal.pone.0132344] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/14/2015] [Indexed: 12/18/2022] Open
Abstract
The combination of bone grafting materials with guided bone regeneration (GBR) membranes seems to provide promising results to restore bone defects in dental clinical practice. In the first part of this work, a novel protocol for decellularization and delipidation of bovine bone, based on multiple steps of thermal shock, washes with detergent and dehydration with alcohol, is described. This protocol is more effective in removal of cellular materials, and shows superior biocompatibility compared to other three methods tested in this study. Furthermore, histological and morphological analyses confirm the maintenance of an intact bone extracellular matrix (ECM). In vitro and in vivo experiments evidence osteoinductive and osteoconductive properties of the produced scaffold, respectively. In the second part of this study, two methods of bovine pericardium decellularization are compared. The osmotic shock-based protocol gives better results in terms of removal of cell components, biocompatibility, maintenance of native ECM structure, and host tissue reaction, in respect to the freeze/thaw method. Overall, the results of this study demonstrate the characterization of a novel protocol for the decellularization of bovine bone to be used as bone graft, and the acquisition of a method to produce a pericardium membrane suitable for GBR applications.
Collapse
Affiliation(s)
- Chiara Gardin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Sara Ricci
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- * E-mail: (BZ); (LF)
| | - Riccardo Guazzo
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Luca Sbricoli
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Giulia De Benedictis
- Department of Animal Medicine, Productions and Health, University of Padova, Legnaro, Padova, Italy
| | - Luca Finotti
- Department of Animal Medicine, Productions and Health, University of Padova, Legnaro, Padova, Italy
| | - Maurizio Isola
- Department of Animal Medicine, Productions and Health, University of Padova, Legnaro, Padova, Italy
| | - Eriberto Bressan
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- * E-mail: (BZ); (LF)
| |
Collapse
|
16
|
Marini M, Bertolai R, Ambrosini S, Sarchielli E, Vannelli GB, Sgambati E. Differential expression of vascular endothelial growth factor in human fetal skeletal site-specific tissues: Mandible versus femur. Acta Histochem 2015; 117:228-34. [PMID: 25769656 DOI: 10.1016/j.acthis.2015.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/10/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a well-known mediator that signals through pathways in angiogenesis and osteogenesis. Angiogenesis and bone formation are coupled during either skeletal development or bone remodeling and repair occurring in postnatal life. In this study, we examined for the first time the expression of VEGF in human fetal mandibular and femoral bone in comparison with the respective adult tissues. Similarly to other craniofacial bones, but at variance with the axial and appendicular skeleton, during development mandible does not arise from mesoderm but neural crest cells of the neuroectoderm germ layer, and undergoes intramembranous instead of endochondral ossification. By quantitative real-time PCR technique, we could show that VEGF gene expression levels were significantly higher in fetal than in adult samples, especially in femoral tissue. Western blotting analysis confirmed higher protein expression of VEGF in the fetal femur respect to the mandible. Moreover, immunohistochemistry revealed that in both fetal tissues VEGF expression was mainly localized in pre- and osteoblasts. Differential expression of VEGF in femoral and mandibular bone tissues could be related to their different structure, function and development during organogenesis.
Collapse
Affiliation(s)
- Mirca Marini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Roberto Bertolai
- Department of Surgery and Translational Medicine, University of Florence, Largo Palagi 1, 50139 Florence, Italy.
| | - Stefano Ambrosini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Erica Sarchielli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Gabriella Barbara Vannelli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche 86090 Isernia, Italy.
| |
Collapse
|
17
|
Giusti G, Lee JY, Kremer T, Friedrich P, Bishop AT, Shin AY. The influence of vascularization of transplanted processed allograft nerve on return of motor function in rats. Microsurgery 2014; 36:134-43. [PMID: 25557845 DOI: 10.1002/micr.22371] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 11/28/2014] [Accepted: 12/11/2014] [Indexed: 11/07/2022]
Abstract
Processed nerve allografts have become an alternative to repair segmental nerve defects, with results comparable with autografts regarding sensory recovery; however, they have failed to reproduce comparable motor recovery. The purpose of this study was to determine how revascularizaton of processed nerve allograft would affect motor recovery. Eighty-eight rats were divided in four groups of 22 animals each. A unilateral 10-mm sciatic nerve defect was repaired with allograft (group I), allograft wrapped with silicone conduit (group II), allograft augmented with vascular endothelial growth factor (group III), or autograft (group IV). Eight animals from each group were sacrificed at 3 days, and the remaining animals at 16 weeks. Revascularization was evaluated by measuring the graft capillary density at 3 days and 16 weeks. Measurements of ankle contracture, compound muscle action potential, tibialis anterior muscle weight and force, and nerve histomorphometry were performed at 16 weeks. All results were normalized to the contralateral side. The results of capillary density at 3 days were 0.99% ± 1.3% for group I, 0.33% ± 0.6% for group II, 0.05% ± 0.1% for group III, and 75.6% ± 45.7% for group IV. At 16 weeks, the results were 69.9% ± 22.4% for group I, 37.0% ± 16.6% for group II, 84.6% ± 46.6% for group III, and 108.3% ± 46.8% for group IV. The results of muscle force were 47.5% ± 14.4% for group I, 21.7% ± 13.5% for group II, 47.1% ± 7.9% for group III, and 54.4% ± 10.6% for group IV. The use of vascular endothelial growth factor in the fashion used in this study improved neither the nerve allograft short-term revascularization nor the functional motor recovery after 16 weeks. Blocking allograft vascularization from surrounding tissues was detrimental for motor recovery. The processed nerve allografts used in this study showed similar functional motor recovery compared with that of the autograft.
Collapse
Affiliation(s)
| | - Joo-Yup Lee
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Thomas Kremer
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | | | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.,Microvascular Research Laboratory, Mayo Clinic, Rochester, MN
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.,Microvascular Research Laboratory, Mayo Clinic, Rochester, MN
| |
Collapse
|
18
|
Eman RM, Hoorntje ET, Öner FC, Kruyt MC, Dhert WJ, Alblas J. CXCL12/stromal-cell-derived factor-1 effectively replaces endothelial progenitor cells to induce vascularized ectopic bone. Stem Cells Dev 2014; 23:2950-8. [PMID: 25036092 PMCID: PMC4267711 DOI: 10.1089/scd.2013.0560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 07/15/2014] [Indexed: 01/07/2023] Open
Abstract
Bone defect healing is highly dependent on the simultaneous stimulation of osteogenesis and vascularization. In bone regenerative strategies, combined seeding of multipotent stromal cells (MSCs) and endothelial progenitor cells (EPCs) proves their mutual stimulatory effects. Here, we investigated whether stromal-cell-derived factor-1α (SDF-1α) stimulates vascularization by EPCs and whether SDF-1α could replace seeded cells in ectopic bone formation. Late EPCs of goat origin were characterized for their endothelial phenotype and showed to be responsive to SDF-1α in in vitro migration assays. Subsequently, subcutaneous implantation of Matrigel plugs that contained both EPCs and SDF-1α showed more tubule formation than constructs containing either EPCs or SDF-1α. Addition of either EPCs or SDF-1α to MSC-based constructs showed even more elaborate vascular networks after 1 week in vivo, with SDF-1α/MSC-laden groups showing more prominent interconnected networks than EPC/MSC-laden groups. The presence of abundant mouse-specific CD31/PECAM expression in these constructs confirmed ingrowth of murine vessels and discriminated between angiogenesis and vessel networks formed by seeded goat cells. Importantly, implantation of EPC/MSC or SDF-1α/MSC constructs resulted in indistinguishable ectopic bone formation. In both groups, bone onset was apparent at week 3 of implantation. Taken together, we demonstrated that SDF-1α stimulated the migration of EPCs in vitro and vascularization in vivo. Further, SDF-1α addition was as effective as EPCs in inducing the formation of vascularized ectopic bone based on MSC-seeded constructs, suggesting a cell-replacement role for SDF-1α. These results hold promise for the design of larger centimeter-scale, cell-free vascular bone grafts.
Collapse
Affiliation(s)
- Rhandy M. Eman
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edgar T. Hoorntje
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - F. Cumhur Öner
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Moyo C. Kruyt
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter J.A. Dhert
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
19
|
Potential lack of "standardized" processing techniques for production of allogeneic and xenogeneic bone blocks for application in humans. Acta Biomater 2014; 10:3557-62. [PMID: 24769111 DOI: 10.1016/j.actbio.2014.04.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/09/2014] [Accepted: 04/16/2014] [Indexed: 11/22/2022]
Abstract
In the present study, the structure of two allogeneic and three xenogeneic bone blocks, which are used in dental and orthopedic surgery, were histologically analyzed. The ultimate goal was to assess whether the components postulated by the manufacturer can be identified after applying conventional histological and histochemical staining techniques. Three samples of each material, i.e. allogeneic material-1 and -2 as well as xenogeneic material-1, -2 and -3, were obtained commercially. After decalcification and standardized embedding processes, conventional histological staining was performed in order to detect inorganic matrix, cellular or organic matrix components. Allogeneic material-1 showed trabecular bone-like structures, which were free of cellular components as well as of organic matrix. The allogeneic material-2 showed trabecular bone structures, in which connective tissue and cellular remnants were embedded. Additionally, some connective tissue, which resembled fat-like tissue, was found within this material. The xenogeneic material-1 showed trabecular bone-like structures and contained organic components comparable to that demonstrated for the allogeneic material-2. The xenogeneic material-2 showed trabecular bone structures with single cells located in lacunae. The xenogeneic material-3 also showed trabecular structures. Neither cellular nor organic matrix components were found within this material. According to the data of the present study, the allogeneic material-1 and the xenogeneic material-3 were the only investigated materials for which the obtained histological data were in accordance with the manufactureŕs advertised information. The remaining three materials showed discrepancies-although the manufacturers of all five bone substitute materials stated that their blocks were free of organic/cellular remnants. These data are of great clinical and material science interest. It seems that even patented processing techniques are not always able to deliver reproducible materials. Although the manufacturers of all five bone blocks stated that their blocks were free of organic/cellular remnants, our histological analysis revealed that three out of five bone blocks did contain such remnants. Such specimens might be able to induce an immune response within the recipient.
Collapse
|
20
|
Li J, Baker BA, Mou X, Ren N, Qiu J, Boughton RI, Liu H. Biopolymer/Calcium phosphate scaffolds for bone tissue engineering. Adv Healthc Mater 2014; 3:469-84. [PMID: 24339420 DOI: 10.1002/adhm.201300562] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/15/2013] [Indexed: 11/08/2022]
Abstract
With nearly 30 years of progress, tissue engineering has shown promise in developing solutions for tissue repair and regeneration. Scaffolds, together with cells and growth factors, are key components of this development. Recently, an increasing number of studies have reported on the design and fabrication of scaffolding materials. In particular, inspired by the nature of bone, polymer/ceramic composite scaffolds have been studied extensively. The purpose of this paper is to review the recent progress of the naturally derived biopolymers and the methods applied to generate biomimetic biopolymer/calcium phosphate composites as well as their biomedical applications in bone tissue engineering.
Collapse
Affiliation(s)
- Jianhua Li
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
| | - Bryan. A. Baker
- Biosystems and Biomaterials Division, The National Institute of Standards and Technology; MD 20899-8300 USA
| | - Xiaoning Mou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; Beijing China
| | - Na Ren
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
| | - Jichuan Qiu
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
| | - Robert I. Boughton
- Department of Physics and Astronomy; Bowling Green State University; Bowling Green OH 43403 USA
| | - Hong Liu
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; Beijing China
| |
Collapse
|
21
|
Ghanaati S, Lorenz J, Obreja K, Choukroun J, Landes C, Sader RA. Nanocrystalline Hydroxyapatite-Based Material Already Contributes to Implant Stability After 3 Months: A Clinical and Radiologic 3-Year Follow-up Investigation. J ORAL IMPLANTOL 2014; 40:103-9. [DOI: 10.1563/aaid-joi-d-13-00232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study reports on a 3-year clinical and radiologic follow-up investigation of dental implants placed 3 and 6 months after sinus augmentation in 14 patients. Augmentation was performed with a synthetic bone substitute material composed of nanocrystalline hydroxyapatite. The aim of the study was to determine how the integration period of the bone substitute material, that is, 3 months or 6 months, influences implant integration within the patient's upper jaw. Therefore, the following clinical and radiologic parameters were investigated: implant being in situ; Periotest value; and presence of peri-implant osteolysis, bleeding on probing, plaque, and soft tissue recession around the implants. At the follow-up investigation 3 years after placement, 23 of 24 implants were in situ and suitable for prosthetic rehabilitation. No implants in either study group were mobile or showed peri-implant osteolysis. Only a few implants showed plaque or soft tissue variations. Within its limits, the present study showed comparable clinical performance of dental implants placed 3 months after sinus floor augmentation to implants placed 6 months after augmentation. The results of all investigated parameters were in accordance with results found in the literature. It can be concluded that augmentation with the applied synthetic bone substitute material already forms a sufficient implantation bed 3 months after augmentation, which enables long-term, stable, implant-retained restoration. These findings might contribute to a reduced healing time after augmentation, which would be favorable for patients and clinicians.
Collapse
Affiliation(s)
- Shahram Ghanaati
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of Pathology, REPAIR-Lab, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Jonas Lorenz
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Karina Obreja
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Constantin Landes
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Robert A. Sader
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Ohgushi H. Osteogenically differentiated mesenchymal stem cells and ceramics for bone tissue engineering. Expert Opin Biol Ther 2013; 14:197-208. [PMID: 24308323 DOI: 10.1517/14712598.2014.866086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION In the human body, cells having self-renewal and multi-differentiation capabilities reside in many tissues and are called adult stem cells. In bone marrow tissue, two types of stem cells are well known: hematopoietic stem cells and mesenchymal stem cells (MSCs). Though the number of MSCs in bone marrow tissue is very low, it can be increased by in vitro culture of the marrow, and culture-expanded MSCs are available for various tissue regeneration. AREAS COVERED The culture-expanded MSCs can further differentiate into osteogenic cells such as bone forming osteoblasts by culturing the MSCs in an osteogenic medium. This paper discusses osteogenically differentiated MSCs derived from the bone marrow of patients. Importantly, the differentiation can be achieved on ceramic surfaces which demonstrate mineralized bone matrix formation as well as appearance of osteogenic cells. The cell/matrix/ceramic constructs could show immediate in vivo bone formation and are available for bone reconstruction surgery. EXPERT OPINION Currently, MSCs are clinically available for the regeneration of various tissues due to their high proliferation/differentiation capabilities. However, the capabilities are still limited and thus technologies to improve or recover the inherent capabilities of MSCs are needed.
Collapse
Affiliation(s)
- Hajime Ohgushi
- Department Head, Ookuma Hospital, Department of Orthopedics , 2-17-13 Kuise-honmachi, Amagasaki City, Hyogo 660-0814 , Japan +81-6-6481-1667 ; +81-6-6481-4234
| |
Collapse
|
23
|
Qian J, Suo A, Jin X, Xu W, Xu M. Preparation andin vitrocharacterization of biomorphic silk fibroin scaffolds for bone tissue engineering. J Biomed Mater Res A 2013; 102:2961-71. [DOI: 10.1002/jbm.a.34964] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Junmin Qian
- State Key Laboratory for Mechanical Behaviors of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| | - Aili Suo
- First Affiliated Hospital of Medical College of Xi'an Jiaotong University; Xi'an 710061 China
| | - Xinxia Jin
- State Key Laboratory for Mechanical Behaviors of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behaviors of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| | - Minghui Xu
- State Key Laboratory for Mechanical Behaviors of Materials; Xi'an Jiaotong University; Xi'an 710049 China
| |
Collapse
|
24
|
Park SY, Kim KH, Shin SY, Koo KT, Lee YM, Seol YJ. Dual delivery of rhPDGF-BB and bone marrow mesenchymal stromal cells expressing the BMP2 gene enhance bone formation in a critical-sized defect model. Tissue Eng Part A 2013; 19:2495-505. [PMID: 23901900 DOI: 10.1089/ten.tea.2012.0648] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone tissue healing is a dynamic, orchestrated process that relies on multiple growth factors and cell types. Platelet-derived growth factor-BB (PDGF-BB) is released from platelets at wound sites and induces cellular migration and proliferation necessary for bone regeneration in the early healing process. Bone morphogenetic protein-2 (BMP-2), the most potent osteogenic differentiation inducer, directs new bone formation at the sites of bone defects. This study evaluated a combinatorial treatment protocol of PDGF-BB and BMP-2 on bone healing in a critical-sized defect model. To mimic the bone tissue healing process, a dual delivery approach was designed to deliver the rhPDGF-BB protein transiently during the early healing phase, whereas BMP-2 was supplied by rat bone marrow stromal cells (BMSCs) transfected with an adenoviral vector containing the BMP2 gene (AdBMP2) for prolonged release throughout the healing process. In in vitro experiments, the dual delivery of rhPDGF-BB and BMP2 significantly enhanced cell proliferation. However, the osteogenic differentiation of BMSCs was significantly suppressed even though the amount of BMP-2 secreted by the AdBMP2-transfected BMSCs was not significantly affected by the rhPDGF-BB treatment. In addition, dual delivery inhibited the mRNA expression of BMP receptor type II and Noggin in BMSCs. In in vivo experiments, critical-sized calvarial defects in rats showed enhanced bone regeneration by dual delivery of autologous AdBMP2-transfected BMSCs and rhPDGF-BB in both the amount of new bone formed and the bone mineral density. These enhancements in bone regeneration were greater than those observed in the group treated with AdBMP2-transfected BMSCs alone. In conclusion, the dual delivery of rhPDGF-BB and AdBMP2-transfected BMSCs improved the quality of the regenerated bone, possibly due to the modulation of PDGF-BB on BMP-2-induced osteogenesis.
Collapse
Affiliation(s)
- Shin-Young Park
- 1 Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University , Seoul, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Scarano A, Perrotti V, Artese L, Degidi M, Degidi D, Piattelli A, Iezzi G. Blood vessels are concentrated within the implant surface concavities: a histologic study in rabbit tibia. Odontology 2013; 102:259-66. [PMID: 23783569 DOI: 10.1007/s10266-013-0116-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 04/22/2013] [Indexed: 12/27/2022]
Abstract
Angiogenesis plays a key role in bone formation and maintenance. Bone formation has been reported to initiate in the concavities rather than the convexities in a hydroxyapatite substratum and the implant threads of dental implants. The aim of the present study was to evaluate the number of the blood vessels inside the concavities and around the convexities of the threads of implants in a rabbit tibia model. A total of 32 thread-shaped implants blasted with apatitic calcium phosphate (TCP/HA blend) (Resorbable Blast Texturing, RBT) (Maestro, BioHorizons(®), Birmingham, AL, USA) were inserted in 8 rabbits. Each rabbit received 4 implants, 2 in the right and 2 in left tibia. Implants were retrieved after 1, 2, 4, and 8 weeks and treated to obtain thin ground sections. Statistically significant differences were found in the number of vessels that had formed in the concavities rather than the convexities of the implants after 1 (p = 0.000), and 2 weeks (p = 0.000), whilst no significant differences after 4 (p = 0.546) and 8 weeks (p = 0.275) were detected. The present results supported the hypothesis that blood vessel formation was stimulated by the presence of the concavities, which may provide a suitable environment in which mechanical forces, concentrations and gradients of chemotactic molecules and blood clot retention may all drive vascular and bone cell migration.
Collapse
Affiliation(s)
- Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via F. Sciucchi 63, 66100, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Askarinam A, James AW, Zara JN, Goyal R, Corselli M, Pan A, Liang P, Chang L, Rackohn T, Stoker D, Zhang X, Ting K, Péault B, Soo C. Human perivascular stem cells show enhanced osteogenesis and vasculogenesis with Nel-like molecule I protein. Tissue Eng Part A 2013; 19:1386-97. [PMID: 23406369 PMCID: PMC3638559 DOI: 10.1089/ten.tea.2012.0367] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 01/16/2013] [Indexed: 12/31/2022] Open
Abstract
An ideal mesenchymal stem cell (MSC) source for bone tissue engineering has yet to be identified. Such an MSC population would be easily harvested in abundance, with minimal morbidity and with high purity. Our laboratories have identified perivascular stem cells (PSCs) as a candidate cell source. PSCs are readily isolatable through fluorescent-activated cell sorting from adipose tissue and have been previously shown to be indistinguishable from MSCs in the phenotype and differentiation potential. PSCs consist of two distinct cell populations: (1) pericytes (CD146+, CD34-, and CD45-), which surround capillaries and microvessels, and (2) adventitial cells (CD146-, CD34+, and CD45-), found within the tunica adventitia of large arteries and veins. We previously demonstrated the osteogenic potential of pericytes by examining pericytes derived from the human fetal pancreas, and illustrated their in vivo trophic and angiogenic effects. In the present study, we used an intramuscular ectopic bone model to develop the translational potential of our original findings using PSCs (as a combination of pericytes and adventitial cells) from human white adipose tissue. We evaluated human PSC (hPSC)-mediated bone formation and vascularization in vivo. We also examined the effects of hPSCs when combined with the novel craniosynostosis-associated protein, Nel-like molecule I (NELL-1). Implants consisting of the demineralized bone matrix putty combined with NELL-1 (3 μg/μL), hPSC (2.5×10(5) cells), or hPSC+NELL-1, were inserted in the bicep femoris of SCID mice. Bone growth was evaluated using microcomputed tomography, histology, and immunohistochemistry over 4 weeks. Results demonstrated the osteogenic potential of hPSCs and the additive effect of hPSC+NELL-1 on bone formation and vasculogenesis. Comparable osteogenesis was observed with NELL-1 as compared to the more commonly used bone morphogenetic protein-2. Next, hPSCs induced greater implant vascularization than the unsorted stromal vascular fraction from patient-matched samples. Finally, we observed an additive effect on implant vascularization with hPSC+NELL-1 by histomorphometry and immunohistochemistry, accompanied by in vitro elaboration of vasculogenic growth factors. These findings hold significant implications for the cell/protein combination therapy hPSC+NELL-1 in the development of strategies for vascularized bone regeneration.
Collapse
Affiliation(s)
- Asal Askarinam
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
| | - Aaron W. James
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Janette N. Zara
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Raghav Goyal
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
| | - Mirko Corselli
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Angel Pan
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
| | - Pei Liang
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Le Chang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
| | - Todd Rackohn
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
| | - David Stoker
- Division of Plastic and Reconstructive Surgery, University of Southern California, Los Angeles, California
| | - Xinli Zhang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
| | - Kang Ting
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Bruno Péault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
27
|
Nandi SK, Kundu B, Basu D. Protein growth factors loaded highly porous chitosan scaffold: a comparison of bone healing properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 33:1267-75. [PMID: 23827571 DOI: 10.1016/j.msec.2012.12.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 11/10/2012] [Accepted: 12/04/2012] [Indexed: 11/24/2022]
Abstract
Present study aimed to investigate and compare effectiveness of porous chitosan alone and in combination with insulin like growth factor-1 (IGF-1) and bone morphogenetic protein-2 (BMP-2) in bone healing. Highly porous (85±2%) with wide distribution of macroporous (70-900 μm) chitosan scaffolds were fabricated as bone substitutes by employing a simple liquid hardening method using 2% (w/v) chitosan suspension. IGF-1 and BMP-2 were infiltrated using vacuum infiltration with freeze drying method. Adsorption efficiency was found to be 87±2 and 90±2% for BMP-2 and IGF-1 respectively. After thorough material characterization (pore details, FTIR and SEM), samples were used for subsequent in vivo animal trial. Eighteen rabbit models were used to evaluate and compare control (chitosan) (group A), chitosan with IGF-1 (group B) and chitosan with BMP-2 (group C) in the repair of critical size bone defect in tibia. Radiologically, there was evidence of radiodensity in defect area from 60th day (initiated on 30th day) in groups B and C as compared to group A and attaining nearly bony density in most of the part at day 90. Histological results depicted well developed osteoblastic proliferation around haversian canal along with proliferating fibroblast, vascularization and reticular network which was more pronounced in group B followed by groups C and A. Fluorochrome labeling and SEM studies in all groups showed similar outcome. Hence, porous chitosan alone and in combination with growth factors (GFs) can be successfully used for bone defect healing with slight advantage of IGF-1 in chitosan samples.
Collapse
Affiliation(s)
- Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India.
| | | | | |
Collapse
|
28
|
Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, Kon E. Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc 2012; 20:1182-91. [PMID: 21910001 DOI: 10.1007/s00167-011-1655-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 08/30/2011] [Indexed: 12/16/2022]
Abstract
PURPOSE Osteochondral defects (i.e., defects which affect both the articular cartilage and underlying subchondral bone) are often associated with mechanical instability of the joint and therefore with the risk of inducing osteoarthritic degenerative changes. This review addresses the current surgical treatments and most promising tissue engineering approaches for articular cartilage and subchondral bone regeneration. METHODS The capability to repair osteochondral or bone defects remains a challenging goal for surgeons and researchers. So far, most clinical approaches have been shown to have limited capacity to treat severe lesions. Current surgical repair strategies vary according to the nature and size of the lesion and the preference of the operating surgeon. Tissue engineering has emerged as a promising alternative strategy that essentially develops viable substitutes capable of repairing or regenerating the functions of damaged tissue. RESULTS An overview of novel and most promising osteochondroconductive scaffolds, osteochondroinductive signals, osteochondrogenic precursor cells, and scaffold fixation approaches are presented addressing advantages, drawbacks, and future prospectives for osteochondral regenerative medicine. CONCLUSION Tissue engineering has emerged as an excellent approach for the repair and regeneration of damaged tissue, with the potential to circumvent all the limitations of autologous and allogeneic tissue repair. LEVEL OF EVIDENCE Systematic review, Level III.
Collapse
Affiliation(s)
- Silvia Panseri
- Laboratory of Nano-Biotechnology, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Yun YR, Jang JH, Jeon E, Kang W, Lee S, Won JE, Kim HW, Wall I. Administration of growth factors for bone regeneration. Regen Med 2012; 7:369-85. [DOI: 10.2217/rme.12.1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Growth factors (GFs) such as BMPs, FGFs, VEGFs and IGFs have significant impacts on osteoblast behavior, and thus have been widely utilized for bone tissue regeneration. Recently, securing biological stability for a sustainable and controllable release to the target tissue has been a challenge to practical applications. This challenge has been addressed to some degree with the development of appropriate carrier materials and delivery systems. This review highlights the importance and roles of those GFs, as well as their proper administration for targeting bone regeneration. Additionally, the in vitro and in vivo performance of those GFs with or without the use of carrier systems in the repair and regeneration of bone tissue is systematically addressed. Moreover, some recent advances in the utility of the GFs, such as using fusion technology, are also reviewed.
Collapse
Affiliation(s)
- Ye-Rang Yun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Korea
| | - Jun Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea
| | - Eunyi Jeon
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea
| | - Wonmo Kang
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea
| | - Sujin Lee
- Department of Biochemistry, Inha University School of Medicine, Incheon 400-712, Korea
| | - Jong-Eun Won
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Korea
- Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School, Cheonan 330-714, Korea
| | - Hae Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 330-714, Korea
| | - Ivan Wall
- Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School, Cheonan 330-714, Korea
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
30
|
Reyes R, De la Riva B, Delgado A, Hernández A, Sánchez E, Évora C. Effect of triple growth factor controlled delivery by a brushite-PLGA system on a bone defect. Injury 2012; 43:334-42. [PMID: 22035848 DOI: 10.1016/j.injury.2011.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 08/29/2011] [Accepted: 10/09/2011] [Indexed: 02/02/2023]
Abstract
Bone regeneration is a complex process that involves multiple cell types, growth factors (GFs) and cytokines. A synergistic contribution of various GFs and a crosstalk between their signalling pathways was suggested as determinative for the overall osteogenic outcome. The purpose of this work was to develop a brushite-PLGA system, which controls the release rate of the integrated growth factors (GFs) to enhance bone formation. The brushite cement implants were prepared by mixing a phosphate solid phase with an acid liquid phase. PDGF (250 ng) and TGF-β1 (100 ng) were incorporated into the liquid phase. PLGA microsphere-encapsulated VEGF (350 ng) was pre-blended with the solid phase. VEGF, PDGF and TGF-β1 release kinetics and tissue distributions were determined using iodinated ((125)I) GFs. In vivo results showed that PDGF and TGF-β1 were delivered more rapidly from these systems implanted in an intramedullary defect in rabbit femurs than VEGF. The three GFs released from the brushite-PLGA system remained located around the implantation site (5 cm) with negligible systemic exposure. Bone peak concentrations of approximately 4 ng/g and 1.5 ng/g of PDGF and TGF-β1, respectively were achieved on day 3. Thereafter, PDGF and TGF-β1 concentrations stayed above 1 ng/g during the first week. The scaffolds also provided a VEGF peak concentration of nearly 6 ng/g on day 7 and a local concentration of approximately 1.5 ng/g during at least 4 weeks. Four weeks post implantation bone formation was considerably enhanced with the brushite-PLGA system loaded with each of the three GFs separately as well as with the combination of PDGF and VEGF. The addition of TGF-β1 did not further improve the outcome. In conclusion, the herein presented brushite-PLGA system effectively controlled the release kinetics and localisation of the three GFs within the defect site resulting in markedly enhanced bone regeneration.
Collapse
Affiliation(s)
- Ricardo Reyes
- Department of Chemical Engineering and Pharmaceutical Technology, University of La Laguna, 38200 La Laguna, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Das A, Botchwey E. Evaluation of angiogenesis and osteogenesis. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:403-14. [PMID: 21902609 DOI: 10.1089/ten.teb.2011.0190] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone regeneration has long been a major focus for tissue engineers and the importance of vascularization to the bone regeneration process has been well documented. Over the past decade, technological advances in the areas of stem cell biology, scaffold fabrication, and protein engineering have significantly enhanced our understanding of the interplay between vascularization and bone growth. This review, therefore, describes the commonly used models for investigating the complex interactions between osteoblastic cells and endothelial cells, evaluates the different tools utilized to investigate the relationship between vascularization and bone growth in vivo, and finally, summarizes possible areas of research related to therapeutic development.
Collapse
Affiliation(s)
- Anusuya Das
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
32
|
Poh CK, Shi Z, Tan XW, Liang ZC, Foo XM, Tan HC, Neoh KG, Wang W. Cobalt chromium alloy with immobilized BMP peptide for enhanced bone growth. J Orthop Res 2011; 29:1424-30. [PMID: 21445991 DOI: 10.1002/jor.21409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/24/2011] [Indexed: 02/04/2023]
Abstract
Cobalt chromium (CoCr) alloys are widely used in orthopedic practice, however, lack of integration into the bone for long-term survival often occurs, leading to implant failure. Revision surgery to address such a failure involves increased risks, complications, and costs. Advances to enhancement of bone-implant interactions would improve implant longevity and long-term results. Therefore, we investigated the effects of BMP peptide covalently grafted to CoCr alloy on osteogenesis. The BMP peptide was derived from the knuckle epitope of bone morphogenic protein-2 (BMP-2) and was conjugated via a cysteine amino acid at the N-terminus. X-ray photoelectron spectroscopy and o-phthaldialdehyde were used to verify successful grafting at various stages of surface functionalization. Surface topography was evaluated from the surface profile determined by atomic force microscopy. Osteoblastic cells (MC3T3-E1) were seeded on the substrates, and the effects of BMP peptide on osteogenic differentiation were evaluated by measuring alkaline phosphatase (ALP) activity and calcium mineral deposition. The functionalized surfaces showed a twofold increase in ALP activity after 2 weeks incubation and a fourfold increase in calcium content after 3 weeks incubation compared to the pristine substrate. These findings are potentially useful in the development of improved CoCr implants for use in orthopedic applications.
Collapse
Affiliation(s)
- Chye Khoon Poh
- Department of Orthopaedic Surgery, National University of Singapore, Kent Ridge, Singapore 119074, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Long-Term Histopathologic Evaluation of Bioactive Glass and Human-Derived Graft Materials in Macaca fascicularis Mandibular Ridge Reconstruction. IMPLANT DENT 2011; 20:318-22. [DOI: 10.1097/id.0b013e3182263665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Renno ACM, Iwama AM, Shima P, Fernandes KR, Carvalho JG, De Oliveira P, Ribeiro DA. Effect of low-level laser therapy (660 nm) on the healing of second-degree skin burns in rats. J COSMET LASER THER 2011; 13:237-42. [DOI: 10.3109/14764172.2011.606466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Zhang J, Tu Q, Grosschedl R, Kim MS, Griffin T, Drissi H, Yang P, Chen J. Roles of SATB2 in osteogenic differentiation and bone regeneration. Tissue Eng Part A 2011; 17:1767-76. [PMID: 21385070 DOI: 10.1089/ten.tea.2010.0503] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Expressed in branchial arches and osteoblast-lineage cells, special AT-rich sequence-binding protein (SATB2) is responsible for preventing craniofacial abnormalities and defects in osteoblast function. In this study, we transduced SATB2 into murine adult stem cells, and found that SATB2 significantly increased expression levels of bone matrix proteins, osteogenic transcription factors, and a potent angiogenic factor, vascular endothelial growth factor. Using an osterix (Osx) promoter-luciferase construct and calvarial cells isolated from runt-related transcription factor 2 (Runx2)-deficient mice, we found that SATB2 upregulates Osx expression independent of Runx2, but synergistically enhances the regulatory effect of Runx2 on Osx promoter. We then transplanted SATB2-overexpressing adult stem cells genetically double-labeled with bone sialoprotein (BSP) promoter-driven luciferase and β-actin promoter-driven enhanced green fluorescent protein into mandibular bone defects. We identified increased luciferase-positive cells in SATB2-overexpressing groups, indicating more transplanted cells undergoing osteogenic differentiation. New bone formation was consequently accelerated in SATB2 groups. In conclusion, SATB2 acts as a potent transcription factor to enhance osteoblastogenesis and promote bone regeneration. The application of SATB2 in bone tissue engineering gives rise to a higher bone forming capacity as a result of multiple-level amplification of regulatory activity.
Collapse
Affiliation(s)
- Jin Zhang
- Division of Oral Biology, Department of General Dentistry, Tufts University School of Dental Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Qu D, Li J, Li Y, Gao Y, Zuo Y, Hsu Y, Hu J. Angiogenesis and osteogenesis enhanced by bFGF ex vivo gene therapy for bone tissue engineering in reconstruction of calvarial defects. J Biomed Mater Res A 2011; 96:543-51. [DOI: 10.1002/jbm.a.33009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 08/09/2010] [Accepted: 10/14/2010] [Indexed: 11/07/2022]
|
37
|
Bidarra SJ, Barrias CC, Barbosa MA, Soares R, Granja PL. Immobilization of human mesenchymal stem cells within RGD-grafted alginate microspheres and assessment of their angiogenic potential. Biomacromolecules 2010; 11:1956-64. [PMID: 20690708 DOI: 10.1021/bm100264a] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, human mesenchymal stem cells (hMSC) immobilized in RGD-coupled alginate microspheres, with a binary composition of high and low molecular weight alginate, were investigated. Cells immobilized within RGD-alginate microspheres (during 21 days) showed metabolic activity, with an overall viability higher than 90%, short cell extensions, and, when induced, they were able to differentiate into the osteogenic lineage. In osteogenic conditions (comparing to basal conditions), immobilized cells presented alkaline phosphatase (ALP) activity and an upregulation of ALP, collagen type I, and Runx 2 expression. Moreover, mineralization was also detected in immobilized cells under osteogenic stimulus. In addition, it was demonstrated for the first time that MSCs immobilized in this 3D matrix were able to enhance the ability of neighboring endothelial cells to form tubelike structures. Overall, these findings represent a step forward in the development of injectable stem cell carriers for bone tissue engineering.
Collapse
Affiliation(s)
- Sílvia J Bidarra
- INEB-Instituto de Engenharia Biomedica, Rua do Campo Alegre No. 823, 4150-180 Porto, Portugal
| | | | | | | | | |
Collapse
|
38
|
Aspriello SD, Zizzi A, Spazzafumo L, Rubini C, Lorenzi T, Marzioni D, Bullon P, Piemontese M. Effects of enamel matrix derivative on vascular endothelial growth factor expression and microvessel density in gingival tissues of periodontal pocket: a comparative study. J Periodontol 2010; 82:606-12. [PMID: 20843235 DOI: 10.1902/jop.2010.100180] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) stimulates proliferation and migration of endothelial cells, and correlates with inflammatory resolution and periodontal tissue healing. Enamel matrix derivative (EMD) seems to stimulate soft tissue healing. Our aim was to assess if topical EMD application in an instrumented periodontal pocket could affect angiogenesis at the gingival level. METHODS A total of 56 periodontal sites in 28 patients were treated with a single session of comprehensive scaling and root planing under local anesthesia after recording the clinical attachment level (CAL). EMD gel in the test site or only the vehicle propylene glycol alginate in aqueous solution in the control site of the same mouth was applied onto the root surfaces and into the pocket and left in place for 3 minutes. After 48 hours, gingival biopsies were collected for histologic and immunohistochemical analysis for VEGF and CD34 (for microvessel density [MVD] count) antibodies. Statistical comparisons were performed by analysis of variance test. RESULTS Endothelial VEGF expression and MVD were statistically different in the test site compared to the control site. VEGF expression and MVD of the control site were not correlated with CAL, whereas the test site showed high correlations among CAL and endothelial VEGF or MVD. CONCLUSIONS EMD induces proliferation and viability and angiogenesis of human microvascular cells. Recent clinical and histologic studies found EMD to be useful as an adjunct to scaling and root planing in single-rooted teeth. Our findings may help to understand the mechanisms involved in soft tissue healing, through the ability of EMD to increase angiogenesis at periodontal pockets.
Collapse
Affiliation(s)
- Simone Domenico Aspriello
- Department of Clinical Specialistic and Dental Sciences - Periodontology, Polytechnic University of Marche, Torrette, Ancona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
De Souza Nunes LS, De Oliveira RV, Holgado LA, Nary Filho H, Ribeiro DA, Matsumoto MA. Use of bovine hydroxyapatite with or without biomembrane in sinus lift in rabbits: histopathologic analysis and immune expression of core binding factor 1 and vascular endothelium growth factor. J Oral Maxillofac Surg 2010; 69:1064-9. [PMID: 20727643 DOI: 10.1016/j.joms.2010.02.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 01/19/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Considering the clinical discussion on the necessity of using a barrier membrane in the osteotomy area of sinus lift procedures to prevent fibrous tissue formation in this area and as a physical limit, the aim of this study was to analyze and compare the use of bovine hydroxyapatite (HA) with and without a biologic membrane by histopathologic analysis and immune expression of core binding factor 1 and vascular endothelium growth factor in the sinus lift in rabbits. MATERIALS AND METHODS Sixteen male rabbits underwent bilateral sinus lift procedures and were divided into 2 groups according to the sinus filling material: group 1 received bovine HA (Bio-Oss; Geistlich Pharma AG, Wohlhusen, Switzerland) and group 2 received bovine HA and a nonporous polytetrafluorethylene membrane. All groups were sacrificed after 7, 14, 30, and 60 days for microscopic, histomorphometric, and immunohistochemical analyses. RESULTS Microscopic analysis showed a similar bone repair pattern between the tested groups. New bone formation, soft tissue, and the remaining material were analyzed by histomorphometric analysis. No statistically significant differences (P > .05) were detected between groups for all periods analyzed. In addition, no remarkable differences were noticed in core binding factor 1 or vascular endothelium growth factor immune expression. CONCLUSION Taken together, these results show that using a biologic membrane does not improve bone repair induced by bovine HA, as shown by histopathologic and immunohistochemical analyses.
Collapse
Affiliation(s)
- Leandro Soeiro De Souza Nunes
- Department of Health Sciences, Discipline of Oral and Maxillofacial Surgery, School of Dentistry, Sagrado Coração University, Bauru, SP, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Fedorovich NE, Haverslag RT, Dhert WJ, Alblas J. The Role of Endothelial Progenitor Cells in Prevascularized Bone Tissue Engineering: Development of Heterogeneous Constructs. Tissue Eng Part A 2010; 16:2355-67. [DOI: 10.1089/ten.tea.2009.0603] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Natalja E. Fedorovich
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René T. Haverslag
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter J.A. Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, University Utrecht, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
41
|
Abstract
The use of bone grafts is constantly increasing, their employ is principally linked to bone trauma, prosthesis revision surgery, and arthrodesis applications. In the case of biological bone grafts and depending on the origin of the graft, these grafts are classified as autografts, allografts, or xenografts. The autograft is the most commonly used and corresponds to a fresh bone graft harvesting taken from a second operating site, i.e. iliac crest, parietal bone, tibial plateaux or the fibula. The autograft has many advantages in terms of biotolerance and osteogenic potential, which justify its widespread utilization in reconstructive surgery[1]. From a practical point of view, sampling and grafting take place during the same surgical session. However, the longer exposure to the anesthetic and the surgical operation per se increases the risk of complications. For example, this procedure results in sever post-operation pain, iliac hernias, or even haemorrhages[2]. Furthermore, the volume of the bone graft taken is generally limited to 20 cm3. In the case of allografts, it generally leads to an acute inflammatory reaction which participates to the resorption/substitution process. Xenografts are less used since it involves a donor and a recipient from different species.
Collapse
|
42
|
Gorustovich AA, Roether JA, Boccaccini AR. Effect of Bioactive Glasses on Angiogenesis: A Review of In Vitro and In Vivo Evidences. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:199-207. [DOI: 10.1089/ten.teb.2009.0416] [Citation(s) in RCA: 471] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alejandro A. Gorustovich
- Research Laboratory, National Atomic Energy Commission (CNEA-Reg. Noroeste), Salta, Argentina
- National Research Council (CONICET), Buenos Aires, Argentina
| | - Judith A. Roether
- Department of Materials, Imperial College London, London, United Kingdom
| | - Aldo R. Boccaccini
- Department of Materials, Imperial College London, London, United Kingdom
| |
Collapse
|
43
|
De Souza Nunes LS, De Oliveira RV, Holgado LA, Nary Filho H, Ribeiro DA, Matsumoto MA. Immunoexpression of Cbfa-1/Runx2 and VEGF in sinus lift procedures using bone substitutes in rabbits. Clin Oral Implants Res 2010; 21:584-90. [DOI: 10.1111/j.1600-0501.2009.01858.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S. Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther 2010; 18:1026-34. [PMID: 20068549 DOI: 10.1038/mt.2009.315] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The potential of mesenchymal stem cells (MSC) in tissue regeneration is increasingly gaining attention. There is now accumulating evidence that MSC make an important contribution to postnatal vasculogenesis. During bone development and fracture healing, vascularization is observed before bone formation. The present study determined the potential of MSC, transduced ex vivo with a recombinant adeno-associated virus 6 (rAAV6) encoding bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF) in a mouse model of segmental bone defect created in the tibiae of athymic nude mice. Mouse MSC that were mock-transduced or transduced with rAAV6-BMP2:VEGF were systemically transplanted following radiographic confirmation of the osteotomy. Effects of the therapy were determined by enzyme-linked immunosorbent assay measurements for BMP2 and VEGF, dual-energy X-ray absorptiometry (DXA) for bone density, three-dimensional microcomputed tomography (microCT) for bone and capillary architecture, and histomorphometry for bone remodeling. Results of these analyses indicated enhanced bone formation in the group that received BMP2+VEGF-expressing MSC compared to other groups. The therapeutic effects were accompanied by increased vascularity and osteoblastogenesis, indicating its potential for effective use while treating difficult nonunion bone defects in humans.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Pathology, The University of Alabama, Birmingham, Alabama35294-0007, USA
| | | | | | | | | |
Collapse
|
45
|
Elangovan S, Srinivasan S, Ayilavarapu S. Novel regenerative strategies to enhance periodontal therapy outcome. Expert Opin Biol Ther 2010; 9:399-410. [PMID: 19344278 DOI: 10.1517/14712590902778423] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic periodontitis is a widely prevalent inflammatory condition of the supporting tissues of the teeth and is characterized by loss of teeth with an associated risk of systemic complications. Regenerative therapies such as guided tissue and bone regeneration form an important armamentarium in periodontics with a high degree of outcome predictability in certain ideal clinical scenarios. OBJECTIVE/METHODS This review elaborates novel tissue regenerative treatment modalities based on sound understanding of developmental biology, tissue engineering, inflammation and wound healing. We focus on the role of biological mediators such as growth factors, gene-based therapy, cell therapy and pro-resolution lipid mediators in the regeneration of lost bone or periodontium. RESULTS/CONCLUSIONS These therapies have the potential to regenerate both periodontium and bone, aiding in the treatment of even clinically challenging cases.
Collapse
Affiliation(s)
- Satheesh Elangovan
- Harvard School of Dental Medicine, Division of Periodontology, Department of Oral Medicine, Infection and Immunity, 188 Longwood Avenue, Boston, MA-02115, USA.
| | | | | |
Collapse
|
46
|
Kang Y, Yang C, Ouyang P, Yin G, Huang Z, Yao Y, Liao X. The preparation of BSA-PLLA microparticles in a batch supercritical anti-solvent process. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.12.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
De la Riva B, Nowak C, Sánchez E, Hernández A, Schulz-Siegmund M, Pec MK, Delgado A, Evora C. VEGF-controlled release within a bone defect from alginate/chitosan/PLA-H scaffolds. Eur J Pharm Biopharm 2009; 73:50-8. [PMID: 19442724 DOI: 10.1016/j.ejpb.2009.04.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 04/20/2009] [Accepted: 04/28/2009] [Indexed: 01/12/2023]
Abstract
VEGF and its receptors constitute the key signaling system for angiogenic activity in tissue formation, but a direct implication of the growth factor in the recruitment, survival and activity of bone forming cells has also emerged. For this reason, we developed a composite (alginate/chitosan/PLA-H) system that controls the release kinetics of incorporated VEGF to enhance neovascularization in bone healing. VEGF release kinetics and tissue distribution were determined using iodinated ((125)I) growth factor. VEGF was firstly encapsulated in alginate microspheres. To reduce the high in vitro burst release, the microspheres were included in scaffolds. Matrices were prepared with alginate (A-1, A-2), chitosan (CH-1, CH-2) or by coating the CH-1 matrix with a PLA-H (30 kDa) film (CH-1-PLA), the latter one optimally reducing the in vitro and in vivo burst effect. The VEGF in vitro release profile from CH-1-PLA was characterized by a 13% release within the first 24h followed by a constant release rate throughout 5 weeks. For VEGF released from composite scaffolds in vitro, bioactivity was maintained above 90% of the expected value. Despite the fact that the in vivo release rate was slightly faster, a good in vitro-in vivo correlation was found. The VEGF released from CH-1 and CH-1-PLA matrices implanted into the femurs of rats remained located around the implantation site with a negligible systemic exposure. These scaffolds provided a bone local GF concentration above 10 ng/g during 2 and 5 weeks, respectively, in accordance to the in vivo release kinetics. Our data show that the incorporation of VEGF into the present scaffolds allows for a controlled release rate and localization of the GF within the bone defect.
Collapse
Affiliation(s)
- Beatriz De la Riva
- Department of Chemical Engineering and Pharmaceutical Technology, University of La Laguna, La Laguna, Spain
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Nikolidakis D, Meijer GJ, Oortgiesen DA, Walboomers XF, Jansen JA. The effect of a low dose of transforming growth factor β1 (TGF-β1) on the early bone-healing around oral implants inserted in trabecular bone. Biomaterials 2009; 30:94-9. [DOI: 10.1016/j.biomaterials.2008.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 09/06/2008] [Indexed: 02/01/2023]
|
49
|
Nichols JE, Cortiella J, Lee J, Niles JA, Cuddihy M, Wang S, Bielitzki J, Cantu A, Mlcak R, Valdivia E, Yancy R, McClure ML, Kotov NA. In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry. Biomaterials 2008; 30:1071-9. [PMID: 19042018 DOI: 10.1016/j.biomaterials.2008.10.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Accepted: 10/22/2008] [Indexed: 11/28/2022]
Abstract
In vitro replicas of bone marrow can potentially provide a continuous source of blood cells for transplantation and serve as a laboratory model to examine human immune system dysfunctions and drug toxicology. Here we report the development of an in vitro artificial bone marrow based on a 3D scaffold with inverted colloidal crystal (ICC) geometry mimicking the structural topology of actual bone marrow matrix. To facilitate adhesion of cells, scaffolds were coated with a layer of transparent nanocomposite. After seeding with hematopoietic stem cells (HSCs), ICC scaffolds were capable of supporting expansion of CD34+ HSCs with B-lymphocyte differentiation. Three-dimensional organization was shown to be critical for production of B cells and antigen-specific antibodies. Functionality of bone marrow constructs was confirmed by implantation of matrices containing human CD34+ cells onto the backs of severe combined immunodeficiency (SCID) mice with subsequent generation of human immune cells.
Collapse
Affiliation(s)
- Joan E Nichols
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bolland BJRF, Kanczler JM, Dunlop DG, Oreffo ROC. Development of in vivo muCT evaluation of neovascularisation in tissue engineered bone constructs. Bone 2008; 43:195-202. [PMID: 18424249 DOI: 10.1016/j.bone.2008.02.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 02/08/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Due to an increasing aging population the need for innovative approaches to aid skeletal repair and reconstruction is a significant socio-economic increasing problem. The emerging discipline of tissue engineering has sort to augment the growth and repair of bone loss particularly in areas of trauma, degeneration and revision surgery. However, the initiation and development of a fully functional vascular network are critical for bioengineered bone to repair large osseous defects, whether the material is osteosynthetic (poly (d,l)-lactic acid, PLA) or natural bone allograft. Quantification and three-dimensional visualization of new vessel networks remain a problem in bone tissue engineering constructs. A novel technique utilising a radio-opaque dye and micro-computed tomography (muCT) has been developed and applied to study angiogenesis in an impaction bone graft model. Tissue-engineered constructs combining human bone marrow stromal cells (HBMSC) with natural allograft and synthetic grafts (PLA) were impacted and implanted into the subcutis of MF-1 nu/nu mice for a period of 28 days. Microfil consisting of radio-opaque polymer was perfused through the mice and scanned using a Bench Top CT system for micro-computed tomography. Analysis of three-dimensional muCT reconstructions demonstrated an increase in vessel volume and vessel number in the impacted scaffolds/HBMC compared to scaffolds alone. Vessel volume: allograft/HBMSC=0.57 mm(3)+/-0.19; allograft=0.04 mm(3)+/-0.04; PLA/HBMSC=1.19 mm(3)+/-0.31; and PLA=0.12 mm(3)+/-0.01. Penetrating vessel number: allograft/HBMSC=22.33+/-3.21; allograft=3.67+/-1.153; PLA/HBMSC=32.67+/-8.33; and PLA=7.67+/-3.06. Type 1 collagen and von Willebrand factor immunohistochemistry in scaffold/HBMSC constructs indicated the osteogenic cell phenotype, and new blood vessel formation respectively. Contrast-enhanced 3D reconstructions facilitated the visualization and quantification of neovascularisation. This novel technique has been used to demonstrate neovascularisation in impacted tissue engineered constructs providing a facile approach with wide experimental application.
Collapse
Affiliation(s)
- B J R F Bolland
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - J M Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - D G Dunlop
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - R O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|