1
|
Dvoriashyna M, Lauga E. Designing optimal elastic filaments for viscous propulsion. SOFT MATTER 2025; 21:3503-3514. [PMID: 40197862 PMCID: PMC11977609 DOI: 10.1039/d4sm01388c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
The propulsion of many eukaryotic cells is generated by flagella, flexible slender filaments that are actively oscillating in space and time. The dynamics of these biological appendages have inspired the design of many types of artificial microswimmers. The magnitude of the filament's viscous propulsion depends on the time-varying shape of the filament, and that shape depends in turn on the spatial distribution of the bending rigidity of the filament. In this work, we rigorously determine the relationship between the mechanical (bending) properties of the filament and the viscous thrust it produces using mathematical optimisation. Specifically, by considering a model system (a slender elastic filament with an oscillating slope at its base), we derive the optimal bending rigidity function along the filament that maximises the time-averaged thrust produced by the actuated filament. Instead of prescribing a specific functional form, we use functional optimisation and adjoint-based variational calculus to formally establish the link between the distribution of bending rigidity and propulsion. The optimal rigidities are found to be stiff near the base, and soft near the distal end, with a spatial distribution that depends critically on the constraints used in the optimisation procedure. These findings may guide the optimal design of future artificial swimmers.
Collapse
Affiliation(s)
- Mariia Dvoriashyna
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd, Cambridge CB3 0WA, UK.
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, UK
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd, Cambridge CB3 0WA, UK.
| |
Collapse
|
2
|
Li G, Xu B, Wang X, Yu J, Zhang Y, Fu R, Yang F, Gu H, Huang Y, Chen Y, Zhang Y, Wang Z, Shen G, Wang Y, Xie H, Wheeler AR, Li J, Zhang S. Crossing the Dimensional Divide with Optoelectronic Tweezers: Multicomponent Light-Driven Micromachines with Motion Transfer in Three Dimensions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417742. [PMID: 39945115 DOI: 10.1002/adma.202417742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/23/2025] [Indexed: 04/30/2025]
Abstract
Micromachines capable of performing diverse mechanical tasks in complex and constrained microenvironments are of great interest. Despite important milestones in this pursuit, until now, micromachines are confined to actuation within a single 2D plane due to the challenges of transferring motion across different planes in limited space. Here, a breakthrough method is presented to overcome this limitation: multi-component micromachines that facilitate 3D motion transfer across different planes. These light-driven 3D micromachines, fabricated using standard photolithography combined with direct laser writing, are assembled and actuated via programmable light patterns within an optoelectronic tweezers system. Utilizing charge-induced repulsion and dielectrophoretic levitation effects, the micromachines enable highly efficient mechanical rotation and effective inter-component motion transfer. Through this work, fascinating patterns of similarities are unveiled for the new microscale 3D systems when compared with the macro-scale world in which they live, paving the way for the development of micromechanical devices and microsystems with ever increasing functionality and versatility.
Collapse
Affiliation(s)
- Gong Li
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Bingrui Xu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaopu Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, Guangdong, 518129, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Jiangfan Yu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, Guangdong, 518129, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Yifan Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing, 400000, China
| | - Fan Yang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hongcheng Gu
- State Key Laboratory of Digital Biomedical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuchen Huang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yujie Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanfeng Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhuoran Wang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Huikai Xie
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing, 400000, China
| | - Aaron R Wheeler
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Jiafang Li
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Shuailong Zhang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Chongqing Institute of Microelectronics and Microsystems, Beijing Institute of Technology, Chongqing, 400000, China
| |
Collapse
|
3
|
Wang S, Liu Y, Sun S, Gui Q, Liu W, Long W. Living material-derived intelligent micro/nanorobots. Biomater Sci 2025; 13:1379-1397. [PMID: 39927456 DOI: 10.1039/d4bm01685h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Living materials, which include various types of cells, organelles, and biological components from animals, plants, and microorganisms, have become central to recent investigations in micro and nanorobotics. Living material-derived intelligent micro/nanorobots (LMNRs) are self-propelled devices that combine living materials with synthetic materials. By harnessing energy from external physical fields or biological sources, LMNRs can move autonomously and perform various biomedical functions, such as drug delivery, crossing biological barriers, medical imaging, and disease treatment. This review, from a biomimetic strategy perspective, summarized the latest advances in the design and biomedical applications of LMNRs. It provided a comprehensive overview of the living materials used to construct LMNRs, including mammalian cells, plants, and microorganisms while highlighting their biological properties and functions. Lastly, the review discussed the major challenges in this field and offered suggestions for future research that may help facilitate the clinical application of LMNRs in the near future.
Collapse
Affiliation(s)
- Shuhuai Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Ya Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Shuangjiao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Qinyi Gui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Wei Long
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
4
|
Ruiz-González N, Esporrín-Ubieto D, Kim ID, Wang J, Sánchez S. Micro- and Nanomotors: Engineered Tools for Targeted and Efficient Biomedicine. ACS NANO 2025; 19:8411-8432. [PMID: 39996616 PMCID: PMC11912581 DOI: 10.1021/acsnano.4c12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
Over the past two decades, nanotechnology has made significant progress toward the development and applications of micromotors (MMs) and nanomotors (NMs). Characterized by their capability to self-propel and swim in fluids, they have emerged as promising tools in various fields, particularly in biomedicine. This Review presents an overview of the current state of MMs and NMs, their motion in viscous media and complex environments, their interaction with biological barriers, and potential therapeutical applications. We identify the choice of appropriate administration routes to reach their target location as a key aspect of the success of MMs and NMs in biomedical applications. Looking ahead, we envision NMs playing a key role in treating diverse medical disorders, as recent proof-of-concept in vivo studies demonstrate their distinct capabilities and versatility. However, addressing regulatory, scalability, biocompatibility, and safety concerns remains imperative for the successful translation of NMs into clinical trials and industrial-scale production. This work provides a guideline for researchers, guiding them through the current landscape, challenges, and prospects of using MMs and NMs in biomedicine, thereby encouraging their responsible development and positioning in the future of nanomedicine. Furthermore, we outline critical areas for further research, including studies on biocompatibility, safety, and methods to overcome physical obstacles.
Collapse
Affiliation(s)
- Noelia Ruiz-González
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science
and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Facultat
de Física, Universitat de Barcelona
(UB). C. Martí I Franques, 1-11, 08028 Barcelona, Spain
| | - David Esporrín-Ubieto
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science
and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joseph Wang
- Department
of Nanoengineering, University of California
San Diego, La Jolla, California 92093, United States
| | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science
and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudies Avancats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
5
|
Zhang L, Wang S, Hou Y. Magnetic Micro/nanorobots in Cancer Theranostics: From Designed Fabrication to Diverse Applications. ACS NANO 2025; 19:7444-7481. [PMID: 39970007 DOI: 10.1021/acsnano.4c10382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cancer poses a substantial threat and a serious challenge to public human health, driving the promotion of sophisticated technologies for cancer therapy. While conventional chemotherapy has bottlenecks such as low delivery efficiency, strong toxic side effects, and tumor enrichment barriers, magnetic micro/nanorobots (MNRs) emerge as promising therapeutic candidates that provide alternative strategies for cancer therapy. MNR is a kind of human-made machine that is micro- or nanosized, is reasonably designed, and performs command tasks through self-actuated or externally controlled propulsion mechanisms, which can be potentially applied in cancer theranostics. Here, this review first introduces the components that constitute a typical magnetic MNR, including the body part, the driving part, the control part, the function part, and the sensing part. Subsequently, this review elucidates representative fabrication methods to construct magnetic MNRs from top-down approaches to bottom-up approaches, covering injection molding, self-rolling, melt electrospinning writing, deposition, biotemplate method, lithography, assembling, 3D printing, and chemical synthesis. Furthermore, this review focuses on multiple applications of magnetic MNRs facing cancer diagnosis and treatment, encompassing imaging, quantification, drug release, synergy with typical therapies, cell manipulation, and surgical assistance. Then, this review systematically elaborates on the biocompatibility and biosafety of magnetic MNRs. Finally, the challenges faced by magnetic MNRs are discussed alongside future research directions. This review is intended to provide scientific guidance that may improve the comprehension and cognition of cancer theranostics through the platform of magnetic MNRs, promoting and prospering the practical application development of magnetic MNRs.
Collapse
Affiliation(s)
- Lin Zhang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shuren Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Chen H, Li Y, Li Z, Sun Y, Gu W, Chen C, Cheng Y. Bacterial Autonomous Intelligent Microrobots for Biomedical Applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70011. [PMID: 40235203 DOI: 10.1002/wnan.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025]
Abstract
Micro/nanorobots are being increasingly utilized as new diagnostic and therapeutic platforms in the biomedical field, enabling remote navigation to hard-to-reach tissues and the execution of various medical procedures. Although significant progress has been made in the development of biomedical micro/nanorobots, how to achieve closed-loop control of them from sensing, memory, and precise trajectory planning to feedback to carry out biomedical tasks remains a challenge. Bacteria with self-propulsion and autonomous intelligence properties are well suited to be engineered as microrobots to achieve closed-loop control for biomedical applications. By virtue of synthetic biology, bacterial microrobots possess an expanded genetic toolbox, allowing them to load input sensors to respond or remember external signals. To achieve accurate control in the complex physiological environment, the development of bacterial microrobots should be matched with the corresponding control system design. In this review, a detailed summary of the sensing and control mechanisms of bacterial microrobots is presented. The engineering and applications of bacterial microrobots in the biomedical field are highlighted. Their future directions of bacterial autonomous intelligent microrobots for precision medicine are forecasted.
Collapse
Affiliation(s)
- Haotian Chen
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingze Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuantai Sun
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weicheng Gu
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Cheng
- Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Ren X, Bloomfield‐Gadêlha H. Swimming by Spinning: Spinning-Top Type Rotations Regularize Sperm Swimming Into Persistently Progressive Paths in 3D. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406143. [PMID: 39696833 PMCID: PMC11809349 DOI: 10.1002/advs.202406143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Indexed: 12/20/2024]
Abstract
Sperm swimming is essential for reproduction, with movement strategies adapted to specific environments. Sperm navigate by modulating the symmetry of their flagellar beating, but how they swim forward with asymmetrical beats remains unclear. Current methods lack the ability to robustly detect the flagellar symmetry state in free-swimming spermatozoa, despite its importance in understanding sperm motility. This study uses numerical simulations to investigate the fluid mechanics of sperm swimming with asymmetrical flagellar beats. Results show that sperm rotation regularizes the swimming motion, allowing persistently progressive swimming even with asymmetrical flagellar beats. Crucially, 3D sperm head orientation, rather than the swimming path, provides critical insight into the flagellar symmetry state. Sperm rotations during swimming closely resemble spinning-top dynamics, with sperm head precession driven by the helical beating of the flagellum. These results may prove essential in future studies on the role of symmetry in microorganisms and artificial swimmers, as body orientation detection has been largely overlooked in favor of swimming path analysis. Altogether, this rotational mechanism provides a reliable solution for forward propulsion and navigation in nature, which would otherwise be challenging for flagella with broken symmetry.
Collapse
Affiliation(s)
- Xiaomeng Ren
- School of Engineering Mathematics and Technology & Bristol Robotics LaboratoryUniversity of BristolBristolBS8 1UBUK
| | - Hermes Bloomfield‐Gadêlha
- School of Engineering Mathematics and Technology & Bristol Robotics LaboratoryUniversity of BristolBristolBS8 1UBUK
| |
Collapse
|
8
|
Jia L, Su G, Zhang M, Wen Q, Wang L, Li J. Propulsion Mechanisms in Magnetic Microrobotics: From Single Microrobots to Swarms. MICROMACHINES 2025; 16:181. [PMID: 40047696 PMCID: PMC11857472 DOI: 10.3390/mi16020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 03/09/2025]
Abstract
Microrobots with different structures can exhibit multiple propulsion mechanisms under external magnetic fields. Swarms dynamically assembled by microrobots inherit the advantages of single microrobots, such as degradability and small dimensions, while also offering benefits like scalability and high flexibility. With control of magnetic fields, these swarms demonstrate diverse propulsion mechanisms and can perform precise actions in complex environments. Therefore, the relationship between single microrobots and their swarms is a significant area of study. This paper reviews the relationship between single microrobots and swarms by examining the structural design, control methods, propulsion mechanisms, and practical applications. At first, we introduce the structural design of microrobots, including materials and manufacturing methods. Then, we describe magnetic field generation systems, including gradient, rotating, and oscillating magnetic fields, and their characteristics. Next, we analyze the propulsion mechanisms of individual microrobots and the way microrobots dynamically assemble into a swarm under an external magnetic field, which illustrates the relationship between single microrobots and swarms. Finally, we discuss the application of different swarm propulsion mechanisms in water purification and targeted delivery, summarize current challenges and future work, and explore future directions.
Collapse
Affiliation(s)
| | | | | | - Qi Wen
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (L.J.); (G.S.); (M.Z.)
| | - Lihong Wang
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (L.J.); (G.S.); (M.Z.)
| | - Junyang Li
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (L.J.); (G.S.); (M.Z.)
| |
Collapse
|
9
|
Su G, Zheng L, Wang C, Wang S, Wen Q, Chen J, Jia L, Guo Y, Li F, Huang H, Li J. Automated Actuation of Biodegradable and Self-Fluorescent Chlorella Swarms Using Magnetic Tweezers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408407. [PMID: 39716835 DOI: 10.1002/smll.202408407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/08/2024] [Indexed: 12/25/2024]
Abstract
Magnetic microrobot swarms have broad application prospects in human-targeted therapy. However, the automated assembly and actuation of functional large-volume swarms is a challenging topic. Chlorella with self-fluorescence and biodegradability is used in this paper as a template to prepare magnetic Chlorella-based microrobots through magnetron sputtering. The assembly and actuation of large-volume Chlorella swarms are realized using a magnetic tweezer system with a robust magnetic field. Experimental results indicate that the magnetic Chlorella swarms (MCS) possess excellent degradation capability and mobility, enabling automatic navigation in various scenarios. Notably, the MCS successfully moved on the spiral channel containing bovine serum and effectively crossed the simulated channel. Furthermore, in vitro studies of real articular cartilage fragments have revealed the motion capacity of the MCS. This research provides a functional microrobot swarm platform for targeted delivery and precision therapy.
Collapse
Affiliation(s)
- Guangfei Su
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liushuai Zheng
- Computing Network Research Lab, Quantum Science and Technology Yangtze River Delta Industrial Innovation Center, Suzhou, 215000, China
| | - Cheng Wang
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
| | - Shuaida Wang
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Qi Wen
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jiazheng Chen
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
| | - Lanlan Jia
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yaoxian Guo
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China
| | - Feng Li
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, China
| | - Hanjin Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Junyang Li
- Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
10
|
Klingner A, Kovalenko A, Magdanz V, Khalil IS. Exploring sperm cell motion dynamics: Insights from genetic algorithm-based analysis. Comput Struct Biotechnol J 2024; 23:2837-2850. [PMID: 39660215 PMCID: PMC11630665 DOI: 10.1016/j.csbj.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 12/12/2024] Open
Abstract
Accurate analysis of sperm cell flagellar dynamics plays a crucial role in understanding sperm motility as flagella parameters determine cell behavior in the spatiotemporal domain. In this study, we introduce a novel approach by harnessing Genetic Algorithms (GA) to analyze sperm flagellar motion characteristics and compare the results with the traditional decomposition method based on Fourier analysis. Our analysis focuses on extracting key parameters of the equation approximating flagellar shape, including beating period time, bending amplitude, mean curvature, and wavelength. Additionally, we delve into the extraction of phase constants and initial swimming directions, vital for the comprehensive study of sperm cell pairs and bundling phenomena. One significant advantage of GA over Fourier analysis is its ability to integrate sperm cell motion data, enabling a more comprehensive analysis. In contrast, Fourier analysis neglects sperm cell motion by transitioning to a sperm-centered coordinate system (material system). In our comparative study, GA consistently outperform the Fourier analysis-based method, yielding a remarkable reduction in fitting error of up to 70% and on average by 45%. An in-depth exploration of the sperm cell motion becomes indispensable in a wide range of applications from complexities of reproductive biology and medicine, to developing soft flagellated microrobots.
Collapse
Affiliation(s)
- Anke Klingner
- Department of Physics, German University in Cairo, New Cairo, 11835, Egypt
| | - Alexander Kovalenko
- Faculty of Information Technology, Czech Technical University in Prague, Prague, 16000, Czech Republic
| | - Veronika Magdanz
- Department of Systems Design Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Islam S.M. Khalil
- Department of Biomechanical Engineering, University of Twente, Twente, 7500 AE, the Netherlands
| |
Collapse
|
11
|
Wang Z, Li W, Klingner A, Pei Y, Misra S, Khalil IS. Magnetic control of soft microrobots near step-out frequency: Characterization and analysis. Comput Struct Biotechnol J 2024; 25:165-176. [PMID: 39659768 PMCID: PMC11630648 DOI: 10.1016/j.csbj.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 12/12/2024] Open
Abstract
Magnetically actuated soft microrobots hold promise for biomedical applications that necessitate precise control and adaptability in complex environments. These microrobots can be accurately steered below their step-out frequencies where they exhibit synchronized motion with external magnetic fields. However, the step-out frequencies of soft microrobots have not been investigated yet, as opposed to their rigid counterparts. In this work, we develop an analytic model from the magneto-elastohydrodynamics to establish the relationship between the step-out frequency of soft sperm-like microrobots and their magnetic properties, geometry, wave patterns, and the viscosity of the surrounding medium. We fabricate soft sperm-like microrobots using electrospinning and assess their swimming abilities in mediums with varying viscosities under an oscillating magnetic field. We observe slight variations in wave patterns of the sperm-like microrobots as the actuation frequency changes. Our theoretical model, which analyzes these wave patterns observed without exceeding the step-out threshold, quantitatively agrees with the experimentally measured step-out frequencies. By accurately predicting the step-out frequency, the proposed model lays a foundation for achieving precise control over individual soft microrobots and enabling selective control within a swarm when executing biomedical tasks.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Biomaterials and Biomedical Technology, University of Groningen and University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands
| | - Wenjian Li
- Department of Advanced Production Engineering, Engineering and Technology Institute Groningen, University of Groningen, Groningen, 9747 AG, the Netherlands
| | - Anke Klingner
- Department of Physics, The German University in Cairo, New Cairo, 11835, Egypt
| | - Yutao Pei
- Department of Advanced Production Engineering, Engineering and Technology Institute Groningen, University of Groningen, Groningen, 9747 AG, the Netherlands
| | - Sarthak Misra
- Department of Biomaterials and Biomedical Technology, University of Groningen and University Medical Center Groningen, Groningen, 9713 GZ, the Netherlands
- Department of Biomechanical Engineering, University of Twente, Enschede, 7500 AE, the Netherlands
| | - Islam S.M. Khalil
- RAM—Robotics and Mechatronics, University of Twente, Enschede, 7500 AE, the Netherlands
| |
Collapse
|
12
|
Zarepour A, Khosravi A, Iravani S, Zarrabi A. Biohybrid Micro/Nanorobots: Pioneering the Next Generation of Medical Technology. Adv Healthc Mater 2024; 13:e2402102. [PMID: 39373299 DOI: 10.1002/adhm.202402102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Biohybrid micro/nanorobots hold a great potential for advancing biomedical research. These tiny structures, designed to mimic biological organisms, offer a promising method for targeted drug delivery, tissue engineering, biosensing/imaging, and cancer therapy, among other applications. The integration of biology and robotics opens new possibilities for minimally invasive surgeries and personalized healthcare solutions. The key challenges in the development of biohybrid micro/nanorobots include ensuring biocompatibility, addressing manufacturing scalability, enhancing navigation and localization capabilities, maintaining stability in dynamic biological environments, navigating regulatory hurdles, and successfully translating these innovative technologies into clinical applications. Herein, the recent advancements, challenges, and future perspectives related to the biomedical applications of biohybrid micro/nanorobots are described. Indeed, this review sheds light on the cutting-edge developments in this field, providing researchers with an updated overview of the current potential of biohybrid micro/nanorobots in the realm of biomedical applications, and offering insights into their practical applications. Furthermore, it delves into recent advancements in the field of biohybrid micro/nanorobotics, providing a comprehensive analysis of the current state-of-the-art technologies and their future applications in the biomedical field.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkiye, 34959
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkiye, 34396
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| |
Collapse
|
13
|
Selva Sharma A, Lee NY. Recent Advances in Micro- and Nanorobot-Assisted Colorimetric and Fluorescence Platforms for Biosensing Applications. MICROMACHINES 2024; 15:1454. [PMID: 39770207 PMCID: PMC11677706 DOI: 10.3390/mi15121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Micro- and nanorobots (MNRs) have attracted significant interest owing to their promising applications in various fields, including environmental monitoring, biomedicine, and microengineering. This review explores advances in the synthetic routes used for the preparation of MNRs, focusing on both top-down and bottom-up approaches. Although the top-down approach dominates the field because of its versatility in design and functionality, bottom-up strategies that utilize template-assisted electrochemical deposition and bioconjugation present unique advantages in terms of biocompatibility. This review investigates the diverse propulsion mechanisms employed in MNRs, including magnetic, electric, light, and biological forces, which enable efficient navigation in various fluidic environments. The interplay between the synthesis and propulsion mechanisms of MNRs in the development of colorimetric and fluorescence detection platforms is emphasized. Additionally, we summarize the recent advancements in MNRs as sensing and biosensing platforms, particularly focusing on colorimetric and fluorescence-based detection systems. By utilizing the controlled motion of MNRs, dynamic changes in the fluorescent signals and colorimetric responses can be achieved, thereby enhancing the sensitivity and selectivity of biomolecular detection. This review highlights the transformative potential of MNRs in sensing applications and emphasizes their role in advancing diagnostic technologies through innovative motion-driven signal transduction mechanisms. Subsequently, we provide an overview of the primary challenges currently faced in MNR research, along with our perspective on the future applications of MNR-assisted colorimetric and fluorescence biosensing in chemical and biological sensing. Moreover, issues related to enhanced stability, biocompatibility, and integration with existing detection systems are discussed.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- Department of Nanoscience and Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
14
|
Zhong W, Handschuh-Wang S, Uthappa UT, Shen J, Qiu M, Du S, Wang B. Miniature Robots for Battling Bacterial Infection. ACS NANO 2024; 18:32335-32363. [PMID: 39527542 DOI: 10.1021/acsnano.4c11430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Micro/nanorobots have shown great promise for minimally invasive bacterial infection therapy. However, bacterial infections usually form biofilms inside the body by aggregation and adhesion, preventing antibiotic penetration and increasing the likelihood of recurrence. Moreover, a substantial portion of the infection happens in those hard-to-access regions, making delivery of antibiotics to infected sites or tissues difficult and exacerbating the challenge of addressing bacterial infections. Micro/nanorobots feature exceptional mobility and controllability, are able to deliver drugs to specific sites (targeted delivery), and enhance drug penetration. In particular, the emergence of bioinspired microrobot surface design strategies have provided effective alternatives for treating infections, thereby preventing the possible development of bacterial resistance. In this paper, we review the recent advances in design, mechanism, and actuation modalities of micro/nanorobots with exceptional antimicrobial features, highlighting active therapy strategies for bacterial infections and derived complications at various organs, from the laboratory bench to in vivo applications. The current challenges and future research directions in this field are summarized. Those breakthroughs in micro/nanorobots offer a huge potential for clinical translation for bacterial infection therapy.
Collapse
Affiliation(s)
- Weijie Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Stephan Handschuh-Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
15
|
Cheng Y, Liu X, Rutkowski S, Badaraev AD, Kozelskaya AI, Tverdokhlebov SI, Frueh J. Investigation of the Antibacterial Properties of Janus Micromotors Catalytic Propelled by Manganese Dioxide and Hydrogen Peroxide to Reduce Bacterial Density. ACS APPLIED BIO MATERIALS 2024; 7:6529-6541. [PMID: 39357930 DOI: 10.1021/acsabm.4c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Between 2015 and 2017, 90% of Chinese adults were reported to have periodontitis of varying degrees, highlighting the importance of novel, inexpensive, and affordable treatments for the public. The fact that more and more pathogens are becoming resistant to antibiotics further highlights this prevalence. This article addresses a novel micromotor capable of generating reactive oxygen species, as proven by a Fenton-like reaction. Such reactions allow the targeting of Gram-negative bacteria such as Escherichia coli, which are eliminated order of magnitude more effectively than by pure hydrogen peroxide, thereby addressing pathogens relevant in oral infections. The basis of the micromotors, which generate reactive oxygen species on site, reduces the likelihood of resistance developing in these types of bacteria. Catalytically reducing hydrogen peroxide in this process, these micromotors propel themselves forward. This proof of principle study paves the way for the utilization of micromotors in the field of skin disinfection utilizing hydrogen peroxide concentrations which were in previous works proven noncytotoxic.
Collapse
Affiliation(s)
- Yanfang Cheng
- Faculty of Medicine and Health, Harbin Institute of Technology, 150080 Harbin, P. R. China
| | - Xiaolan Liu
- Faculty of Medicine and Health, Harbin Institute of Technology, 150080 Harbin, P. R. China
| | - Sven Rutkowski
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
| | - Arsalan D Badaraev
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
| | - Anna I Kozelskaya
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
| | - Sergei I Tverdokhlebov
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
| | - Johannes Frueh
- Faculty of Medicine and Health, Harbin Institute of Technology, 150080 Harbin, P. R. China
- Weinberg Research Center, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, I-634050 Tomsk, Russian Federation
- Institute of Environmental Engineering, ETH Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
16
|
Gai Y, Zhou H, Yang Y, Chen J, Chi B, Li P, Yin Y, Wang Y, Li J. Injectable body temperature responsive hydrogel for encephalitis treatment via sustained release of nano-anti-inflammatory agents. BIOMATERIALS TRANSLATIONAL 2024; 5:300-313. [PMID: 39734706 PMCID: PMC11681188 DOI: 10.12336/biomatertransl.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 08/30/2024] [Indexed: 12/31/2024]
Abstract
Skull defects are common in the clinical practice of neurosurgery, and they are easily complicated by encephalitis, which seriously threatens the life and health safety of patients. The treatment of encephalitis is not only to save the patient but also to benefit the society. Based on the advantages of injectable hydrogels such as minimally invasive surgery, self-adaptation to irregularly shaped defects, and easy loading and delivery of nanomedicines, an injectable hydrogel that can be crosslinked in situ at the ambient temperature of the brain for the treatment of encephalitis caused by cranial defects is developed. The hydrogel is uniformly loaded with nanodrugs formed by cationic liposomes and small molecule drugs dexmedetomidine hydrochloride (DEX-HCl), which can directly act on the meninges to achieve sustained release delivery of anti-inflammatory nanodrug preparations and achieve the goal of long-term anti-inflammation at cranial defects. This is the first time that DEX-HCl has been applied within this therapeutic system, which is innovative. Furthermore, this study is expected to alleviate the long-term suffering of patients, improve the clinical medication strategies for anti-inflammatory treatment, promote the development of new materials for cranial defect repair, and expedite the translation of research outcomes into clinical practice.
Collapse
Affiliation(s)
- Yuqi Gai
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai, Guangdong Province, China
| | - Yingting Yang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Jiatian Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Bowen Chi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pei Li
- Center for Advanced Biotechnology & Medicine, Rutgers University, Piscataway, NJ, USA
| | - Yue Yin
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai, Guangdong Province, China
| |
Collapse
|
17
|
Yang C, Liu X, Song X, Zhang L. Design and batch fabrication of anisotropic microparticles toward small-scale robots using microfluidics: recent advances. LAB ON A CHIP 2024; 24:4514-4535. [PMID: 39206574 DOI: 10.1039/d4lc00566j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Small-scale robots with shape anisotropy have garnered significant scientific interest due to their enhanced mobility and precise control in recent years. Traditionally, these miniature robots are manufactured using established techniques such as molding, 3D printing, and microfabrication. However, the advent of microfluidics in recent years has emerged as a promising manufacturing technology, capitalizing on the precise and dynamic manipulation of fluids at the microscale to fabricate various complex-shaped anisotropic particles. This offers a versatile and controlled platform, enabling the efficient fabrication of small-scale robots with tailored morphologies and advanced functionalities from the microfluidic-derived anisotropic microparticles at high throughput. This review highlights the recent advances in the microfluidic fabrication of anisotropic microparticles and their potential applications in small-scale robots. In this review, the term 'small-scale robots' broadly encompasses micromotors endowed with capabilities for locomotion and manipulation. Firstly, the fundamental strategies for liquid template formation and the methodologies for generating anisotropic microparticles within the microfluidic system are briefly introduced. Subsequently, the functionality of shape-anisotropic particles in forming components for small-scale robots and actuation mechanisms are emphasized. Attention is then directed towards the diverse applications of these microparticle-derived microrobots in a variety of fields, including pollution remediation, cell microcarriers, drug delivery, and biofilm eradication. Finally, we discuss future directions for the fabrication and development of miniature robots from microfluidics, shedding light on the evolving landscape of this field.
Collapse
Affiliation(s)
- Chaoyu Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Xurui Liu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Xin Song
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| |
Collapse
|
18
|
Gao C, Zhang W, Gong D, Liang C, Su Y, Peng G, Deng X, Xu W, Cai J. Biotemplated Janus Magnetic Microrobots Based on Diatomite for Highly Efficient Detection of Salmonella. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49030-49040. [PMID: 39226320 DOI: 10.1021/acsami.4c09408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Foodborne illnesses caused by Salmonella bacteria pose a significant threat to public health. It is still challenging to detect them effectively. Herein, biotemplated Janus disk-shaped magnetic microrobots (BJDMs) based on diatomite are developed for the highly efficient detection of Salmonella in milk. The BJDMs were loaded with aptamer, which can be magnetically actuated in the swarm to capture Salmonella in a linear range of 5.8 × 102 to 5.8 × 105 CFU/mL in 30 min, with a detection limit as low as 58 CFU/mL. In addition, the silica surface of BJDMs exhibited a large specific surface area to adsorb DNA from captured Salmonella, and the specificity was also confirmed via tests of a mixture of diverse foodborne bacteria. These diatomite-based microrobots hold the advantages of mass production and low cost and could also be extended toward the detection of other types of bacterial toxins via loading different probes. Therefore, this work offers a reliable strategy to construct robust platforms for rapid biological detection in practical applications of food safety.
Collapse
Affiliation(s)
- Chao Gao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - De Gong
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| | - Chao Liang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yuan Su
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Guanya Peng
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| | - Xue Deng
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jun Cai
- School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
| |
Collapse
|
19
|
Kim J, Mayorga-Burrezo P, Song SJ, Mayorga-Martinez CC, Medina-Sánchez M, Pané S, Pumera M. Advanced materials for micro/nanorobotics. Chem Soc Rev 2024; 53:9190-9253. [PMID: 39139002 DOI: 10.1039/d3cs00777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Autonomous micro/nanorobots capable of performing programmed missions are at the forefront of next-generation micromachinery. These small robotic systems are predominantly constructed using functional components sourced from micro- and nanoscale materials; therefore, combining them with various advanced materials represents a pivotal direction toward achieving a higher level of intelligence and multifunctionality. This review provides a comprehensive overview of advanced materials for innovative micro/nanorobotics, focusing on the five families of materials that have witnessed the most rapid advancements over the last decade: two-dimensional materials, metal-organic frameworks, semiconductors, polymers, and biological cells. Their unique physicochemical, mechanical, optical, and biological properties have been integrated into micro/nanorobots to achieve greater maneuverability, programmability, intelligence, and multifunctionality in collective behaviors. The design and fabrication methods for hybrid robotic systems are discussed based on the material categories. In addition, their promising potential for powering motion and/or (multi-)functionality is described and the fundamental principles underlying them are explained. Finally, their extensive use in a variety of applications, including environmental remediation, (bio)sensing, therapeutics, etc., and remaining challenges and perspectives for future research are discussed.
Collapse
Affiliation(s)
- Jeonghyo Kim
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Paula Mayorga-Burrezo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Su-Jin Song
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Carmen C Mayorga-Martinez
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Mariana Medina-Sánchez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi, 5, Bilbao, 48009, Spain
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and Nano-Biosystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, CH-8092 Zürich, Switzerland
| | - Martin Pumera
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
20
|
Gonçalves JD, Dias JH, Machado-Neves M, Vergani GB, Ahmadi B, Pereira Batista RIT, Souza-Fabjan JMG, Oliveira MEF, Bartlewski PM, da Fonseca JF. Transcervical uterine flushing and embryo transfer in sheep: Morphophysiological basis for approaches currently used, major challenges, potential improvements, and new directions (alas, including some old ideas). Reprod Biol 2024; 24:100920. [PMID: 38970979 DOI: 10.1016/j.repbio.2024.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
At present, the success of non-surgical embryo recovery (NSER) and transfer (NSET) hinges upon the cervical passage of catheters, but penetration of the uterine cervix in ewes is problematic due to its anatomical structure (i.e., long and narrow cervical lumen with misaligned folds and rings). It is a major obstacle limiting the widespread application of NSER and NSET in sheep. While initial attempts to traverse the uterine cervix focused on adapting or re-designing insemination catheters, more recent studies demonstrated that cervical relaxation protocols were instrumental for transcervical penetration in the ewe. An application of such protocols more than tripled cervical penetration rates (currently at 90-95 %) in sheep of different breeds (e.g., Dorper, Lacaune, Santa Inês, crossbred, and indigenous Brazilian breeds) and ages/parity. There is now sufficient evidence to suggest that even repeatedly performed cervical passages do not adversely affect overall health and reproductive function of ewes. Despite these improvements, appropriate selection of donors and recipients remains one of the most important requirements for maintaining high success rates of NSER and NSET, respectively. Non-surgical ovine embryo recovery has gradually become a commercially viable method as even though the procedure still cannot be performed by untrained individuals, it is inexpensive, yields satisfactory results, and complies with current public expectations of animal welfare standards. This article reviews critical morphophysiological aspects of transcervical embryo flushing and transfer, and the prospect of both techniques to replace surgical methods for multiple ovulation and embryo transfer (MOET) programs in sheep. We have also discussed some potential pharmacological and technical developments in the field of non-invasive embryo recovery and deposition.
Collapse
Affiliation(s)
- Joedson Dantas Gonçalves
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Jenniffer Hauschildt Dias
- Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, CEP 36570-000 Viçosa, MG, Brazil
| | - Mariana Machado-Neves
- Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, CEP 36570-000 Viçosa, MG, Brazil
| | - Gabriel Brun Vergani
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Bahareh Ahmadi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | - Maria Emilia Franco Oliveira
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University, Via de acesso Prof. Paulo Donato Castellane, s/n, CEP 14884-900 Jaboticabal, SP, Brazil
| | - Pawel Mieczyslaw Bartlewski
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
21
|
Wang J, Zhou Q, Dong Q, Shen J, Hao J, Li D, Xu T, Cai X, Bai W, Ying T, Li Y, Zhang L, Zhu Y, Wang L, Wu J, Zheng Y. Nanoarchitectonic Engineering of Thermal-Responsive Magnetic Nanorobot Collectives for Intracranial Aneurysm Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400408. [PMID: 38709208 DOI: 10.1002/smll.202400408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Stent-assisted coiling is a main treatment modality for intracranial aneurysms (IAs) in clinics, but critical challenges remain to be overcome, such as exogenous implant-induced stenosis and reliance on antiplatelet agents. Herein, an endovascular approach is reported for IA therapy without stent grafting or microcatheter shaping, enabled by active delivery of thrombin (Th) to target aneurysms using innovative phase-change material (PCM)-coated magnetite-thrombin (Fe3O4-Th@PCM) FTP nanorobots. The nanorobots are controlled by an integrated actuation system of dynamic torque-force hybrid magnetic fields. With robust intravascular navigation guided by real-time ultrasound imaging, nanorobotic collectives can effectively accumulate and retain in model aneurysms constructed in vivo, followed by controlled release of the encapsulated Th for rapid occlusion of the aneurysm upon melting the protective PCM (thermally responsive in a tunable manner) through focused magnetic hyperthermia. Complete and stable aneurysm embolization is confirmed by postoperative examination and 2-week postembolization follow-up using digital subtraction angiography (DSA), contrast-enhanced ultrasound (CEUS), and histological analysis. The safety of the embolization therapy is assessed through biocompatibility evaluation and histopathology assays. This strategy, seamlessly integrating secure drug packaging, agile magnetic actuation, and clinical interventional imaging, avoids possible exogenous implant rejection, circumvents cumbersome microcatheter shaping, and offers a promising option for IA therapy.
Collapse
Affiliation(s)
- Jienan Wang
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Qi Zhou
- School of Engineering, The University of Edinburgh, Edinburgh, EH9 3FB, UK
| | - Qi Dong
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200002, P. R. China
| | - Jian Shen
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Junnian Hao
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Dong Li
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Wenkun Bai
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yuehua Li
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Yueqi Zhu
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Longchen Wang
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
22
|
Jiang Q, He J, Zhang H, Chi H, Shi Y, Xu X. Recent advances in the development of tumor microenvironment-activatable nanomotors for deep tumor penetration. Mater Today Bio 2024; 27:101119. [PMID: 38966042 PMCID: PMC11222818 DOI: 10.1016/j.mtbio.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer represents a significant threat to human health, with the use of traditional chemotherapy drugs being limited by their harsh side effects. Tumor-targeted nanocarriers have emerged as a promising solution to this problem, as they can deliver drugs directly to the tumor site, improving drug effectiveness and reducing adverse effects. However, the efficacy of most nanomedicines is hindered by poor penetration into solid tumors. Nanomotors, capable of converting various forms of energy into mechanical energy for self-propelled movement, offer a potential solution for enhancing drug delivery to deep tumor regions. External force-driven nanomotors, such as those powered by magnetic fields or ultrasound, provide precise control but often necessitate bulky and costly external equipment. Bio-driven nanomotors, propelled by sperm, macrophages, or bacteria, utilize biological molecules for self-propulsion and are well-suited to the physiological environment. However, they are constrained by limited lifespan, inadequate speed, and potential immune responses. To address these issues, nanomotors have been engineered to propel themselves forward by catalyzing intrinsic "fuel" in the tumor microenvironment. This mechanism facilitates their penetration through biological barriers, allowing them to reach deep tumor regions for targeted drug delivery. In this regard, this article provides a review of tumor microenvironment-activatable nanomotors (fueled by hydrogen peroxide, urea, arginine), and discusses their prospects and challenges in clinical translation, aiming to offer new insights for safe, efficient, and precise treatment in cancer therapy.
Collapse
Affiliation(s)
- Qianyang Jiang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiahuan He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Hairui Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Haorui Chi
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Xiaoling Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| |
Collapse
|
23
|
Noh S, Hong HK, Kim DG, Jeong H, Lim SJ, Kim JY, Woo SJ, Choi H. Magnetically Controlled Intraocular Delivery of Dexamethasone Using Silica-Coated Magnetic Nanoparticles. ACS OMEGA 2024; 9:27888-27897. [PMID: 38973930 PMCID: PMC11223152 DOI: 10.1021/acsomega.3c07033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
Although the number of patients with eye diseases is increasing, efficient drug delivery to the posterior segment of the eyeball remains challenging. The reasons include the unique anatomy of the eyeball, the blood-aqueous barrier, the blood-retina barrier, and drug elimination via the anterior chamber and uveoscleral routes. Solutions to these obstacles for therapeutic delivery to the posterior segment will increase the efficacy, efficiency, and safety of ophthalmic treatment. Micro/nanorobots are promising tools to deliver therapeutics to the retina under the direction of an external magnetic field. Although many groups have evaluated potential uses of micro/nanorobots in retinal treatment, most experiments have been performed under idealized in vitro laboratory conditions and thus do not fully demonstrate the clinical feasibility of this approach. This study examined the use of magnetic nanoparticles (MNPs) to deliver dexamethasone, a drug widely used in retinal disease treatment. The MNPs allowed sustainable drug release and successful magnetic manipulation inside bovine vitreous humor and the vitreous humor of living rabbits. Therefore, controlled drug distribution via magnetic manipulation of MNPs is a promising strategy for targeted drug delivery to the retina.
Collapse
Affiliation(s)
- Seungmin Noh
- Department
of Robotics and Mechatronics Engineering, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- DGIST-ETH
Microrobotics Research Center, DGIST, Daegu 42988, Republic of Korea
| | - Hye Kyoung Hong
- Department
of Ophthalmology, Seoul National University
College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Dong Geun Kim
- Department
of Ophthalmology, Inje University College
of Medicine, Busan Paik Hospital, Busan 47392, Republic of Korea
| | - Hwajun Jeong
- Division
of Nanotechnology, DGIST, Daegu 42988, Republic of Korea
| | - Sung Jun Lim
- Division
of Nanotechnology, DGIST, Daegu 42988, Republic of Korea
| | - Jin-Young Kim
- DGIST-ETH
Microrobotics Research Center, DGIST, Daegu 42988, Republic of Korea
| | - Se Joon Woo
- Department
of Ophthalmology, Seoul National University
College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Hongsoo Choi
- Department
of Robotics and Mechatronics Engineering, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- DGIST-ETH
Microrobotics Research Center, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
24
|
Chen T, Cai Y, Ren B, Sánchez BJ, Dong R. Intelligent micro/nanorobots based on biotemplates. MATERIALS HORIZONS 2024; 11:2772-2801. [PMID: 38597188 DOI: 10.1039/d4mh00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Intelligent micro/nanorobots based on natural materials as biotemplates are considered to be some of the most promising robots in the future in the microscopic field. Due to the advantages of biotemplates such as unique structure, abundant resources, environmental friendliness, easy removal, low price, easy access, and renewability, intelligent micro/nanorobots based on biotemplates can be endowed with both excellent biomaterial activity and unique structural morphology through biotemplates themselves and specific functions through artificial micro/nanotechnology. Thus, intelligent micro/nanorobots show excellent application potential in various fields from biomedical applications to environmental remediation. In this review, we introduce the advantages of using natural biological materials as biotemplates to build intelligent micro/nanorobots, and then, classify the micro/nanorobots according to different types of biotemplates, systematically detail their preparation strategies and summarize their application prospects. Finally, in order to further advance the development of intelligent micro/nanorobots, we discuss the current challenges and future prospects of biotemplates. Intelligent micro/nanorobots based on biotemplates are a perfect combination of natural biotemplates and micro/nanotechnology, which is an important trend for the future development of micro/nanorobots. We hope this review can provide useful references for developing more intelligent, efficient and safe micro/nanorobots in the future.
Collapse
Affiliation(s)
- Ting Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yuepeng Cai
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Biye Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Beatriz Jurado Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain.
| | - Renfeng Dong
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials, Chemistry of Guangdong Higher Education Institutes Lingnan Normal University Zhanjiang, Guangdong 524048, P. R. China
| |
Collapse
|
25
|
Tan R, Yang X, Lu H, Shen Y. One-step formation of polymorphous sperm-like microswimmers by vortex turbulence-assisted microfluidics. Nat Commun 2024; 15:4761. [PMID: 38834563 DOI: 10.1038/s41467-024-49043-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
Microswimmers are considered promising candidates for active cargo delivery to benefit a wide spectrum of biomedical applications. Yet, big challenges still remain in designing the microswimmers with effective propelling, desirable loading and adaptive releasing abilities all in one. Inspired by the morphology and biofunction of spermatozoa, we report a one-step formation strategy of polymorphous sperm-like magnetic microswimmers (PSMs) by developing a vortex turbulence-assisted microfluidics (VTAM) platform. The fabricated PSM is biodegradable with a core-shell head and flexible tail, and their morphology can be adjusted by vortex flow rotation speed and calcium chloride solution concentration. Benefiting from the sperm-like design, our PSM exhibits both effective motion ability under remote mag/netic actuation and protective encapsulation ability for material loading. Further, it can also realize the stable sustain release after alginate-chitosan-alginate (ACA) layer coating modification. This research proposes and verifies a new strategy for the sperm-like microswimmer construction, offering an alternative solution for the target delivery of diverse drugs and biologics for future biomedical treatment. Moreover, the proposed VTAM could also be a general method for other sophisticated polymorphous structures fabrication that isn't achievable by conventional laminar flow.
Collapse
Affiliation(s)
- Rong Tan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiong Yang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Haojian Lu
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou, 310027, China
- Institute of Cyber-Systems and Control, the Department of Control Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yajing Shen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Center for Smart Manufacturing, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
26
|
Taseer AK, Oh S, Kim JS, Garai M, Yoo H, Nguyen VH, Yang Y, Khan M, Mahato M, Oh IK. Cobalt MOF-Based Porous Carbonaceous Spheres for Multimodal Soft Actuator Exhibiting Intricate Biomimetic Motions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312340. [PMID: 38578242 DOI: 10.1002/adma.202312340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
The advancement of active electrode materials is essential to meet the demand for multifaceted soft robotic interactions. In this study, a new type of porous carbonaceous sphere (PCS) for a multimodal soft actuator capable of both magnetoactive and electro-ionic responses is reported. The PCS, derived from the simultaneous oxidative and reductive breakdown of specially designed cobalt-based metal-organic frameworks (Co-MOFs) with varying metal-to-ligand ratios, exhibits a high specific surface area of 529 m2 g-1 and a saturated magnetization of 142.7 Am2 kg-1. The size of the PCS can be controlled through the Ostwald ripening mechanism, while the porous structure can be regulated by adjusting the metal-to-ligand mol ratio. Its exceptional compatibility with poly(3,4-ethylene-dioxythiophene)-poly(styrenesulfonate) enables the creation of uniform electrode, crucial for producing soft actuators that work in both magnetic and electrical fields. Operated at an ultralow voltage of 1 V, the PCS-based actuator generates a blocking force of 47.5 mN and exhibits significant bending deflection even at an oscillation frequency of 10 Hz. Employing this simultaneous multimodal actuation ensures the dynamic and complex motions of a balancing bird robot and a dynamic eagle robot. This advancement marks a significant step toward the realization of more dynamic and versatile soft robotic systems.
Collapse
Affiliation(s)
- Ashhad Kamal Taseer
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Saewoong Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ji-Seok Kim
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mousumi Garai
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyunjoon Yoo
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Van Hiep Nguyen
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yang Yang
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mannan Khan
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Manmatha Mahato
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Il-Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
27
|
Striggow F, Ribeiro C, Aziz A, Nauber R, Hebenstreit F, Schmidt OG, Medina-Sánchez M. Magnetotactic Sperm Cells for Assisted Reproduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310288. [PMID: 38150615 DOI: 10.1002/smll.202310288] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/09/2023] [Indexed: 12/29/2023]
Abstract
Biohybrid micromotors are active microscopic agents consisting of biological and synthetic components that are being developed as novel tools for biomedical applications. By capturing motile sperm cells within engineered microstructures, they can be controlled remotely while being propelled forward by the flagellar beat. This makes them an interesting tool for reproductive medicine that can enable minimally invasive sperm cell delivery to the oocyte in vivo, as a treatment for infertility. The generation of sperm-based micromotors in sufficiently large numbers, as they are required in biomedical applications has been challenging, either due to the employed fabrication techniques or the stability of the microstructure-sperm coupling. Here, biohybrid micromotors, which can be assembled in a fast and simple process using magnetic microparticles, are presented. These magnetotactic sperm cells show a high motility and swimming speed and can be transferred between different environments without large detrimental effects on sperm motility and membrane integrity. Furthermore, clusters of micromotors are assembled magnetically and visualized using dual ultrasound (US)/photoacoustic (PA) imaging. Finally, a protocol for the scaled-up assembly of micromotors and their purification for use in in vitro fertilization (IVF) is presented, bringing them closer to their biomedical implementation.
Collapse
Affiliation(s)
- Friedrich Striggow
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Carla Ribeiro
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Azaam Aziz
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Richard Nauber
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Franziska Hebenstreit
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Faculty of Physics, TU Dresden, 01062, Dresden, Germany
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Technische Universität Dresden, 01307, Dresden, Germany
| |
Collapse
|
28
|
Zhang Y, Wang M, Zhang T, Wang H, Chen Y, Zhou T, Yang R. Spermbots and Their Applications in Assisted Reproduction: Current Progress and Future Perspectives. Int J Nanomedicine 2024; 19:5095-5108. [PMID: 38836008 PMCID: PMC11149708 DOI: 10.2147/ijn.s465548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024] Open
Abstract
Sperm quality is declining dramatically during the past decades. Male infertility has been a serious health and social problem. The sperm cell driven biohybrid nanorobot opens a new era for automated and precise assisted reproduction. Therefore, it is urgent and necessary to conduct an updated review and perspective from the viewpoints of the researchers and clinicians in the field of reproductive medicine. In the present review, we first update the current classification, design, control and applications of various spermbots. Then, by a comprehensive summary of the functional features of sperm cells, the journey of sperms to the oocyte, and sperm-related dysfunctions, we provide a systematic guidance to further improve the design of spermbots. Focusing on the translation of spermbots into clinical practice, we point out that the main challenges are biocompatibility, effectiveness, and ethical issues. Considering the special requirements of assisted reproduction, we also propose the three laws for the clinical usage of spermbots: good genetics, gentle operation and no contamination. Finally, a three-step roadmap is proposed to achieve the goal of clinical translation. We believe that spermbot-based treatments can be validated and approved for in vitro clinical usage in the near future. However, multi-center and multi-disciplinary collaborations are needed to further promote the translation of spermbots into in vivo clinical applications.
Collapse
Affiliation(s)
- Yixuan Zhang
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, People’s Republic of China
| | - Min Wang
- Center for Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, People’s Republic of China
| | - Ting Zhang
- Department of Laboratory Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Wuxi, 214002, People’s Republic of China
| | - Honghua Wang
- Center for Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, People’s Republic of China
| | - Ying Chen
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, People’s Republic of China
| | - Tao Zhou
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, People’s Republic of China
| | - Rui Yang
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, People’s Republic of China
| |
Collapse
|
29
|
Li W, Yin Y, Zhou H, Fan Y, Yang Y, Gao Q, Li P, Gao G, Li J. Recent Advances in Electrospinning Techniques for Precise Medicine. CYBORG AND BIONIC SYSTEMS 2024; 5:0101. [PMID: 38778878 PMCID: PMC11109596 DOI: 10.34133/cbsystems.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/03/2024] [Indexed: 05/25/2024] Open
Abstract
In the realm of precise medicine, the advancement of manufacturing technologies is vital for enhancing the capabilities of medical devices such as nano/microrobots, wearable/implantable biosensors, and organ-on-chip systems, which serve to accurately acquire and analyze patients' physiopathological information and to perform patient-specific therapy. Electrospinning holds great promise in engineering materials and components for advanced medical devices, due to the demonstrated ability to advance the development of nanomaterial science. Nevertheless, challenges such as limited composition variety, uncontrollable fiber orientation, difficulties in incorporating fragile molecules and cells, and low production effectiveness hindered its further application. To overcome these challenges, advanced electrospinning techniques have been explored to manufacture functional composites, orchestrated structures, living constructs, and scale-up fabrication. This review delves into the recent advances of electrospinning techniques and underscores their potential in revolutionizing the field of precise medicine, upon introducing the fundamental information of conventional electrospinning techniques, as well as discussing the current challenges and future perspectives.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Yue Yin
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| | - Huaijuan Zhou
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing 100081, China
| | - Yingwei Fan
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Yingting Yang
- Advanced Research Institute of Multidisciplinary Sciences,
Beijing Institute of Technology, Beijing 100081, China
| | - Qiqi Gao
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Pei Li
- Center for Advanced Biotechnology and Medicine,
Rutgers University, Piscataway, NJ, USA
| | - Ge Gao
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| | - Jinhua Li
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
- Zhengzhou Academy of Intelligent Technology,
Beijing Institute of Technology, Zhengzhou 450040, China
| |
Collapse
|
30
|
García‐Vázquez FA, Garrappa G, Luongo C, Hamze JG, Caballero M, Marco‐Jiménez F, Vicente Antón JS, Molina‐Cuberos GJ, Jiménez‐Movilla M. Magnetic-Assisted Control of Eggs and Embryos via Zona Pellucida-Linked Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306901. [PMID: 38447155 PMCID: PMC11095233 DOI: 10.1002/advs.202306901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Eggs and embryo manipulation is an important biotechnological challenge to enable positioning, entrapment, and selection of reproductive cells to advance into a new era of nature-like assisted reproductive technologies. Oviductin (OVGP1) is an abundant protein in the oviduct that binds reversibly to the zona pellucida, an extracellular matrix that surrounds eggs and embryos. Here, the study reports a new method coupling OVGP1 to magnetic nanoparticles (NP) forming a complex (NPOv). NPOv specifically surrounds eggs and embryos in a reversible manner. Eggs/embryos bound to NPOv can be moved or retained when subjected to a magnetic force, and interestingly only mature-competent eggs are attracted. This procedure is compatible with normal development following gametes function, in vitro fertilization, embryo development and resulting in the birth of healthy offspring. The results provide in vitro proof-of-concept that eggs and embryos can be precisely guided in the absence of physical contact by the use of magnets.
Collapse
Affiliation(s)
- Francisco Alberto García‐Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB‐Arrixaca)Murcia30120Spain
| | - Gabriela Garrappa
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
- Insitituto Nacional de Tecnología Agropecuaria (INTA)RafaelaSanta Fe2300Argentina
| | - Chiara Luongo
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
| | - Julieta Gabriela Hamze
- Instituto Murciano de Investigación Biosanitaria (IMIB‐Arrixaca)Murcia30120Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
| | - María Caballero
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30100Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
| | - Francisco Marco‐Jiménez
- Instituto de Ciencia y Tecnología AnimalUniversitat Politècnica de ValènciaValencia46022Spain
| | | | - Gregorio J. Molina‐Cuberos
- Departamento de Electromagnetismo y Electrónica, Facultad de QuímicaUniversidad de MurciaMurcia30100Spain
| | - María Jiménez‐Movilla
- Instituto Murciano de Investigación Biosanitaria (IMIB‐Arrixaca)Murcia30120Spain
- Departamento de Biología Celular e Histología, Facultad de Medicina y Enfermería, Campus de Excelencia Mare NostrumUniversidad de MurciaMurcia30120Spain
| |
Collapse
|
31
|
Celi N, Cai J, Sun H, Feng L, Zhang D, Gong D. Biohybrid Flexible Sperm-like Microrobot for Targeted Chemo-Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38687629 DOI: 10.1021/acsami.4c02836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Magnetic micro/nanorobots are promising platforms for targeted drug delivery, and their construction with soft and flexible features has received extensive attention for practical applications. Despite significant efforts in this field, facile fabrication of magnetic microrobots with flexible structures and versatility in targeted therapy remains a big challenge. Herein, we proposed a novel universal strategy to fabricate a biohybrid flexible sperm-like microrobot (BFSM) based on a Chlorella (Ch.) cell and artificial flagella, which showed great potential for targeted chemo-photothermal therapy for the first time. In this approach, microspherical Ch. cells were utilized to construct the microrobotic heads, which were intracellularly deposited with core-shell Pd@Au, extracellularly magnetized with Fe3O4, and further loaded with anticancer drug. The magnetic heads with excellent photothermal and chemotherapeutic capability were further assembled with flexible polypyrrole nanowires via biotin-streptavidin bonding to construct the BFSMs. Based on the exquisite head-to-tail structures, the BFSMs could be effectively propelled under precessing magnetic fields and move back and forth without a U-turn. Moreover, in vitro chemo-photothermal tests were conducted to verify their performance of targeted drug delivery toward localized HeLa cells. Due to this superior versatility and facile fabrication, the BFSMs demonstrated great potential for targeted anticancer therapy.
Collapse
Affiliation(s)
- Nuoer Celi
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| |
Collapse
|
32
|
Jung Y, Kwon K, Lee J, Ko SH. Untethered soft actuators for soft standalone robotics. Nat Commun 2024; 15:3510. [PMID: 38664373 PMCID: PMC11045848 DOI: 10.1038/s41467-024-47639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Soft actuators produce the mechanical force needed for the functional movements of soft robots, but they suffer from critical drawbacks since previously reported soft actuators often rely on electrical wires or pneumatic tubes for the power supply, which would limit the potential usage of soft robots in various practical applications. In this article, we review the new types of untethered soft actuators that represent breakthroughs and discuss the future perspective of soft actuators. We discuss the functional materials and innovative strategies that gave rise to untethered soft actuators and deliver our perspective on challenges and opportunities for future-generation soft actuators.
Collapse
Affiliation(s)
- Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kangkyu Kwon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Engineering Research / Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
33
|
Benhal P. Micro/Nanorobotics in In Vitro Fertilization: A Paradigm Shift in Assisted Reproductive Technologies. MICROMACHINES 2024; 15:510. [PMID: 38675321 PMCID: PMC11052506 DOI: 10.3390/mi15040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
In vitro fertilization (IVF) has transformed the sector of assisted reproductive technology (ART) by presenting hope to couples facing infertility challenges. However, conventional IVF strategies include their own set of problems such as success rates, invasive procedures, and ethical issues. The integration of micro/nanorobotics into IVF provides a prospect to address these challenging issues. This article provides an outline of the use of micro/nanorobotics in IVF specializing in advancing sperm manipulation, egg retrieval, embryo culture, and capacity future improvements in this swiftly evolving discipline. The article additionally explores the challenges and obstacles associated with the integration of micro/nanorobotics into IVF, in addition to the ethical concerns and regulatory elements related to the usage of advanced technologies in ART. A comprehensive discussion of the risk and safety considerations related to using micro/nanorobotics in IVF techniques is likewise presented. Through this exploration, we delve into the core principles, benefits, challenges, and potential impact of micro/nanorobotics in revolutionizing IVF procedures and enhancing affected person outcomes.
Collapse
Affiliation(s)
- Prateek Benhal
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA; ; Tel.: +1-240-972-1482
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA
| |
Collapse
|
34
|
Al Harraq A, Feng M, Gauri HM, Devireddy R, Gupta A, Sun Q, Bharti B. Magnetic Control of Nonmagnetic Living Organisms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17339-17346. [PMID: 38531044 PMCID: PMC11009914 DOI: 10.1021/acsami.4c02325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable. We propose an alternative approach that leverages the principles of negative magnetostatics and magnetophoresis to control nonmagnetic organisms with external magnetic fields. To do this, we disperse model organisms in dispersions of Fe3O4 nanoparticles and expose them to either uniform or gradient magnetic fields. In uniform magnetic fields, living organisms align with the field due to external torque, while gradient magnetic fields generate a negative magnetophoretic force, pushing objects away from external magnets. The magnetic fields enable controlling the position and orientation of Caenorhabditis elegans larvae and flagellated bacteria through directional interactions and magnitude. This control is diminished in live spermatozoa and adult C. elegans due to stronger internal biological activity, i.e., force/torque. Our study presents a method for spatiotemporal organization of living organisms without requiring magnetic hybridization, opening the way for the development of controllable living microbiorobots.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Min Feng
- McFerrin
Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Hashir M. Gauri
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Ram Devireddy
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Ankur Gupta
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Qing Sun
- McFerrin
Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Bhuvnesh Bharti
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
35
|
Xu R, Xu Q. A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation. MICROMACHINES 2024; 15:468. [PMID: 38675279 PMCID: PMC11052276 DOI: 10.3390/mi15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview of the recent developments in magnetic microrobots, focusing on materials, propulsion mechanisms, design strategies, fabrication techniques, and diverse micro-/nano-manipulation applications. The exploration of magnetic materials, biosafety considerations, and propulsion methods serves as a foundation for the diverse designs discussed in this review. The paper delves into the design categories, encompassing helical, surface, ciliary, scaffold, and biohybrid microrobots, with each demonstrating unique capabilities. Furthermore, various fabrication techniques, including direct laser writing, glancing angle deposition, biotemplating synthesis, template-assisted electrochemical deposition, and magnetic self-assembly, are examined owing to their contributions to the realization of magnetic microrobots. The potential impact of magnetic microrobots across multidisciplinary domains is presented through various application areas, such as drug delivery, minimally invasive surgery, cell manipulation, and environmental remediation. This review highlights a comprehensive summary of the current challenges, hurdles to overcome, and future directions in magnetic microrobot research across different fields.
Collapse
Affiliation(s)
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China;
| |
Collapse
|
36
|
Zhang Q, Zeng Y, Zhao Y, Peng X, Ren E, Liu G. Bio-Hybrid Magnetic Robots: From Bioengineering to Targeted Therapy. Bioengineering (Basel) 2024; 11:311. [PMID: 38671732 PMCID: PMC11047666 DOI: 10.3390/bioengineering11040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Magnetic robots possess an innate ability to navigate through hard-to-reach cavities in the human body, making them promising tools for diagnosing and treating diseases minimally invasively. Despite significant advances, the development of robots with desirable locomotion and full biocompatibility under harsh physiological conditions remains challenging, which put forward new requirements for magnetic robots' design and material synthesis. Compared to robots that are synthesized with inorganic materials, natural organisms like cells, bacteria or other microalgae exhibit ideal properties for in vivo applications, such as biocompatibility, deformability, auto-fluorescence, and self-propulsion, as well as easy for functional therapeutics engineering. In the process, these organisms can provide autonomous propulsion in biological fluids or external magnetic fields, while retaining their functionalities with integrating artificial robots, thus aiding targeted therapeutic delivery. This kind of robotics is named bio-hybrid magnetic robotics, and in this mini-review, recent progress including their design, engineering and potential for therapeutics delivery will be discussed. Additionally, the historical context and prominent examples will be introduced, and the complexities, potential pitfalls, and opportunities associated with bio-hybrid magnetic robotics will be discussed.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
| | - Yun Zeng
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Yang Zhao
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
| | - Xuqi Peng
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| | - En Ren
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- Key Laboratory of Advanced Drug Delivery Systems, Zhejiang Province College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gang Liu
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| |
Collapse
|
37
|
Liu Y, Huang J, Liu C, Song Z, Wu J, Zhao Q, Li Y, Dong F, Wang L, Xu H. Soft Millirobot Capable of Switching Motion Modes on the Fly for Targeted Drug Delivery in the Oviduct. ACS NANO 2024; 18:8694-8705. [PMID: 38466230 DOI: 10.1021/acsnano.3c09753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Small-scale magnetic robots with fixed magnetizations have limited locomotion modes, restricting their applications in complex environments in vivo. Here we present a morphology-reconfigurable millirobot that can switch the locomotion modes locally by reprogramming its magnetizations during navigation, in response to distinct magnetic field patterns. By continuously switching its locomotion modes between the high-velocity rigid motion and high-adaptability soft actuation, the millirobot efficiently navigates in small lumens with intricate internal structures and complex surface topographies. As demonstrations, the millirobot performs multimodal locomotion including woodlouse-like rolling and flipping, sperm-like rotating, and snake-like gliding to negotiate different terrains, including the unrestricted channel and high platform, narrow channel, and solid-liquid interface, respectively. Finally, we demonstrate the drug delivery capability of the millirobot through the oviduct-mimicking phantom and ex vivo oviduct. The magnetization reprogramming strategy during navigation represents a promising approach for developing self-adaptive robots for performing complex tasks in vivo.
Collapse
Affiliation(s)
- Yuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Jing Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Chu Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhongyi Song
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Jiandong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Qilong Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Yingtian Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Lei Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Haifeng Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, P. R. China, 1068 Xueyuan Avenue, Shenzhen 518055, China
| |
Collapse
|
38
|
Tian Z, Xue J, Xiao X, Du C, Liu Y. Optomagnetic Coordination Helical Robot with Shape Transformation and Multimodal Motion Capabilities. NANO LETTERS 2024; 24:2885-2893. [PMID: 38407034 DOI: 10.1021/acs.nanolett.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Soft robots with magnetic responsiveness exhibit diverse motion modes and programmable shape transformations. While the fixed magnetization configuration facilitates coupling control of robot posture and motion, it limits individual posture control to some extent. This poses a challenge in independently controlling the robot's transformation and motion, restricting its versatile applications. This research introduces a multifunctional helical robot responsive to both light and magnetism, segregating posture control from movements. Light fields assist in robot shaping, achieving a 78% maximum diameter shift. Magnetic fields guide helical robots in multimodal motions, encompassing rotation, flipping, rolling, and spinning-induced propulsion. By controlling multimodal locomotion and shape transformation on demand, helical robots gain enhanced flexibility. This innovation allows them to tightly grip and wirelessly transport designated payloads, showcasing potential applications in drug delivery, soft grippers, and chemical reaction platforms. The unique combination of structural design and control methods holds promise for intelligent robots in the future.
Collapse
Affiliation(s)
- Zhuangzhuang Tian
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Jingze Xue
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Xinze Xiao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Chuankai Du
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
- Weihai Institute for Bionics, Jilin University, Weihai, 264402, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
39
|
Mayorga-Martinez CC, Zhang L, Pumera M. Chemical multiscale robotics for bacterial biofilm treatment. Chem Soc Rev 2024; 53:2284-2299. [PMID: 38324331 DOI: 10.1039/d3cs00564j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A biofilm constitutes a bacterial community encased in a sticky matrix of extracellular polymeric substances. These intricate microbial communities adhere to various host surfaces such as hard and soft tissues as well as indwelling medical devices. These microbial aggregates form a robust matrix of extracellular polymeric substances (EPSs), leading to the majority of human infections. Such infections tend to exhibit high resistance to treatment, often progressing into chronic states. The matrix of EPS protects bacteria from a hostile environment and prevents the penetration of antibacterial agents. Modern robots at nano, micro, and millimeter scales are highly attractive candidates for biomedical applications due to their diverse functionalities, such as navigating in confined spaces and targeted multitasking. In this tutorial review, we describe key milestones in the strategies developed for the removal and eradication of biofilms using robots of different sizes and shapes. It can be seen that robots at different scales are useful and effective tools for treating bacterial biofilms, thus preventing persistent infections, the loss of costly implanted medical devices, and additional costs associated with hospitalization and therapies.
Collapse
Affiliation(s)
- Carmen C Mayorga-Martinez
- Advanced Nanorobots & Multicale Robotics, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Martin Pumera
- Advanced Nanorobots & Multicale Robotics, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava 70800, Czech Republic.
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-616 00, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
40
|
Dillinger C, Knipper J, Nama N, Ahmed D. Steerable acoustically powered starfish-inspired microrobot. NANOSCALE 2024; 16:1125-1134. [PMID: 37946510 PMCID: PMC10795801 DOI: 10.1039/d3nr03516f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Soft polymeric microrobots that can be loaded with nanocargoes and driven via external field stimuli can provide innovative solutions in various fields, including precise microscale assembly, targeted therapeutics, microsurgery, and the capture and degradation of unwanted wastewater fragments. However, in aquatic environments, it remains challenging to operate with microrobotic devices due to the predominant viscous resistances and the robots' limited actuation and sensing capabilities attributed to their miniaturization. The miniature size prevents the incorporation of onboard batteries that can provide sufficient power for propulsion and navigation, necessitating a wireless power supply. Current research examines untethered microrobot manipulation using external magnetic, electric, thermodynamic, or acoustic field-guided technologies: all strategies capable of wireless energy transmission towards sensitive and hard-to-reach locations. Nonetheless, developing a manipulation strategy that harnesses simple-to-induce strong propulsive forces in a stable manner over extended periods of time remains a significant endeavor. This study presents the fabrication and manipulation of a microrobot consisting of a magnetized soft polymeric composite material that enables a combination of stable acoustic propulsion through starfish-inspired artificial cilia and magnetic field-guided navigation. The acousto-magnetic manipulation strategy leverages the unique benefits of each applied field in the viscous-dominated microscale, namely precise magnetic orientation and strong acoustic thrust.
Collapse
Affiliation(s)
- Cornel Dillinger
- Acoustic Robotics and Systems Lab, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
| | - Justin Knipper
- Acoustic Robotics and Systems Lab, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
| | - Nitesh Nama
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Daniel Ahmed
- Acoustic Robotics and Systems Lab, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
41
|
Bo Y, Wang H, Niu H, He X, Xue Q, Li Z, Yang H, Niu F. Advancements in materials, manufacturing, propulsion and localization: propelling soft robotics for medical applications. Front Bioeng Biotechnol 2024; 11:1327441. [PMID: 38260727 PMCID: PMC10800571 DOI: 10.3389/fbioe.2023.1327441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Soft robotics is an emerging field showing immense potential for biomedical applications. This review summarizes recent advancements in soft robotics for in vitro and in vivo medical contexts. Their inherent flexibility, adaptability, and biocompatibility enable diverse capabilities from surgical assistance to minimally invasive diagnosis and therapy. Intelligent stimuli-responsive materials and bioinspired designs are enhancing functionality while improving biocompatibility. Additive manufacturing techniques facilitate rapid prototyping and customization. Untethered chemical, biological, and wireless propulsion methods are overcoming previous constraints to access new sites. Meanwhile, advances in tracking modalities like computed tomography, fluorescence and ultrasound imaging enable precision localization and control enable in vivo applications. While still maturing, soft robotics promises more intelligent, less invasive technologies to improve patient care. Continuing research into biocompatibility, power supplies, biomimetics, and seamless localization will help translate soft robots into widespread clinical practice.
Collapse
Affiliation(s)
- Yunwen Bo
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Haochen Wang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hui Niu
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyang He
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Quhao Xue
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zexi Li
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hao Yang
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
42
|
Chen B, Sun H, Zhang J, Xu J, Song Z, Zhan G, Bai X, Feng L. Cell-Based Micro/Nano-Robots for Biomedical Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304607. [PMID: 37653591 DOI: 10.1002/smll.202304607] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Micro/nano-robots are powerful tools for biomedical applications and are applied in disease diagnosis, tumor imaging, drug delivery, and targeted therapy. Among the various types of micro-robots, cell-based micro-robots exhibit unique properties because of their different cell sources. In combination with various actuation methods, particularly externally propelled methods, cell-based microrobots have enormous potential for biomedical applications. This review introduces recent progress and applications of cell-based micro/nano-robots. Different actuation methods for micro/nano-robots are summarized, and cell-based micro-robots with different cell templates are introduced. Furthermore, the review focuses on the combination of cell-based micro/nano-robots with precise control using different external fields. Potential challenges, further prospects, and clinical translations are also discussed.
Collapse
Affiliation(s)
- Bo Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Junjie Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Zeyu Song
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Guangdong Zhan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
43
|
Su L, Jin D, Wang Y, Wang Q, Pan C, Jiang S, Yang H, Yang Z, Wang X, Xia N, Chan KF, Chiu PWY, Sung JJY, Zhang L. Modularized microrobot with lock-and-detachable modules for targeted cell delivery in bile duct. SCIENCE ADVANCES 2023; 9:eadj0883. [PMID: 38100592 PMCID: PMC10848723 DOI: 10.1126/sciadv.adj0883] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
The magnetic microrobots promise benefits in minimally invasive cell-based therapy. However, they generally suffer from an inevitable compromise between their magnetic responsiveness and biomedical functions. Herein, we report a modularized microrobot consisting of magnetic actuation (MA) and cell scaffold (CS) modules. The MA module with strong magnetism and pH-responsive deformability and the CS module with cell loading-release capabilities were fabricated by three-dimensional printing technique. Subsequently, assembly of modules was performed by designing a shaft-hole structure and customizing their relative dimensions, which enabled magnetic navigation in complex environments, while not deteriorating the cellular functionalities. On-demand disassembly at targeted lesion was then realized to facilitate CS module delivery and retrieval of the MA module. Furthermore, the feasibility of proposed system was validated in an in vivo rabbit bile duct. Therefore, this work presents a modular design-based strategy that enables uncompromised fabrication of multifunctional microrobots and stimulates their development for future cell-based therapy.
Collapse
Affiliation(s)
- Lin Su
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dongdong Jin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yuqiong Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qinglong Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chengfeng Pan
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuai Jiang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haojin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhengxin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xin Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kai Fung Chan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Philip Wai Yan Chiu
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joseph Jao-Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
44
|
Zhou M, Yin Y, Zhao J, Zhou M, Bai Y, Zhang P. Applications of microalga-powered microrobots in targeted drug delivery. Biomater Sci 2023; 11:7512-7530. [PMID: 37877241 DOI: 10.1039/d3bm01095c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Over the past decade, researchers have proposed a new class of drug delivery systems, bio-hybrid micro-robots, designed with a variety of living cell-driven micro-robots that utilize the unique mobility of natural organisms (bacteria, cells, exosomes, etc.) to transport effective drugs. Microalgae are considered potential drug delivery carriers. Recent studies have shown that microalga-based drug delivery systems exhibit excellent biocompatibility. In addition, microalgae have a large surfactant area, phototaxis, oxygen production, and other characteristics, so they are used as a carrier for the treatment of bacterial infections, cancer, etc. This review summarizes the modification of microalgae including click chemistry and electrostatic adsorption, and can improve the drug loading efficiency through dehydration and hydration strategies. The prepared microalgal drug delivery system can be targeted to different organs by different dosing methods or using external forces. Finally, it summarizes its antibacterial (gastritis, periodontitis, skin wound inflammation, etc.) and antitumor applications.
Collapse
Affiliation(s)
- Min Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mingyang Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Yanjie Bai
- Department of Stomatology, People's Hospital of Liaoning Province, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
45
|
Li M, Pal A, Byun J, Gardi G, Sitti M. Magnetic Putty as a Reconfigurable, Recyclable, and Accessible Soft Robotic Material. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304825. [PMID: 37713134 DOI: 10.1002/adma.202304825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Magnetically hard materials are widely used to build soft magnetic robots, providing large magnetic force/torque and macrodomain programmability. However, their high magnetic coercivity often presents practical challenges when attempting to reconfigure magnetization patterns, requiring a large magnetic field or heating. In this study, magnetic putty is introduced as a magnetically hard and soft material with large remanence and low coercivity. It is shown that the magnetization of magnetic putty can be easily reoriented with maximum magnitude using an external field that is only one-tenth of its coercivity. Additionally, magnetic putty is a malleable, autonomous self-healing material that can be recycled and repurposed. The authors anticipate magnetic putty could provide a versatile and accessible tool for various magnetic robotics applications for fast prototyping and explorations for research and educational purposes.
Collapse
Affiliation(s)
- Meng Li
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Aniket Pal
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute of Applied Mechanics, University of Stuttgart, 70569, Stuttgart, Germany
| | - Junghwan Byun
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Gaurav Gardi
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
46
|
Zhu S, Cheng Y, Wang J, Liu G, Luo T, Li X, Yang S, Yang R. Biohybrid magnetic microrobots: An intriguing and promising platform in biomedicine. Acta Biomater 2023; 169:88-106. [PMID: 37572981 DOI: 10.1016/j.actbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Biohybrid magnetic microrobots (BMMs) have emerged as an exciting class of microrobots and have been considered as a promising platform in biomedicine. Many microorganisms and body's own cells show intriguing properties, such as morphological characteristics, biosafety, and taxis abilities (e.g., chemotaxis, aerotaxis), which have made them attractive for the fabrication of microrobots. For remote controllability and sustainable actuation, magnetic components are usually incorporated onto these biological entities, and other functionalized non-biological components (e.g., therapeutic agents) are also included for specific applications. This review highlights the latest developments in BMMs with a focus on their biomedical applications. It starts by introducing the fundamental understanding of the propulsion system at the microscale in a magnetically driven manner, followed by a summary of diverse BMMs based on different microorganisms and body's own cells along with their relevant applications. Finally, the review discusses how BMMs contribute to the advancements of microrobots, the current challenges of using BMMs in practical clinical settings, and the future perspectives of this exciting field. STATEMENT OF SIGNIFICANCE: Biohybrid magnetic microrobots (BMMs), composed of biological entities and functional parts, hold great potential and serve as a novel and promising platform for biomedical applications such as targeted drug delivery. This review comprehensively summarizes the recent advancements in BMMs for biomedical applications, mainly focused on the representative propulsion modalities in a magnetically propelled manner and diverse designs of BMMs based on different biological entities, including microorganisms and body's own cells. We hope this review can provide ideas for the future design, development, and innovation of micro/nanorobots in the field of biomedicine.
Collapse
Affiliation(s)
- Shilu Zhu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Yifan Cheng
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Jian Wang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| | - Xiaojian Li
- Department of Management, Hefei University of Technology, Hefei 230009, China.
| | - Shanlin Yang
- Key Laboratory of Process Optimization and Intelligent Decision-Making (Ministry of Education), Hefei University of Technology, Hefei 230009, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
47
|
Wang Y, Chen J, Su G, Mei J, Li J. A Review of Single-Cell Microrobots: Classification, Driving Methods and Applications. MICROMACHINES 2023; 14:1710. [PMID: 37763873 PMCID: PMC10537272 DOI: 10.3390/mi14091710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Single-cell microrobots are new microartificial devices that use a combination of single cells and artificial devices, with the advantages of small size, easy degradation and ease of manufacture. With externally driven strategies such as light fields, sound fields and magnetic fields, microrobots are able to carry out precise micromanipulations and movements in complex microenvironments. Therefore, single-cell microrobots have received more and more attention and have been greatly developed in recent years. In this paper, we review the main classifications, control methods and recent advances in the field of single-cell microrobot applications. First, different types of robots, such as cell-based microrobots, bacteria-based microrobots, algae-based microrobots, etc., and their design strategies and fabrication processes are discussed separately. Next, three types of external field-driven technologies, optical, acoustic and magnetic, are presented and operations realized in vivo and in vitro by applying these three technologies are described. Subsequently, the results achieved by these robots in the fields of precise delivery, minimally invasive therapy are analyzed. Finally, a short summary is given and current challenges and future work on microbial-based robotics are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Junyang Li
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China; (Y.W.); (J.C.); (G.S.); (J.M.)
| |
Collapse
|
48
|
You M, Mou F, Wang K, Guan J. Tadpole-Like Flexible Microswimmers with the Head and Tail Both Magnetic. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40855-40863. [PMID: 37584677 DOI: 10.1021/acsami.3c09701] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
In analogy to eukaryotic cells that move by beating the flagella, magnetically powered micro/nanorobots with flexible filaments are capable of eluding the limitation of the scallop theorem to generate net displacement in a three-dimensional space, but they are limited by complicated fabrication and low speed. Here, we demonstrate a tadpole-like flexible microswimmer with a head and tail that are both magnetic by developing a magnetically assisted in situ polymerization method. The flexible microswimmer consists of a magnetic-bead head fixed to a nanochain bundle of magnetic nanoparticles (tail), and the tail length and stiffness can be adjusted simply by changing the duration and strength of the applied magnetic field during fabrication, respectively. For the microswimmer under an oscillating magnetic field, the magnetic head generates an undulatory motion, which can be further increased by the flexible magnetic tail. The magnetically induced undulation of the head and tail generates a traveling wave propagating through its flexible tail, resulting in efficient tadpole-like propulsion of the microswimmer. The flexible microswimmer runs at a maximum motion speed when the tail length is ∼5 times the diameter of the magnetic head, corresponding to ∼half the wavelength of the undulatory motion. The flexible microswimmers reported here are promising for active sensing and drug delivery, as the tails can be designed with various responsive hydrogels, and the results are expected to advance flexible micro/nanorobots.
Collapse
Affiliation(s)
- Ming You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, China
| | - Ke Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, China
| |
Collapse
|
49
|
Li J, Yu J. Biodegradable Microrobots and Their Biomedical Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101590. [PMID: 37242005 DOI: 10.3390/nano13101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
During recent years, microrobots have drawn extensive attention owing to their good controllability and great potential in biomedicine. Powered by external physical fields or chemical reactions, these untethered microdevices are promising candidates for in vivo complex tasks, such as targeted delivery, imaging and sensing, tissue engineering, hyperthermia, and assisted fertilization, among others. However, in clinical use, the biodegradability of microrobots is significant for avoiding toxic residue in the human body. The selection of biodegradable materials and the corresponding in vivo environment needed for degradation are increasingly receiving attention in this regard. This review aims at analyzing different types of biodegradable microrobots by critically discussing their advantages and limitations. The chemical degradation mechanisms behind biodegradable microrobots and their typical applications are also thoroughly investigated. Furthermore, we examine their feasibility and deal with the in vivo suitability of different biodegradable microrobots in terms of their degradation mechanisms; pathological environments; and corresponding biomedical applications, especially targeted delivery. Ultimately, we highlight the prevailing obstacles and perspective solutions, ranging from their manufacturing methods, control of movement, and degradation rate to insufficient and limited in vivo tests, that could be of benefit to forthcoming clinical applications.
Collapse
Affiliation(s)
- Jinxin Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518172, China
| |
Collapse
|
50
|
Liu Y, Lin G, Medina-Sánchez M, Guix M, Makarov D, Jin D. Responsive Magnetic Nanocomposites for Intelligent Shape-Morphing Microrobots. ACS NANO 2023; 17:8899-8917. [PMID: 37141496 DOI: 10.1021/acsnano.3c01609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
With the development of advanced biomedical theragnosis and bioengineering tools, smart and soft responsive microstructures and nanostructures have emerged. These structures can transform their body shape on demand and convert external power into mechanical actions. Here, we survey the key advances in the design of responsive polymer-particle nanocomposites that led to the development of smart shape-morphing microscale robotic devices. We overview the technological roadmap of the field and highlight the emerging opportunities in programming magnetically responsive nanomaterials in polymeric matrixes, as magnetic materials offer a rich spectrum of properties that can be encoded with various magnetization information. The use of magnetic fields as a tether-free control can easily penetrate biological tissues. With the advances in nanotechnology and manufacturing techniques, microrobotic devices can be realized with the desired magnetic reconfigurability. We emphasize that future fabrication techniques will be the key to bridging the gaps between integrating sophisticated functionalities of nanoscale materials and reducing the complexity and footprints of microscale intelligent robots.
Collapse
Affiliation(s)
- Yuan Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, 518055 Guangdong Province, P. R. China
| | - Gungun Lin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069 Dresden, Germany
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062 Dresden, Germany
| | - Maria Guix
- Universitat de Barcelona, Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional Barcelona, 08028 Barcelona, Spain
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|